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v

 One of the most important challenges in molecular biology is to fi gure out how the 
 one- dimensional (1D) sequence of amino acid residues in a protein at a physiological con-
dition specifi es its unique, functional three-dimensional (3D) structure. Despite more than 
50 years of effort, reliable computational protein models with experimental resolution 
remain out of reach, except for homology models that are based on the structures of highly 
similar sequences. To overcome the challenge of prediction from 1D to 3D, many 1D to 
1D methods have been developed as an intermediate step or a substitute for 1D to 3D 
prediction. These 1D quantities can be either structural or functional properties character-
ized by a one-dimensional vector along the protein sequence. One prominent example is 
protein secondary structure where protein backbone structure is annotated by a few states 
such as helices, sheets, or coils. Protein backbone structure can also be characterized by 
torsion angles. In addition to backbone structural properties, protein structures can be 
characterized by global structural properties: Properties that depend on interactions 
between multiple residues that are far apart in the sequence. One such example is the sol-
vent accessible surface area, relevant to tertiary packing and function of proteins. More 
recently, predicting one-dimensional functional properties (functional sites in particular) 
from protein sequences has received increasing attention. 

 This book starts from secondary structure prediction based on sequence only (GOR, 
Chapters   1     and   2     and single helix prediction, Chapter   3    ), followed by secondary structure 
prediction based on evolution information (CDM, Chapter   4    , SPINE-X, Chapter   5    , and 
SPIDER2, Chapter   6    ). In addition to secondary structure, SPINE-X and SPIDER2 also 
predict solvent accessible surface areas and backbone torsion angles. The latter is reviewed 
in Chapter   7    . Predicted secondary structures are utilized in model building (Chapters   8     and 
  9    ). Next, a few chapters focus on global structural properties (solvent accessibility in 
Chapter   10    ; intrinsically disordered regions in Chapters   11     and   12    ; and protein fl exibility 
in Chapter   13    ). Functional properties are predicted in Chapter   14     (DNA/RNA-binding 
sites), Chapter   15     (RNA-binding residues), Chapter   16     (protein-binding sites), Chapter   17     
(B-cell epitopes), Chapter   18     (phosphorylation sites), and Chapter   19     (post-translation 
modifi cations). Chapter   20     describes a tool for visualizing interior and protruding regions 
in proteins. These chapters represent a fraction of the excellent methods available in the 
literature. We hope that this collection will provide a guide to a few current state-of-the-art 
techniques that are useful for computational and experimental biologists.  

  Southport, QLD, Australia     Yaoqi     Zhou      
Columbus, OH, USA     Andrzej     Kloczkowski      
Indianapolis, IN, USA    Eshel     Faraggi      
Southport, QLD, Australia    Yuedong     Yang     
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    Chapter 1   

 Where the Name “GOR” Originates: A Story                     

     Jean     Garnier      

  Abstract 

   The GOR is a computer program to predict secondary structures in proteins when the amino acid sequence 
is known using the theory of information. The program GOR was named much later after publication in 
1978 at the dawn of bioinformatics. The program is still distributed. Its development is an example of 
interplay between scientifi c friendships, pleasure of doing research, opportunities, new technologies, and 
lack of the intervention of any grant agencies.  

  Key words     Information theory  ,   GOR  ,   Secondary structure prediction  ,   Protein structure prediction  

   Among the four algorithms for protein secondary structure predic-
tions originated in my laboratory through the years (GOR [ 1 ], 
SIMPA [ 2 ], COMBINE [ 3 ], and PREDANG [ 4 ]) one of them, 
GOR, received much attention due possibly to some circumstances 
that I think are worth examining in this series. 

 All started by meeting Roger Pain, Professor of Biochemistry 
at the University of Newcastle Upon Tyne, UK. At that time, in 
the sixties early seventies, my main research interest was to study 
the milk clotting by rennin (chymosin) in cheese making which 
turns out to result from the proteolysis of one single peptide bond 
in one of the three main components of the caseins. I was in par-
ticular investigating the secondary structures of the caseins mainly 
by optical rotatory dispersion and circular dichroism (CD) experi-
ments, there were no X-ray data available at this time and not yet 
when writing this chapter. Roger, accustomed to visit France, came 
to my lab for enquiring on a recent apparatus of circular dichroism, 
developed by a French company, Jouan. Since then we kept a 
friendly relationship together. 

 Later, having attended a British Biophysical Society meeting 
in London, I heard a presentation by a young student, Barry 
Robson, about the use of the information theory to analyze the 
conformational properties of amino acids in proteins and it turned 
out that he was working in Roger’s lab, in Newcastle. His talk 

taner@iastate.edu
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attracted my interest having already experienced the recent Chou 
and Fasman [ 5 ] method. 

 In 1970 my INRA lab had moved a few miles away from Jouy 
en Josas to Orsay on the University of Paris-Sud campus (France). 
This coincided with a new project, the study of the pituitary glyco-
protein hormones for the INRA Department of Animal 
Reproduction. These hormones have a common subunit, alpha, 
associated by non-covalent bonds to a different beta subunit 
according to their biological properties: TSH, FSH or LH and 
hCG. In order to get some information about these proteins I 
decided to apply the Chou and Fasman method to detect the 
regions of alpha helices and beta strands and compare with the 
information we could derive from the CD analysis, mostly when 
these chains undergo a conformational change. The experimental 
study could have been undertaken thanks to a generous gift of 
10 mg of hCG from Robert Canfi eld of Columbia University, 
New York, it was a huge quantity for this kind of hormone! I pro-
posed to one of my PhD student to predict the alpha chain and I 
will do the beta chains (90–120 amino acids each). Who made the 
mistake? I don’t know but it turned out that both of us dealt with 
the same alpha chain and we did not get the same result of predic-
tion. We checked who did wrong and concluded at the end that it 
was not one of us, but the un-complete description of the method: 
I started systematically the Chou and Fasman algorithm from the 
N terminal end of the peptide and the student at random in the 
sequence. No way in reading the article to fi nd out how to do it 
one way or another. It was another example, unfortunately too 
frequent, when not enough information is given in the publication 
to reproduce the published results. Probably at that time I started 
to get the idea that only a method based on a distributed computer 
program will resolve this kind of ambiguity. Even later, at the occa-
sion of meeting Chou at a CECAM workshop in Orsay in 1979 or 
by visiting Gerry Fasman in Boston, I could not clarify this point! 

 A short while after, Roger invited me to come to Newcastle as 
a visiting professor for 1 month, I accepted readily more so I was 
planning to talk to Barry about his recent development of the 
information theory he spoke about in London. This was fi nalized 
in March 1975. However when I arrived in Roger’s lab, Barry had 
left to Manchester University for an associate professorship. Seeing 
my disappointment Roger proposed me to split my stay in two 
parts, half time in Newcastle, half time in Manchester. What a gen-
erous and a fair colleague, he has his share in the success of the 
GOR! During my stay with Barry in Manchester I became con-
vinced that the information theory is well suited to handle the 
problem of secondary structure prediction, well scientifi cally 
founded and amenable to a computer program better than the 
manual and lengthy methods of Chou and Fasman or Lim [ 6 ], the 
two prediction methods available at that time. I proposed to Barry 
to write a computer program with the information values he already 
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have computed in Roger’s lab [ 7 ,  8 ] however for that project he 
needed some kind of a sabbatical leave, I proposed him to get one 
in my lab in Orsay. Then fi nally I got the position from the univer-
sity for 3 months and Barry came in my lab the last quarter of year 
1976. Right upon his arrival we enlisted to the Orsay computing 
center, UNIVAC, a part of the Linear Accelerator Lab on the cam-
pus. Barry was the only programmer: I had no knowledge of 
Fortran programming, however after these 3 months I could man-
age to read any Fortran programs (version 7)! We worked together 
day and night at the computing center, mostly at night, the com-
pilations were faster, it was an exiting period for both of us and a 
lot of fun for me. I could take Fortran lessons, I learned a lot about 
computers, compilations, how to check the robustness of a com-
puter program and so on. We benefi ted of the help of talented 
particle physics engineers to look for bugs in our listings; at that 
time there were no screen editors and we were using punched 
cards, I have still a bunch of them in my offi ce for the GOR pro-
gram. The computing center was working on a self service basis, 
however my lab not being a CNRS lab, the computing time was 
not free for me, I did not take too much attention to it except 
months later I received the bill: half of my year lab budget! 

 Then we wrote the article describing the method. Before 
submitting the manuscript to J Mol Biol, Barry insisted that I 
sign fi rst among the three authors, arguing that at that time that 
I had been so much involved in the algorithm and the writing 
that I deserved that position, and so I accepted without anticipat-
ing what will follow. 

 For several years this method, although published in a well- 
read journal, did not get any attention compare with what will 
happen later: the present number of citations is still 4331, 
(October 10, 2015, Google Scholar). Why this lag phase? Likely 
because in the late seventies and early eighties, biologists, bio-
chemists were not using computers, the spread of using PCs will 
come later, or they were not having easy access to a computing 
center to run the program even if it was made available under 
request and that we published later a version in BASIC language 
[ 9 ]. In fact the GOR program was one of the very fi rst tool of 
informatics for biologists, a fi eld that will be called later “bioin-
formatics.” Our predecessor in this fi eld that I can see is Margaret 
O. Dayhoff who was editing since 1965 the “Atlas of Protein 
sequence and structure” made of a compilation on a computer of 
known amino acid sequences and periodically distributed to biol-
ogists or biochemists as a printed book. 

 The event that broke this silence was the sale in the late eight-
ies, and still recently, of a package made of a series of computer 
programs by the Wisconsin University, the GCG package. It con-
tained the GOR program listed under the name of Garnier’s 
method, or “Garnier output fi le,” although the complete reference 
was given somewhere in the description. Notice that I was never 
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    1.    Garnier J, Osguthorpe DJ, Robson B (1978) 
Analysis of the accuracy and implications of 
simple methods for predicting the secondary 
structure of globular proteins. J Mol Biol 
120:97–120  

    2.    Levin JM, Robson B, Garnier J (1986) An 
algorithm for secondary structure determina-
tion in proteins based on sequence similarity. 
FEBS Lett 205:303–308  

    3.    Biou V, Gibrat JF, Levin JM, Robson B, 
Garnier J (1988) Secondary structure predic-
tion: combination of three different methods. 
Protein Eng 2(3):185–191  

    4.    Gibrat JF, Robson B, Garnier J (1991) 
Infl uence of the local amino acid sequence 
upon the zones of the torsional angles phi and 

psi adopted by residues in proteins. 
Biochemistry 30:1578–1586  

    5.    Chou PY, Fasman GD (1974) Prediction of 
protein conformation. Biochemistry 
13:222–245  

    6.    Lim VI (1974) Algorithm for prediction of 
alph-helical and beta-structural regions in 
globular proteins. J Mol Biol 88:873–894  

    7.    Robson B, Pain RH (1971) Analysis of the 
code relating sequence to conformation in pro-
teins: possible implication for the mechanism 
of formation of helical regions. J Mol Biol 
58:237–259  

    8.    Robson B, Suzuki E (1976) Conformational 
properties of amino acid residues in globular 
proteins. J Mol Biol 107:327–356  

asked by the Wisconsin team to provide them with the computer 
program. I suppose the authors of that package considered having 
indeed enough information from our J Mol Biol article, algorithm 
and information values, to write a computer program themselves 
without a request. I confess that I never checked if this program 
was giving the same results than the one we wrote in Orsay. 
However thanks to the wide diffusion of this package, the method 
became popular among the biologists but also the name of Garnier 
at the expense of the other two authors. Barry was seriously 
annoyed by that I think. It was rather unfair of not counting the 
contribution of the two others, Barry Robson and David 
Osguthorpe. Since then I appreciate the journals that request the 
authors to describe their own part in the published work. David, a 
Barry’s student, computed and verifi ed all the information values 
that we used in Orsay. To repair this injustice, we decided Barry 
and I to call the method “GOR” from the initials of the name of 
the three authors in the order of the signatures, and as we had 
already developed other versions, the one published in 1978 was 
taken as GOR I and the subsequent versions GOR II to GOR V at 
present. Barry on the other hand found that the word GOR close 
to “gore” has some strength in it. 

 Another remark, the last version of the Wisconsin package ver-
sion 10.3 distributed in 2005 was still including the GOR I, 27 
years after its publication, although the version V, more accurate, 
was already published [ 10 – 12 ]. Another package Emboss [ 13 ] is 
also distributing in our days the GOR I but it includes a warning 
that other methods give more accurate predictions however they 
keep GOR I because it is “simple to calculate on most worksta-
tions.” I have always recommended students to not use computer 
programs as a black box but to acquire enough knowledge about 
them to ascertain that they are suited to their research problems.    
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Chapter 2

The GOR Method of Protein Secondary Structure  
Prediction and Its Application as a Protein Aggregation 
Prediction Tool

Maksim Kouza, Eshel Faraggi, Andrzej Kolinski, 
and Andrzej Kloczkowski

Abstract

The GOR method of protein secondary structure prediction is described. The original method was 
published by Garnier, Osguthorpe, and Robson in 1978 and was one of the first successful methods to 
predict protein secondary structure from amino acid sequence. The method is based on information 
theory, and an assumption that information function of a protein chain can be approximated by a sum 
of information from single residues and pairs of residues. The analysis of frequencies of occurrence of 
secondary structure for singlets and doublets of residues in a protein database enables prediction of 
secondary structure for new amino acid sequences. Because of these simple physical assumptions the 
GOR method has a conceptual advantage over other later developed methods such as PHD, PSIPRED, 
and others that are based on Machine Learning methods (like Neural Networks), give slightly better 
predictions, but have a “black box” nature. The GOR method has been continuously improved and 
modified for 30 years with the last GOR V version published in 2002, and the GOR V server developed 
in 2005. We discuss here the original GOR method and the GOR V program and the web server. 
Additionally we discuss new highly interesting and important applications of the GOR method to cha-
meleon sequences in protein folding simulations, and for prediction of protein aggregation propensities. 
Our preliminary studies show that the GOR method is a promising and efficient alternative to other 
protein aggregation predicting tools. This shows that the GOR method despite being almost 40 years 
old is still important and has significant potential in application to new scientific problems.

Key words Secondary structure prediction, GOR, Information theory, Protein aggregation

1  Introduction

The prediction of protein structure from amino acid sequence is one 
of the most important problems in molecular biology. With large-
scale genome sequencing of various organisms and individuals for 
personalized (precision) medicine that produces an enormous 
amount of amino acid sequence data, the problem became even more 
important. Although prediction of tertiary structure is one of the 
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ultimate goals of protein science, the prediction of secondary struc-
ture from sequence is still a more feasible intermediate step in this 
direction. Furthermore, some knowledge of secondary structure can 
serve as an input for prediction. Instead of predicting the full three-
dimensional structure, it is much easier to predict simplified aspects 
of structure, namely the key structural elements of the protein and 
the location of these elements not in the three-dimensional space but 
along the protein amino acid sequence. This reduces the complex 
three-dimensional problem to a much simpler one-dimensional 
problem. The fundamental elements of the secondary structure of 
proteins are alpha-helices, beta-sheets, coils, and turns. In 1983, 
Kabsch and Sander developed the classification of elements of sec-
ondary structure based mainly on hydrogen bonds between the 
backbone carbonyl and NH groups [1]. Their dictionary of second-
ary structure assignment Database of Secondary Structure in Proteins 
(DSSP) is widely used in protein science, although there are other 
alternative assignment methods, such as STRIDE [2]. According to 
the DSSP classification, there are eight elements of secondary struc-
ture assignment denoted by letters: H (alpha-helix), E (extended 
beta-strand), G (310 helix), I (π-helix), B (bridge, a single residue 
beta-strand), T (beta-turn), S (bend), and C (coil). The eight-letter 
DSSP alphabet requires translation into the three-letter code. For 
instance, for the CASP (Critical Assessment of Structure Prediction) 
experiments, helices (H, G, and I) in the DSSP code are assigned the 
letter H in the three-letter secondary structure code, whereas strands 
(E) and bridges (B) in the DSSP code are translated into sheets (E) 
in the three-letter code. Other elements of the DSSP structure (T, S, 
C) are treated as coil (C). There are, however, other alternative ways 
to make these assignments.

The GOR program is one of the first major methods proposed for 
protein secondary structure prediction from sequence. The origi-
nal article (GOR I) was published by Garnier, Osguthorpe, and 
Robson in 1978, with the first letters of the authors’ names form-
ing the name of the method [3]. The method has been continu-
ously improved and modified during the next 30 years. The first 
version (GOR I) used a small database of 26 proteins with about 
4500 residues. The next version (GOR II) [4] used the enlarged 
database of 75 proteins containing 12,757 residues. Both ver-
sions predicted four conformations (H, E, C, and turns T) and 
were using singlet frequency. Starting with GOR III [5] the 
number of predicted conformations was reduced to three (H, E, 
and C). The GOR III method started to additionally use infor-
mation about the frequencies of pairs (doublets) of residues 
within the window, based on the same database as the earlier ver-
sion. The next version was named GOR IV [6] and it used 267 
protein chains containing 63,566 residues and is still available as 
a web server at https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.

1.1  The Original 
GOR Method

Maksim Kouza et al.
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pl?page=npsa_gor4.html. The latest version GOR V is using sev-
eral improvements, including multiple sequence alignments and 
discussed in the next section [7].

Because of its simple assumptions, the GOR method has con-
ceptual advantage over other later developed methods such as 
PHD [8], PSIPRED [5], SPINE-X [9], and others. While these 
secondary structure prediction tools rely on machine learning and 
typically are black boxes in terms of the principles leading to their 
predictions, as we briefly review below, the GOR method’s 
reasoning for arriving at a particular prediction is clearly evident to 
the user. In some cases this clarity may be more significant than the 
slight loss in accuracy of the GOR algorithm.

The GOR algorithm is based on information theory combined 
with Bayesian statistics. One of the basic mathematical tools of 
information theory is the information function I(S,R):

	 I S R P S R P S;( ) = ( ) ( ) log | / 	
(1)

For the problem of protein secondary structure prediction, the 
information function is defined as the logarithm of the ratio of the 
conditional probability P(S|R) of observing conformation S, 
[where S is one of the three states: helix (H), extended (E), or coil 
(C)] for residue R (where R is one of the 20 possible amino acids) 
and the probability P(S) of the occurrence of conformation S. The 
information function I(S;R) is computed from a database of pro-
teins used in the program (267 proteins for GOR IV).

The conformational state of a given residue in the sequence 
depends not only on the type of the amino acid R but also on the 
neighboring residues along the chain within the sliding window. 
GOR IV used a window of 17 residues, that is, for a given residue, 
eight nearest neighboring residues on each side were analyzed.

According to information theory, the information function of 
a complex event can be decomposed into the sum of information 
of simpler events, generally:

	
I S R R R I S R I S R R I S R R Rn n nD D D D; , , ., ; ) ; | , ( ; | ,..,1 2 1 2 1 1¼( ) = + ( ) +¼+ -11( ) 	

(2)

where the information difference is defined as:

	 I S R R R I S R R R I n S R R Rn n ND ; , , ., ; , , ., ; , , .,1 2 1 2 1 2¼( ) = ¼( ) - - ¼( ) 	 (3)

Here, n S−  denotes all conformations different than S. The GOR 
IV method assumed also that the information function is a sum of 
information from single residues (singlets) and pairs of residues 
(doublets) within the window of width 2d +1 (i.e., d = 8, for the 
window of 17 residues):

The GOR Method of Protein Secondary Structure Prediction and Its Application…
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Here the first summation is over singlets and the second summa-
tion is over doublets within the window centered around the j-th 
residue. The pair frequencies of residues Rj and Rj+m with Rj 
occurring in conformations Sj and n-Sj are calculated from the 
database. All 267 proteins in the GOR IV database have well-
determined structures (with crystallographic resolution at least 
2.5 Å). Using the frequencies calculated from the databases, the 
program could predict probabilities of conformational states for a 
new sequence. The accuracy of the prediction with the GOR IV 
program based on single sequences (without multiple alignments) 
tested on the database of 267 sequences with the rigorous jack-
knife methodology was 64.4 %.

The advantage of the GOR method over other methods is that 
it clearly identifies all factors that are included in the analysis and 
calculates probabilities of all three conformational states. Because 
the GOR IV algorithm is computationally fast, it is possible to 
perform the full jack-knife procedure: each time when the predic-
tion for the given sequence (of 267 sequences) is done, the 
sequence is removed from the database and the spectrum of fre-
quencies used for the prediction is recalculated without including 
the information about the query sequence.

Several changes to the GOR IV program to improve the accuracy of 
the secondary structure prediction were made in GOR V. The GOR 
V version of the program is available from http://gor.bb.iastate.edu/

Modifications and improvements incorporated into the GOR 
V version are listed below:

	 1.	Enlarged database of sequences with known secondary struc-
ture was used. The GOR IV database of 267 sequences was 
replaced by a new database of 513 nonredundant domains con-
taining 84,107 residues proposed by Cuff and Barton [10, 11].

	 2.	Some parameters in the GOR algorithm were optimized to 
increase the accuracy of the prediction. The most important 
modification was the introduction of the decision constants in 
the final prediction of the conformational state. The GOR IV 
program had a tendency to overpredict the coil state (C) at the 
cost of the helical conformation (H), and to an even greatest 
extent at the cost of beta-strands (E). Decision parameters 
were therefore introduced to improve predictions.

1.2  The GOR 
V Method
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The predicted probability of the coil (C) conformation must 
be greater by some critical margins than probability of either 
the (H) or (E) states to accept C as the winning conformation. 
The margin for the beta-strands is greater than for helices. The 
introduction of the decision constants significantly improves 
the predicted results by about 1.6 %.

	 3.	The GOR algorithm was modified to include the triplet statis-
tics within the window. The previous versions of the program 
used only single residue statistics (GOR I–II) or the combina-
tion of the single residue and pair residue statistics within the 
window (GOR III–IV). Now the GOR algorithm calculates 
statistics of singlets, pairs, and triplets for the secondary struc-
ture prediction. The addition of the triplets improved the 
accuracy of the prediction by only 0.3 %.

	 4.	A resizable window was applied in the GOR program. The 
previous version of the program (GOR IV) was using the win-
dow having a fixed width of 17 residues, that is, with eight resi-
dues on both sides of the central one. The accuracy of the 
prediction is slightly better for the smaller window of the width 
of 13 residues. The Cuff and Barton database on nonredun-
dant sequences of protein domains includes a significant num-
ber of short sequences, with many of them as short as 20–30 
residues. The prediction of the secondary structure for such 
short sequences is very inaccurate, because of the artificial end 
effect of the window. Residues at the beginning or at the end 
of the sequence have neighbors only on one side of the win-
dow. To overcome this problem smaller windows are used for 
the prediction of the secondary structure of short sequences. 
For sequences up to 25 residues, the window size is seven resi-
dues; for sequences from 26 to 50 residues, the window size is 
nine residues; for sequences 51–100 residues, the window is 
11 residues; and for all sequences longer than 100 residues, the 
window size is 13. The introduction of the resizable window 
allows to include all 513 nonredundant sequences in the pre-
diction procedure.

	 5.	Multiple sequence alignments were used for the secondary 
structure prediction. Multiple sequence alignments from the 
PSI-BLAST [12] program for each of the 513 nonredundant 
sequences from the database were used. The nr database which 
contains all known databases: all nonredundant GeneBank 
CDS translations + PDB + SwissProt + PIR + PRF was used, 
with the maximum number of five iterations in the BLAST 
computations. The number of alignments varied considerably 
depending on the sequence. For some sequences, the BLAST 
program produced more than 2000 alignments, whereas for 
some other sequences, only a few alignments. A small improve-
ment in the prediction is obtained by removing the alignments 

The GOR Method of Protein Secondary Structure Prediction and Its Application…
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that are too similar to the query sequence. The best results are 
obtained by skipping all alignments that have identity greater 
than 97 % to the query sequence. Besides the identity threshold, 
various methods of weighting of the alignments in the calcula-
tion of the accuracy of the prediction were used. The method-
ological procedure was based on the calculation of the matrices 
of the probabilities of various (H, E, and C) secondary struc-
ture elements PH(i, j), PE(i, j), and PC(i, j) for each j-th residue 
in the i-th alignment (with the inclusion of alignment gaps). 
The averages over alignments <PH(j)), <PE(j)), and <PC(j)) at 
the j-th position in the alignment were computed and used for 
the prediction of the secondary structure conformation for the 
j-th residue. The simplest method is to use the largest probabil-
ity value max {<PH(j)>, <PE(j)>, <PC(j)>}. We have modified 
this assignment procedure by introducing decision constants. 
The coil state is assigned only if the calculated probability of the 
coil conformation is greater than the probability of the other 
states (H, E) plus the imposed thresholds (0.15 for E and 0.075 
for H). The value of the threshold for the beta-sheets is larger 
than for alpha-helices, because strands were more often errone-
ously predicted as coils.

All calculations for the translation of the eight-state DSSP assign-
ments into the three secondary structure states H, E, and C are the 
same as these used by Frishman and Argos. This means that DSSP 
states H and E were translated to H and E in a three-state code, and 
all other letters of the DSSP code were translated to coil (C). 
Additionally, similar to Frishman and Argos [13], we treated helices 
shorter than five residues (HHHH or less) and sheets shorter than 
three residues (EE or E) like coils, assuming that they are most likely 
prediction errors. The Frishman and Argos assignment scheme is 
therefore highly compatible with the GOR program performance.

We have created the GOR V web server for protein secondary 
structure prediction [14]. The GOR V algorithm combines infor-
mation theory, Bayesian statistics, and evolutionary information. 
In its fifth version, the GOR method reached (with the full jack-
knife procedure) an accuracy of prediction Q3 of 73.5 %.

The GOR V server is based on the database of Cuff and Barton 
[11] of 513 sequentially nonredundant domains, which contains 
84,107 residues. To ensure that such a set was representative of 
available proteins, nonredundancy was defined with stringent tests. 
The address of the GOR V web server is http://gor.bb.iastate.edu.

The GORV server works in the following manner. When the 
user provides the input sequence, the GORV server that was 
trained on 513 proteins calculates the helix, sheet, and coil proba-
bilities at each residue position and makes an initial prediction 
based on the structural states having highest probabilities. After 
this initial prediction, heuristic rules are applied. These rules 

1.3  GOR V 
Web Server
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include converting helices shorter than five residues and sheets 
shorter than two residues to coil and using decision parameters.

The required input data includes (Fig. 1):

●● Sequence name (optional). Name of the sequence or protein 
will appear in the Result page.

●● User’s e-mail address. An e-mail address to send the predicted 
information and notify of job completion.

●● Protein sequence. The server accepts 20 single letter codes for 
standard amino acids, maximum 1000 amino acids in length.

For A domain of protein G (GA), the example protein shown in 
Fig. 1, the sequence can be accessed from the Protein Data Bank data-
base (http://www.rcsb.org) or Uniprot database (http://www.uni-
prot.org/). The sequence of GA protein is deposited in PDB and 
Uniprot databases under identifiers 2FS1 and Q51918, respectively.

As an output, the user receives the secondary structure prediction 
for the input sequence and the probabilities for each secondary 
state element at each position. The prediction results are shown in 
the web browser, which should stay open during the run, and are 
also sent to the e-mail address previously provided by the user. Any 
run-time error message will appear in the web browser, and if any 
problem arises, the user can contact the system administrator via 
the e-mail provided on the web page.

GOR V web server output data is shown in Fig. 2. The server 
provides the following: at the top of the output page a user 
might get either messages that the submission has been carried 
out successfully (“The e-mail address is accepted. The sequence 
is accepted. BLAST run is completed. GOR run is completed.”) 
or error messages. If no submission errors have occurred, the 
secondary structure prediction is provided in a three-letter code: 
E-beta structure, H-helix, C-coil or loop. For the GA protein 
amino acid sequence, MEAV DANSLA10QAKEA AIKEL20KQYG 
IGDYYI30KLIN NAKTVE40GVESL KNEIL50KALPTE, we 
have obtained the following secondary structure predic-
tion: CCCCHH HHHH10HHHHHH HHHH20HCCCCC 
CHHH30HHCCCCHHHH40HHHHHHHHHC50CCCCCC. 
Thus, GOR V web server predicted 3 alpha-helices, H1 [1, 5–18], 
H2 [25–29], and H3 [34–46] for GA protein which is in excellent 
agreement with the results of the DSSP algorithm [1] applied to the 
crystal structure (pdb code 2FS1). The structure predicted by DSSP is 
shown in Fig. 3. There are 3 alpha-helices: H1 [1, 5–20], H2 [24–31], 
H3 [36–48]. It is worth noting that more popular PSIPRED server 
fails to describe the entire range of complexity observed in GA folded 
structure. Namely, its prediction CHHH HHHHHH10HHHHH 
HHHHH20HHCCH HHHHH30HHHHHHHHHH40HHHH 
HHHHHH50HHCCCC suggests the presence of two helices, first 

1.4  Input Data

1.5  Output Data
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Fig. 1 GOR V web server screenshot. Example input interface is presented for GA protein sequence

Maksim Kouza et al.

taner@iastate.edu



15

Fig. 2 GOR V web server screenshot. Example output interface is presented for GA protein
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helix located from residue 2 to 22, H1 [1–19], and the second one 
located between residues 25 and 52, H2 [22–49]. Thus, for pro-
tein GA, the PSIPRED prediction is less accurate than the results 
obtained by the GOR server.

Currently, the server is running Linux with 4.5GB RAM and 140GB 
memory. The program code is compiled using the Intel Fortran 
Compiler 8.0.034, and the web interface is established with a CGI 
script written using HTML and PERL. In order to use the GOR 
web server a user needs a personal computer workstation connected 
to the Internet. The GOR web server is compatible with most of 
popular web browsers like Google Chrome, Mozilla, or Safari.

The GOR web server is freely available at http://gor.bb.iastate.edu. 
Prediction time depends on the number of amino acids of the input 
sequence. For a sequence of ~100 amino acids, the secondary struc-
ture prediction takes ~30 s. The most time-consuming steps are PSI-
BLAST alignments that in some cases, e.g., for many hits or slowly 
converging iterations, may take considerable time. Note, that the 
older version of the GOR server [6], GOR secondary structure pre-
diction method version IV, is also available online at https://npsa-
prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_gor4.html.

2  Methods

Secondary structure predictions of user submitted sequence 
obtained by GOR, PSIPRED, or similar algorithms might be used 
as additional input for structure prediction servers [15, 16] or as 
well as for the protein-peptide docking servers [17, 18]. Apart 
from protein sequence, those servers typically use some informa-
tion about the predicted secondary structure of a protein or a pep-
tide. For example, the CABS-fold web server provides tools for 
protein structure prediction not from sequence only (de novo 
modeling), but also using alternative templates [15]. If you get the 
secondary structure predicted for some residues of the sequence of 
interest, you can specify the secondary structure for structure 

1.6  Hardware

1.7  Availability

2.1  Secondary 
Structure Prediction 
with the GOR Model 
– Features 
and Applications
2.1.1  Combining 
Secondary Structure 
Prediction with Structure 
Prediction Servers 
to Reduce the Search Space

DSSP

PDB
PDB

DSSP Legend
T: turn

empty: no secondary structure assigned

S: bend

H: alpha helix
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Fig. 3 Sequence chain view for GA protein (pdb code 2FSI) taken from Protein Data Bank (http://www.rcsb.org)
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prediction web servers. By default, CABS-fold uses the PSIPRED 
method [19] prediction, but alternatively predictions by the GOR 
server can be used.

Although PSIPRED is probably the most commonly used 
secondary structure prediction method and, in general, it has 
been reported to be around 5 % more accurate than the GOR 
method, we have shown above that the GOR-V secondary 
structure prediction for GA protein is in better agreement with 
DSSP.  An interesting question is whether this observation is 
also valid for other proteins? To check this, we choose concep-
tually different protein to GA protein: the B domain of protein 
G (GB) that consists of one alpha-helix and four beta-strands. 
Moreover, if we compare predictions by PSIPRED and GOR 
methods for another well-studied protein, B domain of protein 
G (GB), we see slightly better performance of the GOR over 
PSIPRED method. Namely, for GB protein amino acid sequence, 
MTYKLILNGKTLK GETTTEAVDAATAEKVFKQYANDNGVD 
GEWTYDDATKTFTVTE, the following secondary structure 
predictions are obtained: CCCEEEECCC10 CCCCCCCHHH20 
HHHHHHHHHH30HHH HCCCCCC40CEEEE CCCCC50EEEE 
CC and CEEEE EEECE10 ECCCCHH HHH20HCHHH  
HHHHH30HHHHHH CCCC40CCEEECCCCE50EEEEEC by 
using GOR and PSIPRED methods, respectively. Figure 4 shows 
the secondary structure for GB protein assigned by DSSP pro-
gram. There are four beta-strands and one alpha-helix, S1 [2–8], 
S2 [1, 6, 11, 13–16], H1 [20–33], S3 [39–43], and S4 [49–52]. 
Both methods detect S1, S3, and S4 strands as well as alpha-helix 
observed in the native conformation of protein GB. It should be 
noted that both methods have shortcomings, e.g., H1 is predicted 
by GOR to start from the residue 18 and ends at the residue 34, 
while PSIPRED produces wrong prediction of beta-strand located 
from residue 9 to 10 and alpha-helix located between residues 16 
and 21. As in protein the GA case, structure prediction for protein 
GB by the GOR-V server appears to be more accurate than by 
PSIPRED.

An advantage of the GOR server is that it not only provides the 
secondary structure prediction for the input sequence but also 
offers the probabilities for each secondary state element at each 
position. This feature can be extremely useful for studying folding 
process of a protein by considering not only the single native state 
but also the complement structure(s), which might be observed 
with lower probabilities. A good example of such scenario is the 
mutants GA98 and GB98 with sequence identity of 98 %, which 
were obtained by performing a set of mutation experiments start-
ing from wild-type forms of proteins GA and GB [20, 21]. Note 
that the wild-type proteins GA and GB have no significant sequence 
homology and have different folds. The mutants GA98 and GB98 

2.1.2  Modeling 
Chameleon Sequences 
of Proteins with the Help 
of GOR Method
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differ in one amino acid, but fold into different three-dimensional 
structures and perform different functions. GA98 shares the 
3-alpha-helices fold of the parent protein GA, while GB98 shares 
the mixed alpha/beta fold of the parent protein GB. Interestingly, 
in the case of GA98, the competing structure (resembling the B 
domain of protein G instead of the A domain) is also observed 
experimentally with a certain, but low, probability [22, 23].

Figure 5 shows the probabilities to form alpha-helix and beta-
strand as a function of residue position for GA (Fig. 5a), mutants 
GA30 and GA98 (Fig. 5b, c), GB (Fig. 5d), mutants GB30 and 
GB98 (Fig. 5e, f). In case of protein GB and its mutants, probabili-
ties remain almost unchanged, while in case of protein GA and its 
mutants, we observe a switch between alpha fold of GA (and GA30) 
and alpha/beta fold of GA98. Experimentally in the case of GA98 
protein, both alpha and alpha/beta folds were reported, whereas for 
GB98 only an alpha/beta fold of a parent GB protein [22].

Another example is the chameleon behavior of certain seg-
ments of protein sequence, which do not have a high preference 
for a particular conformation. The N-terminal fragment of the 
49-residue protein CFr has been shown to fold into a helical struc-
ture, then unfold and finally refold into an extended beta-strand 
conformation [24, 25]. Incorporation of the GOR server predic-
tions of both (alpha-helix and beta-strand) probabilities instead of 
only the most probable one might help to detect not only the 
native state, but also those observed with lower probabilities. We 
are now using a combination of the structure-based model [26, 
27] with CABS software [28, 29] to test the effectiveness of this 
idea in ongoing simulations.

The protein sequence determines its ability not only to fold but 
also to misfold and aggregate. Fibril formation resulting from pro-
tein misfolding and aggregation is a hallmark of several well-known 
neurodegenerative diseases such as Alzheimer’s, type 2 diabetes, or 
Parkinson’s diseases [30, 31]. The list of disorders linked to 

2.1.3  GOR Server 
as a Protein Aggregation 
Prediction Tool

DSSP

PDB
PDB

DSSP Legend
T: turn

empty: no secondary structure assigned

S: bend

E: beta strand

H: alpha helix
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Fig. 4 Sequence chain view for the GB protein (pdb code 1PGB) taken from the Protein Data Bank (http://www.
rcsb.org)
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protein misfolding continues to grow. For example, very 
recently the preeclampsia [32], a pregnancy-specific disorder, has 
been added to the list as it was shown to share pathophysiological 
features with recognized protein misfolding disorders. Although 
amyloid forming proteins and peptides exhibit no obvious sequence 
or structure homology, in many cases protein aggregates take the 
form of amyloid fibrils with high beta-sheet content. This suggests 
that the protein ability to misfold and aggregate can be described 
by general principles.

Recent theoretical and experimental results have indicated that 
protein aggregation rates depend on a number of factors such as 
the hydrophobicity of side chains [33, 34], preformed template 
fluctuations [35, 36], net charge [37], patterns of polar and non-
polar residues [38], diverse secondary structure elements [39], 
high β-content [40], aromatic interactions [41], and the popula-
tion of the fibril-prone conformation in the monomeric state [42, 
43]. Many of those factors are used by bioinformatics predictive 
tools [44–48] to detect aggregation-prone fragments of proteins. 
Most of the predictive tools including TANGO [44], Aggrescan 
[45], Fold-amyloid [46], and Zyggregator [47] rely on a polypep-
tide chain sequence. For each sequence, those servers calculate 
own score and report aggregation-prone fragments of polypeptide 
sequence. Zyggregator predicts the aggregation-prone regions of 
polypeptide sequence based on a number of factors like hydropho-
bicity, charge, local stability, and the propensity to adopt alpha-
helical or beta-sheet structures [47]. Aggrescan predictions are 

Fig. 5 Amino acid propensities for alpha-helices and beta-sheets as obtained by GOR method for protein GA 
(a) and GB (d) as well as their mutants GA30 (b), GA98 (c), GB30 (e), GB98 (f). In the case of protein GB and its 
mutants, probabilities remain almost unchanged (d–f), while in the case of protein GA and its mutants (a–c), 
we observe a switch from two alpha-helices (a, b) to three beta-strands (c)
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based on an aggregation-propensity scale for natural amino acids 
derived from in vivo experiments and on the assumption that short 
and specific sequence stretches modulate protein aggregation [45].

In this work we test the GOR approach for the prediction of 
aggregation properties of protein structures. High beta-content in 
a monomeric state is one of the factors governing the fibril forma-
tion time [40]. Based on this, it is reasonable to assume that a high 
probability of amino acid to form beta-strand might correspond to 
its high aggregation propensity.

The accumulation of the beta-amyloid peptides found in two 
forms either 40 (Abeta1-40) or 42 (Abeta1-42) amino acids in 
human brains has been linked to Alzheimer’s disease (AD) [31, 
49]. Parkinson’s disease, type 2 diabetes, and a disease known as 
dialysis-related amyloidosis are associated with the accumulation 
of amyloidogenic proteins: human alpha-synuclein, amylin, and 
beta-2 microglobulin respectively [50–52]. We choose these 
four proteins to investigate the effectiveness of the GOR method 
to predict aggregation-prone fragments of polypeptide sequence.

Figure 6 shows the propensity to form beta-strand as a func-
tion of residue index for typical amyloidogenic proteins, Abeta1-40, 
human alpha-synuclein, amylin, and beta-2 microglobulin. The 
beta-sheet propensity profile of Abeta1-40 has four peaks located at 
residue positions 4, 12, 17, and 32 (Fig. 6a). Note that two major 
peaks involving residues 17 and 32 correspond to the regions of 
high aggregation propensity determined experimentally (illus-
trated by red boundaries of squares). Namely, the central core of 
beta-amyloid involving residues 16–21 and the C-terminal frag-
ment (residues 30–40).

The aggregation-prone interval from beta-sheet propensity 
profile can be identified as, ΔRi=Ri1 − Ri2, where Ri1 and Ri2 are 
the closest points to the half-maximum of the peak, Ri. We defined 
a fibril-prone conformation as one if beta-sheet probability exceeds 
the 40 %. Using the above definitions we detected aggregation-
prone regions for four typical amyloidogenic proteins, abeta1-40, 
human alpha-synuclein, amylin, and beta-2 microglobulin 
(Table  1). Experimental results are also provided (Table  1 and 
Fig. 6) for comparison of GOR capability to predict aggregation-
prone fragments of protein sequence.

In general, a peak in sheet propensity profiles can be inter-
preted as a sign of aggregation-prone fragment of protein sequence 
(except for the second peak for Abeta1-40 and the first one for amy-
lin). We believe that given the simplicity of the approach this agree-
ment can be considered satisfactory and validates the use of the 
GOR method as an efficient alternative to other protein aggrega-
tion prediction tools.
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Fig. 6 Beta-sheet propensity profiles for Abeta1-40 (a), amylin (b), alpha-synuclein (30–110) (c), beta-2 microglobulin 
[18–37] (d). Red boundaries of squares illustrate beta-strands of amyloid fibrils as determined by NMR experiment

Table 1  
Comparison of GOR predictions with the regions adopting beta-strand configurations of different 
amyloid fibrils observed by NMR measurements

Protein
Experimentally known beta-strands of amyloid 
fibrils GOR prediction

Abeta1-40 −
β1: 16–21
β2: 30–40

10–13
17–21
32–38

Alpha-synuclein (30–110) β1: 38–44
β2: 49–58
β3: 63–80
−
β4: 92–96

36–41
47–55
68–78
86–90
92−96

Amylin −
β1: 12–17
β2: 22–27
β3: 31–37

4–8
14–17
21–31
−

Beta-2 microglobulin [17–38] β1: 21–30
β2: 33–40

23–29
33–39
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Chapter 3

Consensus Prediction of Charged Single Alpha-Helices 
with CSAHserver

Dániel Dudola, Gábor Tóth, László Nyitray, and Zoltán Gáspári

Abstract

Charged single alpha-helices (CSAHs) constitute a rare structural motif. CSAH is characterized by a high 
density of regularly alternating residues with positively and negatively charged side chains. Such segments 
exhibit unique structural properties; however, there are only a handful of proteins where its existence is 
experimentally verified. Therefore, establishing a pipeline that is capable of predicting the presence of 
CSAH segments with a low false positive rate is of considerable importance. Here we describe a consensus-
based approach that relies on two conceptually different CSAH detection methods and a final filter based 
on the estimated helix-forming capabilities of the segments. This pipeline was shown to be capable of 
identifying previously uncharacterized CSAH segments that could be verified experimentally. The method 
is available as a web server at http://csahserver.itk.ppke.hu and also a downloadable standalone program 
suitable to scan larger sequence collections.

Key words Charged single alpha-helix, Charged residues, Consensus prediction, Ion pairs, Fourier 
transform, Helicity, Coiled coil

1  Introduction

The charged single alpha-helix (CSAH) is a relatively recently 
identified protein structural motif. Its main feature is its stability as 
a single helix in solution. CSAH segments are characterized by a 
high number of regularly alternating charged residues, mainly Glu, 
Arg, and Lys [1–3]. There are only a handful of such segments that 
are characterized experimentally; thus, their identification by pre-
diction methods is of high importance. CSAH segments provide 
flexible extensions to proteins and are acting as lever arms in some 
myosins [4], spacers in caldesmon [5], and inner centromere pro-
tein [6] and presumably rulers in paraspeckle assembly [7]. CSAHs 
represent a rare structural motif; about 0.2 % of human proteins 
were predicted to contain such a segment [8].

The basis of the stability of CSAH segments is not yet fully 
understood, although it is believed to be primarily of electrostatic 
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nature. A recent detailed study highlighted that Ki → Ei+4 pairs are 
favored over Ei → Ki+4 salt bridges in synthetic single helical seg-
ments containing Glu and Lys residues [9].

CSAHs have been shown to be located in segments predicted 
to form coiled coils and/or disordered regions [1, 2, 6, 8]. The 
latter can be rationalized by the abundance of charged residues in 
CSAH segments and the former with their periodicity. CSAHs can 
be regarded as special, “single-stranded coiled-coils” and are in a 
possible evolutionary relationship with them [10, 11].

In characterizing structural features of protein sequences, it is 
important to obtain the best prediction as it will offer the most 
specific information about the protein. In our view, more specific 
predictions should have precedence over general ones. In our 
special case it is important to emphasize that coiled coil segments 
are often predicted as disordered ones and CSAHs as coiled coils 
and/or disordered ones. Thus, we suggest CSAH > coiled 
coil > disorder precedence when evaluating the results of struc-
tural predictions for a given sequence. In other words, a segment 
predicted to form a CSAH and also predicted to be disordered is 
most likely a CSAH, as the latter feature was predicted by a much 
more specialized method.

There are currently three described CSAH prediction meth-
ods: SCAN4CSAH and FT_CHARGE are integrated to a consen-
sus method as described in this chapter, whereas Waggawagga 
offers an integrated analysis with coiled coil prediction [12]. As the 
number of experimentally verified CSAH segments is still very low, 
it is not yet possible to give a comprehensive analysis of the perfor-
mance of these methods. Therefore, when designing CSAHserver, 
our primary aim was to yield a conservative estimate of potential 
CSAH segments and minimize the number of false positive hits.

2  Materials

Our consensus CSAH detection method is available as a web ser-
vice at http://csahserver.itk.ppke.hu. The standalone version, 
offering more options for parametrization and with the capability 
of processing multiple sequences, can be downloaded from http://
csahserver.itk.ppke.hu/csah/download/csahdetect.zip. The pack-
age contains three Perl executables and two parameter files along 
with an installer script INSTALL.PL and a README.TXT file, as 
well as sample input/output files. The program is designed to run 
under Linux but is expected to work on all architectures where Perl 
5 can be installed. The only other external requirement is the 
Math:FFT Perl module, available from the CPAN archive (www.
cpan.org). Normally the installer script will check the presence of 
the module and will guide the user through its installation. To 
install the programs, unpack the zip archive in a suitable directory 
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and invoke the installer with “perl INSTALL.PL” and follow the 
instructions (see also Note 1).

The installed package contains three Perl scripts:

	 1.	A wrapper script csahdetect.pl which is designed to provide a 
single interface for the two CSAH prediction algorithms. This 
script handles the input FASTA file which might contain mul-
tiple protein sequences, passes them to scan4csah.pl and ft_
charge.pl, reads their output, prepares their consensus, and 
filters out potential non-helical false positive hits.

	 2.	The program scan4csah.pl predicts CSAHs using an opti-
mized scoring scheme based on the presence of potential sta-
bilizing and destabilizing interactions between charged 
residues in the sequence. It uses a file with precomputed 
extreme value distribution (EVD) parameters (scan4csah_evd-
table.txt). This program can also be used without csahdetect.
pl although invoking it through csahdetect.pl will yield a more 
readable simplified output.

	 3.	The program ft_charge.pl implements a CSAH prediction 
method based on the regular periodicity in the pattern of 
charged residues. Similarly to scan4csah.pl, it uses a file with 
precomputed EVD parameters and can be invoked directly, 
although invoking it through csahdetect.pl will yield a more 
readable simplified output.

3  Methods

The input sequence can be in FASTA format or just a plain 
sequence. FASTA format sequences with headers conforming to 
the UniProt convention (e.g., >sp|Q9NQS7|INCE_HUMAN 
[free text]) are preferred. To apply the methods on a large number 
of protein sequences, e.g., a full proteome, we advise the use of the 
standalone version which is capable of handling FASTA files with 
multiple sequences.

The SCAN4CSAH method is based on a scoring scheme devel-
oped to discriminate between stabilizing and destabilizing patterns 
of charged residues as listed in Table 1. The segment should con-
tain a continuous run of charged residues with an uncharged seg-
ment of maximum 5 residues long as default. The scores are 
normalized with respect to the length of the segment analyzed.

The scoring scheme of SCAN4CSAH was optimized by an 
exhaustive grid search of the parameter space to yield high scores 
for known (or highly likely candidates of) CSAH segments at the 
time of its development (caldesmon, myosin IV and myosin X pro-
teins). The scores were to fit to an extreme value distribution 
(EVD) curve to turn them into P-values [2]. The most important 

3.1  Input File

3.2  The 
SCAN4CSAH Method
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adjustable parameter of the method is the minimum length of the 
predicted CSAH segments, default (from version 2.0) is 30 resi-
dues (see Note 2).

The FT_CHARGE method relies on the identification of repeating 
charge patterns in protein sequences. In its default mode it first calcu-
lates the charge correlation function for a given sequence window as:

	
R n c i c i n

i

m n

( ) = ( ) +( )
=

-

1
S

	

where c(i) is the charge of the residue at the ith position, m is the 
length of the segment examined, and n is the sequential distance 
between residues.

As a next step, Fourier transformation is applied to R(n). The 
position of the maximum of the obtained frequency spectrum 
should be between 1/6 and 1/9 corresponding to approximately 
2 turns in an alpha-helix [2]. The maximum value is converted to 
a P-score obtained from an EVD distribution fitted to maximum 
values (regardless of frequency) calculated from sets of 5000 
sequences of different lengths (16, 32, 64, 128 residues) and 
amino acid compositions (composed of Ala, Glu, Lys residues 
with Glu and Lys contents varied at 10 % steps). The main adjust-
able parameter is the segment length for FFT analysis, default is 
32–64, meaning that all possible 32-residue and 64-residue seg-
ments will be analyzed (see Note 3). While this methodology is 
time-consuming, it ensures that the precise boundaries of puta-
tive CSAH segments can be found. The effect of the different 
window lengths on the predictions was analyzed and we found 

3.3  The 
FT_CHARGE Method

Table 1 

Stabilizing and destabilizing interactions considered in SCAN4CSAH

Description Pattern(s) Example(s)

Stabilizing patterns/modifiers

Salt bridges in a helical turn i – i + 3, i – i + 4 KxxE, RxxxE

Cooperative effect between residues with 
alternating charges

i – i + 4 – i + 8, i – i + 4 – i + 7, 
i – i + 3 – i + 7 etc

RxxxExxxK, ExxKxxxE 
etc

Ion pairs with the acidic residue in the 
N-terminal position

ExxxK

Destabilizing patterns/modifiers

Close opposite charges i – i + 1, i – i + 2 EK, ExK

Repulsing interactions in a helical turn i – i + 3, i – i + 4 ExxE, RxxxK
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that there are segments with relatively low charge density but 
regularly alternating charge pattern that can only be detected 
using longer (e.g., 64-residue) window. In contrast, there are also 
regions that exhibit the regular pattern characteristic for CSAHs 
only over a shorter stretch of residues that is only effectively rec-
ognized using the shorter window length [8].

It should be noted that the two conceptually different methods 
predict a different number of CSAHs with FT_CHARGE being 
much more restrictive, recognizing less than 10 % of the CSAHs 
predicted by SCAN4CSAH [8]. In an analysis of SwissProt 54.2, 
we found that previously uncharacterized predicted CSAH seg-
ments that obtained a high score by both methods indeed form 
single alpha-helices in solution as verified by CD spectroscopy [2]. 
However, as the number of experimentally verified CSAH seg-
ments is still very low and a comprehensive analysis of prediction 
methods is still not feasible, we aimed at a highly conservative 
approach to minimize the number of false positive hits. This is 
achieved by taking the consensus of the two methods and intro-
ducing a filter that rejects sequences that are not expected to be 
helical, e.g., segments with high proline content. This is important 
as neither of the methods checks for the amino acid composition of 
the segments, which was, on the other hand, an important design 
feature at the development of the methods to avoid any artificially 
introduced biases in charged amino acid types.

The filter is based on the Chou-Fasman helicity scale Pα [13] 
calculated for helices longer than 15 residues as assigned by DSSP 
(available from ftp://ftp.cmbi.ru.nl/pub/molbio/data/dssp/) in 
protein chains listed in PDB Select [14] (2012 October release, 
25 % list, sigma 3.0). Per-residue average Pα was calculated for 
these helices and the scores were converted to P-values by fitting 
an EVD curve. After inspection of CSAHs predicted in SwissProt 
(release 201508), the P-value threshold was set to 0.5, i.e., 
sequences with higher P-values are discarded as probable non-
helical ones. We note that we deliberately refrained from using the 
currently best-performing secondary structure prediction methods 
as these are based on the identification of homologous sequences 
and CSAHs are of low complexity and probably also fast evolving, 
rendering such methods inappropriate.

The usage of the CSAHserver website is straightforward. Go to 
csahserver.itk.ppke.hu and either copy-paste your sequence into 
the sequence input field or upload a FASTA format file (Fig. 1a). 
If you use the default parameter settings as recommended, simply 
click on the “Predict CSAHs” button and you will obtain the 
results typically in a few seconds. Running with default parame-
ters will yield a consensus-based conservative estimate of CSAH 
occurrences. For more detailed analysis of the input sequence, 

3.4  Getting 
the Consensus 
and Omitting 
Sequences with Low 
Helicity

3.5  Using 
the CSAHserver Web 
Service
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Fig. 1 (a) Input form of CSAHserver 2.0 and (b) sample output for the inner centromere protein INCE_HUMAN 
(UniProt accession Q9NQS7)
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the user can select one of the methods, SCAN4CSAH or FT_
CHARGE and their parameters such as minimum length and 
window size (see Notes 2 and 3). The web server automatically 
sets the minimum length for the consensus CSAH segments to 
the lower of the SCAN4CSAH minimum length and FT_
CHARGE lowest window length.

As output, the server displays the input sequence (in lowercase 
letters) with the CSAH regions highlighted (CSAH segment in 
bold capital letters with positively charged residues, Arg and Lys 
colored in blue, negatively charged ones, Glu and Asp colored red) 
and a tabular summary of the identified CSAHs (Fig.  1b). By 
default, consensus regions are shown that are detected both by 
SCAN4CSAH and FT_CHARGE, along with the corresponding 
segments predicted by these two methods (see Note 4).

In addition, a csv file containing the tabular output and two 
FASTA format files are available for download: one containing the 
input sequence with the CSAH regions masked (by “x” characters) 
and another with the sequence(s) of the identified CSAH region(s).

The standalone version can be used for a FASTA formatted file 
with one or multiple protein sequences and offers more parametri-
zation than the web service. Because ft_charge.pl runs much slower 
than scan4csah.pl, in the consensus mode scan4csah.pl is invoked 
first and ft_charge.pl is run only on sequences where scan4csah.pl 
predicted the presence of CSAHs (see Note 5). The script csahde-
tect.pl is also capable of invoking only one of the prediction pro-
grams or reading their precomputed output files (see Note 6 for 
further options).

Normally, the script can be invoked as
csahdetect.pl --infasta = input.fst
to run with default parameters (consensus mode, minimum 

consensus CSAH length of 30 residues, nonhelicity filtering above 
P = 0.5).

The default output is a tab-separated CSAH table with each 
detected CSAH displayed in a separate line:

#Accession Consensus scan4csah ft_charge

Q9NQS7 543–574 536–600 543–574

Q9NQS7 654–685 654–782 652–685

In addition, the two FASTA files, with the masked full and 
CSAH sequences, can be generated using the --maskedfasta and 
--csahfasta options. The masked fasta file contains only those 
sequences for which CSAHs were predicted.

3.6  CSAH Prediction 
with the Locally 
Installed Standalone 
Version
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4  Notes

	 1.	After unpacking the zip archive, type “perl INSTALL.PL” 
from that directory. The install script will check the availability 
of Math::FFT and offer to install it using cpan (invoking “sudo 
cpan Math::FFT”); the user can skip this but will have to install 
Math::FFT manually later to use the FT_CHARGE method. 
The script will also ask where to put the scan4csah.pl and ft_
charge.pl executables and the EVD parameter files, as well as 
the csahdetect.pl executable.

	 2.	In the most recent version the default minimum CSAH length 
for SCAN4CSAH is set to 30 residues according to our analy-
sis of paraspeckle proteins [7] where this setting yielded the 
most consistent results. Generally, we do not advise to use 
shorter lengths in order to avoid the possible increase of false 
positive hits.

	 3.	Other possible options include a 16 residue-long window and 
its combination with longer windows. The use of multiple win-
dow sizes is based on our experience that some CSAHs might 
be missed with longer and others with shorter windows. The 
reason behind is that the charge periodicity is tested for the full 
window length and some sequences might not be regular 
enough over a longer span and others might have relatively low 
charge density (for a CSAH) and regularity is only evident in a 
longer segment.

	 4.	In the consensus mode only those segments are shown that 
were predicted by both of the methods. Thus, regions detected 
by either SCAN4CSAH or FT_CHARGE only will not appear 
in the consensus-mode output in any form. To obtain this 
information, the web service can be run with only one of the 
methods chosen.

	 5.	In practice, a filtered version of the input FASTA file is gener-
ated based on the SCAN4CSAH output and this is used as 
input for FT_CHARGE. While this reduces computing time 
(an ft_charge.pl run on the full SwissProt release 201508 con-
taining 594008 sequences took ~4 days on a single Intel Core 
i5 2.4 GHz processor), it requires more disk space (compara-
ble to the size of the original input FASTA file) which can be 
substantial when analyzing large proteomes or even full 
SwissProt. Thus, analysis of a large sequence databases with the 
present version requires extra care and some tricks like running 
scan4csah.pl first, generating the filtered file manually, splitting 
the filtered file and invoking ft_charge on them separately, then 
merging the outputs. Please also note that in such a case the 
unprocessed output files of SCAN4CSAH and FT_CHARGE 
can also be relatively large.
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	 6.	The most important additional option is --minconslen, with 
which the minimum consensus length can be set. In contrast to 
the web server, where this is set automatically, the standalone ver-
sion uses 30 residues as default minimum consensus CSAH 
length and this can only be changed by explicitly setting the 
--minconslen option to a different value. Another important 
option is --helicalP; this can be used for nonhelicity filtering. The 
default value is 0.5; to turn this filtering off, this can be set to 1. 
Note that this is a “negative filter” to avoid false positives; thus, 
P-values lower than 0.5 might result in too stringent rejection of 
possible CSAH candidates. Example of a predicted CSAH 
segment with P-value 1.0, unlikely to form a helical structure 
based on its amino acid composition: >Q9LR47 254–316 
RPSDYSRRPSDYSRRPSDYSRRPSDYSRRPSDSRPSDYSR 
PSDYYSRPSDYSRPSDFSRS SDD The csahdetect.pl script 
allows the parametrization of the invoked methods using the 
--scan4csah and --ft_charge options by providing a full (parame-
trized) command to be invoked for these methods. This is meant 
for expert usage. For example, it is possible for FT_CHARGE to 
set the step size between sequence windows. This results in faster 
scan at the expense of lower precision in CSAH boundaries. The 
default step size is 1; thus, each possible window of a given length 
is analyzed for each sequence.

In addition, by setting the -f option for FT_CHARGE, it can 
be used to detect regularly alternating charge patterns in non-
helical sequence motifs as well.

Detailed usage and a full list of options can be obtained by 
invoking scan4csah.pl --help and ft_charge.pl -h.
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Chapter 4

Predicting Protein Secondary Structure Using Consensus 
Data Mining (CDM) Based on Empirical Statistics 
and Evolutionary Information

Gaurav Kandoi, Sumudu P. Leelananda, Robert L. Jernigan, 
and Taner Z. Sen

Abstract

Predicting the secondary structure of a protein from its sequence still remains a challenging problem. 
The prediction accuracies remain around 80 %, and for very diverse methods. Using evolutionary infor-
mation and machine learning algorithms in particular has had the most impact. In this chapter, we will 
first define secondary structures, then we will review the Consensus Data Mining (CDM) technique 
based on the robust GOR algorithm and Fragment Database Mining (FDM) approach. GOR V is an 
empirical method utilizing a sliding window approach to model the secondary structural elements of a 
protein by making use of generalized evolutionary information. FDM uses data mining from experi-
mental structure fragments, and is able to successfully predict the secondary structure of a protein by 
combining experimentally determined structural fragments based on sequence similarities of the frag-
ments. The CDM method combines predictions from GOR V and FDM in a hierarchical manner to 
produce consensus predictions for secondary structure. In other words, if sequence fragment are not 
available, then it uses GOR V to make the secondary structure prediction. The online server of CDM 
is available at http://gor.bb.iastate.edu/cdm/.

Key words Secondary structure, Protein structure prediction, GOR, Fragment database mining, 
Consensus data mining, Machine learning, Multiple sequence alignments

1  Introduction

One grand challenge problem in computational biology still 
stands—to use only amino acid sequences to predict the functions 
and structures of proteins. The challenge is still relevant, because 
despite having over 100,000 experimental structures in the 
Protein Data Bank (PDB), there are still many protein sequences 
of unknown structure and function, and genome sequencing con-
tinues to produce even more amino acid sequence data. New high 
resolution electron microscopy structure determination methods 
might improve upon this situation, but at this point in time we 
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still have a major problem. The disparity between size of the 
experimental structure data and that of the sequence information 
emphasizes the urgency for developing better computational 
methods to predict protein structures. Because it is a one-dimen-
sional problem, predicting secondary structures is a more feasible 
task than the ultimate goal of predicting full three-dimensional 
structures. Correctly predicting the secondary structure of pro-
teins is crucial for several bioinformatics analyses, including pre-
dicting functions of proteins of unknown structures, discovering 
distant homologs, aligning structures [1], recognizing functional 
motifs, and analyzing whole genomes [2].

The most basic and most frequent secondary structural ele-
ments are α-helices, β-strands, and coils. A stringent definition is 
essential to define protein secondary structure elements from 
atomic coordinates deposited in the PDB. The dictionary of pro-
tein secondary structure (DSSP) developed by Kabsch and Sander 
[3] defines secondary structures consistently (an alternative is 
STRIDE [4] that also provides this information) based on geo-
metrical features and hydrogen bonds. Secondary structure ele-
ments are classified into eight types with each represented by a 
single letter: E (extended β-strand), B (bridge, a single residue 
β-strand), H (α-helix), S (bend), I (π-helix), T (β-turn), G (310 
helix), and C (coil).

For the purpose of secondary structure prediction, eight 
types of structures may be too many and require too much detail. 
Therefore, some methods use reduced alphabets of four com-
bined elements, i.e., extended (β-sheet) (E), coil (C), helix (H), 
and turn (T), or by combining turns with coil, only three. For 
example, in the Critical Assessment of Structure Prediction 
(CASP) [5] contest, the letter H is used for all three helices (H, 
I, and G); letter E is used for both strands (E) and bridge (D), 
and the remaining elements (S, T, and C) are considered as coil 
(C), though other ways of alphabet reduction have been used as 
well [4, 6–8]. Here we simply use the three states H, E, and C 
and combine the DSSP data in the way described above.

Protein secondary structure predictions have increased their 
prediction accuracy from around 60 % to about 80 % over several 
decades. Some of the earliest works in the field based on statistics 
derived from single amino acid residues includes those of Garnier 
et al. [9] (GOR I), Chou and Fasman [10], and Lim [11, 12]. 
Later, other methods were developed using nearest neighbor 
algorithms [6, 7, 13–17], neural networks [18–25], empirical 
statistics [9–12, 26, 27], hidden Markov models [28–33], and 
combined methods [34–39].
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2  Methods

Information theory and Bayesian statistics constitute the foundation 
of the GOR [9] method, based on maximizing the information 
content represented by the information function I(S, R). The basis 
for this method is the use of a function defined as the logarithm of 
the ratio of P (S|R), the probability of observing the conformation 
S (in our case, helix (H), coil (C), or extended (E)) for the residue 
R (the type of amino acid) and P (S), to the probability of occur-
rence of S:

	
I S R

P S R

P S
| log

|( ) = ( )
( ) 	

(1)

The information function can be computed from a database con-
taining known protein secondary structure of sequences.

More specifically, given a protein sequence, the information 
function can be described as the information difference:
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where n–S denotes the conformations other than S. For example, 
if S is C, then H and E represent n − S.

The total Information Content is defined as being the sum of 
much simpler events:
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where the indexes refer to the residue number with a total of N 
residues. If information from singlet and pairs of residues is used, 
then we obtain from algebraic operations:
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for the center residue in a given sliding window. Here, d refers to 
the number of residues on each side of the middle residue and 
2d + 1 corresponds to total residues in the sliding window.

A sliding window of 17 residues (8 adjacent residues on each 
side of the jth residue) was used in the calculation of GOR versions 
I-IV [9, 27]. The sliding window was converted into a more 
dynamic form in the GOR V [26, 35], where a resizable window is 
used based on protein sequence length. The parameters of the 
information function can then be averaged over a set of experimen-
tally determined secondary structures for the sequence.

2.1  Information 
Theory and Bayesian 
Statistics
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To estimate the parameters of the information function, a set of 
protein sequences with their known secondary structures is 
needed. For this, 513 nonredundant sequences (Cuff and Barton 
[40, 41]) (CB513) were used for GOR IV and V, as well as for 
CDM. This set contains information about the secondary struc-
tures for 84,107 residues.

Several studies suggest that including evolutionary information in the 
prediction of secondary structures improves prediction accuracy 
[42]. Therefore, results from PSI-BLAST [43] in the form of multi-
ple sequence alignments were used in GOR V [26, 35] to include 
evolutionary information. Up to five iterations of PSI-BLAST were 
run for CB513 sequences against the entire nr database. After assess-
ing the performance of the method using various identity thresholds, 
it was found that using more diverse sequences, by removing highly 
identical alignments (>97 % identity), improves the performance.

With the constant accumulation of protein structural data, data 
mining becomes more important and enables the development of 
faster and more efficient methods to extract biological knowledge. 
The concept of data mining is often combined with machine 
learning or artificial intelligence algorithms. GOR V [26, 35] uses 
data mining by integrating the results from PSI-BLAST, with 
Fragment Database Mining (FDM) [34], to obtain Consensus 
Data Mining (CDM) [36].

3  Consensus Data Mining (CDM)

The method GOR V combines Bayesian statistics and information 
theory with multiple sequence alignments for protein secondary 
structure prediction. GOR calculates the probability of occurrence 
of secondary structure elements (H, C, and E) for every residue in 
the protein sequence. Since it considers only three possible struc-
tural elements, we have:

	 P P PH C E+ + = 1 	

where PH, PC, and PE are the probabilities of elements H, C, and E 
structural states for a given residue.

GOR V predictions follow the steps below:

	 1.	A multiple sequence alignment is produced using PSI-BLAST 
for the input protein sequence.

	 2.	Using information theory as described above, the probabilities 
of elements H, C, and E at each residue position for the jth 
residue are calculated for the ith sequence in the multiple 
sequence alignment generated in step 1.

	 3.	The results (PH, PC, and PE) for all residues in the alignment 
are then stored in three matrices PH (i, j), PC (i, j), and PE (i, j) 

2.2  Protein 
Secondary Structure 
Database

2.3  Multiple 
Sequence Alignments

2.4  Data Mining

3.1  GOR V
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of size n × m. Here, n refers to the number of alignments and 
m refers to the length of the alignment. PC (i, j) refers to the 
probability of coil in the ith multiple alignment sequence for 
the jth residue.

	 4.	The probabilities PH (i, j), PC (i, j), and PE (i, j) at the jth resi-
due in the multiple sequence alignments is summed over all 
alignments (0 ≤ i ≤ n). This sum is then divided by the number 
of sequences in the alignment (i.e., excluding those containing 
a gap and those with nonstandard residue or an unknown resi-
due type) to obtain an average value. For residue j, the values 
of PH (j), PC (j), and PE (j) denote the probability of that struc-
tural element at position j.

Although usually the conformation at position j is predicted by 
the procedure above, there are a few exceptions to this. Very small 
heuristic constants have been added to prevent the overprediction 
of coil (C). Therefore, PC (j) will be greater by a margin from PH 
(j) (margin = 0.075) and PE (j) (margin = 0.15) for the jth residue 
to be predicted as a coil conformation. Helices (H) shorter than 
five residues are treated as coils and so are sheets (E) shorter than 
three residues (see Note 4).

GOR was at the time among the best methods for prediction 
of protein secondary structure: with an accuracy of 73.4 %, GOR V 
[26, 35] is ~5 % worse than other popular methods like PhD [44] 
and PSIPRED [20].

A long-standing assumption in protein science is that similar 
sequences (usually over 50 % sequence identity) will have a similar 
structure because sequences are less conserved than structures during 
evolution. Therefore, being able to harness the information content 
from similar sequences should aid protein secondary structure pre-
diction. With this starting point, the FDM [34] method uses sequen-
tially similar structure fragments for secondary structure prediction.

The database of 513 nonredundant domains (CB513) which 
was used in GOR V was also used for FDM. The reduced version of 
DSSP [3] is used to specify the three secondary structure elements 
(H, C, and E). BLAST is used to generate local sequence alignments 
using different substitution matrices (BLOSUM-45, -62, -80 and 
PAM-30, -70). Weights are then assigned to the matching segments 
in the form of an identity score and its power using:

	 Identity score id= c

	

where c is a positive real number and id is the ratio of the number 
of exact matching residues to the total residues in the matching 
segment. The weights assigned according to the BLAST similarity 
or identity scores are then normalized for each position and a nor-
malized score is calculated for each position for each of the three 
secondary structure states. This is done by calculating the normal-
ized score for position i to be in state j:

3.2  Fragment 
Database 
Mining (FDM)
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where w(C, i) is the weight at position i in a coil in one matching 
segment and w(E, i) and w(H, i) are similarly defined.

The following parameters are used for assigning weights:

	 1.	Substitution matrices: PAM-30, PAM-70, BLOSUM-45, 
BLOSUM-62, and BLOSUM-80.

	 2.	Identity and Similarity cutoffs: Cutoff values of 60, 70, 80, 90, 
and 99 %.

	 3.	Protein classification.
	 4.	Protein Size.
	 5.	Degree of solvent exposure of residues: buried (accessibility < 5), 

exposed (accessibility > 40), and intermediate for all others.

The best results are obtained using BLOSUM-45, power three 
for the identity score (id3) and id cutoff of 0.99 as the weight 
assignment. When studying the effect of protein size, it was found 
that the prediction is more accurate for large proteins 
(200 < length ≤ 300) and least accurate for very smalls 
(length ≤ 100). The distinction of solvent exposure to residues has 
no significant impact on the prediction accuracy.

A major advantage of FDM [34] is that it uses structural tem-
plates for prediction of secondary structures. Thus, with the rise in 
the number of proteins in PDB, the performance of FDM [34] 
should increase and will likely outperform other methods not 
depending on the structural templates.

The GOR V [26, 35] and FDM [34] methods are built upon dif-
ferent principles. While GOR is an empirical statistical method, 
FDM [34] uses sequence similarity information to assign second-
ary structure. This complementarity provides an opportunity to 
combine these methods to take advantage of situations where one 
method outperforms the other method. With this assumption, 
GOR V [26, 35] is combined with FDM [34] to enhance their 
joint performance for protein secondary structure prediction.

When there is a protein in the PDB with a closely similar frag-
ment sequence, the performance of FDM [34] is excellent. However, 
when there are divergent protein fragment sequences in PDB, FDM 
[34] performs poorly. By contrast, GOR V [26, 35] performs fairly 
accurately when the protein fragment sequence is less similar. This 
makes the two methods complementary to each other and the com-
bined method has the advantage of utilizing the power of each of 
them. The only parameter that controls whether FDM [34] or GOR 
V [26, 35] is used for prediction is the sequence identity threshold. 
Conditional on the sequence identity score, GOR V [26, 35] (if the 

3.3  CDM
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score is below the sequence identity threshold) or FDM (if the score 
is above the sequence identity threshold) [34] is used to predict the 
secondary structure of the site. For the remaining sites, the comple-
mentary method is used.

In cases where there is a nearly perfect sequence identity, FDM 
[34] is used for predicting most of the residues. GOR V [26, 35] 
performs better without multiple sequence alignments (MSA) for 
the small portion of remaining residues than GOR V [26, 35] with 
MSA. CDM [36] has higher accuracy than GOR V [26, 35] irre-
spective of whether or not the MSA is included for an upper 
sequence identity limit of 90 % or greater. Moreover, CDM [36] 
on average performs better than individual FDM [34] for the 
entire sequence regardless of the upper sequence identity limit.

The CDM tool is available for public use on the web server: http://
gor.bb.iastate.edu/cdm/. To improve prediction accuracy, the 
algorithm hierarchically integrates results from the GOR V and 
FDM methods. Briefly, the predictions are made as follows:

	 1.	When a user submits a protein sequence, (see Note 1–3, 5), a 
Perl script runs PSI-BLAST (as input for GOR V) and PSI-
BLAST (needed for FDM) against the nonredundant protein 
nr database.

	 2.	GOR V and FDM are run independently to obtain separate 
secondary structure predictions.

	 3.	Finally, the results from GOR V and FDM are combined to 
produce the consensus predictions based on the following pro-
cedure: first, predictions are made for sites with highly similar 
fragments (>55 %) by FDM and then predictions from GOR V 
are used for the remaining sites.

4  Notes

	 1.	The GOR V [26, 35] server can be accessed from: http://gor.
bb.iastate.edu/ and CDM [36] can be found at: http://gor.
bb.iastate.edu/cdm/.

	 2.	The query sequence must be a single letter amino acid code.
	 3.	The results from the CDM [36] are emailed to the user, and 

thus requires a valid email address.
	 4.	Sheets that are shorter than three residues (E or EE) and heli-

ces shorter than five residues (H, HH, HHH, and HHHH) 
are predicted as coils.

	 5.	Query sequences containing an unknown residue (X) are 
permitted.

3.4  Simple Algorithm 
for CDM
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60(Pt 12 Pt 1):2256–2268. doi:10.1107/
S0907444904026460

	 2.	Rost B (2001) Review: protein secondary 
structure prediction continues to rise. J Struct 
Biol 134(2–3):204–218. doi:10.1006/
jsbi.2001.4336

	 3.	Kabsch W, Sander C (1983) Dictionary of 
protein secondary structure: pattern recog-
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features. Biopolymers 22(12):2577–2637. 
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based protein secondary structure assign-
ment. Proteins 23(4):566–579. doi:10.1002/
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tein structure prediction methods. Proteins 
23(3):ii–iv

	 6.	Biou V, Gibrat JF, Levin JM, Robson B, 
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tion: combination of three different methods. 
Protein Eng 2:185–191

	 7.	Salamov AA, Solovyev VV (1995) Prediction 
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5  Discussion

Protein structure prediction is a key goal of bioinformatics along 
with predicting the function of an amino acid sequence. The func-
tion of a protein is often guided by the correct folding of its three-
dimensional structure which in turn depends on its sequence. 
Determining protein structures experimentally is a very time-
consuming task even with the current state-of-the-art technolo-
gies. Therefore, there is a strong need for computational methods 
capable of predicting the correct folding of a protein into its two- 
and three-dimensional structures. Such methods provide us an 
opportunity to obtain insights into protein structure, evolution, 
and function beyond what is available experimentally.

Several different approaches have been used to successfully 
predict protein secondary structural elements. The heterogeneity 
in the prediction techniques allows us to combine them in order to 
achieve ensemble/hybrid methods with higher prediction accuracy 
than any of its individual components. With an increasing number 
of experimentally determined structures in the PDB, the accuracy 
of this method will improve. This method, based on abundant 
high-quality data, will be better able to capture the patterns under-
lying sequence-structure-function relationships and would be cen-
tral in our understanding of biological systems.

Another opportunity for gains would be to select only 
sequences of similar size in the multiple sequence alignment. For a 
given size of structure there is a limit to the sizes of the secondary 
structure elements that should be approximately reflected in the 
structures of similar size. Often secondary structure elements are 
predicted to be longer than is possible for smaller sequences, and 
making this restriction on the sizes of the sequences in the align-
ments should partly correct for this effect of size.
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    Chapter 5   

 Accurate Prediction of One-Dimensional Protein Structure 
Features Using SPINE-X                     

     Eshel     Faraggi      and     Andrzej     Kloczkowski     

  Abstract 

   Accurate prediction of protein secondary structure and other one-dimensional structure features is essential for 
accurate sequence alignment, three-dimensional structure modeling, and function prediction. SPINE-X is a 
software package to predict secondary structure as well as accessible surface area and dihedral angles  ϕ  and  ψ . 
For secondary structure SPINE-X achieves an accuracy of between 81 and 84  %  depending on the dataset and 
choice of tests. The Pearson correlation coeffi cient for accessible surface area prediction is 0.75 and the mean 
absolute error from the  ϕ  and  ψ  dihedral angles are 20 ∘  and 33 ∘ , respectively. The source code and a Linux 
executables for SPINE-X are available from Research and Information Systems at   http://mamiris.com    .  

  Key words     Secondary structure  ,   Dihedral angles  ,   Accessible surface area  ,   Protein structure  

1       Introduction 

 Proteins are the biological machinery that carry out the instructions 
contained in the genetic code. As such, proteins are responsible on 
some level for all biological function. Proteins perform their func-
tional duties by various interactions associated with their three- 
dimensional structure. Their three-dimensional structure is thought 
to be determined by boundary effects and their amino-acid sequence 
which is encoded in the genetic material of the organism [ 1 ]. While 
the genetic sequence, and hence the protein’s amino-acid sequence, 
can be obtained using automated experimental procedures  relatively 
cheaply, currently, the structure of proteins can only be experimen-
tally obtained using labor-intensive and costly procedures [ 1 ,  2 ]. 
This makes protein structure prediction important. 

 Protein structures are typically categorized into four levels of 
increasing structural information. The fi rst level in this categoriza-
tion, sometimes called the primary structure, is the amino-acid 
sequence of the protein. The second level is the so-called second-
ary structure which involves a coarse grained view of the local 
structure of the protein along its amino-acid sequence. The third 
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scale of structural information, the tertiary structure, is associated 
with the organization of secondary structure elements into single 
domain protein structure. The fourth level of structural classifi ca-
tion is called the quaternary structure and is associated with the 
coalescence of tertiary structure elements into functioning biologi-
cal components. This hierarchy enables proteins to bridge the size 
gap between individual atoms and biological components. 

 Besides secondary structure [ 3 – 22 ] other invariant one- 
dimensional properties that can be associated with individual 
 residues exist. Most notably maybe is the accessible surface area 
[ 21 ,  23 – 38 ] that measures how much of a given residue can inter-
act with the solvent. Another one-dimensional property are the 
dihedral angles [ 30 ,  39 – 44 ]. Notice that to be useful, we specifi -
cally insist that our one-dimensional structural properties be invari-
ant under a coordinate transformation. 

 Prediction of protein structure usually employ a hierarchy as 
well. Secondary structure predictions are used to set initial condi-
tions and act as constraints in three-dimensional prediction schemes 
[ 43 ,  45 – 50 ]. We have shown that substitution of dihedral angles 
for secondary structure constraints in no-homology modeling of 
three- dimensional structure results in a 100 % improvement in the 
prediction accuracy [ 43 ]. Part of that approach of predicting dihe-
dral angles uses secondary structure predictions as input features. 
Here we show how to use SPINE-X to predict secondary struc-
tures, accessible surface area, and the dihedral angles  ϕ  and  ψ  from 
the amino- acid sequence. Accurate prediction of protein secondary 
structure and other one-dimensional structure features is essential 
for accurate sequence alignment [ 51 ,  52 ], three-dimensional struc-
ture modeling [ 53 – 55 ], and function prediction [ 56 ,  57 ].  

2     Materials and Methods 

 SPINE-X consists of six steps of iterative prediction of secondary 
structure, real-value residue solvent accessibility, and torsion 
angles. The fi rst fi ve steps predict real value torsion angles (both  ϕ  
and  ψ ) [ 43 ]. It begins with generating the Position Specifi c Scoring 
Matrix (PSSM) using the PSIBLAST [ 43 ,  58 ] and seven represen-
tative physical parameters (PP) including a steric parameter (graph 
shape index), hydrophobicity, volume, polarizability, isoelectric 
point, helix probability, and sheet probability [ 59 ]. In the fi rst step, 
a neural network is set up to predict secondary structure (SS0) 
employing PSSM and PP as input. The secondary structure was 
defi ned according to SKSP [ 60 ], a consensus assignment of four 
methods (STRIDE [ 61 ], KAKSI [ 62 ], SECSR [ 63 ], and P-SEA 
[ 64 ]), plus a further modifi cation for those helical and sheet resi-
dues that are located in incorrect sheet or helical torsional angle 
regions, respectively (labeled as SKSP+) [ 22 ,  43 ]. 
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 In the second step, another neural network is built to predict 
residue solvent accessibility with PSSM, PP and predicted SS0 as 
input. These fi rst two steps correspond to Real-SPINE 3.0 for real- 
value prediction of solvent accessibility [ 21 ] except that the pre-
dicted secondary structure is based on SKSP+. Then, predicted 
RSA and SS0 together with PSSM and PP are used to predict the 
torsion angles. The fourth step is to perform a new round of SKSP+ 
secondary structure prediction (SS1) based on previous predictions 
and with the PSSM and PP. Then a new round of torsion angle 
prediction is performed with previous predictions, PSSM, and PP. 

 The sixth and fi nal step is a neural network that is trained to 
predict DSSP [ 65 ] assigned secondary structure using PSSM, PP, 
predicted values from the fi rst fi ve rounds. This step is useful when 
comparing with other methods that use the DSSP assignment. The 
eight-state DSSP assignments were grouped as follows: the 3-helix 
(G), alpha-helix (H), and pi-helix (I) into state H; beta-bridge (B) 
and extended-strand (E) into state E; and hydrogen-bonded-turn 
(T), bend (S), and other (_) into state C. 

 In each step, the general form of the neural networks is the 
same. It consists of two hidden layers with 101 hidden nodes. All 
weights were guided based on sequence separation [ 21 ]. A 21- residue 
window is employed. For a given 21-residue input window the tar-
get output is the one-dimensional property of the central residue in 
the window. Vacant locations in the windows around residues near 
the terminals of a protein were explicitly excluded from the training 
by limiting the range of the input window. We employed a bipolar 
activation function given by  f x x( ) tanh( )= a   , with  α  = 0. 2, momen-
tum of 0.4, and the back-propagation method with a learning rate of 
0.001. These parameters were optimized in previous studies of tor-
sion angles and solvent accessibility [ 21 ,  22 ,  42 ,  43 ]. 

 Training and initial testing for all neural networks considered here 
were performed on the SPINE dataset of 2640 PDB [ 66 ] protein and 
on its subset of 2479 proteins with length less than 500 residues [ 21 , 
 43 ]. The dataset of 2640 proteins was obtained from the protein 
sequence culling server PISCES [ 67 ,  68 ] with sequence identity less 
than 25 %, X-ray resolution better than 3 Å, and without unknown 
structural regions in early 2006 [ 17 ]. The subset of 2479 proteins was 
employed because we are interested to know if excluding long chains 
would lead to an improved secondary structure prediction as long 
chains will normally involve more nonlocal interactions. The fi nal 
SPINE X server was built based on the subset of 2479 proteins. 

 The overall accuracy estimates for SPINE-X are as follows. For 
secondary structure the accuracy is between 81 and 84  %  depending 
on the dataset and choice of tests. The Pearson correlation  coeffi cient 
for accessible surface area prediction is 0.75 and the mean absolute 
error from the  ϕ  and  ψ  dihedral angles are 20 ∘  and 33 ∘ , respectively. 
Refer to the original publications [ 21 ,  22 ,  43 ] of these methods for 
a more detailed analysis of the accuracy of SPINE-X. 
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 In Fig.  1  we give an example of the output one gets from 
SPINE-X. Starting from the left the fi rst column gives the index of 
the residue in the protein chain supplied. Column number two 
gives the residue type, while column number three gives the 
assigned secondary structure prediction. Columns four and fi ve 

  Fig. 1    An example of the output from SPINE-X. The columns numbered in paren-
thesis from left to right are: (1) The index of the residue in the protein chain sup-
plied. (2) Residue type. (3) Assigned secondary structure prediction. (4,5) The 
fi nal dihedral angle prediction. (6,7,8) Probability to be in sheet, coil, and helix 
secondary structure state, respectively. (9,10) Initial prediction of dihedral angles. 
(11) Accessible surface area prediction (12,13) The Shannon entropy for the 
dihedral angle peak prediction and secondary structure prediction. (14,15) The 
assigned peak for the  ϕ  and  ψ  dihedral angles. (16,17) The probability of peak 
assignment for the  ϕ  and  ψ  dihedral angles, respectively       
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give the fi nal  ϕ  and  ψ  angle prediction, respectively, obtained in the 
last step of the iterative process. Columns six, seven, and eight give 
the predicted probability to be in sheet, coil, and helix secondary 
structure state, respectively. Columns nine and ten give the initial 
prediction of dihedral angles obtained in the fi rst step of the itera-
tive process. Column 11 gives the accessible surface area predic-
tion. Columns 12 and 13 give the Shannon entropy for the dihedral 
angle peak prediction and secondary structure prediction, respec-
tively. These are calculated from the predicted probabilities. 
Columns 14 and 15 give the assigned peak for the  ϕ  and  ψ  dihedral 
angles. These are calculated by assigning − 1 and 1 to the two 
peaks and summing the predictions from the fi ve neural networks 
ensemble used. Columns 16 and 17 give the probability of peak 
assignment for the  ϕ  and  ψ  dihedral angles, respectively. In this 
case the probability of being in the peak assigned as − 1 is given.  

3     Notes 

      1. Source and Availability    SPINE-X was implemented in 
FORTRAN and is supplied in source code format. Running 
SPINE-X requires supplying a sequence fi le in the FASTA for-
mat, or if available, a PSSM matrix. The use of a PSSM matrix 
will signifi cantly reduce the running time. A few wrappers then 
take this information and generate input features for the 
 optimized iterative neural networks. Helpful documentation, 
executables, and sources are available from Research and 
Information Systems at   http://mamiris.com    .   

    2. License    The license for SPINE-X is available from a fi le called 
“LICENSE” in its distribution directory. It allows for academic 
users the opportunity to use and modify it freely with proper 
citations while retaining some rights for commercial use.   

    3. Installation    To run SPINE-X you must install it. The origi-
nal program was compiled on a Linux system using Intel’s ifort 
(freely available for academic use at Intel’s website). The com-
pile script given in the code directory assumes you have ifort or 
gfortran installed and that its location is in your path. Note: if 
you are using a Linux system, there is some chance that the 
compiled binaries supplied with this distribution will work on 
your system. Test cautiously, at your own risk while backing up 
anything important. To compile the source code, go to the 
code directory and issue the command  ./compile . If no errors 
were reported, you should be able to use spineX. Consult the 
script “compile” in the directory “code/” if errors did spring 
up. Further information is available in the “README” fi les 
that are packed with the distribution.   
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    4. blastpgp    You must have blastpgp installed on your system. 
You should set the environment variable spineXcodir pointing 
to the location of the spineX code, e.g., export spineXcodir=/
path/. Depending on your local confi guration you may also 
need to set spineXblast to point to the BLAST root directory.   

    5. Test    The directory test has an example to see that your version 
of spineX is close to the offi cial web-version. Minor differences 
will occur because you are probably using a different version of 
PsiBLAST but your results on the test protein chain 1URSA 
should not be more than about a percent different from the 
original predictions. The trend we observed is that the newer 
your version of PsiBLAST the better will be your predictions.   

    6. Usage    To run SPINE-X,  spX.pl  is in your path, use  spX.pl 
idlistfi le /prof/fastalocation  where  idlistfi le  is a fi le containing 
the id name of chains to predict (e.g., id1) and  /prof/fastaloca-
tion  is the path to the directory with the psiblast profi les with.
mat suffi x (e.g., id1.mat) or the fasta fi les with.fasta suffi x (e.g., 
id1.fasta). Note, name conventions on prf/fasta fi les are strict. 
The program will specifi cally look for these names. For exam-
ple, in the test directory  test/  one should use  ../spX.pl list1./  to 
give predictions for the chains identifi ed in  list1 . The output 
from SPINE-X is labeled as in  list1 . The indexes 0,1 associated 
with the phi and psi angles designate the iteration number. 
S_ refers to the information entropy calculated from the pre-
dicted probabilities of secondary structure. pk_ designates 
 predicted peak assignments [ 43 ].   

    7. Parallel Usage    If you have many fi les and several processors 
on the same machine to handle them, use the program spXbi-
glist.pl to automatically split the fi le list and run these parts in 
parallel. Type  ./spXbiglist.pl  at the shell prompt to get help on 
using this program. Note: by default a  -a 4  option is passed to 
blastpgp for a regular run, this is unrelated to the use of  spXbi-
glist.pl .   

    8. DSSP Based Prediction    To obtain the SPINE-X prediction 
of secondary structure according to DSSP assignments use the 
program  phipsi_dssp.e . Type  ./phipsi_dssp.e  at the shell prompt 
to get help on using this program.   
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    Chapter 6   

 SPIDER2: A Package to Predict Secondary Structure, 
Accessible Surface Area, and Main-Chain Torsional Angles 
by Deep Neural Networks                     

     Yuedong     Yang    ,     Rhys     Heffernan    ,     Kuldip     Paliwal    ,     James     Lyons    , 
    Abdollah     Dehzangi    ,     Alok     Sharma    ,     Jihua     Wang    ,     Abdul     Sattar    , 
and     Yaoqi     Zhou      

  Abstract 

   Predicting one-dimensional structure properties has played an important role to improve prediction of 
protein three-dimensional structures and functions. The most commonly predicted properties are sec-
ondary structure and accessible surface area (ASA) representing local and nonlocal structural characteris-
tics, respectively. Secondary structure prediction is further complemented by prediction of continuous 
main- chain torsional angles. Here we describe a newly developed method SPIDER2 that utilizes three 
iterations of deep learning neural networks to improve the prediction accuracy of several structural prop-
erties simultaneously. For an independent test set of 1199 proteins SPIDER2 achieves 82 % accuracy for 
secondary structure prediction, 0.76 for the correlation coeffi cient between predicted and actual solvent 
accessible surface area, 19° and 30° for mean absolute errors of backbone  φ  and  ψ  angles, respectively, and 
8° and 32° for mean absolute errors of Cα-based  θ  and  τ  angles, respectively. The method provides state-
of-the- art, all-in-one accurate prediction of local structure and solvent accessible surface area. The method 
is implemented, as a webserver along with a standalone package that are available in our website:   http://
sparks-lab.org    .  

  Key words     Secondary structure prediction  ,   Solvent accessible surface area  ,   Backbone torsion angles  , 
  Deep neural networks  ,   C alpha-based angles  

1       Introduction 

 With the rapid development of DNA sequencing techniques, there 
is a continuously increasing gap between the number of sequences 
available from genomic analysis and the number of structures and 
functions determined or annotated by expensive experimental 
techniques. It is highly desirable to develop theoretical methods to 
predict protein structures and functions from their one- dimensional 
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sequences. However, methods for highly accurate prediction of 
protein three-dimensional structures (except homology modeling) 
are not yet available. This has signifi cantly limited the ability to 
annotate protein functions based on their three-dimensional 
 structures. As a result, predicted one-dimensional structural prop-
erties of proteins have often been utilized for predicting protein 
functions [ 1 – 4 ], their binding sites to other molecules [ 5 – 7 ], and 
other studies [ 8 – 11 ]. They have also been widely employed to 
improve protein structure prediction methods: both ab initio [ 12 – 14 ] 
and template-based techniques [ 15 – 18 ]. Thus any improvement in 
predicted one-dimensional structural properties will benefi t pro-
tein structure and function modeling. 

 The most commonly predicted one-dimensional structural 
property of a protein is three-state secondary structure (helix, 
sheet, and coil). Secondary structure prediction accuracy without 
using homologous sequences in training has gradually been 
improved to above 81 % in recent years [ 19 ,  20 ], due to improved 
machine-learning algorithms, better features, and available larger 
training datasets. 

 An alternative to secondary structures is angle-based represen-
tation of backbone structure. Angle-based description such as tor-
sion angles  φ  and  ψ  offers a continuous representation of local 
conformation [ 12 ], rather than discontinuous and somewhat arbi-
trary defi nition of three secondary-structure states. The advantage 
of angle-based representation leads to methods for predicting tor-
sional angles  φ  and  ψ  [ 12 ,  21 ], and Cα-based angles [an angle 
between Cα  i −1  − Cα  i   − Cα  i +1  ( θ ) and a dihedral angle rotated about 
the Cα  i −1  − Cα  i   bond ( τ )] [ 22 ]. 

 Another important one-dimensional structure property is 
solvent Accessible Surface Area (ASA) that measures exposure 
of amino acid residues of proteins to solvent, which is important 
for understanding and predicting protein structure, function, 
and interactions [ 23 – 26 ]. Earlier multistate prediction [ 23 ,  27 , 
 28 ] has been gradually moved to continuous real value predic-
tion [ 29 – 33 ]. 

 In a recent study, we have developed SPIDER2, an iterative 
deep-learning neutral network, to predict all above-mentioned 
structural properties at the same time [ 34 ]. The iterative and 
cross- learning method achieved 82 % accuracy for secondary 
structure prediction, 0.76 for the correlation coeffi cient between 
predicted and actual solvent accessible surface area, 19° and 30° 
for mean absolute errors of backbone  φ  and  ψ  angles, respec-
tively, and 8° and 32° for mean absolute errors of Cα-based  θ  and 
 τ  angles, respectively, for an independent test dataset of 1199 
proteins. The resulting method provides state-of-the-art, all-in-
one accurate prediction of local structure and solvent accessible 
surface area.  
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2     Algorithm 

 SPIDER2 server version was trained on a dataset of 5789 
nonredundant (25 % cutoff), high resolution (<2.0 Å) structure by 
employing a three consecutive deep neural networks trained itera-
tively. In each iteration, we employed a deep neural network 
(DNN) consisting of three hidden layers with 150 hidden nodes in 
each layer. The weights were initialized by stacked sparse auto- 
encoder [ 35 ] and then refi ned by standard back-propagation 
through fi ne-tuned supervised training [ 36 ,  37 ]. The learning 
rates for backward propagation were 1, 0.5, 0.2, and 0.05, respec-
tively, with 30 epochs at each learning rate. The input layer for the 
DNN in the fi rst iterative learning consists of 459 features 
(27 features per residue for a sliding window of 17 residues cen-
tered at the query residue). These 27 features include seven repre-
sentative physical chemical properties parameters (steric parameter 
(graph shape index), hydrophobicity, volume, polarizability, iso-
electric point, helix probability, and sheet probability properties of 
the amino acids), and 20 substitution probabilities obtained from 
3 iterations searching by PSIBLAST [ 38 ]. All input features are 
normalized to the range of 0 to 1. For residues near the ends of a 
protein, the features of the amino acid residue at the current end 
of the protein were duplicated so that a full window could be used. 
Predicted outputs are 12 values of predicted probabilities for three 
secondary structure states, relative ASA, and sine and cosine of 
four angles  θ ,  τ , ϕ, and  ψ . The input layers for the DNN in the 
second and third iterative learning are 12 predicted values in the 
previous iteration plus 27 above-employed features per residue, 
that is, 663 features [=(12 + 27) × 17].  

3     Web Server 

 The simplest way to use SPIDER2 is to submit a query sequence 
to our server at   http://sparks-lab.org/yueyang/server/SPIDER2    .

    1.    As shown in Fig.  1a , your protein sequence can be entered (or 
copy-pasted) in the FASTA format into the text area. Only one 
protein sequence is allowed each time. The sequence must 
contain 20 standard amino acids only. The fi rst comment line 
in the FASTA format (“>” followed by the protein name) is 
employed to identify the name of the query protein. Without 
this line, the protein name will be set as “unknown” by default. 
The email address and target name in the webpage are optional. 
If you have a DNA/RNA sequence, you need fi rst to convert 
them into a protein sequence ( see   Note    1  ).

SPIDER2: A Package to Predict Secondary Structure, Accessible Surface Area,…

taner@iastate.edu

http://sparks-lab.org/yueyang/server/SPIDER2


58

       2.    By clicking the “submit” button, the job will be sent to a 
queue, and the webpage will be directed to a new page, where 
the “Click the link” points to a to-be-available result fi le. This 
webpage will be automatically refreshed every 60 s until the 
job is completed and the result is displayed on the web page.   

   3.    Each prediction is usually completed within 10 min, but may take 
up to a few hours depending on how busy the server is and how 
long the protein chain is. If an email address is provided in sub-
mission, the link to the result webpage will be sent to the mailbox 
as soon as the prediction is fi nished. All prediction results are kept 
in the server for 1 month and automatically deleted afterwards.   

   4.    If the users have their own Position Specifi c Substitution 
Matrix (PSSM) fi le for their query protein sequence, SPIDER2 
prediction can be made by submitting the PSSM fi le to the 
server. Using an external PSSM fi le can skip the most time-
consuming step of generating the evolution profi le by PSI-
BLAST, and the executive time reduce to a few seconds.   

   5.    To save computing resources, please do not submit query 
sequences more than once. The status of your job can be found 
by clicking the link “Check the current Queue to prevent 
DUPLICATE submission” on the server webpage.   

   6.    Figure  1b  shows an example for the output webpage. Aligned 
lines started with “SEQ,” “SS,” and “rASA” represent query 
sequence, predicted secondary structure, and predicted rela-
tive accessible surface area, respectively. For SS, predicted coil, 
helix and sheet residues are represented by “−,” red “E,” and 
green “H,” respectively. For rASA, the relative ASA is repre-
sented by 0–9 with “0” for up to 10 % of its surface exposed 
and “9” for above 90 % exposed. The residues of rASA less 

  Fig. 1    The webserver input ( a ) and output screenshots ( b ) for example sequence“1a1xA.seq” by SPIDER2       
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than 20 % (buried residues) are labeled in blue. Here, rASA is 
normalized by a residue-specifi c reference value (the ASA in 
the fully exposed state of a residue when connected by an ALA 
in each side). This output page does not contain predicted sec-
ondary structure probability, predicted angles, and actual real 
values of ASA. The complete prediction fi le “pro1.spd3” ( see  
Subheading  4 ,  step 6  for explanation of the fi le) together with 
other intermediate fi les such as PSSM can be downloaded fol-
lowing the link in this output webpage.    

4        Standalone Software 

 SPIDER2 is also available as a standalone software package. The pro-
gram was designed to run in a Linux environment with python 2.7 
and numpy version 1.4 or above. The input is a protein sequence in 
FASTA format, and outputs include predicted secondary structure, 
accessible surface area, main-chain torsional angles (phi/psi and 
theta/tau). The program can be installed in following steps.

    1.    Download the software package from our homepage with a 
shortcut link:   http://sparks-lab.org/pmwiki/download/index.
php?Download=yueyang/SPIDER2_local.tgz     after entering 
your name and email address. This information will be used 
only for notifi cation of future updates. You can fi ll in “none” if 
you prefer not to leave your information.   

   2.    Unzip the package by command “tar zxvf SPIDER2_local.tgz” 
which creats the directory “SPIDER2_local” containing a 
“Readme” fi le and three subdirectories “dat,” “ex,” and “misc.” 
The “dat” directory contains three npz fi les of trained parame-
ters for three iterative neural networks, respectively, and the 
“misc” directory contains the program and auxiliary script fi les.   

   3.    If BLAST or BLAST+ package is not installed in your com-
puter, the software can be obtained from NCBI website. 
This program further requires correctly formatted nonre-
dundant protein sequence databases, which can be down-
loaded from NCBI   ftp://ftp.ncbi.nlm.nih.gov/blast/db     (all 
fi les starting with “nr”). Until Oct 2015, the NR database 
contains a total of 40 fi les in 22GB before uncompressing. 
Alternatively, you can utilize a database by removing highly 
homology sequences, e.g., Uniref90 ( see   Note    2  ). This will 
speed up the calculation without making signifi cant changes 
in prediction accuracy. This step can be skipped if you have 
prepared PSSM fi les ( see   Note    3  ).   

   4.    SPIDER2 is called by the command “run_local.sh,” followed 
by all sequence fi les in FASTA format. Here, one input fi le can 
contain a protein sequence only ( see   Note    4  ).   
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   5.    Results will be saved in an output fi le with extension “spd3.” 
An example of output is shown in Fig.  2 . The output fi le con-
tains 11 columns that represent the residue index, residue 
type, predicted secondary structure type, ASA,  φ ,  ψ ,  θ ,  τ , and 
probabilities as coil (C), sheet (E), and helix (H). The pre-
dicted secondary structure is the secondary structure type 
with the highest probability. The  θ  angle at residue index  i  is 
the angle between Cα  i −1  − Cα  i   − Cα  i +1 , and  τ  is the dihedral 
angle formed by Cα  i −2  − Cα  i −1  − Cα  i   − Cα  i +1 . Three torsional 
angles  φ ,  ψ , and  τ  range from −180 to 180°, and angle θ 
mostly ranges between 70 and 180°.

       6.    In addition, the package includes one program “pred_nopssm.
py” that makes prediction without using the PSSM from PSI- 
BLAST. Instead, the profi le is replaced by the BLOSUM62 
substitution matrix. This replacement allows a fast calculation 

  Fig. 2    The partial prediction results by SPIDER2 for the example sequence“1a1xA.seq”       
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at a lower accuracy (For example, secondary structure accuracy 
at 68.9 %, compared to 81.8 % by using PSI-BLAST profi le). 
This may be useful for large-scale calculations in genome level. 
However, it should be noted that all parameters were not opti-
mized for the evolution-profi le free prediction, and the devel-
opment of a specifi c predictor by using sequence only is in 
progress.      

5         Notes 

     1.    The query sequence must be a protein sequence in the FASTA 
format. The gene in the DNA/RNA sequence has to be con-
verted to the sequence of amino acids fi rst. This conversion can 
be made by using http://web.expasy.org/translate or any other 
tools. Nonstandard amino acids (e.g., X) must be removed, 
prior to the use of SPIDER2.   

   2.    The package employs PSI-BLAST to generate PSSM gener-
ated by scanning NR database. Alternatively, you can employ 
the sequence database uniref90 that can be downloaded from 
ftp://ftp.uniprot.org/pub/databases/uniprot/uniref/uni-
ref90/uniref90.fasta.gz. This database can be converted to 
BLAST-readable format by the command “gunzip -c uniref90.
fasta.gz | ~/aspen/software/ncbi-blast-2.2.30+/bin/make-
blastdb -in - -dbtype prot -parse_seqids -out uniref90 -title 
uniref90.” This operation skips the step of unzipping the large 
database.   

   3.    For users with their own PSSM fi les, they can obtain predic-
tions by utilizing the script “pred_pssm.py” followed by PSSM 
fi le names. This command will skip running PSI-BLAST and 
prediction can be fi nished in a few seconds.   

   4.    If your sequence fi le contains more than one protein sequence, 
you can use the script fi le “splitseq.py” to split your sequence 
fi les to many fi les, and each fi le will be named according to 
protein names in the FASTA fi le.         
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Chapter 7

Backbone Dihedral Angle Prediction

Olav Zimmermann

Abstract

More than two decades of research have enabled dihedral angle predictions at an accuracy that makes them 
an interesting alternative or supplement to secondary structure prediction that provides detailed local 
structure information for every residue of a protein. The evolution of dihedral angle prediction methods 
is closely linked to advancements in machine learning and other relevant technologies. Consequently 
recent improvements in large-scale training of deep neural networks have led to the best method currently 
available, which achieves a mean absolute error of 19° for phi, and 30° for psi. This performance opens 
interesting perspectives for the application of dihedral angle prediction in the comparison, prediction, and 
design of protein structures.

Key words Dihedral angles, Torsional angles, Structure prediction, Machine learning

1  Introduction

For more than 50 years dihedral angles have served as compact 
descriptions of a protein backbone’s local topology. Following the 
seminal analysis of Ramachandran et al. in 1963 [1] dihedral angles 
have been used to describe commonalities and differences between 
protein structures. It may therefore seem surprising that methods 
for the prediction of secondary structure predate those for dihedral 
angles by more than two decades and that dihedral angle predic-
tion is still much less well known and applied.

In part this may be due to the fact that humans need a graphi-
cal representation to comprehend the topology of a protein. 
Scientists have got used to the aesthetically pleasing cartoon ren-
derings of proteins with their easily recognizable α-helices and 
β-sheets and thereby tend to underestimate the importance of the 
large remainder flanking these elements. Hidden away in the large 
pseudo class “coil,” however, is a plethora of recurring structure 
motifs that have evolved to shape the topology of the protein 
chains. This set of motifs is essential for protein folding and endows 
each protein with its individual set of static and dynamic features.
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Another reason for the relatively late appearance of methods to 
predict dihedral angles may be that prediction of secondary structure 
is a classification task, whereas dihedral angle prediction is a regression 
task which, in high dimensional spaces, is deemed to be more difficult 
than classification. This hypothesis is supported by the fact that early 
methods for dihedral prediction used classification approaches.

Finally many researchers may have used dihedral angle predic-
tion algorithms without noticing as some of these methods are part 
of larger structure prediction pipelines.

After an introduction on Ramachandran statistics and measures 
for prediction performance, this mini review will try to summarize the 
evolution of different approaches to dihedral angle prediction, with a 
focus on the prediction of the “Ramachandran angles,” phi (φ) and 
psi (ψ) from sequence information alone. In a discussion section the 
performance improvements will be linked to parallel advancements in 
several research and technology fields. Important aspects from a user 
perspective regarding availability and applications will be mentioned. 
Finally we will sketch a possible future of research in dihedral angle 
prediction with particular emphasis on open questions, new applica-
tions, and possible synergisms to simulation methods.

Dihedral angles, also often called torsion angles, are defined with 
respect to three consecutive bonds connecting four atoms. By 
IUPAC convention [2] dihedral angles are positive for the clock-
wise difference from the bond preceding the bond that defines the 
dihedral angle to the bond following it.

The backbone conformation of each protein residue is deter-
mined by three dihedral angles: phi (φ), denoting the rotation 
around the N-Cα bond (atoms C′-N-Cα-C′), psi (ψ) denoting the 
rotation around the Cα-C′ bond (atoms N-Cα-C′-N), and omega 
(ω) denoting rotation around the C′-N peptide bond (atoms Cα-
C′-N-Cα). Due to its partial double bond character the peptide 
bond C′-N connecting two residues is approximately planar. As the 
trans-configuration of the peptide bond with the two side chains 
spaced further apart is more stable, most ω-angles in proteins are 
close to 180°. A Proline following a residue, however, stabilizes the 
cis-configuration (ω ~ 0°). Recent reevaluations of the PDB data 
hint that the number of cis peptide bonds in the experimentally 
known protein structures is currently underestimated [3].

Taking into account that bond lengths and bond angles in pro-
teins have only very limited flexibility, and that the peptide bond 
angle ω is largely fixed, it is evident that the two remaining dihe-
dral angles φ and ψ contain the majority of information needed to 
reconstruct a protein backbone structure from its amino acid 
sequence. In 1963 Ramachandran and coworkers provided the 
first analysis of the dihedral angle distribution in proteins and 
calculated favored and disallowed regions based on steric 

1.1  Definition 
of Backbone Dihedral 
Angles

1.2  Dihedral Angle 
Distributions
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constraints and concluded that almost 3/4 of the φ−ψ angle space 
is unavailable to peptide backbone structures [1, 4]. They also 
noted the profoundly different dihedral angle distributions for 
Proline and Glycine (Fig. 1b, c). The informative 2d-plot of the 
φ-ψ angle space they used, the famous Ramachandran plot, has 
become a hallmark of protein structure analysis (Fig. 1).

Forty years later a much grown Protein Data Bank [5] allowed 
Lovell et al. to perform more accurate statistics. They derived sur-
prisingly sharp bounds for the φ−ψ distributions and observed a 
markedly different distribution for amino acid residues followed by 
a Proline (Fig. 1c)] [6].

Fig. 1 Backbone dihedral angle distributions: (a) all residues except Pro/Gly, (b) Gly, (c) pre-Pro, (d) trans-Pro. 
from: “6 Ramachandran plots of wwPDB validation” by Dcrjsr—Own work. Licensed under CC BY 4.0 via 
Wikimedia Commons, edited: plots of cis-Pro and Ile/Val cut away

Backbone Dihedral Angle Prediction
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The φ/ψ distribution of the amino acid preceding a Proline 
deviates considerably from their typical distribution due to the 
restrictions imposed by the secondary amino group of Proline 
(Fig. 1c). While less pronounced than for Proline and Glycine all 
amino acids show individual differences in their backbone dihedral 
angle distributions. A very detailed account of these preferences 
can be found in [7] that also highlights the dependencies between 
individual subregions of the Ramachandran plot and secondary 
structure elements. The effects of the immediately adjacent 
residues in loops were quantified by Jordan’s and Dunbrack’s 
groups for all amino acids [8] whereas Kihara studied the impact of 
long-range contacts [9].

On average, i.e. on a sufficiently representative subset of the 
PDB, a good prediction algorithm should be able to reproduce the 
Ramachandran plots of Lovell et al. Ramachandran plots can there-
fore be used to assess dihedral angle prediction algorithms or back-
bone potentials for the presence of systematic errors or bias.

Secondary structure elements feature regular hydrogen bond pat-
terns which constrain their dihedral angles to characteristic values. 
While the dihedral angles in β-sheets and α-helices (also for the 
Polyproline II helix) repeat for each single residue, other nonre-
petitive dihedral angle patterns are characteristic for the different 
types of β-turns [10–13] and other topological motifs [14–16]. 
These structure motifs are important for the topology of the pro-
tein chain but often remain uncharacterized in secondary structure 
analysis. Dihedral angle patterns thereby extend secondary struc-
ture descriptions by providing both enhanced coverage of the pro-
tein chain and more fine-grained structure characterization.

2  Prediction of Dihedral Angles

The backbone dihedral space available to a particular amino acid in 
a protein chain is restricted not only by steric constraints of the local 
backbone geometry as it had been the main finding of Ramachandran 
et al. but also by the remainder of the residue’s three-dimensional 
neighborhood. Strong additional constraints are imposed by the for-
mation of hydrogen bonds and the steric constraints due to side 
chain interactions between adjacent residues.

This indicates that dihedral angle preferences are mainly deter-
mined by the identity of the respective residue and its local sequence 
context. But this in reverse suggests that local sequence informa-
tion can be used to infer the backbone dihedrals of a residue.

Different methods have different prediction targets and depending 
on the prediction target different performance measures are used. 
Some methods are designed to predict the cluster region of the 

1.3  Correspondence 
to Local Chain 
Topology

2.1  Performance 
Measures
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Ramachandran plot that a residue maps while others predict the 
structural motif class, i.e., the closest cluster center in a multivari-
ate dihedral space. These methods perform a classification and 
hence the predictions are either right or wrong. For binary predic-
tion there are four possible outcomes.

Typical performance measures for binary classification are 
accuracy and Matthews correlation coefficient (MCC) [17], the 
latter being more robust in cases of class imbalance that are com-
mon for most dihedral angle region definitions.

	 Accuracy TP TN N TP TN TP TN FP FN: / /= +( ) = +( ) + + +( ) 	

	
MCC

TP TN FP FN

TP FP TP FN TN FP TN FN
:= × + ×

+( ) × +( ) × +( ) × +( ) 	

where TP, TN, FP, FN are defined in Table 1 and N is the total 
number of predictions.

For more than two classes accuracy can be easily extended as 
it is simply the fraction of all correct predictions and typically 
reported with an index indicating the number of classes, e.g., Q3 
is often reported as a performance measure for secondary struc-
ture classification into the three classes: helix, sheet, and coil. In 
dihedral angle prediction a further definition of Qn in use is the 
fraction of predictions that are within n degree of the experimen-
tal value. This should more clearly be labeled as Qn° but the degree 
sign is often omitted.

Extension of MCC to multiclass settings is less straightfor-
ward [18] and has not yet been used to report performance of 
classifiers for dihedral angle regions or structural motifs. Some 
studies show the confusion matrix that tabulates the counts for 
all pairs of predicted and observed classes. This matrix allows 
identification of classes that often get mixed up by the respective 
prediction method.

Methods directly predicting the real value of a dihedral angle 
are regression methods. Typically the Pearson correlation coefficient 
(PCC) is used to evaluate linear regression and it has been used 

Table 1  
Possible outcomes of binary classification

Observation

True False

Prediction True True positive (TP) False positive (FP)

False False negative (FN) True negative (TN)
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to report performance of dihedral angle regression. However, due 
to the cyclic nature of angles and the very uneven distribution of 
the angular values the mean absolute error (MAE) is a more robust 
measure of performance. It is defined as the average of the absolute 
difference between the experimentally observed angle x and the 
predicted angle y.

	

PCC :=
−( ) × −( )

−( ) × −( )
=

= =

∑

∑ ∑
i

N

i i

i

N

i
i

N

i

x x y y

x x y y

1

1

2

1

2

	

where x-bar and y-bar are the mean of the observed and predicted 
angles, respectively, and N is the total number of angles.

	
MAE ,: min= − ° − −( )( )

=
∑1

360
1N

y x y x
i

N

i i i i

	

where x and y are observed and predicted angles, respectively, and 
N is the total number of angles.

In addition many methods map their primary prediction target 
to secondary structure prediction to allow for comparison with 
dedicated secondary structure prediction methods. In these cases 
the respective publications may report typical performance mea-
sures for secondary structure prediction like Q3 (helix, sheet, coil) 
or Segment overlap (SOV) [19, 20].

In the following we will try to sketch the evolution of dihedral 
prediction methods and highlight interesting ideas and findings 
that have been influential to later methods. Most methods are 
based on supervised machine learning algorithms, such as Hidden 
Markov Models (HMM) [21], Conditional Random Fields (CRF) 
[22], Support Vector Machines (SVM) [23], and Artificial Neural 
Networks (ANN) [24]. As doing justice to the importance of these 
methods would require a review of its own, we will forego to give 
introductions into these methods and instead refer to the numerous 
excellent introductions existing, e.g., [25].

The primary input for most dihedral prediction methods is a 
position-specific scoring matrix (PSSM) typically obtained by run-
ning PSI-BLAST [26] against a nonredundant sequence database. 
The PSSM represents the amino acid preferences of each residue 
position and reflects the averaged local environment. Thereby it 
has the potential to provide indirect information on influences of 
long-range interaction if the quality of the underlying multiple 
sequence alignment is good, and the variation of the local environ-
ment is not too large.

2.2  Prediction 
Methods
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3  Dihedral Angle Region Prediction

Several early methods rephrased the dihedral angle inference as a 
classification problem [27–31]. Instead of predicting a particular 
point on the Ramachandran plot, they provided a prediction in 
which region of the φ−ψ space a residue’s conformation would 
map. Depending on the number and size of the dihedral angle 
regions defined in this mapping, a correct prediction carries more 
or less information. For obvious reasons prediction of fewer classes 
is easier and accuracy is therefore likely to be higher for coarser 
classification schemes.

4  Structure Motif Prediction

As the torsion angle conformation of a residue is strongly depen-
dent on the neighborhood of that residue, a logical extension to 
dihedral region prediction was the prediction of short sequences of 
dihedral angles also called structure motifs, structural alphabets, or 
shape strings. The I-Sites method appeared in 1998 when the PDB 
had grown to more than 7000 proteins, thereby providing suffi-
cient data for the analysis of multivariate distributions of dihedral 
angles. Using a nonredundant set of 417 aligned sequence families 
with at least one known structure representative Bystroff and Baker 
performed iterative sequence profile searches with structure con-
straints and clustering to obtain 82 clusters of sequence profiles of 
3–19 residues in length, the I-Sites library [15]. These clusters 
were grouped into 13 recurring structure motifs among them 
some that had not been described before. Prediction was per-
formed by sequence profile comparison to the 82 cluster profiles. 
While the I-Sites method could provide more detailed prediction 
for loop regions, its performance for three-state prediction 
(Q3 = 64 %) was inferior to dedicated secondary structure predic-
tion methods such as PHD [32].

Subsequently Bystroff et al. merged the I-Sites library by rep-
resenting the I-Sites library as a set of HMM models that could 
encode overlaps between the structure motifs in a more compact 
form and also could represent the neighbor correlations in the 
sequence-, dihedral angle-, and structure space [16]. This method 
called HMMSTR improved the accuracy of secondary structure 
prediction to Q3 = 74.3 %, comparable to then available dedicated 
secondary structure prediction methods. Different clustering 
methods led to the development of a number of structural alpha-
bets with motif lengths of 2–5 residues [33–35]. A comparison of 
their performance in fold recognition indicated that prediction of 
fine-grained structural alphabets is more informative than pre-
dicted three-state secondary structure [34]. Several methods for 
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prediction of structural alphabets followed [36–38], and the struc-
ture motif predictions were often mapped to provide predictions of 
secondary structure [37] or dihedral angles [38]. A recently devel-
oped fold recognition method based on LOCUSTRA was found 
to be more sensitive than HHsearch [39] in finding good tem-
plates for protein structure modeling [40].

5  Real Value Dihedral Angle Prediction

The first published performance value on a real value prediction 
of a dihedral angle was a by-product of dihedral angle enhanced 
secondary structure prediction in the DESTRUCT approach 
published by Wood and Hirst in 2005 [41] who reported a 
moderate Pearson’s correlation coefficient (PCC) of 0.47 for ψ. 
The method was based on several generations of cascade-correlation 
networks that did not only use the PSSMs of 513 proteins but 
also added the output of a secondary structure prediction net-
work to the input of the ψ-angle prediction network of the next 
generation and vice versa.

The first method dedicated to real value dihedral angle predic-
tion was Real-SPINE by Zhou and coworkers [42] which was 
based on training a backpropagation neural network with 200 
hidden units and a much larger training set (2640 chains) than 
used in DESTRUCT.  Inputs were PSI-BLAST [26] generated 
PSSMs and SS predictions from SPINE.  Real-SPINE like 
DESTRUCT provided predictions for ψ only. ψ is deemed more 
informative than φ due to the fact that α-helices and β-sheets share 
similar φ-values. They reported an improved PCC of 0.62; and a 
MAE of 0.15 = 54°, 9° lower than without predicted SS, thereby 
emphasizing the large effect of this additional input. Simply shift-
ing the cut point that is used to map the circular ψ-angle space to 
a linear space from 0° (or +/− 180° as in other studies) to −100° 
and using a consensus of 5 ANN models lead to marked improve-
ments. Adding also a predictor for φ they achieved an MAE of 
38.2° for ψ, and 24.8° for φ [43]. A year later the group demon-
strated that using a guiding technique for the NN weights and 
adding a second hidden layer could reduce the error even further 
(MAE = 36.4° for ψ, and 22.1° for φ) [44].

The Real-SPINE ANNs had also independently been trained 
to predict solvent accessibility but this information had not been 
used in the prediction of ψ. ANGLOR from Wu and Zhang in 
contrast used such information on predicted solvent accessibility in 
addition to the previous inputs [45]. Their study also compared 
the performance of SVM and ANNs for dihedral angle prediction 
on the same training input. As a third contender they used 
PSIPRED [46] by mapping the three predicted secondary struc-
ture classes to their average dihedral angle values. Interestingly 
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they found that for ψ the SVM-based predictor had a 10 % lower 
MAE than the ANN predictor, while the opposite was true for φ. 
The performance of ANGLOR (MAE = 28.2° for φ, and 46.4° for 
ψ) compared favorably to the translated dihedral angles from 
PSIPRED (MAE = 30.4 ° for φ, and 49.6° for ψ) which constitutes 
a nontrivial baseline and a lower bound on the amount of dihedral 
angle information contained in secondary structure predictions. 
The same study found that predictor performance is correlated to 
the dihedral angle entropy which is higher for ψ than for φ and 
particularly high for the small amino acids Glycine and Asparagine 
that frequently occur in flexible loop regions.

Later Song et al. published an approach very similar but with 
two layers and additional inputs containing global sequence fea-
tures [47]. Training the method on the same 500 proteins as 
ANGLOR their approach showed slightly better performance in 
particular for ψ (MAE = 27.8° for φ, and 44.6° for ψ).

Having observed that real value prediction of dihedral angles 
often led to angle conformations in the forbidden region of the 
Ramachandran plot, the Real-SPINE authors refined their 
approach by splitting the prediction process into two phases [48]. 
Using the fact that each angle has a two-peaked distribution a first 
ANN predicts which of the two peaks is closer. A second ANN 
then predicts the real value deviation from the peak center. This 
approach (SPINE X) already led to some improvement (MAE 
35.2° for ψ) but a larger performance increase was achieved by 
adding a Conditional Random Field (CRF) [22]. The resulting 
method, called SPINE XI, used the predicted values for both φ and 
ψ as additional inputs to the sequence and the predicted secondary 
structure information, and could thereby learn the correlations 
between the dihedrals, leading to a MAE of 33.4° for ψ.

As a successor of their ANN-based method DESTRUCT, 
Kontouris and Hirst built their DISSpred method based on two 
sets of SVMs that classified secondary structure and dihedral angle 
regions respectively [49]. They trained the SVMs on the same 513 
proteins they had used for training DESTRUCT and also used a 
similar iterative training approach where predicted secondary 
structure information from the previous SVM generation was used 
for training the dihedral angle region SVMs and vice versa. Two 
generations of such iterative training and clustering into seven 
dihedral regions proved to be optimal for dihedral angle prediction 
and lead to MAEs of 25.1° for φ and 38.5° for ψ.

Due to computational and algorithmic improvements, training 
of deep ANNs with several hidden layers has become feasible in 
recent years and deep learning approaches have surged in popular-
ity. In 2014, Lyons et al. published SPIDER, which featured a deep 
auto-encoder network with three hidden layers of 150 nodes 
each and was trained on a record-size training set of 4590 proteins 
[50]. In contrast to previous methods this approach focused on 
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prediction of the angles between and around Cα−Cα pseudo bonds. 
Due to the fixed peptide bond these Cα-Cα pseudo bonds have a 
uniform length of approximately 3.8  Å. SPIDER predicts real 
values for the theta angle between the Cα, i−1−C α, i and C α, i−C α, i+1 
pseudo bonds and the dihedral angle tau that measures rotation 
around the C α, i−C α, i+1 pseudo bond. They obtained MAEs of 
8.6° for θ and 33.6° for τ, which they compared to the values 
obtained from mapping θ and τ from the φ and ψ predictions of 
Spider X and found an improvement of approximately 10 %. 
Substituting the deep learning architecture by an ANN with only 
one hidden layer had a small impact (MAE 8.8° for θ and 34.1° for τ), 
likewise the encoding of the angles as sine and cosine lowered MAE 
2° compared to the two-stage approach of SPINE X that first pre-
dicts the distribution peak and then the deviation from that peak.

Zhou and coworkers recently improved SPIDER by iterative 
learning [51]. Using three separate deep ANNs for prediction of 
secondary structure, solvent accessibility, and dihedral angles the 
prediction output of all three networks is provided as input to each 
network of the following generation. With respect to secondary 
structure prediction, they find three generations to be optimal. 
This method, called SPIDER-2, simultaneously predicts the dihe-
dral angles φ, ψ, and τ, the angle θ, as well as secondary structure 
and solvent accessibility. It reports the best prediction performance 
to date. MAEs are 19.2° for φ, 29.9° for ψ, 8.0° for θ, and 32.2° 
for τ. To put these values in perspective the authors compared the 
predictions for ψ and τ of SPIDER-2 to those from models of the 
CASP11 structure prediction contest. The MAE values for ψ were 
14 % lower and those for τ 10 % lower than the respective best 
methods in CASP11 (Baker-Rosetta, Zhang-Server). Perhaps the 
most important result is that the secondary structure prediction of 
SPIDER-2 on independent test cases and a CASP-11 dataset was 
superior to the state-of-the-art secondary structure prediction pro-
grams PSIPRED [46] and SCORPION [52].

It is easy to foresee that the performance of structure predic-
tion pipelines will improve by adopting methods like SPIDER-2, 
as well as future methods for dihedral angle prediction that build 
on the knowledge gathered in more than a decade of research in 
this area.

Table 2 lists those methods that predict real values of dihedral 
angles.

6  Discussion

There are many different ways to assess performance of dihedral 
angle prediction methods and hence meaningful performance 
comparisons between different algorithms are difficult. Cases 
where published performance values between two studies can be 

6.1  Performance 
Comparison
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directly compared are rare and in most cases are from the same 
authors. It is also important whether results are reported from 
cross validation or independent test sets.

Dedicated evaluation studies are the preferred way to judge 
performance but are rare as well. They need to apply the same per-
formance measures using the same test datasets while ensuring that 
these have no overlap with the training datasets of the methods 
compared. Sometimes the latter condition is difficult to fulfill as 
not all methods list the PDB identifiers of their training sets.

The only such study we are aware of in the area of dihedral 
angle prediction is a recent performance comparison between 
TANGLOR, TANGLE, and SPINE X [53]. They concluded that 
the deep learning approach of SPINE X provides significantly more 
accurate predictions than the other methods. A part of this perfor-
mance advantage is probably due to the large datasets that can be 
used for training deep ANNs. Such data set sizes are not feasible 
for training standard nonlinear SVMs. A study of Hovmöller and 
coworkers estimated the impact of larger training sets for their 
method to be on the order of 1 % improvement per doubling of the 
nonredundant training set size in both secondary structure predic-
tion accuracy (Q3) and eight-class structure motif prediction [54].

The prediction performance improvements that have been achieved 
in the last 15 years in the area of dihedral angle prediction reflect 
advancements in several areas of science and technology.

PDB: Much of the knowledge gained on local and nonlocal 
interactions of the peptide backbone atoms and its effect on 

6.2  Determinants 
for Improved 
Prediction Methods

Table 2  
Methods predicting real value dihedral angles

Name Year Method MAE φ/ψ Availability Reference

DESTRUCT 2005 NN n.d./n.d. [41]

Real-SPINE 2007 NN n.d./54° [42]

ANGLOR 2008 SVM, NN 28.2°/46.4° Web, download [45]

Real-SPINE 2.0 2008 NN 24.8°/38.2° [43]

Real-SPINE 3.0 2009 NN 22.1°/36.4° [44]

SPINE X 2009 NN n.d./35.2° Web, download [48]

SPINE XI 2009 NN + CRF n.d./33.4° Web, download [48]

DISSpred 2009 SVM 25.1°/38.5° Web [49]

TANGLE 2012 SVM 27.8°/44.6° Web [47]

SPIDER 2014 Deep NN n.d./n.d. [50]

SPIDER-2 2015 Deep NN 19.2°/29.9° Web, download [51]
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sequence-structure relationships would have been impossible 
without accurate statistical analysis of experimental protein 
structures. The continuous growth of the Protein Data Bank [5] 
was therefore of prime importance to generate accurate statistics 
of sequence-structure correlations but also for the availability of 
increasingly larger nonredundant datasets for the supervised training 
of the prediction models.

Machine learning: The foundation of most modern prediction 
methods is machine learning algorithms. Predictors of local struc-
ture therefore either employ some method dedicated to supervised 
sequential learning such as HMM or CRF, or they map the sequential 
information to a fixed size vector representation and use standard 
supervised learning methods such as SVM or ANN. While HMMs 
[21] provide a way to learn the joint probability distribution of 
features and labels and have been successfully employed for 
sequence labeling problems such as the prediction of local dihedral 
states [16], they lack the ability to learn correlations between non-
adjacent labels. This problem was partially overcome by the intro-
duction of CRFs [22] that in contrast to HMMs provide a model 
of the label probability conditioned on the previous label and the 
input features. Algorithmic improvements have made the global 
training of CRFs computationally less expensive [55].

Standard supervised learning algorithms assume independent 
and identically distributed samples which typically imply input fea-
ture vectors of a fixed size. Already in 1988 a secondary structure 
prediction method by Qian and Seijnowski [56] used a sliding 
window that mapped the protein sequence information to a fixed 
size vector and thereby enabled them to use ANNs, which recently 
had become popular [24]. The same technique is used in approaches 
that use SVMs [23]. Today SVMs and ANNs are the dominating 
machine learning approaches. For each of them many different 
varieties have been developed and both have their advantages and 
disadvantages. SVMs are global regularized optimizers and hence 
do neither suffer from local minima nor overfitting like standard 
ANNs. On the other hand the training time for ANNs is linear 
with respect to the number of training samples whereas SVMs with 
nonlinear kernels have higher computational complexity, and cur-
rent parallel implementations provide only moderate scaling effi-
ciency, thereby limiting the training set size that SVMs can handle. 
In fact most of the SVM-based methods described above have used 
not more than 80000 training samples in contrast to the ANN-
based methods that can be trained on todays large nonredundant 
protein data sets with up to one million training samples [50, 51]. 
Furthermore ANNs can have arbitrarily complex output types, 
such as tuples of different dihedral angles combined with secondary 
structure categories and solvent accessibility [51] whereas SVMs 
have only recently ushered into the realm of structured output 
prediction [57]. The renaissance of ANNs, in particular deep 
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learning, can be largely attributed to recent algorithmic advances. 
Groundbreaking work by Hinton and coworkers has finally prevented 
overfitting and accelerated the training of deep ANNs to an extent 
that made large-scale deep learning practical [58, 59].

High performance computing: Despite highly tuned algorithms 
for efficient learning the training of complex predictive models 
using large training sets remains computationally extremely 
demanding. An exponential increase in the available compute 
power without incurring exponentially rising energy consumption 
has therefore been a third prerequisite to reach the prediction 
accuracy of today’s dihedral prediction methods. As machine learn-
ing is increasingly used for large-scale commercial tasks such as 
voice or image recognition, several recent implementations make 
use of energy efficient hardware architectures such as graphics 
processing units (GPU) [60, 61], many-core processors [62, 63], 
or field programmable gate arrays (FPGA) [64, 65].

Research: The most important contribution to the improve-
ments witnessed in the area of dihedral angle prediction has been 
the accumulation of many ideas, how to optimally exploit the 
information hidden in the sequence profile data, and how to tackle 
algorithmic shortcomings. Only few methods, e.g., HMMs and 
CRFs, have been designed to solve sequence labeling tasks such as 
predicting the sequence of dihedral angles of a peptide chain. 
Using a sliding window [56] mapping it became possible to har-
ness the prediction performance of standard supervised learning 
methods for prediction of dihedral angles. This method however 
only learns from the sequence input, but ignores any independent 
information contained in the correlation of the dihedral angle 
labels. Furthermore, methods like SVM could only predict unary 
values, either a continuous dihedral angle or a discrete label, e.g., 
the letter of a structural alphabet, a dihedral region, or a secondary 
structure class. One key idea to learn the label correlations and 
approaching the original sequence labeling task more closely was 
iterative learning, also called recurrent sliding windows [29]. In 
this approach two or more predictors are trained successively using 
the output of the first predictor as additional input for the next. 
Iterative learning improved predictions not only by being able to 
learn local dihedral angle correlations but also allowed to generate 
different types of intermediate information such as solvent acces-
sibility or secondary structure state that would provide comple-
mentary information to subsequent classifiers.

A further problem that had to be overcome was due to the 
cyclic nature of angles. As machine learning methods typically treat 
angles as linear dimensions, a small prediction error close to the 
implied cut in the circle, e.g., predicting ψ to be 178° instead of 
−178°, would be treated as an error of 356° instead of one of 4°. 
Various approaches have been tested to reduce the impact of this 
effect. Among them were shifting the ψ-angles by 100° and the 
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φ-angles by −10° to move the circle cut to regions of minimal 
probability density [43], splitting the original regression problem 
into identification of the distribution peak the dihedral angle would 
belong to, and the prediction of the signed distance to that peak 
[44]. The best performance so far has been achieved by mapping 
the dihedral angles to their sine and cosine values [51].

The synergies between advancements in these different areas 
were key to the development of dihedral angle prediction 
approaches that now have the potential to supersede classical sec-
ondary structure prediction.

From a user perspective the most important aspects are probably in 
which contexts dihedral angle predictions are applicable and how 
to obtain dihedral angle predictions to apply them for own research 
tasks.

Dihedral predictions are not accurate enough to directly con-
struct 3d models of entire protein chains [51]. Predicted dihedral 
angles will therefore more likely be used as a substitute or a supple-
ment for predicted secondary structure in applications such as fold 
recognition, sequence-structure alignment, prediction of mutation 
effects, and 3d-modeling of proteins.

Predicted dihedral angles have the potential to substitute or 
complement secondary structure in various structure prediction 
tasks. One obvious way to apply dihedral angle predictions is to 
map them to secondary structure predictions. Only the very lat-
est methods, however, provide secondary structure predictions 
that are superior to dedicated secondary structure prediction 
programs and more detailed information in particular for loop 
regions will be lost.

Secondary structure, dihedral angles, dihedral angle regions, 
or structure motifs all constitute mappings of a local 3d-conformation 
to a single letter or ordered tuple of numbers. The 3d-structure of 
a chain can thereby be reduced to a sequence of letters or values 
that is amenable to processing established for other sequences such 
as searching and alignment.

As dihedral patterns, i.e., structural motifs are capable of 
encoding topology-defining motifs such as beta-turns, their pre-
diction has been successfully used in remote homology detection 
[34, 40, 66, 67]. Likewise inclusion of predicted dihedral angles 
has led to improved fold recognition approaches [68–70].

Structural alignment methods that are based on comparing 
dihedral angles rather than atomic distances [71, 72] can be directly 
used with predicted dihedral angles for improving target-template 
alignments in structure modeling.

It has also been found that substitution of predicted dihedral 
angles for predicted secondary structure improves fragment-free 
protein structure modeling [73].

6.3  Applications 
of Dihedral Angle 
Prediction
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For academic researchers several of the methods discussed 
above are available as web servers that take FASTA-formatted 
sequences as input and either return the results per email or allow 
for downloading them. None of the servers, however, provides 
programmatic access. Users that wish to integrate dihedral angle 
prediction methods into their own prediction or modeling pipe-
lines will therefore need to install the respective software pack-
ages locally. At the time of writing at least ANGLOR, SPINE X/
XI, and SPIDER-2 have been made available for downloading 
(c.f. Table 2).

Which of the current methods or future methods is optimal for a 
given task does not only depend on the reported prediction accuracy. 
Other considerations may be the computational effort needed for a 
prediction, the size of the models, how well the programs are docu-
mented, and how easily they can be integrated into existing pipelines 
to replace or supplement secondary structure predictions.

7  Future Directions

Although dihedral angle prediction has been very successful and 
augments secondary structure predictions in both accuracy and 
chain coverage, many open research questions remain.

Taking into account the effect of cis omega angles or nearby 
disulfide bonds on dihedral preferences may open up ways for fur-
ther improvements in prediction accuracy.

First analysis reports also hint at different dihedral angle pref-
erences in membrane environments [74]. Also the effect of residue 
modifications such as posttranslational modifications may provide 
new prediction targets. A large amount of research is also needed 
regarding the optimal way to exploit accurate dihedral predictions 
in terms of fold recognition, sequence-structure alignments, pro-
tein modeling, and other applications.

Despite their usual description in terms of static geometric fea-
tures protein structures are highly dynamic and first methods for pre-
dicting the dihedral angle dynamics have been developed. Such 
prediction methods have the potential to enhance our method spec-
trum for predicting functional regions of proteins, to get insight into 
structural preferences of intrinsically disordered proteins and other 
aspects of folding. Research in this area is currently dominated by 
physics-based simulations and interesting developments may emerge 
from synergies between prediction and simulation approaches.

Several groups with a strong background in protein structure 
prediction have turned to the inverse problem, predicting sequences 
that adopt a given fold [75–77]. One requirement for protein 
design [78, 79] will be the accurate prediction of sequence-
structure relationships for all parts of the desired structure, a task 
well suited for dihedral angle prediction [80].
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    Chapter 8   

 One-Dimensional Structural Properties of Proteins 
in the Coarse-Grained CABS Model                     

     Sebastian     Kmiecik     and     Andrzej     Kolinski      

  Abstract 

   Despite the signifi cant increase in computational power, molecular modeling of protein structure using 
classical all-atom approaches remains ineffi cient, at least for most of the protein targets in the focus of bio-
medical research. Perhaps the most successful strategy to overcome the ineffi ciency problem is multiscale 
modeling to merge all-atom and coarse-grained models. This chapter describes a well-established CABS 
coarse-grained protein model. The CABS (C-Alpha, C-Beta, and Side chains) model assumes a 2–4 united-
atom representation of amino acids, knowledge-based force fi eld (derived from the statistical regularities seen 
in known protein sequences and structures) and effi cient Monte Carlo sampling schemes (MC dynamics, MC 
replica-exchange, and combinations). A particular emphasis is given to the unique design of the CABS force-
fi eld, which is largely defi ned using one-dimensional structural properties of proteins, including protein sec-
ondary structure. This chapter also presents CABS-based modeling methods, including multiscale tools for 
de novo structure prediction, modeling of protein dynamics and prediction of protein–peptide complexes. 
CABS-based tools are freely available at   http://biocomp.chem.uw.edu.pl/tools      

  Key words     Protein modeling  ,   Protein simulations  ,   Force-fi eld  ,   Statistical potentials  ,   Knowledge- 
based potentials  

1      Introduction 

 In the last two or three decades, we have been witnessing incredi-
ble progress in experimental and theoretical molecular biology. 
Thanks to intensive experimental studies, especially genome proj-
ects, huge amounts of sequence data (primary structures of pro-
teins, nucleic acids, and other biomacromolecules) are now 
available. The combination of new experimental techniques and 
theoretical tools for their interpretation also provides structural 
(three dimensional) data for many biological macromolecules. 
Nevertheless, experimentally determined structures remain 
unknown for an increasing fraction of known protein sequences 
(but also other biomacromolecules). The explanation of this 
 growing gap is simple: sequencing is now easier, faster, and less 
expensive than structure determination. 
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 Deeper understanding of the molecular basis of life processes 
requires not only determination of structures of single biomacro-
molecules but also realistic pictures of their interaction with other 
biomacromolecules, mechanisms of assembly processes, and struc-
tural and dynamic properties of resulting complexes. Taking into 
consideration that we know experimental structures of only a frac-
tion of monomeric proteins, and that the estimated number of 
possible protein dimers (oligomers) is an order of magnitude larger 
than the number of monomers, it becomes obvious that structural 
biology needs strong support from theoretical studies. Effi cient 
methods for structure prediction, and modeling of dynamics and 
interaction are necessary. Many important problems of molecular 
biology can be studied using classical all-atom molecular dynamics 
(MD) methods. For very small and fast folding proteins it is now 
possible to simulate the entire folding process using superfast dedi-
cated computers [ 1 ]. For larger systems it is still beyond capability 
of the available computing technology, and the time gap is huge. 
This is the main reason for the development of new molecular 
modeling tools that can handle large systems. Simplifi ed coarse- 
grained, and thereby computationally very fast, models can be used 
for simulations of large biomacromolecules and/or for the model-
ing of long time processes [ 2 ,  3 ]. Useful coarse-grained models 
need to be of suffi cient resolution, enabling reasonable connection 
with atomistic pictures [ 3, 4 ]. The high importance of such meth-
ods has been recognized a long time ago [ 5 ], resulting in the 
plethora of new molecular modeling tools. Recently, “ the develop-
ment of multiscale models for complex chemical systems ,” a pioneer-
ing work of Karplus, Levitt, and Warshel, was awarded the Nobel 
Prize in Chemistry for 2013. 

 Several very effi cient coarse-grained protein models have been 
developed. Some of them, such as Rosetta [ 6 ,  7 ] or I-Tasser [ 8 ,  9 ], 
are targeted onto structure prediction, while others, such as CABS 
[ 10 ,  11 ] or UNRES [ 12 ,  13 ], are more universal, enabling not 
only structure modeling but also realistic simulations of the 
dynamic properties of protein systems. 

 The methods presented in this chapter are based on the CABS 
(C-Alpha, C-Beta, and Side chains) discrete representation of pro-
tein chains. Two quite fundamental features make CABS qualita-
tively different from other coarse grained models. The fi rst one is 
that the coordinates of the model chains are restricted to discreet 
positions in a simple three dimensional lattice. Lattice spacing is 
small enough to ensure good resolution of chain representation, 
and large enough to make possible predefi nition (and storage as 
integer numbers in large data tables) of all possible local conforma-
tions. This way, due to the simple computation of local moves and 
related energy changes, the Monte Carlo dynamics simulations are 
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much faster than it would be possible for otherwise equivalent con-
tinuous models. The second unique feature of CABS is its interac-
tion scheme. The force fi eld consists of knowledge-based statistical 
potentials derived from the regularities observed in the known 
protein structures. All interactions, especially those between side 
chains, are treated as context-dependent. This way complicated 
multi-body effects are encoded in pairwise potentials. The poten-
tials describing the energies of side chain–side chain interactions 
depend on the secondary structure of the interacting fragments, 
their mutual orientations and on the distance (short distance con-
tacts only are treated in the explicit fashion) between side chain 
centers. Such a context-dependent model of pairwise interactions, 
especially its dependence on secondary structure, encodes the aver-
aged effects of many physical interactions, and all these interac-
tions, including complex interactions with the solvent, are treated 
in an implicit fashion. 

 The coarse-graining level of the CABS model enables fast and 
realistic reconstruction of atom level structure representation, 
enabling effi cient multiscale modeling of protein systems [ 4 ]. The 
CABS model has proven to be a good tool for the computational 
prediction of three-dimensional protein structures, including de 
novo and comparative modeling, studies of protein dynamics and 
folding pathways, and fl exible docking. 

 This chapter is organized as follows. In the Subheading  2  we 
describe the CABS protein structure representation, its force fi eld 
and the sampling method. Special attention is given to the context- 
dependent force fi eld of the model, which is strongly dependent 
on the one-dimensional properties of protein chains, especially 
their secondary structure assignments. 

 In the Subheading  3 , we list and briefl y describe various pro-
tein modeling methods based on the CABS model with the empha-
sis on those utilizing sequence and secondary structure data only. 
These methods include publicly available modeling tools: CABS- 
fold: server for protein structure, including de novo modeling and 
comparative modeling using one or more structural analogs [ 14 ]; 
CABS-dock: server for the fl exible docking of peptides to proteins 
using no knowledge about the binding site [ 15 ,  16 ]; and pyCABS: 
software package for the simulation and analysis of long-term pro-
tein dynamics of globular proteins [ 17 ]. In the Subheading  4 , we 
present example performance of CABS-fold, CABS-dock and 
pyCABS, together with short descriptions of their input require-
ments and options. 

 Finally, the Subheading  5  provides several specifi c comments 
about the modeling results obtained using CABS-based methods, 
their further utilization, interpretation, or alternative modeling 
techniques that may enhance modeling accuracy.  
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2     Materials 

   The CABS model is a universal tool for the modeling of protein 
structure dynamics and protein molecular docking. The main chain 
of protein structure is represented by a chain of Cα-atoms and 
pseudo atoms representing the center of virtual Cα–Cα bonds ( see  
Fig.  1a, b ). The latter one is needed for the simplifi ed defi nition of 
hydrogen bonds. Side chains are represented by Cβ atoms and 
pseudo-atoms representing the centers of the remaining portions 
(where applicable) of the amino acid side chains. The CABS Cα 
trace is placed onto a lattice network with 0.61 Å spacing. This lat-
tice representation signifi cantly speeds up the Monte Carlo sam-
pling scheme when compared with continuous models of similar 
resolution. The lattice spacing of 0.61 Å enables a large set of 
allowed orientations of Cα–Cα virtual bonds (when a slight fl uc-
tuation of their length is allowed) and thereby eliminates any 
noticeable orientation biases that are present in simple lattice mod-
els. The average accuracy of the Cα-trace representation is about 
0.35 Å, and slightly depends on the secondary structure patterns 
of the proteins studied ( see  Fig.  1c ).

      The force fi eld of CABS is constructed from knowledge-based sta-
tistical potentials, derived from the structural regularities (and their 
relation to the amino acid sequences) seen in protein structures 
collected in databases. A large representative set has been used for 
the derivation of all potentials. The weight of various potentials is 
properly tuned by optimizing the total energy of folded structure 
and other properties of the model, for instance secondary structure 
content at folded and unfolded structures of the proteins being 
modeled. The details of the force fi eld of CABS models and the 
motivations for specifi c choices of their potentials have been 
described previously [ 10 ]. Here we outline the general ideas 
behind this force fi eld, focusing on the crucial role of secondary 
structure assignments for the model and its force fi eld. 

 Protein chain geometry in the CABS model is fully encoded 
by its Cα-trace, where positions of all Cα atoms are restricted to 
the points of the underlying cubic lattice grid. The planar angles 
between two subsequent Cα–Cα pseudo-bonds are restricted to 
values seen in protein structures. Sequence-independent and 
sequence-dependent potentials enforce distribution of this angle 
typical for the distribution seen in globular proteins. The angles of 
rotation of three consecutive Cα–Cα pseudo-bonds are similarly 
treated. This way, for instance, left-handed helix-like conforma-
tions are treated as unlike. The sequence dependence of the 
 angular potentials is not straightforward, and it does not come 
from a specifi c identity of three or four residue fragments, but 
from the predicted secondary structure which depends on much 

2.1  CABS Model: 
Coarse Grained 
Representation 
of Protein Structure

2.2  Force Field 
of the CABS Model 
with Secondary 
Structure Context- 
Dependent Statistical 
Potentials
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longer protein fragments. This way complex multibody interac-
tions are encoded in this simple potential. Positions of Cβ carbons 
(not restricted to the lattice) are defi ned by the positions of three 
consecutive Cα atoms for the Cβ bound to the central Cα. These 
positions depend on the planar angles between the Cα–Cα pseudo-
bonds. Cα and Cα united atoms are treated as rigid bodies. Virtual 
united atoms, placed at the center of atom-Cα pseudo- bonds, 

  Fig. 1    Representation of a protein chain in the CABS model. ( a ) scheme showing conversion from all-atom to 
coarse-grained CABS representation, ( b ) details of CABS coarse-grained representation, ( c ) comparison of the 
C-alpha trace in experimental protein structure ( black  color) and after conversion to CABS representation 
( orange ) presented here for an example helix and beta sheet secondary structure (experimentally derived 
C-alpha coordinates of both secondary structure motifs were taken from the 2GB1 PDB fi le)       
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defi ne the positions of the main chain hydrogen bonds in the form 
of attractive, orientation-dependent contact potentials of the same 
strength for all residues belonging to the same predefi ned second-
ary structure assignment. Other hydrogen bonds have the same 
geometry, but are considered weaker, with a smaller weight factor. 
The excluded volume spheres of united Cα, Cβ atoms and hydro-
gen bonds forming pseudo-atoms are slightly smaller in the CABS 
model than the distance of a corresponding strong repulsive inter-
action in real proteins. This is necessary to enable non-perfect 
dense packing in the native-like structure of the modeled proteins. 
Positions of centers of the remaining portion of amino acid side 
chains (where applicable) are also taken from tables defi ned for 
specifi c amino acids and local angles of the Cα-trace. Interactions 
between the centers of amino acid side chains are most important 
for the performance of the CABS model. Side chains are treated as 
soft excluded volume bodies at short distances, and interacting 
through contact potential at a longer distance. The width of con-
tact distance is about 2 Å. The soft excluded volume of the side 
chains and the width of the contact range cover the potential 
problems with non-accurate representation of side chain confor-
mations, especially for larger amino acids. 

 Side chain pairwise contact potentials are crucial for the perfor-
mance of the CABS model. These statistical potentials are context 
dependent, and the strength of pairwise interactions depends on the 
mutual orientation of the interacting side chains and on the geom-
etry of the nearest fragments of the main chain backbone. Here we 
discuss and present this potential for single domain globular pro-
teins. It is important to note that the reference state in the derivation 
of CABS statistical potentials is a compact state of protein chains 
with a random sequence of the same composition as the protein of a 
given composition. Similar context-dependent potentials can be 
derived for interactions between globular proteins, transmembrane 
proteins, etc. It means that the CABS force fi eld is not easily “trans-
ferable,” it is rather “expandable” for an increasing range of mod-
eled systems. We do not consider this a strong disadvantage of 
“knowledge-based” statistical potentials. “Transferability” of “phys-
ics-based” force fi elds for reduced models is also not trivial [ 18 ]. 

 The idea of the context-dependent classifi cation of side chain 
contacts is illustrated in Fig.  2  and numerical data are presented in 
Tables  2 – 10 . The mutual orientation of the contacting side chains 
is divided into three ranges: near-antiparallel, intermediate, and 
near parallel (Fig.  2a ). The local geometry of the main chain of a 
contacting residue is classifi ed in the CABS force fi eld into two 
classes: compact and expanded. This way the secondary structure 
prediction (or assignment) defi nes the specifi c energy of side chain 
interactions. For example: an antiparallel contact of two residues 
with a compact geometry of the corresponding elements of the 
main chain backbone usually means a helix-helix contact, while a 
parallel contact of side chains from two expanded elements of the 
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main chain usually comes from two adjoined beta strands. The 
context-dependent contact potentials of the CABS force fi eld dif-
fer qualitatively from the other potentials (probably all of them) 
used in protein modeling. In the majority of these potentials the 
contact energy for two oppositely charged amino acids will suggest 
weak attractive interactions of their side chains. In the CABS force 

  Fig. 2    Types of protein structure arrangements used in the defi nition of sequence- dependent pairwise poten-
tials. ( a ) Three types of mutual orientations of the side chains (antiparallel, medium-intermediate, parallel). ( b ) 
Two types of main chain conformations (helical-compact and expanded-beta). Numerical values of the poten-
tials are given in Tables  2 – 10        
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fi eld (for single-domain globular proteins) interactions of such 
pairs of residues are treated as strongly attractive for a parallel contact 
and strongly repulsive for an antiparallel contact of the side chains. 
Since the solvent in the CABS model force fi eld is treated in a 
strictly implicit fashion (which is also the case for the majority of 
other statistical potentials) such orientation-dependent strength of 
interactions is not surprising. Charged residues are usually located 
on the surface of a protein globule, where they cannot form anti-
parallel contacts. If they are located (which is rather rare) more in 
the center of a globule, it is most likely that it is a binding site, 
where charged residues are on the surface of the binding site. Also 
in this case the parallel contact is more probable.

   As discussed above, the predicted (or assigned) secondary 
structure in a three-state version (helix, beta, other) is crucial for 
CABS force fi eld statistical potentials. This unique feature of the 
CABS coarse-grained modeling approach is a strength of the 
model, with very few drawbacks. The model has proved to be very 
effi cient in de novo protein structure assembly simulations, com-
parative modeling support, modeling of protein dynamics and 
interactions with other biomolecules. In the last case the force fi eld 
needs to be properly expanded, including for example contact 
potentials between side chains from two protein (peptide) chains. 
Due to the qualitative difference between CABS side chain contact 
potentials and other statistical potentials, we decided to attach its 
numerical data presented in nine tables (numbered from Tables  2 –
 10 ). Two-digit accuracy is suffi cient for most applications of this 
potential. 

 The contact potentials data (Tables  2 – 10 ) are potentially very 
useful not only in coarse-grained modeling (with model resolution 
similar to that assumed in the CABS model) but also as a source for 
defi nition/sorting of many other one-dimensional, two- dimensional, 
and three-dimensional protein features. For instance it is possible to 
use the numerical data of this potential for the classifi cation of burial 
patterns of protein sequences. The potential can also be used in effi -
cient threading algorithms, and in other structural bioinformatics 
methods. Additional comments on the meaning of the tables and 
accessibility in software packages are provided in  Note    1  .  

   The Monte Carlo sampling scheme of CABS is a series of local, 
randomly selected, small conformational transitions onto the 
underlying lattice. The set of local changes of model chain coordi-
nates includes single Cα moves ( see  Fig.  1b ), moves of two Cα 
fragments, and rarely attempted small distance moves of longer 
fragments of the model chains. Chain ends are treated separately. 
Due to lattice discretization of the Cα coordinates (800 of allowed 
orientations of Cα–Cα pseudo-bond vectors) the possible local 
moves could be stored in large data tables and thereby local moves 
do not require any costly computations of trigonometric functions. 
Local moves require just simple random sorting of predefi ned 

2.3  Sampling 
Schemes
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sequences of integer numbers. This way the discrete (restricted to 
a high coordination lattice) representation of chain conformations 
makes the CABS model computationally much faster in compari-
son to otherwise equivalent continuous coarse-grained models. 
The geometry of the main chain defi nes the positions of the side 
chain united atoms (not restricted to the lattice). A library of these 
positions is predefi ned by sorting and averaging PDB structures 
for all possible amino acid sequences of the central and two neigh-
boring elements of the Cα–trace. All random moves are accepted 
according to the Metropolis criteria. Since the randomly selected 
moves mimic fast local conformational fl uctuations of the modeled 
protein chains, their long series provides a realistic picture of the 
long time dynamics of modeled systems. CABS-based modeling 
schemes can use simple MC dynamics simulations at a given tem-
perature, MC simulated annealing, and various versions of Replica 
Exchange (REMC) simulations. The CABS model (MC dynamics 
or REMC) could be easily combined with all-atom molecular 
dynamics. Several simple algorithms, classical and specifi cally tar-
geted onto CABS representation, can be used for the fast and real-
istic reconstruction of atomistic representation, suitable for classical 
MD simulations ( see   Note    2  ). This way CABS can be used as a very 
effi cient engine in multiscale protein modeling schemes. The basic 
structure of multiscale modeling procedures with CABS is illus-
trated in Fig.  3 . Some helpful tools for the analysis of derived mod-
els and CABS trajectories are presented in  Notes    3   and   4  .

3         Methods 

 In the last several years, CABS coarse-grained protein models have 
become a key component in various multiscale modeling methods. 
Those methods generally follow a similar pipeline merging CABS 
simulations (usually the fi rst modeling step) and all-atom modeling 
(fi nal modeling steps), as presented in Fig.  3 . 

 The CABS-based modeling methods have three application areas:

    1.    Protein structure prediction: homology modeling [ 14 ,  19 – 21 ], 
ab initio prediction of small proteins [ 14 ], or protein  loops/
fragments [ 22 – 24 ] (in ref. [ 23 ] also in combination with the 
classical Modeller tool [ 25 ]), modeling based on sparse experi-
mental data [ 26 ].   

   2.    Prediction of protein complexes: protein–peptide [ 15 ,  16 ,  27 ] 
and protein–protein [ 28 ,  29 ].   

   3.    Effi cient simulation of protein dynamics: protein folding 
mechanisms [ 4 ,  11 ,  30 – 34 ] and fl exibility of globular proteins 
[ 35 – 38 ].     
 In all these applications, the CABS model serves as a highly 

effi cient simulation engine that allows CABS-based methods to be 
much cheaper in terms of CPU time (in comparison to classical 
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  Fig. 3    Typical stages of the multiscale modeling scheme utilizing the CABS model. The modeling input includes 
one dimensional data (protein sequence and secondary structure) and, optionally, three-dimensional data 
(e.g., distance restraints from experiment or from evolutionary analysis). Secondary structure data are required 
in a three-letter code (C, coil; E, extended; H, helix). The modeling scheme consists of three major stages: (1) 
coarse-grained modeling with the CABS model, (2) several steps of reconstruction to all-atom representation, 
and (3) all-atom modeling procedures (e.g., simulation using all-atom MD or all-atom energy scoring)       
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       Table 1  
  Performance of the CABS-based modeling methods in ab initio prediction tasks (utilizing one 
dimensional data only: protein sequence and secondary structure)   

 Method and availability  Benchmark set  Performance summary 

  Prediction of protein structure or protein fragments  

 CABS-fold server for the ab 
initio and consensus-based 
prediction of protein 
structure [ 14 ]. Available as a 
web server at:   http://
biocomp.chem.uw.edu.pl/
CABSfold/     

 Methodology validated during 
CASP competitions as one of 
the leading approaches 
[ 19 – 21 ], applied to the ab 
initio modeling of large 
protein fragments or entire 
proteins (with or without 3D 
restraints) 

 Small proteins (up to 100 
residues long) or peptides can 
be predicted with high 
accuracy (up to 2 Å) or 
medium accuracy (up to 5 Å) 

 The CABS-fold server can also be 
used to predict protein loops 
(see the performance below) 

 Method(s) for predicting 
protein loops in globular 
proteins [ 23 ] 

 From 186 experimental protein 
structures, covering all the 
structural classes of proteins, 
internal loops of various length 
(from 4 to 25 residues) have 
been removed and treated as 
unknown 

 Performance was compared with 
two classical modeling tools: 
Modeller [ 25 ] and Rosetta [ 6 ]. 
Modeller performance was 
usually better for short loops, 
while CABS and Rosetta were 
more effective for longer loops 
(resolution of such models was 
usually on the level of 2–6 Å) 

 Prediction method for protein 
loops in GPCR membrane 
receptors [ 24 ] 

 From 13 experimental GPCR 
receptor structures, 
extracellular second loops 
(between 13 and 34 residues) 
have been removed and treated 
as unknown. The benchmark 
set is available at:   http://
biocomp.chem.uw.edu.pl/
GPCR-loop-modeling/     

 Resolution of the best models 
obtained (among many others) 
was on the level of 2–6 Å, 
while the best scored models 
were on the level of 2–8 Å. 
Performance was comparable 
to that of other state-of-the-art 
methods [ 24 ] 

(continued)

modeling tools [ 35 ]), or to achieve sampling effi ciency that 
exceeds other existing approaches. For example, the CABS-dock 
method for the molecular docking of peptides to proteins enables 
docking fully fl exible peptides to fl exible receptors without prior 
knowledge of the binding site [ 15 ,  16 ]. In practice, CABS-dock 
performs simulation of coupled folding and binding during which 
peptides have a possibility to explore the entire surface of a pro-
tein receptor. Presently, there are no other simulation methods 
enabling exploration of such a large conformational space in a 
reasonable time. In contrast to CABS-dock, other state-of-the-art 
protein–peptide docking methods are restricted to a specifi ed 
binding site, or to very short peptides (2–4 amino acids, while 
CABS-dock has been successfully tested on a large set of peptides 
with 5–15 amino acids [ 15 ,  16 ]). 
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Table 1
(continued)

 Method and availability  Benchmark set  Performance summary 

 Method for protein fragment 
reconstruction [ 22 ] 

 From 20 protein structures of 
various structural classes, 
protein fragments (from 10 to 
29 residues) have been 
removed and treated as 
unknown 

 Resolution of the resulting 
models was on the level of 1.5 
and 6 Å. Performance was 
compared with SICHO [ 53 ], 
Refi ner [ 22 ], Swiss-model [ 54 ] 
and Modeller [ 25 ] methods. 
CABS, SICHO and Refi ner 
performance was usually better 
than for Swiss-model and 
Modeller 

  Protein–peptide molecular docking and binding site prediction (using no knowledge about the peptide 
structure)  

 CABS-dock method for 
molecular docking with no 
knowledge of the binding site 
[ 15 ,  16 ]. Available as a web 
server at:   http://biocomp.
chem.uw.edu.pl/CABSdock/     

 Benchmark set of nonredundant 
(<70 % sequence identity with 
respect to the receptor protein) 
protein–peptide interactions 
(108 bound and 68 unbound 
receptors) with peptides of 
5–15 amino acids [ 55 ]. The 
benchmark set is available at: 
  http://biocomp.chem.uw.edu.
pl/CABSdock/benchmark     

 For over 80 % of bound and 
unbound cases high or 
medium accuracy models were 
obtained (high accuracy: 
peptide-RMSD<3 Å; medium 
accuracy: 3 Å ≤ peptide- 
RMSD ≤ 5.5 Å; where 
peptide- RMSD is the RMSD 
to the experimental peptide 
structure after superimposition 
of receptor molecules 

 Ab initio protocol for studying 
the folding and binding 
mechanism of intrinsically 
disordered peptides [ 27 ] 

 pKID-KIX protein complex 
(pKID is a 28 residue 
disordered peptide which folds 
upon binding to the KIX 
domain) 

 An ensemble of transient 
encounter complexes obtained 
in the simulations was in good 
agreement with experimental 
results 

  Prediction of protein folding mechanisms  

 pyCABS protocols for effi cient 
simulations of long-time 
protein dynamics [ 17 ]. 
Software package available at: 
  http://biocomp.chem.uw.
edu.pl/pycabs/     

 Tested in protein folding studies 
of small (up to 100 residues 
long) globular proteins [ 4 ,  11 , 
 30 – 33 ] 

 The views of denatured 
ensembles of protein structures 
obtained in the simulations 
were in good agreement with 
the experimental 
measurements of protein 
folding [ 4 ,  11 ,  30 – 33 ] 

 Multiscale protocol merging 
effi cient simulations with 
CABS and replica exchange 
all-atom MD [ 34 ] 

 β-Hairpin from the B1 domain of 
protein G (PDB code: 2GB1, 
residues 41–56) 

 Combination of CABS and 
all-atom MD simulations 
signifi cantly accelerates system 
convergence (several times in 
comparison with all-atom MD 
starting from the extended 
chain conformation) 

Sebastian Kmiecik and Andrzej Kolinski

taner@iastate.edu

http://biocomp.chem.uw.edu.pl/CABSdock/
http://biocomp.chem.uw.edu.pl/CABSdock/
http://biocomp.chem.uw.edu.pl/CABSdock/benchmark
http://biocomp.chem.uw.edu.pl/CABSdock/benchmark
http://biocomp.chem.uw.edu.pl/pycabs/
http://biocomp.chem.uw.edu.pl/pycabs/


95

 In Table  1 , we list the CABS-based methods that enable pro-
tein structure modeling based on one-dimensional data only 
(sequence and secondary structure), together with their accessibil-
ity, references, benchmark information, and performance sum-
mary. For selected methods (CABS-fold [ 14 ], CABS-dock [ 15 , 
 16 ], and pyCABS [ 17 ]), example case studies are presented in the 
next section.

   Apart from the methods listed in Table  1 , the CABS model 
has also been used in web server tools: CABS-fl ex server for the 
prediction of protein structure fl uctuations [ 36 ,  37 ] and 
Aggrescan3D server for the prediction of protein aggregation 
properties and rational design [ 38 ] (Aggrescan3D uses the 
CABS-fl ex method for modeling the infl uence of conformational 
fl exibility on aggregation properties). The major advantage of 
the CABS-fl ex method is its effi ciency. It allows us to achieve 
similar results as with classical all-atom MD, but several thou-
sand times faster [ 35 ].  

4     Case Studies 

   The CABS-fold server for protein structure prediction operates in 
two modeling modes: consensus modeling (based on structural 
templates) and de novo modeling (based only on sequence) [ 14 ]. 
In both modes, the secondary structure is an optional input ( see  
 Note    5  ): if the secondary structure is not provided, it is automati-
cally predicted using the Psi-Pred method [ 39 ]. It is also possible 
to add distance restraints into the modeling process and to modify 
CABS simulation settings. These additional options can be accessed 
from the “Advanced options” input panel ( see  Fig.  4  presenting 
example CABS-fold screenshots).

   CABS-fold performance and the benchmark summary are 
presented in Table  1 . In Fig.  5 , we present an example modeling 
result using the de novo modeling mode and the sequence of a 
small protein domain, yeast copper transporter CCC2A (72 resi-
dues). Protein sequence and secondary structure inputs are also 
provided in the fi gure. The CCC2A protein structure has been 
solved experimentally and has a beta–alpha–beta–beta–alpha–
beta  ferredoxin- like fold (PDB ID: 1fvq). Figure  5  shows a com-
parison of the experimental and CABS-fold predicted model 
with the same fold which differ in details of secondary structure 
packing. It is worth to mention that obtaining such a modeling 
result based on protein sequence only is not trivial and possible 
(in a reasonable computational time) only using a few coarse-
grained based methods.

      The CABS-dock server for modeling protein–peptide interac-
tions [ 15 ,  16 ] enables effi cient docking search of a peptide over 

4.1  Protein Structure 
Prediction Using 
the CABS- Fold Server

4.2  Protein–Peptide 
Docking Using 
the CABS- Dock Server
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  Fig. 4    Example screenshots from the CABS-fold server. ( a ) Main page input panel. Output panels presenting: 
( b ) predicted models, ( c ) RMSD between the predicted models, ( d ) characteristics of the structure prediction 
trajectories. Selected/clicked options are marked with  orange rectangles  and  arrows        
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the entire protein receptor structure. During CABS-dock dock-
ing, the peptide is simulated as fully fl exible, while the protein 
receptor structure is also fl exible but only to a small extent. As an 
input, the CABS-dock method uses information about the pep-
tide sequence and structure of a protein receptor. The peptide 
secondary structure is an optional input ( see   Note    5  ; if not pro-
vided, the method uses the PsiPred tool [ 39 ] for secondary struc-
ture prediction). Other optional inputs include the possibility to 
assign high fl exibility for selected receptor fragments, and to 
exclude selected receptor fragments from docking search (these 
are accessible from the optional input panel, see the CABS-dock 
screenshots in Fig.  6 ).

   CABS-fold performance and the benchmark summary are pre-
sented in Table  1 . In Fig.  7 , we present an example modeling result 
obtained using the optional CABS-dock feature that allows for the 
signifi cant fl exibility of a selected receptor fragment. In the presented 
modeling case, assigning signifi cant fl exibility to the fl exible loop 

  Fig. 5    Example CABS-fold structure prediction result. The only input data: protein sequence and secondary 
structure (predicted from sequence by the Psi-pred method [ref]) are shown on the left. The experimental 
structure ( blue ) of a 72 residue protein (PDB ID: 1fvq) is superimposed on the CABS-fold predicted model 
( orange ). In comparison to the experimental structure, the CABS-fold model has the same fold and RMSD value 
is 3.7 Å       
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  Fig. 6    Example screenshots from the CABS-dock server. ( a ) Main page input panel. Output panels presenting: 
( b ) predicted models, ( c ) clustering results and analysis, ( d ) contact maps for predicted models. Selected/
clicked options are marked with  orange rectangles  and  arrows        

(which partially blocks the binding site in the unbound input form) 
was crucial for obtaining a high resolution complex model.

      The pyCABS software package [ 17 ] is dedicated to performing 
long-time simulations of small globular proteins using the CABS 
model. The possible applications include de novo folding from a 
random structure (folding mechanisms), near-native dynamics, 
unfolding processes, and long-time dynamics of unfolded structures. 

4.3  Protein 
Dynamics Using 
the pyCABS Package

 

Sebastian Kmiecik and Andrzej Kolinski

taner@iastate.edu



99

  Fig. 7    Example result of CABS-dock protein–peptide docking using the option of 
signifi cant fl exibility for the selected receptor fragment. The fi gure shows com-
parison of the CABS-dock input structure in the peptide-unbound form (colored 
in  gray , PDB ID: 2RTM) with a CABS-dock-predicted complex (in  orange ) and a 
peptide-bound experimental complex (in blue, PDB ID: 1KL3). RMSD between the 
predicted and experimental peptide structure is 2.03 Å. The fl exible loop region 
(designated to be fully fl exible during docking) is between residues 45 and 54       

The package requires the protein sequence and its secondary struc-
ture (predicted or experimentally assigned,  see   Note    5  ) and start-
ing structure(s): depending of the modeling goal, it can be a 
random structure, or a selected (e.g., native) structure. 

 pyCABS performance and the benchmark summary are pre-
sented in Table  1 . In Fig.  8 , we present an example modeling 
result from the simulation of folding of barnase globular pro-
tein. The simulation was performed in the de novo manner, 
i.e., using a random starting structure. The resulting picture of 
the folding mechanism matches well with the experimental data 
and has been described in detail in ref. [ 11 ] (the technical 
details for carrying out such a simulation using pyCABS are 
provided in ref. [ 17 ]).

5                Notes 

     1.    Tables  2 – 10  are an integral part of the CABS (and pyCABS 
[ 17 ]) software package (stored in the “QUASI3S” text fi le). 
Each of these tables is labeled by a three-letter code (like PEE, 
PCC, and PCE) whose meaning is explained in Fig.  2 . For 
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  Fig. 8    Example result from simulations of long-term protein dynamics (from a 
fully denatured to a near-native state) using the CABS model and protein 
sequence only. A simulation contact map is presented showing the key step of 
barnase folding (PDB code: 1BNR). The presented key folding step is the forma-
tion of the nucleation site. The nucleation site is formed by the following ele-
ments of secondary structure: helix 1 and beta-strands: 3 (marked by  dashed 
lines  in the contact map and colored also in  orange  in the native barnase struc-
ture, shown below). The map colors indicate contact frequency (see the legend)       

example, the PCE type of interactions occurs between amino 
acid chains forming a parallel contact (P), where the fi rst con-
tacting side chain (given in columns) is attached to a compact 
(C, most likely a helix) type of conformation and the second 
contacting side chain (given in rows) is attached to expanded 
(E, most likely beta-strand) conformation.
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               2.    The basic output of the CABS model is a trajectory in Cα 
representation. The CABS coarse-grained trajectories, or 
selected trajectory models, can be reconstructed to all-atom 
representation. The major output of the CABS-based multi-
scale methods (like CABS-fold or CABS-dock servers) is a set 
of a few models in all-atom representation (automatically 
selected and reconstructed). These methods also provide hun-
dreds (CABS-fold) or thousands (CABS-dock) of predicted 
models in Cα trajectories that may be useful in a more thor-
ough analysis of the  prediction results and reconstructed to 
all-atom resolution by the user. 

 There are many strategies for the reconstruction from the Cα 
to all-atom format; however, the method chosen should be 
insensitive to small local distortions of the C-alpha distances 
present in CABS-generated models. Based on our experience, 
we can recommend the following reconstruction protocols:

 ●    ModRefi ner package [ 40 ] for combined reconstruction and 
optimization (handles only monomeric protein chains, 
employed in the CABS-fold [ 14 ] server).  

 ●   Modeller package [ 41 ] for combined reconstruction and 
optimization (employed in the CABS-dock server, details of 
the Modeller protocol are provided in ref. [ 16 ] and the 
CABS-dock online tutorial   http://biocomp.chem.uw.edu.
pl/CABSdock/tutorial    ).  

 ●   Claessens et al. [ 42 ] or BBQ [ 43 ] approach for protein back-
bone reconstruction followed by the second rebuilding step 
(side chain reconstruction) using the SCWRL program [ 44 ]. 

 ●  The last two-step protocols require a third additional opti-
mization step, which is more demanding when BBQ is used 
for backbone reconstruction [ 45 ]. We tested the perfor-
mance of such reconstruction and fast optimization proto-
cols in protein structure prediction [ 45 ] and protein 
dynamics [ 30 ] exercises. Optimization strategies have also 
been reviewed in ref. [ 46 ].      

   3.    Reconstructed and optimized all-atom models can be assessed 
using specially designed scoring methods. An accurate scoring 
function that can discriminate near-native models, or docking 
poses, from a large set of alternative solutions is an important 
component of structure prediction methodologies [ 47 – 49 ].   

   4.    CABS modeling trajectories can be additionally analyzed using 
external tools for the structural clustering and comparison of 
protein models, e.g., the ClusCo package [ 50 ] or hierarchical 
clustering within the Bioshell package [ 51 ]. Convenient analy-
sis of protein models usually requires superimposition of the 
compared models, or entire trajectories; a useful tool for that is 
the Theseus package [ 52 ].   

Sebastian Kmiecik and Andrzej Kolinski
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   5.    The accuracy of de novo structure prediction by CABS-fold or 
CABS-dock servers depends on the accuracy of the secondary 
structure input. Small errors in the predicted secondary struc-
ture do not impose any serious problems, but it is (on average) 
safer to use underestimated ranges of regular (helices and beta 
strands) secondary structure fragments than overestimated 
ranges (for instance prediction of a single long helix for the 
fragment that forms two differently oriented helices). 
Qualitative errors of secondary structure predictions, where 
helical fragments are predicted as beta strands (or vice versa), 
are dangerous for modeling results. Fortunately, this kind of 
errors is rare for good bioinformatics tools for secondary struc-
ture prediction and could be eliminated by rejecting more 
problematic predictions.         
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Chapter 9

Assessing Predicted Contacts for Building Protein  
Three-Dimensional Models

Badri Adhikari, Debswapna Bhattacharya, Renzhi Cao, and Jianlin Cheng

Abstract

Recent successes of contact-guided protein structure prediction methods have revived interest in solving 
the long-standing problem of ab initio protein structure prediction. With homology modeling failing for 
many protein sequences that do not have templates, contact-guided structure prediction has shown prom-
ise, and consequently, contact prediction has gained a lot of interest recently. Although a few dozen con-
tact prediction tools are already currently available as web servers and downloadables, not enough research 
has been done towards using existing measures like precision and recall to evaluate these contacts with the 
goal of building three-dimensional models. Moreover, when we do not have a native structure for a set of 
predicted contacts, the only analysis we can perform is a simple contact map visualization of the predicted 
contacts. A wider and more rigorous assessment of the predicted contacts is needed, in order to build 
tertiary structure models. This chapter discusses instructions and protocols for using tools and applying 
techniques in order to assess predicted contacts for building three-dimensional models.

Key words Protein contact assessment, Contact-guided ab initio prediction

1  Introduction

In the last few years, prediction of protein residue contacts has 
shown improvement in the field of ab initio protein structure pre-
diction [1–4]. Tertiary structure predictions can benefit from the 
use of predicted contacts for many reasons. One of the most crucial 
values of contact-guided protein structure prediction has to do 
with contact connection information that can give us a better look 
at the mechanism which causes proteins to fold. For successful ab 
initio modeling using contacts, the quality of predicted contacts is 
the most important consideration because for almost all proteins, 
accurate contact predictions result in correct folds. Since the field 
of contact prediction is still developing, the question of how the 
predicted contacts can be appropriately assessed so that we can use 
them to build three-dimensional models is still subject to discus-
sion, debate and much more research. Given a set or sets of 
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predicted contacts for a protein sequence, we are exploring novel 
and potentially transformative techniques to utilize these contacts 
for building tertiary structure models for proteins. Current tech-
niques include visualization using contact maps, and evaluation 
using various measures like precision and coverage.

Those researchers exploring the task of building tertiary struc-
ture models like Rosetta [5], I-Tasser [6], and RBO-alph [7]—all 
have started to incorporate contacts to aid their methods. Those 
focusing on building 3D models primarily using predicted contacts 
have developed new methods like FRAGFOLD [2], EVFOLD [3], 
and CONFOLD [5]. For existing structure prediction systems like 
Rosetta and I-Tasser, a few predicted contacts can be used as addi-
tional information to guide the ab initio folding process. On the 
other hand, it is also important to have a decent number of con-
tacts (for example, those ranging from L/2 to L, where L is the 
length of the protein) to guide the modeling process to predict 
protein folds to facilitate tools which build models from scratch, 
like EVFOLD and CONFOLD. This second group of modeling 
tools dedicated to building models from scratch is ideal for study-
ing the quality of predicted contacts because they solely rely on 
contacts to build models, and the results are not biased by other 
prediction information such as the availability of good fragments.

Whether or not a native structure exists for a set of predicted 
contacts, a good way to evaluate the predicted contacts is to directly 
build three-dimensional models using them and observe the 3D 
models. In this chapter, we will discuss the protocols for using one 
such method, CONFOLD, available at http://protein.rnet.mis-
souri.edu/confold/. We will also discuss the available tools and 
techniques for precision and coverage calculations, including 
improved contact map visualizations. For convenience, we have 
built a web server, CONASSESS, available at http://cactus.rnet.
missouri.edu/conassess/.

2  Materials

When the true structure of a protein is known, there are widely used 
tools to evaluate predicted contacts. When no true structure exists, 
the only analysis we can perform is visualizations to check the pro-
portion of contact types and ensure a good coverage. The three con-
tact types—short, medium, and long-range—are defined using 
sequence minimum sequence separation of at least 6, 12, and 24 
residues, respectively. For instance, contacts with residue sequence 
separation more than 11 and less than 24 are defined as medium 
range contacts. Among these three contact types, long-range con-
tacts are the most important for folding purposes and are also the 
most difficult to predict [8, 9] (see Note 2). To help study the cover-
age of predicted contacts we introduce 1D visualization of the 
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contact coordination number, and to check the proportion of con-
tact types, we discuss improved contact map visualization. When the 
3D structure of the sequence is known we can simply calculate preci-
sion and coverage of a certain number of selected top contacts as a 
primary evaluation. Besides precision and coverage, other measures 
like spread [3], mean error, and Xd [10–12] are important to obtain 
a highly accurate three-dimensional fold of a protein. We will discuss 
these techniques in the following sections. All evaluation methods, 
including precision, Xd, coverage, and both 1D and 2D visualiza-
tion techniques are implemented in our CONASSESS web server.

Visualizing three-dimensional information in lower dimensions is 
challenging, but as long as we are interested in a particular aspect of 
the data, simpler visualizations in lower dimensions can be easy and 
yet effective. A simple technique for 1D representation of predicted 
residue contacts is to assign numbers to each residue so that the 
numbers represent the number of contacts that the residue is 
involved in, also known as the coordination number. For a 1D visu-
alization by showing a single character decimal number below the 
sequence, residues that are involved in less than nine contacts can be 
assigned numbers from 1 to 9, and the residues that are involved in 
more than nine contacts may be assigned a special character like “*.” 
This visualization technique can show if contacts are clustered in a 
specific region or spread around evenly, and it is effective when we 
have fewer contacts to analyze, for example L/10, L/5, L/2, L, or  
even 2L contacts, where L is the length of the protein. In addition, it 
is also convenient to compare contacts predicted by multiple sources 
(see Note 2). An example of a 1D visualization is shown in Fig. 1. 
The limitation of this visualization technique is that it becomes inef-
fective when dealing with residues with too many of predicted con-
tacts because all residues will be assigned the “*” character.

Two-dimensional visualization of contacts using contact maps 
with the help of tools like CMview [13] has been in existence for many 
decades in the field of proteomics (see Note 4). A slightly different 
version of the existing contact maps can help us differentiate long-
range contacts from others, and also compare contacts from multi-
ple sources, see Fig. 2. To separate the various contact types, different 
colors may be used for each of the three contact types. Furthermore, 

2.1  Contact 
Visualization

Fig. 1 An example 1D visualization of coordination numbers for predicted contacts. Top L/5 contacts predicted 
for the protein 1m8a, using three sources of predicted contacts (CCMPRED, PCONS-CONFUZZ, AND PSICOV), 
are compared in the lines below the sequence row. The numbers below each residue represent the number of 
contacts that the residue is involved with, such that every contact increases this number for two residues
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for each contact prediction source, separate symbols may be used. 
This allows us to conveniently compare specific contact types of dif-
ferent sources such as long range contacts predicted by two sources. 
An example of such a contact map visualization is shown in Fig. 2.

Precision and coverage are two of the most established methods for 
evaluating predicted protein contacts against a true structure. It is 
necessary to measure both precision and coverage because often 
they complement each other (see Note 6). If we evaluate just a few 
top predicted contacts and observe their high precision, it does not 
necessarily imply high coverage. Precision, as shown in Eq.  1, is 
calculated as the ratio of the number of correctly predicted contacts 
and the total number of predicted contacts. Coverage, however, 
may be calculated in three ways. The simplest technique, as shown 
in Eq. 2, is to calculate the number of predicted contacts divided by 
the total number of contacts in the native structure [10, 11, 14]. 
Coverage calculated in this way may result in a relatively smaller 
value because it is fairly difficult to precisely predict all of the (often 
redundant) neighboring contacts in the native structure.

Precision,

	
P =

+
TP

TP FP 	
(1)

where TP is true positive and FP is false positive.
Coverage,

2.2  Contact 
Evaluation

Fig. 2 Examples of contact map visualizations. Top L/2 contacts predicted for the protein 1m8a using three 
different contact prediction sources (left). Short-range, medium-range, and long-range true contacts in the 
native structure of the protein 1m8a are shown in different colors (right)
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where d is the actual distance of a contact in a native structure, and 
T is the distance threshold of the predicted contact.

Distance distribution,

	
X

Ppi Pai

did
i

= −
×=

∑
1

15

15 	
(4)

where Ppi is the fraction of predicted contacts in bin i, and Pia—
the fraction of all residue pairs in bin i.

The second method of evaluating coverage is distance distribu-
tion: Xd [10–12], measures the weighted harmonic average differ-
ence between the distance distribution of predicted contacts and 
the all-pairs (Eq. 4). Fifteen distance bins cover the range from 0 to 
60 Å. The 15 bins include ranges of distances from 0 to 4 Å, 4 to 
8 Å, 8 to 12 Å, etc. This score estimates the deviation of the distri-
bution of distances in the list of contacts from the distribution of 
distances in all pairs of residues in the protein (see Note 5). The 
Protein Structure Prediction Center sponsored by the US National 
Institute of General Medical Sciences (NIH/NIGMS) has been 
holding biannual meetings featuring preplanned Critical Assessment 
of protein Structure Prediction (CASP) experiments with specific 
goals and instructions since 1994. Their goal has been to assist in 
advancing the current state of the art in protein structure prediction 
by identifying annual progress and helping to determine where 
future effort should be most productively focused. CASP6 (2004) 
focused on precision and Xd, and the data from that experiment has 
been consistently used for contact evaluation in all the CASP com-
petitions afterwards, including the CASP10 (2012) competition. 
Marks et al. introduced another method for calculating coverage by 
calculating the spread of contacts [3]. This is computed as the mean 
of the distances from every experimental (crystal structure) contact 
to the nearest predicted contact in the 2D contact map.

The emerging success of contact prediction methods demand more 
research towards building systems that build 3D models from con-
tacts, and one such state-of-the-art method is CONFOLD [1], 
designed specifically for predicted contacts. The principal idea 
behind CONFOLD is to build models in two stages to detect self-
conflicting contacts. In the first stage, all input contacts are used to 
build 3D models and the top ranking model in this stage is checked 
to find the contacts that are not satisfied with a looser definition of 
a contact. Then the unsatisfied contacts are ignored, in the second 

2.3  Building 3D 
Models Using Contacts
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stage, as the process of building models begins again. Besides 
removing self-conflicting contacts in the second stage, predicted 
strands that are close enough are paired to form beta-sheets in 
order to improve the accuracy and quality of the models. 
CONFOLD uses an algorithm known as “distance geometry simu-
lated annealing protocol” implemented in a customized version of 
a well-established structure determination tool known as the CNS 
suite [15, 16].

For building 3D models using predicted contacts, the 
CONFOLD web server may be utilized. On a benchmark data set 
of 150 globular proteins, contacts predicted by PSICOV [17] were 
used as input to build 3D models using CONFOLD, to find the 
Pearson correlation coefficient between the precision of top L/2 
contacts and the TM-score of the best models as 0.7. This high 
correlation suggests that the folding method of CONFOLD is pri-
marily contact-guided, which is ideal for studying the folding 
information captured in predicted contacts. Unlike many other 
reconstruction tools, an important feature of CONFOLD is that it 
can accept secondary structure information (Helix and Strand pre-
dictions) along with beta sheet pairing information. This feature 
may be exploited by predicting secondary structure using a variety 
of tools in order to obtain a pool of different secondary structures, 
and then using them in conjunction with the predicted contacts. 
For building models, CONFOLD transforms the input contacts 
and secondary structures into restraints for guiding the modeling. 
In addition, the relative weights between contact restraints and 
secondary structure restraints can be adjusted, giving us more con-
trol over our model building experiments.

Besides CONFOLD, other reconstruction tools may be used 
for using contacts to build models. Fragment-based ab initio tools 
like Rosetta and FRAGFOLD [2] can improve their ab initio mod-
els using a just few residue contacts. Both ROSETTA and 
FRAGFOLD can be downloaded and run locally. The template 
modeling tool, Modeller [18], also accepts secondary structures 
and contacts as input restraints for building 3D models even 
though it is not well suited for ab initio modeling [1]. Reconstruction 
tools like FT-COMAR [19, 20] and Reconstruct [21] have shown 
state-of-the art performance with true contacts and can accept 
predicted contacts as input. However, they are not rigorously 
tested with predicted contacts.

3  Methods

To build 3D models for a given input sequence, we need to decide 
how many contacts or determine an appropriate maximum num-
ber of contacts to consider. When reconstructing using true con-
tacts, we know that this number must be at least 8 % of the native 
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contacts [22]. For predicted contacts, although current evaluations 
consider the top L/2, top L/5, and top L/10 [10, 11] (L being 
the length of the protein), the number of predicted contacts 
needed for reconstruction of a protein depends on many factors. 
These factors include (a) contact prediction method, (b) model 
building tool, (c) whether or not additional information is used for 
modeling, and also (d) the protein structure’s reconstruct-ability. 
Some recent studies have considered a range of the number of 
contacts for building models [1–3] and the authors have suggested 
using up to top L contacts.

Once the number of contacts is decided, visualization tech-
niques like 2D contact maps help to investigate the coverage and 
proportion of the three contact types (short-, medium-, and long-
range). Upon visualization, if we observe that most of the contacts 
are clustered only around a specific region of the sequence, we can 
expect the coverage to be low. Similarly, visualization can also depict 
the proportion of the three contact types. For building 3D models, 
it is better to have a mixture of all the three contact types making 
sure that at least some long-range contacts are included. In addition, 
it may be important to observe the spread of only the long-range 
contact as they are considered the most important of the three. 
When multiple methods are used for contact prediction, visualiza-
tions also help to observe the overlaps in predicted sets of contacts. 
In the case that we have the true structure, however, the selected 
number of top predicted contacts needs to be evaluated by calculat-
ing precision and coverage. In addition, to check how much folding 
information is captured by the contacts, models may be built using 
CONFOLD. Below we present the steps for contact assessment.

	 1.	Decide on a tool (or tools) for contact prediction. The results of 
searching for homologous sequences and templates may suggest 
whether a template-based method, a machine learning-based 
method like DNcon [14], NNcon [23], or SVMcon [24], a 
coevolution-based method like CCMpred [25], EPC-map [26], 
or FreeContact [27], or a hybrid contact prediction method like 
MetaPSICOV [28] or PconsC2 [29] is appropriate.

	 2.	Determine the number of contacts for assessments. Typically, 
top L/10, top L/5, top L/2, or top L may be selected.

	 3.	Visualize the predicted contacts using 1D and 2D methods, see 
Figs. 1 and 2. For a quick visualization submit the predicted 
contact to the CONASSESS web server. If contacts are pre-
dicted using multiple sources, the .RR files should be zipped 
into a single zip file and then be uploaded.

	 4.	In case a native structure is available, calculate precision, cover-
age, Xd, and mean error using Eqs. 1 through 4 and the mea-
sure spread (see Note 3).

	 5.	Build models using CONFOLD
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(a)	 (Optional) Predict secondary structure for the input 
sequence. If the sequence does not have any homologous 
sequences, machine learning tools like SSPro [30] may be 
used. On the other hand, if many homologous sequences 
exist, sequence-based tools like Psi-blast based secondary 
structure prediction (PSIPRED) [31] may be considered.

(b)	 (Optional) Predict beta sheet pairing information using the 
predicted secondary structure prediction obtained in (a).

(c)	 Submit the input sequence, predicted contacts (obtained 
in step 1), secondary structure and beta pairing informa-
tion (obtained from steps 5a and 5b above) to the 
CONFOLD web server at http://protein.rnet.missouri.
edu/confold/.

(d)	 Visualize the models by downloading the models from the 
link received in the e-mail.

4  Case Studies

One useful application of CONASSESS is to analyze predicted 
contacts when a native structure does not exist for the input 
sequence. As a case study, consider a 163 residue long CASP11 RR 
target T0763. The predicted contacts are available in a zip file pre-
loaded in Set 5 of the pre-curated examples in the CONASSESS 
web server. Assuming that we do not have a native PDB, we may 
empty the “native pdb” text field. Once the job is submitted to 
CONASSESS, it calculates the number of long-range contacts and 
different numbers of top L/10 to top 2L contacts for each of the 
predicted contacts in the submitted set. The contact map of top 
L/10 contacts, shown in Fig. 3, shows the overlap in contacts pre-
dicted by the various contact prediction groups (or predictors). 
Upon observing the visualization of coordination numbers of the 
top L/10 contacts, we notice that the contacts predicted by most 
of the groups are well distributed over the sequence, but we may 
also notice some groups whose predicted contacts are clustered in 
3 or 4 regions of the sequence. We may also guess that building 
models using such clustered contacts does not yield good models, 
and we may need to select the top L/5 or even the top L contacts 
from such predictors for model building purposes. In addition, if 
we plan to build models by combining the contacts predicted by all 
predictors, we may notice from the contact maps that the total 
number of contacts may be too many to efficiently work with if we 
select more than the top L/5 contacts.

Another important application of CONASSESS is to evalu-
ate accuracy of predicted contacts against a known native 
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structure from multiple, complementary perspectives. We may 
use contacts predicted from a diverse array of methods and read-
ily compare them. As a second case study, let us consider a 145-resi-
due protein (pdb id 1a3a) available in Set 2 of the examples in 
the CONASSESS web server. If we predict contacts from the 
sequence using three state-of-the-art approaches like CCMpred 
[25], PSICOV [17], and PconsC [32] for this protein in a 
pseudo-blind fashion, we can use CONASSESS web server to 
evaluate the accuracy of these predicted contacts using measures 
such as precision, mean error, coverage, distance distribution, 
and spread. We can then derive some interesting insights by sim-
ple visual inspections in addition to detailed, numerical data 
made available through CONASSESS web server in the form of 
tables. Fig. 4 shows a representative example for protein 1a3a. In 
this case the precision of the predicted contacts by PSICOV is 
higher compared to CCMpred or PconsC when less top ranked 
contacts are considered. However, CCMpred or PconsC tends 
to have higher precision of predicted contacts when more top 
ranked contacts are considered.

Fig. 3 An screenshot of CONASSESS server’s output contact map for the top L/10 
contacts predicted for the CASP11 RR target
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5  Notes

	 1.	Many contact prediction tools often predict many short-range 
contacts as the confident predictions ranked at the top. Many 
of these short-range contacts (contacts with small residue 
sequence separation, usually less than 6 residues) are not always 
useful if they are the only ones that are used for building mod-
els. In a set of top predicted contacts, if the proportion of 
short-range contacts is high compared to the proportion of 
long-range contacts, we may need to investigate more to find 
out if the 3D structure indeed has no (or too few) long-range 
contacts. The CONASSESS web server may be utilized to 
check the percentage of short-range contacts in a given set of 
predicted contacts.

	 2.	Many contact prediction tools may predict contacts clustered 
in only one or two specific regions of the sequence/structure 
such as for beta-sheet proteins. Predicting secondary structure 
using existing tools and visualizing the coordination numbers 
using a simple 1D technique helps to identify this so that we 
are able to include more contacts to ensure good coverage.

	 3.	Before contact assessment, make sure that the sequences of pre-
dicted contacts and the sequence of the native model are all 
same. Even if the sequences look similar, scan through the pdb 
file at least once to check (a) if the file has multiple models (b) if 
gaps appear in the residue numbering, (c) if residue insertions 
have been added, and (d) if alternate residues are being used.

	 4.	Visual comparison of contact maps can be misleading. Two 
contact maps may look similar in contact maps, but the quan-
titative evaluations can be quite different.

Fig. 4 Precision of predicted contact using three different methods at varied 
number of top ranked contacts for a representative protein (pdb id 1a3a)
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	 5.	The distance distribution score, Xd, can have negative values 
as well. This usually means that the quality of contacts is not 
good enough because values much higher than 0 usually refer 
to better contact predictions.

	 6.	It is not surprising to observe high precision values with almost 
zero coverage for some predicted contacts. For instance, if we 
are evaluating the top five predicted contacts, and they all are 
correct, we will get a 100 % precision score, but the coverage 
may be low because five contacts can be too few compared to 
the total number of contacts in the protein.
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    Chapter 10   

 Fast and Accurate Accessible Surface Area 
Prediction Without a Sequence Profi le       

     Eshel     Faraggi     ,     Maksim     Kouza     ,     Yaoqi     Zhou     , and     Andrzej     Kloczkowski      

  Abstract 

   A fast accessible surface area (ASA) predictor is presented. In this new approach no residue mutation pro-
fi les generated by multiple sequence alignments are used as inputs. Instead, we use only single sequence 
information and global features such as single-residue and two-residue compositions of the chain. The 
resulting predictor is both highly more effi cient than sequence alignment based predictors and of compa-
rable accuracy to them. Introduction of the global inputs signifi cantly helps achieve this comparable accu-
racy. The predictor, termed ASAquick, is found to perform similarly well for so-called easy and hard cases 
indicating generalizability and possible usability for de-novo protein structure prediction. The source code 
and a Linux executables for ASAquick are available from Research and Information Systems at   http://
mamiris.com     and from the Battelle Center for Mathematical Medicine at   http://mathmed.org    .  

  Key words     Accessible surface area  ,   Protein structure  ,   Sequence only prediction  

1       Introduction 

 Accessible surface area (ASA) has played a crucial role in 
understanding biological function and genome relationships. The 
reason is that on the molecular level interactions are mostly limited 
to regions in the protein that are accessible to solvent or other 
molecules. Hence, ASA serves as a good indicator whether a given 
genetic or protein sequence region can potentially interact with 
other molecules, i.e., be involved in protein interactions and hence 
participate in biological function. Specifi c targeting of such genetic 
regions promises great hope for the advancement of medicine and 
biological understanding. Predicting ASA for a given protein 
sequence helps in fi nding these regions. 

 The ASA plays an important role in the stability, aggregation, 
enzyme activity, and binding affi nity of proteins. With the help of 
the ASA, protein stability can be investigated by analyzing the 
unfolding transition as monitored by difference in the ASA between 
the denatured and folded state of a protein [ 1 ]. Exposure of 
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 hydrophobic residues has been shown to facilitate the protein 
aggregation and fi bril formation linked to different aggregation-
related diseases such as Alzheimer’s and Parkinson’s diseases [ 2 ,  3 ], 
Menkes disease [ 4 ], and amyotrophic lateral sclerosis [ 5 ]. Based on 
experimental data [ 6 ] it was suggested that the ASA of a protein 
can be used to compute its solvation free energy [ 7 ]. The free 
energy of protein solvation has been shown to be strongly corre-
lated with the ASA in a continuum approach [ 8 ,  9 ]. Simple linear 
relationship between solvation free energy and ASA has been used 
in developing fast implicit solvent models [ 10 ,  11 ]. 

 When protein structure is available, all-atom models [ 12 – 15 ] 
and analytical methods [ 16 ,  17 ] have been used to compute 
ASA. However, the number of protein structures solved experi-
mentally by X-ray crystallography and NMR and deposited in the 
Protein Data Bank [ 18 ] is about 114,000 (as of January of 2016), 
while the number of known protein sequences reached 80 millions 
in 2014 [ 19 ]. The number of protein sequences continues to grow 
with remarkably faster rate than the number of protein structures 
deposited in PDB. The widening gap between protein sequences 
and structures solved experimentally motivates the prediction of 
ASA from the protein sequence. 

 Marsh and Teichmann [ 20 ] studied the role of the relative sol-
vent ASA in the monomeric state in predicting the magnitude of 
binding-induced conformational changes. The study indicated 
that relative solvent ASA of monomer protein is strongly corre-
lated with its fl exibility and conformational changes upon binding. 
It has been found that the larger the relative solvent ASA the larger 
its conformational changes upon binding and fl exibility. On the 
other hand, peptide fl exibility [ 21 ] and the population of fi bril- 
prone conformation in the monomeric state [ 22 ,  23 ] have been 
shown to be one of the main factors governing fi bril formation 
times. These results not only suggest that ASA plays key role in 
docking of proteins, but also might open new routes to understand 
the docking and aggregation of proteins just by looking at the sol-
vent ASA of monomeric forms. 

 De novo prediction of the ASA of a protein is a challenging 
problem. Understanding the process by which the protein surface 
is predicted from its sequence has attracted attention of researchers 
for many years. Wolfgang Pauli, the 1945 Nobel Prize winner in 
Physics, claimed that “God made the bulk; the surface was invented 
by the devil” emphasizing that the behavior of atoms in the surface 
is very diffi cult to understand. 

 The ASA [ 7 ,  24 – 37 ] is defi ned as the surface area of a protein 
or residue that is accessible to a solvent and is given here in units of 
square Angstroms. First described by Lee and Richards [ 7 ], ASA is 
typically calculated using the ‘rolling ball’ algorithm [ 38 ,  39 ]. In 
this approach a computational ball is rolled on the surface of the 
protein coordinates and probes for which and how much of the 
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residues are accessible, i.e., in contact with the ball. Recently Klenin 
et al. introduced a fast analytical method to calculate the ASA using 
power diagrams [ 40 ]. Other efforts in characterizing the surface of 
proteins were also carried out [ 41 – 47 ]. Since the ASA describes 
the amount of surface a given residue has that is accessible to the 
solvent or for other intermolecular interactions, it is easy to under-
stand why the ASA is important for recognizing functional sites 
along the chain [ 48 ]. Accessibility is a prerequisite for a residue to 
be involved in external interactions. Hence knowledge of the sol-
vent exposed residues along the residue chain of the protein can 
facilitate various approaches associated with function prediction 
and targeted mutations. 

 The topic of ASA prediction has been well documented in 
many publications [ 24 ,  27 ,  28 ,  31 ,  37 ,  49 – 59 ]. Current, actively 
used methods for predicting the ASA use multiple sequence align-
ments. A computationally costly technique that grows slower by 
ever growing datasets of resolved genomes. The advent of modern 
computational power and automated processes enables signifi cant 
amounts of patient or specimen specifi c genetic sequencing. 
Moreover, researchers and clinicians may be interested in the effect 
of varying the genetic sequence. Both of these interests mean that 
in many cases one would be interested in obtaining ASA for a large 
number of genetic sequences. Hence, the amount of time each 
prediction of ASA takes may be a crucial consideration. In addi-
tion, since most methods rely heavily on mutation profi les gener-
ated by multiple sequence alignments, and since some mutated 
sequences would generate identical profi les, algorithms using only 
single sequence information may have an advantage in some cases.  

2     Materials and Methods 

 ASAquick [ 37 ] is such an algorithm. It was programmed in 
FORTRAN 90 and is constructed out of several subroutines that 
process the data, initialize the model, and train it. It is also capable 
of producing predictions from existing single models or producing 
ensemble predictions with expected deviations. Its execution is ter-
minal based. It was built on Ubuntu Linux, under the BASH envi-
ronment. It is a window-based predictor. We predict consecutively 
the ASA for all residues. We aim for a fast ASA predictor, and use 
sequence information alone. We represent the sequence in several 
ways. For a given residue we include a set number of its neighbors 
(window) and represent the residue types with a constant length 
vector according to the BLOSUM62 substitution matrix represen-
tation of residues and with physicochemical parameters [ 28 ,  31 ]. 
The fi rst representation allows for some information on the 
 mutations between residues while the second captures some of the 
chemical properties of the molecules involved. 
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 Since we do not use multiple sequence alignment profi les there 
is less information sharing between sequentially similar chains. 
Hence, we have less of a problem of over-training. Potentially one 
may consider then that a more inclusive representation of the entire 
PDB [ 18 ] will facilitate learning from as many separate instances 
and will improve the overall prediction accuracy. This is indeed 
strongly suspected and is the topic of future work. For our case 
here, to maintain a reasonable comparison with previous methods 
we use a PISCES list [ 60 ,  61 ] of non-homologous protein chains 
with resolution better than 3 Å and sequence identity lower than 
40 %. Structure fi les were downloaded for these chains from the 
PDB. This non-redundant set was 14,361 proteins in size. A con-
cern may arise here that we are using a higher sequence identity for 
clustering than is done in the training of most profi le based predic-
tors. One should realize that the common value of 25 % sequence 
identity comes about in an attempt to eliminate redundancy in the 
training sets. Since proteins with sequence identity greater than 
25 % produce similar PSSMs. Hence, using more than one such 
sequence would mean a degenerate training example. However, 
ASAquick is trained at the sequence level. At this level, training 
examples are unique at 40 % and even higher sequence identity. 

 For each residue in these chains we calculate the ASA using the 
DSSP program [ 62 ]. We then fi nd the residue-type-dependent 
minimum and maximum values and use these to linearly normalize 
the ASA to get the relative solvent accessible area (RASA) between 
− 1 (completely buried) and 1 (completely exposed). This scale 
choice was motivated by the inherent bipolarity of the neural net-
work we use; a decision that is based on our previous work in this 
fi eld [ 31 ,  63 ]. When searching for the maximum ASA we arbi-
trarily ignore the largest 1 % of values. This is done to allow for 
exceptional behavior and various mishaps. These RASA values are 
the target output for GENN, and can be transformed back to their 
corresponding ASA values. The fi nal predictor reports back the 
ASA in Angstrom squared. 

 As mentioned previously, inputs for ASAquick were chosen 
with speed in mind. Hence, no alignment profi les were used. 
Instead, each residue type is represented by seven parameters char-
acterizing their physicochemical properties, and by 20 parameters 
related to residue mutation probabilities taken from the 
BLOSUM62 matrix [ 64 – 66 ]. For a given residue we use a window 
of neighboring residues as inputs to capture the local sequential 
environment of the residue. 

 To make up for some of the information lost because of aban-
doning multiple alignments we also found the following global 
parameters to be useful: the length of the chain divided by 1000, 
the residue type composition of the whole chain (25 values), and 
the directional two-residue composition (625 values). We have 25 
residue types because we allow for the various characters reported 
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by DSSP, these include atypical residues, unknowns and chain gaps 
in the structure fi le. The output and each of the local inputs is 
stored in a separate fi le in a directory named for that chain. The 
global inputs are all stored in a single fi le in the same directory. 
Refer to examples provided with the distribution of GENN [ 67 ] 
for further information. 

 The parameters of the neural network were optimized using 
the following approach. First we tested various values for the hid-
den layer size and settled on a size of 31 nodes per hidden layer as 
a balance between speed, generalizability, and over-training avoid-
ance. We then tested the dependence of the accuracy on the input 
window size. We also used this data to analyze the benefi t of each 
of the input parameters. Refer to the original ASAquick publica-
tion for justifi cation of parameter choice. 

 The accuracy of ASAquick was tested on two different datas-
ets. In the fi rst test we randomly partition our non-redundant set 
with 14,361 proteins in two parts. The fi rst contains 5000 proteins 
and is used to train different neural network instances with differ-
ent inputs as described below. We also use a subset of this fi rst set 
for setting aside an over-protection set. The second partition con-
tains 9361 and we use this set only to test the accuracy of predic-
tion. We have found that inclusions of more proteins in the training 
set was benefi cial. We use the Pearson’s correlation coeffi cient to 
measure the accuracy. It is important to note that these correla-
tions are between the ASA and not RASA. Correlation between 
the RASA can be signifi cantly different. 

 In general we found that the prediction accuracy peaks when 
using an average of about fi ve neural networks, if global input fea-
tures are used. We also ranked the weights according to their accu-
racy on the over fi t protection set and progressively added the best 
neural networks to the ensemble. We found that in this case too an 
average of around fi ve neural networks reaches a similar maximum 
accuracy. Note that using global features not only improves the 
prediction accuracy but also allows the accuracy to reach a peak 
after a relatively small number of networks (around fi ve). In con-
trast, the predictor without global features seems to not peak even 
after 24 networks. Refer to the original publication of ASAquick 
[ 37 ] for a more complete discussion of these results. 

 Further testing was conducted on the CASP10 [ 68 ] set. We 
used the ASAquick server and the SPINE-X [ 35 ,  69 ] server to 
predict the ASA. SPINE-X has been repeatedly found to be among 
the top predictors of ASA available [ 33 ]. We fi nd that ASAquick 
with global features achieves a correlation of 0.66, while SPINE-X 
achieves a correlation coeffi cient of 0.71. Among the proteins in 
the CASP competition one subset of proteins are known as “hard 
targets.” For the hard targets in CASP10 we fi nd that the ASAquick 
correlation for ASA prediction is 0.66, while for SPINE-X the cor-
relation coeffi cient is 0.68. The difference between sequence-based 
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and profi le-based predictions is almost completely erased when 
considering proteins with no experimentally solved structures of 
homologs. 

 To further test the accuracy of ASAquick and its usefulness for 
harder targets we randomly selected 500 protein chains from PDB 
chains clustered at 25 % sequence identity. This set of 500 proteins 
has approximately 112,000 residues. For each one of these pro-
teins we calculated a prediction using ASAquick and using 
SPINE-X. For each protein we also ran a BLAST search against the 
PDB and calculated the product of the top fi ve e-values excluding 
the query protein. This measure, the e-value product, allows us to 
quantify the amount of similar sequences with a structure depos-
ited in the PDB. Those query proteins with many similar sequences 
in the PDB will have an e-value product much smaller than one, 
while those with few homologs will have a value of order one or 
greater. We found that for proteins with similar sequence deposited 
in the PDB, a consistent advantage for using SPINE-X and multi-
ple alignments approaches over ASAquick is evident. However, as 
we move towards harder and harder targets, we found many cases 
where using a pure sequence approach is advantageous and on 
average both perform similarly [ 37 ]. It is interesting to note that 
the pure sequence approach seems more useful for improving the 
MAE than the correlations. 

 As we described at the onset, one reason for designing 
ASAquick was to drastically increase the speed of predictions. 
Indeed, analysis on the time it takes to generate a prediction was 
carried out. It was found that ASAquick takes less than a second to 
produce a prediction on a single Intel Xeon E5410 at 2.33 GHz 
processor. On the other hand, it was found that SPINE-X takes 
considerably more time. Since the major bottleneck for producing 
prediction in SPINE-X is the generation of the profi le, by default 
SPINE-X attempts to use four processors to carry out this job. It 
was found that for a protein for which ASAquick needs less than a 
second and a single processor, SPINE-X needs over 2 min and four 
processors to complete the job. Hence, ASAquick reduces the time 
and resources necessary to get a prediction by almost three orders 
of magnitude.  

3     Notes 

     1. Source and Availability     ASAquick was implemented using 
GENN [ 67 ], a general neural network designed to train on ad-hoc 
data. GENN can take any numerical input/output problem and 
prepare a corresponding, non-memorizing, model representation. 
Data can be organized in fi les containing individual instances or a 
collection of ordered instances where each line is an individual 
input/output target. Running ASAquick requires supplying a 
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sequence fi le in the FASTA format. A few Perl wrappers then take 
this sequence and quantify them to use as input features for the set 
of optimized weights. Because of the modularity of GENN, modi-
fi cations and additions to this approach can be easily implemented. 
GENN and ASAquick with helpful documentation and examples 
are available from Research and Information Systems at   http://
mamiris.com    , from the Battelle Center for Mathematical Medicine 
at   http://mathmed.org    , and by contacting the authors.   
   2. License     The license for both GENN and ASAquick is available 
from a fi le called “LICENSE” in their respective directory. It 
allows for academic users the opportunity to use and modify it 
freely with proper citations while retaining some rights for com-
mercial use.   
   3. Installation     To install ASAquick for full functionality one 
should install GENN by: (1) Download the tar gzipped archive 
fi le, (2) Uncompress it:  tar -xzf GENN+ASAquick.tgz , (3) Go to 
the GENN directory:  cd GENN+ASAquick , (4) And install:  ./
install . If one wishes to only use ASAquick for several predictions, 
one may simply type  ./ASAquick your-fasta-fi le , however, you will 
need to copy the contents of the ASAquick bin directory to your 
main bin directory so these scripts are found during the ASAquick 
run. To install GENN you must have gfortran, sed, and bc. Type 
these at a BASH terminal prompt to see if you have them or how 
to get them. Further information is available in the “README” 
fi les that are packed with the distribution.   
   4. Usage     To run ASAquick use  ASAquick your-fi le  where  your-fi le  
is either a fasta fi le or a dsspget [ 67 ] fi le. dsspget is a personal sys-
tem of recording the crystallographer index, amino acid type, 
8-state-dssp-ss, 3-stat-dssp-ss, ASA, phi, psi from a given PDB fi le. 
You can make such a fi le from a PDB fi le using pdb2dsspget.pl, or 
from a fasta fi le using fasta2dsspget.pl. In the second case arbitrary 
values are used for the unknown structural values. Both programs 
are provided with the distribution and should be in your /bin/ 
and ready to use if the installation was completed successfully. For 
the usage of GENN, refer to the original publication [ 67 ].   
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    Chapter 11   

 How to Predict Disorder in a Protein of Interest                     

     Vladimir     N.     Uversky      

  Abstract 

   Currently available computational tools, which are many, provide a researcher with the multitude of 
options for prediction of intrinsic disorder in a protein of interest and for fi nding at least some of its 
disorder- based functions. This chapter provides a highly subjective guideline on how not to be lost in the 
“dark forest” of available tools for the analysis of intrinsic disorder. By no means it gives a unique pathway 
through this forest, but simply presents some of the tools the author uses in his everyday research.  

  Key words     Intrinsically disordered protein  ,   Protein function  ,   Prediction  ,   Posttranslational modifi ca-
tion  ,   Protein–protein interaction  

1      Introduction 

 The existence of intrinsic disorder in proteins is not an alien idea 
anymore, although it contradicts the classical protein sequence–
structure–function paradigm, where the “lock-and-key” model is 
used to explain how a protein can achieve its biological function via 
folding into a unique, highly structured state determined by its 
amino acid sequence [ 1 ]. Intrinsically disordered proteins (IDPs) 
or hybrid proteins containing ordered domains and intrinsically 
disordered regions (IDRs) are highly abundant in nature. In fact, 
all proteomes of organisms in all kingdoms of life and all viral pro-
teomes analyzed so far have noticeable amounts of IDPs and 
IDPRs [ 2 – 8 ]. Furthermore, noticeably less than 30 % of the crystal 
structures in the Protein Data Bank (PDB) are completely devoid 
of disorder [ 9 ]. 

 Unlike ordered proteins, whose 3D structure is relatively sta-
ble and whose Ramachandran angles vary only slightly around 
their equilibrium positions with occasional cooperative conforma-
tional switches, IDPs/IDRs, being biologically active, fail to form 
specifi c 3D structures and exist as highly dynamic structural 
ensembles, either at the secondary or at the tertiary level [ 5 ,  6 , 
 10 – 15 ]. It is recognized now that IDPs/IDRs may contain 
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collapsed disorder (where the intrinsic disorder is present in a 
molten globular form) and extended disorder (where intrinsic dis-
order is present in a form of random coil or pre-molten globule) 
under physiological conditions in vitro [ 5 ,  14 ,  16 ]. It was also 
pointed out that beside completely ordered and disordered 
regions, protein might contain regions of semi-disorder, i.e., frag-
ments that have ~50 % predicted probability to be disordered or 
ordered [ 17 ]. Curiously, such semi- disordered regions were 
shown to play key roles in protein aggregation and also to partici-
pate in protein–protein interactions where they undergo induced 
folding [ 17 ]. Based on the available structural data it was pro-
posed that the heterogeneous spatiotemporal structure of IDPs/
IDPRs can be described as a set of foldons, inducible foldons, 
semi-foldons, non-foldons, and unfoldons [ 18 ,  19 ]. The discov-
ery of IDPs and IDRs, in which bioinformatics played a key role, 
has signifi cantly broadened the understanding of protein func-
tionality and revealed a new and unexpected role of dynamics, 
plasticity and fl exibility in protein function. 

 In the laboratory, IDPs/IDRs can be identifi ed by the variety 
of physicochemical methods elaborated to characterize protein 
structure and self-organization [ 14 ,  20 – 24 ]. These methods 
include missing electron density in X-ray crystallography maps 
[ 25 ]; NMR spectroscopy [ 14 ,  21 ,  26 – 28 ]; circular dichroism spec-
troscopy in the near-UV [ 29 ] and far-UV regions [ 12 ,  30 – 32 ]; 
optical rotatory dispersion spectroscopy (ORD) [ 12 ,  30 ]; Fourier 
transform infrared spectroscopy (FTIR) [ 12 ]; Raman spectroscopy 
and Raman optical activity [ 33 ]; fl uorescent spectroscopy [ 22 ,  34 ]; 
gel-fi ltration, viscometry, small angle X-ray scattering (SAXS), 
small angle neutron scattering (SANS), sedimentation, and 
dynamic and static light scattering [ 22 ,  34 ,  35 ]; limited proteolysis 
[ 36 – 40 ]; aberrant mobility in SDS-gel electrophoresis [ 13 ,  41 ]; 
abnormal conformational stability [ 34 ,  42 – 45 ]; H/D exchange 
[ 22 ]; immunochemical methods [ 46 ,  47 ]; interaction with molec-
ular chaperones [ 34 ]; electron microscopy or atomic force 
microscopy. 

 Importantly, the IDP fi eld originated mostly due to the bioin-
formatics that was used to transform a set of anecdotal examples of 
structure-less biologically active proteins, which were originally 
considered to be intriguing exceptions within the protein realm, 
into a very promising branch of protein science and that clearly 
showed natural abundance of IDPs/IDRs. In fact, already at the 
early stage of the fi eld, simple statistical comparisons of amino acid 
compositions and sequence complexity indicated that disordered 
and ordered regions are different to a signifi cant degree. Based on 
the analysis of 150 ID segments and comparison of these segments 
with ordered proteins it has been suggested that the amino acids 
can be grouped into order promoting (C, F, I, L, F, N, V, W, Y), 
disorder promoting (A, E, G, K, P, Q, R, S), and neutral (D, H, M, 
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T) [ 5 ]. Several subsequent studies followed up this analysis using 
increasingly larger datasets [ 48 – 51 ]. In addition to the fi rst-order 
statistics, recent studies also addressed higher-order patterns in 
amino acid sequence space and analyzed the space of various physi-
cochemical properties [ 52 ], confi rming the existence of several 
biases in IDP sequences. The mentioned sequence biases were 
exploited to develop a multitude of IDP/IDR predictors. Various 
computational tools for evaluating propensity of a given protein 
for intrinsic disorder were described in several reviews [ 53 – 59 ]. 

 Another important side of computational analysis of intrinsic 
disorder is related to its applicability for fi nding of potential func-
tional regions. Since short regions of predicted order embedded 
into the longer regions of predicted disorder were shown to cor-
respond to binding sites that fold upon complex formation [ 60 , 
 61 ], several specialized tools to fi nd short regions that undergo 
disorder-to-order transitions on binding (known as Molecular 
Recognition Features, MoRFs) were developed [ 61 – 64 ]. 
Alternative and complementary models of MoRF-like interactions 
are the Short Linear Motif (SLiM) or Eukaryotic Linear Motif 
(ELM) based on sequence motifs that are recognized by peptide 
recognition domains [ 65 ]. A different approach is taken by the 
ANCHOR, which identifi es segments of disordered regions that 
are likely to fold in conjunction with a globular binding partner 
[ 66 ,  67 ]. Also, one of the chapters in this book describes a novel 
computational method DisoRDPbind for high‐throughput predic-
tion of multiple functions of disordered regions that can be used to 
predict the RNA‐, DNA‐, and protein‐binding residues located in 
IDRs in the input protein sequences [ 68 ]. 

 Finally, it has been reported that sites of the enzyme-catalyzed 
posttranslational modifi cations, such as phosphorylation [ 69 ], 
acetylation, methylation, and ubiquitination [ 70 ], are commonly 
located within the IDRs. Based on these observations, correspond-
ing computational tools were developed. For example, DisPhos 
(Disorder-enhanced Phosphorylation predictor) can effi ciently 
fi nd IDR-located phosphorylation sites with the accuracy of 76 % 
for serine, 81 % for threonine and 83 % for tyrosine (83). Recently, 
a novel tool has been developed, which is a unifi ed sequence-based 
predictor of 23 types of PTM sites [ 70 ]. 

 This chapter represents an update of an article published in 
2007 [ 71 ], with the major focus on the effi cient analysis of the dis-
order status and disorder-based functionality in the individual pro-
tein. It is recommended to use described techniques for the analysis 
of any protein of interest, since it typically provides important infor-
mation that can to better understand and interpret experimental 
data, to classify proteins and to understand their functionalities. 
Over the past few years, the disorder predictions aided in structural 
characterization of the retinal tetraspanin [ 72 ], nicotinic acetylcho-
line receptor [ 73 ], DBE [ 74 ], proapoptotic BH domain-containing 
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family of proteins [ 75 ], transcriptional corepressor CtBP [ 76 ], 
Notch signaling pathway proteins [ 77 ,  78 ], proteins associated with 
cancer [ 79 ] and cardiovascular disease [ 80 ], signaling proteins [ 79 ], 
transcription factors [ 81 ], PEST proteins [ 82 ], histones [ 83 ,  84 ], 
ribosomal proteins [ 85 ], various viral proteins [ 86 – 92 ], serine/
arginine-rich splicing factors [ 93 ], partners of 14-3-3 proteins [ 94 ], 
nucleoporins [ 95 ], and many other proteins. 

 Currently, numerous computational tools are available for pre-
diction of both the intrinsic disorder propensity of a protein of 
interest and for fi nding at least some of its disorder-based func-
tions. Techniques represented in this chapter are the tools rou-
tinely utilized in my laboratory for the analysis of intrinsic disorder 
in various proteins. By no means, selection of these tools is related 
to their superiority over many other computational techniques. 
Being used on a daily basis, they are techniques of “convenience” 
and “habit”. Therefore, presented below is a highly subjective 
guideline on how to get some useful structural and potential func-
tional information about a query protein based on its amino acid 
sequence alone.  

2    Materials 

     1.    The UniProt database is described in ref. [ 96 ] and is available 
from   http://web.expasy.org    .   

   2.    The database of experimentally characterized disordered pro-
teins, DisProt, is available from   http://www.disprot.org    . This 
database is described in refs. [ 97 ,  98 ].   

   3.    Composition profi ler is available from   http://www.cprofi ler.
org/     and is described in ref. [ 99 ].   

   4.    PONDR ®  VLXT predictor is described in ref. [ 48 ] and is avail-
able from   http://www.pondr.com/     and from   http://www.
disprot.org/metapredictor.php    .   

   5.    PONDR ®  VL3 is described in ref. [ 100 ] and is available from 
  http://www.pondr.com/     and from   http://www.disprot.org/
metapredictor.php    .   

   6.    PONDR ®  VSL2 is described in refs. [ 101 ,  102 ] and is available 
from   http://www.pondr.com/     and from   http://www.dis-
prot.org/metapredictor.php    .   

   7.    The metapredictor PONDR-FIT is described in ref. [ 103 ] and is 
available and from    http://www.disprot.org/metapredictor.php    .   

   8.    CH-plot predictor is available from   http://www.pondr.com/    . 
The basic algorithm of this binary classifi er is described in ref. [ 12 ].   

   9.    Another binary disorder classifi er, CDF analysis, is available 
from   http://www.pondr.com/    . This predictor is described in 
refs. [ 2 ,  104 ].   
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   10.    D 2 P 2  is the database of disordered protein predictions. It is 
described in ref. [ 105 ] and is available from   http://d2p2.pro/    .   

   11.    A database of intrinsically disordered and mobile proteins, 
MobiDB is described in refs. [ 106 ,  107 ] and is available from 
  http://mobidb.bio.unipd.it/     and via the related link at UniProt 
(  http://web.expasy.org/docs/swiss-prot_guideline.html    ).   

   12.    ANCHOR and associated with it disorder predictor IUPred 
are available from   http://anchor.enzim.hu/    . ANCHOR is 
described in refs. [ 66 ,  67 ].   

   13.    MoRFpred is described in ref. [ 64 ] and is available from 
  http://biomine-ws.ece.ualberta.ca/MoRFpred/index.html    .   

   14.    DisPhos predictor also known as DEPP ( D isorder  E nhanced 
 P hosphorylation  P redictor) is described in ref. [ 69 ] and is 
available from   http://www.pondr.com/    .   

   15.    ModPred is available from   www.modpred.org     and is described 
in ref. [ 70 ].   

   16.    STRING is available from   http://string-db.org     and via the 
related link at UniProt (  http://web.expasy.org/docs/swiss- 
prot_guideline.html    ). This database represents a Search Tool 
for the Retrieval of Interacting Genes, which provides informa-
tion on both experimentally validated and predicted interac-
tions of a query protein. It is described in ref. [ 108 ].      

3    Methods 

 The methods outlined below describe the analysis of amino acid 
sequences using the intrinsic disorder knowledge to gain structural 
and functional information related to a protein of interest. 
Although numerous predictors of intrinsic disorder are currently 
available, this chapter focuses on utilization of PONDR ®  tools and 
two databases, D 2 P 2  and MobiDB, as they cover wide range of 
potential applications of intrinsic disorder concept for structural 
and functional analysis of proteins. Obviously, this analysis could 
have been carried out with many other disorder predictors. 

   One of the specifi c features of an IDP or an IDR is the character-
istic amino-acid compositional bias with low content of order- 
promoting residues (C, W, V, F, Y, L, I, and M) compensated by 
high content of disorder-promoting residues (Q, S, P, E, K, G, 
and A [ 5 ,  48 ,  109 ]. This means the ordered or intrinsically disor-
der nature of a given protein can be guessed based on a simple 
analysis of its amino acid composition biases using the fractional 
difference in amino acid approach [ 5 ]. Here, the fractional differ-
ence is calculated as ( f ( r ) –  f  order ( r ))/ f  order ( r ), where  r  ∈{A, C, D, 
E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y},  f ( r ) is the 

3.1  Analysis 
of Protein Amino Acid 
Composition
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frequency of residue  r  in a given protein set and  f  order ( r ) is the 
frequency of residue  r  in the reference set of globular proteins, 
and plotted for each amino acid. The plotting is done using the 
Composition profi ler [ 99 ]. In the resulting graph, negative bars 
correspond to amino acids that are underrepresented in a given 
protein in comparison with the set of ordered proteins, whereas 
positive bars refl ect the relative increase in the particular amino 
acid content in a query protein. Step-by-step protocol for the use 
of the Composition profi ler is given below. 

   Start the UniProt database by typing   http://web.expasy.org/
docs/swiss-prot_guideline.html     in the Internet browser and hit 
the “List of UniProtKB/Swiss-Prot (reviewed) entries” link 
located at the top of the front page. Use the following steps to 
download sequence information in FASTA format.

    1.    In the  Search  window (located at the top of the page), type 
the protein name after  reviewed:yes  and click  Search .   

   2.    On a Search in UniProt Knowledgebase page choose a protein 
of interest from the list of hits and click corresponding link 
(which will be located in the column entitled  Entry ).   

   3.    On the left-hand side of the corresponding UniProtKB entry 
page, look for a blue bar containing link to  Sequence  and hit 
this link. In the section entitled  Sequence , click  FASTA  link 
located within the light blue box.   

   4.    Copy content of the page which includes a descriptive header 
related to your protein and a protein sequence. Keep this infor-
mation as it will be used in the subsequent analysis. This can be 
done in Notepad or Microsoft Word. A separate document for 
each protein is recommended in which all the results of differ-
ent analyses will be stored.    

         1.    Start the Composition profi ler by typing   http://www.cpro-
fi ler.org/     in the Internet browser and hit  Run Profi ler  link 
located at the top right corner of the front page.   

   2.    Paste sequence of your protein in the  Query Sample  window 
located on the left side of the window. In the  Background 
Sample  window (also located on the left side of the window) 
chose  Dataset  and select  PDB select 25  from the drop-down list. 
Find  Output Options  on the right side of the window, chose 
 Ordering  and select  Flexibility (Vihinen)  from the drop- down 
list. Click  Draw Profi le  link located in a gray bar at the bottom of 
the  Output Options  section. The resulting page will contain a 
plot showing the fractional amino acid composition of a query 
protein and a table listing statistical parameters of this analysis.   

   3.    If numerical values instead of plot are needed,  step 2  should be 
modifi ed as follows. Paste sequence of your protein in the  Query 

3.1.1  Retrieving 
Sequence Information 
from the UniProt Database

3.1.2  Applying 
Compositional Profi ler Tool 
to Obtain Fractional Amino 
Acid Composition 
of a Query Protein
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Sample  window located on the left side of the window. In the 
 Background Sample  window (also located on the left side of the 
window) chose  Dataset  and select  PDB select 25  from the drop-
down list. Find  Output Options  on the right side of the window 
and chose  Output format , where  TXT (raw data)  should be 
selected from the drop-down list. Then, chose  Ordering  and 
select  Flexibility (Vihinen)  from the drop-down list. Click  Draw 
Profi le  link located in a gray bar at the bottom of the  Output 
Options  section. The resulting page will now contain raw data in 
tabulated form, where fi rst column represents single character 
residue name, second column shows calculated values of the frac-
tional difference, and the third column gives errors.   

   4.    To obtain compositional profi le of typical IDPs (which is a 
recommended step in order to get reference plot),  step 2  
should be modifi ed as follows. In the  Query Sample  window 
located on the left side of the window chose  Dataset  and select 
 DisProt 3.4  from the drop-down list. In the  Background 
Sample  window (also located on the left side of the window) 
chose  Dataset  and select  PDB select 25  from the drop-down 
list. Find  Output Options  on the right side of the window, 
chose  Ordering  and select  Flexibility (Vihinen)  from the drop-
down list. Click  Draw Profi le  link located in a gray bar at the 
bottom of the  Output Options  section. The resulting page will 
contain a plot showing the fractional amino acid composition 
of typical disordered proteins and a table listing statistical 
parameters of this analysis.   

   5.    If numerical values instead of plot are needed,  step 3  should be 
modifi ed as follows. In the  Query Sample  window located on 
the left side of the window chose  Dataset  and select  DisProt 
3.4  from the drop-down list. In the  Background Sample  win-
dow (also located on the left side of the window) chose  Dataset  
and select  PDB select 25  from the drop-down list. Find  Output 
Options  on the right side of the window and chose  Output 
format  where  TXT (raw data)  should be selected from the 
drop- down list. Then, chose  Ordering  and select  Flexibility 
(Vihinen)  from the drop-down list. Click  Draw Profi le  link 
located in a gray bar at the bottom of the  Output Options  sec-
tion. The resulting page will now contain raw data in tabulated 
form, where fi rst column represents single character residue 
name, second column shows calculated values of the fractional 
difference, and the third column gives errors.   

   6.    To plot the compositional profi le of a query protein in com-
parison with the corresponding profi le of typical IDPs, use 
numerical data from  steps 3  and  5 . Although the order of resi-
dues you retrieved from Compositional profi ler follows the 
Vihinen’s fl exibility scale, for better visual representation, resi-
dues should be ranged as follows C, W, I, Y, F, L, H, V, N, M, 
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R, T, D, G, A, K, Q, S, E, and P; i.e., from the most order-
promoting at the left to the most disorder-promoting at the 
right ( see  Fig.  1 ).
       Fig.  1  illustrates this approach by representing the relative 

amino acid composition of human RNA-binding protein FUS 
(FUS, UniProt ID: P35637, open bars) in comparison with the 
compositional profi le of a set of typical IDPs available in the 
DisProt database [ 97 ] (black bars). This analysis clearly shows that 
FUS is enriched in major disorder-promoting residues and depleted 
in major order-promoting residues, thereby possessing amino acid 
composition close to that of typical IDPs.   

         1.    Go to the offi cial PONDR ®  site by typing   http://www.pondr.
com/     in the Internet browser. Locate and click  PREDICT 
DISORDER  link at the top left corner of the major PONDR 
page. This will bring you to the PONDR ®  working page.   

   2.    While on the PONDR ®  working page, select boxes corre-
sponding to the desired  Predictors  (VLXT, VL3-BA, VSL2, 
CDF, and Charge-Hydropathy). When Charge-Hydropathy 
box is marked, two new boxes ( From:  and  To: ) will appear. 
Leave both empty. Put  Protein name  in the space provided 
(optional). Enter  NCBI Accession Code  or  Protein Sequence  
(FASTA format or sequence only) in the corresponding boxes. 
Scroll down the page and check the box Raw Output at the 
 Output Options  section. Clicking  Submit Query  will bring 
you to the PONDR ®  results page.   

3.2  Analyzing 
Disorder Propensity 
by PONDR ®  Tools

3.2.1  Entering 
Information to the PONDR ®  
Site and Retrieving Results 
of Disorder Prediction

  Fig. 1    Compositional profi ling of an illustrative IDP, RNA-binding FUS protein 
(UniProt ID: P35637,  open bars ) in comparison with the compositional profi le of 
typical ordered proteins. The compositional profi le of typical intrinsically disor-
dered proteins from the DisProt database is shown for comparison ( black bars )       
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   3.    It is recommended to keep the content of the entire PONDR ®  
results page. Figures can be used as illustrations. Statistics section 
provides useful information on the number of residues predicted 
to be disordered, overall percent of disordered residues, number 
of disordered regions, the length of the longest disordered region 
and the average prediction score. You will fi nd here a list of 
regions predicted to be disordered. Raw output values can be 
used to plot the results for several proteins on one graph.      

       1.    Go to the offi cial DisProt site by typing   http://www.disprot.
org/     in the Internet browser. Locate and click  Disorder 
Predictors  link at left side of the major DisProt page. This will 
bring you to the page containing a table with several disorder 
predictors. Locate and click  Internal pointer to the PONDR-
FIT meta-predictor and other PONDR methods  link (which is 
the second line in the table). This will bring you to the Predict 
Disorder working page (you can also access it by typing   http://
www.disprot.org/metapredictor.php     in the Internet browser.   

   2.    While on the Predict Disorder working page, select boxes cor-
responding to the desired  Predictors  (VSL2B, VL3, VLXT, 
PONDR-FIT). Enter  Protein Sequence  in the corresponding 
box. At this page, several sequence formats are allowed, includ-
ing FASTA, EMBL, and plain sequence format. These formats 
are described at the bottom of the page. Clicking  Submit  will 
bring you to the results page.   

   3.    It is recommended to keep the content of the entire results page. 
Figure can be used as illustration. Raw output values can be found 
in links  VSL2 DATA ,  VL3 DATA ,  VLXT DATA , and  PONDR-
FIT DATA  located in the  Files used to produces this plot  sec-
tion. Note that raw PONDR-FIT data contain both disorder 
scores (third column) and errors in disorder evaluation (fourth 
column), whereas the raw PONDR ®  VSL2 in addition to the dis-
order score include annotation of a given residue as ordered (O) 
or intrinsically disordered (D) shown in the fourth column.      

       1.     PONDR  ®   scores . The PONDR ®  results page starts with the 
plot providing the distribution of PONDR ®  scores over the 
amino acid sequence. You will have three color lines there, red, 
blue, and pink, corresponding to the results for the PONDR ®  
VLXT, PONDR ®  VL3-BA, and PONDR ®  VSL2 predictions, 
respectively. In the plot generated by DisProt, the results of 
the PONDR ®  VLXT, PONDR ®  VL3, PONDR ®  VSL2, and 
PONDR-FIT predictions are shown as gray, red, blue and 
green lines, respectively. Scores above the threshold of 0.5 cor-
respond to the regions predicted to be disordered. Long disor-
dered regions (with >30 consecutive residues predicted to be 
disordered) are indicated as thick black lines. Figure  2  repre-
sents illustrative PONDR ®  plot for the intrinsically disordered 

3.2.2  Retrieving Results 
of Disorder Prediction 
from the DisProt

3.2.3  Understanding 
the Results of the PONDR ®  
Analyses
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protein FUS (UniProt ID: P35637) and clearly shows that the 
vast majorities of all three curves are located above the thresh-
old, refl ecting the fact that the FUS protein is highly disor-
dered. Raw data of these analyses are at the end of the page in 
the  PREDICTOR VALUES  section.

       2.     CDF analysis . Second plot at the PONDR ®  data page represents 
the results of CDF analysis. Remember that CDF analysis sum-
marizes the per-residue disorder predictions by plotting PONDR 
scores against their cumulative frequency, which allows ordered 
and disordered proteins to be distinguished based on the distri-
bution of the corresponding prediction scores [ 2 ,  104 ]. In this 
case, the binary ordered-disordered classifi cation of a whole pro-
tein is based on the positioning of the corresponding CDF curve 
(green curve at the screen) relative to the boundary line (thick 
black line with seven boundary points). Here, if curve is located 
below the majority of the boundary points, then entire protein 
is predicted to be mostly disordered, whereas if the CDF curve 
is above the majority of the boundary points, then the analyzed 
protein is mostly ordered. Raw data to reproduce this plot 
(results for your protein and boundary) are in the 
 CUMULATIVE DISTRIBUTION FUNCTION (CDF) 
OUTPUT  section.   

  Fig. 2    Illustrative outputs of the per-residue PONDR ®  algorithms for FUS (UniProt 
ID: P35637). Results of the protein analysis by PONDR ®  VLXT ( black solid curve ), 
VL-3B ( black dashed curve ), VSL2 ( gray curve ) and PONDR-FIT ( gray dashed line ) 
are shown. A disorder threshold is indicated as a thin line (at score = 0.5) to show 
a boundary between disorder (>0.5) and order (<0.5)       
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   3.     CH-plot analysis . The last fi gure at the PONDR ®  results page 
shows the CH-plot [ 12 ]. This plot utilizes important observa-
tion that compact and highly disordered proteins plotted in 
the CH-space can be separated from each other to a signifi cant 
degree by a linear boundary, with proteins located above this 
boundary being IDPs (red circles) while proteins located 
below the boundary line being compact (blue squares). The 
query protein is marked as a large green diamond. If this dia-
mond is found above the boundary, then the protein is disor-
dered, and if it is below the boundary, then the protein is 
compact. Raw data to build this plot (results for your protein, 
boundary as well as coordinates of sets of natively unfolded 
and ordered proteins) are in the  CHARGE-HYDROPATHY 
OUTPUT  section.   

   4.     Interpretation of PONDR  ®   data  is rather straightforward. As 
pointed above, high PONDR ®  scores (above 0.5) for all three 
predictors (VLXT, VL3-BA, VSL2, PONDR-FIT) are char-
acteristic of regions with high propensity to be disordered. 
Some peculiarities of the VLXT curve might correlate with 
protein functionality (see below). VL3-BA usually provides 
very smooth output, as it was trained on long regions of dis-
order and its raw predictions are averaged over an output 
window of length 31 to obtain the fi nal prediction for a given 
position [ 100 ]. VL3-BA is useful for the accurate prediction 
of long disordered regions. VSL2 is one of the most accurate 
stand-alone predictor of intrinsic disorder in the PONDR ®  
series. Its training set is 1,335 non-redundant protein 
sequences, containing 230 long disordered regions with 
25,958 residues, 983 short disordered regions with 9,632 
residues, and 354,169 ordered residues [ 101 ,  102 ]. Finally, 
PONDR-FIT is a metapredictor combining six individual 
predictors (PONDR ®  VLXT [ 48 ], PONDR ®  VSL2 [ 100 ], 
PONDR ®  VL3 [ 102 ], FoldIndex [ 110 ], IUPred [ 111 ], 
TopIDP [ 112 ]), which is moderately more accurate than 
each of the component predictors [ 103 ].   

   5.     Interpretation of CDF and CH-plot analyses  is straightforward 
too. It has been pointed out that sometimes these two analyses 
provide seemingly contradictory data, with CDF analysis pre-
dicting a much higher frequency of disorder in sequence data-
bases than CH-plot discrimination [ 104 ,  113 ,  114 ]. The 
reasons for this discrepancy are outlined below ( see   Note    1  ). 
Differences in predictions by these two classifi ers were sug-
gested to be physically interpretable in terms of the degree of 
protein disorder. Proteins predicted to be disordered by both 
CH-plot and CDF (i.e., polypeptide chains with high net 
charge and low hydrophobicity) are likely to be in the extended 
disorder class. Proteins predicted to be disordered by CDF, 
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but ordered by CH-plot should have properties consistent 
with a dynamic, collapsed chain and are likely to be in the col-
lapsed disorder class (i.e., molten globules), or be hybrid pro-
teins with comparable content of ordered domains and IDRs. 
Rarely, proteins are predicted to be disordered by CH-plot, 
but ordered by the CDF analysis. This may represent struc-
tured proteins with an unusually high net charge; such proteins 
are likely to exhibit salt-sensitive structures. Finally, proteins 
predicted to be ordered by both algorithms are of course likely 
to be in the well- structured class [ 104 ].       

         1.    Go to the offi cial D 2 P 2  site by typing   http://d2p2.pro/     in the 
Internet browser. Locate and click  Search  link located within 
the  Protein Search  section. This will bring you to the  Search  
page. Enter sequence of a query protein in FASTA format to 
the  Sequences  box and click  Find Proteins  link, which will 
bring you to the  Results for your sequence search  page.   

   2.    The result page contains a very useful picture that includes the 
results of the multi-tool analysis of the disorder status of the 
query protein, as well as some functional annotation. Note, 
while you are at this page, you can fi nd useful information on 
location of disordered and functional regions and PTM sites by 
placing cursor over the corresponding part of the plot. It is 
recommended to save the resulting fi gure since it can be used 
as nice illustration ( see  Fig.  3 ).

              1.    Go to the offi cial MobiDB site by typing   http://mobidb.bio.
unipd.it/     in the Internet browser. Type in the UniProt ID of 
your protein in the  UniProt Query  line and click  Search  link. 
This will bring you to the  Search  page. Locate your protein in 
the  List of Returned Results  and click the corresponding link 
containing UniProt ID of your protein. This will bring you to 
the results section, which contains a lot of information about 
the query protein.   

   2.    Alternatively, you can get an access to MobiDB directly from 
the UniProt page corresponding to the protein of interest. At 
the left-hand side of the corresponding UniProtKB entry page, 
look for a blue bar containing link to  Structure  and click this 
link. In the section entitled  Structure , locate MobiDB pointer 
and click  Search  link next to it. This will bring you to the same 
results section as above.   

   3.    The result page contains a lot of very useful information about 
the query protein that includes structural information with 
corresponding PDB IDs (if available), the results of the multi-
tool analysis of the disorder status of the query protein, as well 
as some functional annotation. Therefore, it is recommended 
to keep the content of the entire results page.      

3.3  Web-Based 
Means 
for the Visualization 
of Disorder 
Distribution 
in a Protein

3.3.1  Using D 2 P 2 

3.3.2  Using MobiDB
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       1.     Interpretation of D   2   P   2    data  is rather straightforward. In a 
visually attractive form, this database provides an access to the 
pre- computed disorder predictions [ 105 ] using outputs of 
PONDR ®  VLXT [ 48 ], two fl avors of IUPred [ 111 ], PONDR ®  
VSL2B [ 101 ,  115 ], PrDOS [ 116 ], three fl avors of ESpritz 
[ 117 ], and PV2 [ 105 ]. The visual console of D 2 P 2  is further 
enhanced by providing information on the curated cites of 
various posttranslational modifi cations and on the location of 
predicted disorder- based potential binding sites. In the corre-
sponding plots, top nine colored bars represent location of dis-
ordered regions predicted by different disorder predictors 
(Espritz-D, Espritz-N, Espritz-X, IUPred-L, IUPred-S, PV2, 
PrDOS, PONDR ®  VSL2b, and PONDR ®  VLXT, see keys for 
the corresponding color codes). Next two lines with colored 
and numbered bars show positions of predicted domains. 
Green-and-white bar in the middle of the plot shows the pre-
dicted disorder agreement between these nine predictors, with 

3.3.3  Understanding 
Outputs of D 2 P 2  
and MobiDB

  Fig. 3    Evaluation of the functional intrinsic disorder propensity of human FUS protein (UniProt ID: P35637) by D 2 P 2  
database (  http://d2p2.pro/    ). In this plot, top nine-colored bars represent location of disordered regions predicted 
by different disorder predictors (Espritz-D, Espritz-N, Espritz-X, IUPred-L, IUPred-S, PV2, PrDOS, PONDR ®  VSL2b, 
and PONDR ®  VLXT, see keys for the corresponding color codes).  Green-and-white bar  in the middle of the plot 
shows the predicted disorder agreement between these nine predictors, with  green parts  corresponding to dis-
ordered regions by consensus.  Yellow bar  shows the location of the predicted disorder-based binding site (MoRF 
region), whereas  red circles  at the bottom of the plot show location of various PTM sites       
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green parts corresponding to disordered regions by consensus. 
Yellow bar shows the location of the predicted disorder-based 
binding site (MoRF region), whereas red, yellow, orange, blue, 
and violet circles at the bottom of the plots show locations of 
phosphorylation, acetylation, glycosylation, methylation, and 
ubuquitylation sites, respectively.   

   2.     Interpretation of the MobiDB data  is rather intuitive too. The 
page starts with the general  Sequence Annotations , where 
locations of long disordered regions and structure/disorder 
information from all available sources (e.g., structural data 
from the PDB in form of NMR and X-ray structures (if avail-
able), and results of multi-tool disorder prediction) are 
shown. If several NMR (or X-ray) structures are available for 
a query protein, then data shown in this section will corre-
spond to the consensus of all NMR (or X-ray) data. Numeric 
disorder scores are shown next to the corresponding lines. 
Next line shows location of Pfam domains. This is followed 
by the  Detailed Disorder Annotations  section, which con-
tains multiple subsections showing results extracted from the 
individual PDB entries in a form of distribution of ordered 
and disordered regions. Consensus for all NMR or all X-ray 
structures is also shown. Each line is ended with the corre-
sponding numeric score. MobiDB also generates consensus 
disorder scores based on the outputs of ten disorder predic-
tors, such as ESpritz in its two fl avors [ 117 ], IUPred in its 
two fl avors [ 111 ], DisEMBL in two of its fl avors [ 118 ], 
GlobPlot [ 119 ], PONDR ®  VSL2 [ 101 ,  115 ], and JRONN 
[ 120 ] in addition to showing results of the individual predic-
tors. This is followed by the  Protein–Protein Interactions  
section that contains  Known Structural Interactors (from 
PDB)  and  Known Experimental and Database Interactors 
(from STRING)  subsections. Here known and predicted 
binding partners are listed together with their corresponding 
disorder scores. The page is concluded with the  Detailed 
Sequence Annotations  section, where the  Consensus Table  
and the  Prediction Table  shown numerically locations of 
disordered regions are located.       

   Many IDPs and IDRs are known to undergo at least partial 
disorder- to-order transitions upon binding, which is crucial for 
their functions in recognition, regulation, and signaling [ 5 ,  11 , 
 12 ,  18 ,  61 ,  62 ,  121 – 124 ]. Among these potential functional 
sites are short order-prone motifs within long disordered regions 
that are able to undergo disorder-to-order transition during the 
binding to a specifi c partner. These motifs are known as Molecular 
Recognition Feature (MoRF), and they can be identifi ed com-
putationally [ 61 ,  63 ]. 

3.4  Intrinsic 
Disorder-Based 
Functional Analyses
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       1.    Go to the offi cial ANCHOR site by typing   http://anchor.
enzim.hu/     in the Internet browser. Type in the UniProt ID of 
your protein in the  Enter SWISS-PROT/TrEMBL Identifi er 
or Accession Number  line or deposit sequence of your pro-
tein in  Or Paste the Amino Acid Sequence  window and click 
 SUBMIT  link at the bottom of page. This will bring you to the 
 Prediction of Protein Binding Regions in Disordered 
Proteins  page.   

   2.    The results page contains a self-explanatory plot with the 
results of ANCHOR analysis ( see  Fig.  4 ), a Table with localiza-
tion of predicted disorder-based binding regions, and numeri-
cal raw data.

              1.    Go to the offi cial MoRFpred site by typing   http://biomine-ws.
ece.ualberta.ca/MoRFpred/index.html     in the Internet browser. 
Deposit sequence of your protein (in FASTA format) in  (1) 
Enter protein sequence(s)  window. Enter your e-mail address 
in  (2) Provide your e-mail address  line and click  Run 
MoRFpred!  link in the  (3) Predict  line. This will bring you to 
the  MoRFpred processing page , where the information will be 
provided on you position in queue and also a link will be given to 
the  Results page . The results will be displayed there once your 
request will be completed and they will be stored on our server 
for at least 1 month. Please save this address for your reference. 
Information on the results will also be sent to your e-mail address.      

   It has been shown that intrinsic disorder prediction might help 
increase the prediction accuracy of several protein post- translational 
modifi cation (PTM) sites, including protein phosphorylation [ 69 ], 

3.4.1  Predicting 
Disorder-Based Binding 
Sites by ANCHOR

3.4.2  Predicting 
Disorder-Based Binding 
Sites by MoRFpred

3.4.3  Predicting Potential 
Phosphorylation Sites 
Using DisPhos

  Fig. 4    Prediction of potential disorder-based interaction sites human FUS protein (UniProt ID: P35637) by 
ANCHOR. The plot provides the distribution of disorder propensity (evaluated by IUPred,  red line ) and distribu-
tion of ANCHOR scores ( blue line ). In IUPred plot, residues/regions with scores >0.5 are predicted to be disor-
dered. In ANCHOR plot, residues/regions with scores >0.5 are predicted to correspond to the potential 
disorder-based binding sites. Bottom of plot represents binding regions as bars with different  shades of blue , 
with darker color corresponding to higher ANCHOR scores. This bottom graph shows regions possessing 
ANCHOR scores >0.5       
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methylation [ 125 ], and many other PTMs. A brief protocol below 
describes utilization of DEPP (or DisPhos), which uses disorder 
information to improve the discrimination between phosphoryla-
tion and non-phosphorylation sites. The retrieved prediction score 
approximates the probability that the residue is phosphorylated. 
Only residues with a prediction score >0.5 (which) are considered 
to be phosphorylated. The step-by-step protocol of DEPP analysis 
is presented below.

    1.    Go to the PONDR ®  working page and click the  DEPP 
Prediction  button. This will bring you to the DEPP working 
page. While on this page, type  Protein name  in the space pro-
vided (optional) and enter  NCBI Accession Code  or  Protein 
Sequence  (FASTA format or sequence only) in the correspond-
ing boxes. Scroll down the page and check the box Raw Output 
at the  Output Options  section. By clicking  Submit Query  but-
ton you will be forwarded to the DEPP results page.   

   2.    The top of DEPP results page represents the plot providing 
the distribution of DEPP scores over the amino acid sequence. 
You will have three types of symbols corresponding to the Thr 
(green triangles), Ser (blue squares), and Tyr residues (red 
circles) predicted to be phosphorylated. Only residues possess-
ing DEPP scores >0.5 will be shown.   

   3.    Raw data related to this analysis are at the end of the page in 
the  PREDICTOR VALUES  section. The  DEPP NNP 
STATISTICS  section provides useful information on the 
number of phosphorylated serines, threonines, and tyrosines, 
together with the total number of these residues in a given 
protein and the relative phosphorylation effi ciency. Once 
again, we  recommend you to keep the content of the entire 
DEPP results page for the future use.    

     Recently, a unifi ed sequence-based predictor of 23 types of PTM sites 
was developed [ 70 ]. This tool represents a very useful instrument for 
guiding biological experiments and data interpretation [ 70 ].

    1.    Go to the offi cial ModPred page by typing   www.modpred.org     
in the Internet browser. This will bring you to the  ModPred: 
predictor of post-translational modifi cation sites in pro-
teins  page. Deposit protein sequence in  the Paste the protein 
sequence (one at a time)  box. Find and click the  Check all  
link and then click the  Predict  link. This will bring you to the 
next page stating “ Predicting PTM sites … Please do not hit 
the 'Back' or 'Refresh' button ”. When calculations will be 
done, you will be brought to the result page.   

   2.    The results page has the  INPUT  section that provides sequence 
ID of your protein, its length, and the list of predicted PTMs. 
The  OUTPUT  section provides prediction results, where 

3.4.4  Predicting Potential 
Sites of 23 Different PTMs 
Using ModPred
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sequence is color coded to show residues predicted to be mod-
ifi ed with low confi dence (red), medium confi dence (yellow), 
and high confi dence (green), as well as residues corresponding 
to multiple PTM sites (blue). Below this annotated sequence 
there is a table that lists all prediction results. This table can be 
downloaded as a tab-delimited fi le.    

4         Notes 

     1.    The difference in the disorder prediction by CDF analysis and 
CH-plot likely results from the fact that the CH-plot is a linear 
classifi er that takes into account only two parameters of the 
particular sequence—charge and hydrophobicity [ 12 ], whereas 
the CDF analysis is dependent upon the output of the 
PONDR ®  VL-XT predictor, a nonlinear neural network classi-
fi er, which was trained to distinguish order and disorder based 
on a signifi cantly larger feature space that explicitly includes 
net charge and hydropathy [ 2 ,  104 ]. Therefore, charge-
hydropathy feature space can be considered as a subset of 
PONDR VL-XT feature space. By defi nition, CH-plot analysis 
is predisposed to discriminate proteins with substantial amounts 
of extended disorder (random coils and pre-molten globules) 
from proteins with globular conformations (molten globule-
like and rigid well- structured proteins). On the other hand, 
PONDR-based CDF analysis may discriminate all types of dis-
ordered conformations, including molten globules, pre-mol-
ten globules, and coils from ordered proteins [ 104 ].         
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    Chapter 12   

 Intrinsic Disorder and Semi-disorder Prediction 
by SPINE-D                     

     Tuo     Zhang    ,     Eshel     Faraggi    ,     Zhixiu     Li    , and     Yaoqi     Zhou      

  Abstract 

   Over the past decade, it has become evident that a large proportion of proteins contain intrinsically 
disordered regions, which play important roles in pivotal cellular functions. Many computational tools 
have been developed with the aim of identifying the level and location of disorder within a protein. In this 
chapter, we describe a neural network based technique called SPINE-D that employs a unique three-state 
design and can accurately capture disordered residues in both short and long disordered regions. SPINE-D 
was trained on a large database of 4229 non-redundant proteins, and yielded an AUC of 0.86 on a cross- 
validation test and 0.89 on an independent test. SPINE-D can also detect a semi-disordered state that is 
associated with induced folders and aggregation-prone regions in disordered proteins and weakly stable or 
locally unfolded regions in structured proteins. We implement an online web service and an offl ine stand- 
alone program for SPINE-D, they are freely available at   http://sparks-lab.org/SPINE-D/    . We then walk 
you through how to use the online and offl ine SPINE-D in making disorder predictions, and examine the 
disorder and semi-disorder prediction in a case study on the p53 protein.  

  Key words     Intrinsically disorder  ,   Semi-disorder  ,   Prediction  ,   Neural network  ,   Protein induced fold-
ing  ,   Protein aggregation  ,   SPINE-D  ,   P53  

1      Introduction 

 Intrinsically disordered proteins (IDP) and intrinsically disordered 
regions (IDR) in proteins do not fold into stable three- dimensional 
structures under general physiological conditions. Although lacking 
specifi c structures IDPs and IDRs play crucial functional roles in 
many biological processes, such as transcriptional regulation, transla-
tion and cellular signal transduction [ 1 – 8 ]. Indeed, approximately a 
third of all eukaryotic proteins have been identifi ed as including dis-
ordered regions greater than 30 residues, with 75 % of mammalian 
signaling proteins being disordered [ 9 ]. IDPs and IDRs are also 
shown to be prevalent in various human diseases including cancer, 
cardiovascular disease, and genetic diseases [ 10 – 12 ], and are sug-
gested as important targets for drug discovery [ 8 ,  13 ]. 
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 Despite of their functional and theoretical importance, 
identifying IDPs and IDRs by experiments is not an easy task. 
Lack of electron density in X-ray crystallographic studies can 
imply disorder, however, this method only works for proteins of 
relatively short disordered regions. In order to characterize pro-
teins with high levels of disorder, one needs to perform solution 
based methods, such as Nuclear Magnetic Resonance (NMR), 
circular dichroism (CD), and small angle X-ray scattering (SAXS) 
[ 8 ,  14 – 21 ]. These experimental techniques are usually costly and 
time- consuming, thus cannot be applied to large-scale protein 
analysis. This stimulates the development of high-throughput 
computational methods for predicting protein disorder. 

 Existing computational methods include amino acid propen-
sity based methods [ 22 – 25 ], machine-learning-based methods 
[ 26 – 36 ], clustering-based methods [ 37 ,  38 ], template-based 
methods [ 39 ], and meta-approaches [ 40 – 44 ]. Given the fact that 
amino acid residues in short (≤30 residues) and long (>30 resi-
dues) disordered regions show different preferences in composi-
tion of amino acids, most of the existing methods implemented 
separate predictors for short and long disordered regions from 
which the predictions were combined to yield a balanced two-state 
prediction [ 45 – 48 ]. Here we describe a single neural-network- 
based method, SPINE-D, which makes an initial three-state 
(ordered residues and disordered residues in short and long disor-
dered regions), rather than the commonly used two-state predic-
tion of disorder (ordered residues and disordered residues) [ 26 ]. 
This unique design makes SPINE-D highly accurate in detecting 
residues in both short and long disordered regions. 

 SPINE-D takes a protein sequence as input and calculates a set 
of residue-level and window-level features. Those features are then 
fed into a two-hidden-layer neural network to yield a three-state 
prediction fi rst and reduce it into a two-state prediction afterwards 
[ 26 ]. SPINE-D was trained on a large database of 4229 non-
redundant protein chains, which was randomly divided into two 
subsets for cross-validation and independent tests, respectively. We 
further tested SPINE-D on a disorder benchmark dataset by com-
paring its prediction with 11 competing methods, where SPINE-D 
yields the highest area under the curve (AUC), the highest Mathews 
correlation coeffi cient (MCC) for residue-based prediction, and 
the lowest mean square error in predicting disorder contents [ 26 ]. 
Moreover, SPINE-D was offi cially assessed to be among the best 
performing methods in the 9th Critical Assessment of Structure 
Prediction techniques (CASP9) [ 49 ]. 

 For a given protein sequence, SPINE-D can predict the probabil-
ity of each amino-acid residue in the sequence to be disordered. This 
probability prediction appears to be physically meaningful. In particu-
lar, a semi-disordered state, which is about 50 % being  disordered or 
ordered, can capture protein regions that are semi- collapsed or 
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semi-structured with intermediate levels of predicted secondary structure 
and solvent accessibility. Further investigation indicates that some 
semi-disordered regions participate in induced folding and others play 
key roles in protein aggregation [ 50 ].  

2    Materials and Methods 

   SPINE-D implements a two-hidden-layer neural network with an 
additional one-layer fi lter for smoothing the prediction. Each of 
the two hidden layers contains 51 hidden neurons and one bias, 
and the fi lter layer contains 11 hidden neurons. SPINE-D employs 
a hyperbolic activation function and a guided learning technique 
that assigns a lower weight for residues further apart in sequence 
distance within a pre-defi ned sliding window [ 51 ]. To reduce the 
fl uctuations caused by the random selection of initial weights, we 
trained fi ve independent predictors and the fi nal prediction is based 
on the average result of the fi ve predictors. 

 Given a protein sequence, an external program PSI-BLAST 
[ 52 ] is employed to generate position-specifi c substitution matrix 
(PSSM) by searching the query sequence with three iterations 
against the NCBI’s non-redundant protein sequence database. 
The PSSM is then used as input to an in-house program, SPINE-X 
[ 53 – 55 ], to predict torsion angle fl uctuation, secondary structure, 
and solvent accessibility of the query sequence. Next, SPINE-D 
calculates three sets of features: residue-level features, window- 
level features as well as one terminal tag. The residue-level features 
include representative physical parameters (7 dimensions); PSSM 
(20 dimensions); predicted secondary structure (3 dimensions); 
predicted solvent accessibility (1 dimension); and predicted torsion 
angle fl uctuation (2 dimensions). A sliding window of size 21 is 
further employed to take into account the local information around 
the residue to be predicted. The window-level features include 
amino acid composition (20 dimensions); local compositional 
complexity (1 dimension); and predicted secondary structure con-
tent (3 dimensions). The window-level features are calculated 
based on the current residue plus 15 residues on either side. The 
terminal tag (1 dimension) indicates the relative position of a resi-
due in the given sequence, i.e., fi ve residues in N-terminus are 
encoded as -1.0, -0.8, -0.6, -0.4, -0.2 and fi ve residues on 
C-terminus as 0.2, 0.4, 0.6, 0.8, 1.0 and the rest as 0.0. Overall, 
(7 + 20 + 3 + 1 + 2) *21 + (20 + 1 + 3) + 1 = 718 features per residue 
are collected and fed into a neural network to make a three-state 
prediction: ordered residue, residue in short disordered region or 
residue in long disordered region. 

 The three-state prediction is reduced to a two-state prediction 
by simply adding the probabilities in short and long disordered 
regions. A cutoff of 0.06 is chosen for assigning a binary prediction 

2.1  Methods

Intrinsic Disorder and Semi-disorder Prediction by SPINE-D

taner@iastate.edu



162

(ordered or disordered). Then the predicted probability is rescaled 
to yield a more natural separation (0.5) between ordered and disor-
dered states [ 50 ]. This is done by linearly transforming predicted 
probability from [0, 0.06] to [0, 0.5] and [0.06, 1] to [0.5, 1]. 
Finally, SPINE-D defi nes a semi-disordered state by selecting resi-
dues with rescaled probability predictions within range [0.4, 0.7]. A 
workfl ow chart of SPINE-D is shown in Fig.  1 .

      We built a large database of 4229 non-redundant protein chains 
with 1,036,634 (about 90 %) ordered residues and 103,252 (about 
10 %) disordered residues. Four thousand one hundred and seventy 
fi ve protein chains were retrieved from the protein databank [ 56 ] by 
carefully selecting X-ray structures with residues missing coordinates 
(recorded in REMARK465 section of a PDB fi le); the remaining 72 
chains were fully disordered proteins obtained from the Disprot 
database [ 57 ]. We named this database DM4229. 

 We randomly selected 3000 chains (referred to as DM3000) 
from the DM4229 database to design our neural-network predictor 
and to perform a ten-fold cross-validation test. The remaining 1229 
chains (referred to as DM1229) were used as an independent test set. 

 In addition, we prepared a benchmark database of 477 non-
redundant protein chains and named it SL477. The SL477 data-
base was built based on a refi ned Disprot database that tries to give 
reliable disorder and order contents [ 58 ]. We further selected a 
subset of 329 chains (referred to as SL329) from SL477 by remov-
ing chains with more than 25 % sequence identity to that in the 
DM4229 database. 

 We further fi ltered the DM4229 database by removing chains 
from Disprot and chains that are similar to the benchmark SL477 
set. The remaining 4080 X-ray structures (referred to as DX4080) 
were used to examine the dependence of our technique on train-
ing databases. 

 All databases are freely available on our webserver.   

2.2  Databases

  Fig. 1    Workfl ow chart of SPINE-D       
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3    Webserver 

 An online web service for predicting protein disorder using 
SPINE-D is freely available at   http://sparks-lab.org/SPINE-D/    . 

   The required input is either a protein sequence in FASTA format 
( see   Notes    1   and   2  ) or a pre-generated PSI-BLAST profile 
( see   Notes    2   and   3  ) for the query sequence. If the user chooses to 
input a protein sequence, the webserver will call PSI-BLAST to 
generate a PSI-BLAST profi le for it. On the other hand, if the user 
uploads a PSI-BLAST profi le, the webserver will skip the PSI- 
BLAST profi le generation step and use the user-provided profi le 
for the downstream prediction. It is up to the user to decide which 
fi le to input, however, using pre-calculated PSI-BLAST profi le will 
signifi cantly speed up the processing time ( see   Note    3  ). 

 The webserver also provides two optional inputs: e-mail 
address and target ID. In case an e-mail address is provided, the 
user will receive a notifi cation e-mail including a hyperlink to the 
result page once the webserver completes processing the user’s 
request. The webserver assigns a unique job ID for each prediction 
request it receives. The job ID is an integer that does not give any 
hints about what the query sequence is. The user has the option to 
enter a target ID, i.e., a name or a description for the query 
sequence, to help trace a prediction request. If provided, the target 
ID will be shown in the title of the notifi cation e-mail. Although 
the e-mail address and target ID are optional, we do recommend 
that the user provides both information, because this will help the 
user quickly fi nd the prediction result from a previously submitted 
request ( see   Note    4  ).  

   Figure  2  displays the input page of our SPINE-D webserver. To 
submit a prediction request, please follow the four easy steps below:

     1.    Enter e-mail address (recommended although optional,  see  
 Note    4  ). If provided, a notifi cation e-mail including a hyper-
link to the result page will be sent to the user once the predic-
tion is complete.   

   2.    Enter target ID (recommended although optional,  see   Note    4  ). 
If provided, the target ID will be included in the title of the 
notifi cation e-mail.   

   3.    Enter the query protein sequence. The user has two options:

   (a)    Upload a PSI-BLAST profi le ( see   Notes    2   and   3  ) by click-
ing the “Choose File” button and choosing a fi le. Once 
fi nish uploading, the fi lename will be shown on the right 
of the “Choose File” button. An example of PSI-BLAST 
profi le is available by clicking the “see example” link in 
case the user wants to know what a profi le looks like.   

3.1  Webserver Input

3.2  Submitting 
to the Webserver
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  (b)    Copy and paste a protein sequence formatted in the FASTA 
format ( see   Note    1   and   2  ) into the text fi eld. Please make 
sure that only one protein sequence is provided at a time 
and the sequence does not include any abnormal amino 
acid types ( see   Note    1  ). The “fasta format” link opens the 
Wikipedia page explaining the FASTA format.       

   4.    Click “Submit” button to submit your request. In case you 
want to clear all entered information, simply click the “Clear” 
button and everything will be removed.    

  The webserver will perform a format check on the data sub-
mitted. If the data fail the format check, the webserver will print 
out an error message; otherwise it will start to make prediction. 
The user will be redirected to a waiting page (Fig.  3 ), which shows 
the unique job ID assigned to the query (number 1 in red,  see  
 Note    4  ), the hyperlink to the result page (number 2 in red) and 
the information the user has submitted (number 3 in red). This 
waiting page will automatically refresh every 10 s until the predic-
tion is complete, then the user will be redirected to the result page. 
If an e-mail address is provided, a notifi cation e-mail will be sent to 
the user. The prediction time usually takes a couple of minutes per 
protein sequence but may take longer time depending on the size 
of the query sequence and the load of our webserver.

      Figure  4  shows a screenshot of an example webserver output page. 
The query protein sequence is arranged in multiple rows where 
each row represents one amino acid residue. The disorder predic-
tion of each residue is shown in four columns (number 2 in red):

   Column 1: index indicating the position of a residue in the 
query sequence. 

 Column 2: amino acid type of a residue. 
 Column 3: binary disorder prediction, where “D” indicates 

disordered and “O” indicates ordered. 

3.3  Webserver 
Output

  Fig. 2    Input page of SPINE-D webserver. Numbers 1–4 in  red  indicate the steps for submitting a query sequence 
to the webserver       
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  Fig. 3    Waiting page of SPINE-D webserver. Numbers 1–3 in  red  indicate the unique job ID assigned to the 
query sequence, the hyperlink to the result page, and the query information submitted       

  Fig. 4    Result page of SPINE-D webserver. Numbers 1–2 in  red  indicate the download link of the prediction 
result in plain text format, and the prediction result shown in the webpage       

 Column 4: predicted probability of a residue being disordered. 
A residue with a probability greater than 0.5 is assigned “D” (dis-
ordered) otherwise “O” (ordered). 

 A downloadable link (number 1 in red) is provided on top of 
the page in case the user needs a plain text format of the prediction 
shown in the output page.   
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4    Stand-Alone Program 

 A stand-alone program of SPINE-D is available on our web server 
page. The program can be run on a Linux based operating 
system. 

   The stand-alone program requires python 2.6+ and a Fortran 
compiler (either ifort or gfortran) ( see   Note    7  ). In addition, the 
user needs to install the following three programs:

    1.    PSI-BLAST with non-redundant protein sequences (NR) 
database. 
 ftp://ftp.ncbi.nlm.nih.gov/blast/ 

 PSI-BLAST [ 52 ] is an external program for generating 
PSSM, which is an important input for SPINE-X and SPINE-D.   

   2.    SPINE-X. 
 http://sparks-lab.org/SPINE-X/ 

 SPINE-X [ 53 – 55 ] is an internal program for predicting sec-
ondary structure, solvent accessibility and torsion angle 
fl uctuation.   

   3.    IUpred. 
 http://iupred.enzim.hu/ 

 IUpred [ 23 ] is an external program for generating features 
used in predicting torsion angle fl uctuation [ 54 ].     

 To install the stand-alone program, please follow the instruc-
tions below:

    1.    tar zxvf spinedlocal_v2.0.tar.gz 
 This command unzips the installation package into a folder 

named “SPINE-D-local.”   
   2.    cd SPINE-D-local/bin   
   3.    Edit the “run_spine-d” fi le and:

   (a)    Set the path for PSI-BLAST executable fi le.   
  (b)    Set the path for NR database.   
  (c)    Set the path for SPINE-X package.   
  (d)    Set the path for SPINE-D package.   
  (e)    Set the path of IUpred executable fi le.   
  (f)    Set the Fortran compiler by choosing either “ifort” or 

“gfortran.”   
  (g)    Set the number of cores for running PSI-BLAST.   
  (h)    Set whether or not to keep intermediate prediction fi les.       

   4.    Run a quick test to make sure SPINE-D is properly installed.
   (a)    cd ../test/   

4.1  Installation
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  (b)    sh test_example 
 This shell script runs SPINE-D on an example protein sequence 

and generates a prediction fi le named “eg.spd” in the “../
predout/” directory.   

  (c)    diff ../predout/eg.spd eg.spd         
 This command compares the prediction fi le with a standard 

fi le. The two fi les should be identical if the user has suc-
cessfully installed the SPINE-D. It should be noted that 
the result for the test sequence will be slightly different if a 
user employs a different PSSM resulted from a different 
sequence library.  

   The mandatory input fi le for the stand-alone program is a protein 
sequence in FASTA format. Optionally, the user can also provide a 
PSI-BLAST profi le. If provided, the stand-alone program will skip 
the profi le generation step, which will signifi cantly reduce the pre-
diction time ( see   Note    3  ). 

 The mandatory FASTA fi le and the optional PSI-BLAST pro-
fi le must share the same fi lename while the fi lename extension for 
the FASTA fi le and the PSI-BLAST profi le should be “.fasta” and 
“.mat,” respectively ( see   Note    5  ).  

   Please follow two steps to run the stand-alone program:

    1.    cd to-where-you-install-SPINE-D/bin/ 
 This command changes the current working directory to 

where the user installs the stand-alone executable fi les.   
   2.    ./run_spined input-fi le-path input-fi le-name 
 The stand-alone program will search in the “input-fi le-path” direc-

tory for the mandatory FASTA fi le “input-fi le-name.fasta” and 
the optional PSI-BLAST profi le “input-fi le-name.mat.” 
Depending on the input fi les provided, the program will decide 
whether or not to skip the PSI-BLAST profi le generation step. 

 Please make sure provide a unique input-fi le-name that has 
not been used before ( see   Note    6  ).     

 The stand-alone SPINE-D package allows the user to make 
disorder prediction on a set of protein sequences using a simple 
shell script. Please  see   Note    8   to learn how to set it up.  

   Once the prediction is complete, the result fi le can be found in the 
“where-you-install-SPINE-D/predout/” directory, and will be 
named “input-fi le-name.spd.” The result fi le will be in plain text 
format, one amino acid residue per row where each row consists of 
three columns: 

 Column 1: amino acid type of a residue. 
 Column 2: binary disorder prediction, where “D” indicates 

disordered and “O” indicates ordered. 

4.2  Stand-Alone 
Program Input

4.3  Running 
Stand-Alone Program

4.4  Stand-Alone 
Program Output
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 Column 3: predicted probability of a residue being disordered. 
A residue with a probability greater than 0.5 is assigned “D” (dis-
ordered) otherwise “O” (ordered).   

5    Case Study 

 The p53 protein is a famous transcription factor known as the 
“guardian of the genome” due to its critical function in regulating 
cell division, repairing damaged DNA and preventing tumor for-
mation. This protein locates in the nucleus of cells throughout the 
body, where it binds directly to DNA. When the DNA in a cell 
becomes damaged, p53 determines whether the DNA will be 
repaired or the damaged cell will self-destruct. If the DNA can be 
repaired, p53 activates other genes to fi x the damage. If the DNA 
cannot be repaired, this protein prevents the cell from dividing and 
signals it to undergo apoptosis [ 59 ]. 

 These complicated functions of the p53 protein are achieved 
by regulating a large signaling network. In fact, p53 is located at 
the center of this network and it transduces signals by physically 
interacting with a large number of proteins. p53’s ability to bind to 
numerous protein partners is given by its intrinsically disordered 
domains. The p53 protein consists of three domains: the transacti-
vation domain (p53TAD) at the N-terminal; the regulatory domain 
at the C-terminal; and the DNA binding domain in the middle. 
While the DNA binding domain is structured, the two terminal 
domains are characterized as being intrinsically disordered. These 
two disordered domains help mediate ~70 % protein–protein inter-
actions required by the p53 protein [ 60 ]. 

 Among a variety of protein–protein interactions, the p53- 
Mdm2 interaction is of special interest due to its direct relation to 
the oncogenesis. The Mdm2 protein inactivates p53 by binding 
to its transactivation domain (p53TAD). This interaction pre-
vents p53 from activating its target genes [ 60 ]. In its free form, 
p53TAD exists in equilibrium between disordered and partially 
helical conformations, whereas residues 19–25 form a stable 
amphipathic alpha-helix in the Mdm2 complex. This residual 
helicity forms the Mdm2 binding site and determines the binding 
affi nity to Mdm2 in vitro and in cells. Conserved proline residues 
(Pro12, Pro13 and Pro27) outside the Mdm2 binding site pre-
serve the defi ned levels of helicity, which is ultimately required 
for productive p53 signaling [ 61 ]. 

 Figure  5  shows the predicted disordered probability at each 
residue position in the p53 protein (Uniprot ID: P04637) by using 
our SPINE-D webserver. The red dotted line indicates a separation 
between disordered and ordered residues, where points above the 
line are predicted as disordered and points underneath are pre-
dicted as ordered. The red bar on top of the fi gure labels 7 native 
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disordered regions annotated in the Disprot database (Disprot ID: 
DP00086), including the entire p53TAD domain (residues 1–73) 
at N-terminus; 3 short disordered regions (residues 183–188, 200, 
224–227) inside the DNA-binding domain; and 3 disordered 
regions (residues 291–312, 319–323, 357–360) in the C-terminal 
regulatory domain. The disorder prediction from SPINE-D is in 
agreement with the native disorder annotation. In particular, 
SPINE-D has successfully recovered the two terminal disordered 
domains as well as the structured domain. It captures eight out of 
the nine native disordered regions; the one missing region only 
contains a single amino acid (residue 200), which is too short to 
form an order–disorder–order transition.

   SPINE-D can also predict a semi-disordered state with predicted 
probability in [0.4, 0.7]. The corresponding probability area in the 
p53 protein is highlighted in yellow in Fig.  5 . Out of the 393 resi-
dues, 98 are predicted as being semi-disordered; they form four semi-
disordered regions (labeled as purple bars) that undergo either 
disorder–order–disorder transitions or order–disorder–order transi-
tions. One semi-disordered region (residues 11–37, colored in red in 
Fig.  5b ) overlaps the Mdm2 binding site (labeled as a green bar) as 

  Fig. 5    Disorder and semi-disorder prediction on the p53 protein. ( a ) The  black line  indicates the predicted 
disorder probability at each residue position. The  red dotted  line separates the predicted disordered residues 
from the ordered residues. The  yellow  block highlights the semi-disordered residues of predicted disorder 
probability within [0.4, 0.7]. The red bars on top indicate the native disorder annotation in the Disprot database. 
The purple bars at the bottom indicate the predicted semi-disordered regions. The  green bar  indicates the 
Mdm2 binding site in the transactivation domain (p53TAD) of p53. The  blue bar  indicates the DNA-binding 
domain of p53. ( b ) The p53-Mdm2 complex (PDB ID: 1YCR). The Mdm2 protein is colored in cyan. The  red  helix 
indicates the semi- disordered Mdm2 binding site within the p53TAD. ( c ) The p53-DNA complex (PDB ID: 
1TSR). The DNA is colored in  cyan . The DNA-binding domain of p53 is colored in  blue , in which the predicted 
semi-disordered regions are colored in  red        
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well as the conserved proline residues in fl anking regions in the dis-
ordered p53TAD domain. This is in agreement with the fi nding that 
the binding site is semi-structured in its free form and folds into a 
alpha-helix upon binding to the Mdm2 protein [ 61 ], and that the 
proline residues are important in maintaining certain extent of disor-
der within p53TAD to temper affi nity for Mdm2 [ 62 ]. The other 
three semi-disordered regions (residues 115–122, 175–192, 223–
228, colored in red in Fig.  5c ) lie in the DNA-binding domains 
(labeled as a blue bar). These semi-disordered regions play a role in 
providing fl exibilities in a structured region that are needed for inter-
acting with DNA molecules. 

 This case study demonstrates the quality of SPINE-D of pre-
dicting disordered residues in both short and long disordered 
regions, and the utility of using semi-disordered prediction in aid 
of identifying protein-induced folding regions in intrinsically dis-
ordered regions and locally unfolded regions in structured regions.  

6                       Notes 

     1.    The input sequence must be a protein sequence in FASTA for-
mat, and should not include amino acids other than the 20 
common amino acid types: ACDEFGHIKLMNPQRSTVWY.   

   2.    If the user provides both the PSI-BLAST profi le and the protein 
sequence, the webserver will pick the PSI-BLAST profi le and 
skip the time-consuming step of PSI-BLAST profi le generation.   

   3.    The most time consuming step is the PSI-BLAST profi le gen-
eration since it requires searching the query sequence against a 
very large non-redundant protein sequence database. Depending 
on the number of homologous sequences found in the database, 
the searching process might take a couple of minutes to half an 
hour. The rest steps, including feature generation, neural net-
work calculation, prediction collecting and reformatting, are 
very fast, usually takes less than a minute.   

   4.    The prediction result is stored on our webserver and can be 
accessed by a hyperlink (a http address plus a unique job ID). 
If possible, please provide both an e-mail address and a target 
ID for the query sequence when submitting a prediction 
request. At least we recommend that the user provides an 
e-mail address, otherwise the user will need to either write 
down the unique job ID assigned to the request or keep the 
web browser open for a while until the prediction result pops 
out. On the other hand, an e-mail address and a target ID can 
help the user quickly trace the prediction result at any time.   

   5.    By default, the stand-alone program assumes that: (a) the fi le-
name extension of the input FASTA fi le and the input PSI- 
BLAST profi le are “.fasta” and “.mat,” respectively; (b) the two 
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input fi les are located in the same directory. If this is not the 
case, the user can modify the corresponding inputs (highlighted 
in red) in the last line of the “to-where-you-install-SPINE-D/
bin/run_spine-d” fi le:

 ●    Python run_spine-d.py input-FASTA-path/input-FASTA-
fi lename .fasta input- profi le- path/input-profi le-fi lename 
.mat targetid      

   6.    It is important to assign a unique fi lename for the input fi le. 
This is because the stand-alone SPINE-D is designed to not 
allow overwrite to existing fi les. In case it detects an identical 
existing fi lename, the program will terminate and output an 
error message.   

   7.    Some codes in the stand-alone program are written in Fortran, 
and they will be compiled when the user runs SPINE-D for the 
fi rst time. The program will print out some compiling mes-
sages only for the fi rst time usage.   

   8.    In case the user needs to run SPINE-D on a batch of protein 
sequences, the stand-alone SPINE-D package provides a shell 
script “batch.sh” in the “where-you-install-SPINE-D/bin” 
directory. The script requires the path of input fi les as well as a 
user-provided fi le that lists the fi lenames of all input fi les. Once 
they are provided, the user can simply type “sh batch.sh” and 
the script will take care the rest.         
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    Chapter 13   

 Predicting Real-Valued Protein Residue Fluctuation Using 
FlexPred                     

     Lenna     Peterson     ,     Michal     Jamroz     ,     Andrzej     Kolinski     , and     Daisuke     Kihara      

  Abstract 

   The conventional view of a protein structure as static provides only a limited picture. There is increasing 
evidence that protein dynamics are often vital to protein function including interaction with partners such 
as other proteins, nucleic acids, and small molecules. Considering fl exibility is also important in applications 
such as computational protein docking and protein design. While residue fl exibility is partially indicated by 
experimental measures such as the B-factor from X-ray crystallography and ensemble fl uctuation from 
nuclear magnetic resonance (NMR) spectroscopy as well as computational molecular dynamics (MD) simu-
lation, these techniques are resource-intensive. In this chapter, we describe the web server and stand- alone 
version of FlexPred, which rapidly predicts absolute per-residue fl uctuation from a three-dimensional pro-
tein structure. On a set of 592 nonredundant structures, comparing the fl uctuations predicted by FlexPred 
to the observed fl uctuations in MD simulations showed an average correlation coeffi cient of 0.669 and an 
average root mean square error of 1.07 Å. FlexPred is available at   http://kiharalab.org/fl exPred/    .  

  Key words     Bioinformatics  ,   Computational biology  ,   Support vector machine  ,   Support vector regres-
sion  ,   Protein residue fl uctuation  ,   Protein fl exibility  ,   Protein conformational fl exibility  ,   Protein struc-
ture  ,   Protein design  ,   Molecular dynamics  

1      Introduction 

 The function of many proteins is determined not only by their rigid 
three-dimensional (3D) structure but also by the fl exibility of pro-
tein chains [ 1 ]. Protein fl exibility can infl uence function by, for 
example, determining catalytic rates [ 2 ] and affecting ligand and 
protein interactions [ 3 ]. Knowledge of fl exibility is also important 
for accurate protein design [ 4 ,  5 ] and computational protein/
ligand docking [ 3 ,  6 ]. 

 Despite the importance of chain fl exibility, it is diffi cult to 
glean a full picture of a protein’s fl exibility via experimental meth-
ods. Information about atomic fl uctuations is refl ected in the 
B-factor in X-ray crystallography [ 7 ]; however, the fl uctuation is 
only one component of this uncertainty convolved with other 
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 factors that cause errors in model building. In particular, B-factor 
tends to underestimate the motion of fl exible regions [ 8 ]. Nuclear 
magnetic resonance (NMR) spectroscopy currently provides the 
most direct experimental evidence of fl exibility; nevertheless, the 
accuracy depends on the experimental setup and the mathematical 
model used [ 9 – 12 ]. Cryogenic electron microscopy (cryo-EM) 
can detect heterogeneous conformational states [ 13 ] but not 
small conformational fl exibility. Above all, experimental methods 
are costly in terms of time and resources and thus are not always 
applicable. 

 In order to augment experimental methods for determining 
protein fl exibility, many computational approaches have been 
developed to model protein dynamics. Molecular dynamics 
(MD) simulations model the motion of all the atoms in a protein 
on the picosecond to microsecond timescale [ 14 ], from which 
per-residue fl uctuation can be extracted. One approach to 
achieve faster results compared to MD is coarse-grained simula-
tions [ 15 – 19 ]. Using trajectories from MD or coarse-grained 
simulations, normal mode analysis [ 20 ] can depict an overview 
of the motion that is easy to grasp. Alternatively, Gaussian net-
work model (GNM) [ 21 – 24 ] uses a simplifi ed model of protein 
structures to simulate protein motion. Many works have used 
GNM or related approaches to predict B-factor [ 21 ,  24 – 29 ]. 
Another work uses a mean-fi eld model to predict fl uctuations 
[ 30 ]. Although these physics-based computational methods pro-
vide a physical view of atom- or residue- level protein fl uctuation, 
they are generally targeted toward computational biophysicists 
and may not be easy to use by experimental biologists. In addi-
tion to structure-based computational methods, there are meth-
ods that use sequence features to predict B-factor [ 31 – 33 ], 
relative motion [ 34 ], and two-state [ 35 ] or three-state [ 36 ] fl ex-
ibility. These methods are applicable to a larger number of pro-
teins since no structure is required, but with an inevitable decline 
in accuracy. 

 In this chapter, we describe the web server and stand-alone ver-
sion of FlexPred, which rapidly predicts the absolute fl uctuation of 
each residue in a protein structure. FlexPred is designed to predict 
the fl uctuations exhibited by a protein during a 10 ns MD simula-
tion (fast, comparatively small motions). Full details of the FlexPred 
method have been previously published [ 37 ]. We provide detailed 
instructions for using FlexPred and present example predictions for 
X-ray crystal structures of a monomer protein and a protein com-
plex as well as a monomer structure determined using NMR. Both 
the web server and the stand-alone version can be found at   http://
kiharalab.org/fl exPred    .  
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2    Algorithm 

 FlexPred predicts the residue fl uctuation observed during a 10 ns 
molecular dynamics (MD) simulation. MD fl uctuation, the theo-
retical range of motion of the atoms in a protein structure, was 
computed as the root mean square distance between the Cα atom 
in the MD simulation and the Cα atom in the reference PDB fi le 
averaged across all time steps of the MD simulation [ 37 ]. The 
values produced by FlexPred can be used to estimate whether a 
specifi c portion of a protein chain is fl exible and how fl exible that 
region is. 

 FlexPred uses static features of a protein structure to predict 
MD residue fl uctuation. The features tested were B-factor [ 7 ], resi-
due distance from the protein center of mass [ 38 ,  39 ], residue con-
tact number [ 40 ,  41 ], hydrophobic/hydrophilic [ 42 ] residue 
contact number, residue solvent accessible surface area [ 43 ,  44 ], 
residue depth [ 45 ], residue lower/upper half-sphere exposure [ 46 ], 
and secondary structure [ 43 ]. Details of each feature have been 
previously described [ 37 ]. FlexPred combines these features using 
the framework of support vector regression (SVR) implemented by 
LIBSVM [ 47 ]. It was trained on a non-redundant set of 592 molec-
ular dynamics (MD) simulations from the Molecular Dynamics 
Extended Library (MoDEL) [ 48 ]. Almost all (96.11 %) of the sim-
ulations were 10 ns in length and the rest were shorter. This is in 
the timescale of “fast” motions [ 14 ]; thus, FlexPred is not appropri-
ate for predicting large movements such as domain- domain motion. 

 FlexPred predictions were evaluated using Pearson’s correla-
tion coeffi cient and the root mean square error (RMS) of the differ-
ence between the predicted fl uctuation and the MD fl uctuation. 
The highest single static feature correlation to real fl uctuation was 
for residue contact number with a cutoff of 15 or 16 Å. This term 
had higher correlation to MD fl uctuation than did B-factor. GNM 
prediction was also tested as a feature. While GNM alone had a 
higher correlation to MD fl uctuation than did any static feature, 
including GNM in the feature set led to a consistent decrease in 
correlation coeffi cient [ 37 ]. Multiple combinations of features were 
tested and the highest correlation of 0.669 was observed with 
B-factor combined with residue contact number with cutoffs of 6, 
8, 12, 16, 18, 20, and 22 Å (Feature set 15) [ 37 ]. The RMS of this 
feature combination was 1.07 Å [ 37 ]. This feature set effectively 
encodes information about 3D structures in a lower dimensional 
feature space.  
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3    Web Server 

 The web server takes a 3D protein structure in PDB format as input 
and predicts a fl uctuation value for each residue of the protein. 
Figure  1  shows a screenshot of the web server input page.

         1.    Go to the web server homepage:   http://kiharalab.org/
fl exPred/    .   

   2.    Choose a PDB structure ( see   Notes    1   and   2  ):

   (a)    To upload your own PDB fi le, click "Browse…" (Fig.  1  (1)).   
  (b)    To use a published PDB structure, enter the 4-character 

PDB code (e.g. 1bfg) into the PDB code box. (Fig.  1  (2)).    
      3.    Choose the feature set (Fig.  1  (3);  see   Note    3  ):

   (a)    “With B-factor”: use this for X-ray structures.   
  (b)    “Without B-factor”: use this for NMR structures and com-

putational models.    
      4.    Click "Predict Fluctuation" (Fig.  1  (4)).   
   5.    The server will generally complete in 2–20 s.      

   Figure  2  shows a screenshot of an example web server output page. 
The top of the page shows an image of the structure with high fl uc-
tuation residues colored in red and low fl uctuation residues colored 
in blue (Fig.  2  (1)). The middle of the page shows a graph of the 
predicted fl uctuation for each residue number (Fig.  2  (2)). Below 
the graph are links to download a comma separated value (CSV) fi le 

3.1  Web Server Input

3.2  Web 
Server Output

  Fig. 1    The FlexPred web server query submission page. (1) Upload a PDB fi le or (2) choose a published PDB 
structure by ID. (3) Choose the feature set with B-factor for X-ray structures or without B-factor for NMR struc-
tures. (4) Finally, click “Predict Fluctuation.” (5) The software may also be downloaded       
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containing the predicted fl uctuations for each residue (Fig.  2  (3)) 
and a PDB fi le with normalized predicted fl uctuations in the 
B-factor column (Fig.  2  (4)). The CSV fi le can be conveniently 
viewed using spreadsheet software.

  Fig. 2    The FlexPred output page. (1) The structure with high fl uctuation shown in  red . (2) The fl uctuation of 
each residue. (3) Download link for the raw data fi le. (4) Download link for the PDB fi le with predicted fl uctua-
tion in the B-factor column       
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4        Stand-Alone Software 

 The stand-alone software requires Python and has only been tested 
on Linux. It takes a 3D protein structure in PDB format as input 
and predicts a fl uctuation value for each residue of the protein. 

       1.    Go to the web server homepage (  http://kiharalab.org/
fl exPred/    ).   

   2.    Under the heading “Download software,” “click” “download 
fi le” (Fig.  1  (5)).   

   3.    Expand the fi le using the command “tar -xvf fl exPred.tar.xz.”   
   4.    Download libsvm from   http://www.csie.ntu.edu.tw/~cjlin/

libsvm/     and compile.   
   5.    Edit “predictFluct.py” to set paths to libsvm and FlexPred.   
   6.    The script has two positional arguments:

   (a)    The fi rst argument is the path to the PDB fi le ( see   Notes    1   
and   2  ).   

  (b)    The second argument is the feature set. “NMR” uses the 
feature set without B-factor and “XRAY” uses the feature 
set with B-factor ( see   Note    3  ).       

   7.    Try the example protein: “ cd example; python ../predictFluct.
py 1BFG.pdb XRAY ” ( see   Note    4  ).   

   8.    To run FlexPred on other proteins: “ python predictFluct.py 
model_fi le.pdb [NMR|XRAY]. ”      

   The stand-alone version of FlexPred should complete within sec-
onds. The stand-alone software produces a text fi le containing the 
predicted fl uctuations for each residue.   

5    Case Studies 

 We present example FlexPred predictions using three types of pro-
teins: a monomer X-ray structure, a dimer X-ray structure, and a 
monomer NMR structure. The predictions for the X-ray structures 
use the “With B-factor” feature set while the prediction for the 
NMR structure uses the “Without B-factor” feature set. Figure  3  
and Table  1  show that FlexPred predictions have moderate to high 
correlation to real fl uctuation from MD simulations. On the test set 
in the previous paper, the average correlation coeffi cient was 0.669 
and the average RMS was 1.07 Å [ 37 ]. The MD fl uctuation is the 
RMS of the difference between each snapshot in the trajectory and 
the mean position of the trajectory.

    The fi rst example is the ssDNA binding protein gp32 (PDB ID 
1gpc) (Fig.  3a, b ). The highest core fl uctuation is in a loop around 

4.1  Stand- 
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residue 155. ssDNA fi ts into a cleft sized to exclude dsDNA [ 49 ], 
where minimal fl exibility was observed. High fl exibility could allow 
dsDNA to bind. Overall, the predicted fl uctuation agrees well with 
those in MD simulation. The prediction had a correlation coeffi -
cient of 0.839 and RMS of 0.83 Å to the MD simulation, better 
than the average correlation and RMS observed in the benchmark 
in the original paper [ 37 ] (Table  1 ). 

 The second example is the heterodimer of calmodulin (CaM) 
in complex with the CaM binding domain of CaM-dependent 

  Fig. 3    Examples of FlexPred predictions. ( a ,  c ,  e ) fl uctuation of each residue.  Green solid line : MD fl uctuation. 
 Orange dotted line : Predicted fl uctuation by FlexPred.  Yellow dashed line : NMR fl uctuation. ( b ,  d ,  f ) structures 
with high fl uctuation shown in  red  and notable high fl uctuation residues indicated with numbers. Proteins 
used: ( a ,  b ) single-stranded DNA binding protein gp32 from bacteriophage T4, residues 22–239 (PDB ID: 
1gpc). ( c ,  d ) Calmodulin (chain A) in complex with a fragment of Ca(2+)/calmodulin-dependent kinase kinase 
(chain B) (PDB ID: 1iq5). Calmodulin, Chain A, is residues 4–147 and shown in  blue . CaMKK, chain B, is resi-
dues 334–357 and shown in  yellow . ( e ,  f ) human transcription factor NFATc, DNA-binding domain, residues 
3–178 (PDB ID: 1nfa)       
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kinase kinase (CaMKK) (PDB ID 1iq5) (Fig.  3c, d ). The predic-
tion overestimated fl uctuations in comparison with the MD sim-
ulation, although the average correlation and RMS of the two 
chains were better than the average (Table  1 ). The high pre-
dicted fl exibility of the calcium binding loops (at residues 22, 
58, 97, and 132) may be because the features only consider the 
position of protein atoms, not the bound calcium ion. In the 
MD fl uctuation, the linker between the two domains (residue 
80) shows the highest core fl uctuation. It was observed that 
binding of the CaMKK peptide causes a shift in the relative angle 
of the two domains [ 50 ]. However, while FlexPred does predict 
fl exibility at the domain linker (residue 80), it is of similar mag-
nitude to multiple other loops. The lower magnitude of the pre-
dicted linker fl exibility could be due to the timescale of the 
domain-domain motion, which is likely longer than the 10 ns 
timescale of the training data. The accuracy for this complex is 
comparable to the accuracy for monomers (Table  1 ), indicating 
that while FlexPred was not trained using multimers, it is appli-
cable to predict the fl exibility of a protein- protein complex. 

 The third example is the NMR structure of the DNA binding 
domain of the transcription factor NFATc (PDB ID 1nfa) (Fig.  3e, 
f ). Because NMR structures lack B-factor, the prediction used the 
“Without B-factor” setting. The predictions are slightly worse than 
the average computed on the previous test of NMR structures [ 37 ]. 
For this example, we also computed NMR ensemble fl uctuation by 
computing the RMS of each model to the fi rst model (Table  2 ). It 
is interesting that FlexPred shows higher correlation to NMR 
(0.85) than to MD (0.58). In the NMR ensemble, the highest fl uc-
tuation in the core region (residues 13–172 [ 51 ]) is in a loop 
around residue 133, where both MD and FlexPred match the loca-
tion of the increased fl uctuation but with much lower magnitude. 

      Table 1  
  FlexPred prediction on two example X-ray protein structures   

 Structure  PCC 
 RMS 
(Å) 

 1gpcA  0.839  0.83 

 1iq5A  0.620  1.03 

 1iq5B  0.933  0.81 

 Prev. avg.  0.669  1.04 

  Pearson’s correlation coeffi cient (PCC) (perfect correlation is 1, no correlation is 0, and 
perfect negative correlation is −1) and root mean square deviation (no deviation is 0) 
between FlexPred and MD residue fl uctuations. Average values are from the X-ray data-
set in the original paper [ 37 ]  
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For NMR, the second highest core fl uctuation is in the DNA 
binding loop around residue 32 [ 51 ], where FlexPred matches 
NMR almost perfectly while the peak from MD simulation is 
shifted. Both FlexPred and MD show much higher fl uctuation 
than NMR for the loop around residue 158.

6       Conclusions 

 We outline the web server and stand-alone software for FlexPred, 
which predicts a real-valued absolute fl uctuation for each residue 
of an input 3D protein structure. The web server is easy to use and 
quickly provides accurate prediction with intuitive visualization. It 
is useful for analyzing function of a protein from its structure and 
for artifi cial design of proteins.  

7           Notes 

     1.    If the PDB fi le contains multiple models (generally only in 
NMR structures and marked by lines such as “MODEL 1” and 
“MODEL 2”), only the fi rst model will be considered.   

   2.    If the PDB fi le contains multiple chains (indicated with different 
chain IDs, e.g., A, B), all chains will be used to compute contact 
maps and a separate prediction will be made for each chain. If the 
protein is a biological monomer but the PDB fi le contains crystal 
contacts, additional chains should be removed from the fi le 
before prediction for the most accurate results. Protein oligo-
meric state is often annotated in the “REMARK 350” section of 
a PDB fi le and can be predicted using the PISA server [ 52 ].   

   Table 2  
  FlexPred prediction on an example NMR protein structure   

 Pair  Structure  PCC  RMS (Å) 

 FlexPred-MD  1nfaA  0.584  1.37 

 Prev. avg.  0.686  2.16 

 FlexPred-NMR  1nfaA  0.846  2.52 

 Prev. avg.  0.739  1.81 

 MD-NMR  1nfaA  0.471  3.37 

 Prev. avg.  0.651  2.42 

  Pearson’s correlation coeffi cient (PCC) (perfect correlation is 1, no correlation is 0, and perfect negative correlation is 
−1) and root mean square deviation (no deviation is 0) of fl uctuations between FlexPred and MD, between FlexPred 
and NMR, and between MD and NMR. Average values are from the NMR dataset in the original paper [ 37 ]  
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   3.    “With B-factor” uses feature set 15 from the original paper 
[ 37 ] (mean correlation coeffi cient 0.669, mean RMS 1.07 Å) 
and “Without B-factor” uses feature set 16 (mean correlation 
coeffi cient 0.660, mean RMS 1.09 Å). If "With B-factor" is 
selected but the B-factors in the fi le are all zero (0.0), “Without 
B- factor” will be substituted automatically.   

   4.    The stand-alone version requires write access to the directory 
where the input PDB fi le is located.         
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    Chapter 14   

 Prediction of Disordered RNA, DNA, and Protein Binding 
Regions Using DisoRDPbind                     

     Zhenling     Peng    ,     Chen     Wang    ,     Vladimir     N.     Uversky    , and     Lukasz     Kurgan      

  Abstract 

   Intrinsically disordered proteins and regions (IDPs and IDRs) are involved in a wide range of cellular func-
tions and they often facilitate interactions with RNAs, DNAs, and proteins. Although many computational 
methods can predict IDPs and IDRs in protein sequences, only a few methods predict their functions and 
these functions primarily concern protein binding. We describe how to use the fi rst computational method 
DisoRDPbind for high-throughput prediction of multiple functions of disordered regions. Our method 
predicts the RNA-, DNA-, and protein-binding residues located in IDRs in the input protein sequences. 
DisoRDPbind provides accurate predictions and is suffi ciently fast to make predictions for full genomes. 
Our method is implemented as a user-friendly webserver that is freely available at   http://biomine.ece.
ualberta.ca/DisoRDPbind/    . We overview our predictor, discuss how to run the webserver, and show how 
to interpret the corresponding results. We also demonstrate the utility of our method based on two case 
studies, human BRCA1 protein that binds various proteins and DNA, and yeast 60S ribosomal protein L4 
that interacts with proteins and RNA.  

  Key words     Intrinsic disorder  ,   Prediction  ,   Protein–protein interactions  ,   Protein–DNA interactions  , 
  Protein–RNA interactions  ,   DisoRDPbind  

1      Introduction 

 Intrinsically disordered proteins and regions (IDPs and IDRs) 
lack a stable three-dimensional structure under physiological con-
ditions in vitro and form an ensemble of structural conformations 
[ 1 – 3 ]. They participate in a wide range of cellular functions and 
are common in nature, particularly in eukaryotic species [ 3 – 6 ]. 
Many computational methods are available for the prediction of 
intrinsic disorder from protein sequences [ 7 – 13 ]. These predic-
tors were used to estimate the amount of disorder in various spe-
cies and domains of life and to characterize cellular functions of 
disorder [ 5 ,  14 – 20 ]. IDPs and IDRs were shown to be signifi -
cantly involved in the protein–protein, protein–DNA, and pro-
tein–RNA interactions [ 5 ,  18 ,  20 – 27 ]; for convenience, here we 
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utilize the terms disordered RNA, DNA, and protein-binding to 
denote the RNA-, DNA-, and protein-binding located in IDRs. 
Prediction of residues that bind proteins, RNAs, and DNAs has 
attracted strong research interest in the last decade [ 28 – 33 ]. 
However, these predictions address interactions annotated from 
crystal structures, which means that they are primarily focused on 
the structured (ordered) regions. 

 A number of studies that predict functions of IDPs and IDRs 
were also recently discussed [ 34 ]. A prediction of over one hun-
dred Gene Ontology (GO) annotations associated with IDPs and 
IDRs was carried out by Khan  et al . [ 35 ]. Moreover, several meth-
ods were developed for the prediction of disordered protein bind-
ing regions including alpha-MoRF-Pred [ 36 ], ANCHOR [ 37 ], 
MoRFpred [ 38 ], PepBindPred [ 39 ], MFSPSSMpred [ 40 ], 
DISOPRED3 [ 41 ], MoRFCHiBi [ 42 ], and fMoRFpred [ 43 ]. 
This implies that functions of IDRs and IDPs are predictable from 
protein sequences. Availability of hundreds of regions annotated as 
disordered RNA, DNA, and protein binding in the DisProt data-
base [ 44 ] and the lack of methods that predict disordered RNA 
and DNA binding motivated the development of a new predictor 
DisoRDPbind [ 45 ]. This is the fi rst method that predicts multiple 
functions mediated by IDPs and IDRs. DisoRDPbind obtains 
favorable predictive performance for these three types of disor-
dered binding regions. It is also very fast and can be applied to 
predict full genomes in a matter of hours using its convenient web-
server (the largest human genome can be predicted in about 2 
days) [ 45 ]. The DisoRDPbind’s webserver outputs three propen-
sity scores for each input residue that quantify the likelihood for 
this residue to be involved in the disordered RNA, DNA, and pro-
tein binding. We overview architecture of our method and provide 
details on how to use the webserver and how to interpret the 
results. Finally, we use two case studies that involve analysis of 
RNA-, DNA-, and protein-binding proteins to illustrate how our 
method can be used to suggest localization of disordered RNA-, 
DNA-, and protein-binding regions in protein sequences.  

2    Materials and Method 

   We extracted 315, 114, and 36 proteins from the DisProt database 
[ 44 ] to develop three datasets: TRAINING, TEST114, and 
TEST36, respectively. Each dataset includes disordered regions 
that were annotated to bind RNAs, DNAs, and proteins. The 
TRAINING dataset was used for empirical design of 
DisoRDPbind while the other two datasets were used to assess 
its predictive performance and compare it against other meth-
ods. Proteins in TEST114 were collected to share <30 % sequence 
similarity with proteins in TRAINING to allow for assessment of 

2.1  Datasets
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predictive performance on dissimilar proteins. The second test 
dataset, TEST36, includes new depositions to DisProt as com-
pared with the proteins from TRAINING. These three datasets 
are available at   http://biomine.ece.ualberta.ca/DisoRDPbind/    . 
Reference [ 45 ] provides further details.  

   Recently, we developed the DisoRDPbind method to predict the 
disordered RNA-, DNA-, and protein-binding residues in the 
input protein sequences. Our method is based on a runtime effi -
cient four-layer design;  see  Fig.  1 . First, we represent the input 
protein using several structural and functional properties. Second, 
these properties are used to represent each residue in the input 
protein chain using a vector of numeric descriptors/features. 
Third, these features are inputted into a predictive model. Fourth, 
the outputs of the predictive model are merged with an alignment- 
based prediction to derive the fi nal result. Following we provide a 
more detailed explanation.

   In layer 1, we represent each input protein sequence based on its 
amino acid (AA) composition, its sequence complexity generated by 
the SEG algorithm [ 46 ], intrinsic disorder predicted by IUPred 
(including IUPred L and IUPred S) [ 47 ], secondary structure pre-
dicted by PSIPRED [ 48 ], and 17 physiochemical properties of 
amino acids (AAs) including hydrophobicity, net charge, and free 
energy. In layer 2, we use this information to compute a vector of 
features for each residue in the input protein chain and each pre-
dicted function. We utilized sliding window with different window 
size (WS) to obtain the numerical features for different binding 
events where WS = 55, 21, and 33 for disordered RNA, DNA, and 
protein binding, respectively. We quantifi ed the abovementioned 
putative sequence structural and functional characteristics, such as 
disorder, secondary structure, hydrophobicity, etc. in a window 

2.2  Architecture

Sequence alignment Database with
functional

annotations

DNA:

  Fig. 1    The architecture of the DisoRDPbind method. The four layers are denoted by the corresponding numbers 
shown inside circles. We use term “composition” to denote the amino acid composition. The SEG algorithm is 
used to generate the sequence complexity and PSIPRED and IUPred L(S) are utilized to predict the profi les of 
secondary structure and intrinsic disorder, respectively. The “17 AA indices” denote the physiochemical prop-
erties of amino acids (AAs) including their hydrophobicity, net charge, and free energy       
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centered over the predicted residue by computing their averages and 
content values. These values represent local (in the sequence) bias 
that contributes towards the prediction of the residue in the middle 
of the window. Since the many features considered in this layer are 
redundant and/or irrelevant to the predicted functions, we per-
formed an empirical feature selection for each function using the 
TRAINING dataset. Consequently, we selected a small set of 11, 7, 
and 7 features for the prediction of disordered RNA, DNA, and 
protein binding, respectively. In layer 3, for each residue in the input 
protein sequence we pass a given selected set of features into a logis-
tic regression model for the corresponding binding event. This 
means that three regression-based models are used to fi nd the puta-
tive disordered RNA-, DNA-, and protein- binding residues. We 
picked this type of model based on its popularity, short runtime and 
the ability to output a real-valued propensity. In the last layer 4, we 
merge the regression-based predictions with functional annotations 
found through sequence similarity to generate the fi nal predictions. 
We utilize BLAST [ 49 ] to align the input sequence against a data-
base of functionally annotated proteins (TRAINING dataset) and 
then we transfer the functional annotations for each input residue 
that was aligned to a functional residue in a suffi ciently similar anno-
tated protein. The fi nal predictions include three propensity scores 
for each residue in the input sequence that quantify its likelihood to 
be disordered RNA-, DNA-, and protein-binding residues, respec-
tively; higher values of propensity correspond to a higher likelihood 
of binding. DisoRDPbind also provides a binary prediction for each 
function by using a threshold on a given putative propensity score; 
residues with propensities higher than the threshold are predicted as 
binding and the other residues are predicted as non-binding ( see  
Subheading  2.6 ).  

   The predictive quality of our method was assessed in the original 
manuscript [ 45 ]. DisoRDPbind was shown to secure the area 
under the ROC curve (AUC) values between 0.62 and 0.72, 
depending on the benchmark dataset used (TEST114 and 
TEST36) and the disorder function that was assessed. The TP-rate 
(fraction of correctly predicted binding residues) of DisoRDPbind 
computed at the FP-rate (fraction of incorrectly predicted non- 
binding residues) of 0.1 is 0.27, 0.25, and 0.24 for the prediction 
of the disordered DNA-, protein-, and RNA-binding residues, 
respectively. These are reasonable levels of TP-rate and AUC val-
ues, which were shown to be higher than the corresponding values 
of the closest alternatives (predictors of disordered protein-binding 
residues and predictors of ordered DNA- and RNA-binding resi-
dues) [ 45 ]. Interestingly, predictions from DisoRDPbind comple-
ment predictions from the predictors of structured DNA- and 
RNA-binding residues (they are characterized by low correlation 
<0.3), while as expected they are similar to the outputs of methods 

2.3  Predictive 
Quality and Runtime
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that predict disordered protein-binding residues (correlation >0.5 
with ANCHOR) [ 45 ]. Overall, these observations demonstrate 
that our method is relatively accurate and complements the other 
available methods. 

 Using a modern desktop (Intel i7-950 CPU at 3.06GHz with 
24GB or RAM), the runtime of DisoRDPbind for a single protein 
is between 0.3 s and 1 min, depending on the chain length, and is 
characterized by a quadratic increase with the chain size [ 45 ]. An 
average size protein with about 200 residues is predicted in 1 s ( see  
 Note    1  ). This includes the combined runtime of the prediction of 
the three binding events. To put that into perspective, the runtime 
to predict the entire human proteome is just over 40 h on the 
abovementioned desktop computer, which means that 
DisoRDPbind can be used to predict full genomes.  

   The webserver of DisoRDPbind was designed to be user-friendly 
and is freely available at   http://biomine.ece.ualberta.ca/
DisoRDPbind/    . The end user only needs a modern web browser 
(Firefox, IE, and Chrome were tested) and internet connection to 
use the webserver. 

 The main (start) page of the webserver is for the submission of 
the user’s query. It includes a text fi eld where up to 5000 input 
protein sequences in FASTA format can be pasted and another text 
fi eld for the e-mail of the user. For convenience, the server also 
provides an option to submit the input proteins in a FASTA- 
formatted fi le. The e-mail is required and is used to send notifi ca-
tion when the predictions are completed. The notifi cation provides 
a link to a summary page that explains the format of the outputs 
and the formatted text fi le with the predictions. 

 The DisoRDPbind method uses other programs to generate 
its inputs. Specifi cally, our method generates the disorder profi les 
utilizing IUPred [ 47 ], predicts the secondary structure with the 
fast version of PSIPRED (without using PSI-BLAST) [ 48 ], obtains 
the information about low complexity regions with the SEG algo-
rithm [ 46 ], and transfers the functional annotations based on the 
alignment generated by BLAST [ 49 ]. These methods are used in a 
fully automated manner by the scripts that implement the web-
server. Once the user provides the sequences and the e-mail and 
hits the “Run DisoRDPbind!” button, the results are generated 
without further interaction with the webserver.  

   Three easy steps should be followed to use the DisoRDPbind web-
server (the step numbers are highlighted in red in Fig.  2 ):

     1.    Copy and paste protein sequences formatted in the FASTA 
format into text fi eld or upload FASTA-formatted fi le (an 
“Example” button may be used to see properly formatted 
example inputs) ( see   Notes    2   and   3  ).   

2.4  Webserver

2.5  Running 
DisoRDPbind

Prediction of Disordered RNA, DNA, and Protein Binding Regions Using DisoRDPbind

taner@iastate.edu

http://biomine.ece.ualberta.ca/DisoRDPbind/
http://biomine.ece.ualberta.ca/DisoRDPbind/


192

   2.    Provide e-mail address (required,  see   Note    4  ). The notifi cation 
e-mail, including the hyperlinks to the results page and the 
downloadable outputs, will send to the user once the predic-
tions are completed.   

   3.    Click “Run DisoRDPbind!” button to start the predictions.    

  Note that the webserver generates predictions of RNA, DNA, 
and protein binding at the same time for each input protein 
sequence. Once the “Run DisoRDPbind!” button is clicked, the 
user’s web browser is redirected to another page that shows the 
current status of the prediction. The user’s query is added to a 
queue of predictions on the biomine server (this server also imple-
ments a few other methods) and the position in the queue is shown 
and updated. The prediction is executed when the query reaches 
the fi rst position in the queue. After the prediction is completed 
the user’s web browser is automatically redirected to the page with 
the results and the notifi cation e-mail with a link to this page is sent 
( see   Notes    4   and   5  ). The prediction is completed and e-mail is sent 
even in the case when the user closes the web browser before the 
completion of the prediction.  

    This webpage with the results includes a hyperlink to the down-
loadable text fi le (red number 1 in Fig.  3 ) and the description of 
the format of this fi le (red number 2 in Fig.  3 ). The text fi le, named 
DisoRDPbind.pred, is provided for download to the end user. This 
fi le includes the prediction of disordered RNA-, DNA-, and 

2.6  Results 
Generated 
by DisoRDPbind

  Fig. 2    Screenshot of DisoRDPbind input form on the main webserver page. The  red numbers  annotate the three 
steps that must be followed to run the predictions       
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protein- binding residues for all submitted protein sequences. For 
each of the three types of binding we provide a binary prediction 
(1 for putative binding residues and 0 for putative non-binding 
residues) and a real-valued propensity (higher values indicates 
higher likelihood for binding) for each input residue. The results 
are organized in eight lines per protein where six lines provide pre-
diction for the entire input sequence and two lines lists the residues 
from the input sequence and its name:

 ●     The fi rst line lists the protein name (as provided in the user’s 
input).  

 ●   The second line is the protein sequence where each letter iden-
tifi es a residue and where a lower (upper) case indicates the 
residue was predicted to interact (not to interact) with RNA, 
DNA, or protein. This is based on the binary prediction across 
the three types of binding.  

 ●   The third/fi fth/seventh line provides the putative binary pre-
diction of the RNA-binding/DNA-binding/protein-binding 
residues ( see   Note    6  ).  

 ●   The fourth/sixth/eighth line provides the putative propensity 
for the RNA binding/DNA binding/protein binding for each 
input residue. The values of the propensities are separated by 
commas, they range between 0 (lowest propensity) and 1 
(highest propensity), and they are provided with the precision 
of 3 digits after the decimal point.    

 The notifi cation e-mail includes the hyperlinks to the page 
with the results (red number 1 in Fig.  4 ) and to the download-
able outputs (red number 2 in Fig.  4 ). The fi rst hyperlink leads 
the user directly to the “DisoRDPbind Results Page” (Fig.  3 ). 
We also provide a unique job ID at the top of the e-mail. This ID 

DISORDPBIND RESULTS PAGE

Results for DISORDPBIND webserver.

Use this link to download the results as a text file: DISORDPBIND.PRED

Format of Results

Prediction for each protein is given in 8 lines

line 1: >protein name 
line 2: protein sequence - 1-letter encoded protein sequence, where the lower (upper) case indicates the residue was predicted to interact
(not to interact) with RNA/DNA/protein 
line 3: RNA-binding residues - 1 represents the putative disordered RNA-binding residues; 0 otherwise 
line 4: RNA-binding propensity scores separated by comma 
line 5: DNA-binding residues - 1 represents the putative disordered DNA-binding residues; 0 otherwise 
line 6: DNA-binding propensity scores separated by comma 
line 7: protein-binding residues - 1 represents the putative disordered protein-binding residues; 0 otherwise 
line 8: protein-binding propensity scores separated by comma 
Note: The propensity score, which indicates the likelihood of a residue for the RNA-, DNA-, and/or protein-binding located in a disordered
region, is predicted for each residue. 

Visit biomine lab web page

HTTP://BIOMINE.ECE.UALBERTA.CA

1

2

  Fig. 3    Screenshot of page with the results generated by DisoRDPbind. The  red numbers  indicate the two main 
parts of this page       
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can be used to trace a given prediction query. In case if the user 
encounters problems then (s)he should simply reply to the e-mail 
with a description of what is wrong making sure that the job ID 
is included.

3        Case Studies 

   BRCA1 is the breast cancer type 1 susceptibility protein which is 
known to play a number of important roles in controlling the 
development of breast cancer. The  BRCA1  gene expression is 
dependent on the cell cycle, and the G1–S and the G2–M transi-
tion checkpoints are controlled by the BRCA1 protein [ 50 ]. 
However, major functions of BRCA1 are related to the repair of 
chromosomal damage and to the error-free repair of DNA double- 
strand breaks [ 51 ]. In the norm, BRCA1 is involved in repair of 
the damaged DNA, or, if the DNA damage cannot be repaired, it 
initiates the cell destruction. The mutation-induced decrease or 
loss of the BRCA1 functions results in the accumulation of the 
damaged DNA, increasing the probability of the development of 
breast cancer [ 51 ]. Of the 1863 amino acids of BRCA1, only ~20 % 
terminally located residues are involved in the formation of struc-
tured domains (residues 1–169 and 1646–1863 are folded into the 
RNG and tandem BRCT domains, respectively), whereas a long 
central region (residues 170–1645) is mostly disordered, acting as 
a scaffold that determines the exceptional binding promiscuity of 
BRCA1 [ 52 ]. Among known interacting partners of the central 
region of BRCA1 are several proteins involved in regulation of 
various biological processes. They include c-Myc, which is a proto- 
oncogene that is implicated in tumorigenesis, embryonic 

3.1  Case 1: BRCA1

  Fig. 4    Screenshot of the notifi cation e-mail. The  red numbers  indicate the two main parts of this e-mail       
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development and apoptosis, which binds to BRCA1 at residues 
173–303 and 433–511 [ 53 ]; retinoblastoma protein (pRB) that is 
a tumor suppressor protein dysfunctional in several tumors inter-
acts with residues 304–394 of BRCA1 [ 54 ]; p53, which is known 
to acts as the guardian of the genome and a tumor suppressor [ 55 ] 
and binds BRCA1 at residues 224–500 [ 56 ]; Rad50, which forms 
a complex with Mre11 and p95/nibrin that acts in meiotic recom-
bination, homologous recombination, nonhomologous end join-
ing, the DNA damage response, and telomere maintenance [ 57 ], 
and that binds BRCA1 at residues 341–748 [ 58 ]; Rad51, which is 
a member of a protein family that mediates DNA strand–exchange 
functions related to normal recombination [ 59 ], and which inter-
acts with the residues 758–1064 of BRCA1 [ 60 ]; FANCA, a mem-
ber of the proteins related to Fanconi anemia that form a nuclear 
complex [ 61 ], which binds BRCA1 at residues 740–1083 [ 62 ]; 
whereas JunB, a transcription factor involved in regulation of the 
gene activity following the primary growth factor response inter-
acts with BRCA1 at residues 1343–1440 [ 63 ]. Finally, residues 
452–1079 of human BRCA1 are known to interact with DNA 
[ 64 ]. 

 Results of the DisoRDPbind analysis of human BRCA1 (UniProt 
ID: P38398) are shown in Fig.  5a . We observe that the putative pro-
pensities clearly illustrate that this protein has a number of identifi able 
disordered protein- and DNA-binding sites that are located in the 
intrinsically disordered region of this protein. The entire long central 
region is predicted as protein binding, which is in agreement with the 
annotated native binding sites that are discussed in the previous para-
graph. The known DNA-binding region, which is shown as a blue 
horizontal line at the bottom of Fig.  5a  also lines up with the higher 
values of the predicted propensities for the DNA binding; we note 
that the DisoRDPbind webserver predicts residues with the propensi-
ties for DNA binding ≥0.245 as DNA binding ( see   Note    6  ), and such 
residues are fairly abundant in the native DNA-binding region.

      Every living cell contains ribosomes, which are ancient ribonucleopro-
tein complexes serving as molecular machines for protein biosynthe-
sis. Ribosomes are large (with the molecular mass of at least 2.5 MDa) 
macromolecular complexes composed of one or more ribosomal 
RNA molecules and a variety of proteins. Being the major force in the 
cellular protein production, these highly specialized machines have 
two major components known as the small and the large ribosomal 
subunits. These components have different roles in protein biosynthe-
sis, with the small ribosomal subunit being responsible for “reading” 
the mRNA and with the large ribosomal subunit catalyzing the pep-
tide bond formation. Although overall function and organization of 
ribosomes is similar between different organisms, prokaryotic and 
eukaryotic ribosomes have signifi cant differences. For example, in 
prokaryotes, ribosomes are composed of ~65 % of rRNA and 35 % of 

3.2  Case 2: Yeast 
60S Ribosomal 
Protein L4
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ribosomal proteins, whereas in eukaryotic ribosomes, the rRNA–pro-
tein ratio is close to 1. Furthermore, in prokaryotic ribosomes, small 
(30S) subunit includes 16S rRNA and 21 ribosomal proteins, whereas 
large (50S) subunit contains 5S and 23S rRNA molecules and 31 pro-
teins [ 65 ]. In the 80S eukaryotic ribosome, the small 40S subunit 
contains 18S rRNA and 33 proteins, and the large 60S subunit is 
composed of 3 rRNA molecules (5S, 28S, and 5.8S) and 46 proteins 
[ 66 ]. Proteins derived from the small and large ribosomal subunits are 
named S1, S2, S3, … and L1, L2, L3, …, respectively. Their high 
conservation during evolution suggests that they have critical roles in 
ribosome biogenesis or functions of the mature ribosome. The ribo-
somal proteins are known to be enriched in intrinsic disorder [ 18 ] 
which is why they are relevant for our case study. 

 Since ribosomal proteins are abundant in every cell, and since 
they can interact with nucleic acids and other proteins, these 
RNA- binding proteins are known to be recruited to carry out 
many extra-ribosomal or auxiliary functions, i.e., they serve as 
moonlighting proteins [ 67 – 70 ]. It has been pointed out that the 
ribosomal proteins might have over 30 extra-ribosomal functions 
including regulation of the gene-specifi c control of transcription, 
transcript-specifi c translational control, and surveillance of ribo-
some synthesis and they could be involved in induction of cell- 
cycle arrest or apoptosis and in regulation of normal development 
and cancer [ 67 ,  69 ,  70 ]. One of the characteristic examples of 
such moonlighting ribosomal proteins is given by the protein L4. 
The L4 protein is annotated to have 24 % of disordered residues in 
the MobiDB database [ 71 ] which are localized in the several 
regions including residues 1–11, 52–91, 189–196, 300–313, and 
at the C-terminus starting at the residue 341. This is also in agree-
ment with the D 2 P 2  database [ 72 ] that lists residues 1–12, 72–81, 
193-–94, 306–311, and 347–351 as disordered. This protein is 
known to both inhibit [ 73 ] and attenuate [ 74 ] the translation of 
the S10 operon, which, in  E.coli , encodes eleven different ribo-
somal proteins, one of which is L4 itself [ 75 ]. Also, L4 can bind 
to RNase E (which is a part of the degradosome that plays an 
important role in mRNA turnover as well as in the processing and 
decay of noncoding RNAs), modulate activity of this crucial 
nuclease and thereby regulate mRNA composition in response to 
stress [ 76 ]. Curiously, eukaryotic L4 seems to be also engaged in 
the extra-ribosomal functions. In fact, recently it has been pointed 
out that this protein plays an important role in the ribosome bio-
genesis, since the deletion of the universally conserved internal 
loop of yeast L4 resulted in severe impairment of the growth and 
reduction of the levels of large ribosomal subunits [ 77 ], and since 
the eukaryote-specifi c acidic C-terminal extension (residues 265–362) 
is involved in several distinct interactions with the 60S surface 
needed for the hierarchical ribosome assembly [ 78 ]. Therefore, 
the internal loop (~60 residues) is known to be involved in 
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interaction with the chaperone Acl4 involved in the assembly of 
the mature ribosome and later binds to the cognate nascent rRNA 
site [ 78 ]. In fact, in mature ribosome, the aforementioned loop 
(residues 46–111) protrudes from the globular folded core of L4 
and deeply projects into the 25S rRNA core, lining a peptide exit 
tunnel of the mature ribosome [ 78 ]. 

 Figure  5b  represents results of the DisoRDPbind-based analy-
sis of the interactions of yeast 60S ribosomal protein L4 (UniProt 
ID: P10664) with RNA (red lines) and proteins (green lines). We 
also annotate the native RNA-binding regions (red horizontal line 
at the bottom of Fig.  5b ) which were collected from the protein–
ligand binding database BioLiP [ 79 ]; they are in agreement with 

a

b

  Fig. 5    Predictions generated by DisoRDPbind for human BRCA1 protein (UniProt ID: P38398) (panel  a ) and 
yeast 60S ribosomal protein L4 (UniProt ID: P10664) (panel  b ). The putative propensities for DNA binding in 
panel  a  and RNA binding in panel  b  are shown using  blue  and  red line , respectively; and putative propensities 
for protein binding are shown using  green lines . The native annotations are shown using  horizontal lines  that 
lie on the  x -axis       
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the discussion in the above paragraph. We observe that the two 
large peaks in the putative propensities for disordered RNA bind-
ing align with the localization of the native RNA-binding regions; 
the DisoRDPbind webserver predicts residues with the propensi-
ties for RNA binding ≥0.151 as RNA binding ( see   Note    6  ). Also, 
both MobiDB and D 2 P 2  suggest that these regions are intrinsically 
disordered. Although the predicted propensities for the protein 
binding are below a cut-off value (the DisoRDPbind webserver 
predicts residues with the propensities for protein binding ≥0.799 
as protein binding;  see   Note    6  ), the N-terminus is predicted with 
relatively high values that suggest potential for disordered protein 
binding. 

 Overall, we conclude that both case studies demonstrate that 
our webserver generates predictions that provide useful clues to 
fi nd native disordered DNA-, RNA-, and protein-binding regions.   

4              Notes 

     1.    The runtime in milliseconds for a given sequence with  n  resi-
dues can be estimated using the following formula, time = 0.00
77* n  2  + 0.9028* n  + 301.06. This formula was estimated based 
on empirical data discussed in [ 45 ]. Given  n  = 200, time = 789.6 
[milliseconds] = 0.79 [seconds]. Given  n  = 1000, time = 8903.7 
[milliseconds] = 8.9 [second]. This formula can be used to esti-
mate a total runtime for a large set of proteins since predictions 
on the webserver are run serially.   

   2.    Server accepts between 1 and 5000 protein sequences. The 
user must submit their sequence(s) in FASTA format to guar-
antee they will receive the correct response from DisoRDPbind 
 webserver. This format is described at   https://en.wikipedia.
org/wiki/FASTA_format       

   3.    Due to a limitation of one of the methods that is used to gen-
erate DisoRDPbind sequence features (i.e., secondary struc-
ture profi le predicted by PSIPRED), the webserver cannot 
process very long (>10,000 residues) protein chains.   

   4.    Although DisoRDPbind can predict an average size protein 
with about 200 residues within 1 s, it may take hours to pro-
cess the prediction for thousands of (up to 5000) protein 
sequences. Keeping the web browser window open this long 
could be prohibitive. Therefore, we require the user to provide 
an e-mail address where (s)he will be notifi ed when the results 
are available and how to access these results.   

   5.    User should store the link to the results for future reference. We 
store the results of the prediction for at least 3 months under the 
provided link. Although the same link that is shown in the web 
browser window is sent via e-mail, we advise users to copy the 
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link from the web browser. This is in case if an invalid e-mail 
address was entered and thus no e-mail will reach the user.   

   6.    The binary prediction is generated from the predicted propen-
sity scores using a threshold, i.e., residues with the propensity 
higher than the threshold are assigned with the binary value 1 
and the remaining residues are assigned with 0. These thresh-
olds equal 0.245, 0.151, and 0.799 for the predictions of the 
disordered DNA, RNA, and protein binding, respectively. 
They correspond to the FP-rate (fraction of incorrectly pre-
dicted non-binding residues) of 0.1 that was estimated using 
the TRAINING dataset. This means that the user should 
expect that among the predicted binding residues there are 
about 10 % of the non-binding residues.         
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    Chapter 15   

 Sequence-Based Prediction of RNA-Binding 
Residues in Proteins                     

     Rasna     R.     Walia     ,     Yasser     EL-Manzalawy     ,     Vasant     G.     Honavar     , 
and     Drena     Dobbs      

  Abstract 

   Identifying individual residues in the interfaces of protein–RNA complexes is important for understanding 
the molecular determinants of protein–RNA recognition and has many potential applications. Recent 
technical advances have led to several high-throughput experimental methods for identifying partners in 
protein–RNA complexes, but determining RNA-binding residues in proteins is still expensive and time- 
consuming. This chapter focuses on available computational methods for identifying which amino acids in 
an RNA-binding protein participate directly in contacting RNA. Step-by-step protocols for using three 
different web-based servers to predict RNA-binding residues are described. In addition, currently available 
web servers and software tools for predicting RNA-binding sites, as well as databases that contain valuable 
information about known protein–RNA complexes, RNA-binding motifs in proteins, and protein-binding 
recognition sites in RNA are provided. We emphasize sequence-based methods that can reliably identify 
interfacial residues without the requirement for structural information regarding either the RNA-binding 
protein or its RNA partner.  

  Key words     Protein–RNA interfaces  ,   Binding site prediction  ,   Machine learning  ,   RNA-binding 
proteins (RBPs)  ,   Ribonucleoprotein particles (RNPs)  ,   Homology-based prediction  ,   RNABindRPlus  , 
  SNBRFinder  ,   PS-PRIP  ,   FastRNABindR  

1      Introduction 

 RNA-binding proteins (RBPs) are key regulators of cellular and 
developmental processes [ 1 ], playing pivotal roles in the posttran-
scriptional splicing and localization of mRNAs [ 2 – 5 ], mediating the 
activities of noncoding RNAs (ncRNAs) [ 6 ,  7 ] and even “moon-
lighting” as metabolic enzymes [ 8 ,  9 ] and promoting phase transi-
tions to generate stress granules inside cells [ 10 ]. Defects in RBPs 
and ribonucleoprotein particles (RNPs) have been linked to immu-
nological disorders [ 11 ], cancer [ 12 ,  13 ], and neurodegenerative 
diseases in humans [ 5 ,  14 ]. Still, even though the human genome 
encodes more than 1500 different RNA-binding proteins [ 15 , 
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 16 ]—at least as many RBPs as DNA-binding transcription factors 
[ 17 ]—our understanding of the cellular roles of RBPs, how they 
recognize their targets, and how they are regulated has lagged far 
behind our understanding of transcription factors. Recent exciting 
developments have begun to close this gap, providing proteome- 
wide catalogs and databases of RNA-binding proteins, “RNA inter-
actomes” or “RBPomes” [ 18 – 21 ], an impressive compendium of 
RNA recognition sites [ 22 ], detailed views of the architecture and 
dynamics of important RNP complexes and RNA viruses, e.g., refs. 
[ 23 ,  24 ], and substantial progress in engineering RBPs with custom-
ized functions and high specifi city for desired RNA targets [ 25 ,  26 ]. 

 RNA-binding proteins are often modular, and many well- 
characterized RBPs contain one or more conserved RNA-binding 
domains or motifs [ 1 ,  27 ]. The RNA recognition motif (RRM), 
for example, is one of the most abundant structural motifs in ver-
tebrate proteins, and is found in ~2 % of all human proteins [ 25 ]. 
Other abundant RNA-binding domains and motifs include the 
KH, dsRBD, DEAD-Box, PUF, SAM, and ZnF domains [ 1 ,  27 ], 
all which have conserved structures and can be recognized in the 
primary sequences of proteins ( see  Subheading  3.1 ,  step 6  below). 
However, only ~50 % of the mRNA-binding proteins identifi ed by 
“interactome capture” in HeLa cells contain a characterized RNA- 
binding domain [ 19 ]. Also, many RBPs bind RNA through intrin-
sically disordered regions (IDRs), which are thought to promote 
formation of extended interaction interfaces and contribute to the 
generation of higher order assemblies and the formation of RNA 
granules [ 28 ,  29 ]. Finally, a survey of available structures for pro-
tein–RNA complexes revealed that the majority of amino acids in 
the protein–RNA interface are not part of a characterized RNA- 
binding motif [ 30 ] and the presence of an RNA-binding signature 
does not conclusively identify the specifi c amino acids involved in 
RNA recognition and binding. 

 The most defi nitive way to identify RNA-binding residues 
(i.e., residues that directly contact RNA) ( see   Note    1  ) is to extract 
them from a high-resolution experimental structure of a protein–
RNA complex. Three-dimensional structures are available for only 
a small fraction of the known protein–RNA complexes [ 31 ]. As of 
December 16, 2015, the number of solved structures in the Protein 
Data Bank (PDB) for protein–RNA complexes is only 1661 out of 
114,402 total structures, and ~40 % of the RNA-containing struc-
tures in the PDB correspond to ribosomes. Protein–RNA com-
plexes can be very diffi cult to crystallize and many are too large for 
structure determination using NMR spectroscopy [ 32 ,  33 ]. 
Fortunately, recent advances in NMR [ 34 ], cryo-electron micros-
copy [ 35 ], and small-angle X-ray scattering (SAXS) [ 36 ] offer tre-
mendous promise for providing structural details for RNPs that 
have been recalcitrant to experimental structure determination. At 
present, in the absence of a 3D structure, several types of 
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experiments can be used to identify RNA-binding residues that are 
required for function (e.g., site-specifi c mutagenesis) or residues 
that are either required for high affi nity binding or are located in 
close proximity to RNA in protein–RNA complexes, either in vivo 
or in vitro (e.g., co-immunoprecipitation assays, cross-linking mass 
spectrometry, yeast 3-hybrid assays, footprinting, and electropho-
retic shift assays (reviewed in refs. [ 1 ,  27 ,  38 ]). 

 The development of high-throughput CHIP and RNASeq- 
based methods that employ a combination of in vivo cross-linking 
and immunoprecipitation (e.g., RIP-Chip, HITS-CLIP, PAR- 
CLIP, iCLIP, and CRAC) has made it possible to identify RNAs 
bound by specifi c proteins on a genome-wide scale (reviewed in 
refs. [ 1 ,  39 ,  40 ]). Along with these advances, several powerful inte-
grated biochemical/bioinformatics approaches can identify both 
the target RNAs and the specifi c ribonucleotides recognized by the 
RNA-binding proteins [ 41 – 43 ]. In contrast, at present, there are 
no truly high-throughput experimental approaches for identifying 
interfacial residues in the protein component of a protein–RNA 
complex, although CLAMP [ 44 ] and other cross-linking and com-
bined cross-linking mass spectrometry methods can identify inter-
facial residues in both the protein and RNA [ 37 ,  45 ,  46 ]. Despite 
all of these impressive advances, the cost and effort involved in the 
experimental determination of protein–RNA complex structures 
and/or identifying specifi c RNA-binding residues in proteins, has 
created a need for reliable computational approaches that can pre-
dict the most likely RNA-binding residues in proteins. 

 Computational approaches to predicting protein–RNA inter-
faces have been the topic of several recent reviews and benchmark 
comparisons [ 31 ,  47 – 50 ]. These approaches can be broadly classi-
fi ed into sequence- and structure-based methods [ 31 ,  47 ]. 
Sequence-based methods use sequence-derived features (such as 
amino acid identity or physicochemical properties) of a target resi-
due and its sequence neighbors to make predictions. Structure- 
based methods use structure-derived features (such as 
solvent-accessible surface area or secondary structure) of a target 
residue and its sequence or structural neighbors to make predic-
tions. Both sequence-based and structure-based approaches could, 
in theory, take advantage of recognizable RNA-binding motifs in 
RBPs and protein-binding motifs in their RNA targets. But, 
although hundreds of RNA-binding domains, motifs and signa-
tures are annotated in the  InterPro  resource [ 51 ], at present there 
is no comprehensive database focused specifi cally on RNA-binding 
motifs in proteins ( see   Note    2  ). For protein-binding motifs in 
RNA, there is a valuable compendium of “RNA-binding motifs” 
(i.e., RNA motifs recognized by RBPs) [ 22 ] and excellent data-
bases of RNA sequence motifs and binding specifi cities [ 41 ,  43 ], 
which provide experimentally determined recognition sites in RNA 
for a large number of RBPs. Also, one of the protocols provided 
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here,  PS-PRIP  ( see  Subheading  3.3 ) employs a dataset of interfa-
cial sequence motifs from RBPs and their targets to predict RNA- 
binding residues  and  protein-binding residues in the RNA 
component of specifi c protein–RNA complexes [ 52 ]. 

 Recent benchmark comparisons of software and servers for 
predicting RNA-binding residues in proteins [ 31 ,  47 ] have dem-
onstrated that the performance of methods that require only 
sequence information is often superior to that of methods that 
require structural information. One reason for this is that the best 
sequence-based methods encode sequences using PSSMs (Position- 
Specifi c Scoring Matrices) ( see   Note    3  ), which capture powerful 
evolutionary information from large multiple alignments of homol-
ogous sequences. In considering potential RNA-binding residues 
in a specifi c protein of interest, however, the user is strongly 
encouraged to take advantage of any available structural informa-
tion, especially in evaluating the validity of predictions. For exam-
ple, in most cases, RNA-binding residues are located on the 
solvent-exposed surface of the protein. Any predicted RNA- 
binding residues that are buried in the three-dimensional structure 
of a protein should be viewed with suspicion, although buried 
interfacial residues in “unbound” protein structures can become 
exposed due to conformational changes in the protein that occur 
upon RNA binding [ 28 ,  53 – 55 ]. 

 Another way in which structural information can be exploited 
to accurately identify potential RNA-binding residues is illustrated 
in the so-called “homology-based” approaches. Homology-based 
approaches take advantage of the observation that RNA-binding 
residues are often conserved across homologous proteins [ 56 ,  57 ]. 
Thus, if a “bound” structure is available for a close sequence 
homolog of the query protein, the RNA-binding residues of the 
query protein can be inferred, based on their alignment with the 
known RNA-binding residues in the homologous sequence. When 
applicable, homology-based approaches provide the most reliable 
computational predictions of RNA-binding sites, but they have an 
important limitation: if no homologs with experimentally deter-
mined bound structures are available for the query protein, no pre-
dictions can be generated. This limitation can be overcome by 
combining a homology-based method, with a machine learning- 
based method, which can return predictions for every residue in 
any protein. This is the strategy employed by  RNABindRPlus  ( see  
Subheading  3.2 ), which combines a PSSM-based Support Vector 
Machine (SVM) with a homology-based method to generate 
highly reliable predictions [ 57 ], and by  SNBRFinder  ( see  
Subheading  3.3 ), which combines an SVM classifi er that uses 
sequence profi les, residue conservation scores, physicochemical 
properties and interface propensities, with a homology-based 
method that uses profi le hidden Markov models (HMMs) to search 
for the homologs [ 58 ]. 
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 The major goal of the chapter is to provide a step-by-step protocol 
for predicting RNA-binding residues in proteins, with a focus on 
machine learning and homology-based methods. In keeping with the 
theme of this volume, the methods outlined here are sequence-based; 
they do not require structural information regarding the protein of 
interest. We also provide a brief guide to accessing and utilizing state-
of-the-art computational methods, web servers and databases that 
provide information about interfaces in protein–RNA complexes 
and/or predictions of RNA-binding residues in proteins. For addi-
tional information, the reader is referred to two excellent reviews: a 
recent review by Si et al. [ 50 ], which includes a comprehensive table 
of available sequence, structure and docking based methods; and a 
review by Tuszynska et al. [ 59 ], which focuses on structural docking-
based approaches which are not considered here. 

 In this chapter, we focus on currently available web-based 
computational tools for interface prediction, i.e., predicting which 
specifi c amino acid residues in an RNA-binding protein are involved 
in recognition of and binding to RNA. A few tools are also capable 
of predicting the converse, i.e., which ribonucleotides in the bound 
RNA directly contact the protein of interest (e.g., [ 52 ,  60 ,  61 )]. 
Software and servers for partner prediction, i.e., predicting which 
RNA(s) bind to a specifi c protein of interest (or  vice versa ) in a 
protein–RNA complex or a protein–RNA interaction network, are 
not described here, but have been reviewed elsewhere [ 62 – 65 ]. 
Tools for predicting whether or not a query protein is likely to 
bind RNA are also available (e.g., Tartaglia [ 39 ,  66 ,  67 )]. but are 
not considered here. 

 The protocol involves two major steps (illustrated in Fig.  1 ):

     Step 1:  Determine whether experimental data regarding RNA- 
binding residues in the query RNA-binding protein (or puta-
tive RNA-binding protein) are already available. This step is 
described in Subheading  3.1 , which outlines strategies for 
exploiting available online databases and servers (provided in 
Table  1  below) that provide structural data regarding protein–
RNA complexes, or focus on RNA-binding proteins, RNA- 
binding motifs, or protein–RNA interactions.

      Step 2:  If known RNA-binding residues cannot be identifi ed using 
available resources, or if the user wishes to identify additional 
potential interfacial residues, use one (or, preferably, all three) 
of the following web-based tools for predicting RNA-binding 
residues in protein–RNA complexes:

 ●     RNABindRPlus  ( see  Subheading  3.2 )—a hybrid machine 
learning/sequence homology-based approach developed by 
our group [ 57 ] which requires only sequence information 
for the protein(s) of interest. The accuracy of this and simi-
lar sequence-based methods from other groups is generally 
greater than that obtained using structure-based methods.  
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 ●    SNBRFinder  ( see  Subheading  3.3 )—a method developed 
by Yang et al. [ 58 ], which can predict either RNA- or 
DNA-binding residues in proteins by combining a machine 
learning method with a template (homology)-based 
method. The key differences between SNBRFinder and 
RNABindRPlus are: (a) inputs to the SVM classifi er in 
SNBRFinder include sequence profi les and other sequence 
descriptors such as residue conservation scores, physico-
chemical properties, and interface propensities, whereas 
the only inputs to the SVM for RNABindRPlus are 
sequence PSSMs; (b) SNBRFinder uses profi le hidden 
Markov models to fi nd remote homologs for the query 
protein, whereas RNABindRPlus uses BLAST searches.  

 ●    PS-PRIP  ( see  Subheading  3.4 )—a new motif-based 
method developed by our group [ 52 ], which can predict 
interfacial residues in both the protein and the RNA com-
ponents of a protein–RNA complex and can provide 
“partner- specifi c” predictions.       

  Fig. 1    Flowchart for identifying potential RNA-binding residues in proteins       
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       Table 1  
  Databases of protein–RNA complexes and resources for analyzing interfaces and motifs in protein–
RNA complexes   

 Database  Description  Reference 

 Databases of structures of RNA–protein complexes 

 PDB (Protein Data 
Bank) 

   www.pdb.org     
 This is a database of 3D macromolecular structures—

protein–protein, protein–DNA, protein–RNA, and 
protein–ligand structures solved using X-ray 
crystallography, cryo-EM, NMR, and others 

 [ 68 ] 

 NDB (Nucleic Acid 
Database) 

   http://ndbserver.rutgers.edu/     
 This is a database of three-dimensional structural 

information for nucleic acids 

 [ 69 ] 

 PDBSum    https://www.ebi.ac.uk/thornton-srv/databases/cgi-bin/
pdbsum/GetPage.pl?pdbcode=index.html     

 A pictorial database of PDB structures that provides access 
to interfacial residues in known structures 

 [ 70 ,  71 ] 

 Resources for analyzing interfaces and RNA-binding motifs in RNA 

 BIPA (Biological 
Interaction 
Database for 
Protein–Nucleic 
Acid) 

   http://mordred.bioc.cam.ac.uk/bipa     
 BIPA provides a list of protein–RNA (and protein–DNA) 

complexes from the PDB and displays RNA binding 
residues within the linear primary sequence of a chosen 
protein, or within a multiple sequence alignment of 
related RNA binding proteins 

 (BIPA has not been updated since 2009 and is not fully 
functional at present) 

 [ 72 ] 

 InterPro & 
InterProScan 

   http://www.ebi.ac.uk/interpro/     
 InterPro classifi es protein sequences into families using 

information from ten different databases; InterProScan 
identifi es functional and/or conserved domains, motifs, 
and other important sites in protein sequences 

 [ 51 ,  73 ] 

 NPIDB (Nucleic 
Acid-Protein 
Interaction 
Database) 

   http://npidb.belozersky.msu.ru/     
 A database for extracting biologically meaningful 

characteristics of protein–RNA and protein–DNA 
complexes 

 [ 74 ] 

 DBBP (DataBase of 
Binding Pairs in 
protein–nucleic 
acid interactions) 

   http://bclab.inha.ac.kr/dbbp     
 A database that provides structural data for hydrogen 

bonding interactions between proteins and nucleic acids 

 [ 75 ] 

 PRIDB (Protein 
RNA interface 
database) 

   http://pridb.gdcb.iastate.edu     
 A database of protein–RNA complexes from the PDB, 

with tools for identifying and visualizing interfacial 
residues in both the protein and RNA sequences and 
structures. (PRIDB has not been updated since 2013 
and is under remediation) 

 [ 76 ] 

(continued)
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 We encourage users to submit their proteins of interest to all 
three web servers described in this protocol because the underlying 
algorithms and datasets used for training and evaluating perfor-
mance are different in each case, and the methods have different 
strengths and weaknesses. Even though all three methods have 
been shown to provide highly reliable predictions on benchmark 
datasets, it is not possible to guarantee an accurate prediction for 
any specifi c RNA-binding protein with any of these methods.  

Table 1
(continued)

 Database  Description  Reference 

 RsiteDB    http://bioinfo3d.cs.tau.ac.il/RsiteDB/     
 This database stores information about the protein 

binding pockets that interact with single-stranded RNA 
nucleotide bases 

 [ 77 ] 

 ProNIT    http://www.abren.net/pronit/     
 A database of thermodynamic interaction data (binding 

constants, free energy change, and so on) between 
proteins and nucleic acids 

 [ 78 ] 

 RNA CoSSMos    http://cossmos.slu.edu/     
 A tool that provides information on secondary structural 

motifs such as bulges and hairpin loops of 3D protein–
nucleic acid structures 

 [ 79 ] 

 RNA 3D Hub    http://rna.bgsu.edu/rna3dhub/     
 A suite of tools including the RNA Structure Atlas and 

RNA 3D Motif Atlas. These provide information about 
RNA 3D motifs 

 [ 80 ] 

 RNA Bricks    http://iimcb.genesilico.pl/rnabricks     
 A database that provides information about recurrent 

RNA 3D motifs and their interactions, extracted from 
experimentally determined structures of RNA and 
RNA-protein complexes 

 [ 81 ] 

 Databases of recognition sites/protein-binding motifs in RNA 

 CISBP-RNA    http://cisbp-rna.ccbr.utoronto.ca/     
 A database of inferred sequence binding preferences of 

RNA- binding proteins 

 [ 22 ] 

 RBPDB    http://rbpdb.ccbr.utoronto.ca/     
 A database of manually curated RNA-binding sites 

collected from literature 

 [ 41 ] 
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2    Materials 

   Before using computational methods to  predict  RNA-binding 
residues, the user should fi rst search for existing experimental data 
regarding interfacial residues in the specifi c RNA-binding protein(s) 
of interest, both in published literature and in relevant specialized 
databases. The “gold standard” for identifying RNA-binding resi-
dues in proteins is analysis of a high resolution three-dimensional 
structure of the protein bound to its cognate RNA, i.e., a “bound” 
structure of the complex containing the protein bound to 
RNA. The Protein Data Bank (PDB) [ 68 ] and the Nucleic Acid 
Database (NDB) [ 69 ] are two comprehensive databases of experi-
mentally determined structures, from which residue and atomic- 
level information regarding the interfaces in macromolecular 
complexes can be extracted. Table  1  provides URLs for these two 
primary databases, followed by an alphabetical listing of several 
databases that contain valuable information about protein–RNA 
complexes and their interfacial residues, either derived from struc-
tures in the PDB/NDB or from other types of experiments. A 
suggested strategy for utilizing selected resources from this list is 
provided in Subheading  3.1  below.  

   There are more than 20 published approaches for predicting RNA- 
binding residues in proteins (for a recent compilation, see [ 50 ]), 
and a few methods are capable of predicting interfacial residues in 
both the protein and the RNA components of a protein–RNA 
complex (e.g., [ 52 ,  82 ]). Subheadings  3.2 – 3.5  below focus on 
three methods (RNABindRPlus, SNBRFinder, PS-PRIP) that are 
freely available on web-based servers and have been shown to per-
form well on benchmark datasets. Table  2  lists these and several 
additional methods. Please note that not all of these are currently 
available as web-based servers.

       RNABindRPlus [ 57 ] is a purely sequence-based method for pre-
dicting RNA-binding residues in putative RNA-binding proteins. 
It uses logistic regression to combine predictions from HomPRIP, 
a sequence homology-based method, with predictions from 
SVMOpt, an optimized Support Vector Machine (SVM) classifi er. 
The SVM classifi er utilizes sequence-based PSSMs as features. 
HomPRIP makes highly accurate predictions of RNA-binding res-
idues when homologs (with solved structures) of the query protein 
can be found, but a major drawback is that no predictions are 
returned when no such homologs can be found. Additionally, 
HomPRIP cannot return predictions for parts of the query protein 
sequence that are not aligned with its homologs. This limitation of 
HomPRIP is overcome by combining it with a machine learning- 
based method, SVMOpt, which returns predictions for every resi-
due in any protein sequence. 

2.1  Databases of 
Experimentally 
Validated Protein–RNA 
Complexes and  
Resources for 
Analyzing Interfaces

2.2  Servers and 
Software for 
Predicting Interfaces 
in Protein–RNA 
Complexes

2.3  The 
RNABindRPlus Server
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    Table 2  
  Servers and software for predicting RNA-binding sites in proteins   

 Method  Description  Reference 

 BindN    http://bioinfo.ggc.org/bindn/     
 An SVM classifi er that uses hydrophobicity, side chain pKa, molecular mass, 

and PSSMs for predicting RNA-binding residues; it can also predict 
DNA-binding residues 

 [ 83 ] 

 BindN+    http://bioinfo.gcc.org/bindn     
 An updated version of BindN, that uses an SVM classifi er based on PSSMs 

and several other descriptors of evolutionary information; it can also 
predict DNA-binding residues 

 [ 84 ] 

 catRAPID 
signature 

   http://s.tartaglialab.com/grant_submission/signature     
 Predicts both RNA-binding and protein-binding residues in RNPs based on 

physicochemical features instead of sequence similarity searches 

 [ 82 ] 

 DR_bind1    http://drbind.limlab.ibms.sinica.edu.tw/     
 Predicts RNA-binding residues in proteins using information derived from 

3D structure 

 DRNA    http://sparks-lab.org/yueyang/DFIRE/dRNA-DB-service.php     
 Predicts RNA-binding proteins and RNA-binding sites based on similarity 

to known structures 

 [ 85 ] 

 KYG    http://cib.cf.ocha.ac.jp/KYG     
 Uses a set of scores based on the RNA-binding propensity of individual and 

pairs of surface residues of the protein, used alone or in combination with 
position-specifi c multiple sequence profi les 

 [ 86 ] 

 Meta
predictor 

   http://iimcb.genesilico.pl/meta2/     
 A predictor that combines the output of PiRaNhA, PPRInt, and BindN+ to 

make predictions of RNA-binding residues using a weighted mean. (Not 
available as of March 2014) 

 [ 31 ] 

 NAPS    http://prediction.bioengr.uci.edu     
 A modifi ed C4.5 decision tree algorithm that uses amino acid identity, 

residue charge, and PSSMs to predict residues involved in DNA- or 
RNA-binding. (Not available as of March 2014) 

 [ 87 ] 

 OPRA  Uses path energy scores calculated using interface propensity scores 
weighted by the accessible surface area of a residue to predict RNA- 
binding sites. Available from the authors upon request 

 [ 88 ] 

 PPRInt    http://www.imtech.res.in/raghava/pprint/     
 An SVM classifi er trained on PSSM profi les to predict RNA-binding residues 

 [ 89 ] 

 PS-PRIP    http://pridb.gdcb.iastate.edu/PSPRIP/     
 A partner-specifi c method for predicting RNA-binding residues in proteins 

and protein-binding residues in RNAs using sequence motifs extracted 
from interfacial regions in RNA-protein complexes 

 [ 52 ] 

 PRBR    http://www.cbi.seu.edu.cn/PRBR/     
 An enriched random forest classifi er trained on predicted secondary 

structure, a combination of PSSMs with physic-chemical properties, a 
polarity-charge correlation, and a hydrophobicity correlation 

 [ 90 ] 
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Rasna R. Walia et al.

taner@iastate.edu

http://bioinfo.ggc.org/bindn/
http://bioinfo.gcc.org/bindn
http://s.tartaglialab.com/grant_submission/signature
http://drbind.limlab.ibms.sinica.edu.tw/
http://sparks-lab.org/yueyang/DFIRE/dRNA-DB-service.php
http://cib.cf.ocha.ac.jp/KYG
http://iimcb.genesilico.pl/meta2/
http://prediction.bioengr.uci.edu/
http://www.imtech.res.in/raghava/pprint/
http://pridb.gdcb.iastate.edu/PSPRIP/
http://www.cbi.seu.edu.cn/PRBR/


215

 RNABindRPlus was trained on the RB198 dataset, and 
tested on two different datasets, RB44 and RB111. On a subset 
of proteins for which homologs with experimentally determined 
interfaces could be reliably identifi ed, HomPRIP outperformed 
all other methods, achieving an MCC of 0.63 on RB44 and 
0.83 on RB111. RNABindRPlus was able to predict RNA-
binding residues of all proteins in both test sets, achieving an 
MCC of 0.55 on RB44 and 0.37 on RB111, and outperforming 
all other methods, including structure-based methods (e.g., 
KYG [ 86 ]).  

Table 2
(continued)

 Method  Description  Reference 

 PRIP  Uses an SVM classifi er and a combination of PSSM profi les, solvent 
accessible surface area, betweenness centrality, and retention coeffi cient as 
input features. Not accessible via a web server, but results can be obtained 
via correspondence with the author 

 [ 91 ] 

 RBScore    http://ahsoka.u-strasbg.fr/rbscore/     
 Utilizes a score derived from physicochemical and evolutionary features, 

integrating a residue neighboring network approach; it predicts both 
DNA- and RNA-binding residues in proteins 

 [ 92 ] 

 RISP    http://grc.seu.edu.cn/RISP     
 An SVM-based method that uses evolutionary information in terms of 

PSSMs (Not available as of March 2014) 

 [ 93 ] 

 RNABindR    http://bindr.gdcb.iastate.edu/RNABindR/     
 A Naïve Bayes classifi er that uses the amino acid sequence identity to predict 

RNA-binding residues in proteins (no longer maintained) 

 [ 94 ] 

 RNABindR 
v2.0 

   http://ailab1.ist.psu.edu/RNABindR/     
 An SVM classifi er that uses sequence PSSMs to predict RNA-binding 

residues in proteins 

 [ 47 ] 

 RNABindRPlus    http://ailab1.ist.psu.edu/RNABindRPlus/     
 A predictor that combines an optimized SVM classifi er with a sequence 

homology-based method to predict RNA-binding residues in proteins 

 [ 57 ] 

 RNApin    http://www.imtech.res.in/raghava/rnapin/     
 An SVM classifi er that predicts protein-interacting nucleotides (PINs) in 

RNA 

 [ 61 ] 

 SNBRFinder    http://ibi.hzau.edu.cn/SNBRFinder/     
 A sequence-based hybrid predictor that combines a feature-based predictor 

and a template-based predictor to predict nucleic-acid binding residues in 
proteins 

 [ 95 ] 

 SPOT-Seq-
RNA 

   http://sparks-lab.org/yueyang/server/SPOT-Seq-RNA/     
 A template-based technique for predicting RBPs, RNA-binding residues and 

complex structures 

 [ 95 ] 
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     SNBRFinder  is a sequence-based predictor that combines predictions 
from a Support Vector Machine (SVM) classifi er, SNBRFinder F , with 
predictions from a template-based classifi er, SNBRFinder T . 

 SNBRFinder F  utilizes a sliding window of the target residues 
and fi ve neighboring residues on each side to represent the sequen-
tial environment. The features used as inputs to the classifi er 
include the sequence profi le, residue conservation scores, predicted 
structural features, physicochemical properties, interface propen-
sity, sequential position, and two global features, sequence length 
and the global amino acid composition. 

 SNBRFinder T  is a template-based method, i.e., a method that 
utilizes sequence or structural alignments to retrieve homologs/
templates of a query protein and then infer binding residue infor-
mation for the query protein. SNBRFinder T  uses the HHblits 
program [ 96 ] to identify homologs of the query protein. HHblits 
represents both the query and database sequences using profi le 
hidden Markov models (HMM), and then compares the two to 
identify homologs of the query protein. For each query and 
homolog pair, a probability score is output for evaluating the 
similarity between the aligned HMMs. The higher the score is, 
the better the alignment is and vice versa. Specifi cally, a residue in 
the query protein is predicted to be RNA-binding with a proba-
bility score of 1 if it is matched with a binding residue in the 
homolog, otherwise the residue is predicted to be non RNA-
binding with a probability score of 0. 

 On the RB44 [ 31 ] dataset, SNBRFinder had an MCC of 0.48, 
whereas RNABindRPlus had an MCC of 0.49. In terms of AUC 
values, SNBRFinder and RNABindRPlus achieved very similar 
results, with both getting 0.84.  

    PS-PRIP [ 52 ] is a motif-based method that predicts interfacial 
residues for both the RNA and protein components of protein–
RNA complexes in a partner-specifi c manner ( see   Note    4  ). 
PS-PRIP requires as input the sequences of both the RNA-
binding protein and its putative bound RNA(s). Although no 
structural information is required, PS-PRIP exploits the co-
occurrence of specifi c pairs of short protein and RNA sequence 
motifs (5 amino acids long and 5 ribonucleotides long) from a 
database of motifs extracted from interfaces in known protein–
RNA complexes from the PDB. On an independent dataset of 
327 RNA-protein pairs, PS-PRIP obtained a sensitivity of 0.64, 
precision of 0.80, and MCC of 0.59 compared to RNABindRPlus 
with values of 0.88, 0.76, and 0.71, respectively. In addition to 
providing predicted RNA-binding residues in proteins, PS-PRIP 
makes predictions of protein-binding residues in RNAs, 
although with much lower accuracy. Other methods designed to 
predict protein-binding residues in RNA have been published 
recently (e.g., [ 61 ,  82 ]).   

2.4  The 
SNBRFinder Server

2.5  The 
PS-PRIP Server
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3    Methods 

        Currently, all computational methods for predicting RNA-binding 
residues in proteins return only  predicted  interfacial residues, even 
when the actual interfaces are known from experimental data. Thus, 
before using software to predict potential RNA-binding residues, 
the user should search published literature and existing databases 
for experimentally identifi ed interactions involving the protein of 
interest ( see   Note    5  ). If the query protein is newly discovered or has 
no known function, the user should fi rst search for potential homo-
logs using a BLAST search. As outlined below, both the original 
query sequence and its homologs can be used to search databases of 
known protein–RNA interactions, such as those listed in Table  1 .

    1.    If the query protein sequence corresponds to an “unknown” or 
novel protein, run the sequence through  NCBI’s BLAST 
server , available at   http://blast.ncbi.nlm.nih.gov/Blast.cgi     
[ 97 ,  98 ] or use similar genomics resources elsewhere (e.g., 
  http://www.ebi.ac.uk/Tools/sss/    ). BLAST (Basic Local 
Alignment Search Tool) fi nds highly similar sequences in the 
NCBI or ENSEMBL databases ( see   Note    6  ). A good starting 
point for most protein sequence searches is SMARTBLAST, 
available here:   http://blast.ncbi.nlm.nih.gov/smartblast/     ( see  
 Note    7  ). If the query sequence itself is not available in one of 
the NCBI or ENSEMBL databases, potential homologs identi-
fi ed by BLAST can be used as the query for subsequent searches 
in the databases listed in  steps  2– 6  below ( see   Note    8  ).   

   2.    If the query protein has been previously identifi ed and/or ana-
lyzed, a search using the  NCBI “Protein”  tool may quickly 
reveal previously annotated RNA-binding domains or motifs 
and links to experimentally determined structures. Enter the 
name of the protein (or name of a potential homolog, identifi ed 
in  step 1 ) into the box provided here: (  http://www.ncbi.nlm.
nih.gov/protein/    ). In the list of “Items” returned, click on the 
protein name from the appropriate organism to access the full 
GenBank protein entry. Then, examine information on the 
right side of the GenBank protein page; for example, if a high 
resolution structure is available, it will appear under the “Protein 
3D Structure” header. Under the “Related Information” 
header, click on “Conserved Domains (Concise)” or “Conserved 
Domains (Full)” to access any annotated RNA-binding domains 
(or other conserved domains) identifi ed in the protein sequence. 
The “Conserved Domains” results page also provides links to 
available three-dimensional structure(s) similar to that of the 
query protein, if available. Other links on this page can lead to 
additional information regarding potential RNA- binding 
domains in the protein of interest ( see   Note    9  ).   

3.1  Searching 
Existing Literature 
and Databases 
for Relevant 
Experimental Data
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   3.    In every case, the user should search the  Protein Data Bank 
(PDB),  available at   www.rcsb.org     [ 68 ] for any available struc-
tures of protein–RNA complexes that contain the protein of 
interest. The PDB contains over 1600 three-dimensional 
structures of protein–RNA complexes determined using exper-
iments such as X-ray crystallography, nuclear magnetic reso-
nance (NMR) imaging, and cryo-electron microscopy. The 
PDB has a powerful search engine that allows the database to 
be queried in a variety of ways, e.g., by protein (or RNA) name, 
sequence, or GO terms. The PDB also provides excellent 
structure visualization tools as well as links to valuable third-
party resources for visualizing and analyzing the structures of 
macromolecules ( see   Note    10  ).   

   4.    Similarly, the  Nucleic Acid Database (NDB ), available at   http://
ndbserver.rutgers.edu     [ 69 ], is another valuable resource that 
focuses on experimentally determined three-dimensional struc-
tures of nucleic acids, including both protein–RNA and protein–
DNA complexes. The NDB contains only a subset of structures in 
the PDB, making it easier for the user to focus on structures that 
contain RNA. Also, the NDB provides convenient access to a 
wide variety of tools and software specifi cally designed for analyz-
ing RNA sequences and structures ( see   Note    11  ).   

   5.    If it is possible to identify a structure for the query protein–
RNA complex (or a homologous complex) in one of the previ-
ous steps, the user can quickly obtain a graphical representation 
of the protein–RNA interface, using  PDBSum  [ 70 ,  71 ] avail-
able at:   https://www.ebi.ac.uk/thornton-srv/databases/cgi- 
bin/pdbsum/GetPage.pl?pdbcode=index.html    . Enter the 
4-letter PDB code in the box provided and click “Find.” At the 
top of the PDBSum entry page that appears, click on the 
“DNA/RNA” link to access a page listing all of the nucleic 
acid chains in the complex. Then click on “ NUCPLOT”  to 
visualize the ribonucleotides that are contacted by individual 
amino acids, as well as additional information (backbone  vs.  
phosphate group contacts, hydrogen bonding, etc.). Another 
way to identify the RNA-binding amino acids is to click on the 
“Protein” link at the top of the page to reveal a diagrammatic 
representation of the protein sequence, in which Residue 
Contacts to DNA/RNA are labeled. Tools for visualizing, ana-
lyzing and manipulating the structure are provided by both the 
PDB and NDB ( see   Notes    10   and   11  ).  See  Table  1  for addi-
tional tools that provide detailed information about the inter-
facial residues (e.g., NPIDB [ 74 ], DBBP [ 75 ]).   

   6.    If no structure for the query protein–RNA complex can be 
identifi ed, the user can  search for known RNA-binding 
domains or motifs in the protein sequence.  Typically, only a 
few of the amino acids in well-characterized RNA-binding 

Rasna R. Walia et al.

taner@iastate.edu

http://www.rcsb.org/
http://ndbserver.rutgers.edu/
http://ndbserver.rutgers.edu/
https://www.ebi.ac.uk/thornton-srv/databases/cgi-bin/pdbsum/GetPage.pl?pdbcode=index.html
https://www.ebi.ac.uk/thornton-srv/databases/cgi-bin/pdbsum/GetPage.pl?pdbcode=index.html


219

domains or motifs (e.g., the RNA Recognition Motif (RMM), 
which is ~90 amino acids) are actually “interfacial residues” 
involved in contacting RNA ( see   Note    1  ). But, if the query 
protein does contain such a conserved domain or motif, 
homologous structures are likely available and can indicate 
which amino acids are directly involved in recognizing and 
binding RNA. The EMBL-EBI’s  InterPro  [ 51 ] is a valuable 
comprehensive resource that includes more than 10 databases 
of protein structural and functional motifs, and an integrated 
tool,  InterProScan  [ 73 ], which can be used to identify all 
known motifs, including RNA-binding motifs, in a protein of 
interest. Access InterPro here:   http://www.ebi.ac.uk/inter-
pro/     and enter the query protein sequence in the text box. 
Within a few minutes, a “Results” page will appear, providing 
a graphical summary of all domains, motifs and signatures 
identifi ed, with links to additional information about each.   

   7.    For many RNA-binding proteins, recognition motifs (i.e., the 
specifi c RNA sequences bound by the RBP) are now known 
[ 1 ,  22 ,  99 ]. Several valuable databases and tools are available if 
the user wishes to identify known or potential recognition sites 
in the RNA component of a specifi c protein–RNA complex. 
Databases of experimentally defi ned RNA sequence motifs that 
are bound by RBPs include: CISBP-RNA [ 22 ], RBPDB, [ 41 ], 
and RBPMotif [ 43 ]. Databases of RNA structural motifs, e.g., 
BRICKS [ 81 ] and the RNA 3D Motif Atlas [ 80 ], are also 
available, but these have not yet been systematically annotated 
regarding their protein-binding activities. Also, a valuable tool 
for mapping binding sites for RBPs within the genomes of 
 several model organisms is RBPMap [ 100 ], which is available 
at:   http://rbpmap.technion.ac.il    .    

        The  RNABindRPlus  method implements a combination of a 
machine learning method ( SVMOpt ) and a sequence homology- 
based method ( HomPRIP ) to predict RNA-binding residues in 
proteins [ 57 ] ( see  Subheading  2.3 ). Given a single protein sequence 
(or a fi le of multiple protein sequences), RNABindRPlus can pre-
dict which amino acid residues are mostly likely to bind RNA. Run 
times can be slow when large numbers of protein sequences are 
submitted in a single job ( see   Note    12  ). A faster version of the 
server is under development ( see   Note    13  ).

    1.    Access the  RNABindRPlus  web server at:   http://ailab1.ist.
psu.edu/RNABindRPlus/    .   

   2.     To predict RNA-binding residues in a single putative 
RNA- binding protein : Enter the protein sequence in FASTA 
format ( see   Note    14  ) in the text box provided on the 
homepage.   

3.2  Using 
RNABindRPlus 
to Predict RNA-
Binding Residues 
in Proteins
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   3.     To predict RNA-binding residues for multiple putative RNA-
binding proteins : In this case, the user has two options: (a) Enter 
the protein sequences in FASTA format in the text box provided; 
or (b) upload a FASTA formatted fi le of protein sequences by 
clicking the “Choose fi le” button on the homepage.   

   4.    Provide an email address where results should be sent. Computing 
the results requires approximately 10 min per protein sequence 
submitted to RNABindRPlus ( see   Notes    12   and   13  ).   

   5.    The user has the option of excluding highly similar proteins 
from the homolog list, at the desired sequence identity level by 
selecting the check box at the bottom of the submission page. 
To obtain the most reliable predictions, leave this option blank 
( see   Note    15  ).   

   6.    Once all submission fi elds have been fi lled, click on the 
“Submit” button. The user will receive an email confi rming 
that the job is currently running. RNABindRPlus results will 
be returned to the user by email.   

   7.    Figure  2  shows results returned by RNABindRPlus for the S5 
protein from the 30S ribosomal subunit of  T. thermophilus , 
which corresponds to protein chain E, in PDB structure 
1HNX). Figure  2a  shows the  Results Summary  email, which 
contains several links that can be clicked to display selected por-
tions of the results. Figure  2b  ( Interface Prediction Results)  dis-
plays predictions from three different methods: HomPRIP 
(homology-based method), SVMOpt (optimized SVM) and 
RNABindRPlus (which combines predictions from HomPRIP 
and SVMOpt). The fi rst section of output for each method 
(e.g., Prediction from HomPRIP), is a list of the predictions for 
each residue, where “1” corresponds to predicted interfacial 
residues (i.e., RNA-binding) and “0” corresponds to predicted 
non-interfacial residues. The second section of output (e.g., 
“Predicted score from HomPRIP”) gives the probability score 
for each residue (where a probability of ≥0.5 means the residue 
is an interface residue, otherwise it is a non-interface residue). 
Figure  2c  ( Homologs of the query protein ) displays a list of 
homologous proteins identifi ed by HomPRIP, the homology- 
based component of RNABindRPlus, along with their corre-
sponding interface conservation scores (IC_scores) ( see   Note  
  16  ). These are the homologous proteins used for inferring 
RNA-binding residues in the query protein using 
HomPRIP. Figure  2d  ( All potential homologs in the PDB ) shows 
only a portion of the output providing information about all 
potential homologs found in the PDB for the query protein.

              SNBRFinder  is a sequence-based hybrid predictor that combines 
predictions from a Support Vector Machine method, SNBRFinder F , 
with predictions from a template-based method, SNBRFinder T  [ 58 ] 
( see  Subheading  2.4 ). The inputs to the SVM method include 

3.3  Using 
SNBRFinder to Predict 
RNA- Binding Residues 
in Proteins
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  Fig. 2    ( a ) RNABindRPlus results notifi cation email obtained for the  T. thermophilus  S5 protein. ( b ) RNABindRPlus 
prediction results for the  T. thermophilus  S5 protein. Results are also returned for the two individual compo-
nents of RNABindRPlus, HomPRIP and SVMOpt. For each method, under the header “Prediction from,” the 
predicted RNA-binding residues are represented by a string of 1’s and 0’s, where “1” and “0” correspond to 
predicted RNA-binding and non-RNA binding residues, respectively. See text for additional details. 
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sequence profi les and other sequence descriptors, such as residue con-
servation scores, physicochemical properties, and interface propensi-
ties. SNBRFinder T  uses profi le hidden Markov models to fi nd remote 
homologs of the query protein sequence, but the basic methodology 
used for building the classifi er is similar to that used in RNABindRPlus.

    1.    Access the SNBRFinder web server at   http://ibi.hzau.edu.
cn/SNBRFinder/index.php    .   

   2.    Use the radio buttons provided to choose one of three differ-
ent options for submitting a protein sequence: (a) enter the 
amino acid sequence in FASTA format; (b) upload a protein 
sequence fi le by clicking on “Browse File”; or (c) input UniProt 
IDs for retrieval ( see   Note    17  ).   

   3.    The user has the option of fi ltering out proteins homologous to 
the query protein sequence by specifying a sequence identity 
threshold. By default, the method excludes homologous 
templates that share ≥30 % sequence identity. To obtain the 
most reliable predictions, leave this option blank ( see   Note    18  ).   

Fig. 2  (continued) ( c ) List of homologs and IC scores obtained by RNABindRPlus. These are the homologs 
used by HomPRIP for making the homology- based predictions. ( d ) List of all potential homologs with structures 
in the PDB for  T. thermophilus  S5 protein identifi ed by RNABindRPlus. num_residue1 (e.g., 162) denotes the 
number of amino acids in the query protein; num_residue2 shows the number of amino acids (e.g., 150) in the 
homolog of the query protein (e.g., 3KNJ, chain E); num_int is the number of binding residues (e.g., 50) in the 
homolog of the query protein; Bit_score (e.g., 322) gives an indication of the quality of the alignment between 
the query protein and its homolog—the higher the score, the better the alignment; Evalue is the number of hits 
expected by chance when searching the database of homologous proteins—the lower the Evalue, the more 
signifi cant a match to a database sequence is; Positive_Score gives an indication of how many amino acids in 
the query protein were at least similar to the amino acid sequences found in the database; IdentityScore gives 
an indication of how many exact matches the query protein had with amino acid sequences in the database; 
alignment_length is an indication of the number of residues in the query protein aligned with homologs from 
the database; aligLen_Query is the alignment_length divided by the length of the query protein; aligLen_
Homolog is the alignment_length divided by the length of the homolog of the query protein         
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   4.    Because SNBRFinder can predict either RNA- or DNA-
binding residues in proteins, the user should select the binding 
nucleic acid type (RNA) from a drop-down list. By default, the 
selection is “DNA.”   

   5.    Before clicking on the “submit” button, the user can optionally 
enter an email address. After the job is submitted, a webpage 
showing the job id and indicating that the job is running should 
appear. This page also includes the URL where prediction 
results will be posted, after they become available. If an email 
address was provided, the URL will also be included in the 
email. Typically, results are returned to users after about 15 min.   

   6.    Figure  3  shows results returned by SNBRFinder for the S5 pro-
tein from the 30S ribosomal subunit of  T. thermophilus,  which 
corresponds to protein chain E, in PDB structure 1HNX. Figure  3a  
shows a summary of the results, in which the query sequence is 

  Fig. 3    ( a ) SNBRFinder prediction results summary for the  T. thermophilus  S5 protein. Predicted RNA-
binding residues are shown in red. ( b ) Graphical representation of SNBRFinder predictions for the  T. 
thermophilus  S5 protein. Fscore is the prediction score returned by the feature-based component, 
SNBRFinder F , and Cscore is the prediction score returned by the combination of the feature-based com-
ponent and homology/template-based component, SNBRFinder T , of SNBRFinder.

Predicting Rna-Binding Sites

taner@iastate.edu



224

Fig. 3 (continued) ( c ) Table showing SNBRFinder a sample of the detailed results for the  T. ther-
mophilus  S5 protein. See text for additional details. ( d ) Downloadable results from SNBRFinder. 
Only a portion of the returned results is shown         

displayed with predicted interfacial residues highlighted in red 
text; the query sequence name, length, nucleic acid type, as well 
as the PDB ID of the optimal template used for making the pre-
diction, the HHscore, if any ( see   Note    19  ), and the % sequence 
identity (between the query and the optimal template) are also 
provided. For this example, SNBRFinder was not able to fi nd an 
optimal template, so HHscore and sequence identity have a value 
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of N/A. Figure  3b  shows a graphical representation of the results, 
which displays a plot of the Fscore and Cscore for each residue, 
and the Cscore threshold above which a residue is considered an 
interfacial residue ( see   Note    20  ). Because no optimal template 
was found for 1HNX chain E, the Fscore is equivalent to the 
Cscore. Figure  3c  shows a detailed results table, which lists each 
amino acid residue, along with its associated Fscore, Tscore (if 
any), and Cscore, as well as the “tag” for each amino acid (“+” 
for interfacial residue, “-” for non-interfacial residue). Figure  3d  
shows a portion of the results in plain text format, which can be 
obtained by clicking the “Download the result” link in the top 
right corner of the “Result” page.

            PS-PRIP  (Partner-Specifi c protein–RNA Interface Prediction) is a 
sequence motif-based method that can simultaneously predict inter-
facial residues for both the RNA and protein components of pro-
tein–RNA complexes [ 52 ] ( see  Subheading  2.5 ). PS-PRIP is a 
partner-specifi c method ( see   Note    4  ), which means that, given the 
sequences of a protein and several potential interacting RNAs, it can 
identify which amino acid residues contact each RNA binding part-
ner. In other words, if the protein binds to different RNAs using 
distinct (or overlapping) interfaces, PS-PRIP can distinguish between 
these RNA-binding sites. PS-PRIP requires  both  the protein sequence 
and its partner RNA sequence as input. If the user does not have any 
potential RNA sequence(s) for testing, methods such as RPI-Seq or 
catRAPID can be used to infer potential partner RNAs for a specifi c 
protein (reviewed in refs. [ 62 – 65 ]). In addition to the sequences of 
the protein and its RNA-binding partners, PS-PRIP utilizes a dataset 
of interfacial motifs extracted from solved protein–RNA complexes 
in the PDB [ 68 ]. For predicting RNA-binding residues in proteins, 
the use of such interfacial motifs by PS-PRIP appears to provide 
improved precision over RNABindRPlus and other sequence-based 
interface prediction servers [ 52 ]. At present, the RNA-binding resi-
dues predicted by PS-PRIP are much more reliable than the protein-
binding residues predicted in the bound RNA component.

    1.    Access the PS-PRIP server at   http://pridb.gdcb.iastate.edu/
PSPRIP/index.html    .   

   2.    Enter a protein sequence and the sequence for an RNA known 
or expected to be its binding partner in plain text format (pro-
tein sequence only and RNA sequence only, without any 
header information) into the text boxes provided on the 
homepage ( see   Note    21  ). Then click the “Submit” button.   

   3.    Figure  4  shows results returned by PS-PRIP for the S5 protein 
from the 30S ribosomal subunit of  T. thermophilus , which cor-
responds to protein chain E, in PDB structure 1HNX. In this 
case, the 16S rRNA corresponding to RNA chain A in the 1HNX 
structure was provided as input to PS-PRIP, in order to obtain a 

3.4  Using PS-PRIP 
to Predict Both 
RNA-Binding 
and Protein- Binding 
Residues in RNPs
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“partner-specifi c” prediction. On the results page, the S5 protein 
sequence and 16S rRNA sequences are displayed. In the lines 
below each sequence, the interfacial residues are indicated by a 
string of 1’s and 0’s, where “1” and “0” correspond to predicted 
interfacial and non-interfacial residues, respectively.

           Figure  5  shows a comparison of the predicted RNA-binding resi-
dues in the  T. thermophilus  S5 ribosomal protein, for which a 3D 
structure is available in the PDB (1HNX; protein chain E, RNA 
chain A). The top line shows the amino acid sequence of the S5 
protein, with red letters denoting the actual RNA-binding residues 
(58 out of 162 total residues), defi ned on the basis of a 5 Å 

3.5  Actual RNA- 
Binding Residues 
Compared with 
Predictions Using 
Three Different 
Methods

  Fig. 4    PS-PRIP prediction results for the  T. thermophilus  S5 protein bound to 16S rRNA. Sequences shown 
correspond to protein chain E and RNA chain A in the PDB structure 1HNX. Under each sequence, the predicted 
interfacial residues are represented by a string of 1’s and 0’s, where “1” and “0” correspond to predicted bind-
ing and non-binding residues, respectively       

 

Rasna R. Walia et al.

taner@iastate.edu



227

distance cutoff ( see   Note    1  ). RNA-binding residues predicted by 
RNABindRPlus, SNBRFinder and PS-PRIP are shown below. In 
this example, all three methods were able to identify the majority 
of the 58 RNAbinding residues: RNABindRPlus (46/58) 
SNBRFinder (41/58), PS-PRIP (33/58). A small number of false 
positive predictions were returned by RNABindRPlus (4), 
SNBRFinder (4), and a larger number by PS-PRIP (12).

   In this particular example, “better than average” results were 
obtained because the S5 protein is a highly conserved component 
of the 30S ribosomal subunit. For the S5 protein, the RNA-binding 
residues predicted by PS-PRIP are less reliable than those predicted 
by RNABindRPlus and SNBRFinder. But, because the sequence of 
the bound RNA is also available, PS-PRIP also returns predictions 
for  protein -binding residues in the 16S rRNA, which the other two 
servers cannot do. This example illustrates that although the  overall 
performance of PS-PRIP was superior in terms of  precision  when 
tested on a benchmark dataset [ 52 ], both RNABindRPlus and 
SNBRFinder may perform better on certain proteins. Given the 
purpose of this chapter, the important point is that all three servers 
predict similar patches of RNA-binding residues, providing the 
user with a remarkably accurate prediction of the RNA-binding 
residues in the S5 protein, without using any structural informa-
tion in order to make these predictions. 

  Fig. 5    Actual vs. predicted RNA-binding residues in the  T. thermophilus  S5 ribosomal protein sequence.  Top 
line:  Actual RNA-binding residues are shown in  red , non-binding residues are  black. Lower lines:  Predictions 
obtained using RNABindRPlus, SNBRFinder and PS-PRIP. Colored boxes indicate predicted RNA-binding resi-
dues. Sequence corresponds to: PDB 1HNX; protein chain E       
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 In closing, we again encourage users to submit query protein(s) 
of interest to at least two or three different servers from the list in 
Table  2 , and to evaluate predictions in the context of the 3D struc-
ture, if available. All prediction results should be interpreted with 
caution: the computational tools are intended to help users iden-
tify the most probable RNA-binding residues in proteins, i.e., to 
generate hypotheses that can limit the number of experiments 
needed to determine RNA-binding residues using biochemical or 
biophysical approaches.   

4                                 Notes 

     1.    RNA-binding residues in proteins or other  “interfacial resi-
dues”  in the interface formed when a protein binds RNA (or 
DNA or another protein) are typically defi ned in one of two 
ways: (a) using a contact distance threshold, e.g., an interfacial 
residue is any amino acid with a heavy atom within  n  Å of a 
heavy atom in the bound RNA (where  n  typically ranges from 
3.5 to 8 Å); (b) residues whose accessible surface area is reduced 
by >1 Å 2  upon complex formation [ 101 ]. It is very important 
to take into account how interfacial residues are defi ned when 
comparing the performance of various computational methods 
for predicting RNA-binding residues in proteins [ 47 ].   

   2.    Two databases that once provided comprehensive information 
about interfaces in protein–RNA complexes in the PDB are no 
longer up-to-date:  PRIDB  [ 76 ] and  BIPA  [ 72 ]. Efforts to 
update PRIDB are underway. Two resources that are currently 
maintained and provide detailed information about interfaces 
in RBPs include:  NPIDB  [ 74 ] and  DBBP  [ 75 ].   

   3.    A  position-specifi c scoring matrix (PSSM)  is a type of 
weighted scoring matrix derived from a set of aligned sequences 
that are considered to be homologous or functionally related 
[ 102 ]. PSSMs can be very sensitive because they capture 
important evolutionary information by exploiting the large 
number of protein sequences currently available.   

   4.    A  partner-specifi c prediction method  takes into account the 
potential interacting partner(s) in predicting interfacial residues. 
For example, if a protein binds two distinct RNAs, RNA-1 and 
RNA-2, a partner-specifi c method will return one set of amino 
acids that specifi cally interact with only RNA-1, and a second set 
of amino acids that specifi cally interact with only RNA-2. Note 
that the two sets of RNA-binding residues may overlap.   

   5.    At present, none of the available servers for predicting RNA- 
binding residues in proteins provide the user with existing 
information regarding experimentally determined RNA- 
binding residues (i.e., the servers always return  predicted  RNA-
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binding residues, which may not be the same as the actual 
interfacial residues determined by experiment). Thus, as a fi rst 
step, the user should always search published literature (via 
search engines such as  NCBI/PubMed  (  http://www.ncbi.
nlm.nih.gov/    ) or  Google Scholar  (  http://scholar.google.
com    ) and relevant databases ( see  Subheading  3.1 ) for existing 
experimental data regarding the specifi c RNA- binding 
protein(s) of interest. In addition to the resources described in 
Subheading  3.1  and Table  1 , many new databases and servers 
that provide extensive information regarding protein–RNA 
complexes, RNA-binding proteins and their recognition sites, 
and in vivo protein–RNA interaction networks are becoming 
available. OMICtools (  http://omictools.com    ) provides an 
extensive and up-to-date directory of these resources [ 103 ].   

   6.    Users unfamiliar with  BLAST  should fi rst read BLAST docu-
mentation and/or tutorials. A beginner’s guide is available 
here:   ftp://ftp.ncbi.nlm.nih.gov/pub/factsheets/HowTo_
BLASTGuide.pdf    .   

   7.     SmartBLAST  is a new version of BLAST that is faster than 
BLASTp and offers a user-friendly graphical view. For addi-
tional information, see:    http://ncbiinsights.ncbi.nlm.nih.
gov/2015/07/29/smartblast/    .   

   8.     Tip:  Because proteins from humans are usually much better 
annotated than those from other organisms, valuable clues 
regarding potential RNA-binding domains or motifs in a pro-
tein can be obtained by visiting the NCBI GenBank Protein 
entry for the human homolog of a query sequence, if available.   

   9.    Under the  “Related Information”  header on the GenBank 
Protein entry page, the user can access several different types 
of information, e.g., clicking on the  “Related Structures 
(Summary)”  link returns structurally related proteins found in 
NCBI’s Molecular Modeling Database (MMDB), as well as an 
alignment of the query protein sequence with its potential 
homolog(s), and links for visualizing the 3D structures. 
Alternatively, the user can perform BLAST or Conserved 
Domain searches by clicking links under the  “Analyze this 
sequence”  header (located at the top of right-side panel), but 
it is usually more effi cient to take advantage of precomputed 
information available under “Related Resources,” e.g., “Blink” 
(for BLAST results, instead of “Run Blast”); or “CDD Search 
Results” (instead of “Identify Conserved Domains”).   

   10.    The  PDB Advanced Search  (  http://www.rcsb.org/pdb/
search/advSearch.do?search=new    ) is a powerful tool that 
allows the user to BLAST a sequence of interest against all 
structures in the database, to identify GO annotations, cita-
tions in publications, etc. In addition, the PDB offers several 
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built-in visualization tools (  http://www.rcsb.org/pdb/sec-
ondary.do?p=v2/secondary/visualize.jsp    —RCSBviewer) as 
well as links to additional resources and software for analyzing 
macromolecular structures (  http://www.rcsb.org/pdb/static.
do?p=general_information/web_links/index.html     )    

   11.    The  NDB  [ 69 ] focuses on structures that contain either RNA 
or DNA and provides links to many valuable RNA sequence 
and structure analysis tools (  http://ndbserver.rutgers.edu/
ndbmodule/services/index.html    ) as well as software for iden-
tifying RNA motifs and for predicting secondary and tertiary 
structures of RNA molecules (  http://ndbserver.rutgers.edu/
ndbmodule/services/softwares.html    ).   

   12.    Currently, there is a wait of approximately 10 min per protein 
sequence submitted to RNABindRPlus. The rate-limiting step 
is generating the PSSMs using PSI-BLAST [ 98 ]. To obtain 
results more quickly, the user is encouraged to split large jobs 
into several smaller submissions (e.g., if the user would like to 
submit 100 proteins, she/he should submit 5 smaller jobs of 
20 proteins each).   

   13.    A faster version of this server,  FastRNABindR , is under devel-
opment. When it becomes available, a link to FastRNABindR 
will be provided on the RNABindRPlus website (  http://
ailab1.ist.psu.edu/RNABindRPlus/    ).   

   14.    The user should submit the protein sequence in upper case let-
ters to the RNABindRPlus web server. Note that this server 
predicts RNA-binding residues in proteins, so RNA nucleo-
tides are not valid input.   

   15.    The homology-based component of RNABindRPlus, 
 HomPRIP , searches for homologs of the query protein. 
Excluding similar sequences (>30 % sequence identity) ensures 
that the homolog and the query protein are not the same. This 
is useful for stringently evaluating performance of 
RNABindRPlus in comparison with other methods, but is not 
the best strategy for a user interested in identifying potential 
RNA-binding residues. To obtain the best possible prediction 
of RNA-binding residues, the user should take full advantage 
of all available homologous sequences (i.e., should  not  elimi-
nate any potential homologs).   

   16.    The  IC_score  (interface conservation score) measures the cor-
relation between the interface and non-interface residues of a 
query protein Q and its putative sequence homolog H when 
the two are aligned. It is a measure of how well the RNA-
binding residues of Q are conserved (and subsequently, can be 
predicted from known interface residues of homologous pro-
teins) in protein H. However, computing the IC_score requires 
knowledge of interface residues in both the query protein and 
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its homolog. Fortunately, for a query protein with unknown 
RNA-binding residues, the IC_score can be estimated using 
BLAST alignment statistics between Q and H [ 57 ].   

   17.    SNBRFinder allows submission of at most fi ve sequences each 
time, for any of the submission options. When entering mul-
tiple UniProt IDs, IDs should be separated by commas.   

   18.    Like RNABindRPlus, SNBRFinder allows the user to specify 
which sequences to exclude when searching for homologous 
templates, using a sequence identity cutoff. Protein templates 
that are more similar to the query protein are likely to return 
better results than templates that are less similar. The sequence 
identity cutoff utilized depends on the user’s objective ( see  
 Note    15  ). To obtain the best possible prediction of RNA- 
binding residues, the user should take full advantage of all 
available homologous sequences. In contrast, for a rigorous 
performance comparison with other methods, a lower sequence 
identity cutoff should be used (i.e., to evaluate the sensitivity 
and specifi city of the methods).   

   19.     HHscore  is a score that indicates the similarity score between 
the query protein and its best homolog/template.   

   20.    SNBRFinder calculates the probability score of each residue 
being an RNA-binding residue using the following formula:

  
Cscore

Fscore Tscore if HHscore cutoff

Fscore otherwise
=

+ -( ) ³ìa a1
íí
î    

where Fscore is the output of SNBRFinder F  (support vector 
machine component) and Tscore is the output of SNBRFinder T  
(template-based component),  α  = 0.6 and cutoff = 85 %.   

   21.    A current limitation of PS-PRIP is that it has a minimum 
length requirement for both the protein and RNA sequences: 
proteins must be ≥25 amino acids in length and RNAs must be 
≥100 nucleotides in length.         
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    Chapter 16   

 Computational Approaches for Predicting Binding 
Partners, Interface Residues, and Binding Affi nity 
of Protein–Protein Complexes                     

     K.     Yugandhar     and     M.     Michael     Gromiha      

  Abstract 

   Studying protein–protein interactions leads to a better understanding of the underlying principles of 
several biological pathways. Cost and labor-intensive experimental techniques suggest the need for com-
putational methods to complement them. Several such state-of-the-art methods have been reported for 
analyzing diverse aspects such as predicting binding partners, interface residues, and binding affi nity for 
protein–protein complexes with reliable performance. However, there are specifi c drawbacks for different 
methods that indicate the need for their improvement. This review highlights various available computa-
tional algorithms for analyzing diverse aspects of protein–protein interactions and endorses the necessity 
for developing new robust methods for gaining deep insights about protein–protein interactions.  

  Key words     Protein–protein interaction  ,   Binding partner  ,   Interface residue  ,   Binding affi nity  

1      Introduction 

 Proteins are involved in several biological reactions by means of 
interactions with other proteins or with other molecules such as 
nucleic acids, carbohydrates, and ligands. Among these interaction 
types, protein–protein interactions (PPIs) are considered to be one of 
the key factors as they are involved in most of the cellular processes. 
Protein–protein complexes can be classifi ed into various types such as 
dimeric-multimeric, homodimeric-heterodimeric, transient-perma-
nent, and obligate-nonobligate based on different aspects such as the 
number of subunits, type of the interacting proteins, biological sig-
nifi cance of the complexes, and the interaction time [ 1 ]. 

 Understanding the underlying principles of PPIs provides 
important clues for designing effi cient drugs for treating various 
diseases [ 2 ]. Several investigations have been carried out on differ-
ent perspectives: (1) prediction of interaction pairs from a given set 
of protein sequences or structures, (2) identifi cation and  prediction 
of binding sites from protein–protein complexes, (3) prediction of 
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binding site residues from sequence or structure information, (4) 
protein–protein binding affi nity prediction, and (5) important 
interactions for the formation of protein–protein complexes and 
their recognition mechanism. Recently, several studies have been 
carried out on various aspects of PPIs, which include understand-
ing the recognition mechanism [ 3 ], role of specifi c interactions 
[ 3 – 5 ], identifi cation of the binding sites from protein structures 
[ 6 – 12 ], and predicting the interaction sites from amino acid 
sequence [ 13 – 15 ]. Further, prediction methods have been reported 
for the identifi cation of interaction partners by utilizing protein 
structure [ 16 ,  17 ] and sequence information [ 18 – 20 ]. The fea-
tures employed for devising these methods are mainly based on 
evolutionary information [ 17 ], physicochemical properties [ 20 ], 
structural similarity [ 12 ,  17 ] etc. 

 In this review, we address the studies based on different aspects 
of PPIs using various bioinformatic/computational biology 
approaches. We systematically highlight the methods developed 
exclusively for predicting the interacting partners, interface resi-
dues, and binding affi nity of protein–protein complexes along with 
potential applications and necessity for the development of more 
robust state-of-the-art methods for effi cient prediction. Further, 
we provide insights into various features that are reported to be 
infl uencing the specifi city in PPIs.  

2    Prediction of Protein–Protein Interaction Pairs 

 The information about the pair of proteins, which are interacting 
with each other, is obtained with several experimental methods 
such as yeast two-hybrid, Förster/fl uorescence resonance energy 
transfer (FRET), surface plasmon resonance, and isothermal titra-
tion calorimetry. These PPI data are deposited in well-maintained 
databases and are listed in Table  1 . In addition, tools such as PIPE2 
[ 21 ] provide a platform for integration and annotation of such data. 
Text mining-based methods search for statistically signifi cant co-
occurrences between gene names in online resources and public 
repositories. Several methods have been developed, which try to 
automate extraction of the interacting proteins through their coex-
istence in paragraphs, abstracts, and sentences [ 22 – 29 ]. A method 
known as eFIP (extracting functional impact of Phosphorylation) 
[ 26 ] employs various natural language processing (NLP) tech-
niques for locating the text, which mention protein phosphoryla-
tion in addition to PPIs. BioRAT [ 22 ] is a standalone tool that 
locates and downloads literature reports based on the user query. 
On the other hand, PPIExtractor [ 27 ] utilizes feature coupling 
generalization to recognize names of the proteins and subsequently 
visualizes the PPI network. HPIminer [ 28 ] is a web-based tool, 
which performs text mining for human PPI and visualizes the inter-
action networks. A comprehensive review about the methods for 
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predicting PPIs has been reported recently [ 29 ]. Utilizing data 
available in the PPI databases, several methods based on statistical 
analysis and machine learning techniques have been reported for 
identifying the interacting pairs. In this section, we review various 
methods, which are broadly categorized into fi ve types: (1) genomic 
context, (2) protein sequence, (3) protein domains, (4) tertiary 
structure, and (5) biological context.

    Table 1  
  Available databases analyzing protein–protein interactions   

 Name  Description  Link  Reference 

  Interaction databases  

 DIP  Database of interacting proteins    http://dip.doe-mbi.ucla.
edu/dip/Main.cgi     

 [ 120 ] 

 BioGrid  Biological general repository for 
interaction datasets 

   http://thebiogrid.org/      [ 121 ] 

 HPRD  Human protein reference database    http://www.hprd.org/      [ 122 ] 

 STRING  Search tool for the retrieval of 
interacting genes/proteins 

   http://string-db.org/      [ 123 ] 

 IntAct  Provide curated data from literature 
and user-submitted interactions 

   http://www.ebi.ac.uk/
intact/     

 [ 124 ] 

  Databases for interface  

 PDBsum  Pictorial database of 3D structures 
from PDB 

   http://www.ebi.ac.uk/
pdbsum     

 [ 125 ] 

  Thermodynamic databases  

 PINT  Provide thermodynamic parameters 
along with experimental 
conditions 

   http://www.
bioinfodatabase.com/
pint/     

 [ 126 ] 

 PDBbind  Resource for experimental binding 
affi nity data for complexes with 
PDB ids 

   http://www.pdbbind-cn.
org/     

 [ 127 ] 

 KDBI  Provide experimental kinetic data    http://xin.cz3.nus.edu.
sg/group/kdbi/kdbi.asp     

 [ 128 ] 

 SKEMPI  Repository for binding free energy 
changes upon mutation 

   http://life.bsc.es/pid/
mutation_database/
database.html     

 [ 129 ] 

 ASEDB  Alanine scanning energetics 
database 

   http://nic.ucsf.edu/
asedb/     

 [ 130 ] 

 Protein–protein 
interaction 
affi nity 
database 

 Provide experimentally determined 
affi nity data along with structures 
of both complex and free 
proteins 

   http://bmm.crick.ac.
uk/~bmmadmin/
Affi nity/     

 [ 131 ] 

   Note:  accessed as on 30th October, 2015  

Computational Approaches for Predicting Binding Partners, Interface Residues,…

taner@iastate.edu

http://dip.doe-mbi.ucla.edu/dip/Main.cgi
http://dip.doe-mbi.ucla.edu/dip/Main.cgi
http://thebiogrid.org/
http://www.hprd.org/
http://string-db.org/
http://www.ebi.ac.uk/intact/
http://www.ebi.ac.uk/intact/
http://www.ebi.ac.uk/pdbsum
http://www.ebi.ac.uk/pdbsum
http://www.bioinfodatabase.com/pint/
http://www.bioinfodatabase.com/pint/
http://www.bioinfodatabase.com/pint/
http://www.pdbbind-cn.org/
http://www.pdbbind-cn.org/
http://xin.cz3.nus.edu.sg/group/kdbi/kdbi.asp
http://xin.cz3.nus.edu.sg/group/kdbi/kdbi.asp
http://life.bsc.es/pid/mutation_database/database.html
http://life.bsc.es/pid/mutation_database/database.html
http://life.bsc.es/pid/mutation_database/database.html
http://nic.ucsf.edu/asedb/
http://nic.ucsf.edu/asedb/
http://bmm.crick.ac.uk/~bmmadmin/Affinity/
http://bmm.crick.ac.uk/~bmmadmin/Affinity/
http://bmm.crick.ac.uk/~bmmadmin/Affinity/


240

     The primitive methods for predicting PPIs based on genomic analy-
sis utilize the principle of co-localization or gene neighborhood 
[ 30 ]. They exploit the notion that genes, which undergo physical 
interaction or functional association, will be in close physical prox-
imity in the genome [ 31 – 34 ]. The most plausible case of this phe-
nomenon involves archaeal and bacterial operons, where genes that 
work together are usually transcribed on the same poly- cistronic 
mRNA. In such cases, proteins, which are involved in the same 
pathway or process, are frequently encoded on the same poly-cis-
tronic messenger. Moreover, operons encoding for co- regulated 
genes are generally conserved [ 30 ]. However, the choice of refer-
ence genomes might affect the performance of such methods [ 35 ].  

   Several methods have been reported for predicting PPIs based on 
sequence information alone [ 17 – 19 ,  36 – 43 ]. These methods 
employ various physicochemical properties such as hydrophobicity, 
charge, neighboring information etc. [ 17 ,  36 ,  38 ] or the frequen-
cies of small motifs with residue combinations [ 37 ]. Most of the 
methods use machine learning, especially support vector machines 
for predicting the tendency of the query PPI pair [ 17 ,  36 – 38 ,  40 ].  

   A domain can be defi ned as an elementary unit of protein structure 
and evolution that can fold and function independently. Presence of 
specifi c protein domains are reported to be infl uencing the PPIs [ 44 , 
 45 ]. Exploring this aspect, several reported methods predict interac-
tions based on the presence of particular domains in query proteins 
[ 46 – 52 ]. These methods determine associations by analyzing the 
domains on pairs of proteins that have been reported by previous 
experimental PPI detection methods. Initially, they count occur-
rences of the domain pairs (x,y) on pairs of interacting proteins, such 
that domain x is present on one protein and domain y is present on 
the other. Further, the domain pairs are associated with an interaction 
if they are found to be enriched among interacting protein pairs. In 
addition, PPIs depend on other factors such as subcellular localiza-
tion and post-translational modifi cations. It may be noted that about 
80 % of interactions do not occur through domain-domain binding 
[ 53 ]. This indicates the possible limitation of the domain-based 
approach in generalizing it for various types of PPI pairs.  

   The available docking methods utilize the tertiary structure of two 
proteins to predict the structure of the resulting complex [ 54 ]. 
However, these methods mostly try to fi nd the best structure of 
the complex by considering electrostatic complementarity and 
shape of the protein surfaces. Apart from predicting the interaction 
partners, these methods also search for the optimal fi t between the 
two proteins [ 55 – 58 ]. Hence, several methods employ a combina-
tion of sequence and structure-based features to predict the inter-
actions [ 59 ]. The methodology of such methods include steps 
such as (1) determining whether members of a given protein pair 
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have sequence similarity with other proteins in a solved complex 
and (2) assessing whether the candidate proteins could form a sim-
ilar complex. Generally, it is assumed that if proteins have more 
than 20 % sequence identity, they interact in the same way [ 60 ]. 
Major limitations of these structure-based methods include the 
need for solved structures of the candidate proteins and they are 
known to be less accurate for interactions involving conformational 
changes at the interface [ 57 ].  

   Gene expression analysis facilitates the determination and identifi -
cation of not only genes that are active in a given state but also the 
sets of genes that are co-regulated in various different states [ 30 ]. 
It has been reported that according to microarray analysis, several 
interacting proteins are co-expressed [ 61 – 63 ]. Although the cur-
rent gene expression methods cannot directly determine whether a 
pair of proteins interact or not, several computational approaches 
have been developed that could use the expression data towards 
the prediction of PPI and gene regulatory networks [ 30 ,  61 – 64 ].   

3    Prediction of Binding Site Residues 

 Binding site residues in proteins are one of the key factors that 
enable us to understand and unravel the mechanisms that underlie 
biomolecular recognition process. Proteins tend to interact with 
other proteins through much larger and structurally more intricate 
surfaces, in contrast to their interaction pattern in case of other 
smaller substrates [ 65 ]. The straightforward way of identifying 
interaction sites in protein–protein complexes is to analyze the 
three-dimensional structures. Different defi nitions for binding site 
residues based on (1) distance, (2) change in accessible surface area, 
and (3) interaction energy have been widely used in literature. In 
distance-based criterion, a residue is said to be interacting, if it has 
at least one contact with any of the heavy atoms in the partner 
within a cut-off distance of 4–6 Å [ 66 ]. Accessible surface area 
(ASA) is calculated by theoretically rolling a probe (typically of 
water with radius 1.4 Å) around the surface of a molecule. Usually 
change in ASA of >0.1 Å 2  upon complex formation is considered 
for identifying binding site residues in protein–protein complexes 
[ 67 ]. Energy-based approach utilizes the interaction energy 
between all atoms in the pair of proteins and the contribution from 
the atoms in a residue is summed up to obtain the interaction 
energy of a residue. Residues, which have the interaction energy of 
less than 1 kcal/mol, are treated as binding site residues [ 5 ]. The 
databases, which contain the information about interacting resi-
dues, are listed in Table  1 . In the absence of complex structures, 
several methods have been proposed to predict the binding sites 
from the structure of a free protein or just from the amino acid 
sequence. The currently available methods are included in Table  2 .

2.5  Approaches 
Based on Biological 
Context

Computational Approaches for Predicting Binding Partners, Interface Residues,…

taner@iastate.edu



242

    Table 2  
  Tools for studying protein–protein interactions   

 Name  Features  Link  Reference 

  Methods for predicting interface residues  

  Sequence-based  

 PSIVER  PSSM and predicted solvent 
accessibility 

   http://tardis.nibio.go.jp/PSIVER/      [ 86 ] 

 SPPIDER  Solvent accessibility; different 
methods available for sequence 
and structure 

   http://sppider.cchmc.org/      [ 66 ] 

 ISIS  PSSM, predicted secondary structure 
and solvent accessibility 

   https://www.predictprotein.org/      [ 14 ] 

 PPiPP  Partner- specifi c method; contact 
propensity 

   http://mizuguchilab.org/netasa/
ppipp/     

 [ 15 ] 

 PS-HomPPI  Partner- specifi c method; 
conservation score 

   http://ailab1.ist.psu.edu/
PSHOMPPIv1.2/     

 [ 88 ] 

 NPS- HomPPI  Conservation score    http://ailab1.ist.psu.edu/
NPSHOMPPI/     

 [ 88 ] 

 LORIS  PSSM and predicted solvent 
accessibility 

   https://sites.google.com/site/
sukantamondal/software     

 [ 87 ] 

  Structure-based  

 Promate  Residue conservation, propensity, 
and geometric properties 

   http://bioinfo41.weizmann.ac.il/
promate/promate.html     

 [ 7 ] 

 ConsPPISP  PSSM and solvent accessibility    http://pipe.sc.fsu.edu/ppisp/      [ 73 ] 

 PINUP  Residue interface propensity and 
conservation score 

   http://sysbio.unl.edu/services/
PINUP/     

 [ 75 ] 

 Meta- PPISP  Based on promate, ConsPPISP and 
PINUP 

   http://pipe.sc.fsu.edu/meta-ppisp/      [ 78 ] 

 WHISCY  Residue propensity and solvent 
accessibility 

   http://www.nmr.chem.uu.nl/
Software/whiscy/startpage.htm     

 [ 74 ] 

 PredUs  Solvent accessibility    https://honiglab.c2b2.columbia.
edu/PredUs/     

 [ 81 ] 

 VORFFIP  Residue propensity, solvent 
accessibility, residue environment 
by Voronoi diagrams and 
conservation score 

   http://www.bioinsilico.org/cgi-bin/
VORFFIP/htmlVORFFI/home     

 [ 80 ] 

 PIER  Statistical properties of atomic 
groups 

   http://abagyan.ucsd.edu/PIER/
index.cgi     

 [ 76 ] 

 eFindSite PPI  Relative surface accessibility, interface 
propensity, and sequence entropy 

   http://brylinski.cct.lsu.edu/
efi ndsiteppi     

 [ 82 ] 

(continued)
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     The availability of three-dimensional structures of protein–protein 
complexes prompted researchers to develop various structural 
parameters and use them to identify the binding sites [ 68 ]. Jones 
and Thornton [ 6 ] analyzed the interactions as patches of residues 
on the surface, which have been used to predict the binding sites 
using support vector machines and Bayes networks [ 69 ,  70 ]. 
However, the most recent methods carried out analysis of individ-
ual residues instead of considering surface patches. [ 7 ,  66 ,  71 – 82 ]. 
The most commonly utilized features for developing such methods 
include solvent accessibility [ 72 ,  73 ,  80 ,  82 ], residue propensity [ 7 , 
 74 ,  75 ,  80 ], local structural similarity [ 12 ], Voronoi diagrams [ 80 ], 
geometric [ 7 ] and thermodynamic properties [ 82 ]. A comparative 
evaluation of various prediction methods on a common dataset has 
been reported very recently by Maheshwari and Brylinski [ 83 ].  

   Kini and Evans [ 84 ] reported a method based on the occurrence 
of proline at the fl anking segments of interaction sites. Gallet et al. 
[ 85 ] utilized the hydrophobic moment of sequence stretches to 
identify the interaction sites. Later, several methods have been 
reported to predict the binding sites using position-specifi c scoring 
matrices (PSSM) [ 14 ,  86 ,  87 ], predicted solvent accessibility [ 7 , 
 14 ,  86 ], and predicted secondary structure [ 14 ]. Further, few 
methods have been developed by considering the sequence of both 
partners in a complex utilizing conservation score and contact pro-
pensity [ 15 ,  88 ]. The ability to predict binding site residues using 
sequence information alone is the major advantage of these meth-
ods. However, the methods based on PSSMs are often time- 
consuming and the prediction might vary depending on the 
database used for the alignment search.   

4    Computational Methods for Protein–Protein Affi nity Prediction 

 Predicting the affi nity of protein–protein complexes has been a topic 
of active research for more than two decades. The availability of 
experimental data on binding affi nity prompted researchers to 

3.1  Structure-Based 
Methods

3.2  Sequence-Based 
Methods

Table 2
(continued)

 Name  Features  Link  Reference 

  Methods for binding affi nity prediction  

 PPA-Pred  Residue propensity and predicted 
binding sites; sequence- based 
method 

   http://www.iitm.ac.in/bioinfo/
PPA_Pred/     

 [ 105 ] 

   Note:  accessed as on 30th October, 2015  
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explore the principles and develop methods for prediction. Chothia 
and Janin [ 89 ] reported that the buried surface area (BSA) is directly 
related to the binding affi nity. Horton and Lewis [ 90 ] developed the 
fi rst method by considering both polar and apolar fractions of the 
surface, which are buried upon complex formation. Further, Ma 
et al. [ 91 ] developed an empirical scoring function for calculating 
the binding free energies and reported a correlation of 0.94 on a set 
on 20 complexes. Jiang et al. [ 92 ] devised a knowledge- based energy 
function, which could predict the binding affi nities of 28 complexes 
with  R  2  of 0.56. Another method reported by Audie and Scarlata 
[ 93 ] showed  R  2  of 0.97 on a training set of 24 complexes. Su et al. 
[ 94 ] utilized atom pair potential in developing a method that 
showed a correlation of 0.76 on a set of 86 complexes. 

 Kastritis and Bonvin [ 95 ] published a binding affi nity bench-
mark, which contains manually curated experimental binding affi n-
ity data (Kd) from literature for a set of 81 protein–protein 
complexes. They also verifi ed the predictive power of the available 
affi nity prediction methods including scoring functions and 
observed that their performance was poor on the validation set. 
Further, they grouped the complexes in the dataset based on 
experimental techniques used to measure the binding affi nity in 
the literature such as surface plasmon resonance (SPR), isothermal 
titration calorimetry (ITC), fl uorescence spectroscopy, spectro-
photometric assays, radio ligand binding, and stopped fl ow fl uo-
rimetry. They observed that few methods showed better 
performance on complexes associated with the experimental tech-
niques such as SPR, ITC, and various spectrophotometric assays. 
Based on these results, they postulated that noise in experimental 
data could be an additional factor that infl uenced the performance 
of the various algorithms in predicting the protein–protein binding 
affi nity and also suggested the need to device more effi cient and 
robust experimental techniques to obtain high quality affi nity data. 

 Later, Kastritis et al. [ 96 ] published protein–protein binding 
affi nity data for 144 complexes along with three-dimensional struc-
tures of complexes and free proteins. Using these data, various 
methods have been proposed to accomplish the task of predicting 
protein–protein binding affi nity from structural information using 
knowledge-based approach [ 97 ,  98 ] and quantitative structure- 
activity relationship [ 99 ,  100 ]. Moal et al. [ 97 ] have devised a con-
sensus method, by combining four different machine learning 
algorithms and observed that the correlation (r) with experimental 
affi nity was similar to the one that obtained with buried surface 
area in rigid complexes [ 96 ]. Vreven et al. [ 98 ] reported a correla-
tion of 0.63 using multiple regression technique. However, the 
performance on antigen antibody complexes was insignifi cant 
( r  = 0.24). Tian et al. [ 99 ] have considered the importance of con-
formational changes in biomolecular recognition for developing a 
model. They derived a total of 840 features covering all possible 
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combinations of amino acid residues at the interface for different 
binding conformations of 144 protein–protein complexes. The 
feature selection step using genetic algorithm resulted in a set of 
378 features and most of them represent steric and hydrophobic 
interactions. However, the number of selected features (378) was 
much higher than the number of experimental data (144), indicat-
ing a possible overfi tting [ 101 ]. Recently, Vangone and Bonvin 
[ 102 ] proposed a method by utilizing the features derived from 
residue contacts and noninteracting surface, and showed that its 
performance was better than other available methods. 

 Huge difference between the available sequences and three- 
dimensional structures of protein–protein complexes suggests the 
necessity for developing methods for predicting protein–protein 
binding affi nity based on the sequence information alone. This 
information would potentially provide experimental biologists 
with preliminary knowledge about the interaction strength for the 
complexes of interest. To address this issue, we developed two 
sequence-based methods: (1) classifying protein–protein com-
plexes based on their binding affi nity and (2) predicting the abso-
lute value for affi nity using functional information. The binary 
classifi cation model showed the accuracy in the range of 76.1–
85.7 % on different validation data sets [ 103 ]. Further, this has 
been used as an effi cient tool for analyzing large-scale PPI data 
form various organisms by constructing interaction networks 
[ 104 ]. The regression model devised for predicting real value of 
binding affi nity (PPA-Pred) (Table  2 ) has been based on a hypoth-
esis that the binding affi nity of a protein–protein complex depends 
on the function being carried out by that complex in a biological 
system [ 105 ]. This method showed reliable performance across 
various functional classes and further we demonstrated its effi -
ciency compared to the baseline predictor [ 106 ]. However, con-
sidering the need for high amount of training data, especially for 
sequence-based methods, we realize the need for incorporation of 
more recent affi nity data and refi ning the prediction methods to 
make them reliable and robust. 

   Specifi c features are reported to be determining factors of protein–
protein binding affi nity in various analyses [ 101 ]. A brief descrip-
tion of them is as follows: 

   BSA is the area of the interacting proteins that loses accessibility to 
solvent upon complex formation. Chothia and Janin [ 89 ] showed 
that BSA is the primary descriptor to be related to the binding 
affi nity, and specifi cally to the intrinsic bond energy. Further, BSA 
compensates the area, which is not buried intramolecularly within 
the potentially unstable subunits. It is a macroscopic parameter for 
hydrophobic interactions of proteins and its magnitude has been 
estimated to be 0.025 kcal/mol/Å 2  of the hydrophobic surface 

4.1  Important 
Features Infl uencing 
Binding Affi nity

4.1.1  Buried Surface 
Area (BSA)
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removed from contact with water [ 101 ]. Apart from being a 
favorable attraction of hydrophobic surfaces, this hydrophobic 
interaction also expresses the gain in entropy of the water mole-
cules released upon complex formation. 

 Later, Kastritis et al. [ 96 ] demonstrated that for a set of 70 
rigid complexes (interface rmsd < 1 Å; where interface rmsd is the 
root mean square displacement of the C-α atoms of interface resi-
dues in the two partners), BSA alone showed a correlation of 0.54. 
However, the correlation vanished for complexes with interface 
rmsd > 1 Å. This suggests the dominant role played by interface 
surface in determining the binding affi nity and specifi city, for pro-
teins undergoing less or negligible conformational changes. One 
of the earlier reports suggests that the rigid interface residues con-
tribute signifi cantly to the stabilization of the interface structure in 
the unbound state [ 107 ]. Chakravarty et al. [ 67 ] reassessed the 
BSA in relation with local conformational changes in protein–pro-
tein complexes. Recently, Janin [ 108 ] showed that interface infor-
mation along with conformational changes could show a notable 
performance on a diverse dataset. Our previous analyses demon-
strated the importance of interface residues especially, aromatic 
and positively charged residues in binding affi nity prediction [ 103 , 
 105 ]. A recent analysis suggests that the noninteracting surface 
also has a role in modulating the protein–protein binding affi nity 
[ 109 ]. The authors observed that two features viz. polar residues 
on the surface and charged residues are useful in estimating the 
affi nity. When combined with the classical interface properties, 
these two descriptors could reasonably explain the binding affi nity 
of all the complexes in the dataset of 143 data that include both 
rigid and fl exible cases with a correlation of 0.50.  

   It has been reported that a relatively small number of interface 
residues, known as warm spots and hot spots, account for the 
majority of the binding energy [ 110 ,  111 ]. Hot and warm spots 
are defi ned as the residues whose mutation to alanine results in a 
destabilization of the bound state by greater than or equal to 4 
and 1–2 kcal/mol, respectively. In contrast, null spots do not 
result in such a free energy difference. The contribution of a resi-
due to the binding free energy can be experimentally measured 
using alanine scanning mutagenesis [ 112 ,  113 ]. Mutation of a 
residue to alanine essentially removes the side chain, leaving only 
the β-carbon. Subsequently, the kinetic analyses may provide 
information regarding the role played by individual amino acids 
in protein binding. It is noteworthy that mutating the reference 
residue to glycine might theoretically be a better option because 
the whole side chain is removed. However, mutation to glycine is 
not preferred as it might introduce global or local changes to the 
conformation of the molecule. 

4.1.2  Anchor Residues 
and Hot Spots
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 Various typical features of hot spot residues include (1) they 
are more conserved than the non-hotspots [ 114 ], (2) they are 
occluded from solvent [ 111 ,  115 ], (3) their amino acid composi-
tion is different from that of the non-hotspot residues [ 14 ], and 
(4) they are mostly found in the central region of the interface 
region [ 111 ]. Usually hot spots that are buried at the interface are 
surrounded by polar regions of higher packing density [ 116 ]. They 
clearly demonstrate that hydrophobic interactions are not the 
absolute determinant for binding. However, the bulkier residues 
tend to be found more frequently in hot spots and they have the 
largest surface area [ 117 ].  

   Initially, allostery has been defi ned as the regulation of a protein by 
a small molecule that is not its substrate [ 118 ]. However, it is mod-
ifi ed to account for regulation of a given protein by a change in its 
tertiary or quaternary structure induced by small molecule. Usually, 
allosteric effects are now being considered as changes in the struc-
ture or dynamics of a protein by a modulator that can be of any 
type ranging from a small molecule to another protein [ 119 ]. Such 
changes might be responsible for shifting the population of inac-
tive protein to its active form and subsequently alter the binding 
affi nity and one of such examples includes the binding of oxygen 
to hemoglobin. Other examples besides oxygen include electron 
donor organic molecules (such as ATP) and post-translational 
modifi cation events (e.g., phosphorylation) [ 101 ]. These modifi -
cations results in alteration of the binding affi nity of interaction 
partners through the changes in the structure and/or dynamics of 
the proteins that interact.   

   In spite of signifi cant progress in the fi eld of protein–protein 
binding affi nity prediction, there is much more scope for improve-
ment of the overall predictive ability of the currently available 
methods [ 101 ]. The possible reasons for the limitations of the 
currently available methods could be (1) effects of temperature, 
pH, solvent, and concentration are usually ignored due to insuf-
fi cient number of data, (2) the quality of the experimental struc-
ture or affi nity data might be ambiguous, (3) the structure-based 
models basically relate a structure that has been solved in its crys-
talline state to the affi nity measured in solution state, which might 
lead to ambiguous results as a result of the different natures of 
the two states, (4) considering the simplest binding mechanisms, 
i.e., the lock and key model and ignoring the conformational 
changes that take place upon binding or due to allosteric modifi -
cations and (5) not properly accounting the underlying energetic 
aspects of the free proteins, and (6) using large number of fea-
tures, which cause overfi tting of data.   

4.1.3  Allosteric 
Regulators

4.2  Limitations 
and Obstacles
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5    Conclusion 

 Development and effi cient utilization of computational methods 
for understanding various important aspects of protein–protein 
interactions such as interaction partners, interface, and binding 
affi nity aids in strengthening our knowledge about the mechanism 
of recognition and specifi city in protein–protein complexes. In this 
review, we highlighted the developments and their contribution 
for providing deeper insights in respective areas of study. Further, 
we discussed the importance of various features in defi ning the 
binding affi nity and in turn, the specifi city in protein–protein com-
plexes with reference to previous reports from literature. Finally we 
suggested the scope and need for developing more effi cient state- 
of- the-art methods for deriving highly reliable inferences.     
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    Chapter 17   

 In Silico Prediction of Linear B-Cell Epitopes on Proteins                     

     Yasser     EL-Manzalawy     ,     Drena     Dobbs     , and     Vasant     G.     Honavar      

  Abstract 

   Antibody-protein interactions play a critical role in the humoral immune response. B-cells secrete antibodies, 
which bind antigens (e.g., cell surface proteins of pathogens). The specifi c parts of antigens that are recognized 
by antibodies are called B-cell epitopes. These epitopes can be  linear , corresponding to a contiguous amino 
acid sequence fragment of an antigen, or  conformational , in which residues critical for recognition may not be 
contiguous in the primary sequence, but are in close proximity within the folded protein 3D structure. 

 Identifi cation of B-cell epitopes in target antigens is one of the key steps in epitope-driven subunit 
vaccine design, immunodiagnostic tests, and antibody production. In silico bioinformatics techniques 
offer a promising and cost-effective approach for identifying potential B-cell epitopes in a target vaccine 
candidate. In this chapter, we show how to utilize online B-cell epitope prediction tools to identify linear 
B-cell epitopes from the primary amino acid sequence of proteins.  

  Key words     Antibody-protein interaction  ,   B-cell epitope prediction  ,   Linear B-cell epitope prediction  , 
  Epitope mapping  ,   Epitope prediction  

1      Introduction 

 Antibodies, which are glycoproteins produced in membrane- bound 
or secreted form by B lymphocytes, mediate specifi c humoral immu-
nity by engaging various effector mechanisms that serve to eliminate 
the bound antigens [ 1 ]. The characterization of antibody-protein 
interactions has been the focus of extensive research. This work has 
advanced our understanding of the adaptive immune system and 
contributed to important practical applications, such as identifying 
subunit vaccine targets [ 2 ,  3 ]. When an antibody binds to a protein, 
the resulting binding sites in the antibody and the protein are called 
the paratope and epitope, respectively. Among the several experi-
mental methods for mapping B-cell epitopes and paratopes [ 2 ,  3 ], 
X-ray crystallography is perhaps the most preferred method because 
of its accuracy. Due to the high cost and technical challenges pre-
sented by experimental methods for mapping epitopes and para-
topes, there is an urgent need for reliable in silico methods for 
identifying binding sites in antibody- protein complexes [ 4 ]. 
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 B-cell epitopes are classifi ed as either linear or conformational. 
Linear epitopes are fragments of continuous amino acids in the 
protein sequence. Conformational epitopes consist of amino acid 
residues that may be separated in the protein primary sequence, 
but are brought into physical proximity via protein folding. 
Although more than 90 % of epitopes are estimated to be confor-
mational [ 5 ], most experimental studies and computational meth-
ods focus on mapping linear B-cell epitopes. 

 In this chapter, we discuss different computational methods for 
predicting linear and conformational B-cell epitopes and outline 
procedures for in silico identifi cation of linear B-cell epitopes from 
amino acid sequence. Because the predictive performance of indi-
vidual linear B-cell prediction methods is far from satisfactory, we 
propose a procedure that combines predictions from multiple pre-
dictors to obtain more reliable consensus predictions. Our approach 
also uses known or predicted 3D structures of target proteins to fi l-
ter out false predictions. Due to the very limited availability of 
 sequence-based  conformational B-cell epitope prediction tools, con-
sensus predictions are not currently feasible at present. However, 
with anticipated increase in the amount of experimental data, further 
advances in predicting conformational epitopes can be expected.  

2    Materials 

   In this protocol, the query is the primary sequence of a target pro-
tein (e.g., vaccine candidate). This vaccine candidate may be deter-
mined based on a literature survey (e.g., [ 6 ]) or using reverse 
vaccinology tools [ 7 – 9 ]. In some cases, the user may focus on pro-
tein fragments reported in literature or found to be conserved 
based on a multiple sequence alignment of the target protein 
sequences from multiple strains of the pathogen.  

   Early computational methods for mapping linear B-cell epitopes in 
an amino acid sequence assumed some correlation between a cer-
tain single physicochemical property of an amino acid (e.g., hydro-
philicity, fl exibility, or solvent accessibility propensity) and the 
likelihood that the amino acid would be part of a linear B-cell epi-
tope [ 10 – 12 ]. BcePred [ 13 ] predicts linear B-cell epitopes using a 
combination of physicochemical properties as opposed to propen-
sity measures based on a single amino acid property. BepiPred [ 14 ] 
combines the hydrophilicity scale proposed by Parker et al. [ 12 ] 
with a Hidden Markov Model (HMM) predictor. All these meth-
ods provide  residue-based  predictions, in that they assign a score to 
each residue in the query protein sequence; the higher the score 
assigned to a residue is, the more likely it belongs to a linear B-cell 
epitope ( see  Fig.  1  for an example).

2.1  Data

2.2  Linear B-Cell 
Epitope Prediction 
Tools
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   Alternatively, several machine learning methods classify amino 
acid peptide chains of specifi c lengths as either epitopes or non- 
epitopes. BCPred [ 15 ] predicts linear B-cell epitopes of length 12, 
14, 16, 18, 20, 22 amino acids using a Support Vector Machine 
(SVM) classifi er and a string kernel. FBCPred [ 16 ] is a variant of 
BCPred for predicting linear B-cell epitopes of virtually any length. 
COBEpro [ 17 ] uses a two-stage procedure for predicting linear 
B-cell epitopes. In the fi rst stage, an SVM classifi er is used to assign 
scores to fragments of the query antigen. In the second stage, a 
prediction score is assigned to each residue in the query antigen 
based on the SVM scores for the peptide fragments. LBtope [ 18 ] 
provides improved predictions of linear B-cell epitopes by training 
classifi ers using experimentally validated  non -epitopes, whereas all 
previous methods used randomly sampled fragments from UniProt 
as the non-epitope training data. Recently, we showed that further 
improvements in the reliability of linear B-cell epitope predictions 
can be obtained by using ensemble classifi ers that combine multi-
ple linear B-cell epitope predictors [ 19 ].  

   The problem of conformational B-cell epitope prediction can be 
defi ned as follows: Given the primary or the tertiary structure of a 
query protein, what are the interfacial residues involved in the 
complex formed between the query protein and an antibody. 

2.3  Conformational 
B-Cell Epitope 
Prediction Tools

  Fig. 1    Propensity scale profi les for the Ebola virus GP protein (UniProt ID Q05320) generated using ( a ) BepiPred, 
( b ) surface accessibility, ( c ) fl exibility, ( d ) antigenicity. Regions with scores above the  red line  are more likely to 
contain linear B-cell epitopes       
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This is essentially a subproblem of the more general problem of 
protein- protein interface prediction [ 20 ,  21 ], where the goal is to 
identify interfacial residues in a query protein that form a complex 
with any other protein (including antibodies). Unfortunately, 
protein- protein interface predictors trained on large data sets of 
protein- protein interfaces are not suffi ciently reliable for predicting 
antibody-protein interfaces [ 22 ]. 

 Partly due to the small number of solved antibody-protein 
structures, relatively few methods for predicting conformational 
B-cell epitopes have been proposed in the literature. The perfor-
mance of the available methods remains far from satisfactory [ 4 , 
 22 ]. Table  1  summarizes current B-cell epitope prediction meth-
ods that are available in the form of freely accessible web servers or 
downloadable software packages. In this table, we have catego-
rized B-cell epitope prediction methods as  sequence-based  or 
 structure- based , according to whether the method accepts the pri-
mary sequence vs. the 3D structural coordinates of the query pro-
tein as input. We have also categorized the methods as  residue-based  
or  patch-based. Residue-based  methods return a prediction score for 
each residue in the query protein.  Patch-based  methods decompose 
the surface of the query protein into patches and return a single 
prediction score for each patch. Each patch could be interpreted as 
an epitope of an antibody-protein complex.

   The vast majority of available tools for predicting conforma-
tional B-cell epitopes are  structure-based  in that they require the 
solved/predicted unbound structure of the target protein as input 
to the predictor. Hence, their applicability is limited by the availabil-
ity of an experimentally determined 3D structure (from the PDB 

    Table 1  

  Summary of antibody-protein binding site (conformational B-cell epitope) online prediction tools   

 Tool  URL of web server  Comments 

 CBTOPE    http://www.imtech.res.in/raghava/
cbtope/     

 Sequence-based, residue-based 

 DiscoTope    http://www.cbs.dtu.dk/services/
DiscoTope/     

 Structure-based, residue-based 

 ElliPro    http://tools.immuneepitope.org/ellipro/      Structure-based, residue-based 

 EPCES    http://sysbio.unl.edu/EPCES/      Structure-based, patch-based 

 Epitopia    http://epitopia.tau.ac.il/      Structure-based, residue-based 

 EPSVR    http://sysbio.unl.edu/EPSVR/      Structure-based, patch-based 

 PEPITO    http://pepito.proteomics.ics.uci.edu/      Structure-based, residue-based 

 SEPPA    http://lifecenter.sgst.cn/seppa2/      Structure-based, residue-based 
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[ 23 ]) or a homology model for the query protein ( see   Note    1  ). To 
address this limitation, BEST [ 24 ] and CBTOPE [ 25 ] have been 
proposed for predicting conformational B-cell epitopes using amino 
acid derived information. 

 All of the methods described in Table  1  are antibody- 
independent B-cell epitope prediction methods [ 26 ], in the sense 
that they do not take advantage of information about the binding 
antibody in predicting the antibody binding site on the antigen. 
Recently, some antibody-specifi c B-cell epitope prediction meth-
ods have been proposed ( see   Note    2  ). Antibody-specifi c B-cell epi-
tope prediction methods are motivated in part by: (1) the success 
of partner-specifi c protein-protein interface predictors [ 27 ,  28 ] 
and allele-specifi c major histocompatibility complex (MHC) bind-
ing site predictors [ 29 ,  30 ]; and (2) the observation that virtually 
any surface accessible region of an antigen can become the target 
of  some  antibody and elicit an immune response [ 26 ,  31 ] and hence 
it is much more useful to focus on the binding site for a specifi c 
antibody.   

3    Methods 

 In this section, we focus on  sequence-based  tools for identifying 
linear B-cell epitopes. 

   Given the amino acid sequence of a protein of interest, apply the 
following procedure to obtain a list of predicted linear B-cell epit-
opes within the query sequence:

    1.    Go to submission page of BCPREDS server ( see  Fig.  2 ) acces-
sible at   http://ailab.ist.psu.edu/bcpred/predict.html    .

       2.    Paste the amino acid sequence of the target protein.   
   3.    Select the prediction method. The server currently supports 

three methods: BCPred [ 15 ], AAP [ 32 ], and FBCPred [ 16 ]. 
The user is encouraged to try all three methods ( see   step 9 ).   

   4.    Select the length of the epitope. BCPred and APP methods 
can handle queries for a set of prespecifi ed lengths (12, 14, 16, 
18, 20, 22). FBCPred predicts linear B-cell epitopes of any 
length specifi ed by the user. Some tips and guidelines for decid-
ing on epitope length are provided in  Note    3  .   

   5.    Select the specifi city of the classifi er ( see   Note    4  ).   
   6.    Uncheck “report only non-overlapping epitopes” if you want 

the server to report all predicted epitopes with probability 
greater than the cut-off corresponding to the select classifi er 
specifi city in  step 6 . Otherwise, highly ranked non- overlapping 
epitopes will be also reported ( see   Note    5  ).   

   7.    Click “Submit query” to obtain predicted epitopes in the 
query sequence.   

3.1  Predicting Linear 
B-Cell Epitopes
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   8.    Repeat  steps 1 – 8  for other supported prediction methods. 
Discard epitopes predicted by only a single method. The intuition 
behind this is that consensus predictions are usually more reliable 
than predictions obtained from a single prediction method.   

   9.    Figure  3  shows the output of BCPREDS, in which non- 
overlapping epitopes predicted by the three prediction meth-
ods are combined and consensus predictions are identifi ed 
( bold  residues in the sequence).

       10.    Users are also encouraged to consider predictions by other 
servers (e.g., COBEPro [ 17 ]) by following essentially the same 
procedure described here to submit queries.   

   11.    Evaluating the results: If possible, the user should fi lter out 
likely “false positives,” i.e., predicted epitopes that do not lie 
on the surface of the protein by mapping the predicted epit-
opes onto a solved or predicted 3D structure of the query 
protein ( see   Note    6  ). In addition, the user might use the 
Immune Epitopes Database Analysis Resource (IEDB-AR) 
[ 33 ] to generate propensity scale profi les for the query protein 

  Fig. 2    Submission page of BCPREDS web server available at:   http://ailab.ist.psu.edu/bcpred/predict.html           
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  Fig. 3    Linear B-cell epitopes predicted using three different linear B-cell epitope predictors currently supported 
by BCPREDS: BCPred, AAP, and FBCPred. Bold residues indicate epitope residues predicted by at least two 
methods       

( see   Note    7  ). Although these profi les cannot provide reliable 
predictions of linear B-cell epitopes ( see   Note    8  ), they could 
be useful in highlighting potential antigenic regions of inter-
est to confi rm predictions by BCPREDS.       
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4            Notes 

     1.    In the absence of solved 3D structure for a query protein, 
computational tools like I-TASSER [40] could be used to pre-
dict the 3D structure of that protein. I-TASSER is a template-
based method for protein structure and function prediction. 
The pipeline consists of four major steps: template identifi ca-
tion, structure reassembly, atomic model construction, and 
fi nal model selection.   

   2.    Antibody-specifi c B-cell epitope prediction methods take into 
account the binding  antibody  sequence or structure in order to 
predict conformational B-cell epitopes in a query antigen 
sequence of known structure. EpiPred [ 34 ] is a fully  structure- 
based  method that requires the structures of an antigen and its 
putative binding antibody. Bepar [ 35 ] and ABepar [ 36 ] are 
fully  sequence-based  methods that take the sequences of the 
interacting antigen and antibody as input. PEASE server [ 37 ] 
predicts conformational B-cell epitopes in an antigen of known 
structure, given the sequence of the binding antibody.   

   3.    Deciding on optimal epitope length is not trivial. In fact exist-
ing tools cannot reliably predict optimal linear B-cell epitopes 
because most of the experimentally validated linear B-cell epit-
opes used to train these predictors are not optimal in length. 
However, it makes sense to use lengths between 12 and 16 
amino acids because the lengths of known epitopes are within 
that range [ 15 ].   

   4.    There is always a trade-off between specifi city and sensitivity. 
Higher specifi city means lower false positive rate at the expense 
of missing some true positives (i.e., epitopes). We recommend 
using low specifi city cut-offs and combining predictions from 
several tools to eliminate false positive predictions.   

   5.    A query protein sequence of L amino acids has L-k + 1 poten-
tial linear B-cell epitopes of length equal k. BCPREDS predic-
tors assign a score to every candidate epitope and report 
epitopes with scores higher than the cut-off corresponding to 
user- specifi ed specifi city. To eliminate highly overlapping pre-
dicted epitopes and identify antigenic regions, the user might 
confi gure the tool to show non-overlapping epitopes.   

   6.    Interactive molecular viewers like JMol [ 38 ] and PyMol [ 39 ] take 
PDB coordinate fi les as input and allow user to visualize protein 
3D structures and highlight particular amino acid residues and 
support scripts and plugins for other tasks (e.g., determine inter-
face residues or fi nding and highlighting surface residues).   

   7.    The Immune Epitopes Database Analysis Resource (IEDB-AR) 
B-cell tool available at   http://tools.iedb.org/bcell/     generates 
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propensity scale profi les for submitted amino acid sequences using 
BepiPred [ 14 ] and fi ve other propensity scales. Figure  1  shows 
example profi les generated for Ebola Virus GP protein (UniProt 
ID Q05320) using surface BepiPred and three propensity scales 
(accessibility [ 10 ], fl exibility [ 11 ], and antigenicity [ 31 ]).   

   8.    Blythe and Flower [ 37 ] have conducted a comprehensive 
assessment of about 500 amino acid physicochemical propen-
sity scales in predicting linear B-cell epitopes (using a data set 
of 50 proteins) and showed that the performance of the best 
method is only slightly better than random guessing. This 
result was the main motivation of the machine learning-based 
methods for predicting linear B-cell epitopes.         
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Chapter 18

Prediction of Protein Phosphorylation Sites by Integrating 
Secondary Structure Information and Other One-
Dimensional Structural Properties

Yongchao Dou, Bo Yao, and Chi Zhang

Abstract

Studies on phosphorylation are important but challenging for both wet-bench experiments and computational 
studies, and accurate non-kinase-specific prediction tools are highly desirable for whole-genome annotation 
in a wide variety of species. Here, we describe a phosphorylation site prediction webserver, PhosphoSVM, 
that employs Support Vector Machine to combine protein secondary structure information and seven other 
one-dimensional structural properties, including Shannon entropy, relative entropy, predicted protein disor-
der information, predicted solvent accessible area, amino acid overlapping properties, averaged cumulative 
hydrophobicity, and subsequence k-nearest neighbor profiles. This method achieved AUC values of 
0.8405/0.8183/0.7383 for serine (S), threonine (T), and tyrosine (Y) phosphorylation sites, respectively, in 
animals with a tenfold cross-validation. The model trained by the animal phosphorylation sites was also 
applied to a plant phosphorylation site dataset as an independent test. The AUC values for the independent 
test data set were 0.7761/0.6652/0.5958 for S/T/Y phosphorylation sites, respectively. This algorithm 
with the optimally trained model was implemented as a webserver. The webserver, trained model, and all 
datasets used in the current study are available at http://sysbio.unl.edu/PhosphoSVM.

Key words Phosphorylation site prediction, Non-kinase-specific tool, Support vector machine

1  Introduction

Phosphorylation, one of the most essential posttranslational 
modifications in eukaryotes, plays a crucial role in a wide range 
of cellular processes. Studies on kinases and their substrates are 
important for understanding signaling networks in cells, and 
helpful for developing new treatments for signaling-defect dis-
eases, such as cancer. The number of kinases was estimated to 
be around 500–1000  in animals and plants [1–3], and they 
usually induce phosphorylation on serine (S), threonine (T), 
tyrosine (Y), as well as histidine (H) amino acid residues in 
eukaryotic proteins. All experiments on phosphorylation site 
discovery are time-consuming and expensive to perform, and 
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hence, computational prediction of protein phosphorylation 
sites becomes increasingly popular as an important comple-
mentary approach in protein phosphorylation site studies.

Nearly 40 methods for the prediction of phosphorylation sites, 
including kinase-specific and non-kinase-specific tools, with differ-
ent algorithms and strategies, were described in the literature since 
1999 [4]. A non-kinase-specific prediction tool requires only the 
protein sequence as input, and reports the likelihood of each 
S/T/Y amino acid residue being phosphorylated by any possible 
kinase, and hence, non-kinase-specific tools may be able to detect 
phosphorylation sites for which the associated kinase is unknown 
or the number of known substrate sequences of the associated 
kinase is few. With the development of the next-generation 
sequencing technology, many genomes of nonmodel organisms 
have been sequenced, and more kinases in those species have been 
discovered, some of which have no sufficient substrate information 
to train the kinase-specific prediction algorithms. Therefore, non-
kinase-specific tools are required for a wider variety of species that 
have high-specificity for whole-genome annotation [4].

Here, we describe a non-kinase-specific protein phosphoryla-
tion site prediction webserver, PhosphoSVM, which uses the 
Support Vector Machine (SVM) method to integrate protein sec-
ondary structure information with seven other one-dimensional 
structural properties. In addition to protein secondary structure 
(SS), the other sequence-based properties are Shannon entropy 
(SE), relative entropy (RE), predicted protein disorder (PD), pre-
dicted solvent accessible surface area (ASA), amino acid overlap-
ping properties (OP), averaged cumulative hydrophobicity (ACH), 
and subsequence k-nearest neighbor profiles (KNN). PhosphoSVM 
was cross-validated and independently tested [5]. This method 
achieved the values of the area under the receiver operating charac-
teristic curve (AUC) of 0.8405/0.8183/0.7383 for S/T/Y phos-
phorylation sites, respectively, in animals with cross-validation, and 
0.7761/0.6652/0.5958 for S/T/Y phosphorylation sites, respec-
tively, in plants as an independent test.

2  Materials

The training data sets came from P.ELM version 9.0 [6] and PPA 
version 3.0 [7–9]. The known phosphorylation sites in P.ELM are 
mainly for animals, whereas the PPA set is only for Arabidopsis thali-
ana. Therefore, the P.ELM and PPA data sets are relatively indepen-
dent of each other. Any sites identified as phosphorylation sites by 
the computational methods in these databases were not considered 
as positives or negatives. Redundant protein sequences in these two 
datasets were removed by BLASTClust [10] with the cutoff of 30 % 
sequence identity. The similarity between any two subsequences of 
phosphorylation sites, amino acids around phosphorylated amino 

2.1  Datasets
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acid residues, was also checked to ensure the sequence identity was 
smaller than 30 %. In both datasets, experimentally identified phos-
phorylation sites were considered as positive sites and a subset of the 
other S/T/Y sites were used as negative ones. In the P.ELM dataset, 
the ratios of positive to negative sites for S/T/Y are 4.65, 3.77, and 
7.66 %, respectively, compared with 3.14, 4.19, and 6.55 % for the 
PPA dataset. A subset of negative sites was randomly selected for 
model training so that there were the same numbers of positive and 
negative phosphorylation sites (see Note 1).

The webserver, PhosphoSVM, was developed for non-kinase-
specific protein phosphorylation site prediction, which is available 
at http://sysbio.unl.edu/PhosphoSVM/. Fig. 1 displays the input 
page for the webserver that allows users to cut and paste the protein 
sequence. The only input required for PhosphoSVM is the query 
protein sequence in plain text or FASTA format (see Note 2). The 
standard 20 characters for amino acids are accepted, and any char-
acters not included in those 20 will be removed by the webserver 
(see Note 3). Only one sequence per run is allowed for inputs. If 
multiple protein sequences are entered as the input, only the first 
one will be processed. Once a user submits a job by clicking the 
submit button, a new page will appear, which acknowledges the 

2.2  Webserver

Fig. 1 The input window of the PhosphoSVM webserver. The only required input is the protein sequence, which 
can be copied and pasted into the main text box on this page. Name, Organization, and Email are optional
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successful submission and displays an URL in red that will be used 
to check the prediction results (see Note 4). The input sequence is 
first screened against the database of all received input-sequences to 
see if it has been predicted before. If the same sequence has been 
predicted before, the existing results will be returned directly. 
Otherwise, the protein sequence is subsequently passed on to the 
predictor running in the background, which will search all S/T/Y 
sites in the given protein sequence, generate feature vectors for each 
candidate, and finally use a SVM classifier to score all candidate sites 
(see Note 5). The scores of all candidate sites, classified into three 
groups, S/T/Y, will be returned and displayed on the output page, 
which is shown in Fig. 2. Usually, a candidate site is considered as 
positive if its score is larger than 0.5, otherwise as negative. With a 
tenfold cross-validation, the AUC values achieved are 0.8405, 
0.8183, and 0.7383 for S, T, and Y, respectively for the P.ELM data 
set. At the maximal F-measure point, PhosphoSVM achieved 94.04 
and 95.90 % Sp for S-type phosphorylation sites in P.ELM and PPA, 
respectively. The performance for residue S is significantly better 
than the other two. The results are permanently saved in the data-
base, and users can access the results with the URL obtained after 
they submit their input sequence.

Fig. 2 The result window of the PhosphoSVM webserver. All candidate sites for a given protein sequence are 
classified into S, T, and Y groups. All candidate sites in one group are ranked based on their predicted scores. 
The rank, location, subsequence, and score for a given site are displayed
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Both the compiled training/test data sets and the well-trained 
SVM model used by the webserver are available for downloading 
at http://sysbio.unl.edu/PhosphoSVM/download.php.

3  Methods

This webserver uses the SVM package LIBSVM [11]. The 
parameters, the window size and parameters of C, the cost, and γ 
for RBF kernel in SVM were optimized on the P.ELM dataset. An 
example window size of seven means that the given residue had 
three neighbors on each side in the subsequence (see Note 6). The 
parameter sets of window size and SVM parameters, γ and C, used 
by this webserver are (21, 0.003, 4), (19, 0.003, 4), and (15, 
0.007, 2) for S/T/Y phosphorylation sites, respectively.

For a given amino acid residue, a subsequence with all residues adja-
cent to it in a certain window size is used to create the feature vector 
for the SVM. This subsequence will be encoded with a multidimen-
sional vector based on protein secondary structure and seven other 
one-dimensional structural properties: Shannon entropy (SE), rela-
tive entropy (RE), protein disorder (PD), solvent accessible surface 
area (ASA), overlapping properties (OP), averaged cumulative 
hydrophobicity (ACH), and k-nearest neighbor profiles (KNN). In 
the following, each attribute is described in details.

Protein functions are dependent on their structures, and 
phosphorylation sites are enriched in some specific secondary 
structures [12]. The secondary structure (SS) attribute describes 
the structural environment of a phosphorylation site and its sur-
rounding amino acid residues. The most accurate way to obtain 
the information of secondary structure would be from the 3D 
structures of proteins, but for a given protein sequence without 
known 3D structures, currently, the secondary structures can come 
from prediction. For this webserver, PSIPRED [13] is used to pre-
dict SS for a given protein sequence. The SS attribute of each resi-
due in the feature vector has three bits to show the possibility 
scores of three types of secondary structures (H, E, and C).

Shannon entropy (SE) and Relative entropy (RE) scores quantify 
the conservation of phosphorylation sites (see Note 6). SE and RE 
were calculated by weighted observed percentages (WOP), which 
was extracted by PSI-BLAST [10]. For a given full-length protein 
sequence that could potentially have phosphorylation sites, PSI-
BLAST was applied to it against the NCBI BLAST Nonredundant 
protein database. The WOP vector for a position represents the 
position-specific distribution of 20 amino acids. The SE and RE 
scores for the given position are defined as:

2.3  Downloading

3.1  SVM Package 
and Model Parameters

3.2  Feature Vectors

3.2.1  Secondary 
Structure

3.2.2  Shannon Entropy 
and Relative Entropy
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where pi = ai/Σaj, aj is the j-th value in the WOP vector for this 
given position and p0 is the protein BLOSUM62 background dis-
tribution. If a position has complete conservation, the SE score has 
the smallest value, 0.

For each residue, the protein disorder (PD) status is predicted 
using DISOPRED [14], and the prediction result has two scores, 
each between 0 and 1, corresponding to either a structured or dis-
ordered status (see Note 8).

All phosphorylation sites are on the surface of substrate proteins. 
Large solvent accessibility is hence also an important feature for the 
catalytic residues. Therefore, the solvent accessible surface area 
(ASA) information of each residue was included into the algorithm 
as well. For this webserver, RVP-net [15] is used to predict the 
relative solvent ASA for each residue in a given protein sequence 
(see Note 9). Each amino acid residue has a real value in the range 
of (0, 1) for the ASA attribute.

Taylor's overlapping properties (OP) are: Polar {NQSDEC 
TKRHYW}, Positive {KHR}, Negative {DE}, Charged {KHRDE}, 
Hydrophobic {AGCTIVLKHFYWM}, Aliphatic {IVL}, Aromatic 
{FYWH}, Small {PNDTCAGSV}, Tiny {ASGC}, and Proline {P} 
[16] (see Note 10). Amino acid residues are encoded using 10-bit 
vectors where the dimensions of the corresponding properties are 
set to 1 and remaining positions are 0, i.e. A (0000100010), ......, 
V (0000110100).

Average cumulative hydrophobicity (ACH) is quantified by 
computing the average of the cumulative hydrophobicity indices 
around the central amino acid residue of a candidate subsequence 
over the sliding windows with sizes of 3, 5, 7, …, 21, respectively 
(see Note 11). Therefore, there are 10 bits in the feature vector 
for ACH scores for one given candidate subsequence. 
Hydrophobicity index proposed by Sweet and Eisenberg [17] is 
used by this webserver, where 20 standard amino acids (A, C, D, 
E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y) have the values 
of (0.62, 0.29, −0.90, −0.74, 1.19, 0.48, −0.40, 1.38, −1.50, 
1.06, 0.64, −0.78, 0.12, −0.85, −2.53, -0.18, −0.05, 1.08, 0.81, 
0.26), respectively.

3.2.3  Protein Disorder

3.2.4  Accessible 
Surface Area

3.2.5  Overlapping 
Properties

3.2.6  Average 
Cumulative Hydrophobicity
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Similar patterns often appear in the local sequences of phosphory-
lation sites, and this information is helpful for phosphorylation 
prediction, especially for kinase-specific phosphorylation site pre-
diction. To quantify this kind of information, the KNN score is 
introduced. A KNN score for one given sequence is the portion of 
positive phosphorylation sites in its k nearest neighbors in the 
training set, where the distance between two sequences is propor-
tional to their sequence similarity; a pair of similar sequences have 
a short distance (see Note 12). The BLOSUM62 substitution 
matrix is used to calculate similarities between amino acids, and the 
sequence similarity is defined as the sum of all amino acid substitu-
tion scores. Several different k parameters are used to calculate 
KNN profiles for a given sequence. For S- and T-type sites, the 
parameters of k of KNN are (0.25 %, 0.5 %, …, 5 %) of the training 
data set, and thus the KNN profile attribute had 20 bits. For Y-type 
sites, the parameters of k are (1 %, 2 %, …, 5 %) for five bits because 
the size of the training set for Y-type sites is small.

4  Notes

	 1.	For phosphorylation site prediction model training, it has 
been shown that the optimal ratio of positive to negative sites 
is one [18].

	 2.	The query sequence must be a protein amino acid sequence in 
FASTA format. The gene in the DNA/RNA sequence has to 
be converted to amino acid sequence first by users. Unknown 
amino acids (e.g., X) must be removed.

	 3.	Standard amino acid characters are “ACDEFGHIKLM 
NPQRSTVWY”. Any characters not included in these 20 ones 
will be removed by the webserver, such as “X” and “.”.

	 4.	The URL looks like http://sysbio.unl.edu/PhosphoSVM/
result.php?jobid=4ffcf5a9766381.50775674. The string after 
“jobid=” is the ID specifically assigned for the submitted job 
by the webserver, which is various for different cases. Please 
save this URL for retrieving the outputs in the future.

	 5.	Usually, it will take a while for the prediction step. The waiting 
time depends on the length of the input protein sequence, and 
the length of the job queue of the webserver. The average 
waiting time is about 15 min.

	 6.	The parameters were trained on the P.ELM dataset with the 
tenfold cross-validation method. All positive and negative sites 
on proteins in the 10th group were scored by the trained 
model. After ten rounds, all positive and negative sites in the 
whole dataset obtained prediction scores for analysis. The opti-
mal set of parameters resulting in the highest AUC values were 

3.2.7  K-Nearest 
Neighbor Profiles (KNN)
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obtained by a grid search within the interval of (1, 25) in steps 
of 2 for the window size, (0.001, 0.01) in steps of 0.001 for γ, 
and (2−5, 24) in steps of ×2 for C. Since this method was found 
to be sensitive to parameter C, an additional fine linear search 
in (1, 6) in steps of 1 for parameter C was conducted, while the 
other parameters kept the same grid sizes as before.

	 7.	SE is commonly used for the prediction of functionally impor-
tant amino acid residues in protein sequences [19, 20]. RE 
measures the conservation of amino acids compared with the 
background distribution, and the deviation from a background 
distribution is also important for functionally important amino 
acid residues [21].

	 8.	Previous works suggested that protein disorder information is 
helpful for the discrimination between phosphorylation and 
nonphosphorylation sites [12].

	 9.	The prediction of ASA does not have high resolution, and the 
phosphorylation sites that become accessible upon protein 
conformational changes cannot be evaluated by currently exist-
ing methods.

	10.	OP reflects the amino acid groups with common physicochem-
ical properties, and were used for the identification of protein 
motifs [22], prediction of T-cell epitopes [23], and prediction 
of functionally important amino acid residues in a given pro-
tein sequence [24–26] etc.

	11.	Average cumulative hydrophobicity (ACH) of amino acids has 
been demonstrated to be an important attribute for functional 
important amino acid residues in proteins [26–28], because it 
quantifies the propensity of an amino acid residue and its sur-
rounding residues to be exposed to solvents.

	12.	A KNN attribute vector actually quantifies the neighborhood 
of a phosphorylation site in the similarity network of all known 
sites. This feature has been used and described in detail by 
Musite for phosphorylation site prediction [29].
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    Chapter 19   

 Predicting Post-Translational Modifi cations from Local 
Sequence Fragments Using Machine Learning Algorithms: 
Overview and Best Practices       

     Marcin     Tatjewski    ,     Marcin     Kierczak     , and     Dariusz     Plewczynski      

  Abstract 

   Here, we present two perspectives on the task of predicting post translational modifi cations (PTMs) from 
local sequence fragments using machine learning algorithms. The fi rst is the description of the fundamen-
tal steps required to construct a PTM predictor from the very beginning. These steps include data gather-
ing, feature extraction, or machine-learning classifi er selection. The second part of our work contains the 
detailed discussion of more advanced problems which are encountered in PTM prediction task. Probably 
the most challenging issues which we have covered here are: (1) how to address the training data class 
imbalance problem (we also present statistics describing the problem); (2) how to properly set up cross- 
validation folds with an approach which takes into account the homology of protein data records, to 
address this problem we present our  folds-over-clusters  algorithm; and (3) how to effi ciently reach for new 
sources of learning features. Presented techniques and notes resulted from intense studies in the fi eld, 
performed by our and other groups, and can be useful both for researchers beginning in the fi eld of PTM 
prediction and for those who want to extend the repertoire of their research techniques.  

  Key words     Phosphorylation  ,   Feature extraction  ,   Feature selection  ,   Class imbalance  ,   Cross-validation  

1      Introduction 

 A living cell is a dynamic entity capable of maintaining complex 
functions and adjusting its metabolism in response to the con-
stantly changing environment. This functional complexity can be 
observed at different levels of cellular organization: from informa-
tion stored in the genome, to the regulation of its expression, 
throughout proteins characterization, their interactions, fi nally 
intracellular signaling and beyond. 

 Taking human as an example, it is currently well established 
that the genome comprises 20,000–25,000 genes that give origin 
to more than 1,000,000 proteins (including variants of the same 
protein) present in the proteome [ 1 ,  2 ]. There is a large discrep-
ancy between the number of genes and the number of protein 
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variants encoded by them. This apparent paradox can, however, be 
explained by taking into account several mechanisms such as alter-
native splicing, or post-translational modifi cations that enable this 
relatively small number of genes to encode the number of proteins 
that is two orders of magnitude higher. 

 Here, we will focus on one particular mechanism, namely the 
post-translational modifi cations (PTM). These are defi ned as enzy-
matic covalent modifi cations of proteins occurring after the trans-
lation. It has been estimated that about 5 % of the human proteome 
are enzymes involved in catalyzing over 200 types of known PTMs 
[ 3 ]. The enzymes performing these different PTMs belong to 
many different classes, such as: 

 ●       kinases  that add phosphate groups to amino acid chains,  
 ●    phosphatases  that remove phosphate groups to amino acid 

chains,  
 ●    transferases  that transfer functional groups, sugars, lipids, or 

peptides at amino acid sites,  
 ●    ligases  that add functional groups, sugars, lipids, or peptides,  
 ●    proteases  that cleave peptide bonds at predefi ned sites.    

 PTMs can occur at different stages of protein life-cycle and are 
usually reversible. Many proteins also contain  autocatalytic domains  
enabling them to modify themselves. These factors explain the key 
role that PTMs play in the dynamic regulation of protein activity, 
at a pace adequate to the constantly changing environment. 

 PTMs play a paramount role not only in physiological processes 
taking place in a healthy cell, but have also been shown to be key 
players in etiology of many diseases. The pathologies linked to 
abnormal or altered PTMs include cancer, diabetes, and neurode-
generative diseases. 

 Several studies have been focusing on better understanding how 
PTMs work and what are the determinants of an amino acid site that 
can be modifi ed. The actual molecular changes following several 
PTMs are known and quite often they have great impact on the 
function of the modifi ed protein. Let us have a closer look at one 
particular PTM: phosphorylation of tyrosine 530 (Tyr 530) in the 
Src protein (Fig.  1 ). Src protein is a  tyrosine kinase , i.e. an enzyme that 
catalyzes phosphorylation of tyrosines in substrate proteins. It con-
trols the fl ow of information regulating cell growth and thus playing 
important role in cell physiology. Abnormal Src function has been 
implicated in etiology of several types of cancer [ 4 ]. The Src itself is 
controlled by phosphorylation/dephosphorylation of a tyrosine 
530 in its tail part. The protein consists of the SH3, the SH2, and the 
kinase domain. The linker connects the SH3 and the SH2 domain. 
The tail part contains the key tyrosine Tyr 530. Upon the phosphor-
ylation (panel a, PDB 2src), the phosphate group binds to the SH2 
domain and the whole Src is “closed.” Upon dephosphorylation 
(panel b, PDB 1y57), the protein “opens” exposing a protein 
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binding groove in the SH3 domain and the active site located in the 
kinase domain and previously buried inside the protein thus enabling 
Src to perform its catalytic functions [ 5 ,  6 ]. 

 Although challenging, full characterization of PTMs is neces-
sary for more complete understanding of both normal biological 
processes and in elucidating etiology of diseases. 

 As experimental verifi cation of PTM occurrences requires sig-
nifi cant effort, researchers intensively explore in silico approaches 
to fi nding sites of potential modifi cations. These methods focus on 
predicting new PTM sites with the use of knowledge gained from 
observing the amino acid neighborhoods of the already verifi ed 
modifi cations. The approaches used range from classic machine- 
learning algorithms like Random Forest, Support Vector Machine 
or Artifi cial Neural Networks [ 7 – 9 ] to methods more specifi c for 
the domain like Position-Specifi c Scoring Matrices or comparative 
evolutionary approaches [ 10 – 13 ]. 

Linker

SH2

SH3

Phosphorylated site 530

Kinase

Nucleotide binding site

ATP binding site

Unphosphorylated 
site 530

Active site

Tail

a b
2src 1y57

Linker

SH3

SH2

Tail

Kinase

  Fig. 1    An example of biological importance of PTMs, here a phosphorylation of tyrosine. The Src protein con-
trols the fl ow of information regulating cell growth. It belongs to a class of tyrosine kinases, i.e. the enzymes 
catalyzing phosphorylation of substrate proteins. The Src itself is controlled by phosphorylation/dephosphory-
lation of a tyrosine in its tail part. The protein consists of the SH3, the SH2, and the kinase domain. The linker 
connects the SH3 and the SH2 domain. The tail part of the protein contains the key tyrosine Tyr530. When 
phosphorylated (panel ( a  ), PDB 2src), the phosphate group binds to the SH2 domain and the whole Src is 
“closed.” Upon dephosphorylation (panel ( b  ), PDB 1y57), the protein “opens” exposing a protein binding 
groove in the SH3 domain (not shown) and the active site located in the kinase domain and previously buried 
inside the protein [ 5 ,  6 ]       
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 Despite progress made in computational prediction of PTM 
sites, several open challenges still exist that require further investi-
gation. Below, we mention some of these open challenges: 

 ●     Whether to include or not the available protein structural 
information in the prediction process and how to do it effec-
tively (Subheading  19.4.5 )?  

 ●   How to determine the size of the amino acid neighborhood of 
the site to maximize the predictive power? These issues can be 
addressed jointly with the problem of using structural informa-
tion (Subheading  19.3.3.1 ).  

 ●   What features to consider for constructing predictors 
(Subheadings  19.3.3.2  and  19.4.6 ).    

 In this work, we attempt to familiarize the reader with the fun-
damentals of constructing machine-learning predictors of PTMs 
based on local sequence fragments. We also highlight some more 
advanced topics in the fi eld. Subheading  19.2  discusses the 
resources available in the fi eld, and the following Subheading  19.3  
presents in a succinct manner all steps necessary to build a predic-
tor. The fi nal Subheading  19.4  focuses on advanced topics and 
issues that can be encountered in PTM prediction. Figure  2  guides 
the reader through particular sections of the article using a dia-
gram of different phases and entities that are present in the process 
of PTM prediction.  

2     Materials 

     In order to be able to make predictions of potential PTM sites, we 
need to get access to a substantial (a large number of examples) 
data set of protein sequence sites that were proven to be subject of 
a modifi cation. Typically, these proofs come from experimental 
studies of two types: 
  Low-throughput (LTP)  Small scale experiments, in which scien-
tists confi rm their fi ndings using robust techniques. 
 High-throughput (HTP) High scale experiments usually involv-
ing mass spectrometry techniques. These are usually probabilistic 
by nature. 

 There are several databases available, which aggregate such 
PTM data from scientifi c literature. The most commonly used 
ones are: 
 UniProtKB is a general protein database which contains many 
other biological information apart from the PTM annotation for 
proteins. It is one of the most comprehensive sources of modifi ca-
tion data as it includes many different types of PTMs. Another of 
its advantages lies in the easy programmatic access to all of the 

2.1  Databases 
for the Domain
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database resources aggregated on protein level. On the other hand, 
it is important to be aware that many PTMs stored in this database 
are inferred by homology, which means they were not even con-
fi rmed by HTP, or LTP experiments [ 14 ]. 
 PhosphoSitePlus contrary its name, it does contain not only phos-
phorylations. It also includes acetylations, ubiquitylations, methyl-
ations, and others. However, it focuses on phosphorylations and 
provides most of the data for this type of modifi cation. Most of the 
sites gathered there are confi rmed by HTP studies [ 15 ]. 
 Phospho.ELM This is one of the databases solely focused on phos-
phorylation sites—it does not contain data regarding any other 
modifi cation types [ 16 ]. The instances are typically confi rmed by 
either LTP or HTP experiments. 

 Contrary to UniProt, PhosphoSitePlus and Phospho.ELM 
provide information about the site source being an LTP or HTP 
study. Table  1  provides statistics showing the number of sites for a 

Protein/PTM sites
database (section 2.1)

Dataset construction
phase

Positive
records

Negative
records

Positives identification
(section 3.2.2)

Negatives identification (section 4.1)
Class imbalance (sections 3.2.3, 4.2)

Features

Feature extraction
phase

Sequence window (section 3.3.1)
Amino acid indices (section 3.3.2)
Other features (section 4.5)
Feature selection (section 4.6)

Machine-learning classifiers

Learning
phase

Classifier choice and construction
(sections 3.1.1, 3.2.1, 3.4)
Machine-learning software (section 2.2)

Classification evaluation

Evaluation schema and measures
(sections 3.1.2, 3.1.3, 4.4)
Cross-validation (sections 3.1.4, 4.3)

  Fig. 2    Diagram presenting different phases and entities in the process of PTM prediction. References in  brackets  
point to sections of the article which explain particular topics       
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few selected PTM types in the discussed databases. In order to 
learn about other PTM databases, please refer to an extensive 
review written by Kamath et al. in 2011 [ 17 ].  

   Several software libraries are available for performing prediction 
using machine learning algorithms. Often the choice of particular 
package is driven by the programming language which the user is 
most familiar with. Among the vast set of available tools, the fol-
lowing three especially deserve a short description as being the 
most widely used and recognized: 
 MATLAB A multi-paradigm numerical programming environ-
ment (and a programming language) with a large number of so-
called toolboxes extending its capabilities (  http://mathworks.
com/products/matlab    ). 
 scikit-learn Popular library for the Python language, allows only 
programmatic use [ 18 ]. 
 Spark’s MLlib Apache’s machine learning library for Spark and 
Hadoop. It is possible to use it from Java, Python, Scala, and R. 
 WEKA Java library that apart from programmatic access has also a 
standalone application with a Graphical User Interface. Its previ-
ous popularity seems to be decreasing. One of the reasons for that 
is it is implemented in a memory-intensive way which is especially 
troublesome when working with large data sets. In the previous 
decade it was often the fi rst-choice machine learning tool [ 19 ]. 

 Neither scikit-learn nor MLlib provides implementation of 
Artifi cial Neural Networks. However, they include most of the 
other important machine-learning algorithms.   

2.2  Machine 
Learning Software

     Table 1  
  Numbers of sites for chosen types of PTMs   

 PTM type  UniProt All a,b   UniProt Man. a,c   PhosphoSitePlus a   Phospho.ELM d  

 Phosphoserine  113,319  101,016  153,974  31,754 

 Phosphothreonine  33,811  22,132  63,576  7449 

 Phosphotyrosine  13,383  9126  42,001  3370 

 Acetylation  58,581  34,374  36,278  – 

 Methylation  28,935  9795  8096  – 

 Ubiquitylation  –  –  56,705  – 

 Amidation  4203  3436  –  – 

 Hydroxylation  2702  2625  –  – 

  Statistics include annotations on all levels of confi rmation status a Latest informationavailable online b All typesof assertion-
s c Manualassertions only d Asof 2011 [ 16 ]  
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3     Methods 

     The fi rst informal defi nition of machine learning has been given by 
Arthur Samuel in 1959 [ 20 ]. He defi ned  machine learning  as a  ...
fi eld of study that gives computers the ability to learn without being 
explicitly programmed.  In order for a computer program to learn, it 
has to be  trained  using a number of examples provided by the exper-
imenter in a  training set . Each example, an  instance  consists of a 
number of variables,  features  (also called  attributes ) and a number of 
 outcomes  (or  decision attributes ). If one or more decision attributes 
are provided, we use the term  decision system , and if no decision attri-
butes are present, we are dealing with an  information system . 

 There exist two main types of machine learning:  unsupervised 
learning  and  supervised learning . The unsupervised learning aims at 
discovering patterns present in the data and consists of all the meth-
ods and algorithms that take an information system as input. 
Different types of clustering are a good example of unsupervised 
learning. In contrast, supervised learning aims at constructing  pre-
dictive models  that are capable of  classifying  (predicting the outcome) 
for previously unseen instances. To achieve this, the supervised 
learning methods take a decision system as input and attempt at link-
ing patterns present in the data to particular outcomes. 

 Often, prior to constructing classifi er, it is desirable to constrain 
the set of features that will be taken into account by the model. This 
helps alleviating the so-called  curse of dimensionality , i.e. exponential 
growth of the required number of observations (instances) caused 
by linear increase in the number of features. The reduction of the 
features space can be achieved performing  feature extraction  and 
 feature selection  prior to constructing model. Feature extraction is a 
process in which the domain knowledge is applied to reduce the set 
of considered features, e.g. expert knowledge is employed to elimi-
nate features that are least likely to explain the outcome given the 
current state of knowledge on the modeled phenomenon. Feature 
selection is a term describing a number of methods that, in a system-
atic way, search different feature subsets and evaluate predictive 
power of every such subset (often also of every single feature). It is 
not uncommon that both feature extraction and feature selection 
are applied in a sequential manner. In addition to addressing the 
curse of dimensionality, by reducing feature space, the experimenter 
is often able to reduce noise (improve signal to noise ratio) and to 
better control over-fi tting of the model. 

 After constructing a classifi er, one wants to evaluate quality of 
predictions, i.e. to establish how good the predictions it produces 
are. One common scheme employed for this purpose is to use the 
so-called  test set , a set of instances that were not a part of training 
set and for which the outcome is known. Once the classifi er has 
been trained, it is used to predict the outcome for the test set 

3.1  Machine 
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instances. Since the true outcome is known for these instances, one 
can simply measure concordance between the predicted and the 
actual outcome for all test set instances. Once the quality of the 
classifi cations has been established, the constructed predictive 
model (classifi er) can be used to predict outcomes for previously 
unseen instances. We will, in a more detailed way, revisit all the 
analyses steps in the next paragraphs. 

 To set the reference frame, let us focus on predicting whether 
a particular amino acid sequence fragment will be subject to a par-
ticular post-translational modifi cation. One convenient and 
straightforward way of representing an amino acid sequence is to 
use an alphabet of 20 symbols representing 20 amino acids each. 
Thus, a sequence of three amino acids: alanine, proline, and isoleu-
cine will become Ala-Pro-Ile or, using more compact notation, 
API. Now, let us assume that we have gathered some examples of 
sequences where amino acid proline is subject to hydroxylation 
and becomes hydroxyproline (positive examples). We also have a 
set of sequences where proline is not modifi ed (negative examples). 
Our task is to construct a model capable of detecting prolines 
potentially subject to hydroxylation. The related decision system 
can be represented as in Table  2 . 

 In the example decision system from Table  2 , we have  n  
instances, where there are  p  − 1 positive examples (modifi cation 
occurs) and  n p− +1    negative examples (no modifi cation). In the 
system, we have  m  + 2 attributes, where one is the unique instance 
id and the other is a binary decision attribute. All  site  attributes are 
discrete as they take 20 distinct values—amino acid codes. Now, to 
illustrate feature extraction, let us state that probably not all amino 

    Table 2  
  An example of a decision system for predicting one particular PTM type from the amino acid 
sequence   

 id   site  − m     …      site  −1    site  0    site  +1    …      site   m   
 Is 
hydroxylated? 

 1  G  …  A  P  R  …  L  Yes 

 2  G  …  V  P  R  …  M  Yes 

 3  G  …  A  P  R  …  C  Yes 

 …  …  …  …  …  …  …  …  … 

  p   G  …  A  P  R  …  I  No 

  p  + 1  G  …  R  P  K  …  L  No 

  n   G  …  R  P  R  …  V  No 

  Site at index 0 is the position of modifi cation, while other2 m  sites represent theneighboring residues. First  p  − 1rows 
contain positive examples, while the rest are the negatives  

Marcin Tatjewski et al.

taner@iastate.edu



283

acids in the sequence determine whether a given site is modifi ed or 
not. Domain knowledge (molecular biology) comes at help and 
lets us limit the number of considered positions to, say, 50 immedi-
ate neighbors of the potentially modifi ed site. Thus, we can reduce 
our space to 101 features. But is it all 100 amino acids that deter-
mine modifi cation status? If domain knowledge does not provide 
clear answers to this questions, one can use a feature selection algo-
rithm to further narrow down the space to the most relevant fea-
tures, i.e. the ones with high predictive value. Such processed 
decision systems can be used for constructing a classifi er. 

   To-date, a number of algorithms have been developed to construct 
predictive models given a decision system. To mention just some of 
the most popular approaches, one can choose between decision 
trees (DT), neural networks (NN), support-vector machines 
(SVM), random forests (RF), rough sets (RS), fuzzy sets (FS), or 
Bayesian methods. None of the existing methods is superior to all 
others for all types of data, but each of these methods has its pros 
and cons determining the scope of its applicability. In general, 
when choosing the classifi cation algorithm, one can consider some 
of its specifi c inherent features including: 

 ●     type of data it can handle (e.g., continuous vs. discrete),  
 ●   classifi cation transparency, i.e. how easy it is to get insight into 

the actual classifi cation process (a set of easy-to-read rules vs. a 
matrix of weights),  

 ●   how does the amount of required resources scale with the size 
of the data.    

 Subheading  19.3.4  discusses which of the above algorithms are 
often used for the PTM prediction problem.  

   As already mentioned, performance evaluation is a vital step in the 
modeling process. In previous paragraph (Subheading  19.3.1 ), we 
briefl y mentioned that a test-training set pair can be used to evalu-
ate classifi er. We also talked about feature selection and about dif-
ferent modeling algorithms. At each of these steps, quality of 
classifi cation measures can be used for slightly different purposes. 
When comparing classifi ers built using different machine learning 
algorithms, one would like to measure the performance in order to 
select the optimal (given some a priori set criteria) classifi er. This is 
usually done by keeping aside a subset of the original data, the  vali-
dation set  and treating the remaining data as the  training set . Since 
the outcome is known for the instances in the validation set, one 
can measure classifi cation performance by comparing this known 
 true outcome  with the outcome predicted by the classifi er. Once the 
classifi er has been selected, one would like to measure its predictive 
quality. While this has seemingly been already measured when 

3.1.1  Classifi cation/
Prediction Task

3.1.2  Evaluation Scheme
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choosing the optimal classifi er, this estimate is biased by the fact 
that we used a particular random subset of data to construct the 
validation set which was used to select one of the model parameters 
(here the model type itself). This, in turn, may result in  over-fi tting , 
i.e. overly optimistic estimates of classifi cation performance. To 
remedy this problem, another subset of the original data, the so- 
called  test set  should be used to measure the performance of the 
selected classifi er. Instances constituting the test set should be 
present in neither the validation set nor the training set.  

    Several measures exist that refl ect different aspects of classifi cation 
performance. Here, we will briefl y discuss the measures commonly 
used in PTM prediction-related literature. Unless mentioned, we 
will be focusing on binary outcome, i.e. the outcome where only 
two values are possible: 0 or 1, true or false, positive or negative, 
modifi ed or non-modifi ed, etc. 

 Given a pair training-test set, for every instance in the test set, 
one can compare the  predicted outcome  and the observed  actual 
outcome . Four different scenarios are possible that can be summa-
rized in the form of a  confusion matrix  (Table  3 ). 

 Several measures are in use that describe different properties of 
a classifi er based on the confusion matrix. Perhaps the most often 
discussed property characterizing a classifi er is the proportion of cor-
rectly classifi ed instances called the  accuracy  and defi ned as follows: 

   
Accuracy

TP TN

TP TN FP FN
= +

+ + +   
 ( 1 ) 

   

 The proportion of true positives yielded by the classifi er is referred 
to as  precision : 

  
Precision

TP

TP FP
=

+   
 ( 2 ) 

   

 Indeed, intuitively, the less false positives the classifi er yields, the 
more precise it is. In addition to the above outlined measures, a 
classifi er is often characterized by its  sensitivity  (also referred to as 
the  true positives rate  or the  recall rate ) and its  specifi city . Both sen-
sitivity and specifi city are very important measures when talking 

3.1.3  Evaluation 
Measures

   Table 3  
  An example of a confusion matrix   

 Actual outcome 

 Modifi ed  Not modifi ed 

 Predicted outcome  Modifi ed  TP  FP 

 Not modifi ed  FN  TN 
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about medical applications. For instance, a very sensitive medical 
test is unlikely to fail at detecting the disease but if not specifi c, it 
will also produce false alarms. Observe that 1 − Specifi city esti-
mates the likelihood that a healthy patient will be classifi ed as sick. 
Formally, sensitivity is defi ned as: 

  
Sensitivity

TP

TP FN
=

+   
 ( 3 ) 

   

 and specifi city as: 

  
Specificity

TN

TN FP
=

+   
 ( 4 ) 

   

 While an ideal classifi er would be sensitive and specifi c at the same 
time, in practice it is diffi cult to achieve. Different applications call 
for different classifi er optimization criteria, e.g. is it worse to miss 
the disease in a patient or to administer a treatment with strong 
side-effects to a healthy patient who happened to be classifi ed as 
sick? Thus, when selecting a classifi er or tuning its parameters, it is 
convenient to visualize  Sensitivity  vs. 1 − Specifi city in a so-called 
 Receiver Operating Characteristic  (ROC) curve. 

 Despite being extensively used, the accuracy as defi ned in the 
one of the above equations (Eq.  1 ) can easily be biased by the so- 
called  class imbalance . The class imbalance term describes a situa-
tion where different decision classes are unevenly represented in 
the data set. Let us consider an extreme situation where the test set 
consists of 95 positive and 5 negative instances and observe that a 
naïve classifi er that always labels an instance as positive will achieve 
very high accuracy while in reality it classifi es all negative examples 
wrong! However, it has been shown [ 21 ] that area under the ROC 
curve (AUC) is free from such bias. Thus, AUC is commonly used 
to estimate the quality of a classifi er. For a hypothetical ideal classi-
fi er  AUC  = 1 while  AUC  = 0. 5 is equivalent to just tossing a coin. 

 To measure the quality of classifi cation with only two possible 
outcomes (binary classifi cation), the  Matthews correlation  coeffi cient  
(MCC) [ 22 ] is also used that considers true and false positives and 
negatives: 

  
MCC

TP TN FP FN

TP FP TP FN TN FP TN FN
= × − ×

+ × + × + × +( ) ( ) ( ) ( )   
 ( 5 ) 

   

 The MCC value of +1 represents a perfect prediction, 0 a random 
prediction, and − 1 a total disagreement between prediction and 
observation [ 22 ,  23 ]. 

 Yet another value used in measuring prediction quality is the 
 F-measure  which, in case of a binary classifi cation problem, is a 
weighted average (traditionally a harmonic mean) of the precision 
and recall and takes values from 0 to 1 for the perfect classifi er [ 23 ]: 
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F1 = ×

+
precision recall

precision recall   
 ( 6 ) 

   

      In reality, it is often diffi cult to sacrifi ce a subset of original data to 
construct validation and test set. Quite often, one is limited by the 
number of available observations (instances) and if only a subset of 
the original data is used to train classifi ers, there is an increased risk 
that the examples present in the training set do not represent the 
whole  universe , i.e. that there is not enough information to prop-
erly describe the  concept —the modeled phenomenon. For instance, 
if the decision is binary and the original data contains 90 % positive 
examples and only 10 % negative examples, further sub-setting may 
lead to a situation that, e.g. the training set contains instances cov-
ering only some particular patterns of condition attribute values 
leading to negative outcome. 

 One way to address this problem and to decrease the bias caused 
by random sub-sampling of instances to training and test set is to use 
several different pairs of training-test sets and average performance 
measures obtained from training and evaluating classifi er on each 
such pair. This approach is called  cross-validation . In a  k -fold cross-
validation, the original training set is split into  k  equal parts. Next, 
 k -times  k  − 1 parts are used to train the classifi er and the remaining 
part is used for evaluation purposes (as a test set). At every iteration, 
a different  i -th of the  k  parts is selected to be the test set ( i  = 1, . . . ,  k ). 
In a  stratifi ed cross-validation , in each of the  k  parts, the original 
distribution of decision classes (the ratio of instances belonging to 
particular decision classes). When  k  is equal to the number of 
instances in the original training data set, we talk about a  leave-one-
out cross-validation  (or, a  jackknife cross-validation  1 ). 

 The specifi c nature of protein training records in the PTM pre-
diction problem makes the default randomized way of forming 
cross-validation sets faulty. In Subheading  19.4.3  we discuss how 
to manage this problem with our  folds-over-clusters  cross-validation 
algorithm.   

     Different types of modifi cations have different biological nature, 
thus for each type we need to construct separate predictors. In 
effect, in order to detect potential modifi cation sites of all possible 
PTM types, we need to run all of our predictors on the input data. 

 Moreover, in order to construct all these different predictors 
we need to obtain separate training sets for each PTM type. 
Obviously, predictor of type  T  modifi cation can only by trained on 
data records related to occurrences of type  T  modifi cation.  

1
   Less correct name since  jacknife  is a resampling method rather than a cross-

validation type. 
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    The approach to gathering data records of PTM occurrences is 
rather straightforward. When building a data set for predictor of 
type  T  modifi cations we just extract instances of  T  modifi cation 
sites from the relevant databases described in Subheading  19.2.1 . 

 On the other hand, the problem of fi nding data records for 
non-occurrence of PTMs is not that simple. There exists no method 
capable of confi rming that a particular protein sequence site is not 
a subject of modifi cation. Therefore, there is also no database stor-
ing that kind of information. In effect, in order to extract negative 
PTM examples we need to make assumptions, e.g. that if a modifi -
cation was not confi rmed to happen at a particular protein sequence 
site, then it never occurs at this place. More detailed analysis of the 
aspect of negative data records is presented in Subheading  19.4.1 .  

    The above presented approach to fi nding sites of PTM non- 
occurrence gives us access to an enormous set of negative data 
records; this is in strong contrast to a constrained set of positive 
examples. There are a few factors limiting the available information 
about modifi cation occurrence sites:

    1.    From the currently available data it seems that minority of 
amino acids in a typical protein sequence are subject to PTMs.   

   2.    To-date, experiments verifying the presence of modifi cations 
have been performed only on a limited number of proteins.   

   3.    Testing for presence of type  T 1 PTM often does not tell us 
much about potential occurrence of a different type  T 2 PTM.   

   4.    Not all experimental results on presence of modifi cations are 
refl ected in the information stored in the domain databases 
(see statistics of differences in Table  1 ).     

 In result, when constructing training and testing data sets, we 
face a diffi cult question of defi ning the balance between positive 
and negative records. 

 There exist several approaches to address such a problem, yet 
not all of them are suitable for PTM prediction problem. Our pro-
posal of a solution is under-sampling negative records in order to 
obtain around ten times more negative records than positive exam-
ples. For more detailed analysis of this problem and other potential 
approaches, please refer to Subheading  19.4.2 .  

     One special type of PTMs are phosphorylations. These modifi ca-
tions modify serine, tyrosine, threonine, or histidine by attaching 
phosphate groups to these amino acids. Importantly, phosphoryla-
tions are performed by a special class of enzymes, protein kinases. 
In other words, presence of a kinase is essential for a phosphoryla-
tion to take place. Since protein kinases are a broad family of mol-
ecules which have different characteristics, it is necessary to take this 
diversity into account when creating phosphorylation predictors. 

3.2.2  Positive 
and Negative Records 
Identifi cation

3.2.3  Class Balance 
in Training Set

3.2.4  Kinase-Specifi c 
Phosphorylation Predictors
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It is commonly reiterated that “there is no average phosphorylation 
site” [ 11 ,  24 ], which is a heavy constraint on the potential perfor-
mance of non-kinase-specifi c predictors. Therefore, currently a 
more widespread and more effi cient approach is to build kinase-
specifi c predictors [ 11 ]. This method is enabled by the fact that 
most of the domain databases (including all three mentioned in 
Subheading  1 ) store data about the kinase involved in phosphoryla-
tion whenever such information is available. 

 Building enzyme-specifi c predictors for other types of PTMs 
would also be worth consideration. However, in the data available 
for modifi cations other than phosphorylations the information 
about involved enzymes is limited.   

      In Subheading  19.3.1 , we have already mentioned that in order to 
train a machine learning predictor, one has to gather a set of fea-
tures describing each data record. In PTM prediction, the typical 
approach is to extract the amino acids from the immediate neigh-
borhood of the actual modifi cation site and treat them as features 
(or use their properties as features). 

 Defi ning the size of the sequence neighborhood that should 
be extracted is another challenge. Different authors used from 7 up 
to 101 residues, including the modifi cation site itself [ 11 ,  25 ]. For 
instance, in the case of phosphorylation it is practically very diffi -
cult to determine what should be the optimal window size, as it 
depends on the part of the protein sequence that actually interacts 
with the protein kinase. 

 Interacting amino acids can be identifi ed only if we knew the 
actual 3D structure of a protein, as residues close in 3D might be very 
distant in sequence. Due to still relatively scarce knowledge of pro-
tein 3D structures, the use of methods accurately defi ning size of a 
relevant neighborhood is limited. Therefore, it is necessary to make 
some assumptions guiding the choice of the optimal sequence frag-
ment size used for predictions. Careful analysis of the results reported 
in the domain literature points to 21 amino acids as a good compro-
mise between introducing unnecessary noise and capturing enough 
relevant biological information [ 11 ]. However, it is worth noticing 
that the above number has been optimized for predicting phosphor-
ylations and may not be optimal for predicting other types of PTMs.  

     It is possible to build PTM predictors using only raw protein 
sequence as a source of features. However, an effective approach to 
improve such basic model is to represent each amino acid by its 
physicochemical characteristics. An accessible and easy to use 
source of such features is the Amino Acid Index database [ 26 ,  27 ]. 
Its subset—AAIndex1—contains more than 500 linear characteris-
tics of amino acids. 

 In order to understand the advantage coming from using 
AAIndex1 it is important to comprehend the principles behind 
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creation of machine learning predictors for PTM detection. 
Essentially, such methodology enables us to discover protein 
sequence motifs which are triggers for modifi cations. However, 
using raw amino acid sequence may lead us to learning relatively 
rigid motifs. On the other hand, changing amino acids into sets of 
their physicochemical attributes gives the algorithm more fl exibility 
in motif defi nition. Often it may happen that for a PTM occurrence 
it is important to have an amino acid with particular characteristic at 
some neighboring residue index rather than to have a particular 
amino acid at this place [ 9 ]. Similar effect is achieved with the use 
of position-specifi c scoring matrices. Figure  3  visualizes how the 
sequence window is transformed into AAIndex attributes. 

 Since the AAIndex1 data set is very large, it is important to 
select a small subset of physicochemical indices that refl ect the 
most important characteristics of amino acids. Table  4  presents 
eight features that were identifi ed as a representative set, covering 
all the major attributes types present in AAIndex1 [ 28 ]. 

 The discussed subsets of features from the AAIndex database 
are not the only possibility. For instance, it is also common to use 
explicit information on the protein secondary structure or features 
like protein disorder [ 29 ], surface area accessible to solvent [ 30 ], 
or hydrophobicity [ 31 ]. Some prediction methods were using 
position-specifi c scoring matrices [ 32 ] and k-nearest neighbor pro-
fi les [ 33 ] to improve predictive power of PTM classifi ers. For an 
overview of features used in PTM prediction refer to, e.g. dbPTM 
database documentation (  http://dbptm.mbc.nctu.edu.tw    ).   

    The following three algorithms are most commonly used in research 
aiming at building PTM predictors (these are also algorithms of 
choice in other prediction/classifi cation tasks in bioinformatics). 

3.4  Classifi er Choice

modification site

︷︸︸︷

Sequence: (...) E E D D S D V W W (...)

BLAM930101: 0.53 0.53 0.42 0.42 - 0.42 0.63 0.58 0.58

BIOV880101: -106. -106. -78. -78. - -78. 123. 145. 145.

(...)

  Fig. 3    Translating sequence neighborhood of a PTM site into values of physicochemical features from AAIndex1 
database       
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     Random Forest     consists of building an ensemble of decision 
tree predictors. The purpose is to reduce the variance associated 
with using a single decision tree. In order to achieve that, trees 
need to be uncorrelated. Low correlation of trees is ensured by 
building training sets for each tree with bagging [ 34 ] and using 
just a random subset of features at each split node [ 35 ]. An impor-
tant advantage of this method is little parameter adjustment 
required for its successful application [ 36 ]. Moreover, the compu-
tational cost of training a random forest is relatively low.   
   Support Vector Machine     determines a hyperplane that splits the 
decision classes with the largest possible margin in the feature space. 
Important strength of this method is the “kernel trick” which 
enables cost-effective hyperplane determination in space of higher 
dimensionality than the original feature space. Unfortunately, suc-
cessful usage of this approach requires skill with the use of different 
kernels and signifi cant effort at the stage of searching for appropri-
ate parameters. In general the method has higher computational 
cost in learning phase than Random Forest [ 37 ].   
   Artifi cial Neural Networks      were invented as a set of methods 
that were meant to simulate the neuronal activity of the human 
brain. They can be designed in complex schemas which also has an 
effect on their high computational complexity.   

   Table 4  
  Eight physicochemical features selected from AAIndex1 database as a representative set covering 
most of the present attribute types [ 28 ]   

 Amino acid index  Description  Feature cluster a  

 BLAM930101  Alpha helix propensity of position 44 in T4 
lysozyme (Blaber et al. 1993) 

 Electric properties 

 BIOV880101  Information value for accessibility; average fraction 
35 % (Biou et al. 1988) 

 Hydrophobicity 

 MAXF760101  Normalized frequency of alpha-helix (Maxfi eld- 
Scheraga 1976) 

 Alpha and turn 
propensities 

 TSAJ990101  Volumes including the crystallographic waters using 
the ProtOr (Tsai et al. 1999) 

 Physicochemical 
properties 

 NAKH920108  AA composition of MEM of multi-spanning proteins 
(Nakashima-Nishikawa 1992) 

 Residue propensity 

 CEDJ970104  Composition of amino acids in intracellular proteins 
(percent) (Cedano et al. 1997) 

 Composition 

 LIFS790101  Conformational preference for all beta-strands 
(Lifson- Sander 1979) 

 Beta propensity 

 MIYS990104  Optimized relative partition energies—method C 
(Miyazawa-Jernigan 1999) 

 Intrinsic propensities 

   a As reported by Saha et al. [ 28 ]  
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   To a person with limited experience in machine-learning, we strongly 
recommend the use of Random Forest as off-the-shelf algorithm.   

4     Discussion 

    As described in Subheading  19.3.2.2 , identifying examples of PTM 
occurrences (positive examples) with help of domain databases 
(Subheading  19.2.1 ) is relatively easy. However, the case with records 
of PTM non-occurrence (negative examples) is more complicated. 
As such, popular databases do not provide information about posi-
tions in protein sequence that are not subject to PTM under any 
circumstances. A solution is to just use sites that were not marked as 
being modifi ed. That is, when building a data set for predictor of type 
 T  modifi cation, as negative records we can gather a predefi ned num-
ber of sequence sites that were not marked as being subject of type  T  
modifi cation (they still can be subject of a different type of PTM). 

 However, one must be aware of the fact that there exist poten-
tially quite large number of modifi cation sites that have never been 
experimentally checked for being subject to a PTM in question 
( T ). Thus, they are not included in PTM databases. One idea to 
address this issue is to gather negative records only from the pro-
teins that do have some PTM annotations (not necessarily for the 
modifi cation type  T ) as this guarantees that some experimental 
examination was performed on them. Nevertheless, it still does not 
guarantee that the particular sequence site we extract was subject 
to relevant experiments [ 24 ]. 

 More strict approach is to gather non-occurrence sites of type 
 T  modifi cation only from proteins that do contain annotation of 
type  T  PTMs. This, however, may lead to a signifi cant bias as some 
proteins may be naturally less prone to be subject of particular 
types of modifi cations. This will introduce bias to data set con-
struction and negatively impact the ability of our predictor to learn 
how to recognize proteins not having any modifi cation sites.  

     Subheading  19.3.2.3  explains the reasons for the presence of sig-
nifi cant class imbalance between positive and negative records of 
PTM occurrences. 

 In order to shed light to the amounts of available data and pos-
sible class imbalance, in Tables  5  and  6  we present statistics of PTM 
annotations available in UniProt. What’s more, Fig.  4  shows how 
known PTM sites are distributed across proteins that have at least 
a single modifi cation annotation. 

 From the presented data we observe that the potential class 
imbalance between positive and negative PTM occurrence sites 
may range from below 1:100 up to around 1:20,000. This intrinsic 
property of PTM data has the following implications for the pre-
diction problem:

4.1  Identifi cation 
of Negative Data 
Records

4.2  Positive 
and Negative Class 
Imbalance
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    1.    When designing a PTM predictor one should put more stress 
on specifi city rather than on sensitivity. The strong domination 
of negative examples implies that a low-specifi city predictor 
would fl ood the user with false positives. Deeper analysis of 
this aspect is presented in Subheading  19.4.4 .   

   2.    Some technique of balancing positives and negatives has to be 
used as the majority of machine learning algorithms will fail to 
perform an effi cient discrimination between classes.     

 In the case of PTM prediction, we are especially concerned 
with the problem of negative records domination. The reason for 
that is the fact that we are convinced that a large number of sites 
which today we have to treat as negatives are in fact positives which 
have not been experimentally validated yet. Therefore, should we 
include too many negative examples in our training set, 

   Table 5  
  Statistics of PTM annotations in UniProt database   

 Figure  Value 

 All proteins  53,333,247 

 Proteins with any PTM annotation  361,336 

 Proportion of proteins containing any PTM annotation  0.68 % 

   Table 6  
  Descriptive statistics illustrating disproportion between known PTM occurrence sites and potential 
sites of modifi cations   

 PTM type  PTM sites marked  PTM-relevant amino acids 
 Known vs. 
potential 

 Phosphoserine  113,319  8,896,770  1:77.5 

 N6-acetyllysine  43,335  8,067,140  1:185.0 

 N5-methylglutamine  14,926  5,735,174  1:383.0 

 4-hydroxyproline  1,805  6,896,532  1:3,820.0 

 Phosphoserine by CK1  1,245  8,896,770  1:7,145.0 

 Leucine amide  737  14,191,541  1:19,255.0 

 Phosphoserine by PKA  692  8,896,770  1:12,856.0 

  The presented “known vs. potential” ratio is the best available estimate ofpotential class imbalance between positive and 
negative PTM site records.However, many more modifi cation sites may be present, but not yet discovered.Analysis was 
performed for UniProt on proteins containing at least one PTMannotation  
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considerable number of them would likely be mislabeled positives. 
Thus, a signifi cant amount of noise will be introduced that, in some 
cases, would heavily impair discriminatory ability of our classifi er. 
 The following techniques are commonly used for class imbalance 
problems in machine learning [ 38 ]:
    Over-sampling     Repeated use of records from underrepresented 
decision class or their artifi cial creation from estimated distribu-
tion. In case of over-sampling positive records in PTM prediction 
we do not recommend the latter approach, because even a minimal 
deviation from a modifi cation- triggering amino acid motif may 
lead to obtaining a sequence segment that stops to be subject of 
the modifi cation. That is, modifi cation- triggering motifs might be 
very subtle.   
   Under-sampling     Choosing only the subset of available records 
from the overrepresented class. This approach seems especially suit-
able for the negative records in PTM problem. Many of the sites 
which we have to treat as negatives are in fact positive examples 
which have not been tested for modifi cations yet. Therefore, taking 
all of them into the training set would lead to masking/shadowing 
the known positives, thus making the class discrimination task 
impossible to perform. On the other hand, randomly choosing a 
subset of negatives minimizes this risk. We recommend the use of 
this technique in training PTM predictors. For predicting 
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phosphorylations, the 1: 1 ratio has been proposed as a good 
compromise between true-positive rate and false- positive rate [ 8 ].   
   Cost-modifi cation     Modifying the relative cost associated with 
misclassifi cation of positive and negative class.   

       The choice of folds in a standard cross-validation procedure, 
described in Subheading  19.3.1.4 , is usually realized through ran-
dom splitting of the full training-testing set into subsets of equal 
size and equal proportion of positives and negatives. Such func-
tionality is also commonly offered in the majority of popular 
machine learning libraries. While correct in the case of many other 
types of studies, application of such approach to protein data may 
lead to somewhat misleading results. In many domains construc-
tion of cross-validation folds does not take into account the rela-
tionships present in the underlying biological data which, in turn, 
leads to overoptimistic performance estimates [ 39 ,  40 ]. 

 In the case of PTM prediction, we have to be aware of having 
included many homologous data records in our training set. This 
is caused by the fact that similar proteins from the same family 
often have modifi cation sites at the same sequence positions. The 
amino acid neighborhoods of these sites tend to be almost the 
same, if not exactly identical. Putting such homologous records 
simultaneously into both the training and the test sets of the same 
cross-validation fold inevitably leads to overfi tting. In order to 
avoid this problem we recommend to base the data split on homol-
ogy clustering of the full training set. One practical implementa-
tion of this solution is by using the leave-cluster-out method [ 39 ]. 
However, this algorithm might not be optimal when we have sev-
eral singletons in our clustered training set (which is often the case 
for protein sequence data). Leave-cluster-out also does not pre-
serve the ratio of negative to positive data records and does not 
allow for controlling the number of cross-validation folds. 

 The problem of arranging data record clusters into a pre-
defi ned number of folds that have possibly the most similar size 
and at the same time even approximately preserve the ratio of neg-
atives to positives is an NP-hard problem (the  subset sum problem  
can be reduced to this). However, using slightly suboptimal split 
does not seem to be very harmful regarding prediction perfor-
mance or overfi tting problems. Therefore, we propose the  folds- 
over- clusters  heuristic algorithm that tries to fi nd a “good-enough” 
split. The details of the procedure are presented in Algorithm  1 , 
while the main steps can be summarized in the following way: 

     1.    Using amino acid motif similarity cluster the full training set 
into subsets of homologous records.   

   2.    Sort the obtained clusters by per cluster negatives to positives ratio.   
   3.    Randomly assign one cluster to every cross-validation fold.   

4.3  Construction 
of Cross- Validation 
Folds Considering 
Sequence Homology
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   4.    Distribute the remaining clusters among the folds by iterative 
application of the following steps:

   (a)    If a fold reached required size (number of records divided 
by number of folds), continue.   

  (b)    If the negatives to positives ratio in the fold is too high, add 
the cluster with the lowest ratio of negatives to positives from 
the remaining clusters (the ones unassigned to any fold).   

  (c)    Otherwise, add cluster with the highest negatives to posi-
tives ratio from the clusters still unassigned to folds.         

 Since the folds-over-clusters algorithm begins fold enrichment 
with clusters having extreme negatives to positives ratios, it has 
time to balance these extremes over the run of it is second loop. 
During last iterations of the second loop only the clusters with 
ratios close to the global ratio of negatives to positives remain, as 
they were kept in the middle of sorted clusters collection. 

 One could question whether trying to approximately preserve 
the global ratio of negatives to positives inside each fold is important 
at all. In order to understand that let us imagine the worst case—
when in a twofold cross-validation all the positives are assigned to a 
single fold. In such case machine learning algorithms are hardly able 
to infer the proper discrimination of negative and positive classes in 
the data. Thus classifi cation performance is heavily affected.  

    In Subheading  19.4.2 , we have already discussed the imbalance of 
positive and negative records in the training data for PTM predic-
tor construction. The major factor underlying this imbalance is the 
fact that protein modifi cations are relatively rare events: there exist 
many more potential modifi cation sites than the actual occurring 
modifi cations. This has important implications on the application 
of PTM predictors in experimental biology. Experimentalists’ main 
aim is to identify unknown PTM sites. Following an in silico dis-
covery, sites should be subject to experimental validation before 
being deemed an actual PTM site. Therefore, in silico studies 
should primarily help narrowing down the set of potential candi-
dates. In order to serve this purpose, the tools should focus on 
maximizing specifi city at the expense of lower sensitivity (the rela-
tionship between these measures is described in 
Subheading  19.3.1.3 ). More detailed consideration of this topic, 
along with examples and study of overfi tting has been recently per-
formed by Daniel Schwartz [ 41 ].  

    The majority of existing PTM prediction methods focuses on the 
use of sequence as the source of learning features. However, there 
are also two clear trends in reaching for additional data. These 
other types of features are: 
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     Protein structure     As we have already mentioned in 
Subheading  19.3.2.4 , an important factor in a modifi cation pro-
cess is the enzyme which catalyzes the actual chemical reaction 
(e.g., kinases discussed in Subheading  19.3.2.4  are the enzymes 
catalyzing phosphorylations). The interaction between a protein 
and an enzyme makes the structure of the protein an important 
factor for the modifi cation process. Protein structure defi nes how 
accessible a potential PTM site is to the enzyme and which residues 
constitute the actual neighborhood of the PTM site during the 
contact with the enzyme. Therefore, it seems plausible that incor-
porating the structural information might improve the perfor-
mance of PTM prediction. However, studies testing this approach 
reported somewhat ambiguous results [ 7 ,  42 ]. Even if this direc-
tion proves to be successful, it may be of limited use as the available 
structural information are still scarce. Nevertheless, it seems to be 
a promising and interesting topic for further research [ 11 ].   
   Evolutionary information     The most recent innovation in the 
fi eld are attempts to benefi t from the use of evolutionary informa-
tion. Since PTM sites are often conserved across different organ-
isms, it is possible to identify putative sites by across-organism 
comparative studies, even without the use of machine learning 
methods [ 10 – 12 ].   

       When working on machine learning tasks it is often the case that 
we are able to extract a large number of features from our data. 
Building predictive models with the use of all features poses chal-
lenges of high computational cost, problems with interpretation of 
the predictors and may introduce unwanted noise. Therefore, it is 
a common practice to select only the features which provide sig-
nifi cant gains in the performance of predictive model. 

 In the case of PTM prediction, it is rather easy to include many 
more features than we and our algorithms can handle. For instance, 
using only all available features from AAIndex ( see  
Subheading  19.3.3.2 ) along with a long window of amino acids 
leaves us with several thousands of attributes. This can be especially 
problematic with PTM types for which the training data is scarce as 
it leads to the so-called  ill-defi ned  problem where the number of 
available examples is much lower than the number of features. 
Enriching the model with features related to protein structure or 
evolutionary information alleviates the problem even more. 

 The specifi c problem of abundant set of features in the AAIndex 
database has been addressed by attempts to establish a set of repre-
sentative attributes by using, e.g. clustering [ 28 ]. 

 On the other hand, the challenge of selecting from set of hetero-
geneous features or features from different sequence positions needs 
to be tackled with more generic approaches. The classic step- wise 
methods can be computationally too expensive in this  context. 

4.6  Feature Selection

Marcin Tatjewski et al.

taner@iastate.edu



297

However, we can use methods based on random forest which seem to 
overcome the mentioned diffi culties at least to some extent [ 43 ,  44 ]. 

              Algorithm 1  Folds-over-clusters  algorithm for splitting training set 
into  k  cross-validation folds of PTM site records. Split is based on 
homology-clustering of amino acid motifs of the immediate neigh-
borhood of the site. Algorithm produces similar size folds which 
approximately preserve the initial ratio of negatives to positives. 
Clustering can be performed with CD-HIT [ 45 ], BLASTClust 
[ 46 ] or similar programs 

  

Data: Training set containing n modification site records with negatives to positives rario r.

Result: Split of the training set into k folds containing approximately n/k records with r

ratio of negatives to positives. If a fold contains records from a homology cluster, it

has to include all records from this cluster.

cluster the training set based on homology;

sort clusters based on their negatives to positives ratio;

foreach fold do

add random cluster to the fold and remove this cluster from unused clusters set;

end

while there are unused clusters left do

foreach fold do

if no unused clusters left then

break;

end

if fold achieved required size then

continue;

end

if fold has too high negatives to positives ratio then
add cluster with the lowest negatives to positives ratio

else
add cluster with the highest negatives to positives ratio

end

end

end       
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    Chapter 20   

 CX, DPX, and PCW: Web Servers for the Visualization 
of Interior and Protruding Regions of Protein Structures 
in 3D and 1D                     

     Balázs     Ligeti    ,     Roberto     Vera    ,     János     Juhász    , and     Sándor     Pongor      

  Abstract 

   The CX and DPX web-based servers at   http://pongor.itk.ppke.hu/bioinfoservices     are dedicated to the 
analysis of protein 3D structures submitted by the users as Protein Data Bank (PDB) fi les. CX computes 
an atomic protrusion index,  cx  that makes it possible to highlight the protruding atoms within a protein 
3D structure. DPX calculates a depth index,  dpx  for buried atoms, and allows one to visualize the distribu-
tion of buried residues. CX and DPX visualize 3D structures colored according to the calculated indices 
and return PDB fi les that can be visualized using standard programs. A combined server site, the Protein 
Core Workbench allows visualization of  dpx ,  cx , solvent-accessible area as well as the number of atomic 
contacts as 3D plots and 1D sequence plots. Online visualization of the 3D structures and 1D sequence 
plots are available in all three servers. Mirror sites are available at   http://hydra.icgeb.trieste.it/protein/    .  

  Key words     Atomic depth index  ,   Protrusion index  ,   Solvent-accessible surface area  ,   Atomic contact 
numbers  ,   Protein core  

1      Introduction 

 As large amounts of protein structure data are generated, there is a 
growing need for simple methods that experimentalists and students 
can use to visualize protein structures. Many simple properties can be 
calculated and visualized with programs such as Rasmol [ 1 ], MolMol 
[ 2 ], Deep-View [ 3 ], or PyMOL [ 4 ]; however, the visualization of 
core and protruding regions that often play interesting functional 
roles in proteins are not routinely included in standard programs. 

 Over the past years our group has been developing and testing 
algorithms for protein [ 5 – 21 ] as well as nucleic acid structure anal-
ysis [ 22 – 29 ]. These methods have been incorporated into web- 
based server programs hosted at our web site and have been 
gradually extended to the calculation and visualization of a variety 
of parameters [ 21 ,  27 ,  29 ]. Visualization of molecular properties 
consists in mapping numerical data to low dimensional structural 
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templates which in turn can be either theoretical (such as an ideal 
α-helix) or experimentally determined (such as a protein 3D struc-
ture). The simplest case of visualization is the sequence plot in 
which numeric values are assigned to a 1D theoretical template i.e. 
positions along the protein sequence. 

 The protein server programs reported here take protein struc-
ture inputs and provide (1) 1D plots of structural properties, (2) 3D 
visualization of the properties mapped to protein structure, as well as 
(3) numerical outputs in the form of PDB fi les or a tabulated sequence 
plots. These outputs allow users to view and explore their data inter-
actively so as to produce fi gures directly on the server page. In addi-
tion the servers return the output data also in tabular form for later 
use by dedicated visualization molecular graphics programs. 

 In this chapter we describe the substantially updated versions 
of two servers, DPX and CX that are based on geometric proper-
ties of individual atoms within a macromolecular structure. DPX 
visualizes the protein interior using a depth index,  dpx  which is 
high for atoms within the protein core and small for those near the 
surface [ 11 ,  16 ,  17 ,  21 ]. CX calculates a measure of atomic expo-
sure,  cx , which is high for atoms in protruding regions [ 14 ,  21 ]. 
Both  dpx  and  cx  are defi ned for atoms and not for amino acid resi-
dues. Nevertheless the programs calculate various residue averages 
(for instance the average  dpx  score for main chain, side-chain, or all 
atoms of a residue, respectively) which can then be used to pro-
duce 1D plots. Below we describe both servers, along with the 
underlying principles and a few application case studies.  

2    Software 

 The programs underlying the web-based servers described here 
were written in ANSI C (C89), the web pages were written in 
HTML5 with the JavaScript framework, AngularJS (version 1.2.0), 
JavaScript and PHP. The JSMOL [ 30 ] framework is used for dis-
playing the 3D structures of the molecules. External programs 
called within the C programs include NACCESS [ 31 ], GNUPLOT 
[ 32 ]. The web-based servers were tested with Mozilla Firefox (ver-
sion 41.0.2) Google Chrome (version 46.0), Internet Explorer 
(version 11.0.2) web browsers.  

3    Methods 

     The thinking of biologists has been profoundly infl uenced by simpli-
fi ed views that divide protein structures into loosely defi ned regions 
such as surface and core, the latter denoting the interior of the pro-
tein which is not in immediate contact with the solvent around the 
protein. Although intuitively clear, the mathematical defi nition of 

3.1  DPX: Visualizing 
the Protein Core

3.1.1  Theory
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the core region is not straightforward since, among others, one 
needs to defi ne what solvent contact means in numerical terms. 
Since the seminal paper of Richards [ 33 ], an atom is considered to 
be in contact with a solvent if it can be touched by a spherical probe 
of radius  r  rolled around the protein structure. The radius of the 
probe has to be defi ned, which immediately leads to alternative defi -
nitions based on different probe diameters, for instance a radius of 
1.4 Å is considered to be “water like” and suitable to fi nd water 
accessible atoms. Additional ambiguities arise from the fact that not 
all atoms of an amino acid residue will be in contact with the solvent. 
In order to steer clear of these ambiguities we defi ned a depth index, 
 dpx , as the distance of an atom from the nearest water-accessible 
atom, the latter characterized by a greater than zero solvent accessi-
bility calculated with a water-like probe. By defi nition,  dpx  is greater 
or equal to zero, and the maximum value is half of the maximal 
diameter of the protein molecule.  dpx  is large for buried atoms and 
zero for atoms that are in contact with the solvent.  

   The algorithm fi rst calculates solvent accessibility of each atom 
based on the Richards probe principle [ 33 ], then it determines the 
distance from the nearest water accessible atom according to the 
conditions outlined in Fig.  1 . This value is reported as the  dpx  
score of the atom.

   The atomic  dpx  score is reported in the PDB fi le of the input 
structure, and can be used to color the atoms for viewing in 3D, 
using the JMOL program [ 30 ]. The all-atom residue average of the 
 dpx  score is also reported as a 1D sequence plot which can be viewed 
on the screen (Fig.  2 ), in addition a tabulated output is also available 
in which all residue averages are shown. The program is written in C, 
the home-page is available at   http://pongor.itk.ppke.hu/cx    

   DPX reads standard PDB coordinate fi les as the input. In the 
present form, DPX is aimed at the analysis of the interior of single 
chain monomeric proteins, so users are encouraged to inspect and, 
if necessary, edit the PDB fi le in order to have only one chain in the 
fi le. The program reads only ATOM lines. Thus, HETATM lines 
describing nonstandard residues, cofactors, metal ions, and water 
molecules are not taken into account. 

 The results include (a) a PDB fi le in which the atomic dpx 
values are in the last column of the atom lines (i.e. they replace the 
B-factor values stored in characters 61–66) and solvent accessible 
surface area replaces the occupancy values stored in characters 
55–60; (b) the same PDB fi le can be viewed online using JMOL 
(Fig.  3 ); (c) Residue-aggregated values of atomic  dpx  values (aver-
age  dpx  for all atoms, main chain atoms, side-chain atoms) given in 
tabulated form; (d) Sequence plot of residue-aggregated values, 
visualized online using GNUPLOT.

3.1.2  Program 
Description

CX, DPX, and PCW: Web Servers for the Visualization of Interior and Protruding…
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  Fig. 1    Schematic representation of the DPX principle. Solvent exposed atoms are 
shown in white, buried atoms in gray; the atom (i) for which  dpx  is calculated is 
in black. Arrows represent distances between (i) and surface atoms.  asa  denotes 
atomic solvent accessibility calculated by DPX according to the Richards probe 
principle [ 33 ], the default probe radius being 10 Å       

  Fig. 2    Example of a dpx (atomic depth index) sequence plot. Dpx is an atomic property that needs to be aggre-
gated according to various methods so as to give a residue property. For simplicity, only one of these should 
be used in a fi gure       

         The identifi cation of protruding, or highly convex regions in 
proteins is important for studying functionally important sites 
including antigenic determinants, proteolysis cleavage sites, or 
protein–protein interfaces. Traditional methods use complex, 
residue-based algorithms for the identifi cation of these potential 
functional sites [ 34 – 36 ]. These methods are computationally 

3.2  CX: Visualization 
of Protruding Regions 
in Protein Structures

3.2.1  Theory
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intensive and parameter- dependent. In addition, residue-based 
indices are coarse-grained descriptors of the real geometry of the 
protein surface. Here we developed the  cx , a simple and atomic-
level protrusion index.  

   For each non-hydrogen atom of a polypeptide chain, the program 
fi rst counts the number atoms within a certain radius  R . Then it 
calculates the ratio of the free volume within the sphere  V  ext  to the 
volume occupied by atoms  V  int  (principle shown in Fig.   4  ). The pro-
gram is written in C, the visualization interface is available at   http://
pongor.itk.ppke.hu/cx    . 1D plots are produced by GNUPLOT 
[ 32 ], the 3D structures are visualized online with JMOL [ 30 ].

   CX reads standard PDB coordinate fi les as the input. The pro-
gram reads only ATOM lines. Thus, HETATM lines describing 
nonstandard residues, cofactors, metal ions, and water molecules are 
not taken into account. By default, the program treats each chain in 
the PDB fi le as an independent molecule (i.e. the atoms of chain B 
are not taken account when calculating the protrusion index for the 
atoms of chain A) but the results are written into a single fi le. 

 The program produces the following outputs: (a) a coordinate 
fi le in PDB format in which the atomic displacement parameter 
(B-factor, or temperature factor stored in characters 61–66) is 
replaced by the cx value, and the number of nontrivial atomic con-
tacts (no atoms within the sphere in Fig.  4 , that belong to a differ-
ent residue) replaces the occupancy values stored in characters 
55–60. This fi le can be thus displayed on the user’s own worksta-
tion using standard molecular graphics programs, atoms can be 
colored by their  cx  values. (b) The same fi le can be visualized on 

3.2.2  Program 
Description

  Fig. 3    Structure of the human interferon alpha 2A colored according to  dpx  (atom depth) (PDB: 1itf [ 37 ]) A) The 
CPK model of the protein is shown in slab mode and atoms colored according to their  dpx  values (high 
 dpx  = red, low  dpx  = blue). B) Wire representation of the same molecule       
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line using JMOL (Fig.  5 ); (c) Residue-aggregated values of atomic 
 cx  values (average  cx  for all atoms, main chain atoms, side-chain 
atoms) given in tabulated form; (d) Sequence plot of residue- 
aggregated values, visualized online using GNUPLOT.

       This server is a new development which is meant for users who are 
already familiar with the principles CX and DPX, and who want to 
create publication style plots of their molecules. PCW combines 
the features of CX and DPX, with a few other options that allow 
the users to create combined sequence plots. The plottable param-
eters are  cx ,  dpx , accessible surface area, and number of atomic 
contacts. The accessible surface area (ASA) is calculated according 
to the Richards principle (default probe radius is 1.4 Å), the 
 number of atomic contacts (NAC) is the number of those atoms 
within a sphere of given radius (default = 10 Å) that do not belong 
to the same residue as the atom in question. Both ASA and NAC 
are atomic parameters and their averages for all atoms, main chain 
atoms and side chain atoms are calculated for residue-based plots. 
An example is shown in Fig.  6 .

4        Notes 

     1.    The web-based servers at PPKE have been created for the analy-
sis of user-submitted protein 3D structures in terms of buried 
and solvent-exposed atoms.  DPX  calculates an atomic depth 
index,  dpx  [ 11 ,  16 ,  17 ,  21 ] suitable for the visualization of the 
protein core , CX  calculates a protrusion index,  cx  [ 14 ,  21 ], suit-
able for the visualization of protruding segments of the submit-
ted structure. The Protein Core Workbench PCW allows users 

3.3  PCW: The Protein 
Core Workbench

  Fig. 4    Schematic representation of the CX algorithm. The  cx  score of an atom is defi ned for non-hydrogen 
protein atoms as  V  ext  /V  int  i.e. the ratio of the external volume, not occupied by atoms, divided by the volume 
occupied by protein atoms.  V  int  is calculated by multiplying  N  atom , the number of non-hydrogen atoms within a 
distance  R , with 20.1 Å 3 , the average volume of a non-hydrogen atom in a protein [ 40 ] The default radius of 
the spherical probe is 10 Å so the external volume can be calculated by subtracting  V  int  from 4188.8 Å 3 , the 
volume of the sphere .  For protein atoms, the ratio  cx = V  ext  /V  int  is between 0 and ~15, with protruding atoms 
having higher  cx  values       
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already familiar with the basic principles to prepare combined 1D 
plots in which selected versions  dpx ,  cx , accessible surface area, 
and atomic contacts are plotted against the sequence position.   

   2.    The servers return modifi ed PDB fi les that allow users to visu-
alize the protein structures colored according to the calculated 
indices. All servers provide online 1D plots created by 

  Fig. 5    Protein structures colored according to  cx  (protrusion index).  A ) Structure of a pheromone-binding murine 
alpha-2-globulin protein PDB: 1mup [ 38 ]. The main-chain wire model of the protein is colored according to the 
atomic  cx  values (high  cx  = turquoise, low  cx  =  blue ).  B ) Structure of the HIV-1 integrase protein PDB: 1tgn [ 39 ]       

  Fig. 6    Example of a combined sequence plot produced by the PCW server. The input PDB fi le was that of 
human interferon alpha 2A (PDB: 1itf [ 37 ]) The output parameters  cx ,  dpx , accessible solvent area, and number 
of atomic contacts are plotted in arbitrary units (scaling the maximum to 1.0). For a better transparency the 
number of parameters included in one plot can be reduced       
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GNUPLOT [ 32 ], which allow localization of peculiar seg-
ments within the query and allow visualization of the 3D 
structures using JMOL [ 30 ]. Users wishing to use more 
sophisticated visualization programs can download the results 
in the form of pdb fi les for 3D visualization and tabulated 
ASCII fi les for sequence plots.   

   3.    Online visualization by GNUPLOT [ 32 ] and JMOL [ 30 ] pro-
duce draft quality fi gures that can be used for documentation 
purposes and for selecting a parameters, colors, view angles for 
publication-level fi gures that will be drawn by high-level visu-
alization programs.   

   4.    As a rule, the servers cannot handle multiple chains or NMR 
models, i.e., the input is supposed to contain one single chain. An 
exception is CX which can handle multiple chains, so that residues 
shielded by the other chain will not be shown as protruding.   

   5.    All the servers are provided with help fi les that describe the 
detailed instructions, the theory, the literature citations as well 
as the instructions for installing the accessory programs wher-
ever necessary.   

   6.    The servers allow users to experiment with the plotting options 
and to select settings for their fi nal, publication style fi gures. It 
is noted that the online version of the JMOL and GNUPLOT 
program is able to visualize fi gures in draft quality which is use-
ful primarily for documentation purposes. However, users may 
need to use dedicated molecular graphics programs to produce 
high quality, publication-ready fi gures from the output fi les 
downloaded from the servers.         
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