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ABSTRACT

We show that a fully anti-commuting Y5 is a correct and
naturél prescriptioh for the dimensional regularization of one fermion
loop graphs in spontaneously broken gauge theories. Other prescrip- .
tions introduée spurious anomalies into Ward identities which are
actualiy énomély free. our prescription is correct even though no
sdch YS ‘exists: it cannot exist precisely because of the famiiiar

chiral anomaly.

This work was supported by the High Energy Physics Division of

the U. S. Department of Energy ﬁhder cdntract No. W-7405-ENG-48.
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I. INTRODUCTION
Dimensional‘regularizationl) is the most elégant and convenient
method for computing higher order corrections in spontaneously broken
gauge theories. It is probably the only praétical method for all but
the simplest éalculations. In the absence of axial couplings the
method is straightforwardvbut'there is' some confﬁsion in the case of

fermion loops with one or more factors of YS . This is because the

Hvop is a uniquely four_dimen-

totaliy antisymmetric four—tensof’ €
sional object, with no natural continuation to n dimensions. Indeed
we propose ﬁere fhat the correct and natural prescription'for Ys in
dimensional ‘regularization is to cbodse an nfdimensional_zys which
does not exist at all, in the sense that it is not mathematically well
defined.

The preceding sentence‘is not meant to be a Zen koan: the
central word is prescription. In constructing a regulator we want a
method which (a) renders dive;qen; Feynman integrals finite and (B)
hogo;s the Ward i@entitiés of:the theéry. _Our prescription for Y5
satisfies criteria (A) and (B) even though it is not well defined in
n dimensiops.i The failutg to exist is actually a virtue: it reflects
the éésential ambiguity of the Adler-Bell-Jackiw andmalyz), which is
an unavoidable clash of Ward identities in certain Green's functions.
our preécription is ambiguous only in the context of the A-B-J anomaly
and leaves us Fhe fréedom to choose, accordiﬁé to the physicgi cirj:
cumsténces, which of the clashing Ward idéntities will be ancmalous..

Other prescriptions in the literature, which'aie well défined,
are really stronger than wé,wouid 1ike3'4). They force on us a

particular resolution of the A-B-J ambiguity. &nd, more seriously,



they introduce spurious anomalies‘into Ward identities which are
really free of any essential anomalies. Consequently these prescrip-
tions lead to errors in the calculation of physical quantities, unless
the underlying Ward identities are checked at each stage of the
calculation and the spurious anomalies are subtracted by hand. This
is a tedious and unnecessary procedure. It is much simpler to
vuse our prescription, which is unambiguous and correct ex;épt for the
known essential ambiguit& of the Adler;Bell—Jackiw anomaly. With our
prescription, the latter ambigqity can be handled in the usual ways.
In particular, in spontaneously bréken gauge theories the ambiguity is
constrained to cancel between the different fermion speciess).
In the body of this paper we will concentrate on comparing our
‘prescription for YS to the prescription of 't Hooft and Veltman3).
We defer to the concludiﬁg section a brief discussion of another
prescription due to Akyeampong and Delbourgo4) which ha; properties
similar to the 't Hooft-Veltman prescription.
In their original paper on dimensional regularization 't Hooft
and Veltman3) proposed that in n dimensions Y5 be defined+ by
Ys = i y% yly? ¥? . . , (1.1)
We denote their prescription by ?g. Our prescriptiqn,‘denoted ?5 B
is defined by the properties that it anticommutes with all Yu in

n dimensions

Equation (1.1) appears to be possible only for n 2 4. But
generalized S-matrix elements are also defined for n < 4 by

analytic continuation -- see ref. ( 3).
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W
Y, ¥r=0 w=0,1, """, -l (lL.2a)
-and that it satisfies
N
y2=1. _ (1.2b)

5

In contrast to eq. (1.2), the 't Hooft-Veltman prescription obeys
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Since it is defined explicitly by construction, eq. (1.1),

. i ' . . . v
Y5 is unique and well defined. Our prescription, Y egqs. (1.2),

5
is sufficient to define uniquely fermion loops with even numbers of
Y.'s.

Comparing eq. (l.2a) with egs. (1.3), itfis not surprising
that ?g and ?5 imply diffefent-definitions of divergent fermion
loops with eveh numbers of Ys‘s. What is more surprising is that
?g and wS seem to yield differept predictions for experimentally
measurable guantities. We will show this explicitly with an example
from the SU(2) x U(l) weak interaction model.

This ambiguity is resolved by examining the relevant Ward

identities. We will see that these Ward identities are not satisfied-

by ?% because of the anomalous commutation relations, egs. (1.3).

) Since loops with even numbers of Y5's are well known to be free of

essential anomalies, it is clear that these anomalies -are spurious.
n
On the 6ther hand it is easy to see why our prescription, YS B

correctly reproduces the canonical Ward identities for loops with even
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numbers of Ys's. The canonical Ward identities arg derived by férmal
manipulations,which ignore divergences and of course assuﬁe the naive
Dirac aléebra, including {YS’ Yu} =0 .- Sinbe the divefgences are
removed by the continuation in n and since {?S, Yu} =0 for all 1,
qur prescription must yield the canénical identities. |

?o discuss loops with odd number of Ys's we ‘require in
addition to eq. (1.2) that

Tr ('w\('s Uy YT) = 4ic¢g + 9(;‘ -4 o

for ) U, v, w, T = 0,1, 2, 3,

that is, when Y, Vv, w, T are in the four dimensional subspace.

Using egs. (1.2), (1.4) and the usual Dirac algebra

AY AY)
RS ST Pl (1.52)
i
= n : .
gu (1.5b)
we can evaluate all one loop graphs with odd numbers of Ys's . The

‘result is unique-up to the polynomial ambiguity of the A-B-~J anomaly.

Whén the anomaly is required to cancel in the sum over fermion

species the resulting amplitudes are well defined and obey the canon-
ical Ward identities.

When no regulator is used, as in Adler's discussionz), the
VVA triangle is finite but.has a polynomial ambiguity of afbitrary
magnitude. Its magnitude may be varied by shifting the origin of
momentum space in the finite but superficially divergént integral.

With our prescription the dimensionally regulated integral is not even

) _6_

superficially divergent but the polynomial ambiguity still occurs: it

is now the algebraic ﬁanifestation‘of the fact that ?5 igvnot well
defined_in n Aimensions.

As in Adler'; d;scussipn, we chqose the magnitude of ﬁhe
arbitrary polynoﬁial according to which Ward ideqtity we wish to bé
canonical. The essential feature of the A—B—d ahomaly'is that there
is no choice which alléws all of the Ward iaentities to be true. By
contiast, the 't Hooft~Veltman prescription is unambigudus since 75
is defined explicitly by construction. It automatically yiélds the
magnitude'which guaréntees vector current éonservation for.the VVA
triangle. For physical reasons tﬁis is the correct choice for the
application to Ho-*YY; But in other contexts, e.g., in a theory with-
an unbroken SU(2)L gauge symmetry, other choices mighf be »

appropriate. In this sense the ambiguity of our prescription is a

" wvirtue. In the spontaneously broken gauge theories the normalization

of the ambigubus‘polynomial is irrelevant, since it is constrained to
cancel in any éase;

In addition to the VVA anqmaly we have also examined the
related triangle, box, and pentagon énomalies that occur in‘non-
Abelian theories. Our prescription affords abstraightforward deriva-
tion of the fuil anomaly, which is much -easier than the original
derivationss).

‘The papef is oiganized as follows: 1In Section II we show that
a measurable one loop corréction to the Higgs-Z-Z coupling in the

» SU(2) x U{l) bmodel7) seems to depend on whether we use %g or 75.
In Section III we resolve this appareﬁt'ambiguity by showing that

n - . — - .
Y5 but not YS obeys the relevant Ward identity. Examining the high



energy behavior of e+e_ -+ 22 we show explicitly how this Ward
idéntity is essential for renormalizability. In Section IV we diécuss
the VVA anomaly and show how our prescription may be used to compute
the minimal set of chiral anomalies in a non-Abelian theory. 1In
Section V we summarize our results, discuss briefly another prescrip-
;ion due to Akyeampong and Delbdurgo4), and comment on the extension

to multi-loop diagrams.

II. CALCULATION OF PHYSICAL QUANTITIES
In this section we compute a measurable quantity which seems
to depend on the Y5 prescription. We study one fermion loop
co;rections in the standard SU(2) X U(l) model7). To simplify the
calculations and because it is the context in whiéh-we originally
encountered the issues), we consider a fermion doublet (Fl, Fz) with

masses M., M, much heavier than the W and Z bosons,

l .
Ml' Mé >> Mw, MZ . We compute the leading correction to the tree

2

approximation relations

M, = M, cos @ " (2.1)
Z .
AHZZ = g Mz/cos ) (2.2)
where XHZZ is the Higgs-Z-Z coupling, 6 is the weak interaction

mixing angle, and g is the SU(Z) gauge coupling constant.

Although these corrections must be finite (because of
renormalizability), they are computed from the sums of Feynman
diagrams which are individually divergent. Since ?5 and ?5 differ
by terms of order (n - 4), they could imply results which differ by

finite amounts for the divergent diagrams. We will see that this is

-8-

indeed the case. When the divergent contributions are summed to obtain
the finite physical corrections, it turns out that the corrections to

(2.2), but not those to (2.1), seem to depend on whether we use YS
n .
or Y. | -
The proper relationship between the infinite diagrams is
assured by the Ward identities, whiéh we will see in the next section
are not honored by the 75 prescription. The crucial difference
between . (2.1) and (2;2) is that the W and 2 self-energy diagrams
both contain Fhe same number of Y5 vertices so that either Y5
prescription guarantees the proper relationship between them and
therefore the same correction to (2.1). But (2.2) has contributions
with.different numbers of Y5 vertices: the Z self energy and the
H~-Z-Z proper vertex with two Ys's and the Higgs wave function
renormalization with none. In this case 75 does not give the
correct relationship;
Since the calculations are straightforward we will present
them only in outline. The contribution to the W and Z self

energies is determined by the general vacuum polarization tensor

U v + . + M’
@k Tr Y (Cy + Cu YU+ M) Y (Cy + Cuy ) (K + M)
(2m* x? - M%) (k% - M'?) R ¢
(2.3) o

N . .
Using our YS prescription the tensor is given to leading order in

fermion masses by
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S
R 2.
™o, = 2 ¢re-2)
am :
Ys .
1
. dx (€2 + )X - (c.? - ¢, mw
,_ B v 7 v A
o x . 2
(2.4)
where
X = xM® o+ (1 - x)M'? .

" When 75 is used the result differs from (2.4) by a'finite quantity

.2 . )
™| A gV 2 e we?)
Y Y 4m
s s : : (2.5)
. . . 8,9
we find the same contribution ) to.

‘ - "N
But using either Y5 or YS

the ratio MW/MZ , that is

M, g2 MIn? M2 m?+n?
= 1+ 1 2 An 22— + L 1
2 2 2 2 2
Mz cos O 641 M, M1 M2 Ml 2

(2.6)

The contribution of the difference between the two prescriptiéns}

given by eq. (2.5), cancels in ﬁhe ratio (2.6).

Consider next the Higgs-2-Z couplin§ constant given in tree

approximation by (2.2). To leading order in the fermion masses the
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corrections come from three sources: the Z self-energy correction

determined by the tensor (2.3), the HZZ proper vertex

. 2
: n
. ™ _ - g Mi d'k B vl ‘
" Thpg (@ = a3
y 2 _
- 2% (2m) (x* M, )

Sy .
o Tr {(¥X + Mi)y (cV +Cy Ys)i (a{+ Mi)YchV+cAy5)i({+ Mi)
(2.7)

.and the Higgs boson wave function renormalization, Hé(O), given by

\ .
g M, &k - Tr(€ + M)+ g+ M)

2y i
HH(P ) 4 2 2y (¢ 2 2
. M, (2m) (k —Mi)((k+p) —Mi)
i=1,2 .
(2.8)
The leading cor;éction:is given by
g Mz i s M2 i cos 6
A =—— {1 +=71'(0) - -— T _(0)
HZZ cos 8 4 . 2 H 2 MZ2 g M, sz
. (2.9)

where 6MZ? is the 2z self-energy contribution determined from .(2.3)
and [, (0) is the coefficient of " in (2.7).

- o
Using the YS prescription the proper vertex is given to

'Léédihg order in the fermion masses by

I‘HZZ(O) n
‘ Y
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With ;g the vertex differs by a finite amount

i g3(M12 + Mz?_)

Thzz (@ Tgz @ s - . ©o(2.11)

. 327 cos? 8
Ys Ys MW
" The Higgs wave function renormaliiation, sihce it does not involve

Yg - is given in either case by

L] _' IR 2 T2 -
HH(O) = M, . (2.12)

Wik

Substituting these results into eq. (2.9) we find for the

" - .
YS prescription the finite correction

: 2, 2 R

g M g M +M7) .

—= 1 - —v 2} (2.13)
cos 9§ 48ﬂ2.Mw2 :

)‘ﬂzz"\a =
Ys' .
" If we use the ?3 prescription we find a different answer:

M 2

Aszl - Mgzl e T 2 = o (2.14)
_ . "

Ys Y5 cos § 64T M

3 g2 (Ml2 +M

The differences (2.5) and (2.11) do not cancel in their contribution

to the correction (2.9).

Equations (2.13) and (2.14) seem to imply an émbiguity in the

relationship between experimentally measurable gquantities. We will

see in the next section that the correct relationship is given by the

v
Yg pre

-12-

-

scription (2.13).+

Another apparent physicai manifestatibn of different Ys

prescriptions was found by Nachtmann and Wetzel}o). They -

computed <V‘-" V? >0 and <Aa AB >O in the limit of zero

fermion mass using, the preécription of Akyeampong and '

Delbourgo (see.Appgndix). They obtained different answers

and concluded that chirai symmetiy was in this way broken in

Q.C.D. Butthis difference is_just an example of the

spurioué anomalies generated by the prescription of -

Akyéampoﬁg and Delbourgo.‘ A correct evaluation will yield

no difference between the two terms in the limit of zero

fermibn mass. V ;

/
D
.
. ~

v
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ITT1. CANbNICAL WARD IDENTITIES‘

By virture of_£he canonigal Ward identi£ies the spontaneously
broken gauge theory maintains the good ultra-violet behavior of the
unbroken theory. In this section we show that chiral Ward identities
which do not contain essential (Adler-Bell—Jackiw) anomalies are
obeyed by our ?5 prescription but not by the 't Hooft—VelFman, ?5
construction. This reéolves the ambiguous prediction for AHZZ
discussed in Section II: the Ward identities imply relationships

between GMZ, I and THZZ in eq. (2.9) which are satisfied by

HI

n — . :
Y but not by YS . We will show explicitly that one of these Ward

5
identities is essential to main?ain acceptab;é high energy behavior
in the prdcess 7e+e_ > ZZV and therefore to maintain the renormal-
izability of the theory.

.Before discussing the Ward identities relevant to eg. (2.18)
we first consider the simplest possible e#ampleé—the chiral ward
identity relating the chiral vacuum polarization tensor to the vacuum

expectation value of the scalar operator @w . We define operators

bilinear in a free fermion field Y(x) of mass . M:

A = Teoy v, v

P(x) = E(st Y(x)
S(x) = Vx) Yx) . ' (3.1)

The equal time commutation relation of the chiral charge

Qs(t) = | & a'x,0

with the pseudoscalar density P is

-14-

[Qs(t), P(X, t)] = -2 8% t) . (3.2)
The Greeh's functions are defined as

dax eipx <‘I‘ Au(x) P(0)>O '

il

1 M)
S5

. ipx ol i .
. Hs(p) dx e <T P‘X) P(0)>O . . - (3.3)

Then from the equal-time commutator (3.2) we obtain the canonical

Ward identity

u _ oo : . ’
P, VI.Is ® = -2¥ I -2i <S(0)>0 . (3.4)

. To make the example completely trénsparent we consider the value

p = 0, for which .
M (0 = -i <s(o‘)> . (3.5)
5 0] .
We now compute the one fermion loop contribution to eq. (3.5).
The right-hand side is given by the £adpole diagram

aq Tr(g+ M)

S0 -
. 0] (z.n»)‘! q2 _ MZ

dnq 1

-4
! (2m* - M ' -8

and the left-hand side is

&g e[y (f +my (f M)] .
MI (0) = M [ 5,{ 5 )( ; (3.7)
5 (2m* (% - m?)2
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' n
Evaluating the trace using Y5 it is easy to see that the Ward

identity (3.5) is satisfied,

MHS(O)Y',\) = ~i <s>0 . _ (3.8)
5

But using ‘?; ’ HS(O) acquires an extra te;m. ‘This occurs just as
it did in the examples discussed in Section II: {q, §g} is
nonvanishing of order 0(n - 4) and leaves a finite contribution
since the divergent integral has é simple pole at n = 4. Instead of

eq. (3.5) we obtain the anomalous Ward identity

wi o] = -i{s - = . (3.9)
8 Y, am? .

This simple example illustrates the basic prinéiple: the
>¥5 prescription reproduces thé canonical Ward identities because if
miﬁics the naive manipulations used in the formal deri&ations.in four
dimension;( But because of eq. (1.3) the '75 construction induces
algebraic "anomalies" in the evaluation of birac ﬁraces which have no
counterparts in the naive four dimensional calculations. -As a result
the ?g construction introduces spurious anomalies into chiral Ward
identities which are actually free of any essential anomalies. This
occurs when, as in (3.4) and (3.5), there are divergent contributions
from terms wiﬁh different numbers of Ys‘s.

Next we consider the Ward identities which must be satisfied

in eq. (2.9). The

by the Green's functions that contribute to AHZZ

relevant operators are

-16-
n o T
AN = Y@y y 2 P
3 . .5 p)
. T
P(x) = Py - v
3 5 2
S(x) = Y Px) .

They satisfy the equal time commutation relations

[Q S(e), A M(x, ,t)] =0
3 3
[Qs(t)“p (x t)] - -fsm
[*3 R D 2
5 > 1
[Q (t), s(x, t)] = - 2P (x) .
3 3

We define the Green's functions

HUVS
33

(plr pz) ! .

ilp xtp y). oy
e ! 2 <T. 2 Ya Yy s(0)>
. o . 3 3 0

X, ¥

. l(pix+sz) <

PP -
%, p) = e TP (%) P (y) s<o>>
33 1 2 3 3 ) 0
X,y
PP - ipx
mo(p) = e <T P (x) P_(0)
33 3 -3 0
X
5 = e P¥ <T S(x) s(0)> .
- . ° . 0 -
T X
uvs . . 2 .
I is proportional to the CA' term in the HZZ proper
33

(3.10)
{3.11)
(%3
b4
(3.12)
vertex,



p1 = pz = 0, and a high energy limit,'i(p1 + p2)2 +> o Wwith pl
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FE;Z , eq. (2.7), and HSS is proportional to the Higgs self energy,

HH , eq. (2.8). They are related by the canonical Ward identity which
follows from the commutation relations (3.11),.

. P )

p p T™5p ,p) = am 0, p) +iul>p +p)

18 T2V 33 1 2 33 1 2 1 2
. PP PP i

+ 4iM + II - .(S > .

@33(1)1)"' 33(92)) 0

(3.13)

For simplicity we have assumed that the two partners in the fermion

v
¥

We have studied eq. (3.13) in two cases--the low energy limit,
’ 2

doublet Y= 1 ‘have a common mass, M1 = M2 = M.

and p22..fixed. In both casés, the Ward identity is obeyed if the
Green's functions are computed with vs but not with ?s . As in
the simpler example of eq. (3.4), the salient feature of eq. .(3.13)
is that’it relates divergent fermion loops with different numbers of
Ys‘s. Here we will present only the results for the hiéh enérgy
limit, since it involves just the Green's functions in eq. (3.13) that
congribute to AHZZ and since it illustratesivery clearly the
relationship of the Wara identity to the rénormalizability of the
theory. ‘

In the limit (pl + p2)2 +> o with pl2 band 922 fixéd the

terms Plu P nHvs and HSSH are of order (pl + p2)2 while the

2v
other terms in (3.13) are O0(l). Therefore in this limit the Ward

'identity becomes

-]18-

: uvs : . ss
I Y MII -+ . 3.14
PiuPov s (Pl' pz) = (Pl Pz) . ( )

The quantity Hss(p1 + pz) is given by HH(p1 + p2) , eq. (2.8), -
2 ' .
except for the factor (—igM/2Mw) . The leading term is
- i

Ss ‘ ' 2 n 2
i vo— T2 -—-) - & [— + ] +2% .
e *p) - (p, +p,) (I 5 ) nj-(p +p) |

(3.15)

N .
The three point function evaluated using »YS is to leading order

u :
uvs : Y n 2]
ik , N — -8y - owf- +
iy PPy ¥ T g (@23 jln[ (e, +p) 2
Y 2m v
5
v 1 1-x :
M /v PP, - 2xy - x - ¥
-— e - ax ay " .
am P - xy -2/ - p )]
i 2 5 5 : 1 T2
(3.16)

Multiplying by Plu P, the second term in (3.16) vanishes and the

first term gives iM Hss(pl + p2) as required by the Ward identity,

' HVS . SS
PPy I _(pl, pz) ,\\(J v i _M I (pl + pz) N N ER Y
s .

— o
Computing with YS we find that the exact difference with the Y5

result, eq. (3.16), is

(. p)| M™e .. = -— & . - (s
1 2 iy 33 "1 "2 Y, Com o
5 : .

HU\)S
33
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In the high energy limit, .7 then yields the anomalous result

5

- M
uvs . Ss .
o = it - — . .
Py Pty (91’ pz) __ iM (pl. pz) , P, P,
Ys 27
' (3.19)

. . : 4
In the calculation of the order O0(g Mz) corrections to

: L
eq. (2.9), we computed contributions from H&(O) « 155 (0) ,

vV
238(0,_0), and from the axial current part of the

At
HZZ
T . « II
from HZZ(0)
vector boson self energy HUV(O) « Huv(o). NI and T are
_ Z 33 H HZZ
related by the Ward identity (3.13) and because of eqg. (3.18), which

is exact for all values of p, and Py s this relationship is not

obeyed if the 7; construction is . used. The third 0(g4M2) contribu-

Vv
3

VS

. . vV
'“tlon to Asz ' HE (0) « Hg (0) , is related to H§3 (0, 0} by the

' . L, 11 . . s . .
trace identity ). Because the trace identity is a relationship

between Green's functions with the same number of Ys's, it is obeyed

— n, 'V . -
for both YS and Y5 . Therefore Hx -7 does not combine with
5
l" — . . . :
HZZ Y5 to restore the proper relationship with HH .

Fiﬁally we will show explicitly how the high energy limit
(3.14) of the Ward identity (3.13) is required to maintain the
renormalizability 6f the theory at the two loopvleQel. Consider
e+e_ > Z2 where the 2 bosons are 1ongitudinaily polarized. 1In
Born épproximation there are two contributions--t-channel electron
exéhange and s-channel Higgs boson exchange. For eqqalr ei
helicities, _h+ =h_=h, and to leading order in the center-of-mass

energy E >> M they are given respectively by

Z

-20-~
2 2 .
. mE m
jm v h92 = + 0 —% ' = V (3-20)
t = - 2 2 2

mE 4E m
e +0 fﬂ—, S : (3.21)
2 2 2

2%2 4? - m, E® E

- th

7%2

e

The two diagrams individually have "bad" high energy behavior, growing
like E, but the terms linear in E cahcel, as they must, to keep
the theory renormalizable at the one loop level.

Next we compute the one loop radiative‘corfections to

e+e_ + ZZ due to a fermion doublet (Fl, F

,) of common mass

M >> Mw . The only order 0(92M2/Mw2) corrections are to the s-
channel Higgs exchange: the fermion loop contributions to the H
propagator and to the HZZ proper vertex. In the notation of
Section II, the Higgs propagator is modified by

i i i I_(aE®

i i i H( )

— 1 + —— (3.22)

2 2
4E mH

- 2_
4E mH 4E mH

and the HZZ vertex by

ig M i cos 6O

ig M .
- — +
g r (pli P, P. pz>

z g
cos © L2

cos 8
(3.23)
2 2
where pi are the 2 four-momenta and 4E = (p1 + pz) . In the
high energy limit the longitudinal 2 boson polarization vectors

are approximately proportional to the Z momenta, Eiu v piu/MZ ’
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so- that the sum of the two corrections is proportional to

i 2 i o .
P M P vi?t HH(4E ) . i cos @ rHZZ(P RO
- X 7 1 .
12 48? w4 M, w o F1 o T2" T Ta
T (3.24)
' 2 S
Using p,-p. &~ 28°, @I, = -[——} T, ana
172 = H 2Mw
g M . )
u V rHZZ .. u v 33 . )
3.2
Py Py v ti———5— P, P, _HUVS , we see that (3.24)

8Mw cos2 6
vanishes to leading order in E Jjust because of the high energy limit
(3.145 of the Ward identity (3.13). If (3.24) did not vanish to
leading order then the cancellation between the linear terms (3.20)
and (3.21) would be undone at the one loop level, which would in turn

render the theory nonrenormalizable at the two loop level.

IV. ANOMALOUS WARD IDENTITIES.
R T N2
Our prescription, {Ys, Y }=0 ,and Y5 = 1, uniquely
defines fermion loopé with even numbers of Ys's and honors the
canonical Ward identities for such loops. This is not true of other
prescriptions for YS in n dimensions. Now we consider fermion -
loops with odd numbers of Ys's. At the one loop level we will show

it is sufficient to require that

'aBGq)]

) A 41 8% L o - a

{0, 1, 2, 3}

{a, 8, 6, ¢}

n .
That is, we require only that Tr[Ys Ya yB YG Y¢] reduce to the
usual answer as n > 4 when o, B8, 8§, ¢ are in the four dimensional

subspace.

~22-
For {a, B, 8, ¢} = {0, 1, 2, 3} it is clear from (1.2) that
TT[¢5 Ya YB YS Y¢] must be proportional to €a86¢ if it is not

identically zero. Indeed, the most "natural" dimensional continuation

‘of Y (cf. Section V) would give Tr[Ys Ya YB YG 6¢] an essential

zero at n = 4. This Qould be a mathematically consistent but
physically useless prescription. The only remaining ffeedom
is that the coefficient of ed86¢ .could be _“4 + b(4w;vn)“: with "b"
an arbitrarf parameter. That is) we could take V

oBSS (4.1")

T? ?5 Ya YB Y‘S Y¢] [4 .+‘b(4 - n)] J‘Te

{a, B, 8, ¢} = {o, 1, 2, 3}

and still obtain the correct results for finite loops since the term
proportional to n - 4 would not then contribute. 1In fact we will
show below that no results depend on the choice of "b" and for
convenience we set it equal to zero, taking

a B .S

(Y, v ¥ ¥ 1Y) 4178, (4.1)

{a, B, 8, ¢} = {0, 1, 2, 3}.

- We also use the property, which follows from the anti-

commutativity of ?5, that Tr[?s Ya YB] ~and FTrEVS Ya YB YG] have

essential zeros at n = 4.

Having made the choice (4.1) it now necessarily follows that
: . _ n
other traces are not well defined. Therefore our prescription Y5
does not correspond to a well-defined Dirac matrix. But the

ambiguities which render it ill defined correspond precisely to the

inescapable ambiguities of the Adler-Bell-Jackiw ahomaly.



-23-

Consider the trace Tré?s ya YB YG Y¢ Yﬁ Yu), where again

or B8, ¢ arein the four~dimensional subspace. Using the standard

n-dimensional Dirac algebra, eg. (1.5), we find immediately

(T .

Tr(’«\{'5 e YB y6 'y¢ Yll YY) = 4ine £4.2).

1f instead we rewrite the trace as Tr(’ylJ $5 ya #B Y6 Y¢ YU) and then

anticommute YU to the fight we find

B ¢

Tr (@fs Yy

¥y 4i(8 - n ; (4.3)

L B8
Y, ™ e 800
u .
The two results 6n1y agree for n = 4. We Siﬁply:accept this ambiguity
as a necessary consequence of our prescription. We introduce an

arbitrary parameﬁer "a" and define the trace to be

a X eq(4.3) + (1 - a) ® eq.(4.2), which is -

g .S ¢

n 8
R R R U AR B T

n + 2a(4 - n)] .
(4.4)
The ambigﬁity is of course proportional éo n - 4.
It is now easy to seé why it doesn't matter whéther.we defined

~vooo B8 b .
Tr('Y5 Y Y Y Y') by (4.1) or (4.1'). If we had used (4.1') then
in place of (4.4) we would have had the same result except that the

arbitrary parameter "a" would have been'replaced by the equally

© arbitrary parameter a + % .

If we were to insist that our prescription be well defined,
then by the manipulations that led to egs. (4.2) and (4.3) we would
) P o )

a .
obtain (n - 4)Tr(Y5 Y YS Y Y ) = 0, which would imply that the

trace has an essential zero at n = 4. This would be a consistent
but useless prescription, which would imply that the VVA triangle

diagram has an essential zero at n = 4.
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It is important to stress that the ambiguity in (4.4) is not a
defect of our prescription but is rather a necessary consequence of

the Adler-Bell-Jackiw anomaly. If it were possible to define uniquely

" an. n-dimensional Y5 satisfying our préscriptiony egs. (1.2) and

(4;1),<then it would follow that there is no A-B-J anomaly. For the
VVA Green's function defined by such a YS cﬁnstruction would obey
all canonical Ward identities aﬁa bé finite for n # 4. Then the four
dimensional Green's function defined by the limit - n + 4 would also
obey canonical Ward identities. But the essence of the A-B-J anomaly
is that is impossible to satisfy simultaneously the canonical vector
and chiral Ward identifies for the QVA triangle. The existence of
the anomaly therefore proves that no such YS can actually be
constructed. .

Since the 751 of ‘'t Hooft and Veltm;n‘is defined by the

explicit construction eq. (1.1), it yields the unambiguous result

B .8 0 oBsd

Tr(?s Y vB 0y Yu'yu) = 4inceg (4.6)

for . .{(1, B: 6! ¢}

{0, 1, 2, 3}.

Thié correspond to §ur result,‘eq. (4.4), when the arbitrary pa#ameter
"at i set to'zero. . - : |

Wi£h egs. (1.2) and (4.1) we have'épecified our ”75'
prescription sufficiently to discuss the VVA amplitude and the
related anomaly. We define the péeudoséalér'and pseudovector

amplitudes respectively by

L

¢
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I =
5 (pl' pz)

HMVT
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i(p x+p_y) » ‘
e. 1.2 <zr Wi iy P(O):>
: 0

X,Y

i{p x+p y) .. )

(®., p.) e ! 2 <'r Wix) iy AT(O)> }

5 1 2 . 0 v
. (4.7)

Where Y(x) -is a fermion field of mass M , the current densities

are

P(x) = Pix) YY)

Az B Ty v
P 2 T Y em .
. . : (4.8)
The canénical Ward identities for the vector currents are

P

) uvT _ -
1 Pyv H5 (p1' Pz) =0 (4.9)

VT :

it =
s (Pli Pz)v
and the canonical chiral Ward identity is

HVT - MY,
. = 2M . . (4.10
(p1 + p2)T Hs p,.p) 2 II5 e+ p,) K )

" adler, Bell, and Jackiw showed that it is impossible to satisfy
eqs. (4.9) and (4.10) simultaneously.

HVT
II5

To understand the'anomaly it suffices to evaluate to

first order and Hgv to second order in the. external momenta Py and

p,. Hgv is finite and unambiguous and can be evaluated without a

regulator. It is~givgn by
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-i
o “ ;
€ P p28 f. 0(pi ) . (4.11)

v
_IIu (®.p) = "
s 1 T

szr is also finite but not unambiguous. It is given exactly by

n, o v u
ag Tr[Y Y, - g, + my & + my X+ +M)]

HUVT
S

L]
%

(pl, pz) "

2m® (L -p)? - M) (7 - )L +p)? - M)

+ (U v, p <p) .
1 2
(4.12)

' . N ' HVT . .
We introduce Feynman parameters and evaluate Hs to. linear order in
the P, after which the integration over the Feynman parameters is
trivially perforhed. We rewriﬁe.the trace, using syﬁmetxic

. . . L n
integration but without anticommuting & and Ys' The. result is

ars N"

vt , = - 23 3
s (pl pz{ »l - (2n1“ (22 - m2)3 * o(pi ) ]
' (4.13)

where

wr . 2 22 vy VT el
N 23 3 Tr[\r5 Y‘ Y yuafl-,lrzwwv]

L2 a2 ofY YT ] s
By +M)T1{Y5YYYOP’1-/P’2)_+‘°(PJ-_)-

(4.14)

Since W, Vv, T, and»zpl are external and four-dimensional, the
second term in (4.14) is given unambiguously by eq. (4.1) while for
the first term we use the ambiguous "a" --dependent prescripfion

eq. (4.4). The result is
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calculationss) which used point splitting or Pauli-villars regulariza-

8i B
VT VT 4
LY "(p1 - pz)p 22(1 - 2a)(1 - Z) -+ oY) . » , v
3 ' . * tion. In those calculations counter terms were needed to put the
(4.15) anomaly in its minimal form and, in the case of point splitting, to
' : v 3 . : i oti inite. t, usin .
Performing the integration over £ we obtain finally - make the three and four point functions finite. 1In coptras , using
| | our approach the anoﬁalous Green's functions are finite-though ambig- .
) ini i diately. ¥
T VT uous and the minimal a}nomaly emerdes imme
ilokd e, »p) = a— elvTe (p p ) + 0(pi3) . (4.16) o _ ,
? n? 2 e ' It is clear from our discussion of the Abelian case that the

presence of anomalies is intimately related to the ambiguity in

: 2,.,2 2,3
T - : ; s
he integral [ &°/(2 M) diverges but we obtain a finite defining traces with an.odd number of Yg's. Except for these

4 .
i t £ -= i . (4.15). - "a" s : i
esult because of the factor 1 n M ed. (4.15). The ambiguities our prescription is guaranteed to reproduce the canonical

dependence of this term gives rise to the amb.:n.gu;.ty which in the Ward bidentities. As in eq. (4.4) biguities are progortional to-

original analysg? ) reflected the fact that the four dimensional n - 4 so they can only survive if multiplied by a divergent loop

integration is not well deflx:xed.» Here 1n§tead the a‘?'blg‘%lty is integral. It is easy to verify at the one loop level that this only

algebraic in origin. F = i iti .
Ig c origin or a 0 the vector Ward identities, eqg occurs in the Green's functions <VVA <AAA> , <VVVA> , and

(4.9), are obeyed but the chiral identity (4.10) is not. For a = 3/4 <v > From th:.s list of ambiguous Green's functions it is in turn

the chiral identity is satisfi » identities are ‘not. .
ty sa ied but the vector identities are not. For easy to obtain the minimal Bardeen anomaly.

wan . e R, :
other values of "a" none of the Ward identities are -sat:.sflgd. And Where )‘i denote the group generators in the representation

. wan ;. ; sy .
there is clearly no value of "a" for which all three identities are of the fermions, the vector and axial currents are defined as

valid: this is the essential feature of the anomaly. -

' : u = T u
The usual designation, "chiral anomaly," reflects the choice : Vi = P Y }‘i bx)
= 0, which h to b i i icati L= :
a + which happens to be appropriate in the application to Aip x) = T Yu Ys }‘i Pix) . -
m° - YY. However one can certainly imagine other contexts in which ] i
' . ; R . v i i i entum space, e.g.
other choices might be appropriate. As we have already noted, the o Green's functions are wrltten‘ n mc?m P ' g ¢
o , %
result a = 0 is uniquely seleCtefi by t;he Y5 construction of C oy i(pi‘x+pjy) < - . . .
. ' = TV, " (x) V. (y) (0)>
't Hooft and Veltman. 671 Vj By > ¢ 1 ) 3 Pk 0
Next we show that it is straightforward to use our prescription XeY .
. : : i i the three-point functions are well
to derive the minimal Bardeen set of chiral anomalies in theories with Then, as in the Abelian case,. < P

: : . R . i inite 61 omial ambiguities which are linear in
non~Abelian currents. The calculation is much easier than previous defined except for fini polyn 9
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- the external momenta:

G vy mTY = kg - e, VP w0 a0

(4.17)

® (2) (3)
A R e ]

UvIp e
X € Tr(}\i Aj Xk) + -
(4.18)

(1) (2) (3)

K, L., L , and L are arbitrary parameters, like . ™a" in
eq. (4.16). We have.éxhibited only therambiguous terms; the well
defined terms are 0(p3) and higher.

Notice that the ambiguous terﬁs are'independent of‘fermion
masses. This reflects the well-known facf»that the anomaly arises
from the ieading ultra-violet behavior of the'one—lbop graphs, which
is scale—invarian;. This means that fermion mass splitting will not
effect our calculation, so we may for convénience take all fermions
to have a common mass. ‘Then canonically all vector currents would be
v 0. . ~

conserved, 9 V.,
u i

We now .impose the conventional requirement that vector current

Ak) Y (Qe work

to one loop order) whlch implies that K = 0 in (4.17); the well-

Ward identities be canonlcal. Then plu<& Wy

defined terms, which were not exhibited in (4.17), ére guaranteed by
ou% prescription to have ;hé éanonical behavior. In (4.18) Qe fix
the ambiguous polynomial by requiring Bose symmetry (which again is
automatically satisfie@ by the well-defined contribution). Now
Tr(li Aj Ak) is in general the sum of total symmetric¢ and totally

antisymmetric pieces, which we denote generically

=30~

+ f£.., .

Trg Ay A0 = dige i3k

Then symmetry under M, i +*> V, j implies using ‘P = - Pp; - P,

that
(1) (3) o (2 (3 '
(L - L )(fijk - dijk) = (L L )(fijk + dijk)
(1) (3) o (2) . (3), _
(L - L )(fijk + dijk) = (LIV L B(fijk dijk)
which implies L(l) = L(z). Requiring Bosé'symmetry for all three

currents we find that L(l) = L(z) = L(3) is required, and the

~ ambiguous term in (4.18) is proportional to p; + pi +'pk "and

vanishes by momentum conservation.

Havi;g.eliminated the linear polynomials, (4.17) and (4.18)
are of 0(p3) and well defined. Now just as in the.Abelién case we
find that the axial current Ward identity must bé anomalous, since
éTk<vj_uVj > and ka< AkT> are 0(p) while
<%1U Vjv Pk> and <§iu Ajr P are 0(p ). The anomaly is given
.by the unambiguous Ov(pz) terms in <wé “and <AA1§ The 0(p4)

.termé dre all well defined and necessarily obey the canonicai Ward

’ 1dent1ty.

In the four-901nt functlons the ambiguous terms are of zero th

" order in the external momenta:

H,V,T,pP
Q’i Vi Y% A£>
dov v, T P
<§i Ay A Ay :>

HUTP Lo
€ Tr(Ai Aj Ak AZ) + :

‘ (4.19)
HVTP

s.e ?r(li Aj Ak Az) + oeee .

(4.20)
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Again vector current conservation requires R=§ = 0 and the axial
anomaly is determined by the O(p) terms in 6ﬂﬁn> and “MM> .
The weli-defined contributions, suppressed in (4.19) and (4.20), are
0(p2) ;nd.canonical; In the chiral Ward identity they match the
canonical 0('p3) contributions from (VVVI) and (VAAP) and from
the three-point functions which come from the equal time commutators.

Finally the five point functions <VVVV§ ’ <VVAA}§ ’ (AAAA%
are finite and unaﬁbiguous. But_their chiral Ward identities are
énomalous because of the ambiguous four point functions generated by
the equal-time commutator terms. Again power~counting determines the
ancmaly. (vvvv% is 0(p) so the left-hand side of the chiral Ward
identity is 0(p2). By the previous considerétions the four point
‘functions <yVVA> on the right—hénd side are also 0(p2). But

W) is unambiguous and of 0(1) hence there is an 0(1l) anomaly
. to cancel the zero moﬁentum limit of <§VVV€> .

For six~ and higher-point functions, all Green's‘functions
appearing ‘in the Ward identities are finite and unambiguous so the
Ward identities are necessarily canonical.

These simple consideréﬁions show that our prescription yields
anomalies in precisely the same Ward identities as Bardeen's minimal
set. It is also easy to see that the values of the anomalies agree
with Bardeen's expressions. From our explicitvcalculation of the
Abelian VVA anomaly, we find that our non-Abelian VVA anomalies
are equal to Bardeen's. But then the integrability‘relationsof Wess
and Zuminolz) imply that our calculation of all other Anomalies must
agree with Bardeen's. Our calculation is guaranteed to satisfy the

integrability relations because our pfescription respects the group

symmetry from which they follow.
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V. CONCLUDING REMARKS

The starting point for this work is the observation, illustrated

by a specific example in Section II, that different prescriptions for

YS in n dimensions 5335 to imply different predictions for
physical quantities. This apparent ambiguity was resolved in Section
I1I by studying ;he underlying Ward identities. We showed that the
prescription '{vs, Yu}‘= 0 and vSZ = 1 defines one fermion loop
Green's functions with even numbers of’ Ys's so that they obey. the
canonical Ward identities in n dimensions. Other prescriptions
which differ from ours by terms of order (n - 4) introduce spurious
anomalies into these Ward identities. We exhibited these spurious
anomalies in Section III for the prescription of 't Hooft and Veltman.
We showed explicitly in Section III thag these anomalies are not
consistent with renormalizability. If our prescription is not used
they must be subtracted by hand.

The confusion su;rounding the meaning of YS in n dimensioﬁs
arises because there is no explicit n-dimensional Yg which obeys the
prescription (1.2). 1In Section IV we showed that this need not be
confusing: it is just the Adler-Bell-Jackiw anomaly in an unfamiliar
guise. In particular we extended our prescription to diagrams with

odd numbers of Ys's by requiring that Tr(y5 Yu Yv Yw YT)

HVWT

= 4i € when W, Vv, w, T are in the four-dimensional subspace.

‘This sufficed to define one-loop diagrams except for a polynomial

ambiguity, which A) renders our prescription ill defined but B) is
nothing more than the uswal A-B-J anomaly. If there were a well-
defined YS satisfying our prescripton, then there would be no A-B-J

anomaly. Our method provides a computationally convenient method of
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recover.ing the known results for both the Abelian and non—Abelian
chiral anomalies.

We will comment briefly on two prescriptions discussed by
Akyeampong and Delbourgo4), The first is the most "natural" choice:
in space-time of even dimension take Yg to be the product

o 1 n-1 . .. . . L e .
Y Y .Y . This is an unambiqguous realization of a fully anti-
commuting Y As Akyeampong and Delbourgo observed4), it therefore

suffers from the disease discussed in Section IV: it gives the VVA

amplitude an essential zeroat n = 4. The second prescription, which

}is the one advocated in ref. (4), is to use for the pseudoscalar

vertex the quadruply antisymmetric product

ac ‘Z PY“YBY‘SYq’

Perm.

whére a, B,‘5, ¢ vary over all n indices. This is covariant in
n dimengions but otherwise is very similar to the prescription of
't Hooft and Veltman: it also introduces spurious anomalies and also
forces the A-B-J anomaly into the chiral current. As the authors
_acknowledéed in a subsequeht paper13); if it is used it is necessary
to compute by hand counter tefms to cancel the spurious anoma;ie;. h
The prescription defined in Sections III and IV provides a
- complete and correct description of all one-fermion loop diagrams.
It is also clear that our prescription correctly describes graphs with
arbitrary numbers of fermion loops if each loop contains an even -
number of YS'S'“ since the validity of»the canonical Ward identities
is guaranteed for this case as noted in Section III. ‘We are now

considering multi-loop graphs in which there ‘are loops with odd

-34-

numbers of Ys's. If our method can be extended to that case it would
constitute a complete ptescription for dimensional regularization of

spontaneously broken gauge theories.
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