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* THE AXIAL CURRENT IN DIMENSIONAL REGULARIZATION 

M. Chanowitz, M. Furman, and I. Hinchliffe 

Lawrence Berkeley Laboratory 
University of California 

Berkeley, California 94720 

March 2, 1979 

ABSTRACT 

We show that a fully anti-commuting Y
S 

is a correct and 

natural prescriptio~ for the dimensional regularization of one fermion 

loop graphs in spontaneouslY broken gauge theories. Other prescrip- . 

tions introduce spuri9us anomalies into Ward identities which are 

actually anomaly free~ OUr prescription is correct even though no 

such Y
S 

exists: it cannot exist precisely because of the familiar 

chiral anomaly. 

* This work was supported by the High Energy Physics Division of 

the U. S. Department of Energy under contract No. W-740S-ENG-48. 
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I. INTRODUCTION 

Dimensional regularizationl ) is the' most elegant and convenient 

method for computing higher order corrections in spontaneously broken 

gauge theories. It is probably the only practical method for all but 

the simplest calculations. In the absence of axial couplings the 

method is straightforward but there is'some confusion in the case of 

fermion loops with one or more factors of Y
S

• This is because the 

totally antisymmetric four-tensor' £~vaS is a uniquely four dimen-

sional object, with no natural continuation to n dimensions. Indeed 

we propose here that the correct and natural prescription for YS in 

dimensional regularization is to choose an n-.dimensional, YS which 

does not exist at all, in the sense that it is not mathematically well 

defined. 

The preceding sentence is not meant to be a Zen koan: the 

central word is prescription. In constructing a regulator we want a 

method which (A) renders divergent Feynman integrals finite and (B) 

honors the Ward identities of the theory. Our prescription for Y
S 

satisfies criteria (A) and (B) even'though it is not well defined in 

n dimensions. The failure to exist is actually a virtue: it reflects 

the essential ambiguity of the Adler-Bell-Jackiw anOmaly2), which is 

an unavoidable clash of Ward identities in certain Green's functions. 

Our prescription is ambiguous only in the context of the A-B-J anomaly 

and leaves us the freedom to choose, according to the physical cir-
, 

cumstances, which of the clashing Ward identities will be anomalous. 

Other prescriptions in the literature, which are well defined, 

are really stronger than we. would like3 ,4). They force on us a 

particular resolution of the A-B-J ambiguity. And, mO.re seriously, 
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they introduce spurious anomalies into Ward identities which are 

really free of any essential anomalies. Consequently these prescrip-

tions lead to errors in the calculation of physical quantities, unless 

the underlying Ward 'identities are checked at each stage of the 

calculation and the spurious anomalies are subtracted by hand. This 

is a tedious and unnecessary procedure. It is much simpler to 

use our prescription, which is unambiguous and correct except for the 

known essential ambiguity of the Adler-Bell-Jackiw anomaly. With our 

prescription, the latter ambiguity can be handled in the usual ways. 

In particular, in spontaneously broken gauge theories the ambiguity is 

constrained to cancel between the different fermion species
S
). 

In the body of this paper we will concentrate on comparing our 

prescription for Y
S 

to the prescription of 't Hooft and Veltman
3
). 

We defe·r to the concluding section a brief discussion of another 

prescription due to Akyeampong and Delbourgo4 ) which has properties 

similar to the 't Hooft-Veltman prescription. 

In their original paper on dimensional regularization 't Hooft 

and Veltman3) proposed that in n dimensions Ys be definedt by 

ys i yO yl y2 y3 
(1.1) 

We denote their prescription by ys' 
'\, 

Our prescription, ,denoted YS ' 

is defined by the properties that it anticommutes with all y].i in 

n dimensions 
~ 

t 
Equation (1.1) appears to be possible only for n ~ 4. But 

generalized S-matrix elements are also defined for n < 4 by 

analytic continuation -- see ref. (3). 
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{ y , y~ } 
5 ° ~ 0, 1, n-l (1.2a) 

,and that it satisfies 

'\, 2 

\ 1 . (1.2b) 

In cont:ast to eq., (1.2), the 't Hooft-Veltman prescription obeys 

{y , l } 
5 

Y , Y~ 1 
5 

° 

° 

~ 0, 1, 2, 3 (1.3a) 

~ == 4, n-l • (1.3b) 

Since it is defined explicitly by construction, eq. (1.1), 

Ys is unique and well'defined. 
'\, 

Our prescription, Y
S

' eqs. (1.2), 

is sufficient to define uniquely fermion loops with even numbers of 

Y 'so 
S 

that ys 

Comparing eq. (1.2a) with eqs. (1.3), it is not surprising 

and 
'\, 

YS imply different definitions of divergent fermion 

loops with even numbers of y 'so 
S 

What is more surprising is that 

Ys and 
'\, 

yS seem to yield different predictions for experimentally 

measurable quantities. We will show this explicitly with an example 

from the SU(2) x U(l) weak interaction model. 

This ambiguity is resolved by examining the relevant Ward 

identities. We will see that these Ward identities are not satisfied 

by YS because of the anomalous commutation relations, eqs. (1.3). 

Since loops with even numbers of YS's are well known to be free of 

essential anomalies, it is clear that these anomalies are spurious. 

'\, 

On the other hand it is easy to see why our prescription, YS' 

correctly reproduces the canonical Ward identities for loops with even 

'" 

~. 

't" 
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numbers of YS's. The canonical Ward identities are derived by formal 

manipulations ,which ignore divergences and of course assume the naive 

Dirac algebra, including {YS' Y~} = o. Since the divergences are 

removed by the continuation in n and since (ys.' Y~} = '0 for all ~, 

our prescription must yield the canonical identities. 

To discuss loops with odd number of YS's we require in 

addition to eq. (1.2) that 

(~ ~ V W T) 
,Tr Ys Y Y Y Y 4i £~VWT + O(n - 4) (1.4) 

,for ~, V, W, T 0, 1, 2, 3, 

,that is, when ~, V, W, T are in the four dimensional sUbspace. 

Using eqs. (1.2), (1.4) and the usual Dirac algebra 

{y~, yV} 

~ 
g~ 

2g~V 

n 

(1.Sa) 

(1.Sb) 

we can evaluate all one loop graphs with odd numbers of Ys's. The 

result is unique up to the polynomial ambiguity of the A-B-J anomaly. 

When the anomaly is required to cancel in the sum over fermion 

species the resulting amplitudes are well defined and obey the canon-

ical Ward identities. 

When no regulator is used, as in Adler's discussion2), the 

VVA triangle is finite but has a polynomial ambiguity of arbitrary 

magnitude. Its magnitude may be varied by shifting'the origin of 

momentum space in the finite but superficially divergent integral. 

With our prescription the dimensionally regulated integral is not even 
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superficially divergent but the polynomial ambiguity still occurs: it 

~ 

is now the algebraic manifestation of the fact that Ys is not well 

defined in n dimensions. 

As in Adler's discussion, we choose the magnitude of the 

arbitrary polynomial according to which Ward identity we wish to be 

canonical. The essential feature of the A-B~J anomalY' is that there 

is no choice which allows all of the Ward identities to be true. By 

contrast, the 't -Hooft-Veltman prescription is unambiguous since y S 

is defined explicitly by construction. It automatically yields the 

magnitude which guarantees vector current conservation for the VVA 

triangle. For physical reasons this is the correct choice for the 

application to ~O+yy. But in other contexts, e.g., in a theory with 

an unbroken SU(2)L gauge symmetry, other choices might be 

appropriate. In this sense the ambiguity of ,our prescription is a 

'virtue. In the spontaneously broken gauge theories the normalization 

of the ambiguous' polynomial is irrelevant, since it is constrained to 

cancel in any case. 

In addition to the VVA anomaly we have also examined the 

related triangle, box, and pentagon anomalies that occur in non-

Abelian theories. Our prescription affords a straightforward deriva-

tion of the full anomaly, which is much easier than the original 

derivations6). 

The paper is organized as follows: In Section II we show that 

a measurable one loop correct~on to the Higgs-z-z coupling in the 

SU(2) )( U(l) 
7 ' 

model ) seems to depend on whether we use 
~ 

YS or 

In Section III we resolve this apparent ambiguity by showing that 

~ 

ys· 

YS but not ys obeys the relevant Ward identity. Examining the high 
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energy behavior of e+e- + ZZ we show explicitly how this ward 

identity is essential for renormalizability. In Section IV we discuss 

the VVA anomaly and show how our prescription may be used to compute 

the minimal set of chiral anomalies in a'non-Abelian theory. In 

Section V we summarize our results, discuss briefly another prescrip-

tion due to Akyeampong and Delbourg0
4
), and comment on the extension 

to multi-loop diagrams. 

II. CALCULATION OF PHYSICAL QUANTITIES 

In this section we compute a measurable quantity which seems 

to depend on the y
S 

prescription. We study one fermion loop 

corrections in the standard SU(2) X U(l) mode17). To simplify the 

calculations and because it is the context in which we originally 

encountered the issue8
), we consider a fermion doublet (F

l
, F

2
) with 

masses M
l

, M2 much heavier than the Wand Z bosons, 

Ml , M2 » Mw' MZ 
We compute the leading correction to the tree 

approximation relations 

Mw M
Z 

cos e (2.1) 

A
HZZ g MZ/cos e (2.2) 

where A
HZZ 

is the Higgs-Z-Z coupling, e is the weak interaction 

mixing angle, and g is the SU(2) gauge coupling constant. 

Although these corrections must be finite (because of 

renormalizability), they are computed from the sums of Feynman 

~ 
diagrams which'are individually divergent. Since yS and yS differ 

by terms of order (n - 4), they could imply results which differ by 

finite amounts for the divergent diagrams. We will see that this is 
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indeed the case. When the divergent contributions are summed to obtain 

the finite physical corrections, it turns out that the corrections to 

(2.2), but not those to (2.1), seem to depend on whether we use Ys 
~ 

or yS. 

The proper relationship between the infinite diagrams is 

assured by the Ward identities, which we will see in the next section 

are not honored by the y
S 

prescription. The crucial difference 

between (2.1) and (2.2) is that the Wand Z self-energy diagrams 

both contain the same number of y
S 

vertices so that either y
S 

prescription guarantees the proper relationship between them and 

therefore the same correction to (2.1). But (2.2) has contributions 

with different numbers of 1'5 vertices: the Z self energy and the 

H-Z-Z proper vertex with two YS's and the Higgs wave function 

renormalization with none. In this case y
S 

does not give the 

correct relationship. 

Since' the calculations are straightforward we will present 

them only in outline. The contribution to the Wand Z self 

energies is determined by the general vacuum polarization tensor 

rrllV(O) f d~ Tr yll(C
v 

+ CA 1'5) (k'+ M) yV(Cv + CAYS) ~ + M') 

(27T) 4 (k2 _ M2) (k2 _ M' 2) 

(2.3) 

~ 
Using our 1'5 prescription the tensor is given to leading order in 

fermion masses by 

" 

~/ 

~ 
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x xM2 + (1 - X)M,2 

When Ys is used the result differs from (2.4) by a ,finite quantity 

rrl1\1(o)l_ - rrl1\1(o) I~ 
. Ys Ys 

,~ l1V C 2(M2+M,2) 
g A ' 

47T2 

(2.S} 

But using either YS or 
~ 

Ys we find the same contribution8 ,9) to 

the ratio Mw/MZ that is 

~ g2 

[ 

M 2 M 2 
_ I' 2 

1 +----
M

Z 
cos 6 647T2 ~2 M 2 _ M 2 

1 2 

M 2 
Ron _2_ + 

M 2 
1 

M 2 
1 ~] 

(2.6) 

The contribution of the difference between the two prescriptions, 

given by eq. (2.5), cancels in the ratio (2. 6). 

Consider next the Higgs-Z-Z coupling constant given in tree 

approximation by (2.2). To leading order in the fermion masses the 
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corrections come from three sources: the' Z self-energy correction 

determined by the tensor (2.3), the HZZ proper vertex 

rll\l (0) 
HZZ 

~- g M. f dnk_ 

L 2"\q~ (27T) 4 

i=l 

1 

(k2 M. 2) 3 
~ 

Tr {,~ + ."yV'c. + CA Y ) . '(-l(" + M. >Yltcv + CAY) . ~ + M'} 
5 ~ ~ 5 ~ ~ 

(2.7) 

and the Higgs boson wave function renormalizatipn, rr~(o), given by 

Tr(~+ M,)(~+/+ M.) 
~ ~ %(p2) 

\ (g M.)2f dnk' 

L 2Mw~ (21[)4 

i=1,2 
(k2 _ M.2) «k + p)z _ M.2) 

~ ~ 

(2.8) 

The leading correction is given by 

g. {. 'M' i =.e (HZ"o,l A = __ Z_ 1 + ~ n' (0) ___ Z __ 
HZZ 6 2 H 2 M 2 M cos " Z g Z 

(2.9) 

where 15M 2 
Z, is the Z self-energy contribution determined from (2.3) 

and rHZZ(O) is the 'coefficient of gl1\1 in (2.7). 

Using the 
~ 

YS prescription the' proper vertex is given to 

leading order in the fermion masses by 

i g3' 1 t (r(2 -~, 1) rHZZ(o) I~ M.2 2 
327T2 cos2 ,6 

Mw 
' ,~ M 4-n 

Ys ~=l' i 

(2.10) 
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With YS the vertex differs by a finite amount 

r (O) 1-
HZZ Ys 

rHZZ(O) I,.;, 
Ys 

i '1 3 (M 2 + M 2) 
1 2 

32~ Mw cos 2 e 
(2.11) 

The Higgs wave function renorma1ization, since it does not involve 

Ys ' is given in either case by 

I ig2 

llH(O) 
2: .2 

321T Mw t 
1.=1 

M 2 
i 

(

r(2 - % ) 
M 4-n 

i 
-t). (2.12) 

Substituting these results into eq. (2.9) we find for the 

~ 
Y

S 
prescription the finite correction 

~zzl~ Ys 

'1 Mz 
cos e ( '12 (M 2 + M 2}) 1 . __ 2_ 

481T
2 Mw2 

If we use the YS prescription we find a different answer: 

~ZZly 
5 

AHzzl~ 
Ys 

g~ 

cos e 

3 '12 (M 2 + M 2) 
1 2 

641T
2 Mw2 

(2.l3) 

(2.14) 

The differences (2.S) and (2.11) do not cancel iri their contribution 

to the correction (2.9). 

Equations (2.13) and (2.14) seem to imply an 1unbiguity in the 

relationship between experimentally measurable quantities. We will 

see in the next section that the correct relationship is given by the 
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Ys prescription (2.13}.t 

t 
Another apparent physical manifestation of different Y

S 

prescriptions was found by Nachtmann and Wetze1~0}. They 

computed (va v~)o and (Aa AS)O in. the limit of zero 

fermion mass using. the prescription of Akyeampong and 

Delbourgo (see Appendix). They obtained different answers 

and concluded that chira1 symmetry was in this way broken in 

Q.e.D. Butthis difference is just an example of the 

spurious anomalies generated by the prescription of 

Akyeampong and Delbourgo. A correct evaluation will yield 

no difference between the two terms in the limit of zero 

fermion mass. 

/ 

t· 

i..> 
" 

'y 
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III. CANONICAL WARD IDENTITIES 

By virture of the canonical Ward identities the spontaneously 

broken gauge theory maintains the good ultra-violet behavior of the 

unbroken theory. In this section we show that chiral Ward identities 

which do not contain essential (Adler-Bell-Jackiw) anomalies are 

'U 
obeyed by our Y

5 
prescription but not by the 't Hooft-Veltman Y5 

construction. This resolves the ambiguous prediction for AHZZ 

discussed in Section II: the Ward identities imply relationships 

between OMZ' II
H

, and r
HZZ 

in eq. (2.9) which 'are' satisfied by 

'U 
Y

5 
but not by Y

5 
We will show explicitly that one of these Ward 

identities is essential to maintain acceptable high energy behavior 

in tl)e process + -e e ... ZZ and therefore to maintain the renormal-

izabi1i ty of the theory: 

Before discussing the Ward identities relevant to eq. (2.18) 

we first consider the simplest possible example~-the chira1 Ward 

identity relating the chira1 vacuum polarization tensor to the vacuum 

expectation value of the scalar operator ~~ We define operators 

bilinear in a free fermion field ~(x) of mass M: 

All (x) = ~(x)yll y ~(x) 
s 

P(x.) - ~(x)y ~(x) 
s 

S(x) - ~(x) ~(x) 

The equal time commutation relation of the chiral charge 

Q (t) 
s f 3 0'" d x A (x,t) 

with the pseudoscalar density P is 

(3.1) 

-14-

[Q5(t), P(t t)] 
... 

-2 S(X, t) . (3.2) 

The Greeh's functions are defined as 

II ll(p) = J ax,fOX (T ."(x) P(o» 0 
5 

II (p) = J dx ,ip. (T PIx) P(0»0 
5 

(3.3) 

Then from the equal-time commutator (3.2) we obtain the canon~cal 

Ward identity 

p II ll(p) 
II s -2 M lIs (p) - 2i <S(O~o (3.4) 

To make the example completely transparent we consider the value 

p 0, for which 

M II (0) 
s -i (S(O»o (3.5) 

We now ,compute the one fermion loop contribution to eq. (3.5). 

The right-hand side is given by the tadpole diagram 

-i (s) 0 J 
dnq' Tr<;( + M) 

(21T)" q2 _ M2. 

J dnq 

-4 M --,) " 
(21T 

1 

q2. _M2. 

and the left-hand side is 

M II (0) 
s 

MJ dnq Tr[-Ys<l+ M)Y s </+ M)] 

(2n)" (q2. _ M2.) 2. 

(3.6) 

(3.7) 
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'" Evaluating the trace using Y
S 

it is easy to see that the Ward 

identity (3.S) is satisfied, 

M II (0) I", 
5 Y

S 

-i (S >0 . (3.8) 

But using YS IIS(O) acquires an extra term. 'This occurs just as 

it did in the examples discussed in Section II: {q, ys} is 

nonvanishing of order O(n - 4) and leaves a finite contribution 

since the divergent integral has a simple pole at n 4. Instead of 

eq. (3.S) we obtain the anomalous Ward identity 

M IIs (0) 1_ 
Ys 

-i (s)o i 
M3 

21T2 
(3.9) 

This simple example illustrates the basic principle: the 

'''' Y
S 

prescription reproduces the canonical Ward identities because it 

mimics the naive manipulations used in the formal derivations in four 

dimensions. But because of eq. (1.3) the Y
S 

construction induces 

algebraic "anomalies" in the evaluation of Dirac traces which have no 

counterparts in the naive four dimensional calculations. As a result 

the Y
5 

construction introduces spurious anomalies into chiral Ward 

identities which are actually free of any essential anomalies. This 

occurs when, as in (3.4,) and (3.5), there are divergent contributions 

from terms with different numbers of YS's. 

Next we consider the Ward identities which must be satisfied 

by the Green's functions that contribute to AHZZ in eq. (2.9). The 

relevant operators are 

-16-

A ~(x) -
3 

T 
~(X)Y~ Y ..2. 1jJ(X) 

5 2 

T 
P (x) -

3 
~Y ..2. 

5 2 
1jJ(X) 

SeX) - ~(x) tP(x) • (3.10) 

r 
They satisfy the equal time commutation relations 

[Q s(t), A ll(~,t)] 0 
3 . 3 

[Q 5 (t), P (~, t) J - .!. sex) 
3 3 2 

[Q3
5
(t), S(~, t)l - 2 P (x) 

3 
(3.11) 

We define the Green's functions 

rr~\lS(p , p ) J l(p x+P y) < A ll(X)A \I (y) S(O) >-- e 1 2 T. 
33 1 2 3 3 0 

x;y 

rrPPS (p' , p ) f i(p x+p y) ) 
- e 1 2 (T P

3
(X) P3(y) S(O) 0 

33 I 2 

. x,y 

~ 

IIPP(p) - J eiPX(T p (x) P (0» 
33 3 ' 3 0 

';f 
X 

rrSS(p) - J e 'px 
(T SIx) S(O»o (3.12) 

x 

rrll\lS is proportional to the 
2 term in the HZZ proper vertex, 

33 
C

A 
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~\! f HZZ ' eq. (2.7), and nSS is proportional to the Higgs self energy, 

n
H 

' eq. (2.8). They are related by the canonical Ward identity which 

follows from the commutation relations (3.11)", 

ll\!S P P \! n (p, p ) 
1~ 2 33 1 2 

2 PPS . SS 
4 M n (p, p ) + 1 M n (p + P ) 

33 1 - 2 1 2 

+ 4iM~PP (p ) + nPP (p ») 
33 1 33 2 

(S >0 
(3.13) 

For simplicity we have assumed that the two partners in the fermion 

doublet 1jJ = (~j have a C~ ="". '\ = M2 = M. 

We have studiedeq. (3.13) in two cases--the low energy limit, 

PI = -P2 = 0, and a high energy limit, 
2 

(PI + P2) -+ CD with 
2 

PI 

and P22 - fixed. In both cases, the Ward identity is obeyed if the 

Green's- functions are computed with 
~ 

YS but not with Ys . As in 

the simpler example of eq. (3.4), the salient feature of eq. (3.13) 

is that it relates divergent fermion loops with different numbers of 

Ys's. Here we will present only the results for the high energy 

limit, since it involves just the Green's functions in eq. (3.13) that 

contribute to AHZZ and since it illustrates very clearly the 

relationship of the Ward identity to the renormalizability of the 

theory. 

In the limit 
2 2 2 

(PI + P2 ) -+ CD with PI and P2 fixed the 

terms Pl~ P2\! 
n~\!S and rrSS are of order (PI + P2)2 while the 

other terms in (3.13) are 0(1) . Therefore in this limit the Ward 

identity becomes 

-18-

~\!S 
P 11 P \! n (p, p ) ~ i M nSS(p + p ) 

1 2 
(3.14) 

1 ... 2 33 1 2 

The quantity nSS(Pl + P2) is given by nH(Pl + P2) , eq. (2.8), 

except for the factor (_igM/2~)2. The leading term is 

IISS ( + p ) PI 2 

- i 

2t n + p) f(2 - -) -
2 2 

~ (p 1 
4'IT2 

""(-(P, + P," 1 + 2} 

(3.1S) 

~ 
The three point function evaluated using YS 

is to leading order 

M g"" {r(2 -% ) - .n(- (p, + P,l'J + 2} V\!S I -';\t n. (p, P ) ~ 
33 1 2 Y 2'IT2 

5 

1 I-x 

(.v -:,v .. ;~) f dx J dy 

\. 1 2 0 0 

M 

4'IT2 

2xy - x - y 

xy _r .. 2/(2p • p)l 
t' I 2 ~ 

(3.16) 

Mu+tiplying by Pl~ P2\! the second term in (3.16) vanishes and the 

f · .. nSS ( 1rst te~ g1ves iM PI + P2) as required by the Ward identity, 

ll\!S I Pill P2\! II (PI' P 2 ) ~ ';\t 
Ys 

i M nSS(p + p ) 
I 2 

(3.17) 

~ 
Computing with Y

S 
we find that the exact difference with the Y

S 

result, eq. (3.16), is 

nll\!S (p , P ) I...:. 
12 Y 33 5 

rr~\!S(p , P
2

) I~ 
33 1 Y 5 

i M 

2'IT2 

~\! 
g (3.18) 
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In the high energy limit, Ys then yields the anomalous result 

A 
HZZ' 

Pl~ P2V IT~~S(Pl' P2) Iy 
5 

i M ITSS(p , p ) M P • P 
1 2 21f2 1 2 

·42 
In the calculation of the order O(g M ) 

eq. (2.9), we. computed contributions from 

(3.19) 

corrections to 

IT~ (0) a: ITSS ' (0) , 

from rHZZ(O) a: IT~~S(O, 0), and from the axial current part of the 

W W vector boson self energy ITz (0) a: IT
33

(0). ITH and r
HZZ 

are 

related by the Ward identity (3.13) and because of eq. (3.18), which 

is exact for all values of PI and P2 ' this relationship is not 

obeyed if the Ys construction is used. The third o (g4M2) contribu-

" ~v W ~VS 
bon to AHZZ ' ITw (0) a: IT33 (0) is related to IT33 (0, 0) by the 

"d " 11) trace ~ ent~ty . Because the trace .identity is ·a relationship 

between Green's functions with the same number of Ys's, it is obeyed 

for both Ys 
'V 

and Ys Therefore ITWI_ 
w Ys 

does not combine with 

rHzzl- to restore the proper relationship with ITH Ys 
Finally we will show explicitly how the high energy limit 

(3.14) of the Ward identity (3.13) is required to maintain the 

renormalizability of the theory at the two loop level. Consider 

+ -
e e + ZZ where the Z bosons are longitudinally polarized. In 

Born approximation there are two contributions--t-channel electron 

exchange and s-channel Higgs boson exchange. 
+ 

For equal e-

helicities, h+ h = h, and to leading order in·the center-of-mass 

energy E » M
Z 

they are given respectively by 
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mE 

Irlt ~ hg2 e --+ (~2 me2) 
0--

E2 ' E2 
(3.20) 

2~2 

4E2 

Jlts 
'V 

mE 
_ hg2 _e. + 0(~2, me

2
\ 

E2 E2 } 
(3.21) 

2M,/ 
2· 

4E2 - ~ 

The two diagrams individually have "bad" high energy behavior, growing 

like E~ but the terms linear in E cancel, as they must, to keep 

the theory renormalizable at the one loop level. 

Next we compute the one loop radiative corrections to 

+ -e e + ZZ due to a fermion doublet (F
l

, F2 ) of common mass 

M » ~. The only order 0(g2M2/~2) corrections are to the s-

channel Higgs exchange: the fermion loop contributions to the H 

propagator and to the HZZ proper vertex. In the notation of 

Section II, the Higgs propagator is modified by 

4E2 

i 

2 - m 
H 

-.:po 

and the HZZ vertex by 

4E2 ~2 o i 
+ 

i IIH(4E
2») 

4E2 _ m 2 
H 

(3.22) 

ig M
Z 

ig M
Z 

--g ~-
cos 6 ~v cos 6 ( 

i cos 6 

g~v -
g Mz 

HZZ J rllv (p + p , p , p ) 
,.. 1. 2 1 2 

(3.23) 

where Pi are the Z four-momenta and 
2 2 

4E (PI + P2) In the 

high energy limit the longitudinal Z boson polarization vectors 

are approximately proportional to the Z momenta, £"~ 'V P"~/Mz 
1 1 

, 

.".. 

\J • 
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so· that the sum of the two corrections is proportional to 

i cose 
" "{ i "H"E', ~z - } p P gjlV- rVV (p + p , p , p ) 

1 2 4E2 g M
Z 

1 2 1 2 

-(:~ )' 
(3.24) 

Using Pl·P2 '\, 2E2 ITH ITSS , and 

g3 M 
II V rHZZ 

PI P2 llV + i 
BMw cos

2 
e 

II V 33 
PI P2 ITllVS 

we see that (3.24) 

vanishes to leading order in E just because of the high energy limit 

(3.14) of the Ward identity (3.13). If (3.24) did not vanish to 

leading order then the cancellation between the linear terms (3.20) 

and (3.21) would be undone at the one loop level, which would in turn 

render the theory nonrenormalizable at the two loop level. 

IV. ANOMALOUS WARD IDENTITIES. 

Our prescription, {'\, II 
yS' Y } = 0 and 

'\, 2 
yS 1, uniquely 

defines fermion loops with even numbers of YS's and honors the 

canonical Ward identities for such loops. This is not true of other 

prescriptions for yS in n dimensions. Now we consider fermion· 

loops with odd numbers of Ys's. 

it is sufficient to require that 

Tr ( ~ 5 ya yfl yO yep] :: 

{a, fl, 0, ep} 

At the one loop level we will show 

4i gafloep + O(n - 4) 

{O, 1, 2, 3} 

That is, we require only that Tr[~s yo. yfl yO yep] reduce to the 

usual answer as n'" 4 when a, fl, 0, ep are in the four dimensional 

subspace. 
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For {a, fl, 0, ep} {O, 1, 2, 3} it is clear from (1.2) that 

~~~ ya / i yep] 
. afloep must be proport1onal to g if it is not 

identically zero. Indeed, the most "natural" dimensional continuation 

of Ys (cf. Section V) would give Tr[ys ya yfl yO oep] an essential 

zero at n 4. This would be a mathematically consistent but 

physically useless prescription. The only remaining freedom 

is that the coefficient of ga l30cp could be "4 + b(4 - n)" with "bit 

an arbitrary parameter. That is, we could take 

Tr(~5 ya yfl yO yep] (4 + b (4 - n)] ig
afloep (4.1') 

{a, fl, 0, ep} {O, 1, 2, 3} 

and still obtain the correct results for finite loops since the term 

proportional to n - 4 would not then contribute. In fact we will 

show below that no results depend on the choice of "b" and for 

convenience we set it equal to zero, taking 

Tr(~5 /" l /' yep] 4igafloep (4.1) 

{a, fl, 0, ep} {O, 1, 2, 3} 

We also use the property, which follows 

commutativity of ~s' that TX{~S ya yfl] and 

essential zeros at n 4. 

from the anti-

Tr[~s yo. yfl i) have 

Having made the choice (4.1) it now necessarily follows that 

other traces are not well defined. Therefore oUr prescription 

does not correspond to a well-defined Dirac matrix. But the 

'\, 

yS 

ambiguities which render it ill defined correspond precisely to the 

inescapable ambiguities of the Adler-Bell-Jackiw anomaly. 
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Consider the trace Tr (y 5 l' ya l' y4> y Il yll), where again 
" -

a, 13,- eS, 4> are in the four-dimenslonal subspace. Using the standard 
/,i'_ 

n-dimensional Dirac algebra, ego (1.5), we find immediately 

Tr (y ya ya l' y4> y yll 
s Il 

4i n EaaeS4> (4.2) 

If instead we rewrite the trace as Il ~ a-a eS A. 
Tr (y y y yl-' Y y'l' Y ) 

, s Il 
and then 

anticommute yll to the right we find 

Tr(y ya ya yeS y4> y yll) 
s Il 

4i(8 _ n)EaaeS 4> (4.3) 

The two results only agree for n = 4. We simply, accept this ambiguit¥ 

as a necessary consequence of our prescription. We introduce an 

arbitrary parameter "an and define the trace to be 

a l(eq(4.3) + (1 - a) Il eq. (4.2) ,Which is 

Tr(Ys ya ya yeS y4> Yll yll) 4i E
aaeS

4>[n + 2a(4 n) 1 . 
(4.4) 

The ambiguity is of course proportional to n - '4. 

It is now easy to see why it doesn't matter whether. we defined 

'" a a eS 4> Tr(ys y y y y) by (4.1) or (4.1'). If we had used (4.1') then 

in place of (4.4) we would have had the same result except that the 

arbitrary parameter "a" would have been replaced by the equally 

arbitrary parameter a+E. 
2 

If we were to insist that our prescription be well defined, 

then by the manipulations that led to eqs. (4.2) and (4.3) we would 

obtain (n _ 4)Tr(YS yo. ya yO y4» 0, which would imply that the 

trace has an essential zero at n 4. This would be a consistent 

but useless prescription, which would imply that the VVA triangle 

diagram has an essential zero at n 4. 
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It is important to stress that the ambiguity in (4.4) is not a 

defect of our prescription but is rather a necessary consequence of 

the Adler-Bell-Jackiw anomaly~ If it were possible to define uniquely 

an,n-dimensional yS satisfying our prescription, eqs. (1.2) and 

(4.l),_then it would follow that there is no A-B-J anomaly. For the 

VVA Green's function defined by such a yS construction would obey 

all canonical Ward identities and be finite for n oj 4. Then the four 

dimensional Green's function defined by the limit n + 4 would also 

obey canonical Ward identities. But the essence of the A-B-J anomaly 

is that is impossible to satisfy simultaneously the canonical vector 

and chiral Ward identities for the VVA triangle. The existence of 

the anomaly therefore proves that no such yS can actually be 

constructed. 

Since the y 
5 

of 't Hooft and Veltman is defined by the 

explicit construction eq. (1.1), it yields the unambiguous result 

Tr (y ya yB yO y4> y yll) 
s Il 

4i n EaaeS 4> (4.6) 

for {a, a, 0, 4>} = {O, 1, 2, 3}. 

This correspond to our result, eq. (4.4), when the arbitrary parameter 

"a" is set to \zero. 

With eqS. (1.2) and (4.1) we have specified our yS 

prescription sufficiently to.discuss the VVA amplitude and the 

related anomaly. We define the pseudoscalar-and pseudovector 

amplitudes respectively by 

. ~ .. ,-

t 

~ . 
,~,/ 
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rr).iV(p , p ) J i (p x+p y) < ) - e I 2 ,T v).i{x) VV (y) p{O) 0 
5 I 2 

x,y 

rr).iV, ( , ) J i{p x+p y) < ' ) 
5 PI P2 e 1 2 T v).i(x) VV{y) A (0) o. 

'x,y (4.7) 

Where ljI{x) is a fermion field of mass M , the current dens.ities 

are 

PIx) - ~(x) Y ljI(x) 
5 

A).i{X) - ~(x) y).i Y ljI(x) 
5 

v).i{x) - ~(x) y).i ljI(x) 
(4.8) 

The canonical Ward identities for the vector currents, are 

p rr).iV'{p, p ) 
l).i 5 I 2 'P2V rr~\JT{PI' P2) o (4.9) 

and the canonical chiralWard identity is 

(p + p) rr).iV, (p , p ) 2M rr).iV(p P2) • .(4.10) 
I 2,5 12 5 1 

Adler, Bell, and Jackiw showed that it is impossible to satisfy 

eqs. (4.9) and (4.10) simultaneously. 

To understand the anomaly it suffices to evaluate rr).iV, 
5 

first order and rr).I\J 
5 

to second order in the external momenta PI 

to 

and 

P2' rr~V is finite and unambiguous and can be evaluated without a 

regulator. It is given by 

rr).iV(p , p ) 
5 I 2 

-i 

4M 7T
2 
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).iva8 p p + 0{p.4) 
E la 28 1 

(4.11) 

rr).iV, is also finite but not unambiguous. It is given exactly by 
5 . 

rr).iV'{p , p ) 
5 I 2 J dnR,. 

i' --4 
(27T) 

Tr[ya~ {z - oJ' + M)YV{Z' + M)Y).i(.( + ~ +M)l 
5'2 'I 'J 

{(R, - p )2 _ M2){12 _ M2){{R, + P )2 _ M2) 
2 1 

+ ().i ++ V, PI ++ P2) 

(4.12) 

We introdlice Feynman parameters and evaluate rr).I\J' 
5 

to linear order in 

the p. , after which the integration over the Feynman parameters is 
1 

trivialiy Performed. We rewrite. the trace, using symmetric 

'" integration but without anti commuting K and Y
S

' The. result is 

rr).iV'{p , p ) 
5 1 2 J dnR, 

- 2i ,---) 4 
{27T 

N).iV, 

+ 0{p.3) 
1 

where 

N).iV, 2 
3 

12 
n 

(R,2 _ M2) 3 

[
'" ).I V , ,w] 

Tr Y 5 Y Y Y ~ -;11'2) Y w Y 

~ (4!!... + M2) T.Jy y).I yV y'td' -I.)J, + 
3 n .LL 5 1 2 

(4;13) 

0{p.3) • 
. 1 

(4.14) 

Since ).I, V, " and X are external and four-dimensional, the 

second term in (4.l4) is given unambiguously by eq. (4.1) wh.ile for 

the first term we use the ambiguous "a" --dependent prescription 

eq. (4.4). The result is 
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Nll\lT 8i Jl\lTPI_' _ p' ~R,2(1 _ 2a)(1 
e: ~l 2 P 3 . 

~ ) _ M2} + 

Performing the integration over R, we obtain finally 

rrJl\lT (p 
5 1 

i Jl\lTP (p. _ P )p a·- e: 1 2 
31T

2 
P2) 0(Pi 3) • + 

0(p.3) 
~ 

(4.15) 

(4.16) 

The integral f R,2/(R,2 - M2)3 diverges but we obtain a finite 

result because of the factor 1 4 
n 

in eq. (4.15). The Ita II 

dependence of this term gives rise to the ambigu~ty which in the 

original analyses
2

) reflected the fact that the four dimensional 

integration is not well defined. Here instead the ambiguity is ., . 

algebraic in origin. For a = 0 the vector Ward identities, eq. 

(4.9), are obeyed but the chiral identity (4.10) is not. For a = 3/4 

the chiral identity is satisfied but the vector identities are·not. For 

other values of "a" none of the Ward identitl.es are satisfied. And 

there is clearly no value of "a" for which all three identities are 

valid: this is the essential feature of the anomaly. 

The usual designation, "chiral anomaly," reflects the choice 

a = 0, which happens to be appropriate in the application to 

TIo + yy. However one can certainly imagine other contexts in which 

other choices might be appropriate. As we have already noted, the 

result a = 0 is uniqueiy selected by the Y5 construction of 

't Hooft and Veltman. 

Next we show that it is straightforward to use our prescription 

to derive the minimal Bardeen· set of chiral anomalies in theories with 

non-Abelian currents. The calculation is much easier than previous 
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calculations
6

) which used point splitting or Pauli-Villars regulariza-

tion. In those calculations counter terms were needed to put the 

anomaly in its minimal form and, in the case of point splitting, to 

make the three and four point functions finite. In contrast, using 

our approach the anomalous Green's functions are finite·though ambig- ,-

uous and the minimal anomaly emerges immediately. 

It is clear from our discussion of the Abelian case that the 

presence of anomalies is intimately related to the ambiguity in 

defining traces with an odd number of Y5' s. Except for these 

ambiguities our prescription is guaranteed to reproduce the canonical 

Ward identities. AS in eq. (4.4) ambtguities are proportional to· 

n - 4 so they can only survive if multiplied by a divergent loop 

integral. It is easy to verify at the one loop level that this only 

occurs in the Green's functions (VVA) , (AAA) (VVVA) , and 
~ 

<VAAA) From this list of ambiguous Green's functions it is in turn 

easy to obtain the minimal Bardeen anomaly. 

Where Ai denote the group generators in the representation 

of the fermions, the vector and axial currents are defined as 

vY(x) 
~ 

_ ~(x) yJl A. 1/!(x) 
~ 

AY(X) == ~(x) yJl Y A. 1/!(x) 
~ 5 ~ 

Green's functions are written in momentum space, e.g., 

~ Jl V. 
~ 

V\I 
j 
~T) _ J i(p.x+p.y) 

~ J e 

x,y 

(T ViJl(X) Vj\l(y) ~T(O»O 

Then, as in the Abelian case, the three-point functions are well 

defined except for finite polynomial ambiguities which are linear in 

'-

• 

1(_1-" 

• 
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the external momenta: 

(~ V T) ~ ) ~VTP ... 
Vi Vj ~ K p. - p. e: TrO,. A. ~) 

1. J P 1. J 

(4.17) 

(A/ A/~) (L (1) + L (2) + L (3) ) 
Pi Pj Pk P 

x E~VTP Tr(A
i 

Aj A
k

) + .•• 

(4.18) 

K, L (1), L (2), and L (3) are arbitrary parameters, like "au in 

eq. (4.16). We have exhibited only the ambiguous terms; the well 

defined terms are O(p3) and higher. 

Notice that the ambiguous terms are independent of fermion 

masses. This reflects the well-known fact that the anomaly arises 

from the leading ultra-violet Pehavior of theone-loop graphs, which 

is scale-invariant. This means that fermion mass splitting will not 

effect our calculation, so we may for convenience take all fermions 

to have a common mass. Then canonically all vector currents would be 

conserved, a V.~ O. 
~ 1. 

We now impose .the conventional requirement that vector current 

Ward identities be canonical. Then ", ~ V T)_ Pi~\'i Vj ~ - o (we work 

to one loop order) which :irlg?lies that K = 0 in (4.17) ; the well-

defined terms, which were not exhibited in (4.17), are guaranteed by 

our prescription to have the canonical behavior. In (4.18) we fix 

the ambiguous polynomial by requiring Bose symmetry (which again is 

automatically satisfied by the well-defined contribution). Now 

Tr(A. A. Ak ) is in general the sum of total symmetric and totally 1. ) 

anti symmetric pieces, which we denote generically 

TX(A. A. Ak ) 
. 1: J 

dijk + 
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f .. 1.Jk 

Then symmetry under 11, i ...... v, j implies usingPk - Pi - Pj 

that 

(L(l) - L(3»(f
ijk 

- d
ijk

) (2) L(3» (f + d. 'k) (L - ijk 1.J 

(L(l) - L(3» (f
ijk 

+ d
ijk

) (2) (31.(f _ d .. ) 
(L - L 1 .ijk 1.Jk 

which implies L(l) = L(2). Requiring Bose symmetry for all three 

currents we find that L(l) = L(2) = L(3) is required, and the 

ambiguous term in (4.18) .is proportional to Pi + p j + Pk . and 

vanishes by momentum conservation. 

Having eliminated the linear polynomials, (4.17) and (4.18) 

are of 0(p3) and well defined. Now just as in the Abelian case we 

find that the axial current Ward identity must be anomalous, since 

I. ~. V T)· I, ~ V 1"\ 4. 
PTk\Vi Vj ~.. and PTk~i Aj .~ I are O(p) wh1.le 

~i~ VjV P~ and ~ill Aj
V P~ are 0(p2). The anomaly is given 

by the unambiguous 0(p2) terms in <~ and (AAP). The 0(p4) 

terms are all well defined and necessarily obey the canonical Ward 

identity. 

In the four-point ·functi·ons the ambiguous terms are of zero I th 

order' in the external momenta: 
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Again vector current conservation requires R = S = 0 and the axial 

anomaly is determined by the O(p) terms in (~ and (VAAP) . 
The well-defined contributions, suppressed in (4.19) and (4.20), are 

0(p2) and canonical. In the chiral Ward identity they match the 

canonical 0(p3) contributions from (vwp) and ~AAP) and from 

the three-point functions which come from the equal time commutators. 

Finally the five point functions <wvv~ , <vv~, (~ 
are finite and unambiguous. But their chiral Ward identities are 

anomalous because of the ambi~uous four point functions generated by 

the equal-time commutator terms. Again power-counting determines the 

anomaly. (wvv~ is O(p) so the left-hand side of the chiral Ward 

identity is 2 O(p ). By the previous considerations the four point 

functions (VVVA) on the right-hand side are also 0(p2). But 

~) is unambiguous and of O{l) hence there is an 0 (1) anomaly 

to cancel the zero momentum limit of <:VVVVP) . 
For six- and higher-point functions, all Green's functions 

appearing in the Ward identities are finite and. unambiguous so the 

Ward identities are necessarily canonical. 

These simple considerations show that our prescription yields 

anomalies in precisely the same Ward identities as Bardeen's minimal 

set. It is also easy to see ~t the value_~ of the anomalies agree 

with Bardeen's expressions. From our explicit calculation of the 

Abelian VVA anomaly, we find that our non-Abelian VVA anomalies 

are equal to Bardeen's. But then the integrability relatiomof Wess 

and zuminol2 ) imply that our calculation of all other anomalies must 

agree with Bardeen's. Our calculation is guaranteed to satisfy the 

integrability relations because our prescription respects the group 

symmetry from which they follow. 
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V. CONCLUDING REMARKS 

The starting point for this work is the observation, illustrated 

by a specific example in Section II, that different prescriptions for 

YS in n dimensions seem to imply different predictions for 

physical quantities. This apparent ambiguity was resolved in Section 

III by studying the underlying Ward identities. We showed that the 

prescription {ys' Y~} 0 '" 2 and YS 
1 defines one fermion loop 

Green's functions with even numbers of Y 5' s so that they obey the 

canonIcal Ward identities in n dimensions. Other prescriptions 

which differ from ours by terms of order (n - 4) introduce spurious 

anomalies into these Ward identities. We exhibited these spurious 

anomalies in Section III for the prescription of 't. Hooft and Veltman. 

We showed explicitly in Section III that these anomalies are not 

consistent with renormalizability. If our prescription is not used 

they must be subtracted by hand. 

The confusion surrounding the meaning of Y
S 

in n dimensions 

arises because there is no explicit n-dimensional ys which obeys the 

prescription (1.2). In Section IV we showed that this need not be 

confusing: it is just the Adler-Bell-Jackiw anomaly in an unfamiliar 

guise. In particular we extended our prescription to diagrams with 

odd numbers of YS's by requiring that Tr(y
s 
y~ yV yW yT) 

4iE~VWT when ~, v, W, T are in the four-dimensional subspace. 

This sufficed to define one-loop diagrams except for a polynomial 

ambiguity,.which A) renders our prescription ill defined but B) is 

nothing more than the usual A-B-J anomaly. If there were a well-

defined Ys satisfying our prescripton, then there would be no A-B-J 

anomaly. Our method provides a computationally convenient method of 

• 

,-

\-

~., 
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recover..ing the known resul1:s for both the Abelian and non-Abelian 

chiral anomalies,. 

.. We will comment br:~efly on two prescriptions discussed by 

• Akyeampong and Delbourgo
4

). The first is the most "natural" choice: 

,., 

"'0 
.... . , 
~""\l 

,,~ ... ,111 

"" 

~ 
in space-time of even dimension take yS to be the product 

o I n-l y y •.• y 

commuting y 5 . 

This is an unambiguous realization of a fully anti-

As Akyeampong and Delbourgo observed4 ), it therefore 

suffe~s from the disease discussed in Section IV: it gives the VVA 

amplitude an essential zero at n 4. The second prescription, which 

is the one advocated in ref. (4), is to ,use for the pseudoscalar 

vertex the quadruply anti symmetric product 

ac[ (-I)P ya y8 yO y~ 

Perm. 

l"") where a, 8, 0, ~ vary over all n indices. This is covariant in 

:"f) 

~,:'U 

~.::.J 

~ 
\"',J 

!:1~4' 

n dimensions but otherwise is very similar to the prescription of 

't Hooft and Veltman: it also introduces spurious anomalies and also 

forces the A-B-J anomaly into the chiral current. As the authors 

acknowledged in a subsequent paperI3), if it is used it is necessary 

to compute by hand counter terms to cancel the spurious anomalies. 

The prescription defined in Sections TTT arid TV provides a 

complete and correct description of all one-fermion loop diagrams. 

Tt is also clear that our prescription correctly describes graphs with 

arbitrary numbers of fermion loops if each loop contains an even 

number of Ys' s" since the validity of the canonical Ward identities 

is guaranteed for this case as noted in Section TTT. We are now 

considering multi-loop graphs in which there are loops with odd 
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numbers Of Y 5' s. Tf our method can be extended to that case it would 

constitute a complete prescription for dimensional regularization of 

spontaneously broken gauge theories . 
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