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ABSTRACT OF THE THESIS

GaitGuard: Towards Private Gait in Mixed Reality

By

Diana Gimena Romero

Master of Science in Electrial and Computer Engineering

University of California, Irvine, 2024

Assistant Professor Salma Elmalaki, Chair

Augmented/Mixed Reality (AR/MR) devices are unique from other mobile systems because

of their capability to offer an immersive multi-user collaborative experience. While previous

studies have explored privacy and security aspects of multiple user interactions in AR/MR,

a less-explored area is the vulnerability of gait privacy. Gait is considered a private state

because it is highly individualistic and a distinctive biometric trait. Thus, preserving gait pri-

vacy in emerging AR/MR systems is crucial to safeguard individuals from potential identity

tracking and unauthorized profiling. This paper first adopts and automates a framework

designed to detect gait information in humans, referred to in this work as GaitExtract.

GaitExtract can automatically detect the neighbor gait information of a human and in-

vestigate the vulnerability of gait privacy in AR. In a user study with 20 participants, our

findings reveal that participants were uniquely identifiable with an accuracy of up to 78%

using GaitExtract. Consequently, we propose GaitGuard, a real-time system that safe-

guards the gait information of people appearing in the camera view of the AR/MR device

(a.k.a. bystanders). We tested GaitGuard in an MR collaborative application, achiev-

ing 22 fps while streaming mitigated frames to the collaborative server. Furthermore, our

qualitative surveys indicated that users are more comfortable with releasing videos of them

walking when GaitGuard is applied to the camera frames. These results underscore the

efficacy and practicality of GaitGuard in mitigating gait privacy concerns in MR contexts.
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Chapter 1

Introduction

Mixed reality (MR) devices have been becoming a lot more mainstream with the recent

announcements of new mixed reality headsets such as Apple Vision Pro [8], Meta Quest 3 [15],

Meta Aria glasses [47], in addition to the already established Hololens 2 [13]. Additionally,

the mixed reality worldwide market was already valued to be a 1.4 billion industry in the

year 2023 and is expected to double by 2030 [45]. These projections and the announcement

of these new devices signal that our community is moving towards the broad adoption of

MR technology1.

MR technologies blend the physical and the digital world by placing virtual objects that

humans can interact with in the physical environment [23]. To facilitate the seamless inter-

action between the computer, the human, and the physical environment, MR technologies

are equipped with a myriad of sensors that enable environmental perception capabilities and

human interaction through hand-tracking, eye-tracking, and speech input [23]. Despite the

MR’s potential across different sectors and as the technology advances, it has been becoming

1Mixed Reality (MR) is a spectrum that blends both physical and digital worlds and within this spectrum
is a small subset of augmented and virtual reality experiences [23]. Since the MR spectrum encompasses
an extensive array of applications, in this paper, we use the term MR to refer to technologies that enable
physical interaction with virtual objects.
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an increasing concern if these ubiquitous sensors are being used maliciously by adversaries

to identify sensitive information such as facial information [32], semantic location [38], user

behavior [41, 65].

Privacy concerns in multi-user Mixed Reality (MR) applications have surfaced due to MR’s

distinctive feature of enabling immersive collaborative interactions among users in two main

settings: one where users share the same physical space and another where users are in

different physical locations. This particular aspect of MR technology exposes a wide range

of scenarios to the continuous monitoring by MR device sensors, raising issues regarding the

security and privacy of multi-user collaborations within MR environments. To tackle these

concerns, a variety of studies have been conducted to investigate secure and private ways to

facilitate multi-user interactions in mixed reality [44, 54, 55].

Despite the growing awareness of privacy issues within Mixed Reality (MR) environments,

the specific concern of gait privacy has not received adequate attention. Gait, or the dis-

tinctive way individuals walk, is recognized as a biometric identifier that can be used for

recognition purposes. Studies have revealed that gait data can be associated with sensi-

tive information, including ethnicity [64], age [66], gender [62], and neuromusculoskeletal

disorders [58]. Moreover, regulations such as the California Privacy Rights Act (CPRA)[2]

and the European Union’s General Data Protection Regulation (GDPR) [11] mandate the

safeguarding of gait and other biometric data that could identify a person, highlighting the

necessity for mechanisms to secure gait data in emerging technological applications.

Safeguarding gait information becomes particularly critical in MR scenarios, where partici-

pants often use headsets outfitted with multiple sensors capable of unintentionally capturing

and analyzing their gait. This potential for gait privacy breaches in MR not only poses

ethical concerns regarding consent and data protection but also raises awareness that users’

unique walking patterns may be recorded and scrutinized without their informed consent.

Therefore, regulating the acquisition, storage, and use of gait data within MR contexts is

2



crucial to ensure users maintain authority over their personal information and are shielded

from privacy violations. As MR technology evolves and its usage expands, the industry must

develop explicit protocols and standards to confront gait privacy issues, thereby preserving

privacy rights and fostering ethical data practices.

This paper tackles the issue of gait privacy in Mixed Reality (MR) technology by employ-

ing a comprehensive methodology. We begin by assessing the potential for identifying users

based on gait characteristics derived from MR device camera feeds. Subsequently, we in-

troduce GaitGuard, a system tailored for deployment in MR collaborative applications to

mitigate the risk of gait information leakage. Furthermore, to gain a deeper understanding

of user attitudes toward gait privacy, we have executed a survey that captures the qualitative

perspectives of individuals on this matter.
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Chapter 2

Related Work and Background

2.1 Privacy Problems in Mixed Reality

As MR headsets are projected to become more ubiquitous, there is a growing concern about

possible security and privacy risks with these devices. One study explored the effects of

perceptual manipulation attacks (PMA) in MR on users [30]. Moreover, bystander privacy

becomes a significant issue because these devices often utilize cameras, sensors, and other

data collection tools to capture information about the environment around the user. This

includes recording images, videos, and sometimes audio of people who happen to be in the

vicinity but are not directly engaging with the technology themselves [32]. Considering these

MR headsets have the unique characteristic of employing an immersive multi-user collabora-

tive interaction, there is a growing concern about ensuring secure and private interactions in

collaborative environments. In response to this concern, SecSpace, a framework developed

to ensure that privacy and security mechanisms are implemented in collaborative MR has

been proposed [54].

While numerous studies have explored various privacy concerns associated with MR, the
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issue of protecting gait privacy within this domain remains largely unexplored. This paper

seeks to fill that gap in the existing body of research.

2.2 Gait: a Unique Personal Signature

Gait recognized as an inherently unique attribute for individuals has been extensively studied

as a means of authentication, both through wearable devices like accelerometer sensors [40,

35, 31] and mobile systems such as phones and smartwatches [34, 27, 48]. These studies

underscore gait’s high uniqueness and identifiability as a distinguishing feature.

Furthermore, gait information extends beyond mere identification and has been linked to

various sensitive attributes, including ethnicity [64], age [66], gender [62], and neuromusku-

loskeletal disorders [58]. The implications of gait analysis span a broad spectrum of personal

characteristics and health-related information. Despite the well-established uniqueness of

gait and its association with sensitive attributes, there is a notable gap in existing research.

In recent years, MR applications have become more pervasive. One of the biggest aids to

this proliferation is the rise of many commercial head-mounted displays (i.e., Hololens 2,

Meta Quest Pro, etc.) in this domain. These HMDs are equipped with many sensors that

may be able to provide insight into a person’s gait. Gait has been extensively studied to

identify a person and has been established by numerous jurisdictions through the law that

this is private information that must be protected [2].

To the best of our knowledge, no study currently systematically investigates the prevalence

of gait information leakage in emerging technologies, particularly in the realm of MR.
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2.3 Gait Types in Mixed Reality

The emergence of MR applications then poses new privacy concerns as attackers could access

this sensor information and identify a person’s gait. Two types of gait information could be

collected based on perspective; for simplicity, we refer to these two types as personal gait

and neighbor gait.

2.4 Personal Gait

The first type of gait information refers to the device user’s gait information. Many of

these HMDs are equipped with IMU sensors, and IMU-based gait recognition has long been

explored in the literature [33]. While IMU-based gait recognition has already been explored

before, prior work mainly focused on placing the IMU sensor on the ankle to obtain the

user’s gait pattern, and it is unclear whether IMU-based head movement recognition can

also be linked to all the sensitive information the gait is related to. However, it has been

shown that head movements do have some correlation when identifying people through gait,

as it was found that identifying people through head movement alone only resulted in about

60% accuracy [42]. This suggests that gathering the gait information of an MR headset user

is feasible but there are no studies that have shown that sensitive information associated

with gait can be linked to head movements.

2.4.1 Neighbor Gait

The other type of gait information, referred to in this paper as neighbor gait, is concerned

with collecting private gait features of people within the same physical space as the device

user. In particular, people appearing in the headset camera view whether as a bystander or
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as another user in a collaborative app setup. In this paper, we focus on investigating the

framework and tools needed to gather and protect neighbor gait.

2.4.2 Pose Estimation for Gait Detection

Instrumented gait analysis (IGA) refers to the precise and accurate analysis of gait pat-

terns and characteristics, and systems that employ IGA often make use of motion capture

systems, force plate, instrumented walkways, and treadmills [29]. While this is the golden

standard for gait assessment in research practice, traditional systems for gait analysis are

costly and invasive. Because of this, alternative techniques for cost-effective gait analysis

have been extensively investigated. Some of the proposed gait detection systems make use

of a gyroscope [51], inertial measurement units (IMU) [53], and Kinect sensor [39, 52].

Another low-cost and accurate alternative in detecting gait information is video-based pose

estimation [59, 46]. Video-based methods are particularly accessible, requiring only a camera

to analyze gait. Pose estimation algorithms detect a person’s position and orientation by

predicting the location of different keypoints such as hands, heads, legs, etc. [20]. An example

of a pose estimation is Openpose library, which enables real-time pose estimation of multiple

people from a two-dimensional video [28]. This pose estimation library was used by the video-

based gait analysis framework proposed by Stenum et al. [59] demonstrating that video-

based gait analysis can yield results closely matching those from 3D motion capture systems.

This paper leverages video-based gait analysis for its accessibility and effectiveness [59]. In

particular, we explore the potential of video-based gait detection to address privacy concerns

related to “neighbor gait” by analyzing scenes captured via headsets’ cameras.

7



2.5 Paper Contributions

This paper makes the following contributions:

1. GaitExtract Framework: We introduce GaitExtract, a framework designed to auto-

matically detect “neighbor gait” defined as the gait information of individuals within the

camera view on MR headsets.

2. Identification Attack: By leveraging extracted gait information from camera frames,

we demonstrate the ability to uniquely identify different individuals, highlighting potential

privacy vulnerabilities.

3. GaitGuard System: We propose GaitGuard, a systematic approach designed to mit-

igate gait privacy leaks, particularly tailored for MR collaborative applications, ensuring

minimal impact on application utility.

4. Application Design and User Study: To validate GaitGuard’s effectiveness, we

design an MR collaborative application, integrating GaitGuard, and we conduct a user

study involving 20 participants.

5. User Survey: To gain deeper insights into user perceptions, we conduct a user survey

exploring how individuals using these technologies perceive gait privacy.

8



Chapter 3

Threat Model

This paper investigates the threat of gait privacy leak in MR applications, mainly through

video-based gait detection. The focus is on devices like the HoloLens, equipped with two

types of cameras, facilitating communication with other devices such as MR headsets, phones,

tablets, and laptops1. The multifaceted flow of information, specifically camera frame feeds,

provides attackers with potential vantage points at different levels, enabling them to extract

gait information.

The analysis of vulnerabilities encompasses various scenarios and applications susceptible to

gait information leakage, emphasizing that any point allowing access to camera frames is a

potential vulnerability. We explored 318 HoloLens applications from the Microsoft Store [16]

and found that 26% request camera access, underscoring the widespread exposure of users

to potential privacy breaches. Based on these applications, we define three primary MR

application modes explored as potential threat scenarios. In particular, we explored the

single-user experience and the multi-user collaborative experience setup provided by MR.

We explore the threat models in the following application setups: (1) same physical space

1While the rest of the paper focuses on Hololens as an example of HMD, the same analysis/results can
be extended to other HMD in the market that need to share scene information across users collaborating in
a multi-user MR environment.
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Figure 3.1: An example of a collaborative application in Mixed Reality where two users exist
in the same physical space and collaboratively work on a unified virtual object.

collaboration (PSC), (2) remote space collaboration (RSC), and (3) single-user experience

with no collaboration (SUE).

3.1 Collaborative applications in MR

In MR, collaborative applications denote extended reality experiences involving multiple

users in a shared holographic environment. These applications harness the spatial computing

capabilities inherent in MR devices (HoloLens 2). Collaborative MR apps allow users to see

and interact within the same digital content from their respective perspectives [5].

Establishing collaborative experiences in Mixed Reality (MR), especially within the HoloLens 2,

necessitates the integration of a robust network manager to facilitate and oversee connec-

tions among multiple users. This enables collaborative interactions and ensures synchronized

sharing of object movements across users within the MR space [5]. Microsoft’s HoloLens 2

incorporates a common networking solution for building multi-user applications known as

the Photon Unity Networking (PUN) framework [19]. PUN seamlessly aligns with Unity

development, a versatile cross-platform engine supporting MR/AR/VR development. The

10



integration between Unity and PUN provides comprehensive tools to manage user registra-

tions, handle network synchronization, and enable a cohesive collaborative environment for

shared MR experiences on the HoloLens 2 platform.

An example of a collaborative experience using MR HoloLens 2 is shown in Figure 3.1.

3.2 Same Physical Space Collaboration (PSC)

This collaboration mode occurs when multiple MR headset users share the same physical

space and collaborate on a unified virtual object, as shown in Figure 3.1. This scenario

presents in applications, such as HoloOne Sphere [22] and Catapult [10]. These applications

may also incorporate Augmented Reality (AR) features, such as QR codes, camera filters,

or computer vision capabilities, potentially requesting access to the device’s camera within

the collaborative space. A depiction of the PSC threat model is shown in Figure 3.2 with

two potential points of attacks as explained below.

Threat Model

• Collaboration occurs when multiple MR headset users share the same physical space.

• Applications such as HoloOne Sphere [22] and Catapult [10] with collaboration on a unified

virtual model request access to the device’s camera.

• The camera frames are shared from multiple MR devices to the common network manager

server as explained in Section 3.1.

11



Figure 3.2: Threat model in PSC. Multiple users in the same physical space.

3.3 Remote Space Collaboration (RSC)

The remote space collaboration (RSC) collaboration mode has a key distinction from PSC

where not all MR headset users are physically present in the same physical location, enabling

remote participation as illustrated in Figure 3.3. Users engaging remotely are not restricted

to MR devices; they could employ any device, such as a phone, laptop, or tablet. Applications

like Lens Bouvet [9] and Teams [18] facilitate remote collaboration, allowing users from any

device with the application to annotate an MR headset’s view.

Similar to PSC, this scenario introduces vulnerabilities at the application and server levels,

as depicted in Figure 3.3. However, RSC adds an extra point of vulnerability at any device

level. Any device participating in the collaborative session becomes a potential attacker

regardless of physical location. This is because any device in the session can access the

camera frames of all the participants.

Threat Model

12



Figure 3.3: Threat model in RSC. Some users join remotely using different device modalities.

• Not all users are physically present in the same location.

• Users can engage remotely using various device modalities like phones, laptops, or tablets.

• Applications such as Lens Bouvet [9] and Teams [18] request camera frames to allow RSC

and annotation of an MR headset’s view.

3.4 Single User Experience (SUE)

The final mode of operation involves applications that, while not designed for collaboration,

have access to the camera for Augmented Reality (AR) capabilities. A brief survey of

applications in the Hololens 2 category reveals that approximately 26% of these applications

possess camera access.

This introduces a critical concern regarding bystander privacy, where individuals uninten-

tionally sharing the same physical space as the MR application user become susceptible to

privacy breaches. Although the issue of bystander privacy has been extensively examined

for decades in the context of mobile devices, it has recently gained prominence in augmented

reality headsets, with studies like BystandAR exploring solutions specifically for facial pri-

13



vacy [32].

In this mode of operation, the potential attacker is constrained to the application level.

Unlike collaboration scenarios, camera frames are not communicated to other users’ devices,

limiting the points of vulnerability. This setup underscores the unique challenge of bystander

privacy in gait information leakage.

Threat Model

• A single-user space in an MR application wearing a headset.

• Application gains access to the camera frames to enable virtual overlays.

• A bystander enters the camera view.

3.5 Common Threat Across Modes

The common threat across both Same Physical Space Collaboration (PSC) and Remote

Space Collaboration (RSC), as well as the Single User Experience (SUE), centers on the

exploitation of camera frames. This vulnerability stems from the shared need across these

modes to access and transmit camera frames to enhance collaborative experiences or augment

reality, making them susceptible to various attack vectors:

• Application Level Attacks: At this level, attackers exploit vulnerabilities within the

application itself to gain unauthorized access to camera frames. This threat is prevalent in

all modes of operation, where the applications’ need to access camera data for functionality

exposes them to potential exploitation.

• Server Level Attacks: In scenarios where camera frames are shared across a network,

such as in PSC and RSC modes, attackers can target the network manager server. Attack-

14



ers can intercept and access the shared camera frames by installing spyware or exploiting

vulnerabilities on the server, compromising the privacy of all participants in the collabo-

rative space.

• Device Level Vulnerabilities: Particularly relevant in the RSC mode, any device used

to participate in the collaboration becomes a potential point of attack. This includes MR

headsets, phones, laptops, or tablets used to join the session. Attackers can use these

devices to access the camera views of all participants.

Across these collaboration modes, the shared reliance on camera frames for enhancing collab-

oration or providing AR features introduces a critical point of vulnerability. The unautho-

rized access to camera frames threatens the participants’ privacy. Hence, this paper focuses

on this aspect of a privacy leak of gait information from camera frames.
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Chapter 4

Gait Extraction Framework

Motivated by the prevalence of threat to gait privacy in MR, in this section, we discuss the

systematic design and implementation of the framework used to gather the neighbor gait

information, which we refer to as GaitExtract. As mentioned earlier in Section 2.4.2, our

design exploits the method developed by Stenum et al. where they proposed to use 2D-based

techniques for gait feature analysis [59]. Their proposed algorithm generates the different

gait features based on the location of the keypoints provided by OpenPose library [59].

4.1 User Study and Data Collection

We conducted an IRB-approved user study (IRB #2848) where 20 participants were re-

cruited by advertising on mailing lists and asking personal contacts to forward our study

information to interested participants. Participants were all 18 or older, and before data

collection, each user was given an overview of the study’s goal, which is to investigate gait

privacy leaks in mixed reality. They were informed that their gait information would be col-

lected for this study. They were also informed that all identifying information was removed
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(a) (b)

Figure 4.1: Data Collection Setup; (a) Recording of walking sequence; (b) Application of
OpenPose to walking sequence.

and that the collected data would only be accessed by researchers of this study. Each partic-

ipant provided informed consent to participate in the study and video record their walking

sequences. Participants were given face masks as an extra precaution to prevent recording

their facial information during the data collection.

Data collection consisted of participants walking for about 5 minutes between two markers in

a private room while a research team member wore the HoloLens 2 to record their walking

sequences. Figure 4.1 illustrates the data collection setup. Because of the two markers’

position, the distance of the user’s walking sequences was between 2.5m and 2.75m. We

intentionally used a short distance because it is not expected that MR collaborative users

walk for long distances in the scene. Moreover, we want to explore whether gait features can

still uniquely identify an MR user even within a short distance.

Participants were then asked to complete a short survey to gather their user perspectives

about gait privacy in MR.
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4.2 Gait Feature Extraction

The method developed by Stenum, et. al. [59] uses the keypoints generated by the OpenPose

library as a basis for the gait feature extractions. In particular, they use 3 of the 25 body

keypoints generated by OpenPose, the midhip, left ankle, and right ankle. The tool they

developed was designed to be applied to one video of a walking sequence, where a walking

sequence refers to an instance or video of a person that walks exclusively in one direction.

This tool requires several manual adjustments to enable gait feature extraction. First, to

use the tool, we need to manually identify the direction from which the subject walks (i.e.,

left to right or right to left). Afterward, the tool requires manually correcting all the wrong

left-right leg identification. Once this leg detection is corrected, the tool will be able to

detect the heel-strike and toe-off of each leg. Heel-strike and Toe-off are two events that

make up a gait cycle [50].

Following the leg detection correction, we should manually pinpoint the two markers we

choose in the video frame and input the distance between them. This step allows the tool to

approximate the distance per pixel, which will then be required to calculate the step length.

After completing all these necessary manual steps, the tool can output the following gait

features for each leg and each walking sequence with 10 features per walking sequence. A

visual representation of these features is depicted in Appendix A.1.

• Left and Right Step time: Duration in seconds between consecutive bilateral heel-strikes.

• Left and Right Stance time: Duration in seconds between heel-strike and toe-off of the

same leg.

• Left and Right Swing time: Duration in seconds between toe-off and heel-strike of the

same leg.

• Right to Left and Left to Right Double support time: Duration in seconds between heel

strike of one leg and toe-off of the contralateral leg
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• Left and Right Step length: Distance in meters between the ankles at heel-strike

4.3 GaitExtract: Gait Feature Extraction

To exploit this tool for gait information extraction in MR applications, we automate it to

design our framework, which we refer to as GaitExtract as seen in Figure 4.2. GaitExtract

takes a walking sequence video captured using the Hololens headset as an input and then

proceeds with applying OpenPose algorithm to generate the pose keypoints, which will then

be used to calculate the different gait features. Notable adjustments made to the tool include

automating the identification of walking sequence direction (left to right or right to left),

automating the correction of the left-right leg identification, automating the detection of

the heel-strike and toe-off events, and automating the process of running the gait extraction

for multiple walking sequence. GaitExtract can also detect if there is insufficient data to

account for a full gait cycle in a walking sequence. A full gait cycle is defined to be when the

same leg can complete at least two consecutive toe-offs or heel-strikes [61]. If GaitExtract

detects insufficient information for a full gait cycle, it disregards this walking sequence and

proceeds to process the following one.

Our GaitExtract framework yields a partially automated toolchain for extracting gait in-

formation. In the beginning, minimal user input is needed to input the two markers and

distance measurements for each person’s gait analysis. As mentioned earlier, the marker and

the distance measurement input are needed to calculate the step length feature, which is why

user input is still required for this feature. However, if the step length feature is not

needed or necessary, then the framework can be fully automated. In Section 4.4,

we will provide an evaluation of the effect of the step length feature in identifying people.

19



Figure 4.2: GaitExtract: A gait extraction framework built on top of OpenPose library.
GaitExtract uses camera frames obtained from the HoloLens. The automated feature
extraction algorithm uses the keypoints generated by OpenPose to extract the gait features.
The manual input of distance between two markers is only necessary if the step length feature
is required.

4.4 Identification via gait features

To show the capability of GaitExtract to uniquely identify people based on their gait

features, we trained a supervised classifier on the features generated by GaitExtract from

20 participants in our user study. The generated features among the different participants

highly varied, where the mean of the extracted features per person was 140.3 with a standard

deviation of 43.42 and a range of 146. The high standard deviation and range are caused by

the different ways people walk. A person with a small step length and walking fast would

have many more extracted features than a person with a longer step length and walks slowly

in the same time duration.

We used GradientBoostingClassifier classifier provided by the scikit-learn library
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in Python [21]. We repeated stratified cross-validation with 3-folds and repeated the cross-

validation 2 times to train the classifier. We used stratification to address the class imbalances

among the number of extracted features. Cross-validation with 3-fold was used to ensure

that an ample amount of testing data was still included even for classes with few features.

Furthermore, we trained the classifier using data with and without step length to observe

the capability of a fully automated framework without the step length feature to identify

people uniquely.

We used the mean of weighted F1 scores across all folds to quantify classification accuracy.

Results show that the model without step length gives 68% accuracy and that the model

with step length gives a 78% accuracy in user identification. Figure 4.3 shows the average

confusion matrix of the classifier on data with step length. User 5 has the lowest classi-

fication accuracy of 52.59%, which can be attributed to the fact that user 5 had the least

amount of gait features1.

These results show that an off-the-shelf classifier, specifically GradientBoostingClassifier,

can uniquely identify people with reasonable accuracy when using a partially automated

GaitExtract (with step length) as well as using a fully automated GaitExtract (without

step length). Results also show that the number of gait features per class heavily influences

inter-class classification accuracy.

To summarize, GaitExtract is capable of maliciously collecting gait information using min-

imal effort and minimal computational resources.

1User 5 was observed to walk very slowly, leading to fewer gait features collected during the data collection.
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Figure 4.3: Average confusion matrix across all folds on data with step length.
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Chapter 5

Mitigation Framework

Given the minimal resources required for an attacker to collect gait information from camera

frames in MR applications, as elaborated in Section 4.4, developing strategies for safeguard-

ing gait privacy becomes crucial. This section discusses the mitigation strategies for user

identification privacy leaks through gait information. We focus on defenses applied on the

image itself.

5.1 Mitigation Approaches

As explained in Section 4, our proposed GaitExtract relies on detecting heel-strike and

toe-off gait events using three keypoints generated by OpenPose, specifically the midhip,

left ankle, and right ankle. Hence, we propose two approaches for mitigation at different

granularity, both applying pertubation (of diffeent types) directly on the video data. Our

two mitigation approaches, based on our proposed GaitExtract, differ only on where the

pertubation is applied, and are as follows:

• Keypoints-based Masking (KPM): Since GaitExtract utilizes data from just three
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(a) LBM: Lower-body Masking. (b) KPM: Keypoints Masking.

Figure 5.1: Two different granularity of perturbations 1.

keypoints, we conducted experiments involving the application of perturbations methods

around these specific keypoints.

• Lower body-based Masking (LBM): Since GaitExtract derives information solely

from the lower half of the body, we conducted experiments involving the application of

perturbations methods on a bounding box surrounding the lower half of the body.

These two approaches, highlighting the application of perturbations at these two granular

levels, are shown in Figure 5.1, providing a visual representation of the perturbations in a

video frame.

5.2 Perturbation Methods

Numerous strategies exist within the domain of privacy-preserving techniques for safeguard-

ing camera frames or photos, such as adversarial perturbations [63], privacy-preserving GANs

(Generative Adversarial Networks) [57], human-imperceptible privacy protection [56] and

quantization [43]. A drawback on many of these strategies is that they are resource-intensive

and not optimized for real-time applications. Considering that one of the objectives of this

work is to implement a real-time gait privacy solution, in this paper, we deliberately in-

vestigate fundamental perturbation methods (i.e., noise adding, blurring, masking) and the

1The pixelation present on the face is for anonymity purposes and not part of the mitigation.
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effects of these methods in fortifying privacy in conjunction with application utility. Partic-

ularly, we explored adding differentially private (DP) pixelization, blurring, and four types

of random noise.

Pixelization is a standard image obfuscation technique where the resolution of a part or the

whole image is reduced by replacing groups of pixels of a certain kernel size with a repre-

sentative value, which is typically chosen by getting the minimum, maximum, or average

value of the original pixels in that group [1]. Extending this standard obfuscation technique,

differentially private (DP) pixelization introduces privacy guarantees to pixelization. In par-

ticular, DP pixelization guarantees that two “neighboring images” with the same dimension

differing by at most m pixels are indistinguishable [37]. To exploit the effect of this DP

pixelization in protecting gait information, we used different kernel sizes b while ensuring

that the m is equivalent to the number of pixels in the regions identified by the KPM and

LBM granularity. In particular, we vary the pixelization kernel size b, which dictates the

coarseness of the applied pixelization and thus influences the Laplacian distribution scale

when offering privacy guarantees. Furthermore, the findings of [37] report that DP pixeliza-

tion significantly reduces attack success at low privacy requirements of ϵ ≥ 0.1 and m = 16.

Motivated by this finding, we chose an ϵ = 0.1 for our experiments.

Another common image perturbation technique is blurring, where an image is convolved with

a low-pass filter to remove high-frequency content from images [25]. This is also a common

way to remove sensitive information from video content. An example is YouTube’s face

blurring feature for content creators [24]. To investigate the capability of this perturbation

technique in protecting gait privacy, we adopted Gaussian blurring, a common technique for

blurring. We varied the size of the Gaussian kernel applied to the KPM and LBM regions.

Furthermore, we also applied four types of random noise characterized by varying the distri-

bution parameter denoted as λ, which influences the shape and characteristics of the noise

introduced by each distribution.
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We summarize the perturbation methods as follows:

• Differentially private (DP) pixelization: Involves three parts: (1) identify m which repre-

sents the number of pixels in the area of interest identified by KPM or LPM (2) pixelization

of kernel size b within the area m, and (3) apply the Laplace mechanism where noise from

the Laplacian distribution is added to each pixelized cell of size b×b with the scale param-

eter equivalent to λ = 3∗255m
b2ϵ

[37]. In the case of KPM, m = 100×100 surrounding the key

points, while in LPM, m is equivalent to the area of the lower body. In our experiments,

we choose ϵ = 0.1 and kernel sizes b = {10, 20, 30, 40, 50}.

• Gaussian Blur: A 2D Gaussian kernel of size c× c and standard deviation of 0 is used for

blurring. We chose c = {5, 25, 45, 65} in our experiments.

• Uniform Noise Distribution (U): Generates noise with a uniform distribution, represented

as U(−λ, λ). In this distribution, all values within the specified range are equally likely

with probability density function (PDF): f(x) = 1
2λ
, where x ∈ [−λ, λ].

• Normal Noise Distribution (N ): Characterized by a normal distribution, denoted as

N (0, λ), centered at 0, and introducing variations with a standard deviation of λ. Hence,

the PDF: f(x) = 1√
2πλ

· e−
x2

2λ2 for x ∈ (−∞,∞).

• Laplace Noise Distribution (L): Generates noise with a Laplace distribution, expressed as

L(0, λ), centered at 0, and with the scale parameter set to λ. Hence, the PDF: f(x) =

1
2λ

· e−
|x|
λ for x ∈ (−∞,∞).

• Exponential Noise Distribution (E): Generates noise with an exponential distribution,

denoted by E(λ), where the rate parameter is set to λ. Hence, the PDF: f(x) = λ · e−λx

for x ≥ 0.

We assign four different values for λ = {50, 100, 150, 200} in the four random noise distribu-

tions.
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Figure 5.2: An illustration of the mitigation and evaluation framework. Noise is first applied
to the original camera frames to generate the noisy frames. GaitExtract is then applied
to the original and noisy frames to generate gait values. Classification is then done on the
original and noisy gait values. The Jensen-Shannon Divergence(JSD) Score is calculated for
the original and noisy gait values.

5.3 Mitigation Evaluation Metrics

We show a pictorial overview of the mitigation process and its evaluation in Figure 5.2. The

mitigation process involves the application of noise to the original frames (as explained in

Section 5.1), followed by utilizing the GaitExtract framework on both the original and noisy

frames. The gait values obtained from the original frames are denoted as G, encompassing a

set of values for various gait parameters, including step time, stance time, swing time, double

support time, and step length for both the left and right leg, as mentioned in Section 4.2.

Similarly, the gait values derived from the noisy frames are denoted as G′.

To assess the efficacy of the applied noise in safeguarding gait privacy, we used quantitative

and qualitative metrics.
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Privacy loss metrics: We use two metrics as follows:

• Jensen-Shannon Divergence (JSD) Score: The JSD score is computed based on the his-

tograms of gait features in G and G′. The JSD score offers insights into the similarity

or dissimilarity of the distributions of gait parameters. A JSD score of 0 indicates an

identical histogram distribution, signifying perfect similarity, while a score of 1 suggests a

completely different distribution, indicating maximum dissimilarity.

• User identification accuracy: User classification is performed using the gait parameters

(G) and (G′) employing the classification technique outlined in Section 4.4. In particular,

we want to evaluate how the mitigation techniques impact the accurate identification of

individuals based on their gait features. The user classification results provide insights

into the practical implications of the mitigation strategies on the overall effectiveness of

gait-based identification systems.

Combining quantitative JSD scores and user classification results enhances our understanding

of the trade-offs and performance metrics associated with the applied mitigation.

Utility metrics: To quantify the utility of the mitigation, we measured the change in the

quality of the video post-mitigation by measuring the peak signal-to-noise (PSNR) and the

mean squared error (MSE) of the modified pixels along the red, green, and blue channel

of each frame. We also evaluated the difference in the luminance, contrast, and structural

information between the original G and the mitigated frame G′ by measuring the structure

similarity index (SSIM) [26]. Furthermore, to quantify the utility of the system implementa-

tion, we measured the application frame rate (fps) and the latency at each point of receiving

the camera frame. We evaluated the frame rate and the latency in Sections 6 and 6.3.
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Qualitative measures: We used qualitative metrics to asses our mitigation strategy by

conducting a user survey on the 20 participants. The results of this survey will be discussed

in Section 6.6.

5.4 Privacy-Utility Tradeoff

We used the metrics discussed in Section 5.3 to evaluate the privacy-utility tradeoff (PUT).

Firstly, to observe the effect of the mitigation in changing the distribution of the gait fea-

tures, we measured the JSD across all features (explained in Section 4.2) and across all 20

participants. The change in the distribution of each gait feature as measured by the average

JSD is illustrated as a heatmap in Figure 5.3. We observe that most of the JSD values for

the KPM methods were less than 0.5. The LBM methods were mainly greater than 0.5,

indicating that the LBM can alter the gait feature distribution more than KPM. We observe

that the gait feature “stance time” is the least affected by the KPM methods.

Furthermore, we summarize the PUT results of the different mitigation approaches in Ta-

ble 5.1. Specifically, we focus on the second metric of privacy loss, namely user identification

accuracy. This is determined by the decrease in classification accuracy percentage achieved

by applying GaitExtract to both G and G′, as detailed in Section 5.3. This privacy loss

metric was evaluated alongside three utility metrics: Peak Signal-to-Noise Ratio (PSNR),

Mean Squared Error (MSE), and Structural Similarity Index Measure (SSIM). Comprehen-

sive insights into the performance of each mitigation approach, along with the effects of the

adjusted parameters (λ, b, and c) on all privacy loss metrics (Jensen-Shannon Divergence

(JSD), user identification accuracy) and utility metrics (PSNR, MSE, SSIM), are available

in Appendix A.3.
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Figure 5.3: Heatmap of average JSD value for each gait feature across all the mitigation
experiments.

Targeted Keypoint Mitigation (KPM) The PUTs for KPM (Table 5.1-first column)

show that while KPM had better PSNR and SSIM in comparison to LBM, it was not

successful in introducing any significant reduction in user identification accuracy. More

specifically, the reduction in user identification accuracy percentage for KPM for all the

perturbations methods was less than 10%. This shows that the KPM approach was ineffective
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in mitigating the gait privacy leak in MR. This finding can be attributed to the nature of the

OpenPose pose estimation algorithm, where the poses are assembled by using part affinity

fields (PAFs) and these PAFs can encode unstructured relationships between body parts [28].

Thus, OpenPose can still predict the location of the midhip, left ankle, and right ankle

keypoints with good accuracy even when these areas are noisy because it can estimate the

location of the aforementioned keypoints in reference to other body parts (i.e., left leg, right

leg, torso, etc.). These results highlight the high redundancy in gait features. In particular,

focusing on anonymizing a single feature is unlikely to be effective. This observation aligns

with findings in human perception studies, where removing some local information does not

significantly impact recognition as long as global form and dynamic posture changes are

preserved [42].

Lower Body Mitigation (LBM) The PUTs for LBM (Table 5.1-second column) show

that most of the perturbation methods were able to reduce user identification accuracy

significantly. In particular, we observed that when the JSD score was greater than 0.5,

indicating a greater shift in the gait features values, the reduction in the user identification

accuracy was greater than 40% with up to a reduction of 68%.

This highlights that LBM effectively reduces an attacker’s capability to link gait features

back to a user. However, among the LBM perturbation methods, blurring had the least

capability to affect the identification accuracy. DP pixelization, on the other hand, was very

effective in protecting gait information even at small kernel sizes, where when b = 5, the

reduction in identification accuracy was already 68%. However, DP pixelization had the

worst PSNR, MSE, and SSIM values among all the perturbation methods.

The performance of the four random noise perturbations was comparable across the three

utility metrics, with the exponential distribution showing marginally lower scores in PSNR

and MSE. The Laplace, normal, and uniform noise distributions yielded similar PSNR, SSIM,
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and MSE results. However, employing Laplace noise distribution achieved the highest de-

crease in user identification accuracy across all values of λ, achieving a peak reduction of 62%

in user identification accuracy. Additionally, the experiments show that the improvement in

privacy loss mitigation is negligible beyond λ = 100. This implies that the most effective

strategy for mitigating gait privacy leak in MR is to use the LBM approach with

Laplace noise distribution at λ = 100. More details on the performance of the Laplace

noise in LPM are shown in Appendix A.3.
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Table 5.1: The privacy-utility trade-off (PUT) curves of the two mitigation approaches
(KPM and LBM) - without “step length” gait feature - across all perturbation methods.
The privacy loss metric (reduction in user identification accuracy) was compared with three
different utility metrics: (1) PSNR, (2) SSIM, and (3) MSE. Note that the scale for the
privacy loss axis (x-axis) on the KPM figures (first column) only goes up to 10% while for
LBM (second column) it goes up to 70%.
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Chapter 6

GaitGuard System Design

We propose GaitGuard system which provides a systematic approach to mitigate against

gait-based user identification built upon video-based approaches such as GaitExtract. Our

system can be used in collaborative app setup as explained in Section 3. We implemented

GaitGuard on Mixed Reality headset Hololens 2.

6.1 Core Functionality of GaitGuard

Drawing insights from the results of the mitigation experiments. It was concluded that

the LBM approach using the laplacian noise distribution and λ = 100 yielded the best

privacy-utility trade-off. Motivated by this finding, we propose a system that implements

this mitigation to protect gait-based information in MR applications.

GaitGuard employs two key functionalities to implement the mitigation. The first involves

detecting the lower body of individuals within the camera frame, while the second entails

applying an optimal noise configuration.
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To pinpoint the area in the frame where noise will be applied, specifically the lower body,

person detection is imperative. Ideally, a pose estimation algorithm like OpenPose would

intuitively serve this purpose. However, many existing pose estimation libraries have not

been adapted for emerging Mixed Reality (MR) technologies. To circumvent this challenge

in detecting the lower body, we leverage OpenCV’s Histogram of Gradients (HOG) [17]

default people detector along with HOG’s pre-trained SVM classifier.

Initially, GaitGuard identifies users in the frame and returns their locations through rectan-

gular bounding boxes. As the bounding box from OpenCV’s default people detector covers

the entire body, an ad hoc solution is required to extract the lower body bounds. To approx-

imate the lower body, the height of the obtained rectangular bounds is halved, retaining only

the bottom half of the rectangle. Subsequently, GaitGuard applies the optimal mitigation

to the identified area by generating noise of the same size as the lower body bounds across

the three image channels (red, green, blue). A Hanning window, matching the height of the

lower body bounds, is created to smooth the noise application and lessen its impact on frame

clarity. Finally, the windowed noise is applied to the camera frame.

6.2 Challenges for On-Device Implementation

As mentioned in Section 3, the initial point of entry for camera information is the application

itself, suggesting that the gait privacy protection solutions must be implemented at the OS

level. However, OS level implementation is limited because the OS of Hololens 2, the Win-

dows Holographic OS [12], is inaccessible for modification. This is a known limitation of the

Hololens 2 where related work in the literature, such as BystandAR [32] also implemented

their solution as a third-party application because of limited OS level access. Thus, an al-

ternative on-device implementation that could serve as a proof of concept is to implement

GaitGuard as a third-party application. However, running computationally intensive algo-
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Figure 6.1: HoloCollab with GaitGuard Implementation. Raw camera frames are
streamed from User 1’s HoloCollab to the GaitGuard server at a rate of 30 FPS us-
ing the HL2SS Unity plugin. GaitGuard then processes the frames at a rate of 25 FPS and
sends the mitigated frames back to User 1’s HoloCollab. User 1’s HoloCollab receives the
mitigated frames at a rate of 22 FPS.

rithms such as person detection algorithms on a resource-constrained device (Hololens 2) for

every camera frame introduces unacceptable latency, making it impractical. Appendix A.2

shows more details on the on-device implementation. Our insights from implementing Gait-

Guard on the device suggest that it is impractical due to constrained resources. However,

this effectively means that on-device gait leak attacks based on video-based approaches, such

as pose estimation or pedestrian detection, are also impractical. Therefore, with the current

state of Mixed Reality technology, there is no practical way of gathering gait information

using video-based approaches on-device because of the computationally intensive nature of

those algorithms.

6.3 Collaborative MR Design with GaitGuard

To address the challenges presented by the on-device implementation of GaitGuard, we

need to offload the implementation of GaitGuard to a trusted local mobile server. An

overview of this implementation can be seen in Figure 6.1.

The trusted mobile server implements the core functionality of GaitGuard before the frames

are sent to the network manager. The flow of information begins with the Hololens, where
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instead of sending the RGB camera frames to the network manager, it is first sent to the

GaitGuard server so that the frames received by the network manager are mitigated. In

this architecture, the core functionalities of GaitGuard, including person detection, are

offloaded to the trusted server, which diverts the computational load from the Hololens.

This section will elaborate on how we use GaitGuard on a local server to address the

collaborative MR application threat model (explained in Section 3).

6.4 HoloCollab Design & Implementation

We built a collaborative MR application, HoloCollab, to assess the effect of GaitGuard

on the performance of a collaborative application. We built the application prototype in

Unity 2021.3.25f1, using MRTK3, the third generation of Microsoft Mixed Reality Toolkit

for Unity. Additionally, we used the Photon Unity Networking (PUN) 2 version 2.43 package

to integrate multi-user functionality in the application. We used Hololens 2 Sensor Streaming

(HL2SS) [36] plugin to stream camera frames from the Hololens 2 to the GaitGuard local

server. GaitGuard was implemented as a mobile server using Python and was written in

≈ 270 lines of code. The collaborative application was deployed on a Microsoft Hololens

2 device running Windows Holographic for Business Build 22621.1252. An overview of our

HoloCollab prototype implementation can be seen in Figure 6.1.

6.5 HoloCollab Evaluation

The suggested application frame rate for the Hololens 2 is 60 fps to ensure the best quality

in user experiences [7]1. Moreover, it has been reported that the capability of streaming and

recording frames from the RGB camera in Hololens 2 containing virtual objects, referred to

1Application frame rate is a metric that Microsoft uses to qualify the quality of their applications [4].
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as Mixed Reality Capture (MRC), has an average frame rate of 30 fps [6].

To evaluate the performance with GaitGuard on HoloCollab we measured the system’s

application frame rate and camera streaming frame rate corresponding to the application

latency.

The application frame rate of the HoloCollab without streaming is approximately 50 fps.

Consequently, the application frame rate of HoloCollab when streaming camera frames to

a vanilla server designed to ingest the frames simply dropped to 40 fps. We also observed

that the application frame rate of HoloCollab with GaitGuard also resulted in 40 fps.

This suggests that the decrease in application frame rate was caused by the use of HL2SS

plugin and not by GaitGuard. Furthermore, this also implies that the GaitGuard local

server does not affect the application frame rate.

We also report the camera streaming frame rate to identify GaitGuard’s effect on streaming

latency. The average camera streaming fps at which the HL2SS plugin streams the camera

frames is 30 fps, introducing latency of ≈ 0.03 seconds at point number 1 in Figure 6.1.

GaitGuard server then processes the camera frames at 24 fps, introducing latency of ≈ 0.047

seconds at point number 2 in Figure 6.1. GaitGuard server then sends mitigated frames at a

rate of 21 fps introducing latency of ≈ 0.049 seconds at point number 3 in Figure 6.1. Finally,

Hololens users receive these frames at 21 fps. Hence, GaitGuard introduces a latency of

0.016 seconds, which is the latency between point 1 and point 3 before the collaborative MR

application sends the camera frames to the network manager.

6.6 Qualitative Evaluation of GaitGuard

We conduct a user study to delve deeper into perceptions of gait privacy. The user study

was conducted among 20 participants and was split evenly between individuals with and
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without prior experience in VR/MR applications, offering a diverse perspective on privacy

concerns. Respondents were engaged through a two-part survey designed to clarify their

baseline comfort levels regarding gait privacy and the influence of the GaitGuard on their

post-exposure to privacy risk information. In particular, the first part consisted of gauging

their preconceived thoughts on gait privacy in MR, and the second part was designed to

gauge how their perceptions are affected after being informed of the gait privacy risks in MR

and the effectiveness of GaitGuard on perturbing identification through gait.

In the first part of the survey, participants articulated their comfort with sharing video frames

that can leak their gait information, both in unaltered form and with GaitGuard using

Likert Scale [3], with 1 being extremely uncomfortable and 5 being extremely comfortable.

The findings indicated a dichotomy in privacy valuation, with 50% expressing discomfort

with the release of raw video frames of them walking to third-party applications that can

have their raw gait data, while 40% were comfortable. Yet a notable increase in the comfort

level by 65% when the data was passed by GaitGuard. The results of the first half of the

survey suggest about half of the participants were not concerned with sharing videos of them

walking to third-party applications. The results are shown in Figure 6.2.

For the next part of the survey, the participants were informed about specific privacy risks

associated with MR, such as its correlation to sensitive information, such as ethnicity [64],

age [66], gender [62], and neuromusculoskeletal disorders [58]. Informing the participants

about the GaitGuard’s efficacy in obscuring gait data and protecting the identity change

their response. In particular, the participants were then informed that experiments show that

applying noise on the lower body significantly reduces the identification accuracy from 78%

to 16% but with a reduction in the utility by adding a total of 0.016s latency in streaming

the camera frames.

The aggregate results of the second section can be seen in Figure 6.3. Results demonstrate

that after being informed of the gait privacy risks in MR, the overall comfort level decreased
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Figure 6.2: Before being informed about gait privacy concerns in MR and GaitGuard per-
formance. The distribution of Likert responses for the gait privacy perception survey across
unmodified frames (Control Frames) and frames with GaitGuard (Mitigated Frames).

Figure 6.3: After being informed about gait privacy concerns in MR and GaitGuard per-
formance. The distribution of Likert responses for the gait privacy perception survey across
unmodified frames (Control Frames) and frames with GaitGuard (Mitigated Frames).

compared to before they obtained this information. However, it should be noted that 35%

of the respondents were still comfortable with releasing their raw frame. Although there was

a slight decrease in the comfort level with raw data being shared, a substantial majority of

75% reported an increase in comfort level with sharing GaitGuard processed data.

This viewpoint change highlights the importance of obtaining informed consent and raising

awareness about privacy safeguards. It further implies that although GaitGuard success-

fully reduces the risk of identification, the balance between privacy and utility remains a

pivotal concern for users.
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Chapter 7

Discussion

This paper shed insights into understanding gait privacy concerns and the effectiveness

of anonymization methods such as GaitGuard in MR technology. Future efforts should

focus not merely on advancing technology but also on promoting privacy consciousness and

adopting a user-centric approach to developing new digital spaces. This is essential for

ensuring that technological innovations are effective and aligned with user needs and privacy

expectations in evolving digital landscapes. We discuss in this section some of the limitations

of the current work and the possible extensions for future work.

Scope. GaitExtract is designed to extract gait information from users and to showcase

that this extracted information can uniquely identify people. GaitExtract has a limitation

where if the user does not complete a gait cycle (two heel-strikes or two toe-offs) [50] in a

walking sequence then GaitExtract is unable to extract any gait information. However, as

mentioned in Section 4.1, the range of the walking sequences gathered in this study was be-

tween 2.5m to 2.75m, which was also a short walking sequence distance and results show that

even with a short walking sequence distance there was still a gait privacy leak, underscoring

the importance of developing and implementing tools that protect gait information.
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Threat Model The focus of this work was to investigate and mitigate the vulnerabilities

towards neighbor gait privacy in MR applications using camera based attacks as mentioned in

Section 3.5. It should be noted that there has been work in egocentric pose estimation where

the body pose estimation of a headset user can be approximated by mounting a camera to the

headset [60]. However, unlike GaitExtract where Stenum, et. al. [59] has proven that gait

feature extraction using side profile walking videos has good measurements in comparison to

clinical gait measurements through motion capture systems, it is still unclear if egocentric

pose estimation is an accurate method of measuring gait features. Additionally, commercially

available MR headsets currently do not have this feature of having installed cameras that are

pointed towards the user’s body. While this is the case, egocentric pose estimation displays

potential in gait feature extraction and underscores the need to address gait privacy concerns

as MR technology improves.

On device and OS-level implementation. As discussed in section 6.2, it is currently

impractical to gather gait information at the application level due to the computational

constraints of current MR technology. However, it should be noted that once MR technology

has matured enough to allow pose estimation algorithms to run in real-time and on the device,

GaitExtract is theoretically fully capable of gathering outside gait information. Bearing

this in mind, it is imperative for the MR device developers to implement GaitGuard at the

OS level to protect users’ gait information.

Qualitative measures and human perceptions of privacy. For future studies, it is

crucial to broaden the scope of investigation to a larger and more diverse group. Delving

into the psychological and social foundations of privacy perceptions within MR environments

promises to uncover more profound insights into user behaviors and preferences. Further-

more, conducting comparative analyses of different anonymization techniques will enrich our

understanding of the effectiveness and user acceptance of privacy-preserving technologies in

MR.
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Gait privacy aware pose estimation algorithms. GaitExtract uses OpenPose to

approximate the location of the midhip, left ankle, and right ankle keypoints to obtain

the gait features. An intuitive solution for privacy protection is to apply the noise on

the keypoints generated by OpenPose and propose a gait privacy aware pose estimation

algorithm. However, as mentioned in Section 3 the threat to gait privacy is eminent as long

as the attacker has access to the camera frames because an attacker has accesss to OpenPose

and other pose estimation algorithms that are privacy unaware. An expert attacker could

even opt to train and develop it’s own pose estimation algorithm to extract gait information.

This highlights that the protection for gait privacy must be applied at the video level.
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Chapter 8

Conclusion

In this paper, we identified the fundamental need to explore the state of gait privacy in MR

applications by developing an automated gait extraction framework called GaitExtract and

revealing that an attacker can maliciously collect gait information using minimal resources.

Furthermore, motivated by this privacy leak we developed GaitGuard a safeguard against

the leak of gait information and demonstrated that we reduced the privacy leak by as much

as 62% while only introducing a latency of 8 fps in the streaming of frames. Lastly, the

implementation GaitGuard as a mobile server of a collaborative application showed that

GaitGuard did not affect the application frame rate of the MR device and only introduced 8

FPS latency in streaming video frames. We believe that this work expands the understanding

of gait privacy in MR applications and that our contribution is a step towards ensuring gait

security and privacy of MR application of the future.
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Appendix A

A.1 Gait Features

Figure A.1 shows a visual representation of the different gait features, including step time,

stance time, swing time, and double support time, that form the gait cycle [49, 50].

A.2 On-Device Implementation of GaitGuard

Proposed System Implementation The first core functionality of GaitGuard, which

is identifying the lower body area in the frame, suggests that there is a need for a real-time

and on-device solution to detect the lower body of a person. As discussed in section 6.1,

the proposed implementation of this functionality is to use OpenCV’s HOG default person

detector and SVM classifier. To implement OpenCV on the HoloLens, we exploited OpenCV

library that Microsoft provides as part of their HoloLens2ForCV project [14]. The third-

party application containing the core functionality of GaitGuard was completed in C++.

An overview of this on-device implementation can be seen in Figure A.2.
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Figure A.1: Different gait features that form the gait cycle referenced with reference to the
right leg [49].

Evaluation The suggested application frame rate1 for the Hololens 2 is 60 fps to ensure

the best quality in user experiences [7]. Moreover, it has been reported that the capability

of streaming and recording frames from the RGB camera in Hololens 2 containing virtual

objects, referred to as Mixed Reality Capture (MRC), has an average frame rate of 30 fps [6].

To assess the ability to deploy GaitGuard on Hololens 2, we compare its effect on the

recommended frame rate values, which are 60 fps for the application frame rate and 30 fps

1Application frame rate is a metric that Microsoft uses to qualify the quality of their applications [4].
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Figure A.2: On device implementation of GaitGuard. Raw camera frames are captured
from the device’s camera. OpenCV is used for person detection on the captured frame.
Afterwards, noise is applied to the lower half of the detected person, and this noisy frame is
released to the network manager.

for the streaming frame rate.

The application frame rate of the on-device implementation of GaitGuard is 60 fps. How-

ever, to achieve this recommended 60 fps, the rate at which the perturbation was applied

to the RGB camera frame had to be 0.2 fps. This means the on-device implementation of

GaitGuard could only apply mitigation to one frame every 5 seconds. The application

frame rate was unaffected because the GaitGuard loop was allocated to run on a back-

ground thread, not interfering with the application’s performance. This implementation was

motivated by the need for the application fps to be 60 to meet Microsoft’s best performance

standard. However, the rate at which GaitGuard applies noise is completely unacceptable

because multiple steps could have already been completed within these 5 seconds, leaving

users vulnerable to attacks. This high latency is because person detection algorithms are

computationally intensive and do not perform well on a resource-constrained device such as

the HoloLens 2.

Insights The implementation of GaitGuard on-device showed impractical due to con-

strained resources. However, this effectively means that on-device gait leak attacks based on
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video-based approaches, such as pose estimation or pedestrian detection, are also imprac-

tical. Therefore, with the current state of Mixed Reality technology, there is no practical

way of gathering gait information using video-based approaches on-device because of the

computationally intensive nature of those algorithms.

A.3 Privacy and utility metrics across various pertur-

bations

Table A.1 shows the privacy and utility metrics across all mitigation approaches and pertur-

bations. The left column presents the values for the KPM approach, while the right column

presents the values for the LBM approach.

Targeted Keypoint Mitigation (KPM) The KPM approach results show no relation-

ship between λ and the JSD and a reduction in classification accuracy.

Lower Body Mitigation (LBM) The results of using LBM approach can be seen in

the second column of Table A.1. There is a positive correlation between λ and the average

JSD values for all the noise distributions. Overall, the LBM approach with Laplace noise

distribution had the most significant reduction in classification accuracy for all λ with a

maximum reduction of 62% in classification accuracy. Additionally, the experiments show

that the improvement in privacy mitigation after λ = 150 is minimal.
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Table A.1: Privacy-Utility metrics of each Perturbation and Granularity for the Gait Features
without Step Length.

Keypoints-based mitigation approach (KPM) Lower body-based mitigation approach (LBM)

U
n
if
o
r
m

N
o
is
e
:

N
(−

λ
,λ

)
N
o
r
m

a
l
N
o
is
e
:

N
(0
,λ

)
L
a
p
la
c
e
N
o
is
e
:

L
(0
,λ

)
E
x
p
o
n
e
n
ti
a
l
N
o
is
e
:

E(
λ
)

B
lu

r
r
in

g
D
P

P
ix
e
li
z
a
ti
o
n

54


	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	ABSTRACT OF THE Thesis
	Introduction
	Related Work and Background
	Privacy Problems in Mixed Reality
	Gait: a Unique Personal Signature
	Gait Types in Mixed Reality
	Personal Gait
	Neighbor Gait
	Pose Estimation for Gait Detection

	Paper Contributions

	Threat Model
	Collaborative applications in MR
	Same Physical Space Collaboration (PSC)
	Remote Space Collaboration (RSC)
	Single User Experience (SUE) 
	Common Threat Across Modes

	Gait Extraction Framework
	User Study and Data Collection
	Gait Feature Extraction
	GaitExtract: Gait Feature Extraction
	Identification via gait features

	Mitigation Framework
	Mitigation Approaches
	Perturbation Methods
	Mitigation Evaluation Metrics
	Privacy-Utility Tradeoff

	GaitGuard System Design
	Core Functionality of GaitGuard
	Challenges for On-Device Implementation
	Collaborative MR Design with GaitGuard
	HoloCollab Design & Implementation
	HoloCollab Evaluation
	Qualitative Evaluation of GaitGuard

	Discussion
	Conclusion
	Bibliography
	Appendix 
	Gait Features
	On-Device Implementation of GaitGuard
	Privacy and utility metrics across various perturbations




