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ABSTRACT OF THE DISSERTATION
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Professor Artem Chernikov, Chair

This dissertation studies certain asymmetric (in the sense of not closed under complement)

properties of families of sets, and how they relate to standard model-theoretic dividing lines

and other combinatorial properties, particularly in the context of valued fields. In chapter 2,

we investigate convex sets over valued fields, providing a classification result for them, and

studying how the combinatorial properties satisfied by the family of convex sets over a valued

field compares with the family of convex sets over R. In chapter 3, we introduce and study

two closely related concepts that we call semi-equationality, and weak semi-equationality,

which are generalizations of equationality beyond the stable context, and also closely related

to distality.
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CHAPTER 1

Introduction and Preliminaries

1.1 Introduction

Much of contemporary model theory studies combinatorial properties of first-order formulas,

or equivalently, of the families of sets they define. When a first-order theory implies that all

formulas share some particular combinatorial regularity, this can enable the development of

techniques to study that theory. The most influential of these combinatorial properties is

stability, first studied by Shelah, allowed him to develop machinery that enabled him and

others to classify the possible numbers of models (up to isomorphism) of each uncountable

cardinality that a complete countable theory can have [She90]. Another important

combinatorial property, called NIP (for “no independence property”), also introduced by

Shelah, is useful for, among many other things, defining a notion of dimension of definable

sets in NIP theories called dp-rank [She14] (one of several such notions in model theory), and

for understanding the model theory of algebraically closed valued fields [HHM08] (which are

NIP). Since then, these and many other combinatorial properties that first-order formulas

and complete theories could have have been extensively studied.

There are other areas of mathematics in which combinatorial properties of families of sets

are important, such as computational learning theory, and the study of convex sets, resulting

in connections between model theory and these fields. For example, the same combinatorial

property characterizing NIP turns out to also be behind the notion of PAC-learnability,

resulting in connections between model theory and VC theory, which is motivated primarily
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by the latter.

In this thesis, we study combinatorial properties of families of sets that are not closed

under complement, particularly as they relate to valued fields.

In model theory, the most commonly studied property of first-order formulas that is not

closed under negation is equationality. Equations, and equational theories, were introduced

by Srour [Sro88a, Sro88b, Sro90] as a way of characterizing formulas carrying positive

information, in the sense of defining closed sets in a certain topology. Equations were

designed to generalize algebraic sets in algebraically closed fields.

Another property not closed under complement, specifically for subsets of real vector

spaces, is convexity. Convex sets are not closely studied in model theory because a real

closed field expanded with a predicate for every convex set does not satisfy any of the

tameness conditions of first-order theories commonly studied in model theory (in fact, there

is a single convex subset of R2 that can be used to define (Z, ∗,+); see Example 2.5.6).

Despite this, there are certain commonalities between the combinatorial properties of the

family of convex sets over the reals and those of definable families of sets over the reals, such

as satisfying the fractional Helly property, and having weak ε-nets of bounded size.

This chapter contains an overview of the main results in this thesis, and some background

material.

In the second chapter, we study the family of convex subsets of finite-dimensional vector

spaces over valued fields. In particular, we prove a classification theorem for convex sets

over spherically complete valued fields (Theorem 2.3.6), and study the extent to which many

known combinatorial properties of the family of convex subsets of a finite-dimensional real

vector space hold in the valued fields setting. The Helly’s theorem and the fractional Helly

theorem are found to hold for convex sets over valued fields (Theorems 2.4.5 and 2.4.14,

respectively). We find many results that hold for convex sets over valued fields that are

significantly stronger versions of classic results for convex sets over the reals, including
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Radon’s theorem (Proposition 2.2.8), Tverberg’s theorem (Theorem 2.4.15, which can also be

seen as a strengthening of Carathéodory’s theorem), and a theorem of Bárány that Matoušek

calls the first selection lemma (Theorem 2.4.16). An analog of the (p, q)-theorem of Alon

and Kleitman [AK92] also holds (Corollary 2.5.1).

Convex sets over valued fields are also found to satisfy certain properties that are not

similar to any properties that hold for convex sets over the reals. In particular, the family

of convex sets over a given finite-dimensional vector space over a valued field has finite VC-

dimension (Theorems 2.4.8 and 2.4.10) and breadth (Theorem 2.4.3). As a result, expansions

with predicates for convex sets are much more model-theoretically well-behaved for valued

fields than they are for the reals. In particular, they are externally definable if the valued

field is spherically complete (Remark 2.5.5).

Section 2.1 contains a more detailed overview of the second chapter. Section 2.2 covers

background material on basic properties of convex sets over valued fields, including their

connections to submodules over the valuation ring. Section 2.3 presents classification results

for convex sets. Section 2.4 contains the main combinatorial results on the family of convex

sets. Section 2.5 discusses applications and open questions.

In the third chapter, we introduce the notions of semi-equationality and weak semi-

equationality (Definitions 3.2.3 and 3.2.1), which are closely related notions that can be seen

either as ways to complete the analogy “stability is to equations as NIP is to what?”, or

as one-sided generalizations of distality. (Weak) semi-equationality is a property both of

formulas and of theories, related by a theory being defined to be (weakly) semi-equational

if every formula is a Boolean combination of semi-equations. As implied by the names,

semi-equations are weak semi-equations (Proposition 3.2.6).

Some basic results about (weak) semi-equations are established that support the analogy

with equations (Proposition 3.2.13), including that weak semi-equations are NIP, a formula

is an equation if and only if it is a stable semi-equation, and in a stable theory, all weak

semi-equations are equations.
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We characterize weak semi-equations in terms of having a one-sided version of the strong

honest definitions that characterize distal theories (Theorem 3.4.5). A formula being a

semi-equation is equivalent to the family of instances of the formula having finite breadth

(Proposition 3.2.20), and this can be interpreted as the formula having a one-sided strong

honest definition that is a conjunction of instances of itself (Corollary 3.4.8), highlighting a

similarity between equations and formulas in distal theories.

Numerical parameters associated to semi-equations (Definition 3.2.17) and introduced

and studied. We show that 1-semi-equations relate to weakly normal formulas in a similar

way that semi-equations relate to equations (Proposition 3.2.22).

We find some examples of (weakly) semi-equational theories. For instance, linear o-

minimal expansions of groups (Proposition 3.3.1), arbitrary unary expansions of linear orders

(Fact 3.3.5), and infinitely-branching dense trees (Theorem 3.3.16) are semi-equational. All

distal structures are weakly semi-equational (Proposition 3.2.13(2)), and expansions of distal

structures by a predicate are weakly semi-equational under certain conditions (Theorem

3.6.4). An example is found showing that semi-equationality and 1-semi-equationality are

not preserved under expansions by constants: dense cyclic orders are not semi-equational,

but dense cyclic orders with one named constant are (Proposition 3.3.8).

Techniques that can be used to show that a theory is not (weakly) semi-equational

are identified (most notably Lemma 3.5.2, but also Proposition 3.7.6). These are used

to show that algebraically closed valued fields (and several closely related structures) are

not weakly semi-equational (Theorem 3.5.10), contrary to what might be predicted from

their relationship with algebraically closed fields, which are equational, and fields of p-adic

numbers, which are distal.

Section 3.1 contains a more detailed overview of the third chapter. Section 3.2 introduces

the main definitions and goes over some basic properties. Section 3.3 goes over some

examples of semi-equational theories. Section 3.4 discusses the relationship between (weak)

semi-equationality and distality in terms of one-sided strong honest definitions. Section
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3.5 introduces a technique for showing that structures are not weakly semi-equational, and

examples of its use. Section 3.6 discusses conditions under which expansions of a distal

structure by a predicate can be shown to be weakly semi-equational. Section 3.7 adapts the

techniques of section 3.5 to get a criterion that could be used to show that a structure is not

semi-equational.

1.2 VC theory

Vapnik-Chervonenkis (VC) theory is the study of a certain way of quantifying the

combinatorial complexity of families of sets. It turns out to be useful in computational

learning theory, since, if samples are given {0, 1}-valued labels in some unknown way, a

family of subsets of the sample space represents a space of hypotheses for how samples get

labeled, each set corresponding to the hypothesis that samples are labeled 1 iff they are in

that set. As we will see later, VC theory also has close connections to model theory.

Definition 1.2.1. 1. A set system on a set X is a family F ⊆ P (X) of subsets of X.

2. Given a set system F on a set X, and Y ⊆ X, F ↾Y is the set system {S ∩ Y | S ∈ F}

on Y .

3. The shatter function πF : N → N of a set system F is defined as

πF (n) := max {|F ↾A| | A ⊆ X, |A| = n} .

This is the maximal number of subsets of an n-element set that can be cut out by sets

in F .

4. A subset A ⊆ X is shattered by F if F ↾A= P (A); that is, if every subset of A is its

intersection with some set in F .

5. The VC-dimension of F , denoted VC (F), is the maximum size of finite sets shattered

by F , if such a maximum exists, and ∞ if F shatters arbitrarily large finite sets.
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Equivalently, VC (F) := max {n | πF (n) = 2n} (and ∞ if πF (n) = 2n for all n).

6. The VC-density of F is vc (F) := lim supn→∞
log(πF (n))

log(n)
, or equivalently,

inf
{
d | πF (n) = O

(
nd
)}

. This can be thought of as the polynomial growth rate of

πF .

Lemma 1.2.2 (Sauer-Shelah Lemma). [Sau72] If VC (F) = d, then πF (n) ≤
∑d

k=0

(
n
k

)
.

Consequently, vc (F) ≤ VC (F), and VC (F) = ∞ ⇐⇒ vc (F) = ∞.

Example 1.2.3. Let X be an infinite set, and F := {A ⊆ X | |A| = d}. Then VC (F) = d,

and F ↾Y= {A ⊆ Y | |A| ≤ d}, so πF (n) =
∑d

k=0

(
n
k

)
, showing that the bound in lemma

1.2.2 is tight.

Definition 1.2.4. 1. Let F be a set system on a set X. Its dual set system is the set

system on F given by F∗ := {{S ∈ F | x ∈ S} | x ∈ X} ⊆ P (F). This can be thought

of as keeping the same incidence relation between X and F , but switching which is

which.

2. The dual VC-dimension and dual VC-density of F are the VC-dimension and VC-

density, respectively, of F∗. These are denoted VC∗ (F) := VC (F∗), vc∗ (F) := vc (F).

Dual VC-dimension is also sometimes called independence dimension.

Lemma 1.2.5. [Ass83, 2.13(b)] If VC (F) = d, then VC∗ (F) < 2d+1.

Definition 1.2.6. The breadth of a set system is the smallest number d (if there is any)

such that any intersection of finitely many sets in the set system is the intersection of at

most d of them.

Lemma 1.2.7. [ADH+16, lemma 2.9] breadth (F) ≥ VC∗ (F).
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1.3 Model theory

1.3.1 Notational conventions

Letters near the end of the alphabet will be used to denote variables, and letters near the

beginning of the alphabet for constants. Each of these can be used to refer to tuples, and

will not be assumed to refer to singletons unless it is specified. The length of a tuple x will

be denoted |x|.

Variables in formulas can be separated by either semi-colons or commas, like φ (x, y; z),

with semi-colons serving to divide variables into groups (so the formula φ (x, y; z) has its

variables partitioned into two groups: (x, y), and (z)). When the variables are partitioned

into two groups, the second group is typically to be thought of as variables to plug parameters

into to define a relation on the first group (i.e. a formula φ (x; y) defines the definable

family of sets {φ (M; b) | b ∈ M}, where φ (M; b) is used as shorthand for the definable set

{a ∈ M | M |= φ (a; b)}).

1.3.2 Types, monster models, and indiscernibility

Definition 1.3.1. 1. If M is an L-structure and A ⊆ M, then LA is the expansion of L

also containing a constant symbol for every element of A. M is also considered an LA-

structure, with symbols in L interpreted in the same way as they are in the L-structure

M, and symbols corresponding to elements of A interpreted as the corresponding

elements.

2. A partial n-type over A is a set of LA-formulas in n variables.

3. A partial n-type p (x1, ..., xn) is consistent if for every finite subset p0 ⊆ p, there are

a1, ..., an ∈ M such that M |= p0 (a1, ..., an).

4. A complete n-type (or simply, an n-type) p (x1, ..., xn) is a partial n-type that is
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consistent and such that for every LA-formula φ (x1, ..., xn), p contains either φ or

¬φ.

5. If a1, ..., an ∈ M and A ⊆ M, the type of (a1, ..., an) over A, denoted tp (a1, ..., an/A),

is the complete type consisting of all LA-formulas φ (x1, ..., xn) such that

M |= φ (a1, ..., an). The type of a over ∅ is simply called the type of a, and denoted

tp (a).

The space of n-types over a set A is denoted Sn (A). If x is a tuple of variables, In all

multi-sorted languages considered, there will be a main sort, and Sn (A) will refer to the

space of n-types over A with variables in the main sort. Sx (A) will also be used to denote

S|x| (A), when x is the variables appearing in the formulas in these types.

There is also an analog of a type localized to a single formula.

Definition 1.3.2. 1. For a formula φ (x; y) and set A, a φ-type over A is a consistent

partial |x|-type over A only containing formulas of the form φ (x; b) or ¬φ (x; b) for

b ∈ A, and which, for every b ∈ A, does contain either φ (x; b) or ¬φ (x; b).

2. If φ (x; y) is a formula, a ∈ Mx and A ⊆ M, the φ-type of a over A, denoted tpφ (a/A),

is the φ-type {φ (x; b) | M |= φ (a; b)} ∪ {¬φ (x; b) | M |= ¬φ (a; b)}.

The space of φ-types over a set A is denoted Sφ (A).

Definition 1.3.3. For an infinite cardinal κ, a structure M is κ-saturated if, for every

A ⊆ M with |A| < κ, n ∈ N, and every type p ∈ Sn (A), there is some a ∈ M such that

M |= p (a).

Definition 1.3.4. For an infinite cardinal κ, a structure M is κ-homogeneous if, for every

A ⊆ M with |A| < κ, and σ : A → M such that for any n ∈ N and a ∈ An, tp (a) =

tp (σ (a)), σ extends to an automorphism of M.
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It is frequently convenient to work in a κ-saturated model for some sufficiently large κ,

so that arguments about it being consistent for there to exist a family of elements satisfying

some property can be simplified to arguments that there is such a family of elements. It is

occasionally also useful to work in a κ-homogeneous model for some sufficiently large κ, when

using arguments involving automorphisms. A model that is κ-saturated and κ-homogeneous

for some sufficiently large κ is often called a monster model, and subsets of cardinality less

than κ are often called small. Working in such a model is always possible, because:

Fact 1.3.5. [Che19, Fact 1.2.2] For every structure M and infinite cardinal κ, there is a

κ-saturated and κ-homogeneous elementary extension M ≻ M.

Another useful model-theoretic tool is indiscernible sequences.

Definition 1.3.6. Given a set A ⊆ M, a totally ordered index set I, a sequence (ai)i∈I is A-

indiscernible if, for every formula φ (x1, . . . , xn; y), b ∈ A|y|, and every i1, . . . , in, j1, . . . , jn ∈ I

with i1 < . . . < in and j1 < . . . < jn, |= φ (ai1 , . . . , ain , b) ⇐⇒ |= φ (aj1 , . . . , ajn , b). An

∅-indiscernible sequence is also called simply an indiscernible sequence.

In a saturated model, it is easy to find indiscernible sequences.

Fact 1.3.7. [Che19, Proposition 2.4.4] If A ⊆ M, I and J are linear orders, (aj)j∈J is any

sequence, and M is max (|A| , |I|)+-saturated, then there is an indiscernible sequence (a′i)i∈I

such that, for every formula φ (x1, ..., xn; y) and b ∈ Ay, if |= φ (aj1 , . . . , ajn ; b) for every

j1 < . . . < jn ∈ J , then |= φ
(
a′i1 , . . . , a

′
in ; b
)

for every i1 < . . . < in ∈ I.

1.3.3 Stability and NIP

Much of modern model theory deals with combinatorial properties of first-order formulas,

the most important of these being stability.

Proposition 1.3.8. Let T be a complete theory. Given a formula φ (x; y), the following are

equivalent:
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1. There is some k ∈ N such that in some/every model, there are no (ai, bi)i∈[k] such that

|= φ (ai, bj) ⇐⇒ i < j.

2. For some/every infinite linear order I, in some/every |I|+-saturated model, there are

no (ai, bi)i∈I such that |= φ (ai; bj) ⇐⇒ i < j.

3. For some/every model M and infinite cardinal κ ≤ |M|, for every A ⊆ M with

|A| = κ, there are κ φ-types over A.

4. For some/every model M and every A ⊆ M, φ-types over A are uniformly definable,

meaning that there is some formula ψ (y; z) such that for every φ-type p (x) over A,

there is some b ∈ A such that φ (x; a) ∈ p (x) iff |= ψ (a; b) for a ∈ A.

Definition 1.3.9. A formula satisfying these conditions is called stable, and a theory is

called stable if all formulas are stable.

Proof of proposition 1.3.8. The equivalence of “some” and “every” in (1) follows from the fact

that T is complete.

(1) =⇒ (2): If (1), then given any infinite linear order I and any |I|+-saturated model

M, any (ai, bi)i∈I such that |= φ (ai; bj) ⇐⇒ i < j would contain arbitrarily long finite

subsequences satisfying the same condition, contradicting (1).

(2) =⇒ (1): If not (1), then let M be ω1-saturated. Since for every k ∈ N there are

(ai, bi)i∈[k] such that |= φ (ai, bj) ⇐⇒ i < j, it follows by saturation that there are (ai, bi)i∈N

such that |= φ (ai, bj) ⇐⇒ i < j.

For (3) and (4), see [Che19, Propositions 2.2.8, 2.2.13, Theorem 2.3.8]

Although stability is a simple combinatorial property of individual formulas, a theory

being stable turns out to have many important implications, such as the existence of a

well-behaved independence relation generalizing, for instance, algebraic independence in

algebraically closed fields, or linear independence in vector spaces. It is also useful for
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determining how many complete types there can be over a set of given cardinality, or how

many models there are of a given cardinality up to isomorphism.

Another important combinatorial property of first-order formulas generalizing stability,

is called NIP.

Definition 1.3.10. The alternation rank of a formula φ (x; y) is the largest k ∈ N for

which there is some b and indiscernible sequence (ai)i∈[k] such that for i < k, |= φ (ai; b) ↔

φ (ai+1; b). If there is such an indiscernible sequence for every k, say that φ (x; y) has infinite

alternation rank.

Proposition 1.3.11. Let T be a complete theory. Given a formula φ (x; y) (where x and y

may be tuples of variables), the following are equivalent:

1. There is some k ∈ N such that in some/every model, there are no (ai)i∈[k] , (bX)X⊆[k]

such that |= φ (ai, bX) ⇐⇒ i ∈ X.

2. There is some finite bipartite graph on vertex sets A,B such that in some/every model,

there are no (ai)i∈A , (bj)j∈B such that |= φ (ai, bj) iff i and j are connected by an edge.

3. For some/every infinite set I and some/every
(
2|I|
)+-saturated model, there are no

(ai)i∈I , (bX)X⊆I such that |= φ (ai, bX) ⇐⇒ i ∈ X.

4. φ (x; y) has finite alternation rank.

Definition 1.3.12. A formula is said to have the independence property if it does not satisfy

these conditions, and is said to be NIP (for “no independence property”) if it does. A theory

is called NIP if all formulas are NIP.

Note that criterion (1) says that φ (x; y) is NIP iff the family of sets {φ (M; b) | b ∈ M}

has finite VC-dimension, since its VC-dimension is the smallest k such that there are no

(ai)i∈[k] , (bX)X⊆[k] such that |= φ (ai, bX) ⇐⇒ i ∈ X.
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Proof of proposition 1.3.11. In all three equivalent conditions, “every” implies “some”, and

the converse is clear in (1) and (2) because T is complete, so it suffices to show (2) =⇒

(1) =⇒ (3, every), and (3, some) =⇒ (2).

(2) =⇒ (1): Given such a bipartite graph on A,B, let k = |A|. Given (ai)i∈[k] , (bX)X⊆[k]

such that |= φ (ai, bX) ⇐⇒ i ∈ X, use a bijection to identify A with [k], and for j ∈ B, let

bj := bi∈[k]|iEj, where E is the edge relation. Then |= φ (ai, bj) iff iEj.

(1) =⇒ (3): Given infinite I and (ai)i∈I , (bX)X⊆I such that |= φ (ai, bX) ⇐⇒ i ∈ X, for

any k ∈ N, identify [k] with a k-element subset of I using an injection [k] → I, and consider

(ai)i∈[k] , (bX)X⊆[k].

(3) =⇒ (2): Given infinite I and
(
2|I|
)+-saturated M, if for every finite subsets I0 ⊂ I

and F ⊂ 2I , there are (ai)i∈I0 , (bX)X∈F such that |= φ (ai, bX) ⇐⇒ i ∈ X, then, by

saturation, there are (ai)i∈I , (bX)X⊆I such that |= φ (ai, bX) ⇐⇒ i ∈ X. Otherwise, use

A = I0, = F , and the finite bipartite graph given by the membership relation between them.

For (4), see [Che19, Proposition 2.44]

Proposition 1.3.13. Boolean combinations of stable/NIP formulas are stable/NIP,

respectively.

Proof. If ¬φ (x; y) is unstable, then for each k, there are (ai, bi)i∈[k+1] such that

|= φ (ai; bj) ⇐⇒ i ≥ j. We can turn ≥ into < by reversing the order and shifting over by

one step: let a′
i := k + 2− i and b

′
i := k + 1− i for i ∈ [k], so |= φ

(
a

′
i; b

′
j

)
⇐⇒ i < j. So

φ (x; y) is unstable.

If ¬φ (x; y) has the independence property, then for each k, there are (ai, )i∈[k+1] , (bX)X⊆[k]

such that |= φ (ai; bX) ⇐⇒ i /∈ X. Let b′X := b[k]\X . Then |= φ
(
ai; b

′
X

)
⇐⇒ i ∈ X, so

φ (x; y) has the independence property.

If (φ ∨ ψ) (x; y) is unstable, then, in an ω1-saturated model, there are (ai, bi)i∈N such that

|= (φ ∨ ψ) (x; y) ⇐⇒ i < j. By Ramsey’s theorem, there is an infinite set X ⊆ N such that

either |= φ (ai; bj) for all i, j ∈ X with i < j, or ̸|= φ (ai; bj) for all i, j ∈ X with i < j. In
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the latter case, we have |= ψ (ai; bj) for all i, j ∈ X with i < j. Thus at least one of φ (x; y)

or ψ (x; y) must be unstable.

If (φ ∨ ψ) (x; y) has the independence property, then, for every k ∈ N, there is b and

(ai)i∈[2k] such that |= (φ ∨ ψ) (ai; b) ⇐⇒ i is even. Let X := {i ∈ [k] ||= φ (a2i; b)}. If

|X| ≥ k
2
, then (a2i, a2i−1)i∈X) shows that φ (x; y) has alternation rank as least k. Otherwise,

(a2i, a2i−1)i∈[k]\X) shows that ψ (x; y) has alternation rank at least k. Thus at least one of

these must have infinite alternation rank.

Proposition 1.3.14. Stable formulas are NIP.

Proof. If φ (x; y) has the independence property, then, for k ∈ N, let (ai)i∈[k] , (bX)X⊆[k]

such that |= φ (ai; bX) ⇐⇒ i ∈ X. Then |= φ
(
ai; b[j−1]

)
⇐⇒ i < j.

1.3.4 Equations

Often we wish to distinguish some formulas as carrying “positive” information. For example,

in algebraically closed fields, while all Boolean combinations of algebraic varieties are

definable, it is the algebraic varieties themselves that we wish to single out as carrying

positive information. The notion of an “equation” is one way to formalize this notion in the

context of stable theories.

Definition 1.3.15. A set system F has the descending intersection condition if for every

collection of sets in F , their intersection is the intersection of some finite subcollection.

Equivalently, for any sequence (Xi)i∈N of sets in F , its sequence of partial intersections

(∩i<nXi)n∈N is eventually constant.

Definition 1.3.16. In a complete theory T , a formula φ (x, y) is an equation if, in some/every

ω1-saturated model M |= T , the set system {φ (M, b) | b ∈ M} has the descending

intersection condition. A theory is called equational if all formulas are equivalent to Boolean

combinations of equations.
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Example 1.3.17. In any theory, the formula x = y is an equation, but x ̸= y is not an

equation (except in theories with finite models). This shows that equations are not closed

under Boolean combinations.

Proposition 1.3.18. If φ (x; y) and ψ (x; y) are equations, then so are (φ ∧ ψ) (x; y) and

(φ ∨ ψ) (x; y). That is, equations are closed under positive Boolean combinations.

Proof. If φ (x; y) and ψ (x; y) are equations, then for any sequence (bi)i∈N, there are n,m ∈ N

such that for any a, if |= φ (a; bi) for i ≤ n, then |= (a; bi) for all i, and if |= ψ (a; bi) for i ≤ m,

then |= ψ (a; bi) for all i. Then, if |= (φ ∧ ψ) (a; bi) for i ≤ max (n,m), then |= (φ ∧ ψ) (a; bi)

for all i, and likewise for (φ ∨ ψ) (x; y), so (φ ∧ ψ) (x; y) and (φ ∨ ψ) (x; y) are equations.

Example 1.3.19. 1. In any completion of the theory of fields, if f (x; y) is any polynomial,

the formula f (x; y) = 0 is an equation. This is the Hilbert basis theorem, and is the

motivation for the name “equation”.

2. By Chevalley’s theorem, ACF0 and ACFp eliminate quantifiers. Since, in fields, all

atomic formulas are equivalent to formulas of the form f = 0 for some polynomial f , it

follows that in ACF0 and ACFp, all formulas are equivalent to Boolean combinations

of the equations f (x; y) = 0, so these theories are equational.

Theorem 1.3.20. Equations are stable. Since stable formulas are closed under Boolean

combinations, it follows that Boolean combinations of equations are stable, and hence

equational theories are stable.

Proof. If φ (x; y) is unstable, let (ai, bi)i∈N be such that |= φ (ai; bj) ⇐⇒ i < j. Then⋂
i∈N φ (M; bi) is not equal to any of its finite subintersections.

For an introductory resource on equations, see [O’H11a].
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1.3.5 Distality

Proposition 1.3.21. [CS15, Theorem 21] Let T be a complete theory. Given a formula

φ (x; y), the following are equivalent:

1. For some/every infinite linear orders IL, IR, in some/every (IL + IR)
+-saturated model

M |= T , for every b ∈ M|y| and indiscernible sequence (ai)i∈IL+(0)+IR
such that

(ai)i∈IL+IR
is b-indiscernible, M |= φ (a0, b) ⇐⇒ M |= φ (ai, b) for i ∈ IL + IR.

2. There is a formula θ (x; z) such that, in some/every model M |= T , for every a ∈ M|x|

and finite C ⊂ M, there is some b ∈ C|z| such that M |= θ (a; b), and θ (x; b) ⊢

tpφ (a/C).

Definition 1.3.22. A formula meeting these conditions is called distal. A theory is called

distal if all formulas are distal.

Proposition 1.3.23. Distal formulas are NIP.

Proof. If φ (x; y) has the independence property, then it has infinite alternation rank. That

is, in an ω+-saturated model, there is b and an indiscernible sequence (ai)i∈Z such that

|= φ (ai; b) ⇐⇒ i ∈ 2Z. Then b, together with the indiscernible sequence (ai)iis odd or 0 is a

counterexample to distality of φ (x; y).

Proposition 1.3.24. [Sim13] No theory with infinite models can be both stable and distal.

Because of proposition 1.3.24, among other reasons, distality can be seen, within NIP, as

the opposite extreme from stability.

Example 1.3.25. [Sim13] R and Qp are distal.
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1.4 Valued fields

1.4.1 Basics

Definition 1.4.1. A valued field is a field K equipped with a surjective map ν : K× → Γ

for some ordered abelian group Γ called the value group, such that ν (xy) = ν (x)+ν (y) and

ν (x+ y) ≥ min (ν (x) , ν (y)). ν is extended to a map K → Γ∞, where Γ∞ := Γ⊔ {∞} is an

ordered commutative monoid with ∞ > Γ and ∞+ γ = ∞ for γ ∈ Γ∞, by ν (0) = ∞. The

valuation ring of K is the subring {a ∈ K | ν (a) ≥ 0}, and is typically denoted OK , or just

O if the valued field is unambiguous. O has a unique maximal ideal {a ∈ K | ν (a) > 0},

typically denoted mK , or just m is the valued field is unambiguous. The field O/m is called

the residue field, and typically denoted k. ν is called trivial if Γ = {0}, or equivalently, if

k = K. The residue map O → O/m = k is typically denoted with an overline; i.e. x 7→ x̄.

Definition 1.4.2. 1. In a valued field K, the open ball of radius r ∈ Γ around center

c ∈ K is {a ∈ K | ν (a− c) > r}.

2. The closed ball of radius r ∈ Γ around center c ∈ K is {a ∈ K | ν (a− c) ≥ r}.

3. If ∆ ⊆ Γ∞ is nonempty and upward-closed, the quasi-ball of quasi-radius ∆ around

center c ∈ K is {a ∈ K | ν (a− c) ∈ ∆}.

Note that open and closed balls are conventional notions, but the notion of a quasi-ball

is ideosyncratic. The quasi-balls are exactly the translates of O-submodules of K. Open

balls of radius r are the same as quasi-balls of quasi-radius {γ ∈ Γ∞ | γ > r}. Closed balls

of radius r are the same as quasi-balls of quasi-radius {γ ∈ Γ∞ | γ ≥ r}. And any two quasi-

balls are either nested or disjoint. Any two quasi-balls of the same quasi-radius are either

equal or disjoint.

Valued fields are topological fields, with any of the open balls, the closed balls, or the

quasi-balls with quasi-radius larger than {∞} as a basis of open sets; these generate the
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same topology if the valuation is nontrivial. All quasi-balls of quasi-radius larger than {∞}

are clopen (hence so are open balls and closed balls, despite the names). Quasi-balls of

quasi-radius {∞} are singleton sets, and are closed but not open.

Definition 1.4.3. 1. A nest of quasi-balls is a set of quasi-balls that is linearly ordered

under inclusion.

2. A valued field K is spherically complete if the intersection of any nest of quasi-balls

is nonempty; or equivalently, if the intersection of any nest of (open/closed) balls is

nonempty.

Proposition 1.4.4. If a valued field is complete, then it is spherically complete.

Definition 1.4.5. A spherical completion of a field K with valuation ν : K → Γ∞ is an

extension field K̃/K with valuation ν̃ : K̃ → Γ∞ such that ν̃ ↾K= ν, K̃ is spherically

complete, and no proper intermediate extension K ⊆ L ⊊ K̃ is spherically complete (with

the valuation ν̃ ↾L).

Proposition 1.4.6. [Sch50, section 2.3 Theorem 5] Every valued field has a spherical

completion.

Note that spherical completions are not always unique.

Definition 1.4.7. A valued field K is called henselian if for every polynomial f ∈ O [x]

and a ∈ O such that f (a) ∈ m and f ′ (a) /∈ m, there is ã ∈ O such that ã − a ∈ m and

f (ã) = 0. Or equivalently, if for every polynomial f ∈ O [x] and a ∈ k such that f̄ (a) = 0

and f̄ ′ (a) ̸= 0 (where the overline represents reduction mod m [x]), there is ã ∈ O such that

¯̃a = a and f (ã) = 0; that is, every simple root of the residue of f lifts to a root of f .

Proposition 1.4.8 (Hensel’s lemma). [Mar18, theorem 2.2] Spherically complete valued

fields are henselian.

Hensel’s lemma essentially follows from Newton’s method adapted to the valued fields

setting. Note that algebraically closed valued fields are also henselian.
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Definition 1.4.9. The characteristic of a valued field K is the ordered pair

(char (K) , char (k)). A valued field of characteristic (0, 0) is called equicharacteristic 0, a

valued field of characteristic (p, p) for a prime p is called equicharacteristic p, and a valued

field of characteristic (0, p) for a prime p is called mixed characteristic. These are all the

possible characteristics of a valued field.

1.4.2 First-order languages of valued fields

Definition 1.4.10. 1. The two-sorted language of valued fields is the language L2vf with

sorts K and Γ∞, with the structure of a field on K, the structure of an ordered monoid

on Γ∞, and a valuation function ν : K → Γ∞.

2. The three-sorted language of valued fields is the language L3vf with sorts K, Γ∞, and

k, with all the structure of L2vf on K and Γ, and in addition, the structure of a field

on k, and a residue function res : K → k, which is intended to be interpreted as the

residue map on O, and send everything outside of O to 0.

3. The one-sorted language of valued fields is the language Lvf with sort K, the structure

of a field on K, and a unary relation O on K.

The unary relation O (x) is definable in L2vf as ν (x) ≥ 0. Γ∞ is interpretable in L1vf as

K, with x =Γ∞ y defined by (∃zO (z) ∧ xz = y) ∧ (∃wO (w) ∧ yw = x). k is interpretable

in L2vf as {x ∈ K | ν (x) ≥ 0}, with x =k y defined by ν (x− y) > 0. Thus a valued field in

each of these three languages are mutually biinterpretable, and thus the theories of valued

fields in each of these languages are mutually biinterpretable. A few other minor variations of

these languages, also biinterpretable with them, have also been considered in the literature.

Definition 1.4.11. 1. An ac-valued field is a valued field K equipped with an angular

component map ac : K× → k×, a group homomorphism that agrees with the residue

map on O×.
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2. The Denef-Pas language Ldp is the language with sorts K, Γ∞, and k, the structure of

L3vf , and a function ac : K → k. An ac-valued field is a structure in the Denef-Pas

language by extending the angular component map so that ac (0) = 0.

1.4.3 Quantifier elimination results

There are many quantifier elimination results for valued fields in various languages and under

various conditions. For example, two that are relevent for us are:

Theorem 1.4.12. [Pas89] Henselian ac-valued fields of equicharacteristic 0 eliminate

quantifiers of sort K in the language L3vf .

Theorem 1.4.13. [Mar18, theorem 4.4] Algebraically closed valued fields (of any

characteristic) eliminate quantifiers of sort K in the language L2vf .

See [Mar18] for a more comprehensive survey of these types of results.

1.5 Convexity

A number of combinatorial properties of the class of convex sets in Rd have been discovered.

Let ConvRd denote the class of convex sets in Rd. For X ⊆ Rd, let conv (X) denote its convex

hull.

Definition 1.5.1. F ⊆ P (X) has Helly number k if ∀n∀S1, ..., Sn ∈ F if every k-subset of

{S1, ..., Sn} has nonempty intersection, then
⋂

1≤i≤n Si ̸= ∅. The Helly number of F refers

to the minimal k with this property. Say that F has the Helly property if it has a Helly

number.

Theorem 1.5.2 (Helly’s theorem). [Mat02, theorem 1.3.2] ConvRd has the Helly property,

with Helly number d+ 1.

Definition 1.5.3. A family of sets F has fractional Helly number k if ∀α > 0 ∃β > 0 ∀n

∀S1, ..., Sn ∈ F if there are ≥ α
(
n
k

)
k-subsets of {S1, ..., Sn} with an intersection point, then
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there are ≥ βn sets from {S1, ..., Sn} that all intersect in a common point. The fractional

Helly number of F refers to the minimal k with this property. Say that F has the fractional

Helly property if it has a fractional Helly number.

Theorem 1.5.4 (Fractional Helly theorem). [Mat02, theorem 8.1.1] ConvRd has the fractional

Helly property, with fractional Helly number d+ 1.

Theorem 1.5.5 (Tverberg’s theorem). [Mat02, theorem 8.3.1] Any set X of ≥

(d+ 1) (r − 1) + 1 points in Rd can be partitioned into subsets X1, ..., Xr such that⋂
i∈[r] conv (Xi) ̸= ∅.

Theorem 1.5.6 (Colored Tverberg theorem). [Mat02, theorem 8.3.3] For any positive

integers d and r, there is some t ≥ r such that for any X ⊆ Rd with |X| = t (d+ 1),

partitioned into d + 1 color classes C1, ..., Cd+1 of size t, there are disjoint X1, ..., Xr ⊆ X

with |Xi ∩ Cj| = 1 for i ∈ [r] and j ∈ [d+ 1], and
⋂

i∈[r] conv (Xi) ̸= ∅.

Theorem 1.5.7 (First selection lemma). [Mat02, theorem 9.1.1] For each d, there is a

constant c > 0 such that for any finite X ⊆ Rd (say n := |X|), there is some a ∈ Rd

contained in the convex hulls of at least c
(

n
d+1

)
of the

(
n

d+1

)
(d+ 1)-subsets of X.

Theorem 1.5.8 (Second selection lemma). [Mat02, theorem 9.2.1] For each d, there are

c, s > 0 such that for all α ∈ (0, 1] and any n, for every X ⊆ Rd with |X| = n, and every

family F of d + 1-subsets of X with |F| ≥ α
(

n
d+1

)
, there is a point contained in the convex

hulls of at least cαs
(

n
d+1

)
of the elements of F .
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CHAPTER 2

Combinatorial properties of non-archimedean convex sets

2.1 Introduction

Convexity in the context of non-archimedean valued fields was introduced in a series of

papers by Monna in 1940’s [Mon46], and has been extensively studied since then in non-

archimedean functional analysis (see e.g. the monographs [PGS10, Sch13] on the subject).

Convexity here is defined analogously to the real case, with the role of the unit interval

played instead by a valuational unit ball (see Definition 2.2.1). Convex subsets of Rd

admit rich combinatorial structure, including many classical results around the theorems

of Helly, Radon, Carathéodory, Tverberg, etc. — we refer to e.g. [DLGMM19] for a recent

survey of the subject. In the case of R, or more generally a real closed field, there is a

remarkable parallel between the combinatorial properties of convex and semi-algebraic sets

(which correspond to definable sets from the point of view of model theory). They share

many (but not all) properties in the form of various restrictions on the possible intersection

patterns, including the fractional Helly theorem and existence of (weak) ε-nets. A well-

studied phenomenon in model theory establishes strong parallels between definable sets in R

and in many non-archimedean valued fields such as the p-adics Qp or various fields of power

series (see e.g. [vdD14]). In this paper we focus on the combinatorial study of convex sets

over general valued fields, trying to understand if there is similarly a parallel theory. On

the one hand, we demonstrate valued field analogs of some classical results for convex sets

over the reals (e.g. the fractional Helly theorem and Bárány’s theorem on points in many

simplices). On the other, we establish some additional properties not satisfied by convex
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sets over the reals, including finite breadth and VC-dimension. This suggests that in a sense

convex sets over valued fields are the best of both worlds combinatorially, and satisfy various

properties enjoyed either by convex or by semialgebraic sets over the reals.

We give a quick outline of the paper. Section 2.2 covers some basics concerning convexity

for subsets of Kd over an arbitrary valued field K, in particular discussing the connection to

modules over the valuation ring. These results are mostly standard (or small variations of

standard results), and can be found e.g. in [PGS10, Sch13] under the unnecessary assumption

thatK is spherically complete and (Γ,+) ⊆ (R>0,×); we provide some proofs for completeness.

In Section 2.3 we give a simple combinatorial description of the submodules of Kd over the

valuation ring OK in the case of a spherically complete field K (Theorem 2.3.6 and Corollary

2.3.14), and an analog for finitely generated modules over arbitrary valued fields (Corollary

2.3.16). We also give an example of a convex set over the field of Puiseux series demonstrating

that the assumption of spherical completeness is necessary for our presentation in the non-

finitely generated case (Example 2.3.11). In Section 2.4 we use this description of modules

to deduce various combinatorial properties of the family of convex subsets ConvKd of Kd

over an arbitrary valued field K. First we show that ConvKd has breadth d (Theorem 2.4.3),

VC-dimension d + 1 (Theorem 2.4.8), dual VC-dimension d (Theorem 2.4.10) — in stark

contrast, all of these are infinite for the family of convex subsets of Rd for d ≥ 2. On the other

hand, we obtain valued field analogs of the following classical results: the family ConvKd

has Helly number d + 1 (Theorem 2.4.5), fractional Helly number d + 1 (Theorem 2.4.14),

satisfies a strong form of Tverberg’s theorem (Theorem 2.4.15) and Boros-Füredi/Bárány

theorem on the existence of a common point in a positive fraction of all geometric simplices

generated by an arbitrary finite set of points in Kd (Theorem 2.4.16). Some of the proofs

here are adaptations of the classical arguments, and some rely crucially on the finite breadth

property specific to the valued field context. Finally, in Section 2.5 we point out some

further applications, e.g. a valued field analogue of the celebrated (p, q)-theorem of Alon and

Kleitman [AK92] (Corollary 2.5.1), and that all convex sets over a spherically complete field
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are externally definable in the sense of model theory (Remark 2.5.5); as well as pose some

questions and conjectures.
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2.2 Preliminaries on convexity over valued fields

Notation. For n ∈ N≥1, we write [n] = {1, . . . , n} and ⟨⟩ denotes the span in vector spaces.

Throughout the paper, K will denote a valued field, with value group Γ = ΓK , and valuation

ν = νK : K → Γ∞ := Γ ⊔ {∞}, valuation ring O = OK = ν−1 ([0,∞]), maximal ideal

m = mK = ν−1 ((0,∞]), and residue field k = O/m. The residue map O → k will be

denoted α 7→ ᾱ.

The following definition of convexity is analogous to the usual one over R, with the unit

interval replaced by the (valuational) unit ball.

Definition 2.2.1. 1. For d ∈ N≥1, a set X ⊆ Kd is convex if, for any n ∈ N≥1,

x1, . . . , xn ∈ X, and α1, . . . , αn ∈ O such that α1 + . . . + αn = 1 we have α1x1 +

. . .+ αnxn ∈ X (in the vector space Kd).

2. The family of convex subsets of Kd will be denoted ConvKd .

It is immediate from the definition that the intersection of any collection of convex subsets

of Kd is convex.

Definition 2.2.2. Given an arbitrary set X ⊆ Kd, its convex hull conv(X) is the convex

set given by the intersection of all convex sets containing X, equivalently

conv(X) =

{
n∑

i=1

αixi : n ∈ N, αi ∈ O, xi ∈ X,

n∑
i=1

αi = 1

}
.
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Definition 2.2.3. A (valuational) quasi-ball is a set B =
{
x ∈ Kd : ν(x− c) ∈ ∆

}
for some

c ∈ K and an upwards closed subset ∆ of Γ∞. In this case we say that B is around c, and

refer to ∆ as the quasi-radius of B. We say that B is a closed (respectively, open) ball if

additionally ∆ = {γ ∈ Γ : γ ≥ r} (respectively, ∆ = {γ ∈ Γ : γ > r}) for some r ∈ Γ, and

just ball if B is either an open or a closed ball (in which case we refer to r as its radius).

Remark 2.2.4. 1. If the value group Γ is Dedekind complete, then every quasi-ball is a

ball (except for K itself, which is a quasi-ball of quasi-radius Γ∞).

2. Note also that if B is a quasi-ball of quasi-radius ∆ around c and c′ ∈ B is arbitrary,

then B is also a quasi-ball of quasi-radius ∆ around c′.

3. In particular, any two quasi-balls are either disjoint, or one of them contains the other.

Example 2.2.5. 1. The convex subsets of K = K1 are exactly ∅ and the quasi-balls (see

Proposition 2.2.9 and Example 2.2.10).

2. If e1, . . . , ed is the standard basis of the vector space Kd, then

conv ({0, e1, . . . , ed}) = Od.

3. The image and the preimage of a convex set under an affine map is convex. In

particular, a translate of a convex set is convex, and a projection of a convex set

is convex. (Recall that given two vector spaces V,W over the same field K, a map

f : V → W is affine if f(αx+βy) = αf(x)+βf(y) for all x, y ∈ V, α, β ∈ K,α+β = 1.)

One might expect, by analogy with real convexity, that the definition of a convex set

could be simplified to: if x, y ∈ X, α, β ∈ O such that α + β = 1, then αx + βy ∈ X. The

following two propositions show that this is the case if and only if the residue field is not

isomorphic to F2, and that in general we have to require closure under 3-element convex

combinations.
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Proposition 2.2.6. Let K be a valued field and X ⊆ Kd. If X is closed under 3-element

convex combinations (in the sense that if x, y, z ∈ X and α, β, γ ∈ O such that α+β+γ = 1,

then αx+ βy + γz ∈ X), then X is convex.

Proof. Suppose X is closed under 3-element convex combinations. We will show by induction

on n that then X is closed under n-element convex combinations. Let n ≥ 3, x1, . . . , xn ∈ X

and α1, . . . , αn ∈ O such that α1 + . . . + αn = 1 be given. Then one of the following two

cases holds.

Case 1: α1 + α2 ∈ O×.

Then α1

α1+α2
and α2

α1+α2
are elements of O that sum to 1, so

α1

α1 + α2

x1 +
α2

α1 + α2

x2 ∈ X

by assumption. But then

α1x1 + . . .+ αnxn = (α1 + α2)

(
α1

α1 + α2

x1 +
α2

α1 + α2

x2

)
+ α3x3 + . . .+ αnxn ∈ X

by the induction hypothesis, as it is a convex combination of n− 1 elements of X.

Case 2: α1 + α2 ∈ m.

Then, as ν (
∑n

i=1 αi) = 0, there must exist some i with 3 ≤ i ≤ n such that αi ∈ O×.

Hence α1 + α2 + αi ∈ O×, so α1

α1+α2+αi
, α2

α1+α2+αi
, and αi

α1+α2+αi
are elements of O that

sum to 1. Thus(
α1

α1 + α2 + αi

)
x1 +

(
α2

α1 + α2 + αi

)
x2 +

(
αi

α1 + α2 + αi

)
xi ∈ X

by assumption, and so

α1x1 + . . .+ αnxn =

(α1 + α2 + αi)

(
α1

α1 + α2 + αi

x1 +
α2

α1 + α2 + αi

x2 +
αi

α1 + α2 + αi

xi

)
+α3x3 + . . .+ αi−1xi−1 + αi+1xi+1 + . . .+ αnxn ∈ X

by the induction hypothesis, as it is a convex combination of n− 2 elements of X.
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Proposition 2.2.7. For any valued field K, the following are equivalent:

1. for every d ≥ 1, every set in Kd that is closed under 2-element convex combinations is

convex;

2. the residue field k is not isomorphic to F2.

Proof. (1) implies (2). If k = F2, consider the set

X := {(a1, a2, a3) | a1, a2, a3 ∈ O, ∃i ai ∈ m} ⊆ K3.

We claim that X is closed under 2-element convex combinations. That is, given arbitrary

(a1, a2, a3) , (b1, b2, b3) ∈ X and α, β ∈ O with α + β = 1, we must show that α (a1, a2, a3) +

β (b1, b2, b3) ∈ X. We have ᾱ + β̄ = 1 in k = F2, so necessarily one of ᾱ and β̄ is 1 and

the other is 0. Without loss of generality ᾱ = 1 and β̄ = 0. Then β ∈ m. By definition

of X, ai ∈ m for some i. Then αai ∈ m, and βbi ∈ m as bi ∈ O, so αai + βbi ∈ m. Thus

(αa1 + βb1, αa2 + βb2, αa3 + βb3) ∈ X. However X is not convex: for an arbitrary a ∈ m

we have (0, 0, 0), (1, 0, 0), (0, 1, 1) ∈ X, 1,−1 ∈ O, but (−1)(0, 0, 0) + 1(1, 0, 0) + 1(0, 1, 1) =

(1, 1, 1) /∈ X. (This example can be modified to work in K2.)

(2) implies (1). If k ̸∼= F2, suppose X is closed under 2-element convex combinations.

By Proposition 2.2.6, we only need to check that it is then closed under 3-element convex

combinations. Let x, y, z ∈ X, and α, β, γ ∈ O such that α + β + γ = 1. Then one of the

following two cases holds.

Case 1: At least one of α + β, β + γ, α + γ is an element of O×.

Without loss of generality, α + β ∈ O×. Then α
α+β

x + β
α+β

y ∈ X by assumption, and

thus

αx+ βy + γz = (α + β)

(
α

α + β
x+

β

α + β
y

)
+ γz ∈ X.
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Case 2: α + β, β + γ, α + γ ∈ m.

In the residue field, ᾱ + β̄ = β̄ + γ̄ = ᾱ + γ̄ = 0, and ᾱ + β̄ + γ̄ = 1, hence necessarily

ᾱ = β̄ = γ̄ = 1, and char (k) = 2. Since k ̸∼= F2, there is δ ∈ O such that δ̄ /∈ {0, 1}.

Then ᾱ + δ̄ = 1 + δ̄ ̸= 0 and β̄ − δ̄ + γ̄ = δ̄ ̸= 0, so

αx+ βy + γz =

(α + δ)

(
α

α + δ
x+

δ

α + δ
y

)
+ (β − δ + γ)

(
β − δ

β − δ + γ
y +

γ

β − δ + γ
z

)
∈ X.

The following proposition gives a very strong form of Radon’s theorem (not only we

obtain a partition into two sets with intersecting convex hulls, but moreover one of the

points is in the convex hull of the other ones).

Proposition 2.2.8. Let K be a valued field. For any d + 2 points x1, . . . . , xd+2 ∈ Kd, one

of them is in the convex hull of the others.

Proof. There exist a1, . . . , ad+2 ∈ K, not all 0, such that
∑d+2

i=1 aixi = 0 and
∑d+2

i=1 ai = 0

(because those are d+ 1 linear equations on d+ 2 variables, as we are working in Kd). Let

i ∈ [d+ 2] be such that ν (ai) is minimal among ν(a1), . . . , ν(ad+2), in particular ai ̸= 0.

Then xi =
∑

j ̸=i
−aj
ai
xj, and this is a convex combination: for i ̸= j we have −aj

ai
∈ O (as

ν
(

−aj
ai

)
= ν(aj)− ν(ai) ≥ 0 by the choice of i) and

∑
j ̸=i

−aj
ai

=
−

∑
j ̸=i aj

ai
= ai

ai
= 1.

Convex sets over valued fields have a natural algebraic characterization.

Proposition 2.2.9. 1. A subset C ⊆ Kd is an O-submodule of Kd if and only if it is

convex and contains 0.

2. Nonempty convex subsets of Kd are precisely the translates of O-submodules of Kd.

Proof. (1) First, O-submodules ofKd are clearly convex and contain 0. Now suppose C ⊆ Kd

is convex and 0 ∈ C. Then for any α ∈ O and x ∈ C, αx = αx + (1− α) 0 ∈ C. And for
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any x, y ∈ C, x+ y = 1 · x+ 1 · y − 1 · 0 ∈ C. Therefore C is an O-submodule. (2) Given a

non-empty convex C ⊆ Kd, we can choose a ∈ Kd such that the translate C + a contains 0,

and it is still convex, hence C + a is an O-submodule of Kd by (1).

Example 2.2.10. Let C be an O-submodule of K, and take ∆ := ν(C). Then ∆ is non-

empty because it contains ∞ = ν(0), and upward-closed because for γ ∈ ∆ and δ > γ, there

is x ∈ C with ν(x) = γ, and α ∈ K with ν(α) = δ− γ; then αx ∈ C and ν(αx) = δ. Clearly

C ⊆ {x ∈ K | ν(x) ∈ ∆} by definition of ∆. To show C ⊇ {x ∈ K | ν(x) ∈ ∆}, given any

x ∈ K with ν(x) ∈ ∆, there is y ̸= 0 ∈ C with ν(y) = ν(x), and x
y
∈ O, so x = x

y
y ∈ C.

Thus C = {x ∈ K | ν(x) ∈ ∆} is a quasi-ball around 0.

Corollary 2.2.11. The convex hull of any finite set in Kd is the image of Od under an

affine map.

Proof. By a repeated application of Proposition 2.2.8, the convex hull of a finite subset of

Kd is the convex hull of some d+1 points x0, . . . , xd from it (possibly with xi = xj for some

i, j). Let e1, . . . , ed be the standard basis for Kd, and let f be an affine map f : Kd → Kd

such that f(0) = x0 and f (ei) = xi for 1 ≤ i ≤ d (can take f to be the composition of two

affine maps: the linear map sending ei to xi−x0 for 1 ≤ i ≤ d, and translation by x0). Then

we have conv ({x0, . . . , xd}) = f (conv {0, e1, . . . , ed}) = f
(
Od
)

(by Example 2.2.5(2)).

Proposition 2.2.12. For any convex C ⊆ Kd and a ∈ Kd, the translate C + a :=

{x+ a | x ∈ X} is either equal to or disjoint from C.

Proof. If x ∈ C ∩ (C + a), then ∀y ∈ C y + a = y + x− (x− a) ∈ C, since that is a convex

combination, and conversely, if y + a ∈ C then y = (y + a)− x+ (x− a) ∈ C.

Definition 2.2.13. Given a valued field K, by a valued K-vector space we mean a K-vector

space V equipped with a surjective map ν = νV : V → Γ∞ = Γ ∪ {∞} such that ν(x) = ∞

if and only if x = 0, ν(x + y) ≥ min{ν(x), ν(y)} and ν(αx) = νK(α) + ν(x) for all x, y ∈ V

and α ∈ K.
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Remark 2.2.14. Here we restrict to the case when V has the same value group as K, and

refer to [Fuc75] for a more general treatment (see also [Joh16, Section 6.1.3], [Hru14, Section

2.5] or [AvdDvdH17, Section 2.3]).

By a morphism of valued K-vector spaces we mean a morphism of vector spaces preserving

valuation. If V and W are valued K-vector spaces, their direct sum V ⊕W is the direct sum

of the underlying vector spaces equipped with the valuation ν(x, y) := min{νV (x), νW (y)}.

In particular, the vector space Kd is a valued K-vector space with respect to the valuation

νKd : Kd → Γ∞ given by

νKd (x1, . . . , xd) := min {νK (x1) , . . . , νK (xd)} .

Note that for any scalar α ∈ K and vector v ∈ Kd we have νKd(αv) = νK(α) + νKd(v). By

a (valuational) ball in Kd we mean a set of the form {x ∈ Kd : νK2(x − c)□r} for some

center c ∈ Kd, radius r ∈ Γ ∪ {∞} and □ ∈ {>,≥} (corresponding to open or closed ball,

respectively). The collection of all open balls forms a basis for the valuation topology on Kd

turning it into a topological vector space. Note that due to the “ultra-metric” property of

valuations, every open ball is also a closed ball, and vice versa. Equivalently, this topology

on Kd is just the product topology induced from the valuation topology on K.

Recall that the affine span aff(X) of a set X ⊆ Kd is the intersection of all affine sets

(i.e. translates of vector subspaces of Kd) containing X, equivalently

aff(X) =

{
n∑

i=1

αixi : n ∈ N≥1, αi ∈ K, xi ∈ X,
n∑

i=1

αi = 1

}
.

We have conv(X) ⊆ aff(X) for any X.

Proposition 2.2.15. Any convex set in Kd is open in its affine span.

Proof. For x ∈ C ⊆ Kd, C convex, let d′ ≤ d be the dimension of the affine span of C,

and let y1, . . . , yd′ ∈ C be such that x, y1, . . . , yd′ are affinely independent, and thus have the

same affine span as C. Then the map (α1, . . . , αd′) 7→ x+ α1 (y1 − x) + . . .+ αd′ (yd′ − x) is
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a homeomorphism from Kd′ to the affine span of C, and sends Od′ (which is open in Kd′)

to a neighborhood of x contained in C.

Corollary 2.2.16. Convex sets in Kd are closed.

Proof. For convex C ⊆ Kd and x ∈ aff (C) \ C, C + x is an open subset of aff (C) that is

disjoint from C, so C is a closed subset of its affine span, and hence closed in Kd, since affine

subspaces are closed.

2.3 Classification of O-submodules of Kd

In this section we provide a simple description for the O-submodules of Kd over a spherically

complete valued field K (and over an arbitrary valued field K in the finitely generated case).

Combined with the description of convex sets in terms of O-submodules from Section 2.2,

this will allow us to establish various combinatorial properties of convex sets over valued

fields in the next section.

Lemma 2.3.1. Let K be a valued field, and V ⊆ Kd a subspace. Then the quotient vector

space Kd/V is a valued K-vector space equipped with the valuation

ν (u) := max {νKd (v) | π (v) = u, v ∈ V } ,

where π : Kd → Kd/V is the projection map.

If dim(V ) = n, then Kd/V ∼= Kd−n as valued K-vector spaces, and there is a valuation

preserving embedding of K-vector spaces f : Kd/V ↪→ Kd so that π ◦ f = idKd/V .

Proof. First we prove the lemma for n = 1. Let V ⊆ Kd be one-dimensional. There

exists i ∈ [d] such that νKd ((x1, . . . , xd)) = νK (xi) for all (x1, . . . , xd) ∈ V (indeed, if

νK(xi) = min{νK(x1), . . . , νK(xd)} for some (x1, . . . , xd) ∈ V , then we also have νK(αxi) =

νK(α) + νK(xi) = νK(α) + min{νK(x1), . . . , νK(xd)} = min{νK(αx1), . . . , νK(αxd)} for any
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α ∈ K). Given any (x1, . . . , xd) ∈ Kd with xi = 0 and (y1, . . . , yd) ∈ V , we have

νKd (x1 + y1, . . . , xd + yd) = min
j∈[d]

{νK (xj + yj)} =

min

(
νK (yi) ,min

j ̸=i
{νK (xj + yj)}

)
≤ νK (yi) = νKd (y1, . . . , yd) .

Thus the maximum of the valuations of elements of any given affine translate of V is achieved

by an element of that translate with zero ith coordinate, in particular the valuation ν on

Kd/V is well-defined.

Let K ′ :=
{
(x1, . . . , xd) ∈ Kd | xi = 0

}
, then we have Kd = V ⊕ K ′ as vector spaces,

hence the projection of Kd onto K ′ along V induces an isomorphism between Kd/V and

K ′, which in turn is naturally isomorphic to Kd−1, and these isomorphisms preserve the

valuation and give the desired embedding f : Kd/V → Kd. The general case follows by

induction on n using the vector space isomorphism theorems.

We recall an appropriate notion of completeness for valued fields. Recall that a family

{Ci : i ∈ I} of subsets of a set X is nested if for any i, j ∈ I, either Ci ⊆ Cj or Cj ⊆ Ci.

Definition 2.3.2. A valued field K is spherically complete if every nested family of (closed

or open) valuational balls has non-empty intersection.

For the following standard fact, see for example [Sch50, Theorem 5 in Section II.3 +

Theorem 8 in section II.6].

Fact 2.3.3. Every valued field K (with valuation νK, value group ΓK and residue field kK)

admits a spherical completion, i.e. a valued field K̃ (with valuation νK̃, value group ΓK̃ and

residue field kK̃) so that:

1. K̃ is an immediate extension of K, i.e. K̃ is a field extension of K, νK̃ ↾K= νK,

ΓK̃ = ΓK and kK̃ = kK;

2. K̃ is spherically complete.
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We remark that in general a valued field might have multiple non-isomorphic spherical

completions.

Lemma 2.3.4. If K is spherically complete, then every nested family of non-empty convex

subsets of Kd has a non-empty intersection.

Proof. By induction on d. For d = 1, let {Ci}i∈I be a nested family of nonempty convex

sets, so each Ci is a quasi-ball (see Example 2.2.5(1)). If there exists some i ∈ I so that Ci

is the smallest of these under inclusion then any element of Ci is in the intersection of the

whole family. Hence we may assume that for each i ∈ I there exists some i′ ∈ I such that

Ci′ ⊊ Ci. Let ∆i and ∆i′ be the quasi-radii of Ci and Ci′ , respectively. We may assume that

both quasi-balls are around the same point xi ∈ Ci′ (by Remark 2.2.4), hence necessarily

∆i′ ⊊ ∆i. Let ri ∈ ∆i \∆i′ , and let C ′
i be a (open or closed) ball of radius ri around xi. We

have C ′
i ⊆ Ci, so if

⋂
i∈I C

′
i is nonempty, then so is

⋂
i∈I Ci. Hence it is sufficient to show

that {C ′
i}i∈I is nested, and then the intersection is non-empty by spherical completeness of

K. By construction for any i, j ∈ I there exists some ℓ ∈ I such that Cℓ ⊆ C ′
i ∩ C ′

j, so C ′
i

and C ′
j have non-empty intersection, and are thus nested as they are balls.

For d ≥ 2, let {Ci}i∈I be a nested family of nonempty convex sets, and let π1 : Kd → K

be the projection onto the first coordinate. Then {π1 (Ci)}i∈I is a nested family of nonempty

convex sets in K, hence has an intersection point x. Then
{
π−1
1 (x) ∩ Ci

}
i∈I is a nested

family of nonempty convex sets in π−1
1 (x) ∼= Kd−1, which is nonempty by the induction

hypothesis.

Lemma 2.3.5. If C ⊆ Kd is an O-module, and γ ∈ Γ∞, then the set

Xγ =
{
(x1, . . . , xd−1) ∈ Od−1 | ∃α ∈ K ν (α) = γ, (α, αx1, . . . , αxd−1) ∈ C

}
is convex.

Proof. Let x = (x1, . . . , xd−1) , y = (y1, . . . , yd−1) , z = (z1, . . . , zd−1) ∈ Xγ and β1, β2, β3 ∈ O

with β1 + β2 + β3 = 1 be arbitrary. Then there exist some α1, α2, α3 ∈ K with ν (αi) = γ so
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that

(α1, α1x1, . . . , α1xd−1) , (α2, α2y1, . . . , α2yd−1) , (α3, α3z1, . . . , α3zd−1) ∈ C.

Taking α := α1, we have

x′ := (α, αx1, . . . , αxd−1) , y
′ := (α, αy1, . . . , αyd−1) , z

′ := (α, αz1, . . . , αzd−1) ∈ C,

as for every i ∈ [3], α
αi

∈ O, and hence α
αi
v ∈ C for any v ∈ C as C is an O-module. Using

this and convexity of C we thus have(
α, α(β1x1 + β2y1 + β3z1), . . . , α(β1xd−1 + β2yd−1 + β3zd−1)

)
=

β1 (α, αx1, . . . , αxd−1) + β2 (α, αy1, . . . , αyd−1) + β3 (α, αz1, . . . , αzd−1) =

β1x
′ + β2y

′ + β3z
′ ∈ C.

This shows that β1x+β2y+β3z ∈ Xγ, and hence that Xγ is convex by Proposition 2.2.6.

Combining the lemmas, we obtain the following description of the OK-submodules of Kd

for spherically complete K.

Theorem 2.3.6. Suppose K is a spherically complete valued field, d ∈ N≥1, and let C ⊆ Kd

be an O-submodule. Then there exists a complete flag of vector subspaces {0} ⊊ F1 ⊊ . . . ⊊

Fd = Kd and a decreasing sequence of nonempty, upwards-closed subsets ∆1 ⊇ ∆2 ⊇ . . . ⊇

∆d of Γ∞ such that C = {v1 + . . .+ vd | vi ∈ Fi, ν (vi) ∈ ∆i}.

Remark 2.3.7. If Fi,∆i satisfy the conclusion of Theorem 2.3.6 for C, then νKd(C ∩F1) =

νKd(C) = ∆1.

Indeed, any v ∈ C is of the form v = v1 + . . .+ vd with vi ∈ Fi, ν(vi) ∈ ∆i and ∆1 ⊇ ∆i

for all i ∈ [d], hence ν(v) ≥ min {ν(vi) : i ∈ [d]} ∈ ∆1, hence ν(v) ∈ ∆1 as ∆1 is upwards

closed, so ν(C) ⊆ ∆1. Conversely, assume γ ∈ ∆1. If γ = ∞, then ν(0) = ∞ and 0 ∈ F1.

So assume γ ∈ Γ and let v be any non-zero vector in F1, in particular δ := ν(v) ∈ Γ. Taking

α ∈ K so that νK(α) = γ − δ, we have αv ∈ F1 and νKd(αv) = νK(α) + νKd(v) = γ. Note

also that αv = v1 + . . . + vd with v1 := αv, vi := 0 for 2 ≤ i ≤ d, in particular vi ∈ Fi and

ν(vi) ∈ ∆i, so αv ∈ C, hence ∆1 ⊆ ν(F1 ∩ C).
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Proof of Theorem 2.3.6. By induction on d. For d = 1, every O-submodule of K is a quasi-

ball C = {x ∈ K : ν(x) ∈ ∆} for some upwards-closed ∆ ⊆ Γ ∪ {∞} (see Example 2.2.10),

hence we take F1 := K and ∆1 := ∆.

For d > 1, let ∆1 := {γ ∈ Γ∞ | ∃v ∈ C νKd (v) = γ}. Note that ∆1 is nonempty because

it contains ∞ = ν(0). Then there is some i ∈ [d] such that every γ ∈ ∆1 is the valuation of

the ith coordinate of some element of C. To see this, note that for each i ∈ [d], the set

Si := {γ ∈ Γ∞ | ∃v = (v1, . . . , vd) ∈ C νKd(v) = ν(vi) = γ}

is upwards closed in Γ∞. Indeed, assume v = (v1, . . . , vd) ∈ C, γ = ν(vi) = min{ν(vj) : j ∈

[d]} and δ ≥ γ in Γ∞. Let α ∈ K be arbitrary with ν(α) = δ−γ, then α ∈ O, hence αv ∈ C,

and so νKd(αv) = min{ν(αvj) : j ∈ [d]} = ν(αvj) = δ. As we also have ∆1 =
⋃

i∈[d] Si, it

follows that ∆1 = Si for some i ∈ [d] as wanted (and in particular ∆1 is upwards closed in

Γ∞).

Without loss of generality we may assume i = 1. Then, given any γ ∈ ∆1, there is some

(α, y1, . . . , yd−1) ∈ C such that γ = ν(α) ≤ min {ν(yj) : j ∈ [d− 1]}. Taking xj :=
yj
α
∈ O,

we thus have (α, αx1, . . . , αxd−1) ∈ C. Hence for any γ ∈ ∆1, the set

Xγ :=
{
(x1, . . . , xd−1) ∈ Od−1 | ∃α ∈ K ν (α) = γ ∧ (α, αx1, . . . , αxd−1) ∈ C

}
is nonempty, and convex (by Lemma 2.3.5). Note that for γ < δ ∈ Γ∞ we have Xγ ⊆ Xδ,

hence
⋂

γ∈∆1
Xγ ̸= ∅ by Lemma 2.3.4. That is, there exists (x1, . . . , xd−1) ∈ Od−1 such that

∀γ ∈ ∆1 ∃α ∈ K (ν(α) = γ ∧ (α, αx1, . . . , αxd−1) ∈ C). Hence

∀α ∈ K, ν (α) ∈ ∆1 =⇒ (α, αx1, . . . , αxd−1) ∈ C (2.3.1)

(since we have ∃β ∈ K ν(β) = ν(α) ∧ (β, βx1, . . . , βxd−1) ∈ C, so α
β
∈ O and multiplying by

it we get (α, αx1, . . . , αxd−1) ∈ C).

Let F1 := ⟨(1, x1, . . . , xd−1)⟩. Let π : Kd ↠ Kd/F1 be the projection map, f : Kd/F1 ↪→

Kd the valuation preserving embedding given by Lemma 2.3.1, and π′ := f ◦ π : Kd → Kd.
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Note that Kd/F1
∼= Kd−1 as a valued K-vector space by Lemma 2.3.1, and that C̃ := π(C)

is still an O-submodule of Kd/F1. By induction hypothesis there is a full flag {0} ⊊ F̃2 ⊊

. . . ⊊ F̃d = Kd/F1 and upwards-closed subsets νKd/F1
(C̃) = ∆2 ⊇ . . . ⊇ ∆d of Γ∞ satisfying

the conclusion of the theorem with respect to C̃ (the equality νKd/F1
(C̃) = ∆2 is by Remark

2.3.7). Note that

∀v ∈ Kd, νKd(π′(v)) = νKd/F1
(π(v)) ≥ νKd(v). (2.3.2)

In particular we have ∆1 ⊇ ∆2.

Let the subspaces F2, . . . , Fd be the preimages of F̃2, . . . , F̃d in Kd. We let W :=

f(Kd/F1) ⊆ Kd be the image of the valuation preserving embedding f : Kd/F1 ↪→ Kd.

Then we have

C = {v1 + w | v1 ∈ F1, νKd (v1) ∈ ∆1, w ∈ C ∩W} . (2.3.3)

To see this, given an arbitrary v ∈ C, let w := π′(v) and v1 := v − w. As π ◦ f = idKd/F1

by assumption, we have π(w) = π(π′(v)) = π(f(π(v))) = π(v), hence v1 ∈ F1. By (2.3.2)

we have νKd(w) ≥ νKd(v), and thus νKd(v1) ≥ min{νKd(v), νKd(w)} ≥ νKd(v) as well. Thus

νKd(v1) ∈ ∆1, and v1 ∈ F1, which together with (2.3.1) and the definition of F1 implies

v1 ∈ C; hence w = v − v1 ∈ C as well. The opposite inclusion is obvious.

Furthermore, applying the isomorphism f : Kd/F1 → W to

C̃ = C/F1 =
{
v2 + . . .+ vd | vi ∈ F̃i, νKd/F1

(vi) ∈ ∆i

}
we get

C ∩W = {v2 + . . .+ vd | vi ∈ Fi ∩W, νKd (vi) ∈ ∆i} ,

which together with (2.3.3) implies

C = {v1 + . . .+ vd | vi ∈ Fi, ν (vi) ∈ ∆i, vi ∈ W for i ≥ 2} .
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Now C = {v1 + . . .+ vd | vi ∈ Fi, ν (vi) ∈ ∆i} follows because for any such v1, . . . , vd, vi

(for i ≥ 2) can be moved into W by subtracting an element of F1 with valuation in ∆1,

and collecting the differences in with v1. That is, given arbitrary vi ∈ Fi with ν(vi) ∈ ∆i,

let wi := π′ (vi) ∈ W for i ≥ 2, and let w1 := v1 + (v2 − π′ (v2)) + . . . + (vd − π′ (vd)). As

above, using (2.3.2), for each i ≥ 2 we have νKd(vi − π′(vi)) ≥ min{νKd(vi), νKd(π′(vi))} ≥

νKd(vi) ∈ ∆i ⊆ ∆1. Hence νKd (w1) ≥ min{v1, v2 − π′(v2), . . . , vd − π′(vd)} ∈ ∆1. We also

have νKd(wi) ≥ νKd(vi) ∈ ∆i for i ≥ 2 by (2.3.2). Using that f is a one-sided inverse of π

as above, we also have vi − π′(vi) ∈ F1 ⊆ Fi for i ≥ 2. It follows that wi ∈ Fi for all i ∈ [d].

Putting all of this together, we get w1 + . . . + wd = v1 + . . . + vd, wi ∈ Fi, ν (wi) ∈ ∆i, and

wi ∈ W for i ≥ 2.

Remark 2.3.8. Note that as Fd = Kd in Theorem 2.3.6, we have

∆d =
{
γ ∈ Γ∞ | ∀v ∈ Kd, ν (v) = γ =⇒ v ∈ C

}
.

That is, ∆d is the quasi-radius of the largest quasi-ball around 0 contained in C.

Remark 2.3.9. Given a convex set 0 ∈ C ⊆ Kd and any Fi,∆i, i ∈ [d] satisfying the

conclusion of Theorem 2.3.6 with respect to it, for every j ∈ [d] we have

C ∩ Fj = {v1 + . . .+ vj | vi ∈ Fi, ν (vi) ∈ ∆i for all j ∈ [i]} .

Indeed, if x ∈ C ∩ Fj, then x = v1 + . . . + vd ∈ Fj for some vi ∈ Fi with ν(vi) ∈ ∆i for

i ∈ [d]. Then, using that the Fi are increasing under inclusion and ∆i are increasing under

inclusion and upwards closed, vj+1 + . . . + vd ∈ Fj and taking v′j := vj + . . . + vd we have

v′j ∈ Fj, ν(v
′
j) ≥ min {ν(vi) : j ≤ i ≤ d} ∈ ∆j and x = v1 + . . . + vj−1 + v′j. Conversely, any

element x = v1+ . . .+vj with vi ∈ Fi, ν(vi) ∈ ∆i for i ∈ [j] can be written as x = v1+ . . .+vd

with vi := 0 ∈ Fi and ν(vi) = ∞ ∈ ∆i for j + 1 ≤ i ≤ d. So x ∈ C ∩ Fj.

Remark 2.3.10. 1. It follows from the conclusion of Theorem 2.3.6 that the subspace

Fd−1 is a linear hyperplane in Kd, and every element of C differs from an element of

Fd−1 (and hence of Fd−1∩C in view of Remark 2.3.9) by a vector in Kd with valuation

in ∆d (with ∆d as in Remark 2.3.8).
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2. Conversely, Fd−1 can be chosen to be any linear hyperplane H in Kd such that every

element of C differs from an element of H by a vector in Kd with valuation in ∆d.

To see this, let H be such a hyperplane in Kd. Then C ∩ H is a convex subset of

H ∼= Kd−1 containing 0, hence an O-submodule of H by Proposition 2.2.9. Applying

Theorem 2.3.6 to C ∩ H in H (with the induced valuation on H), there are ∆1 ⊇

∆2 ⊇ . . . ⊇ ∆d−1 and a full flag {0} ⊊ F1 ⊊ . . . ⊊ Fd−1 = H, such that C ∩ H =

{v1 + . . .+ vd−1 | vi ∈ Fi, ν (vi) ∈ ∆i}. Then

{v1 + . . .+ vd | vi ∈ Fi, ν (vi) ∈ ∆i} = {w + vd | w ∈ C ∩H, ν (vd) ∈ ∆d} = C.

Example 2.3.11. The assumption of spherical completeness of K is necessary in Theorem

2.3.6. For example, let K :=
⋃

n≥1 k
((
t
1
n

))
be the field of Puiseux series over a field k, and

let K̃ := k
[[
tQ
]]

be the field of Hahn series over k with rational exponents, it is the spherical

completion of K (both fields have value group Q and valuation ν (x) = q where x has leading

term tq; see e.g. [AvdDvdH17, Example 3.3.23]). In particular
∑

n≥1 t
1− 1

n ∈ K̃ \K, and let

C̃ :=

{
α

(
1,
∑
n≥1

t1−
1
n

)
+ v | α ∈ K̃, v ∈ K̃2, νK̃ (α) ≥ 0, νK̃2 (v) ≥ 1

}
⊆ K̃2,

and let C := C̃ ∩K2. Then C̃ is convex in K̃2, and hence C is also convex as a subset of

K2. The basic idea behind why C is not of the form described in Theorem 2.3.6 is that C is

close enough to C̃, and the subspace F1 appearing in the conclusion of Theorem 2.3.6 for C̃

must be close to
〈(

1,
∑

n≥1 t
1− 1

n

)〉
; specifically, it must be

〈(
1, x+

∑
n≥1 t

1− 1
n

)〉
for some

x ∈ K2 with ν (x) ≥ 1, but K2 contains no such subspaces.

Indeed, by Remark 2.3.7, given any Fi,∆i satisfying the conclusion of Theorem 2.3.6

with respect to C, the valuation of every element of C must also be the valuation of some

element of F1 ∩ C. So, to show that C is not of the form described in Theorem 2.3.6, it

suffices to show that C contains elements of valuation arbitrarily close to 0, but that for

every 1-dimensional subspace F1 ⊂ K2, there is some q > 0 in Γ such that every element of

F1 ∩ C has valuation at least q (and note that from the definition of C, every element in it

has positive valuation).
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Claim 2.3.12. For every n ∈ N≥1, there is some v ∈ C with νK2 (v) = 1
n
.

Proof. To see this, note that

t
1
n

(
1,

n−1∑
m=1

t1−
1
m

)
= t

1
n

(
1,
∑
m≥1

t1−
1
m

)
− t

1
n

(
0,
∑
m≥n

t1−
1
m

)
∈ C

as νK
(
t
1
n

)
= 1

n
≥ 0 and νK2

(
t
1
n

(
0,
∑

m≥n t
1− 1

m

))
= 1

n
+
(
1− 1

n

)
≥ 1.

Claim 2.3.13. For every 1-dimensional subspace F1 ⊂ K2, there is some n ∈ Nn≥1 such

that every element of F1 ∩ C has valuation at least 1
n
.

Proof. We prove this by breaking into two cases.

Case 1. F1 = ⟨(0, 1)⟩.

Assume x ∈ F1 ∩ C, then x = (x1, x2) = α
(
1,
∑

n≥1 t
1− 1

n

)
+ v for some α ∈ K, v =

(v1, v2) ∈ K̃2 with νK̃(α) ≥ 0, νK̃2(v) ≥ 1, and x1 = 0, so α = −v1. But 1 ≤ νK̃2(v) =

min{νK̃(v1), νK̃(v2)}, hence νK̃(α) ≥ 1 as well. Since νK̃

(∑
n≥1 t

1− 1
n

)
= 0, it follows

that νK̃2(x) = min
{
νK̃(0), νK̃

(
α
(∑

n≥1 t
1− 1

n

))}
≥ 1. Thus every element of F1 ∩ C has

valuation at least 1.

Case 2. F1 = ⟨(1, x)⟩ for some x ∈ K.

Given any x ∈ K, there must exist some n ∈ N such that νK̃
(
x−

∑
m≥1 t

1− 1
m

)
≤ 1− 1

n
.

Given any v ∈ F1 ∩ C, we have

v = α (1, x) = β

(
1,
∑
m≥1

t1−
1
m

)
+ w

for some α ∈ K, some β ∈ K̃ with νK̃ (β) ≥ 0 and w = (w1, w2) ∈ K̃2 with νK̃2 (w) ≥ 1.

Without loss of generality α ̸= 0, so we have

x =
αx

α
=

(
w2 + β

∑
m≥1

t1−
1
m

)
(w1 + β)−1 =

(
w2

β
+
∑
m≥1

t1−
1
m

)(
1 +

w1

β

)−1

.
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If νK̃ (β) < 1
n
, then

νK̃

(
w1

β

)
> 1− 1

n
, νK̃

(
w2

β

)
> 1− 1

n
, νK̃

((
1 +

w1

β

)−1
)

= 0, and

νK̃

((
1 +

w1

β

)−1

− 1

)
> 1− 1

n
, so

ν

(
x−

∑
m≥1

t1−
1
m

)
= ν

(
w2

β
(w1 + β)−1 +

(∑
m≥1

t1−
1
m

)((
1 +

w1

β

)−1

− 1

))
> 1− 1

n
,

a contradiction to the choice of n. Thus ν (β) ≥ 1
n
, and hence ν (v) ≥ 1

n
.

Thus no 1-dimensional subspace F1 of K2 can fill its desired role in the presentation for

C.

Theorem 2.3.6 implies the following simple description of convex sets over spherically

complete valued fields.

Corollary 2.3.14. If K is a spherically complete valued field and d ∈ N≥1, then the non-

empty convex subsets of Kd are precisely the affine images of ν−1 (∆1)× . . . × ν−1 (∆d) for

some upwards closed ∆1, . . . ,∆d ⊆ Γ∞.

Proof. Let C ⊆ Kd be an affine image of ν−1 (∆1)× . . .× ν−1 (∆d) for some upwards closed

∆1, . . . ,∆d ⊆ Γ∞. Note that ν−1 (∆1)× . . .× ν−1 (∆d) is convex, and an image of a convex

set under an affine map is convex (Example 2.2.5), hence C is convex.

Conversely, let ∅ ≠ C ⊆ Kd be convex. Since the affine images of O-submodules of Kd

give us all non-empty convex sets by Proposition 2.2.9, without loss of generality 0 ∈ C and

C is an O-submodule of Kd. Let {0} ⊊ F1 ⊊ . . . ⊊ Fd = Kd and νKd(C) = ∆1 ⊇ ∆2 ⊇ . . . ⊇

∆d be as given by Theorem 2.3.6 for C. Using Lemma 2.3.1 we can choose v1, . . . , vd ∈ Kd

such that for every i ∈ [d] we have:

1. v1, . . . , vi is a basis for Fi,

2. ν (vi) = 0,
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3. ν (vi + x) ≤ 0 for all x ∈ Fi−1.

Then C is the image of ν−1 (∆1)×. . .×ν−1 (∆d) under the linear map f : Kd → Kd such that

f (ei) = vi, where ei is the ith standard basis vector. Indeed, if x ∈ f (ν−1 (∆1)× . . .× ν−1 (∆d))

then x =
∑d

i=1 civi for some ci with ν(ci) ∈ ∆i. Using (2) this implies ν(civi) = ν(ci) ∈ ∆i,

and civi ∈ Fi, hence x ∈ C. Conversely, let x be an arbitrary element of C, then x =

w1+ . . .+wd for some wi ∈ Fi with ν(wi) ∈ ∆i. Each wi is a linear combination of v1, . . . , vi,

say wi =
∑i

j=1 ci,jvj.

Now we claim that for any i ∈ [d], α ∈ K and v ∈ Fi−1 we have ν(αvi + v) =

min{ν(αvi), ν(v)}. Indeed, replacing v and α by α−1v ∈ Fi−1 and α−1α ∈ K, respectively,

changes both sides of the claimed equality by the same amount, hence we may assume that

α = 0 or α = 1. The first case holds trivially, in the second case we need to show that

ν(vi + v) = min{ν(vi), ν(v)}. If ν(vi) ̸= ν(v) this holds by the ultrametric inequality, so we

assume ν(vi) = ν(v) = 0 (using (2)). Then, using (3), 0 ≥ ν(vi + v) ≥ min{ν(vi), ν(v)} = 0,

so ν(vi + v) = 0 as well.

Applying this claim by induction on i ∈ [d], we get

ν

(
i∑

j=1

ci,jvj

)
= min

j
{ν(ci,jvj)} ,

which using (2) implies ν(wi) = ν
(∑i

j=1 ci,jvj

)
= minj {ν(ci,j)} for each i ∈ [d]. As for

each i ∈ [d] we have ν(wi) ∈ ∆i and ∆i is upwards closed, it follows that ν(ci,j) ∈ ∆i for all

i ∈ [d], j ∈ [i]. Regrouping the summands ci,jvi, it follows that x = w1 + . . .+ wd is a linear

combination of v1, . . . , vd where the coefficient of vi has valuation in ∆i, hence x belongs to

f (ν−1 (∆1)× . . .× ν−1 (∆d)).

We can eliminate the assumption of spherical completeness of the field when only

considering convex hulls of finite sets. We will say that a convex set is finitely generated if

it is the convex hull of a finite set of points.
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Lemma 2.3.15. A subset C ⊆ Kd is a finitely generated O-module if and only if it is a

finitely generated convex set and contains 0.

Proof. If an O-module C ⊆ Kd is generated as an O-module by some finite set X, then it is

the convex hull of X ∪{0}. If a set C is the convex hull of some finite set X and contains 0,

then it is an O-module by Proposition 2.2.9, clearly generated as an O-module by X.

We have the following analog of Theorem 2.3.6 in the finitely generated case over an

arbitrary valued field.

Corollary 2.3.16. Let K be an arbitrary valued field and C a finitely generated convex set

containing 0. Then there is a full flag {0} ⊊ F1 ⊊ . . . ⊊ Fd = Kd and an increasing sequence

γ1 ≤ γ2 ≤ . . . ≤ γd ∈ Γ∞ such that

C = {v1 + . . .+ vd | vi ∈ Fi, ν (vi) ≥ γi} .

Proof. Let C ∋ 0 be the convex hull of some finite set X ⊆ Kd. By a repeated application

of Proposition 2.2.8, C is the convex hull of some d+1 elements v0, . . . , vd from X (possibly

with xi = xj for some i, j). As 0 ∈ C, we have 0 =
∑d

i=0 αivi for some αi ∈ O with∑d
i=0 αi = 1. Let j be such that ν(αj) is minimal among {ν(αi) : 0 ≤ i ≤ d}. In particular

αj ̸= 0, hence vj =
(
1−

∑
i ̸=j

αi

αj

)
0 +

∑
i ̸=j

αi

αj
vi. By the choice of j we have αi

αj
∈ O

for all i ̸= j, hence also 1 −
∑

i ̸=j
αi

αj
∈ O, thus vj ∈ conv ({0} ∪ {vi : i ̸= j}), and so also

C = conv ({0} ∪ {vi : i ̸= j}). Reordering if necessary, we can thus assume that C is the

convex hull of some {0, v1, . . . , vd} ⊆ C with ν (v1) ≤ ν (vi) for each i ∈ [d].

Let F1 := ⟨v1⟩ and γ1 := ν (v1). Let π1 : Kd ↠ Kd/F1 be the projection map, f1 :

Kd/F1 ↪→ Kd the valuation preserving embedding given by Lemma 2.3.1, V1 := f1
(
Kd/F1

)
and π′

1 := f1 ◦ π1 : Kd → Kd.

For i ≥ 2, as explained after (2.3.3) in the proof of Theorem 2.3.6 we have vi−π′
1(vi) ∈ F1;

and by (2.3.2) there and assumption we have ν(π′
1(vi)) ≥ ν(vi) ≥ ν(v1). So vi−π′

1(vi) ∈ Ov1
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for all i ≥ 2, which implies

conv ({0, v1, π′
1 (v2) , . . . , π

′
1 (vd)}) = conv ({0, v1, . . . , vd}) = C.

Without loss of generality we suppose ν (π′
1 (v2)) ≤ ν (π′

1 (vi)) for i ≥ 3, and let F2 :=

⟨v1, π′
1(v2)⟩ and γ2 := ν (π′

1 (v2)) ≥ ν(v1) = γ1 by assumption. By definition of the valuation

on the quotient space, using the properties of f , we have

νK(π
′
1(vi)) = νKd/F1

(π1(vi)) = νKd/F1
(π1(π

′
1(vi))) ≥ νKd(π′

1(vi) + αv1)

for all α ∈ K. As in the proof of Corollary 2.3.14, this implies ν(βπ′
1(vi) + αv1) =

min{βν(π′
1(vi)), ν(αv1))} for all i ≥ 2 and α, β ∈ K. It follows that

{nv1 +mπ′
1(v2) | n,m ∈ O} = {w1 + w2 | wi ∈ Fi, ν (wi) ≥ γi} .

To see that the set on the right is contained in the set on the left, assume x = w1+w2 for some

wi ∈ Fi, ν(wi) ≥ γi. Then w1 = α1v1 and w2 = α2v1+βπ
′
1(v2) for some α1, α2, β ∈ K, and by

the observation above γ2 ≤ ν(w2) = min{ν(α2v1), ν(βπ
′
1(v2))}. So x = (α1+α2)v1+βπ

′
1(v2),

ν((α1 + α2)v1) ≥ γ1 = ν(v1), so (α1 + α2) ∈ O, and ν(β) ≥ γ2, as wanted.

Now we replace vi by π′
1(vi) for i ≥ 2, and let π2 : Kd ↠ Kd/F2 be the projection map, f2 :

Kd/F2 ↪→ Kd the valuation preserving embedding given by Lemma 2.3.1, V2 := f2
(
Kd/F2

)
and π′

2 := f2◦π2 : Kd → Kd. For i ≥ 3, vi−π′
2 (vi) ∈ F2 and vi−π′

2 (vi) ∈ Ov1+Ov2, so again

replacing vi with π′
2 (vi) for i ≥ 3 does not change the convex hull. Again we may assume

ν (π′
2 (v3)) ≤ ν (π′

2 (vi)) for i ≥ 4, and let F3 := ⟨v1, v2, v3⟩ and γ3 := ν (π′
2 (v3)). Repeating

this argument as above d times, we have chosen vectors vi, increasing spaces Fi = ⟨v1, . . . , vi⟩

and increasing γi = ν(vi) ∈ Γ for i ∈ [d] so that

C = conv ({0, v1, . . . , vd}) =

{n1v1 + . . .+ ndvd | ni ∈ O} = {w1 + . . .+ wd | wi ∈ Fi, ν (wi) ≥ γi} .
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2.4 Combinatorial properties of convex sets

The following definition is from [ADH+16, Section 2.4].

Definition 2.4.1. Given a set X and d ∈ N≥1, a family of subsets F ⊆ P (X) has breadth

d if any nonempty intersection of finitely many sets in F is the intersection of at most d of

them, and d is minimal with this property.

Lemma 2.4.2. Let K be a valued field and S a convex subset of Kd.

1. If 0 ∈ S and S is finitely generated, then it is generated as an O-module by a finite

linearly independent set of vectors.

2. Let K̃ be a valued field extension of K and S̃ := convK̃d(S) ⊆ K̃d. Then S̃ ∩Kd = S.

Proof. (1) By Lemma 2.3.15, S is generated as an O-module by some finite set v1, . . . , vn ∈ S.

Assume these vectors are not linearly independent, then 0 =
∑

i∈[n] αivi for some αi ∈ K

not all 0. Let i ∈ [n] be such that ν(αi) ≤ ν(αj) for all j ∈ [n], in particular αi ̸= 0. Then

vi =
∑

j ̸=i
αj

−αi
vj and ν

(
αj

−αi

)
= ν(αj)− ν(αi) ≥ 0, hence αj

−αi
∈ O for all j ̸= i, and S is still

generated as an O-module by the set {vj : j ̸= i}. Repeating this finitely many times, we

arrive at a linearly independent set of generators.

(2) Since convexity is invariant under translates, we may assume 0 ∈ S. Since every

element in the convex hull of a set is in the convex hull of some finite subset, we may also

assume that S is finitely generated as an O-module, and by (1) let v1, . . . , vn ∈ S be a linearly

independent (in the vector space Kd, so n ≤ d) set of its generators. Let vn+1, . . . , vd ∈ Kd

be so that {vi : i ∈ [d]} is a basis of Kd, and say vi = (vi,j : j ∈ [d]) with vi,j ∈ K. Then the

square matrix A := (vi,j : i, j ∈ [d]) ∈Md×d(K) is invertible, so A−1 ∈Md×d(K) ⊆Md×d(K̃),

so A is also invertible in Md×d(K̃), hence {vi : i ∈ [d]} are linearly independent vectors in

K̃d as well. But now if
∑

i∈[n] αivi = u for some αi ∈ K̃ and u ∈ Kd, then necessarily αi ∈ K

for all i (otherwise we would get a non-trivial linear combination of v1, . . . , vd in K̃d). In
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particular, any element of the OK̃-module generated by v1, . . . , vn which is in Kd already

belongs to the OK-module generated by v1, . . . , vn, hence S̃ ∩Kd = S.

We can now demonstrate an (optimal) finite bound on the breadth of the family of convex

sets over valued fields. In sharp contrast, over the reals there is no finite bound on the breadth

already for convex subsets of R2 (for any n, a convex n-gon in R2 is the intersection of n

half-planes, but not the intersection of any fewer of them).

Theorem 2.4.3. Let K be a valued field and d ≥ 1. Then the family ConvKd has breadth d.

That is, any nonempty intersection of finitely many convex subsets of Kd is the intersection

of at most d of them.

Proof. The family ConvKd cannot have breadth less than d because the d coordinate-aligned

hyperplanes are convex, have common intersection {0}, but any d− 1 of them intersect in a

line.

We now show that ConvKd has breadth at most d, by induction on d. Then case d = 1

is clear. For d > 1, assume C1, . . . , Cn ∈ ConvKd with n ≥ d are convex and satisfy⋂
i∈[n]Ci ̸= ∅. Translating, we may assume 0 ∈

⋂
i∈[n]Ci.

We may also assume that K is spherically complete. Indeed, let K̃ be a spherical

completion of K as in Fact 2.3.3, and let C̃i := convK̃d(Ci) ∈ ConvK̃d . By Lemma 2.4.2(2),

C̃i ∩ Kd = Ci for each i ∈ [n]. Hence
⋂

i∈[n] C̃i ̸= ∅, and if
⋂

i∈[n] C̃i =
⋂

i∈S C̃i for some

S ⊆ [n] with |S| ≤ d, then also
⋂

i∈[n]Ci =
⋂

i∈S Ci.

Then let the vector subspaces {0} ⊊ F1 ⊊ . . . ⊊ Fd = Kd and the upwards closed subsets

∆1 ⊇ ∆2 ⊇ . . . ⊇ ∆d of Γ∞ be as given by Theorem 2.3.6 for the convex set C := C1∩. . .∩Cn.

By Remark 2.3.8 we have

∆d =
{
γ ∈ Γ∞ | ∀v ∈ Kd, ν (v) = γ =⇒ v ∈ C1 ∩ . . . ∩ Cn

}
.

It follows that there is some id ∈ [n] such that in fact

∆d =
{
γ ∈ Γ∞ | ∀v ∈ Kd, ν (v) = γ =⇒ v ∈ Cid

}
(2.4.1)
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(since these are finitely many upwards closed sets in Γ, their intersection is already given by

one of them).

Let {0} ⊊ F ′
1 ⊊ . . . ⊊ F ′

d = Kd and ∆′
1 ⊇ ∆′

2 ⊇ . . . ⊇ ∆′
d be as given by Theorem 2.3.6

for Cid . By Remark 2.3.10(1), F ′
d−1 is a linear hyperplane so that every element of Cid differs

from an element of F ′
d−1 ∩Cid by a vector with valuation in ∆′

d. As ∆d = ∆′
d by (2.4.1) and

C ⊆ Cid , by Remark 2.3.10(1) we may assume that Fd−1 = F ′
d−1, hence every element in Cid

differs from an element of Fd−1 ∩ Cid by a vector with valuation in ∆d.

Consider C ∩ Fd−1 = C1 ∩ . . . ∩ Cn ∩ Fd−1 = (C1 ∩ Fd−1) ∩ . . . ∩ (Cn ∩ Fd−1). Note that

each Ci ∩ Fd−1 is a convex subset of Fd−1
∼= Kd−1, so by induction hypothesis there exist

i1, . . . , id−1 ∈ [n] such that

Ci1 ∩ . . . ∩ Cid−1
∩ Fd−1 = C1 ∩ . . . ∩ Cn ∩ Fd−1 = C ∩ Fd−1. (2.4.2)

Let x ∈ Ci1 ∩ . . . ∩ Cid be arbitrary. As x ∈ Cid , by the choice of Fd−1, x = w + vd for

some w ∈ Fd−1 and vd ∈ Kd with ν(vd) ∈ ∆d. By the choice of ∆d we have in particular

vd ∈ Ci1 ∩ . . . ∩ Cid . And as each Ci is a module, it follows that also w ∈ Ci1 ∩ . . . ∩ Cid .

Combining this with (2.4.2) and using Remark 2.3.9 (for j = d− 1) we thus have

Ci1 ∩ . . . ∩ Cid = {w + vd | w ∈ Ci1 ∩ . . . ∩ Cid ∩ Fd−1, ν (vd) ∈ ∆d} =

{w + vd | w ∈ C ∩ Fd−1, ν (vd) ∈ ∆d} =

{v1 + . . .+ vd | vi ∈ Fi, ν (vi) ∈ ∆i} =

C1 ∩ . . . ∩ Cn.

Definition 2.4.4. 1. A family of sets F ⊆ P (X) has Helly number k ∈ N≥1 if given any

n ∈ N and any sets S1, . . . , Sn ∈ F , if every k-subset of {S1, . . . , Sn} has nonempty

intersection, then
⋂

i∈[n] Si ̸= ∅.

2. The Helly number of F refers to the minimal k with this property (or ∞ if it does not

exist).
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3. We say that F has the Helly property if it has a finite Helly number.

Theorem 2.4.5. Let K be a valued field and d ≥ 1. Then the Helly number of ConvKd is

d+ 1.

Proof. Let n be arbitrary, and let S1, . . . , Sn ⊆ Kd be convex sets so that any d+ 1 of them

have a non-empty intersection. We will show by induction on n that S1 ∩ . . . ∩ Sn ̸= ∅.

Base case: n = d+ 2.

By assumption for each i ∈ [d+ 2] there exists some xi ∈ Kd so that xi ∈
⋂

j∈[d+2]\{i} Sj.

By Proposition 2.2.8 there exists some i∗ ∈ [d+ 2] so that xi∗ ∈ conv ({xi | i ̸= i∗}). By the

choice of the xi’s we have xi∗ ∈ Si for all i ̸= i∗. We also have xi ∈ Si∗ for all i ̸= i∗, Si∗ is

convex and xi∗ ∈ conv ({xi | i ̸= i∗}), hence xi∗ ∈ Si∗ . Thus xi∗ ∈
⋂

i∈[d+2] Si, as wanted.

Inductive step: n > d+ 2.

Let S̃n−1 := Sn−1 ∩ Sn, in particular S̃n−1 is convex. By induction hypothesis, any

n − 1 sets from {S1, . . . , Sn} have a non-empty intersection. Hence any n − 2 sets from{
S1, . . . , Sn−2, S̃n−1

}
have a non-empty intersection. As n − 2 ≥ d + 1 by assumption,

applying the induction hypothesis again we get

S1 ∩ . . . ∩ Sn = S1 ∩ . . . ∩ Sn−2 ∩ S̃n−1 ̸= ∅.

This completes the induction, and shows that ConvKd has Helly number d+ 1.

It remains to show that ConvKd does not have Helly number d. Let ei ∈ Kd be the

ith standard basis vector. In particular the set E := {0, e1, . . . , ed} is affinely independent,

hence the intersection of the affine spans of its d+ 1 maximal proper subsets is empty. The

convex hull of a subset of Kd is contained in its affine hull, hence the intersection of the d+1

convex hulls of its maximal proper subsets is also empty. But for any d among the (d + 1)

maximal proper subsets of E, some element of E belongs to their intersection, and hence in

particular the intersection of their convex hulls is non-empty.
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We recall some terminology around the Vapnik-Chervonenkis dimension (and refer to

[ADH+16, Sections 1 and 2] for further details).

Definition 2.4.6. Let F ⊆ P(X) be a family of subsets of X.

1. For a subset Y ⊆ X, we let F ∩ Y := {S ∩ Y : S ∈ Y } ⊆ P(Y ).

2. We say that F shatters a subset Y ⊆ X if F ∩ Y = P(Y ).

3. The VC-dimension of F , or VC(F), is the largest k ∈ N (if one exists) such that F

shatters some subset of X size k. If F shatters arbitrarily large finite subsets of X,

then it is said to have infinite VC-dimension.

4. The dual family F∗ ⊆ P (F) is given by

F∗ = {Sx | x ∈ X}, where Sx = {A ∈ F | x ∈ A}.

5. The dual VC-dimension of F , or VC∗(F), is the VC-dimension of F∗. Equivalently,

it is the largest k ∈ N (or ∞ if no such k exists) such that there are sets S1, . . . , Sk ∈

F that generate a Boolean algebra with 2k atoms (i.e. for any distinct I, J ⊆ [k],⋂
i∈I Si ∩

⋂
i∈[k]\I (X \ Si) ̸=

⋂
i∈J Si ∩

⋂
i∈[k]\J (X \ Si)).

6. The shatter function πF : N → N of F is

πF(n) := max {|F ∩ Y | : Y ⊆ X, |Y | = n} .

7. By the Sauer-Shelah lemma (see e.g. [ADH+16, Lemma 2.1], if VC(F) ≤ d, then

πF(n) ≤
(
e
d

)d
nd for all n ≥ d (and πF(n) = 2n for all n if VC(F) = ∞).

8. The VC-density of F , or vc(F), is the infimum of all r ∈ R>0 so that πF(n) = O(nr),

and ∞ if there is no such r. (In particular vc(F) ≤ VC(F).)

9. Finally, we define the dual shatter function π∗
F := πF∗ and the dual VC-density

vc∗(F) := vc(F∗) of the family F .
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Remark 2.4.7. Note that if F ⊆ P(X) and Y ⊆ X, then VC(F ∩ Y ) ≤ VC(F) and

VC∗(F ∩ Y ) ≤ VC∗(F).

The following results is in stark contrast with the situation for the family of convex sets

over the reals, where already the family of convex subsets of R2 has infinite VC-dimension

(e.g., any set of points on a circle is shattered by the family of convex hulls of its subsets).

Theorem 2.4.8. Let K be a valued field and d ≥ 1. Then the family ConvKd has VC-

dimension d+ 1.

Proof. We have VC (ConvKd) ≥ d+1 since the set E := {0, e1, . . . , ed} ⊆ Kd, with ei the ith

vector of the standard basis, is shattered by ConvKd . Indeed, the convex hull of any subset

is contained in its affine span, and for any S ⊆ E, aff(S) does not contain any of the points

in E \ S.

On the other hand, VC (ConvKd) ≤ d+ 1 as no subset Y of Kd with |Y | ≥ d+ 2 can be

shattered by ConvKd . Indeed, by Proposition 2.2.8, at least one of the points of Y belongs

to every convex set containing all the other points of Y .

The dual VC-dimension of a family of sets is bounded by its breadth.

Fact 2.4.9. [ADH+16, Lemma 2.9] Let F ⊆ P(X) be a family of subsets of X of breadth at

most d. Then also VC∗(F) ≤ d.

Using it, we get the following:

Theorem 2.4.10. For any valued field K and d ≥ 1, the family ConvKd has dual VC-

dimension d.

Proof. The dual VC-dimension of ConvKd is at least d because the d coordinate-aligned

(convex) hyperplanes in Kd generate a Boolean algebra with 2d atoms.

Conversely, the breadth of ConvKd is d by Theorem 2.4.3, hence by Fact 2.4.9 its dual

VC-dimension is also at most d.
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Definition 2.4.11. 1. A family of sets F ⊆ P(X) has fractional Helly number k ∈ N≥1

if for every α ∈ R>0 there exists β ∈ R>0 so that: for any n ∈ N and any sets

S1, . . . , Sn ∈ F (possibly with repetitions), if there are ≥ α
(
n
k

)
k-element subsets of the

multiset {S1, . . . , Sn} with a non-empty intersection, then there are ≥ βn sets from

{S1, . . . , Sn} with a non-empty intersection.

2. The fractional Helly number of F refers to the minimal k with this property. Say that

F has the fractional Helly property if it has a fractional Helly number.

Note that any finite family of sets trivially has fractional Helly number 1 by choosing

β sufficiently small with respect to the size of F . We will use the following theorem of

Matoušek.

Fact 2.4.12. [Mat04, Theorem 2] Let F ⊆ P(X) be a set system whose dual shatter function

satisfies π∗
F(n) = o(nk), i.e. limn→∞ π∗

F(n)/n
k = 0, where k is a fixed integer. Then F has

fractional Helly number k.

Remark 2.4.13. Moreover, if VC∗(F) = d <∞, then the fractional Helly number is ≤ d+1,

and the β witnessing this can be chosen depending only on d and α (and not on the family

F).

Indeed, by Definition 2.4.6, if VC∗(F) ≤ d, then π∗
F(n) ≤

(
e
d

)d
nd for all n ≥ d, hence

π∗
F(n) ≤ cnd for all n ∈ N, where c = c(d) :=

(
e
d

)d
+ 2d. In particular we can choose

m = m(d, α) so that π∗
F(m) < 1

4
α
(

m
d+1

)
. Then it follows from the proof of [Mat04, Theorem

2] that β = 1
2m

works for all n ≥ m
β
= 2m2, and trivially β = 1

2m2 works for all n ≤ 2m2,

hence β := β(α, d) := 1
2m2 works for all n ∈ N.

Using this, we get the following:

Theorem 2.4.14. If K is a valued field, d ≥ 1, and X ⊆ Kd is an arbitrary subset, then

the fractional Helly number of the family

ConvKd ∩X = {C ∩X : X ∈ ConvKd} ⊆ P(X)
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is at most d+1. Moreover, β in Definition 2.4.11 can be chosen depending only on d and α

(and not on the field K or set X). And if K is infinite, then the fractional Helly number of

the family ConvKd is exactly d+ 1.

Proof. By Fact 2.4.12 we have that the fractional Helly number of a set system is at most

the smallest integer larger than its dual VC-density. Dual VC-density is, in turn, at most its

dual VC-dimension. Also for any set X ⊆ Kd we have VC∗ (ConvKd ∩X) ≤ VC∗ (ConvKd)

by Remark 2.4.7. So ConvKd ∩X has dual VC-density at most d by Theorem 2.4.10, hence

its fractional Helly number is at most d + 1 by Fact 2.4.12. And an appropriate β can be

chosen depending only on d and α by Remark 2.4.13.

To show that the fractional Helly number of ConvKd is at least d+ 1 when K is infinite,

we can use the standard example with affine hyperplanes in general position. We include the

details for completeness. First note that as the field K is infinite, for any K-vector space V

of dimension k and v ∈ V \ {0} there exists an infinite set S ⊆ V so that v ∈ S and any k

vectors from S are linearly independent. This is clear for k = 1 by taking any infinite set of

non-zero vectors, so assume that k > 1. By induction on i ∈ N≥k we can find sets Si such

that v ∈ Si, |Si| ≥ i and every k vectors from Si are linearly independent, for all i. Let Sk

be any basis of V containing v. Assume i > k and Si satisfies the assumption. Since K is

infinite, V is not a union of finitely many proper subspaces, in particular there exists some

w ∈ V \
⋃

s⊆Si,|s|=k−1

⟨s⟩.

Let Si+1 := Si ∪ {w}. Since in particular any s ⊆ Si with |s| = k− 1 is linearly independent

by the inductive assumption, it follows that s∪ {w} is also linearly independent, hence Si+1

satisfies the assumption. Finally, S :=
⋃

i∈N≥k
Si is as wanted.

In particular, we can find an infinite set of vectors S in Kd×K so that any d+1 of them

are linearly independent and the standard basis vector ed+1 ∈ S. Then

X := {⟨v,−⟩ : v ∈ S} ⊆
(
Kd ×K

)∗
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is an infinite set of dual vectors such that any d + 1 of them are linearly independent, and

it contains the projection map onto the last coordinate πd+1 := ⟨ed+1,−⟩ : (x1, . . . , xd+1) 7→

xd+1. Consider the family

H := {ker (f) | f ∈ X \ {πd+1}} ⊆ P
(
Kd ×K

)
of kernels of these dual vectors (excluding the projection map onto the last coordinate), and

let

H′ :=
{{
v ∈ Kd | (v, 1) ∈ H

}
| H ∈ H

}
⊆ P

(
Kd
)
.

Then H′ is an infinite family of affine hyperplanes in Kd, and we wish to show that any d

element of H′ intersect in a point, and any d + 1 elements of H′ have empty intersection.

For any pairwise distinct f1, . . . , fd ∈ X \ {πd+1}, by linear independence

dim (ker (f1) ∩ . . . ∩ ker (fd)) = d+ 1− dim (⟨f1, . . . , fd⟩) = 1.

And by their linear independence with πd+1,

dim (ker (f1) ∩ . . . ∩ ker (fd) ∩ ker (πd+1)) = 0.

That is, ker (f1)∩ . . .∩ker (fd) is a line in Kd×K that intersects ker (πd+1) = Kd×{0} only

at the origin, and thus must also intersect Kd × {1} in a single point; this shows that every

d elements of H′ intersect in a point. And any pairwise distinct f1, . . . , fd+1 ∈ X \ {πd+1}

span
(
Kd ×K

)∗ by linear independence, so ker (f1) ∩ . . . ∩ ker (fd+1) = {0}, and thus has

empty intersection with Kd × {1}. This shows that every d + 1 elements of H′ have empty

intersection.

Using α = 1, for any β > 0, take an arbitrary n ≥ d+1
β

. Let H1, . . . , Hn ∈ H′ be any

distinct hyperplanes from this collection. All d-subsets (so, α
(
n
d

)
of them) of {H1, . . . , Hn}

have an intersection point, but there are no βn ≥ d+1 of them with a common intersection

point. Therefore ConvKd does not have fractional Helly number d.

Note that Theorems 2.4.5 and 2.4.14 replicate results for real convex sets, while Theorems

2.4.3, 2.4.8, and 2.4.10 do not: as we have already remarked, ConvR2 has infinite breadth,
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VC-dimension, and dual VC-dimension. The following result is somewhere in between: it is

a much stronger version of the Tverberg theorem for real convex sets (note that any element

of the non-empty set Xr in the statement of the theorem belongs to the convex hulls of each

of the sets Xi, i ∈ [r] — which gives the usual conclusion of Tverberg’s theorem over the

reals).

Theorem 2.4.15. Let K be a valued field and d, r ∈ N≥1. Then any set X ⊆ Kd with

|X| ≥ (d+ 1) (r − 1) + 1

points in Kd can be partitioned into subsets X1, . . . , Xr such that |Xi| = d + 1 for i < r,

|Xr| = |X| − (d+ 1) (r − 1), and conv (Xi) ⊇ conv (Xj) for all i ≤ j ∈ [r].

Proof. Since any finitely generated convex set is the convex hull of some d+1 points from it by

Proposition 2.2.8, we can findX1 ⊆ X with |X1| = d+1 and conv (X1) = conv (X), X2 ⊆ X\

X1 with |X2| = d+1 and conv (X2) = conv (X \X1), and so on: once X1, . . . , Xi−1 have been

chosen, pick Xi ⊆ X \
(⋃i−1

j=1Xj

)
such that |Xi| = d+ 1, conv (Xi) = conv

(
X \

⋃i−1
j=1Xj

)
,

and then let Xr consist of everything left over at the end.

From this strong Tverberg theorem and the fractional Helly property, we finally get an

analog of the result due to Boros-Füredi [BF84] and Bárány [Bár82] on the common points in

the intersections of many “simplices” over valued fields (note that the conclusion is actually

stronger than over the reals: the common point comes from the set X itself). This answers

a question asked by Kobi Peterzil and Itay Kaplan. Our argument is an adaptation of the

second proof in [Mat02, Theorem 9.1.1].

Theorem 2.4.16. For each d ≥ 1 there is a constant c = c(d) > 0 such that: for any valued

field K and any finite X ⊆ Kd (say n := |X|), there is some a ∈ X contained in the convex

hulls of at least c
(

n
d+1

)
of the

(
n

d+1

)
subsets of X of size d+ 1.

Proof. Let X ⊆ Kd with |X| = n be given, and let

F := ConvKd ∩X = {C ∩X : C ∈ ConvKd}
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be the family of all subsets of X cut out by the convex subsets of Kd. Let (Si)i∈[N ] with

Si ∈ ConvKd be the sequence listing all convex hulls of subsets of X of size d + 1 in an

arbitrary order (possibly with repetitions). Then N =
(

n
d+1

)
, and for a (d + 1)-element

subset Y ⊆ X we let g(Y ) ∈ [N ] be the index at which conv(Y ) appears in this sequence.

For each i ∈ [N ] let S ′
i := Si ∩ X ∈ F . It is thus sufficient to show that there exists

some α > 0, depending only on d, such that at least α
(

N
d+1

)
of the (d+ 1)-element subsets

I ⊆ [N ] satisfy
⋂

i∈I S
′
i ̸= ∅ — as then Theorem 2.4.14 applied to F ⊆ P(X) shows the

existence of c > 0 depending only on α, d, and hence only on d, so that for some I ⊆ [N ]

with |I| ≥ cN = c
(

n
d+1

)
there exists some a ∈

⋂
i∈I S

′
i ⊆

⋂
i∈I Si (in particular a ∈ X).

Now we find an appropriate α. For any (d+ 1)2-element subset Y ⊆ X, by Theorem

2.4.15 (with r := d + 1), we can fix a partition of Y into d + 1 disjoint parts Y1, . . . , Yd+1,

each of which has d+ 1 elements, and so that conv(Yi) ⊇ conv(Yj) for all i ≤ j ∈ [d+ 1]. In

particular any element of the non-empty set Y[d+1] ⊆ X belongs to
⋂

i∈[d+1] (conv(Yi) ∩X) =⋂
i∈[d+1]

(
S ′
g(Yi)

)
. As g is a bijection, Y 7→ {g(Yi) : i ∈ [d+ 1]} gives a function f from

(d+ 1)2-element subsets of X to (d+ 1)-element subsets I ⊆ [N ] so that
⋂

i∈I S
′
i ̸= ∅.

Moreover, f is an injection. Indeed, given a set {ji : i ∈ [d + 1]} in the image of f , as g is

a bijection, there is a unique set {Y1, . . . , Yd+1} with Yi ⊆ X disjoint of size d + 1 so that

g(Yi) = ji for all i ∈ [d+ 1], and there can be only one set Y ⊆ X of size (d+ 1)2 for which

it is a partition. If follows that the number of sets I ⊆ [N ] with
⋂

i∈I S
′
i ̸= ∅ is at least(

n

(d+ 1)2

)
= Ω

(
n(d+1)2

)
≥ α

(
N

d+ 1

)
for some sufficiently small α depending only on d.

2.5 Final remarks and questions

The results of Section 2.4 imply the following analog of the celebrated (p, q)-theorem of Alon

and Kleitman [AK92] for convex sets over valued fields.
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Corollary 2.5.1. For any d, p, q ∈ N≥1 with p ≥ q ≥ d + 1 there exists T ∈ N such that:

if K is a valued field and F is a family of convex subsets of Kd such that among every p

sets of F , some q have a non-empty intersection, then there exists a T -element set Y ⊆ Kd

intersecting all sets of F .

Corollary 2.5.1 follows formally by applying [AKMM02, Theorem 8] since the family ConvKd

has fractional Helly property (Theorem 2.4.14) and is closed under intersections. Alternatively,

it follows with a slightly better bound on T by combining the fractional Helly property with

the existence of ε-nets for families of bounded VC-dimension (Theorem 2.4.8), as outlined at

the end of [Mat04, Section 1]. The problem of determining the optimal bound on T (p, q, d)

is widely open over the reals (see [BK21, Section 2.6]), and we expect that it might be easier

in the valued fields setting.

Kalai [Kal84] and Eckhoff [Eck85] proved that in the fractional Helly property for convex

sets over the reals, one can take β(d, α) = 1− (1− α)
1

d+1 (and this bound is sharp).

Problem 2.5.2. What is the optimal dependence of β on d, α in Theorem 2.4.14?

We expect that the colorful Tverberg theorem also holds over valued fields, however the

proofs for convex sets over the reals rely on topological arguments not readily available in

the valued field context:

Conjecture 2.5.3. For any integers r, d ≥ 2 there exists t ≥ r such that: for any valued

field K and X ⊆ Kd with |X| = t (d+ 1), partitioned into d + 1 color classes C1, . . . , Cd+1

each of size t, there exist pairwise disjoint X1, . . . , Xr ⊆ X with |Xi ∩ Cj| = 1 for i ∈ [r] and

j ∈ [d+ 1], and
⋂

i∈[r] conv (Xi) ̸= ∅.

It would formally imply (see e.g. [Mat02, Section 9.2]) the “second selection lemma” over

valued fields generalizing Theorem 2.4.16:

Conjecture 2.5.4. For each d ∈ N≥1 there exist c, s > 0 such that: for any valued field K,

α ∈ (0, 1] and n ∈ N, for every X ⊆ Kd with |X| = n, and every family F of (d+1)-element
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subsets of X with |F| ≥ α
(

n
d+1

)
, there is a point contained in the convex hulls of at least

cαs
(

n
d+1

)
of the elements of F .

Finally, Corollary 2.3.14 has the following immediate model-theoretic application.

Remark 2.5.5. If K is a spherically complete valued field, then every convex subset of Kd

is definable in the expansion of the field K by a predicate for each Dedekind cut of the value

group (so in particular definable in Shelah expansion of K by all externally definable sets

[She09, CS13]). And conversely, every Dedekind cut of the value group is definable in the

expansion of K by a predicate for each O-submodule of K. In particular, if K has value

group Z, then all convex subsets of Kd form a definable family.

Example 2.5.6. In contrast, naming a single (bounded) convex subset of R2 in the field of

reals allows to define the set of integers. Indeed, we can define a continuous and piecewise

linear function f : [0, 1] → [0, 1] such that

C := {(x, y) : x ∈ [0, 1], 0 ≤ y ≤ f(x)}

is convex but the set of points where f is not differentiable is exactly
{

1
n
: n ∈ N≥2

}
. Now

in the field of reals with a predicate for C we can define f and the set of points where it is

not differentiable, hence N is also definable.
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CHAPTER 3

Semi-equational theories

3.1 Introduction

Equations and equational theories were introduced by Srour [Sro88a, Sro88b, Sro90] in order

to distinguish “positive” information in an arbitrary first order theory, i.e. to find a well

behaved class of “closed” sets among the definable sets, by analogy to the algebraic sets

among the constructible ones in algebraically closed fields. We recall the definition:

Definition 3.1.1. 1. A partitioned formula φ(x, y), with x, y tuples of variables, is an

equation (with respect to a first-order theory T ) if there do not exist M |= T and

tuples (ai, bi : i ∈ ω) in M such that M |= φ (ai, bj) for all j < i, and M |= ¬φ (ai, bi)

for all i.

2. A theory T is equational if every formula φ(x, y), with x, y arbitrary finite tuples

of variables, is equivalent in T to a Boolean combination of finitely many equations

φ1(x, y), . . . , φn(x, y).

It is immediate from the definition that every equational theory is stable. Structural

properties of equational theories in relation to forking and stability theory are studied in

[PS84, HS89, Jun00, JK02, JL01]. Many natural stable theories are equational; [HS89]

provided the first example of a stable non-equational theory. More recently it was demonstrated

that the stable theory of non-abelian free groups is not equational [Sel12, MS17], and further

examples are constructed in [MPZ21]. It is demonstrated in [MPZ20] that all theories of
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separably closed fields are equational (generalizing earlier work of Srour [Sro86]). See also

[O’H11b] for an accessible introduction to equationality.

In this paper we propose a generalization of equations and equational theories to the

larger class of NIP theories (see Section 3.2.1 for a more detailed discussion):

Definition 3.1.2. 1. A partitioned formula φ(x, y) is a semi-equation if there is no

infinite sequence (ai, bi : i ∈ ω) such that for all i, j ∈ ω, |= φ (ai, bj) ⇐⇒ i ̸= j.

2. A partitioned formula φ(x, y) is a weak semi-equation if there does not exist an (∅-)

indiscernible sequence (ai : i ∈ Z) and tuple b such that the subsequence (ai : i ∈ Z \ {0})

is indiscernible over b, |= φ (ai, b) for all i ∈ Z \ {0}, but |= ¬φ (a0, b).

3. A theory is (weakly) semi-equational if every formula is a Boolean combination of

(weak) semi-equations.

Semi-equations are in particular weak semi-equations, every weakly semi-equational theory

is NIP, and in a stable theory all three notions coincide (see Proposition 3.2.13). Some

parts of the basic theory of equations naturally generalize to (weak) semi-equations, but

there are also some new phenomena and complications appearing outside of stability. In

particular, weak semi-equationality provides a simultaneous generalization of equationality

and distality, bringing out some curious parallels between those two notions (see Section 3.4).

In this paper we develop the basic theory of (weak) semi-equations, and investigate (weak)

semi-equationality in some examples. We view this as a first step, and a large number of

rather basic questions remain open and can be found throughout the paper.

In Section 3.2.1 we define weak semi-equations (Definition 3.2.1), semi-equations (Definition

3.2.3), (weakly) semi-equational theories (Definition 3.2.4), and provide some equivalent

characterizations in terms of indiscernibles. We discuss closure of (weak) semi-equations

under Boolean combinations (Proposition 3.2.6), reducts and expansions (Proposition 3.2.9).

In Section 3.2.2 we discuss how (weak) semi-equationality relates to the more familiar notions:

all weakly semi-equational theories are NIP, distal theories are weakly semi-equational, and
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in a stable theory a formula is an equation if and only if it is a (weak) semi-equation

(Proposition 3.2.13). In Section 3.2.3 we introduce some quantitive parameters associated

to semi-equations. This parameter is related to breadth (Definition 3.2.19) of the family

defined by the instances of a formula, and we observe that a formula is a semi-equation

if and only if the family of its instances has finite breadth (Proposition 3.2.20). The case

when this parameter is minimal, i.e. 1-semi-equations, provide a generalization of weakly

normal formulas characterizing 1-based stable theories (Proposition 3.2.22). Hence 1-semi-

equationality can be viewed as a form of “linearity”, or “1-basedeness” for NIP theories. We

discuss its connections to a different form of “linearity” considered in [BCS+21], namely basic

relations and almost linear Zarankiewicz bounds (see Proposition 3.2.26 and Remark 3.2.27),

observing in particular that (2, 1)-semi-equational theories do not define infinite fields.

In Section 3.3 we consider some examples of semi-equational theories. In Section 3.3.1 we

show that an o-minimal expansion of a group is linear if and only if it is (2, 1)-semi-equational.

It remains open if the field of reals is semi-equational (Problem 3.3.3). We demonstrate

that arbitrary unary expansions of linear orders (Section 3.3.2) and many ordered abelian

groups (Section 3.3.4) are 1-semi-equational. In Section 3.3.5 we demonstrate that the

theory of infinitely-branching dense trees is semi-equational (Theorem 3.3.16), but not 1-

semi-equational (even after naming parameters, see Theorem 3.3.17 and Corollary 3.3.18).

Semi-equationality of arbitrary trees remains open (Problem 3.3.21). In Section 3.3.3 we

observe that dense circular orders are not semi-equational, but become 1-semi-equational

after naming a single constant (in contrast to equationality being preserved under naming

and forgetting constants).

In Section 3.4 we consider the relation of weak semi-equationality and distality in more

detail. We show that in an NIP theory, weak semi-equationality of a formula is equivalent

to the existence of a one-sided strong honest definition for it (Theorem 3.4.5). This is

a simultaneous generalization of the existence of strong honest definitions in distal theories

from [CS15] and the isolation property for the positive part of φ-types for equations (replacing

58



a conjunction of finitely many instances of φ by some formula θ, see Fact 3.4.3). We also

make some remarks about forking for weak semi-equations.

In Section 3.5 we provide some examples of NIP theories that are not weakly semi-

equational. First, in Section 3.5.1 we provide a sufficient criterion for when a formula is not

a Boolean combination of weak semi-equations (generalizing the criterion for equations from

[MS17]). We then apply it to show that the theory of dense valued trees (Section 3.5.2)

and many theories of valued fields with an infinite stable residue field, e.g. ACVF (Section

3.5.3), are not weakly semi-equational. In both cases the proof relies on a detailed analysis

of the behavior of indiscernible sequences. It remains open if the field Qp is semi-equational

(Problem 3.5.19).

In Section 3.6 we consider preservation of weak semi-equationality in expansions by

naming a new predicate, partially adapting a result for NIP from [CS13]. Namely, we

demonstrate in Theorem 3.6.4 that if M |= T is distal, A is a subset of M with a distal

induced structure and the pair (M,A) is almost model complete (i.e. every formula in the

pair is equivalent to a Boolean combination of formulas which only quantify existentially over

the predicate, see Definition 3.6.3), then the pair (M, A) is weakly semi-equational. This

implies in particular that dense pairs of o-minimal structures are weakly semi-equational

(but not distal by [HN17]).

Finally, in Section 3.7 we establish a sufficient criterion for when a formula is not a

Boolean combination of semi-equations, which we hope will find applications in the future.

In comparison to the case of weak semi-equations in Section 3.5.1, the situation is complicated

by the fact that semi-equations are not closed under disjunction. This requires working with

indiscernible arrays of higher dimension, see Proposition 3.7.6 for the details.
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3.2 Semi-equations and their basic properties

Let T be a complete theory in a language L, we work inside a sufficiently saturated and

homogeneous monster model M |= T . All sequences of elements are assumed to be small

relative to the saturation of M, and we write x, y, . . . to denote finite tuples of variables.

Given two linear orders I, J , I + J denotes the linear order given by their sum (i.e. I < J);

and (0) denotes a linear order with a single element. We write N = {0, 1, . . .} and for k ∈ N,

[k] = {1, . . . , k}. Given a partitioned formula φ(x, y), we let φ∗(y, x) := φ(x, y).

3.2.1 (Weak) semi-equations

Definition 3.2.1. A (partitioned) formula φ (x, y) is a weak semi-equation (in T ) if there

do not exist infinite linear orders IL and IR, b ∈ My and an (∅-)indiscernible sequence

(ai : i ∈ IL + (0) + IR)

with ai ∈ Mx such that the subsequence (ai : i ∈ IL + IR) is indiscernible over b, |= φ (ai, b)

for all i ∈ IL + IR, but |= ¬φ (a0, b).

Proposition 3.2.2. The following are equivalent for a formula φ(x, y).

1. There is no b, infinite linear orders IL, IR and indiscernible sequence (ai)i∈IL+(0)+IR

such that |= φ (ai, b) for i ∈ IL + IR, but ̸|= φ (a0, b).

2. There is no infinite order I and sequence (ai, bi)i∈I such that for all i, j ∈ I, |=

φ (ai, bj) ⇐⇒ i ̸= j.
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Proof. (2)⇒(1). Assume that there exist b ∈ My and indiscernible sequence (ai)i∈IL+(0)+IR

such that |= φ (ai, b) for all i ∈ IL + IR, but |= ¬φ (a0, b). Given n ∈ N, choose arbitrary

j−2n < . . . < j2n ∈ IL + (0) + IR with j0 = 0 (so j−i ∈ IL and ji ∈ IR for 0 < i ≤ 2n).

By indiscernibility of the sequence (ai)i∈IL+(0)+IR there exists an automorphism σ of M such

that σ (aji) = aji+1
for −2n ≤ i < 2n. Let a′i := aji and bi := σi (b) for −n ≤ i ≤ n. Since

̸|= φ (a0, b) and σi is an automorphism, ̸|= φ (aji , σ
i (b)), that is ̸|= φ (a′i, bi). And for distinct

i, ℓ ∈ {−n, . . . , n}, |= φ
(
aji−ℓ

, b
)
, so |= φ

(
aji , σ

ℓ (b)
)
, that is |= φ (a′i, bℓ). Thus we have

(a′i, bi)−n≤i≤n such that |= φ (a′i, bj) ⇐⇒ i ̸= j. Since this can be done for every n ∈ N, by

compactness there is (a′i, bi)i∈I with the same property for any infinite I.

(1)⇒(2). Assume that there exists a sequence (ai, bi)i∈I such that |= φ (ai, bj) ⇐⇒ i ̸= j.

By compactness it is sufficient to show, for every n ∈ N and every finite set ∆ of formulas,

that there is a tuple b and sequence (ai)−n≤i≤n which is ∆-indiscernible (i.e. for each formula

ψ (x1, . . . , xk) ∈ ∆, the truth value of ψ (ai1 , . . . , aik) is the same for every increasing sequence

−n ≤ i1 < . . . < ik ≤ n) and |= φ (ai, b) ⇐⇒ i ̸= 0. By Ramsey’s theorem, (ai)i∈I has

a ∆-indiscernible subsequence
(
aij
)
−n≤j≤n

of length 2n + 1 (i−n < . . . < in). Let b := bi0 .

Then b together with
(
aij
)
−n≤j≤n

has the desired property.

Definition 3.2.3. A formula φ (x, y) satisfying the equivalent conditions in Proposition 3.2.2

is called a semi-equation.

Definition 3.2.4. A theory T is (weakly) semi-equational if every formula φ(x, y) ∈ L, with

x, y arbitrary finite tuples of variables, is a Boolean combination of finitely many (weak)

semi-equations ψ1(x, y), . . . , ψn(x, y) ∈ L.

Remark 3.2.5. Definitions 3.2.1 and 3.2.3 do not depend on the choice of the infinite linear

orders IL and IR. For example, for weak semi-equations: if there exist some b ∈ My and

(ai : i ∈ IL + (0) + IR) satisfying the given conditions, and JL and JR are arbitrary infinite

linear orders, then by saturation of M there exists an indiscernible sequence

(a′i : i ∈ JL + (0) + JR) satisfying the same EM-type as (ai : i ∈ IL + (0) + IR), with a′0 = a0,

and with (a′i : i ∈ JL + JR) satisfying the same EM-type over b as (ai : i ∈ IL + IR).
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Proposition 3.2.6. 1. If φ(x, y) is a semi-equation, then φ(x, y) is a weak semi-equation.

Hence every semi-equational theory is weakly semi-equational.

2. Semi-equations are closed under conjunctions and exchanging the roles of the variables.

3. Weak semi-equations are closed under conjunctions and disjunctions.

Proof. (1) Clear from definitions using condition (1) in Proposition 3.2.2 as the definition of

a semi-equation.

(2) Suppose φ (x, y) ∧ ψ (x, y) is not a semi-equation. By Proposition 3.2.2, there is b

and an indiscernible sequence (ai)i∈Z such that |= φ (ai, b) ∧ ψ (ai, b) ⇐⇒ i ̸= 0. Either

̸|= φ (a0, b), in which case φ (x, y) is not a semi-equation, or ̸|= ψ (a0, b), in which case ψ (x, y)

is not a semi-equation. And φ(x, y) is a semi-equation if and only if φ∗(y, x) := φ(x, y) is a

semi-equation by the symmetry of the property in Proposition 3.2.2(2).

(3) For conjunctions, same as the proof of (2), but with the stipulation that (ai)i ̸=0 is b-

indiscernible added. Now suppose φ (x, y)∨ψ (x, y) is not a weak semi-equation. Then there

is b and an indiscernible sequence (ai)i∈Z such that (ai)i ̸=0 is b-indiscernible, and |= φ (ai, b)∨

ψ (ai, b) ⇐⇒ i ̸= 0. Either |= φ (a1, b) or |= ψ (a1, b), and then, by b-indiscernibility, either

|= φ (ai, b) for all i ̸= 0 or |= ψ (ai, b) for all i ̸= 0. In the first case, φ (x, y) is not a weak

semi-equation, and in the second case, ψ (x, y) is not a weak semi-equation.

Remark 3.2.7. 1. To see that neither property is closed under negation, note that x = y

is a semi-equation (hence also a weak semi-equation), but x ̸= y is not a semi-equation,

and in a stable theory is not even a weak semi-equation (by Proposition 3.2.13). In

fact, if φ(x, y) is stable with infinitely many distinct instances φ(M, b), b ∈ My, then

either φ(x, y) is not a semi-equation, or ¬φ(x, y) is not a semi-equation (combining

[ADH+16, Proposition 2.20] and Proposition 3.2.20).

2. To see that semi-equations are not closed under disjunction, note that in a linear order,

x < y and y < x are both semi-equations, but their disjunction is equivalent to x ̸= y,
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which is not.

Problem 3.2.8. Are weak semi-equations closed under exchanging the roles of the variables,

at least in NIP theories? Fact 3.6.6 can be viewed as establishing this for the definition of

distality, however the proof does not seem to be sufficiently local with respect to a formula

witnessing failure of distality.

We observe some basic properties of (weak) semi-equations with respect to reducts and

expansions of theories.

Proposition 3.2.9. Assume we are given languages L ⊆ L′, a complete L-theory T and an

L′-theory T ′ with T ⊆ T ′.

1. A formula φ(x, y) ∈ L is a semi-equation in T if and only if it is a semi-equation in

T ′.

2. If φ (x, y) ∈ L is a weak semi-equation in T , then it is also a weak semi-equation in

T ′.

Proof. (1) Left to right is immediate from the definition (Proposition 3.2.2). For the converse,

assume that in some model of T we can find an infinite sequence (ai, bi)i∈I such that for all

i, j ∈ I, |= φ (ai, bj) ⇐⇒ i ̸= j. By completeness of T , we can find arbitrarily long finite

sequences with the same property in every model of T , in particular in some model of T ′.

By compactness we can thus find an infinite sequence with the same property in a model of

T ′, demonstrating that φ(x, y) is not a semi-equation in T ′.

(2) If φ (x, y) ∈ L is not a weak semi-equation in T ′, then (in a monster model of T ′,

and hence of T ) there is b and an L′-indiscernible (ai)i∈IL+(0)+IR
such that (ai)i∈IL+IR

is L′-

indiscernible over b and |= φ (ai, b) for i ∈ IL + IR, but ̸|= φ (a0, b), for infinite linear orders

IL, IR. Then, in particular, (ai)i∈IL+(0)+IR
is L-indiscernible, and (ai)i∈IL+IR

is L-indiscernible

over b, so φ (x, y) is a not a weak semi-equation in T .
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Remark 3.2.10. The converse to Proposition 3.2.9(2) does not hold. Let T ′ := DLO be

the theory of dense linear orders, and T its reduct to L := {=}. Then the L-formula x ̸= y

is not a weak semi-equation in T (by Proposition 3.2.13(5)), but it is a weak semi-equation

in T ′ (by Proposition 3.2.13(2), as DLO is distal).

Problem 3.2.11. Is weak semi-equationality of a theory preserved under reducts? This

appear to be open already for equationality (see [Jun00, Question 3.10]), and fails for semi-

equationality (see Section 3.3.3).

Problem 3.2.12. Is (weak) semi-equationality of theories invariant under bi-interpretability

without parameters? Equivalently, if T is (weakly) semi-equational, does it follow that so is

T eq?

3.2.2 Relationship to equations and NIP

Comparing the definitions, (weak) semi-equations can be seen as a way to complete the

analogy “stable : equation” to “NIP : ?”. One way to see this is that the definition of

semi-equationality can be obtained by modifying the definition of NIP in the same way as

modifying the definition of stability gives you the definition of an equation. The descending

chain condition on instances of a formula φ (x, y), characterizing equationality, can be

rephrased as follows: there is no sequence (ai, bi)i∈N such that |= φ (ai, bj) for all j < i, and

̸|= φ (ai, bi) (so that
∧

j<i φ (x, bj) is consistent, and does not imply φ (x, bi)). This is similar

to the order property charactering stability, except with the stipulation that ̸|= φ (ai, bj) for

j > i dropped. The definition of NIP also involves a (partial) order: the inclusion order

on a power set. If we keep all stipulations of positive instances of φ from the independence

property, but only the extremal negative instances, we get: (ai)i∈I , (bX)X∈P(I) such that

|= φ (ai, bX) for i /∈ X, and ̸|= φ
(
ai, bI\{i}

)
. The nonexistence of such a pattern is equivalent

to semi-equationality (in the sense of Definition 3.2.3), using bi = bI\{i} (bX for |I \X| ≠ 1

can easily be chosen to satisfy the given conditions if bI\{i} satisfying the given conditions
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are given). We make some observations providing further evidence that semi-equationality

can be naturally viewed as a generalization of equationality (in the sense of Srour) in stable

theories to the NIP context.

Proposition 3.2.13. 1. Weak semi-equations are NIP formulas, and

weakly semi-equational theories are NIP.

2. Every formula in a distal theory is a weak semi-equation.

3. Equations are semi-equations.

4. A formula is an equation if and only if it is both stable and a semi-equation.

5. In a stable theory, all weak semi-equations are equations. In particular, a stable theory

is equational if and only if it is weakly semi-equational, if and only if it is semi-

equational.

Proof. (1) If φ (x, y) is not NIP, then there is an indiscernible sequence (ai)i∈N and b such

that |= φ (ai, b) ⇐⇒ i is even. For any finite set of formulas ∆(x1, . . . , xn, y), by

Ramsey’s theorem, there is an infinite I ⊆ 2N on which the truth value of all formulas

in ∆(ai1 , . . . , ain , b) is constant for all i1 < . . . < in ∈ I. Thus, by letting a′0 := ai for

some sufficiently large odd i, we can find an indiscernible sequence (a′i)i∈IL+(0)+IR
(using

IL ⊔ IR = I, and a′i = ai for i ∈ I) for some infinite IR and arbitrarily large finite IL, such

that (a′i)i∈IL+IR
is ∆-indiscernible over b. By compactness, it follows that φ (x, y) is not a

weak semi-equation.

(2) By a standard characterization of distality (see e.g. [ACGZ22, Corollary 1.11]; see also

Section 3.4 for an extended discussion on connections to distality).

(3) If φ (x, y) is not a semi-equation, then there is a sequence (ai, bi)i∈N such that |=

φ (ai, bj) ⇐⇒ i ̸= j. In particular, |= φ (ai, bj) for all j < i, and ̸|= φ (ai, bi), so this

is a counterexample to the descending chain condition, and φ (x, y) is not an equation.
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(4) Suppose φ (x, y) is not an equation, so there exist (ai, bi)i∈N such that |= φ (ai, bj) for all

j < i, and ̸|= φ (ai, bi). Color pairs (i, j) with i < j by whether or not φ (ai, bj) holds. By

Ramsey’s theorem, there’s an infinite homogeneous subset of N. If φ (ai, bj) holds for i < j

in this homogeneous subset, then φ (x, y) is not a semi-equation. Otherwise, φ (x, y) is not

stable.

(5) If φ (x, y) is not an equation, let (ai, bi)i∈N be such that |= φ (ai, bj) for all j < i,

and ̸|= φ (ai, bi). By Ramsey and compactness we may assume that the sequence of pairs

(ai, bi)i∈N is indiscernible. Then (ai, bi)i≥1 can be made indiscernible over a0b0 by extracting

an indiscernible sequence with the same EM type over a0b0. Now (ai)i∈N is indiscernible,

with (ai)i≥1 indiscernible over b0, and |= φ (ai, b0) ⇐⇒ i ̸= 0. As the theory is stable, every

infinite indiscernible sequence is totally indiscernible. Fix an arbitrary bijection f : N → Z

so that f(0) = 0, by total indiscernibility there exists an automorphism σ of M so that

σ(ai) = af(i), σ(bi) = bf(i) for all i ∈ Z. For i ∈ Z, let a′i := af−1(i) and b := b0. Using that σ

is an automorphism, we still have that (a′i)i∈Z is indiscernible, (a′i)i ̸=0 is indiscernible over b,

|= φ(a′i, b) ⇐⇒ i ̸= 0, so φ (x, y) is not a weak semi-equation.

Problem 3.2.14. Is there an NIP theory without a (weakly) semi-equational expansion?

We note that while the theory ACFp for p > 0 is known not to have a distal expansion

[CS18], it is equational, and hence semi-equational.

3.2.3 Weakly normal formulas, (k, n)-semi-equations and breadth.

In this section we discuss some refinements of semi-equationality.

Definition 3.2.15. [Pil96, Chapter 4, Definition 1.1]

1. A formula φ (x, y) is k-weakly normal if for every b1, . . . , bk ∈ My such that

|= ∃xφ (x, b1) ∧ . . . ∧ φ (x, bk), there are some i ̸= j ∈ [k] such that |= ∀xφ (x, bi) ↔

φ (x, bj).

2. A formula φ (x, y) is weakly normal if it is k-weakly normal for some k.
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Weakly normal formulas are a special kind of equations characterizing “linearity” of forking

in stable theories (see [Pil96, Chapter 4, Proposition 1.5 + Remark 1.8.4 + Lemma 1.9]):

Fact 3.2.16. A stable theory T is 1-based if and only if in T , every formula φ(x, y) ∈ L,

with x, y arbitrary finite tuples of variables, is equivalent to a Boolean combination of some

weakly normal formulas ψ1(x, y), . . . , ψn(x, y) ∈ L.

We introduce some numeric parameters characterizing semi-equations, minimal values of

which give rise to a generalization of weak normality.

Definition 3.2.17. 1. For k, n ∈ N, a formula φ (x, y) is a (k, n)-semi-equation if, for

every b1, . . . , bk ∈ My, if |= ∃x φ (x, b1)∧ . . .∧φ (x, bk), then for some pairwise distinct

i1, . . . , in, j ∈ [k], |= ∀x (φ (x, bi1) ∧ . . . ∧ φ (x, bin)) → φ (x, bj).

2. And φ (x, y) is an n-semi-equation if it is a (k, n)-semi-equation for some k.

3. A theory T is n-semi-equational (respectively, (k, n)-semi-equational) if every formula

φ(x, y) ∈ L, with x, y arbitrary finite tuples of variables, is equivalent in T to a Boolean

combination of n-semi-equations (respectively, (k, n)-semi-equations)

ψ1(x, y), . . . , ψn(x, y) ∈ L.

Proposition 3.2.18. 1. If φ (x, y) is a (k, n)-semi-equation, then n < k, and φ (x, y) is

also an (ℓ,m)-semi-equation for any ℓ ≥ k and n ≤ m < ℓ. If φ (x, y) is an n-semi-

equation, then it is also an m-semi-equation for every m ≥ n.

2. A formula is a semi-equation if and only if it is an n-semi-equation for some n, if and

only if it is an (n, n− 1)-semi-equation for some n.

Proof. (1) Clear from the definitions.

(2) If φ (x, y) is not a semi-equation, let (ai, bi)i∈N be such that |= φ (ai, bj) ⇐⇒ i ̸= j.

Then for any (k, n) we have |= φ (a0, b1) ∧ . . . ∧ φ (a0, bk), but for any pairwise distinct
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i1, . . . , in, j ∈ [k], |= φ (aj, bi1) ∧ . . . ∧ φ (aj, bin) ∧ ¬φ (aj, bj), hence φ(x, y) is not a (k, n)-

semi-equation.

Conversely, for any k ∈ N, if φ (x, y) is not a (k, k − 1)-semi-equation, then there exist

b1, . . . , bk such that for each j ∈ [k], there is aj such that |= φ (aj, bi) for i ̸= j, but ̸|=

φ (aj, bj). Hence if φ (x, y) is not a (k, k − 1)-semi-equation for any k, then by compactness

φ (x, y) is not a semi-equation.

And if φ (x, y) is not an n-semi-equation, then it is not an (n+ 1, n)-semi-equation by

definition, so a formula that is not an n-semi-equation for any n is also not a (k, k − 1)-semi-

equation for any k.

We recall the notion of breadth from lattice theory.

Definition 3.2.19. [ADH+16, Section 2.4] Given a set X and d ∈ N≥1, a family of subsets

F ⊆ P (X) has breadth d if any nonempty intersection of finitely many sets in F is the

intersection of at most d of them, and d is minimal with this property.

Proposition 3.2.20. A formula φ (x, y) is a (k + 1, k)-semi-equation if and only if the

family of sets Fφ := {φ (M, b) | b ∈ My} has breadth at most k. In particular, φ(x, y) is a

semi-equation if and only if the family of sets Fφ has finite breadth.

Proof. The family of sets {φ (M, b) | b ∈ My} has breadth at most k if and only if every finite

consistent conjunction of instances of φ is implied by the conjunction of at most k of those

instances. In particular this applies to consistent conjunctions of (k + 1) instances of φ,

showing that if the breadth of Fφ is ≤ k, then it is a (k + 1, k)-semi-equation. Conversely,

assume φ(x, y) is a (k + 1, k)-semi-equation. Given any consistent conjunction of n > k

instances of φ, any (k + 1) of them contain an instance implied by the other k instances.

Removing this implied instance, we reduce to the case of a consistent conjunction of (n− 1)

instances, and after (n− k) steps to a conjunction of k instances of φ implying all the other

ones. The “in particular” part follows by Proposition 3.2.18(2).
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Example 3.2.21. 1. Let T be an NIP theory expanding a group, and let a formula

φ(x, y) be such that for every b ∈ My, φ(M, b) is a subgroup. Then, by Baldwin-Saxl

[BS76], there exists n ∈ ω such that for all finite B ⊆ My, there is B0 ⊆ B with

|B0| ≤ n such that
⋂

b∈B0
φ (M, b) =

⋂
b∈B φ (M, b). Hence φ(x, y) is a semi-equation

by Proposition 3.2.20.

2. Let K be a valued field (viewed as a structure in the language of rings with a predicate

for the valuation ring O), d ∈ ω and let F be the family of all convex subsets of Kd in

the sense of Monna (equivalently, the family of all translates of O-submodules of Kd).

Then F is a definable family, and a formula defining it is a semi-equation by [CM21,

Theorem 4.3].

The following suggests that 1-semi-equationality might be viewed as a generalization of

being 1-based to the NIP context.

Proposition 3.2.22. A formula φ (x, y) is weakly normal if and only if it is both stable and

a 1-semi-equation. In particular, a theory is 1-based if and only if it is stable (or just NSOP)

and 1-semi-equational.

Proof. Clearly every k-weakly normal formula is a (k, 1)-semi-equation. If φ (x, y) is unstable,

then for every k ∈ N it has the k-order property, meaning that there exist (ai, bi)i∈[k] such that

|= φ (ai, bj) ⇐⇒ i ≤ j. Then (b1, . . . , bk) is a counter-example to φ (x, y) being k-weakly

normal, as a1 |=
∧

i∈[k] φ(x, bi), but for any i < j ∈ [k] we have |= φ(aj, bj) ∧ ¬φ(aj, bi).

Conversely, suppose that φ (x, y) is a (k, 1)-semi-equation and does not have the (ℓ+ 1)-

order property for some ℓ ∈ N. We will show that then φ(x, y) is kℓ-weakly normal (this

bound is not optimal). Let (bη)η∈[k]ℓ be such that |= ∃x
∧

η∈[k]ℓ φ (x, bη). For σ ∈ [k]≤ℓ, we

will show by induction on m := ℓ − |σ| that there are pairwise distinct η0, . . . , ηm ∈ [k]ℓ

extending σ (as sequences) such that φ (M, bη0) ⊆ φ (M, bη1) ⊆ . . . ⊆ φ (M, bηm). With

m = ℓ, so that σ = ⟨⟩ is the empty sequence, this implies (using that φ(x, y) does not have
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the (ℓ + 1)-order property) that there are η ̸= η′ ∈ [k]ℓ such that φ (M, bη) = φ (M, bη′), as

desired. The base case (m = 0) is trivial, with η0 = σ.

Now assume the claim holds for m, and let σ ∈ [k]ℓ−(m+1). For each i ∈ [k], there

exist pairwise distinct ηi,0, . . . , ηi,m ∈ [k]ℓ extending σ⌢i such that φ
(
M, bηi,0

)
⊆ . . . ⊆

φ
(
M, bηi,m

)
. Among the sets

{
φ
(
M, bηi,0

)
| i ∈ [k]

}
, one must be contained in another by

(k, 1)-semi-equationality. Say φ
(
M, bηj,0

)
⊆ φ

(
M, bηi,0

)
for some i ̸= j. Then φ

(
M, bηj,0

)
⊆

φ
(
M, bηi,0

)
⊆ φ

(
M, bηi,1

)
⊆ . . . ⊆ φ

(
M, bηi,m

)
, and ηj,0, ηi,0, ηi,1, . . . , ηi,m are pairwise distinct

and extend σ, as desired.

The “in particular” part follows by Fact 3.2.16.

Remark 3.2.23. 1. The family of weakly normal formulas is closed under conjunctions.

Indeed, let φ1 (x, y) , φ2 (x, y) be both k-weakly normal, and let φ (x, y) := φ1 (x, y) ∧

φ2 (x, y). Then φ (x, y) is weakly normal (potentially, for some K ≫ k). Assume

φ (x, y) is not weakly normal, then by compactness we have an infinite sequence

(bi : i ∈ ω) such that
⋂

i∈ω φ (M, bi) ̸= ∅, yet all of the sets φ (M, bi) are pairwise

different. By the choice of k, for every i1 < . . . < ik ∈ ω there are some j1 < j′1 < k

and j2 < j′2 < k such that φi

(
M, bijt

)
= φi

(
M, bij′t

)
for t ∈ {1, 2}. By Ramsey’s

theorem, we can find an infinite subsequence I ⊆ ω such that j1, j′1, j2, j′2 are fixed for

all increasing tuples i1 < . . . < ik from I. But then, choosing such increasing tuples

in I appropriately, we find some j < j′ ∈ I such that φi (M, bj) = φi (M, bj′) for both

i ∈ {1, 2} simultaneously, hence φ (M, bj) = φ (M, bj′), a contradiction.

2. While semi-equations are closed under conjunctions by Proposition 3.2.6(2), this is not

the case for the family of 1-semi-equations.

Indeed, in a dense linear order, the formulas x < y1 and x > y2 are 1-semi-equations,

but the formula φ(x; y1, y2) := y2 < x < y1 is not a 1-semi-equation since we can

have any number of intervals with a non-empty intersection, so that none of them is

contained in the other.
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3. The definition of (2, 1)-semi-equationality is analogous to VC-minimality [Adl08], but

for formulas φ(x, y) with x an arbitrary tuple of variables, as opposed to a singleton

in the latter case.

We also observe a connection to another notion of “linearity”, or “1-basedeness”, for NIP

theories considered in [BCS+21], where various combinatorial results are proved for relations

that are Boolean combinations of basic relations. The following is [BCS+21, Definition 2],

in the case of binary relations (using the equivalence in [BCS+21, Proposition 2.8 + Remark

2.9]).

Definition 3.2.24. A binary relation R ⊆ X ×Y is basic if there exist a linear order (S,<)

and functions f : X → S, g : Y → S for such that for any a ∈ X, b ∈ Y , (a, b) ∈ R ⇐⇒

f(a) < g(b).

Fact 3.2.25. [GL13, Claim 1 in the proof of Proposition 2.5] Let X be a set and F ⊆ P(X)

a family of subsets of X such that there no A,B ∈ F satisfying A ∩ B ̸= ∅, B \ A ̸= ∅ and

B \ A ̸= ∅ simultaneously. Then there exists a linear order < on X so that every A ∈ F is

a <-convex subset of X.

Proposition 3.2.26. 1. Given a formula φ(x, y) ∈ L, if the relation Rφ := {(a, b) ∈

Mx ×My} is basic, then φ(x, y) is a (2, 1)-semi-equation.

2. If φ(x, y) is (2, 1)-semi-equation, then Rφ = R1∩R2 for some (not necessarily definable)

basic relations R1, R2 ⊆ Mx ×My.

Proof. (1) Let (S,<), f, g be as in Definition 3.2.24 for Rφ. Given any b1, b2 ∈ My, the sets

{x ∈ S : x < g(bi)} for i ∈ {1, 2} are initial segments of S. Say g(b1) ≤ g(b2). Then for

any a ∈ Mx, f(a) < g(b1) ⇒ f(a) < g(b2), so φ(M, b1) ⊆ φ(M, b2), and the other case is

symmetric.

(2) If φ(x, y) is a (2, 1)-semi-equation, then the family Fφ of subsets of Mx satisfies the

assumption in Fact 3.2.25. Hence there exists a (not necessarily definable) linear ordering <′
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of Mx so that for every b ∈ My, φ(M, b) is <′-convex. Let (S,<) be the Dedekind completion

of (Mx, <′). Consider the functions g1, g2 : My → S so that g1(b) is the infimum of φ(M, b) in

S, and g2(b) is the supremum of φ(M, b) in S. Then Rφ = {(a, b) ∈ Mx ×My : g1(b) ≤ a} ∩

{(a, b) ∈ Mx ×My : a ≤ g2(b)}, and both of this relations are basic (see [BCS+21, Remark

2.7]).

Remark 3.2.27. 1. In view of Proposition 3.2.26(2), if φ(x, y) is a Boolean combination

of (2, 1)-semi-equations, then by [BCS+21, Theorem 2.17 + Remark 2.20] the relation

Rφ satisfies an almost linear Zarankiewicz bound. In particular, no infinite field can

be defined in a (2, 1)-semi-equational theory (see [BCS+21, Corollary 5.11] or [Wal21,

Proposition 6.3] for a detailed explanation).

2. Note that if φ(x, y) is a (2, 1)-semi-equation, then Rφ need not be basic. Indeed,

the family of cosets of a subgroup is (2, 1)-semi-equational. If it was basic, then its

complement is also basic, hence (2, 1)-semi-equational by the lemma above. But if

the index of the subgroup is ≥ 3, the family of complements of cosets is clearly not

(2, 1)-semi-equational.

Problem 3.2.28. If φ(x, y) is a (k, 1)-semi-equation for k ≥ 3, is it still a Boolean combination

of basic relations?

Problem 3.2.29. Show that no infinite field is definable in a 1-semi-equational theory.

Problem 3.2.30. Is every 1-semi-equational theory rosy? (Note that dense trees are not

1-semi-equational by Theorem 3.3.17.)

Analogously, we could also define weak 1-semi-equationality as follows:

Definition 3.2.31. A partitioned formula φ (x; y) is a weak 1-semi-equation if for every

indiscernible sequence (bi)i∈ω and a such that |= φ (a, bi) for every i ∈ ω, there exist i ̸= j ∈ ω

such that tp (a/bi) ⊢ φ (x, bj).
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In this definition, we could equivalently replace ω by any infinite linear order, and require

that the sequence (bi)i∈ω is indiscernible over a.

Proposition 3.2.32. 1. If φ(x, y) is a 1-semi-equation, the it is also a weak 1-semi-

equation.

2. If φ (x, y) is a weak 1-semi-equation, then φ∗ (y, x) = φ (x, y) is a weak semi-equation.

Proof. 1. If φ (x, y) is not a weak 1-semi-equation, let (bi)i∈Z be indiscernible, and a such

that |= φ (a, bi) for every i ∈ Z, but tp (a/bi) ̸⊢ φ (x, bj) for every distinct i, j ∈ Z. Since

tp (a/bi) ⊢ φ (a, bi), in particular φ (x, bi) ̸⊢ φ (x, bj) for any distinct i, j, so φ (x, y) is

not a 1-semi-equation.

2. If φ∗ (y, x) is not a weak semi-equation, there is a0 and indiscernible (bi)i∈Z such that

(bi)i ̸=0 is a0-indiscernible, and |= φ (a0, b1) but ̸|= φ (a0, b0). Let σ be an automorphism

such that σ (bi) = bi+1 for all i ∈ Z, and let aj := σj (a0). By compactness, there is

a such that tp (a/bi) = tp (aj/bi) for all distinct i, j ∈ Z. For any distinct i, j ∈ Z,

|= φ (a, bi), aj |= tp (a/bi), and ̸|= φ (aj, bj). Thus φ (x, y) is not a weak 1-semi-

equation.

Problem 3.2.33. In a stable theory, are all weak 1-semi-equations weakly normal? More

generally, if a formula is both a semi-equation and a weak 1-semi-equation, must it be a

1-semi-equation?

3.3 Examples of semi-equational theories

In this section we consider some (unstable) examples of (weakly) semi-equational theories.
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3.3.1 O-minimal structures

All o-minimal theories (and more generally, ordered dp-minimal theories) are distal (see

[Sim13]), hence they are weakly semi-equational by Proposition 3.2.13(2). Semi-equationality

appears more subtle. We will say that an o-minimal structure is linear if it has the CF

property in the sense of [LP93] (a weakening of local modularity of the pregeometry induced

by the algebraic closure), so e.g. an ordered vector space over an ordered division ring.

Proposition 3.3.1. Let T = Th(M), with M = (M ;<,+, . . .) an o-minimal structure.

1. If T is an expansion of an ordered group and linear, then T is (2, 1)-semi-equational.

2. Conversely, if T is (2, 1)-semi-equational, then T is linear.

Proof. (1) Let L = (<,+, . . .) be the language of T . A partial endomorphism of M is a map

f : (−c, c) → M , for c an element of M or ∞, such that if a, b, a + b are all in the domain,

then f(a+ b) = f(a) + f(b). Let M′ be the reduct of M to the language L′ consisting of:

• +, <,

• constant symbols naming aclL(∅),

• for each L(∅)-definable partial endomorphism f : (−c, c) → M with c ∈ aclL(∅) or

c = ∞, a unary function symbol interpreted as f on (−c, c) and as 0 outside of the

domain of f .

By [LP93, Proposition 4.2], a subset of Mn is ∅-definable in M if and only if it is ∅-definable

in M′. Hence it suffices to show that T ′ := ThL′ (M′) is (2, 1)-semi-equational. By [LP93,

Corollary 6.3], T ′ admits quantifier elimination in the language L′. Hence it suffices to

show that every atomic L′-formula φ(x, y), with x, y arbitrary finite tuples of variables, is

equivalent in T ′ to a Boolean combination of (2, 1)-semi-equations.

By the proof of Theorem 4.3 in [And21], every atomic L′-formula φ(x, y) is equivalent in T ′

to a Boolean combination of atomic formulas of the form f(x)□g(y)+c, where □ ∈ {<,=, >},
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f : M |x| → M, g : M |y| → M are total multivariate L′(∅)-definable homomorphisms and

c ∈ dclL′(∅). Every formula of this form clearly defines a basic relation on M |x|×M |y|, hence

is a (2, 1)-semi-equation by Proposition 3.2.26(1).

(2) By the o-minimal trichotomy theorem (see [PS98] and Remark 2 after the statement

of Theorem 1.7 there), if M is not linear, then it defines an infinite field. But then Remark

3.2.27(1) implies that T is not (2, 1)-semi-equational.

Problem 3.3.2. Is every o-minimal 1-semi-equational structure linear? A a positive answer

would follow from a positive answer to Problem 3.2.29.

Problem 3.3.3. Which o-minimal theories are semi-equational? In particular, is Th(R,+,×)

semi-equational?

3.3.2 Colored linear orders

Definition 3.3.4. Given a linearly ordered set (S,<), a binary relation R ⊆ S2 is monotone

if (x, y) ∈ R, x′ ≤ x, and y ≤ y′ implies (x′, y′) ∈ R.

Fact 3.3.5. Let M =
(
M,<, (Ci)i∈I , (Rj)j∈J

)
be a linear order expanded by arbitrary unary

relations Ci and monotone binary relations Rj. Then T := Th (M) is (2, 1)-semi-equational.

Proof. Let M′ be an expansion of M obtained by naming all LM(∅)-definable unary and

monotone binary relations, then a subset of Mn is ∅-definable in M if and only if it is

∅-definable in M′, so it suffices to show that T ′ := Th (M′) is (2, 1)-semi-equational. By

[Sim11, Proposition 4.1], T ′ eliminates quantifiers. Note that if R(x, y) is monotone, then it is

a (2, 1)-semi-equation (given any b1 ≤ b2 ∈M , for any a ∈M we have |= R(a, b1) → R(a, b2)

by monotonicity, hence R(M, b1) ⊆ R(M, b2)). And any unary relation Ci(x) is trivially a

(2, 1)-semi-equation, hence T ′ is (2, 1)-semi-equational.
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3.3.3 Cyclic orders

Definition 3.3.6. (see e.g. [CK12, Section 5] or [TW17]). A cyclic order is a structure with

a single ternary relation ⟳ satisfying

1. cyclicity: if ⟳ (a, b, c), then ⟳ (b, c, a);

2. antisymmetry: if ⟳ (a, b, c), then not ⟳ (c, b, a);

3. transitivity: if ⟳ (a, b, c) and ⟳ (a, c, d), then ⟳ (a, b, d);

4. totality: if a, b, c are distinct, then ⟳ (a, b, c) or ⟳ (c, b, a).

A cyclic order ⟳ is dense if its underlying set is infinite and for every distinct a, b, there is

c such that ⟳ (a, b, c), and d such that ⟳ (d, b, a).

The following is standard, but we include a proof for completeness.

Proposition 3.3.7. The theory T⟳ of dense cyclic orders is complete and has quantifier

elimination.

Proof. For a dense cyclic order M, let c ∈ M be arbitrary. Then there is a dense linear

order < on M\ {c} defined by a < b ⇐⇒ ⟳ (a, b, c). The theory of dense linear orders is

complete, and ⟳ can be recovered from <.

Let M,N be dense cyclic orders, A ⊂ M finite, m ∈ M \ A, and f : A → N a partial

isomorphism. Then f can be extended to a partial isomorphism A ∪ {m} → N as follows.

If A = ∅, then m can be sent to any element of N . Otherwise, there are elements ℓ, r ∈ A

closest to m on either side, in the sense that for a ∈ A \ {ℓ}, M |=⟳ (ℓ,m, a), and for

a ∈ A \ {r}, M |=⟳ (a,m, r). By density of N , there is n ∈ N such that N |=⟳ (f (ℓ) , n, b)

for b ∈ f (A \ {ℓ}) and N |=⟳ (b, n, f (r)) for b ∈ f (A \ {r}). Then m can be sent to n.

Proposition 3.3.8. 1. Dense cyclic orders are not semi-equational. In particular, the

partitioned formula ψ(x1, x2; y) :=⟳ (x1, x2; y) is not a Boolean combination of semi-

equations.
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2. Dense cyclic orders expanded with one constant symbol c are (2, 1)-semi-equational.

Proof. (1) By quantifier elimination, the formulas ⟳ (x1, x2; y) and ⟳ (x2, x1; y) each isolate

a complete 3-type (over ∅). Any Boolean combination of formulas that is equivalent to

⟳ (x1, x2; y) must contain some formula φ (x1, x2; y) that is implied by ⟳ (x1, x2; y) and

is inconsistent with ⟳ (x2, x1; y), or vice versa. Assume the former. Let (ci)i∈Z be such

that |=⟳ (ck, ci, cj) for i < j < k. Let a1,i = c2i, a2,i = c2i+2, and bi = c2i+1. Then |=⟳

(a2,i, a1,i; bj) ⇐⇒ i = j and |=⟳ (a1,i, a2,i; bj) ⇐⇒ i ̸= j, so |= φ (a1,i, a2,i; bj) ⇐⇒ i ̸= j,

so φ (x1, x2; y) is not a semi-equation. If instead, φ (x1, x2; y) is implied by ⟳ (x2, x1; y) and

inconsistent with ⟳ (x1, x2; y), then we can switch the roles of x1 and x2 to get the same

result.

(2) Let < be defined by x < y ⇐⇒ ⟳ (x, y, c). Then < is a dense linear order on the

complement of {c}, and thus x < y is a (2, 1)-semi-equation. We have

|=⟳ (x, y, z) ↔(
x < y < z ∨ y < z < x ∨ z < x < y ∨ (z = c ∧ x < y)

∨ (y = c ∧ z < x) ∨ (x = c ∧ y < z)
)
.

Hence ⟳ (x, y, z) is a Boolean combination of (2, 1)-semi-equations (with c as a parameter),

under any partition of the variables. By quantifier elimination, it follows that every formula

is a Boolean combination of (2, 1)-semi-equations (using c as a parameter).

The significance of this example is that it shows that a theory being semi-equational, or

1-semi-equational, is not preserved under forgetting constants (note that naming constants

clearly preserves (k-)semi-equationality). This is in contrast to equationality ([Jun00, Proposition

3.5]) and distality ([Sim13, Corollary 2.9]), which are invariant under naming or forgetting

constants. This is also an example of a distal, non-semi-equational theory.

Problem 3.3.9. Is weak semi-equationality of theories preserved by forgetting constants?

77



3.3.4 Ordered abelian groups

We consider ordered abelian groups, as structures in the language LCH introduced in [CH11].

Given an ordered abelian group (G,+, <) and prime p, for a ∈ G \ pG we let Gp(a) be the

largest convex subgroup of G such that a /∈ Gp(a)+pG, and for a ∈ pG let Gp(a) := {0}. Let

Sp := {Gp(a) : a ∈ G}. Then the LCH-structure Ḡ corresponding to G consists of the main

sort G for G, an auxiliary sort Sp for each p, along with countably many further auxiliary

sorts and relations between them. A relative quantifier elimination result is obtained for

such structures in [CH11], to which we refer for the details (see also [ACGZ22, Section 3.2]

for a quick summary).

Here we only consider the case of ordered abelian groups with the sorts Sp finite for all

prime p, in which case this relative quantifier elimination simplifies. This includes Presburger

arithmetic, and in fact any ordered abelian group with a strongly dependent theory (by

[CKS15, DG18, Far17, HH19]).

Proposition 3.3.10. Every ordered abelian group (either as a pure ordered abelian group,

or the corresponding structure Ḡ) with finite auxiliary sorts Sp for all p is 1-semi-equational.

Proof. Since every auxiliary sort is finite and linearly ordered by a (definable) relation in LCH,

all auxiliary sorts are contained in dcl(∅). Hence we only need to verify that every formula

φ(x, y) with x, y tuples of the main sort G is a Boolean combination of 1-semi-equations in

the expansion with every element of every auxiliary sort named by a new constant symbol

(countably many in total).

As explained in [ACGZ22, Proposition 3.14], it then follows from the relative quantifier

elimination that φ(x, y) is equivalent to a Boolean combination of atomic formulas of the

form πα(f(x)) ⋄α πα(g(y)) + kα, where ⋄ ∈ {=, <,≡m}, k ∈ Z, α is an element of an

auxiliary sort, f, g are Z-linear functions on G, Gα is a corresponding convex subgroup of

G, πα : G → G/Gα is the quotient map, 1α is the minimal positive element of G/Gα if it

is discrete or 0 ∈ G/Gα otherwise, and kα = k · 1α in G/Gα, and for g, h ∈ G/Gα we have
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g ≡m h if g − h ∈ m (G/Gα) (note that these relations on G are expressible in the pure

language of ordered abelian groups).

The following general claim is straightforward from Definition 3.2.17:

Claim 3.3.11. If φ(x, y) is a (k, n)-semi-equation and f(x), g(y) are ∅-definable functions,

then the formula ψ(x, y) := φ(f(x), g(y)) is also a (k, n)-semi-equation.

Using the claim (in an expansion of Ḡ naming πα, and the ordered group structure on G/Gα

together with the constants for kα), we only have to show that the relations x = y, x < y, x ∈

y +m (G/Gα) on G/Gα are (2, 1)-semi-equations, which is straightforward.

Problem 3.3.12. Is every ordered abelian group 1-semi-equational, or at least (weakly)

semi-equational? We expect a negative answer, by interpreting a variant of the example

from Section 3.5.2 on some quotient sorts.

3.3.5 Trees

In this section we use “∧” to denote “meet”, and “&” to denote conjunction.

Definition 3.3.13. 1. By a tree we mean a meet-semilattice (M,∧) with an associated

partial order ≤ (defined by x ≤ y ⇐⇒ x ∧ y = x) so that all of its initial segments

are linear orders.

2. An infinitely-branching dense tree is a tree whose initial segments are dense linear

orders and such that for each element x, there are infinitely many elements any two of

which have meet x.

The following lemma is standard, we include a proof for completeness.

Lemma 3.3.14. The theory of infinitely-branching dense trees is complete and eliminates

quantifiers in the language {∧}.
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Proof. By back-and-forth. Let M,N be infinitely-branching dense trees, A ⊆M finite, m ∈

M , and f : A→ N a partial isomorphism. It is enough to extend f to a partial isomorphism

f ′ : A ∪ {m} → N . We may assume that A is a substructure (i.e. closed under meets)

taking f ′ (
∧
X) :=

∧
{f (a) | a ∈ X} for every ∅ ≠ X ⊆ A. Let m′ := maxa∈A (m ∧ a). This

maximum exists because the initial segment below m is linearly ordered and A is finite. Note

that if A contains an element above m, then m′ = m, but m′ < m otherwise. We will first

extend f to A ∪ {m′}. Let b :=
∧
{a ∈ A | m′ ≤ a}. This is well-defined because m′ was

defined so that there must be some a ∈ A such that m′ ≤ a. If m′ = b, extend f to send

m′ to f (b). Otherwise, {a ∈ A | a ≤ m′} ⊆ {x ∈M | x < b}, so {f (a) | m′ ≥ a ∈ A} ⊆

{x ∈ N | x < f (b)}. As {x ∈ N | x < f (b)} is a dense linear order, it contains elements

above every element of the finite subset {f (
∧
X) | ∅ ≠ X ⊆ A, m′ ≥

∧
X}. Then we can

define f ′(m′) to be any such element. If m′ < m, then we still must extend f to A∪{m′,m}.

But f ′(m) can be defined to be any element of N above f ′ (m′) whose meet with every

element of f (A) is at most f ′ (m′).

Lemma 3.3.15. In any tree M = (M,∧) with no additional structure, if every formula

of the form φ (x; y1, y2) with x, y1, y2 singletons is a Boolean combination of semi-equations,

then every formula is a Boolean combination of semi-equations.

Proof. By [Sim11, Corollary 4.6] (using that x ≤ y ⇐⇒ x∧y = x), in any tree M = (M,∧)

we have: two tuples ā = (ai : i ∈ [n]), b̄ = (bj : j ∈ [n]) ∈ Mn have the same type if and

only if (ai, aj, ak) and (bi, bj, bk) have the same type for every i, j, k ∈ [n]. Hence for any ā, b̄,

tp
(
āb̄
)

is implied by the set of formulas satisfied by 3-element subtuples of āb̄. So if every

partitioned formula with 3 total free variables is a Boolean combination of semi-equations,

then tp
(
āb̄
)

is implied by a Boolean combination of semi-equations. It is enough that every

formula of the form φ (x; y1, y2) is a Boolean combination of semi-equations, because then by

symmetry, every formula of the form φ (x1, x2; y) is as well, and every partitioned formula

with one of the parts empty (i.e. φ (; y1, y2, y3) or φ (x1, x2, x3; )) is automatically a semi-

equation.
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Theorem 3.3.16. The theory of infinitely-branching dense trees is semi-equational.

Proof. Let M = (M,∧) be an infinitely-branching dense tree. By Lemma 3.3.15, it is enough

to check that every formula φ (x; y1, y2) is a Boolean combination of semi-equations, and,

by Lemma 3.3.14, it is enough to check this for positive atomic formulas φ (x; y1, y2). Using

the fact that ∧ is associative, commutative, and idempotent, there are only finitely many

such formulas up to equivalence, since each such formula is equivalent to a formula of the

form
∧
A =

∧
B for non-empty A,B ⊆ {x, y1, y2}. Since there are 7 such subsets, that

gives us 49 formulas to check; 7 of them are tautologies (
∧
A =

∧
A for some non-empty

A ⊆ {x, y1, y2}), hence trivially semi-equations. Of the remaining 42 formulas, 6 do not

mention x, hence are automatically semi-equations, and 6 more do not mention y1, hence

are redundant with formulas that do not mention y2. This leaves us with 30 formulas which

come in 15 pairs of equivalent formulas by symmetry of =. These 15 formulas are listed

below:

1. x = y1,

2. x = x ∧ y1 (i.e. x ≤ y1),

3. x = y1 ∧ y2,

4. x = x ∧ y1 ∧ y2 (i.e. x ≤ y1 & x ≤ y2, hence redundant with (2))

5. x ∧ y1 = y1 (i.e. x ≥ y1, hence redundant with (2)),

6. x ∧ y1 = y2 (i.e. x ∧ y1 ≤ y2 & x ≥ y2 & y1 ≥ y2, hence redundant with (2) and (9)),

7. x ∧ y1 = x ∧ y2,

8. x ∧ y1 = y1 ∧ y2 (i.e. x ∧ y1 ≤ y2 & y1 ∧ y2 ≤ x, hence redundant with (9) and (12)),

9. x ∧ y1 = x ∧ y1 ∧ y2 (i.e. x ∧ y1 ≤ y2),

10. x ∧ y1 ∧ y2 = y1 (i.e. x ≥ y1 & y2 ≥ y1, hence redundant with (2)),
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11. x ∧ y1 ∧ y2 = y2 (redundant with (10)),

12. x ∧ y1 ∧ y2 = y1 ∧ y2 (i.e. x ≥ y1 ∧ y2),

13. x ∧ y2 = y1 (redundant with (6)),

14. x ∧ y2 = y1 ∧ y2 (redundant with (8)),

15. x ∧ y2 = x ∧ y1 ∧ y2 (redundant with (9)).

Of the 6 formulas left, (1) and (3) are clearly equations.

(2) is a semi-equation: given (ai, bi)i∈Z such that |= ai ≤ bj ⇐⇒ i ̸= j, ai ≤ b0 for i ̸= 0,

so (ai)i ̸=0 forms a chain. This is not consistent with a1 ≤ b2, a2 ≤ b1, a1 ̸≤ b1, a2 ̸≤ b2.

(12) is a semi-equation for the same reason.

(7) is a negated semi-equation: given (ai, bi, b
′
i)i∈Z such that |= ai∧bj = ai∧b′j ⇐⇒ i = j,

for every i ̸= 0 we have: either ai ∧ b0 > a0 ∧ b0 or ai ∧ b′0 > a0 ∧ b0. By pigeonhole, there are

i1 ̸= i2 such that the same case holds for both. Without loss of generality, a1 ∧ b0 > a0 ∧ b0

and a2 ∧ b0 > a0 ∧ b0. But then a1 ∧ a2 > a0 ∧ b0 = a0 ∧ a1, so a1 and a2 meet strictly closer

to each other than to a0. But, since a1 ∧ b1 ≤ a0 ∧ b1 and a1 ∧ b1 ≤ a2 ∧ b1, it also must be

true that a0 ∧ a2 ≥ a1 ∧ b1 = a1 ∧ a0, so a0 and a2 meet at least as closely to each other as

to a1. These are inconsistent.

(9) is a negated semi-equation: given (ai, bi, b
′
i)i∈Z such that |= ai ∧ bj ≤ b′j ⇐⇒ i = j,

in particular a0 ∧ b0 ≤ b′0 and ai ∧ b0 ̸≤ b′0 for i ̸= 0. Since the initial segment below b0 is

totally ordered, it follows that a0 ∧ b0 < ai ∧ b0 for i ̸= 0. a1 ∧ a2 ≥ (a1 ∧ b0) ∧ (a2 ∧ b0) >

a0 ∧ b0 = a0 ∧ a1. That is, a1 and a2 meet strictly closer together with each other than with

a0. But, by switching the roles of the indices 0 and 2 in that argument, a0 and a1 must meet

strictly closer together with each other than with a2 as well, a contradiction.

Theorem 3.3.17. In an infinitely-branching dense tree M = (M,∧), the formula x < y is

not a Boolean combination of 1-semi-equations (without parameters).
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Proof. By quantifier elimination, there are 3 complete 2-types over ∅ axiomatized by

{x = y, x > y, x < y, x ⊥ y}, where ⊥ denotes incomparable elements. Thus, up to

equivalence, there are only 16 formulas φ (x, y) with x, y singletons without parameters:

1. x ̸= x — a (1, 1)-semi-equation;

2. x = y — a (2, 1)-semi-equation;

3. x > y — a (2, 1)-semi-equation;

4. x < y — not an (n, 1)-semi-equation for any n (since given pairwise incomparable

y1, . . . , yn, x < yi is consistent with x ⊥ yj for any distinct i, j ∈ [n]);

5. x ⊥ y — not an (n, 1)-semi-equation for any n (since given pairwise incomparable

y1, . . . , yn, x ⊥ yi is consistent with x = yj for any distinct i, j ∈ [n]);

6. x ≤ y — not an (n, 1)-semi-equation for any n (for the same reason as (4));

7. x ≥ y — a (2, 1)-semi-equation;

8. x = y∨x ⊥ y — not a (n, 1)-semi-equation for any n (since given pairwise incomparable

y1, . . . , yn, x ⊥ yi is consistent with x < yj for any distinct i, j ∈ [n]);

9. x > y ∨ x < y — not an (n, 1)-semi-equation for any n (for the same reason as (4)).

10. x > y ∨ x ⊥ y — not an (n, 1)-semi-equation for any n (for the same reason as (5));

11. x < y ∨ x ⊥ y — not an (n, 1)-semi-equation for any n (for the same reason as (5));

12. x ̸⊥ y — not an (n, 1)-semi-equation for any n (for the same reason as (4));

13. x ̸< y — not an (n, 1)-semi-equation for any n (for the same reason as (8));

14. x ̸> y — not an (n, 1)-semi-equation for any n (since given pairwise incomparable

y1, . . . , yn, x ⊥ yi is consistent with x > yj for any distinct i, j ∈ [n]);
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15. x ̸= y — not an (n, 1)-semi-equation for any n (for the same reason as (5));

16. x = x — a (2, 1)-semi-equation.

Of the five (2, 1)-semi-equations on this list, none of them separate x < y from x ⊥ y,

so any Boolean combination of them implied by x < y must also be implied by x ⊥ y, thus

x < y is not equivalent to a Boolean combination of them.

Corollary 3.3.18. In any expansion of an infinitely-branching dense tree M = (M,∧) by

naming constants, the formula x < y is not a Boolean combination of 1-semi-equations.

Proof. Suppose x < y is equivalent to a Boolean combination of 1-semi-equations with

parameters c = (c1, . . . , cn). Say x < y ⇐⇒ Φ (φ1 (x, y, c) , . . . , φk (x, y, c)), where Φ is a

Boolean formula in k variables, and φ1 (x, y, c) , . . . , φk (x, y, c) are 1-semi-equations. Let d

be an element such that d ⊥
∧

i≤n ci. For each i, let

ψi (x, y) := ∃z

(
tp(z) = tp (c)&

(
x ∧ y ⊥

∧
i≤n

zi

)
&φi (x, y, z)

)
.

Note that tp (c) is isolated by quantifier elimination, so this is indeed a first-order formula.

For a, b > d, clearly if |= φi (a, b, c), then |= ψi (a, b). By quantifier elimination and [Sim11,

Lemma 4.4], the converse also holds. Thus, for a, b > d,

|= a < b ⇐⇒ |= Φ(φ1 (a, b, c) , . . . , φk (a, b, c)) ⇐⇒ |= Φ(ψ1 (a, b) , . . . , ψk (a, b)) .

Since all singletons have the same type, it follows that this holds for all a, b. It thus remains

to show that each ψi (x, y) is a 1-semi-equation, contradicting Theorem 3.3.17.

If this were not the case for some i ≤ k, then there would be (bj)j∈N and a such that

|= ψi (a, bj) for all j ∈ N, but such that for every j ̸= ℓ ∈ N, there is aj,ℓ such that

|= ψi (aj,ℓ, bj) but ̸|= ψi (aj,ℓ, bℓ). But, again because all singletons have the same type, and

every finite set of elements has a lower bound, it is consistent that furthermore all of these

elements are above d. But then this would also provide a counterexample to φi (x, y) being

a 1-semi-equation.
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Remark 3.3.19. Since x > y is a (2, 1)-semi-equation and x < y is not, this shows that

being an (n, k)-semi-equation for fixed n, k (or even being a Boolean combination of them)

is not preserved under exchanging the roles of the variables (while being a semi-equation is

preserved).

Remark 3.3.20. Note also that every tree admits an expansion in which x < y is a Boolean

combination of (2, 1)-semi-equations. In a tree, let ≤lex be a linear order refining ≤ such

that for a, b, b′ such that a ⊥ b and b ∧ b′ > b ∧ a, a ≤lex b ⇐⇒ a ≤lex b′. Then let

≤revlex be given by x ≤revlex y : ⇐⇒ x ≤ y ∨ (x ⊥ y&y ≤lex x). Then ≤revlex satisfies the

same conditions as ≤lex (so both are (2, 1)-semi-equations as both are linear orders), and

x ≤ y ⇐⇒ x ≤lex y&x ≤revlex y.

Problem 3.3.21. Is every theory of trees semi-equational? Is every theory of trees (expanded

by constants) not 1-semi-equational?

3.4 Weak semi-equations and strong honest definitions

In this section we discuss how (weak) semi-equationality can be naturally viewed as a

generalization of both distality and equationality.

Definition 3.4.1. Given a formula φ (x, y) ∈ L and a type p, we denote by

p+φ := {φ (x, b) : φ (x, b) ∈ p}

the positive φ-part of the type p.

Definition 3.4.2. Given small sets A,B,C ⊆ M, let A |⌣
u

C
B denote that tp (A/BC) is

finitely satisfiable in C.

We recall the following characterization of equations from [MPZ20, Lemma 2.4], which

in turn is a variant of [Sro88a, Theorem 2.5]. Note that Fact 3.4.3(3) below is equivalent

to [MPZ20, Lemma 2.4(3)] since in stable theories non-forking is symmetric and equivalent
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to finite satisfiability over models. Existence of k in Fact 3.4.3(2) is not stated explicitly in

[MPZ20, Lemma 2.4(2)], but is immediate from the proof.

Fact 3.4.3. Given a formula φ (x, y) in a stable theory T , the following are equivalent.

1. The formula φ (x, y) is an equation (equivalently, φ∗(y, x) := φ(x, y) is an equation).

2. There is some k ∈ N such that for any a ∈ Mx and small B ⊆ My, there is a subset

B0 of B of size at most k such that tp+
φ (a/B0) ⊢ tp+

φ (a/B).

On the other hand, we recall that theory is distal if and only if every formula φ (x, y) is

distal, that is, for any IL and IR infinite linear orders, b ∈ My and indiscernible sequence

(ai)i∈IL+(0)+IR
with ai ∈ Mx such that (ai)i∈IL+IR

is indiscernible over b, |= φ (a0, b) ⇐⇒

|= φ (ai, b) for i ∈ IL + IR. There is a straightforward relationship between weak semi-

equationality as defined in Definition 3.2.1 and distality: a formula φ (x, y) is distal if and

only if both φ (x, y) and ¬φ (x, y) are weak semi-equations. An NIP theory is distal if and

only every formula admits a strong honest definition:

Fact 3.4.4. [CS15, Theorem 21] A theory T is distal if and only if for every formula φ(x, y)

there is a formula θ (x; y1, . . . , yk), called a strong honest definition for φ (x, y), such that

for any finite set C ⊆ My (|C| ≥ 2) and a ∈ Mx, there is b ∈ Ck such that |= θ (a; b) and

θ (x; b) ⊢ tpφ (a/C).

We now show that in an NIP theory, weak semi-equationality is equivalent to the existence

of one-sided strong honest definitions, which is also a generalization of Fact 3.4.3 (replacing

a conjunction of finitely many instances of φ by some formula θ).

Theorem 3.4.5. Let T be NIP, and let φ (x, y) be a formula. The following are equivalent:

1. The formula φ∗ (y, x) := φ(x, y) is a weak semi-equation.

2. For every small B ⊆ My and a ∈ Mx such that |= φ(a, b) for all b ∈ B there exists

θ(x; y1, . . . , yk) and c ∈ (My)k such that c |⌣
u

B
a, |= θ(a, c) and θ(x, c) ⊢ tp+

φ (a/B).
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3. There is some formula θ (x; y1, . . . , yk) and number N such that for any finite set B ⊆

My with |B| ≥ 2 and a ∈ Mx, there is some B0 ⊆ B with |B0| ≤ N such that

tp+
θ (a/B0) ⊢ tp+

φ (a/B).

Proof. (1) implies (2). We follow closely the proof of [CS15, Proposition 19]. Let a,B be

such that |= φ(a, b) for all b ∈ B. Let M ⪯ M contain a,B, let (M′, B′) ≻ (M, B) be

a κ := |M |+-saturated elementary extension (with B named by a new predicate), we may

assume M′ ≺ M is a small submodel. Let p(x) := tp (a/B′).

Claim 3.4.6. Let q (y) ∈ Sy (B
′) be any type finitely satisfiable in B. Then p (x) ∪ q (y) ⊢

φ (x, y).

Proof. The complete type

q(ω)(y1, y2, . . .) :=
⋃

{tp(b1, b2, . . . /C) : B ⊆ C ⊆ B′, |C| < κ, bi |= q|Cb<i
}

over B′ is finitely satisfiable in B. As T is NIP, by [CS15, Lemma 5] there is some D

with B ⊆ D ⊆ B′, |D| < κ such that for any two realizations I, I ′ ⊆ B′ of q(ω)|D we

have aI ≡D aI ′. Fix some I |= q(ω)|D in B′ (exists by saturation of (M′, B′) and finite

satisfiability of q(ω) in B) and J |= q(ω)|M (in some larger monster model M′ ≻ M, here

q(ω)|M is an arbitrary type over M extending q(ω) and finitely satisfiable in B).

We claim that I + J is indiscernible over aB. Indeed, as q(ω)|M is finitely satisfiable in

B, by compactness and saturation of (M′, B′) there is some J ′ |= q(ω)|aDI in B′. If I + J is

not aB-indiscernible, then I ′ + J ′ is not aB-indiscernible for some finite subsequence I ′ of

I. As by construction both I ′ + J ′ and J ′ realize q(ω)|D in B′, it follows by the choice of D

that J ′ is not indiscernible over aB — contradicting the choice of J ′.

Now let b∗ ∈ M be any realization of q, then the sequence I + (b∗) + J is Morley in q

over B, hence indiscernible (even over B). And I + J is indiscernible over a (even over aB)

by the previous paragraph. Note also that |= φ(a, b) for every b ∈ B′ (by assumption we

had |= φ(a, b) for all b ∈ B, but a ∈ M and (M′, B′) ≻ (M, B)). Hence |= φ(a, b) for every
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b ∈ I + J . And since φ∗(y, x) is a weak semi-equation, this implies |= φ(a, b∗). That is, for

any a |= p and b∗ |= q, we have |= φ(a, b∗), as wanted.

Now let S ′ be the set of types over B′ finitely satisfiable in B, it is a closed subset of

Sy(B
′). By the claim, for every q ∈ S ′ we have p(x) ∪ q(y) ⊢ φ(x, y), hence by compactness

θq(x) ∪ ψq(y) ⊢ φ(x, y) for some formulas θq(X) ∈ p, ψq(y) ∈ q. As {ψq(y) : q ∈ S ′} is

a covering of the closed set S ′, it has a finite sub-covering {ψqk : k ∈ K}. Let θ(x) :=∧
k∈K θqk(x) ∈ p(x). As in particular tp(b/B) ∈ S ′ for every b ∈ B, we thus have θ(x) ∈ L(B′)

(and B′ |⌣
u

B
a), |= θ(a) and θ(x) ⊢ tp+

φ (a/B).

(2) implies (3). Given a,B, we either have that |= ¬φ(a, b) for all b ∈ B, in which case

tp+
θ (a/B0) = tp+

φ (a/B) = ∅, and ∅ ⊢ ∅ trivially. Or we replace B by {b ∈ B ||= φ(a, b)},

and follow the proof of (1) implies (2) in [CS15, Theorem 21], we provide the details.

By (2), given small B ⊆ My and a ∈ Mx such that |= φ (a, b) for all b ∈ B, we have

θ (x; y1, . . . , yℓ) and c ∈ (My)ℓ such that c |⌣
u

B
a, |= θ (a, c), and θ (x, c) ⊢ tp+φ (a/B). Given

finite B0 ⊆ B, there is d ∈ Bℓ such that d ≡aB0 c, so |= θ (a, d) and θ (x, d) ⊢ tp+φ (a/B0).

In particular, if we assign to each formula θ (x; y1, . . . , yℓ) a number nθ ∈ N, we get that

for any B ⊆ My and a ∈ Mx such that |= φ (a, b) for all b ∈ B, there is θ (x; y1, . . . , yℓ)

such that for every B0 ⊆ B with |B0| ≤ nθ, ∃c ∈ Bℓ such that |= θ (a, c) and θ (x, c) ⊢

tp+φ (a/B0). That is, if we expand the language with a predicate symbol for B and a

constant symbol for a, and we expand the theory with axioms saying ∀x ∈ B φ (a, x)

and, for every formula θ (x; y1, . . . , yℓ), an axiom ∃b1, . . . , bnθ
∈ B ∀c ∈ Bℓ (¬θ (a, c)) ∨

∃x
(
θ (x, c) ∧

∨
i≤nθ

¬φ (a, bi)
)
, this theory is inconsistent. By compactness, the inconsistency

only requires finitely many of these formulas θ1, . . . , θk.

Thus there are θ1 (x; y1, . . . , yℓ1) , . . . , θk (x; y1, . . . , yℓk) such that given B ⊆ My and a ∈

Mx such that |= φ (a, b) for all b ∈ B, there is i ≤ k such that for all B0 ⊆ B with |B0| ≤ nθi ,

there is c ∈ Bℓi such that |= θi (a; c) and θi (x; c) ⊢ tp+φ (a/B0).

For each formula θ (x; y1, . . . , yℓ), let ρθ (x, y; z) := θ (x; z) ∧ ∀w θ (w; z) → φ (w, y), and
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let nθ := VC (ρθ) + 1 in the above argument (where VC is the VC-dimension). For a ∈ Mx

and finite B ⊆ My such that |= φ (a; b) for b ∈ B, let ia,B ≤ k be such that for all B0 ⊆ B

with |B0| ≤ nθia,B
, there is c ∈ Bℓia,B such that |= θia,B (a; c) and θia,B (x; c) ⊢ tp+φ (a/B0).

For b ∈ B, let

F b
a,B :=

{
c ∈ Bℓia,B | |= θia,B (a; c) , θia,B (x; c) ⊢ φ (x; b)

}
=
{
c ∈ Bℓia,B | |= ρθia,B (a, b; c)

}
,

and let Fa,B :=
{
F b
a,B | b ∈ B

}
. By the (p, k)-theorem (see [CS15, Fact 6]) applied to Fa,B,

with p = k = nθa,B , there is Nia,B (depending on ia,B but not otherwise depending on a,B)

such that if every nθia,B
sets from Fa,B intersect, then there is B0 ⊆ Bℓia,B with |B0| ≤ Nia,B

intersecting all sets from Fa,B. Furthermore, by choice of ia,B, the condition that every nθia,B

sets from Fa,B intersect holds. And there are only finitely many possible values of ia,B, so

we have a uniform finite bound N := maxiNi.

We thus have N ∈ N such that for all a ∈ Mx and finite B ⊆ My for which |= φ (a; b)

for all b ∈ B, there is i ≤ k and B1 ⊆ Bℓia,B with |B1| ≤ N intersecting all sets from Fa,B,

meaning that for every b ∈ B there is c ∈ B1 such that |= θia,B (a; c) and θia,B (x; c) ⊢ φ (x; b).

That is, tp+θia,B (a/B1) ⊢ tp+φ (a/B).

Let θ (x; y1, . . . , yℓ) be a formula that can code for any θi (x; y1, . . . , yℓi) when parameters

range over a set with at least two elements. For all a ∈ Mx and finite B ⊆ My with |B| ≥ 2,

for which |= φ (a; b) for all b ∈ B, there is B0 ⊆ B with 2 ≤ |B0| ≤ ℓN + 2 (consisting of

the coordinates of B1 from the previous paragraph, and two points for coding) such that

tp+θ (a/B0) ⊢ tp+φ (a/B), as desired.

(3) implies (1). This follows almost verbatim from the proof of (2) implies (1) in [CS15,

Theorem 21]. Let I+d+J be an indiscernible sequence in My, with I and J infinite, and I+J

indiscernible over a ∈ Mx, and suppose |= φ (a, b) for b ∈ I+J . Let I1 ⊂ I with |I1| = N+1.

Then there is some I0 ⊆ I1 such that |I0| ≤ N and tp+θ (a/I0) ⊢ tp+φ (a/I1). Let b ∈ I1 \ I0.

By indiscernibility of I + d + J , there is some σ ∈ Aut (M) such that σ (I1) ⊂ I + d + J
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and σ (b) = d. We have σ (I0) ⊆ I + J , so by a-indiscernibility of I + J , |= θ (a, σ (c)) for

every c ∈ Ik0 for which |= θ (a, c), and hence a |= σ
(
tp+φ (a/I1)

)
. And φ (x, b) ∈ tp+φ (a/I1),

so φ (x, d) ∈ σ
(
tp+φ (a/I1)

)
, and hence |= φ (a, d).

Problem 3.4.7. Can the assumption that T is NIP be omitted? (Note that the proof of

(3) implies (1) does not use it.)

Proposition 3.2.20 immediately implies an analog of Fact 3.4.3 for semi-equations, telling

us that φ (x; y) is a one-sided strong honest definition for itself:

Corollary 3.4.8. A formula φ (x, y) (equivalently, φ∗(y, x)) is a semi-equation if and only

if there is some k ∈ N such that: for every finite B ⊂ My and a ∈ Mx there is some B0 ⊆ B

with |B0| ≤ k such that tp+
φ (a/B0) ⊢ tp+φ (a/B).

Example 3.4.9. 1. In a dense cyclic order (see Section 3.3.3), which is distal, the formula

⟳ (x; y, y′) has a one-sided strong honest definition θ (x; y1, y
′
1, y2, y

′
2) :=⟳ (x, y1, y

′
2).

This is because for any nonempty finite set B of pairs such that |=⟳ (a, b, b′) for

(b, b′) ∈ B, we can let (b1, b
′
1) ∈ B be such that b1 is as close to a as possible, and

(b2, b
′
2) ∈ B be such that b′2 is as close to a as possible. Then ⟳ (x, b1, b

′
2) ⊢ tp+

⟳ (a/B).

This illustrates a subtlety in the fact that a formula is a semi-equation if and only

if a conjunction of its instances gives a one-sided strong honest definition for itself

(Corollary 3.4.8): as ⟳ (x; y, y′) is not a semi-equation (Proposition 3.3.8), but has a

one-sided strong honest definition which is the same formula, but with its variables split

differently. That is, there is B0 ⊆ B with |B0| ≤ 2 such that tp+
θ (a/B0) ⊢ tp+

⟳ (a/B),

but tp+
θ (a/B0) ̸= tp+

⟳ (a/B0) even though they are the same as a non-partitioned

formula (thus not satisfying the condition that Corollary 3.4.8 says is equivalent to

semi-equationality).

2. Partitioning the same formula as in (1) the other way, ⟳ (x1, x2; y) has a one-sided

strong honest definition θ (x1, x2; y1, y2) =⟳ (x1, x2, y1)∧ ⟳ (x1, x2, y2)∧ ⟳ (y2, y1, x1).
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Given (a1, a2) and a nonempty finite set B such that |=⟳ (a1, a2; b) for b ∈ B, let

b1 ∈ B closest to a1 and b2 ∈ B closest to a2. Then θ (x1, x2; b1, b2) ⊢ tp+
⟳ (a1, a2/B).

3. In a linear order, x ̸= y has a one-sided strong honest definition θ (x; y1, y2, y3, y4)

that uses coding techniques with the variables y3, y4 to represent any of the formulas

θ1 (x; y1) : ⇐⇒ x < y1, θ2 (x; y1, y2) : ⇐⇒ y1 < x < y2, and θ3 (x; y1) : ⇐⇒ y1 < x.

Unlike in (1) or (2), x ̸= y does not have a one-sided strong honest definition that

is defined entirely in terms of Boolean combinations of instances of x ̸= y with the

variables shifted around. If this were possible, then it would also work in any reduct,

but y ̸= x is not a weak semi-equation in all reducts of a linear order.

We end the section with some remarks about forking for weak semi-equations.

Definition 3.4.10. We say that a formula φ (x, y) satisfies the definable (p, q)-property if

for every small model M and b, if φ (x, b) does not fork over M then there is some ψ (y) ∈

tp (b/M) such that the set of formulas {φ (x, b′) : b′ ∈ ψ (M)} is consistent (equivalently,

{φ (x, b′) : b′ ∈ ψ (M)} is consistent).

It was asked in [CS15, Section 2] if every formula in an NIP theory satisfies the definable

(p, q)-property. It is known in some special cases (see the introduction in [BK18]), in

particular:

Fact 3.4.11. [BK18] If T is distal, then every formula φ (x, y) satisfies the definable (p, q)-

property.

The proof in [BK18] in fact demonstrates the following:

Proposition 3.4.12. If T is NIP and φ(x, y) a formula such that φ∗ (x, y) is a weak semi-

equation, then φ (x, y) satisfies the definable (p, q)-property.

Proof. Given a formula φ (x, y), distality of T (as opposed to just NIP) is only used in

the proof in [BK18] to say that φ (x, y) satisfies the conclusion of [BK18, Proposition 2.4],
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i.e. that there is some formula θ (x; y1, . . . , yk) such that for any finite set B ⊆ My, |B| ≥ 2

and a ∈ Mx, if |= φ (a, b) for all b ∈ B, then there is some c ∈ Bk such that |= θ (a, c) and for

all b ∈ B we have |= θ (x, c) → φ (x, b). By Theorem 3.4.5, this holds assuming that φ∗ (x, y)

is a weak semi-equation.

3.5 Examples of non weakly semi-equational NIP theories

3.5.1 Boolean combinations of weak semi-equations

We provide a sufficient criterion for when a formula is not a Boolean combination of weak

semi-equations (analogous to a criterion for equations from [MS17]).

Lemma 3.5.1. If φ (x, y) and ψ (x, y) are weak semi-equations, then there is no b ∈ My and

array (ai,j)i,j∈Z with ai,j ∈ Mx such that:

• every row (i.e. (ai,j : j ∈ Z) for a fixed i ∈ Z) and every column (i.e. (ai,j : i ∈ Z) for

a fixed j ∈ Z) is indiscernible (over ∅);

• rows and columns without their 0-indexed elements (i.e. (ai,j)j ̸=0 for fixed i, and (ai,j)i ̸=0

for fixed j) are b-indiscernible;

• |= φ (ai,j, b) ∧ ¬ψ (ai,j, b) ⇐⇒ i = 0 ∨ j ̸= 0.

Proof. Assume there exists an array (ai,j : i, j ∈ Z) and b with these properties. For any

fixed i ̸= 0, we have |= φ (ai,j, b) for all j ̸= 0, (ai,j)j∈Z is indiscernible and (ai,j)j ̸=0 is b-

indiscernible, so, by weak semi-equationality of φ, |= φ (ai,0, b). But ̸|= φ (ai,0, b)∧¬ψ (ai,0, b),

so |= ψ (ai,0, b). Now the sequence (ai,0)i∈Z is indiscernible, (ai,0)i ̸=0 is b-indiscernible and

|= ψ(ai,0, b) for all i ̸= 0, so, by weak semi-equationality of ψ, |= ψ (a0,0, b) — contradicting

|= φ (a0,0, b) ∧ ¬ψ (a0,0, b).

Lemma 3.5.2. If φ (x, y) is a Boolean combination of weak semi-equations, then there is no

b ∈ My and array (ai,j)i,j∈Z with ai,j ∈ Mx such that:
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• rows and columns of (ai,j)i,j∈Z are indiscernible;

• rows and columns without their 0-indexed elements (i.e. (ai,j)j ̸=0 for fixed i, and

(ai,j)i ̸=0 for fixed j) are b-indiscernible;

• |= φ (ai,j, b) ⇐⇒ i = 0 ∨ j ̸= 0;

• all ai,j with i = 0 or j ̸= 0 have the same type over b.

Proof. Any conjunction of finitely many weak semi-equations and negations of weak semi-

equations is of the form ψ (x, y) ∧ ¬θ (x, y) for some weak semi-equations ψ (x, y) and

θ (x, y), because weak semi-equations are closed under conjunction and under disjunction

(Proposition 3.2.6(3)), so negations of weak semi-equations are also closed under conjunction.

Thus any Boolean combination of weak semi-equations is equivalent, via its disjunctive

normal form, to
∨

k∈I (ψk (x, y) ∧ ¬θk (x, y)) for some finite index set I and weak semi-

equations ψk (x, y) and θk (x, y) for k ∈ I. Given b and (ai,j)i.j∈Z as above, since i = 0 ∨ j ̸=

0 ⇐⇒ |= φ (ai,j, b) ⇐⇒ |=
∨

k∈I (ψk (ai,j, b) ∧ ¬θk (ai,j, b)), and all ai,j with i = 0 or j ̸= 0

have the same type over b, there is some k such that |= ψk (ai,j, b) ∧ ¬θk (ai,j, b) ⇐⇒ i =

0 ∨ j ̸= 0, contradicting Lemma 3.5.1.

3.5.2 Valued trees are not weakly semi-equational

We are following the notation and terminology of Section 3.3.5.

Definition 3.5.3. 1. A valued tree (M,∧,≼) is a tree (M,∧) equipped with a height-

order ≼ which is a total preorder which refines the tree-order ≤, and whose equivalence

classes are antichains of the tree-order. Then x ≼ y can be thought of as expressing

that y is at least as high above the root as x is, whether or not y actually extends x

in the tree-order. The strict version of the height order (i.e. x ̸≽ y), will be denoted

by x ≺ y, and the equal-height equivalence relation (x ≼ y&x ≽ y) will be denoted by

x ≈ y). The words “above” and “below” will be used to refer to the tree-order, while
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“higher than” and “lower than” will be used to refer to the height-order.

2. An infinitely-branching dense valued tree (M,∧,≼) is an infinitely-branching dense

tree (M,∧) which is also a valued tree, with the additional assumptions that for every

x, y ∈ M if x ≽ y, then there is z ≤ x such that z ≈ y, and if x ≼ y, then there is

z ≥ x such that z ≈ y. This assumption essentially says that for every initial segment

and every final segment, there are elements of every possible height below, and above,

respectively, the height of the endpoint.

Extending Lemma 3.3.14, we have:

Lemma 3.5.4. The theory of infinitely branching dense valued trees is complete, and

eliminates quantifiers in the language with the binary function symbol ∧ and the binary

relation symbol ≼.

Proof. Let M,N be infinitely-branching dense valued trees, A ⊆ M finite, m ∈ M , and

f : A → N a partial isomorphism. For ∅ ̸= X ⊆ A, letting f ′ (
∧
X) :=

∧
{f (a) | a ∈ X}

we may assume that A is closed under ∧. It is enough to extend f to a partial isomorphism

f ′ : A ∪ {m} → N . Let m′ := maxa∈A (m ∧ a). This maximum exists because the initial

segment below m is linearly ordered and A is finite. Note that if A contains an element

above m, then m′ = m, but m′ < m otherwise. We will first extend f to A ∪ {m′}. Let

b :=
∧

{a ∈ A | m′ ≤ a}. This is well-defined because m′ was defined such that there must

be some a ∈ A such that m′ ≤ a. Clearly m′ ≤ b. If m′ = b, extend f to send m′ to

f (b). Otherwise, we must extend f to send m′ to something below f (b). If m′ ≈
∧
X

for some ∅ ̸= X ⊆ A, then extend f to send m′ to the element below f (b) with the same

height as f (
∧
X) (i.e. such that f (m′) ≈ f (

∧
X)), which exists by the assumption of initial

segments containing elements of every possible height. Otherwise, m′ is either higher than

all, lower than all, or between two of {
∧
X | ∅ ≠ X ⊆ A} in height, and density of the tree

order implies density of the height order, so there are elements below f (b) that are higher

94



than all, lower than all, and between any two of {
∧
X | ∅ ≠ X ⊆ A}, and m′ can be sent to

such an element.

If m′ < m, then we still must extend f to A∪{m′,m}. Let c ∈ N be such that c > f (m′),

c ≻ f (a) for every a ∈ A, and the meet of c with each element of f (A) is at most f (m′)

(which is possible by the assumptions of infinite branching and final segments containing

elements of all possible heights). We can extend f to send m to an element between c and

m′, such that, if m ≈
∧
X for some ∅ ≠ X ⊆ A, f ′ (m) ≈ f (

∧
X) (which is possible by

the fact that initial segments contain elements of all possible heights), and otherwise, f (m)

should be higher than f (
∧
X) for each X such that m ≻

∧
X, and lower than f (

∧
X) for

each X such that m ≺
∧
X (which is possible by density of the tree-order).

Theorem 3.5.5. The theory of infinitely-branching dense valued trees is not weakly semi-

equational. Namely, the partitioned formula ψ(x1, x2; y1, y2) := x1 ∧ y1 ≼ x2 ∧ y2 is not

equivalent to a Boolean combination of weak semi-equations.

Proof. To show that ψ(x1, x2; y1, y2) is not equivalent to a Boolean combination of weak semi-

equations, by Lemma 3.5.2 (noting that the condition there is symmetric under exchanging

the roles of i and j), it suffices to find b, b′, and (ai)i∈Z ,
(
a′j
)
j∈Z such that:

1. the sequences (ai)i∈Z and
(
a′j
)
j∈Z are mutually indiscernible (which implies that rows

and the columns of the array
(
aia

′
j

)
i,j∈Z are indiscernible);

2. the sequence (ai)i ̸=0 is indiscernible over bb′a′j for every j ∈ Z and the sequence
(
a′j
)
j ̸=0

is indiscernible over bb′ai for every i ∈ Z (which implies that the rows and the columns

of the array
(
aia

′
j

)
i,j∈Z with their 0-indexed elements removed are indiscernible over

bb′);

3. |= ai ∧ b ≼ a′j ∧ b′ ⇐⇒ i ̸= 0 ∨ j = 0;

4. all
(
ai, a

′
j

)
with i ̸= 0 or j = 0 have the same type over bb′.

95



To find these elements, working in a saturated model let m,m′ be ≤-incomparable

elements such that m ≺ m′. Let (ai)i∈Z ,
(
a′j
)
j∈Z , b, b

′ all have the same height (which is

higher than m′), such that the meet of any two of the (ai)i∈Z is m, the meet of any two of(
a′j
)
j∈Z is m′, and m′ ≺ (a0 ∧ b) ≺ (a′0 ∧ b′).

Since ai ∧ b = m for i ̸= 0, a′j ∧ b′ = m′ for j ̸= 0, and m ≺ m′ ≺ (a0 ∧ b) ≺ (a′0 ∧ b′),

clearly |= (ai ∧ b) ≼
(
a′j ∧ b′

)
⇐⇒ i ̸= 0∨ j = 0, so the condition (3) is satisfied. It remains

to verify the conditions (1), (2) and (4).

Claim 3.5.6. The sequences (ai)i∈Z and
(
a′j
)
j∈Z are mutually totally indiscernible.

Proof. By Lemma 3.5.4, every formula φ (x1, . . . , xn; y1, . . . , yk) is equivalent to a Boolean

combination of formulas of the form t1 ≼ t2 or t1 = t2, where t1 and t2 are terms. For I ⊆ [n],

J ⊆ [k], not both empty, let

tI,J (x1, . . . , xn; y1, . . . , yk) :=
∧
i∈I

xi ∧
∧
j∈J

yj.

Every term in the variables x1, . . . , xn; y1, . . . , yk is of this form. We now calculate

tI,J
(
ai1 , . . . , ain ; a

′
j1
, . . . , a′jk

)
for I ⊆ [n], J ⊆ [k], not both empty, distinct i1, . . . , in ∈ Z,

and distinct j1, . . . , jk ∈ Z:

• if I and J are both nonempty, then tI,J
(
ai1 , . . . , ain ; a

′
j1
, . . . , a′jk

)
= m ∧m′;

• if J = ∅ and |I| ≥ 2, then tI,J
(
ai1 , . . . , ain ; a

′
j1
, . . . , a′jk

)
= m.

• if I = ∅ and |J | ≥ 2, then tI,J
(
ai1 , . . . , ain ; a

′
j1
, . . . , a′jk

)
= m′;

• if J = ∅ and I = {ℓ}, then tI,J
(
ai1 , . . . , ain ; a

′
j1
, . . . , a′jk

)
= aiℓ ;

• if I = ∅ and J = {ℓ}, then tI,J
(
ai1 , . . . , ain ; a

′
j1
, . . . , a′jk

)
= a′jℓ .

Thus, the value of tI,J
(
ai1 , . . . , ain ; a

′
j1
, . . . , a′jk

)
does not depend on i1, . . . , in, j1, . . . , jk unless

|I|+ |J | = 1. And the height of tI,J
(
ai1 , . . . , ain ; a

′
j1
, . . . , a′jk

)
does not depend on i1, . . . , in,

j1, . . . , jk for any I, J . So for the formula φ(x1, . . . xn; y1, . . . , yk) := tI1,J1 ≼ tI2,J2 , the truth
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value of the formula φ
(
ai1 , . . . , ain ; a

′
j1
, . . . , a′jk

)
does not depend on i1, . . . , in, j1, . . . , jk. And

for the formula φ := (tI1,J1 = tI2,J2) we have:

• if |I1|+ |J1| = 1 or |I2|+ |J2| = 1, then φ
(
ai1 , . . . , ain ; a

′
j1
, . . . , a′jk

)
holds if and only if

tI1,J1 and tI2,J2 are equal as terms (i.e. I1 = I2 and J1 = J2) — this does not depend

on i1, . . . , in, j1, . . . , jk;

• and if |I1| + |J1| ̸= 1 and |I2| + |J2| ̸= 1, then since the values of neither of the terms

depend on i1, . . . , in, j1, . . . , jk, the truth value of φ
(
ai1 , . . . , ain ; a

′
j1
, . . . , a′jk

)
does not

either.

Thus, by quantifier elimination, the truth value of φ
(
ai1 , . . . , ain ; a

′
j1
, . . . , a′jk

)
does not

depend on i1, . . . , in, j1, . . . , jk for any formula φ, since we have established this for atomic,

and thus for quantifier-free formulas. That is, (ai)i∈Z and
(
a′j
)
j∈Z are mutually totally

indiscernible.

Claim 3.5.7. The sequence (ai)i ̸=0 is indiscernible over bb′a′j for every j ∈ Z, and the

sequence
(
a′j
)
j ̸=0

is indiscernible over bb′ai for every i ∈ Z.

Proof. As the sequences (ai)i<0 + (b) + (ai)i>0 and
(
a′j
)
j<0

+ (b′) +
(
a′j
)
j>0

satisfy all the

assumptions that were made about the sequences (ai)i∈Z and
(
a′j
)
j∈Z respectively, having

proven that (ai)i∈Z and
(
a′j
)
j∈Z are mutually totally indiscernible in Claim 3.5.6, it follows

for the same reason that (ai)i<0 + (b) + (ai)i>0 and
(
a′j
)
j<0

+ (b′) +
(
a′j
)
j>0

are mutually

totally indiscernible, which implies the claim, except for the part that (ai)i ̸=0 is indiscernible

over bb′a′0 and
(
a′j
)
j ̸=0

is indiscernible over bb′a0, which can be proved in a similar manner

as follows.

Every formula φ (x1, . . . , xn; b, b
′, a′0) is a Boolean combination of formulas of the form

t1 = t2 and t1 ≼ t2, where t1 and t2 are terms in the variables x1, . . . , xn, b, b′, a′0. These

terms are all of the form tI,J :=
∧

i∈I xi ∧
∧

c∈J c for I ⊆ [n] and J ⊆ {b, b′, a′0}, not both

empty. The value of tI,J (ai1 , . . . , ain) (for pairwise distinct i1, . . . , in) depends on ai1 , . . . , ain
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only in the case where |I| = 1 and J = ∅. Even then, each ai has the same height, so for

formulas of the form φ (x1, . . . , xn) := tI1,J1 ≼ tI2,J2 , the truth-value of φ (ai1 , . . . , ain) does

not depend on i1, . . . , in. And for φ (x1, . . . , xn) := tI1,J1 = tI2,J2 , if |I1| = 1 and J1 = ∅, then

φ (ai1 , . . . , ain) holds if and only if tI1,J1 and tI2,J2 are equal as terms. So the truth values of

these formulas do not depend on i1, . . . , in either, hence (ai)i ̸=0 is indiscernible over bb′a′0.

The sequence
(
a′j
)
j ̸=0

is indiscernible over bb′a0 for the same reason, replacing a′0 with a0

and replacing (ai)i ̸=0 with
(
a′j
)
j ̸=0

in the above argument.

Claim 3.5.8. All pairs
(
ai, a

′
j

)
with i ̸= 0 or j = 0 have the same type over bb′.

Proof. By quantifier elimination, every formula φ (x, y; z, z′) with x, y, z, z′ singletons is

equivalent to a Boolean combination of formulas of the form t1 ≼ t2 or t1 = t2, where

t1 and t2 are terms. For ∅ ≠ X ⊆ {x, y, z, z′}, let tX (x, y; z, z′) :=
∧

w∈X w. Every term in

the variables x, y; z, z′ is of this form. We have the following observations:

• if X intersects both {x, z} and {y, z′}, then tX
(
ai, a

′
j; b, b

′) = m∧m′ for every i, j ∈ Z;

• t{x,z}
(
ai, a

′
j; b, b

′) is equal to ai ∧ b = m for i ̸= 0, and to a0 ∧ b for i = 0;

• t{y,z′}
(
ai, a

′
j; b, b

′) is equal to a′j ∧ b′ = m′ for j ̸= 0, and to a′0 ∧ b′ for j = 0;

• t{w} = w for w ∈ {x, y, z, z′}.

Thus the formula tX
(
ai, a

′
j; b, b

′) = tY
(
ai, a

′
j; b, b

′) is true if X = Y or if both X and Y

intersect both {x, z} and {y, z′}, and false otherwise, with no dependence on i, j. The

formula tX
(
ai, a

′
j; b, b

′) ≼ tY
(
ai, a

′
j; b, b

′) is true if X intersects both {x, z} and {y, z′}, false

if Y intersects both {x, z} and {y, z′} but X does not, true if |Y | = 1, false if |X| = 1 but

|Y | > 1, and true if X = Y . None of those depend on i, j, and the only remaining case is

when one of X and Y is {x, z} and the other is {y, z′}. We have:

|= t{x,z}
(
ai, a

′
j; b, b

′) ≼ t{y,z′}
(
ai, a

′
j; b, b

′) ⇐⇒ |= ai ∧ b ≼ a′j ∧ b′ ⇐⇒ i ̸= 0 ∨ j = 0;

|= t{y,z′}
(
ai, a

′
j; b, b

′) ≼ t{x,z}
(
ai, a

′
j; b, b

′) ⇐⇒ |= a′j ∧ b′ ≼ ai ∧ b ⇐⇒ i = 0&j ̸= 0.
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Thus all atomic formulas with parameters from {b, b′} have constant truth-value on every

pair in
{(
ai, a

′
j

)
| i ̸= 0 ∨ j = 0

}
. That is, these pairs all have the same quantifier-free type

over bb′, and hence, by quantifier elimination, the same type.

This concludes the proof of Theorem 3.5.5.

Problem 3.5.9. Is there a semi-equational expansion of the theory of infinitely-branching

dense valued trees?

3.5.3 Non weakly-semi-equational valued fields

In this section we demonstrate that many valued fields are not weakly semi-equational. By

an ac-valued field field we mean a three-sorted structure (K, k,Γ, ν, ac) in the Denef-Pas

language, where K is a field, ν : K → Γ is a valuation, with (ordered) value group Γ and

residue field k, and ac : K → k the angular component map. As usual, O = Oν denotes the

valuation ring of ν, and for x ∈ O, x̄ denotes the residue of x in k.

Theorem 3.5.10. Let K be an ac-valued field for which the residue field k contains a non-

constant totally indiscernible sequence (for instance, if k is infinite and stable), and which

eliminates quantifiers of the main field sort (for example, a Henselian ac-valued field of

equicharacteristic 0 with an algebraically closed residue field). Then K is not weakly semi-

equational.

Towards the proof of this theorem, it will be useful to consider the following notion:

Definition 3.5.11. Let K be a field with valuation ν.

1. We say that a1, . . . , an ∈ K are valuationally independent if, for every polynomial

f (x1, . . . , xn) =
∑

i cix
α1,i

1 . . . x
αn,i
n (where i runs over some finite index set,

ci, α1,i, . . . , αn,i ∈ Z, and (α1,i, . . . , αn,i) ̸= (α1,j, . . . , αn,j) for i ̸= j) we have

ν (f (a1, . . . , an)) = min
i
ν
(
cia

α1,i

1 . . . aαn,i
n

)
.
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That is, if the valuation of every polynomial applied to a1, . . . , an is the minimum of

the valuations of its monomials (including their coefficients).

2. An infinite set is valuationally independent if every finite subset is.

Example 3.5.12. 1. A set of elements with valuation 0 is valuationally independent if

and only if their residues are algebraically independent.

2. In a valued field of pure characteristic, every set of elements whose valuations are Z-

linearly independent is valuationally independent. In mixed characteristic (0, p), every

set of elements whose valuations, together with ν (p), are Z-linearly independent, is

valuationally independent. In an ac-valued field, this is the only way for a set of

elements with angular component 1 to be valuationally independent.

The rest of this section constitutes a proof of Theorem 3.5.10. We will show that the

partitioned formula ψ(x1, x2; y1, y2) := ν (x1 − y1) < ν (x2 − y2) is not a Boolean combination

of weak semi-equations (this can be viewed as a strengthening of Theorem 3.5.5).

Without loss of generality we may assume that K is a monster model. By Lemma 3.5.2, it

suffices to find b, b′ and (ai)i∈Z ,
(
a′j
)
j∈Z in K such that the sequences (ai)i∈Z and

(
a′j
)
j∈Z are

mutually indiscernible (so that rows and columns of the array
(
aia

′
j

)
i,j∈Z are indiscernible),

(ai)i ̸=0 is indiscernible over bb′
(
a′j
)
j∈Z,

(
a′j
)
j ̸=0

is indiscernible over bb′ (ai)i∈Z (so that the

rows and the columns of the array
(
aia

′
j

)
i,j∈Z with their 0-indexed elements removed are

indiscernible over bb′), |= ν (ai − b) < ν
(
a′j − b′

)
⇐⇒ i ̸= 0 ∨ j = 0, and all pairs

(
ai, a

′
j

)
with i ̸= 0 or j = 0 have the same type over bb′.

To find these elements, first let 0 < γ0 < γ1 < γ2 < γ3 < γ4 < γ5 < γ6 ∈ Γ

be an increasing indiscernible sequence of positive elements of the value group (exists by

Ramsey and saturation). Let a∞, a′∞ ∈ K be such that ν (a∞) = γ0, ν (a′∞) = γ1, and

ac (a∞) = ac (a′∞) = 1. Let (ãi)i∈Z +
(
b̃
)

and
(
ã′j
)
j∈Z +

(
b̃′
)

be arbitrary mutually totally

indiscernible sequences in k (which exist by assumption on k and saturation, splitting a

totally indiscernible sequence into two disjoint subsequences), and let ai := a∞ + α lift (ãi)
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and a′j := a′∞ + β lift
(
ã′j
)

for i, j ∈ Z, for some α, β ∈ K with ν (α) = γ2, ν (β) = γ3, and

ac (α) = ac (β) = 1, where lift (x) is some arbitrary element of O such that lift (x) = x.

Let b, b′ be such that ν (a0 − b) = γ4, ν (a′0 − b′) = γ5 and ac (a0 − b) = b̃ − ã0, and

ac (a′0 − b′) = b̃′ − ã′0. All of these elements are fixed for the rest of the section.

It is clear that |= ν (ai − b) < ν
(
a′j − b′

)
⇐⇒ i ̸= 0 ∨ j = 0, because ν (a0 − b) = γ4,

ν (ai − b) = γ2 for i ̸= 0, ν (a′0 − b′) = γ5, and ν
(
a′j − b′

)
= γ3 for j ̸= 0.

We will prove the following two claims. Given a sequence (xi)i∈I and J ⊆ I, we will write

xJ to denote the subsequence (xi : i ∈ J).

Claim 3.5.13. 1. Let φ (x; z;w; b′, a′J) be a formula with parameters b′ and a′J for some

J ⊆ Z, tuples of variables x of sort K, z of sort k, and w of sort Γ∞. Let I1, I2 be

tuples of distinct indices from Z, with |I1| = |I2| = |x|. Let σ ∈ Aut (k) be such that

σ (ãI1) = ãI2 (preserving the ordering of the tuples), σ (ã′J) = ã′J , and σ
(
b̃′
)

= b̃′.

Then for any tuples c ∈ kz, d ∈ Γw
∞ we have

|= φ (aI1 ; c; d; b
′; a′J) ⇐⇒ |= φ (aI2 ;σ (c) ; d; b

′; a′J) .

2. Likewise, let φ (y; z;w; b, aI) be a formula with parameters b and aI for some I ⊆ Z,

tuples of variables y of sort K, z of sort k, and w of sort Γ∞. Let J1, J2 be tuples

of distinct indices from Z, with |J1| = |J2| = |y|, and let σ ∈ Aut (k) be such that

σ
(
ã′J1
)
= ã′J2, σ (ãI) = ãI , and σ

(
b̃
)
= b̃. Then for any tuples c ∈ kz, d ∈ Γw

∞ we have

|= φ
(
a′J1 ; c; d; b; aI

)
⇐⇒ |= φ

(
a′J2 ;σ (c) ; d; b; aI

)
.

Claim 3.5.14. Let φ (x; y; z;w; b; b′) be a formula with parameters b, b′, where x and y are

single variables of sort K, and z and w are tuples of variables of sort k and Γ∞, respectively.

Let σi ∈ Aut (k) be such that σi (ãi) = b̃, σi (ã0) = ã0, σi (ã′0) = ã′0, and σi

(
b̃′
)
= b̃′. Let

σ′
j ∈ Aut (k) be such that σ′

j

(
b̃′
)

= ã′j, σ′
j (ã

′
0) = ã′0, σ′

j (ãi) = ãi, and σ′
j

(
b̃
)

= b̃. Let

π ∈ Aut (Γ∞) be such that π (γ2) = γ4, π (γ0) = γ0, π (γ1) = γ1, and π (γ5) = γ5, and let

τ ∈ Aut (Γ∞) be such that τ (γ5) = γ3, τ (γ0) = γ0, τ (γ1) = γ1, and τ (γ2) = γ2. Then, for
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i, j ̸= 0, c ∈ kz, and d ∈ Γw
∞, |= φ (a0; a

′
0;σi (c) ;π (d) ; b; b

′) ⇐⇒ |= φ (ai; a
′
0; c; d; b; b

′) ⇐⇒

|= φ
(
ai; a

′
j;σ

′
j (c) ; τ (d) ; b; b

′).
Assuming these claims, from the |z| = |w| = 0 case of Claim 3.5.13, we get that (ai)i∈Z

is totally indiscernible over b′
(
a′j
)
j∈Z, and

(
a′j
)
j∈Z is totally indiscernible over b (ai)i∈Z. In

particular (ai)i∈Z and
(
a′j
)
j∈Z are mutually totally indiscernible.

In describing (ai)i∈Z ,
(
a′j
)
j∈Z , b, b

′, we have made exactly the same assumptions about a0

as about b, and the same assumptions about a′0 as about b′, in the sense that if we replace

a0 with b or replace a′0 with b′, the resulting elements (ai)i∈Z ,
(
a′j
)
j∈Z , b, b

′ could have come

from the same construction. Thus, as Claim 3.5.13 implies that (ai)i ̸=0 is totally indiscernible

over a0b′
(
a′j
)
j∈Z, and

(
a′j
)
j ̸=0

is totally indiscernible over a′0b (ai)i∈Z, it must also be the case

that (ai)i ̸=0 is totally indiscernible over bb′
(
a′j
)
j∈Z, and

(
a′j
)
j ̸=0

is totally indiscernible over

b′b (ai)i∈Z.

From the |z| = |w| = 0 case of Claim 3.5.14, we get that

tp
(
ai, a

′
j/b, b

′) = tp (ai, a
′
0/b, b

′) = tp (a0, a
′
0/b, b

′)

for i, j ̸= 0, hence all
(
ai, a

′
j

)
with i ̸= 0 or j = 0 have the same type over bb′.

Thus these two claims establish the conditions needed for Lemma 3.5.2 to imply that

ν (x1 − y1) < ν (x2 − y2) is not a Boolean combination of weak semi-equations.

Both claims will be proved by induction on the parse tree of the formula φ (without

parameters). There are five cases that must be considered:

Case 1. The formula φ is of the form t1 ≤ t2, where t1, t2 are terms of sort Γ∞. Such terms

are N-linear combinations of variables of sort Γ∞ and valuations of polynomials in variables

of sort K; i.e. of the form n · x+m · ν (f (y)), where x = (x1, . . . , xℓ1) is a tuple of variables

of sort Γ∞, y is a tuple of variables of sort K, f is a tuple of polynomials (f1(y), . . . , fℓ2(y)),

n = (n1, . . . , nℓ1) ∈ N|x|, m = (m1, . . . ,mℓ2) ∈ N|f |, ν (f(y)) is an abbreviation for the tuple

(ν (f1(y)) , . . . , ν (fℓ(y))), and “·” is the dot product.
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Case 2. φ is of the form t1 =k t2, where t1, t2 are terms of sort k. Terms of sort k are

polynomials applied to variables of sort k and angular components of terms of sort K; i.e. of

the form f (x, ac (g (y))), where f is a polynomial, g = (g1, . . . , gℓ) is a tuple of polynomials,

x is a tuple of variables of sort k, y is a tuple of variables of sort K, and ac (g(y)) is an

abbreviation for the tuple (ac(g1(y)), . . . , ac(gℓ(y))). Since t1 =k t2 if and only if t1− t2 =k 0,

every formula of this form is equivalent to a formula of the form f (x, ac (g (y))) =k 0.

Case 3. φ is a Boolean combination of formulas for which the claim holds.

Case 4. φ is of the form ∃uψ, where u is a variable of sort k, and the claim holds for ψ.

Case 5. φ is of the form ∃uψ, where u is a variable of sort Γ∞, and the claim holds for ψ.

There are four more cases for how φ could be constructed, which will not be checked

individually because they follow from the previous five cases:

Case 6. φ is of the form t1 =Γ t2, where t1, t2 are terms of sort Γ∞. This is equivalent to

t1 ≤ t2 ∧ t2 ≤ t1, and is thus redundant with Cases 1 and 3.

Case 7. φ is of the form t1 =K t2, where t1, t2 are terms of sort K. This is equivalent to

ν (t1 − t2) = ν (0), and is thus redundant with Case 6.

Case 8. φ is of the form ∀uψ, where u is a variable of sort k or Γ∞. This is redundant with

Cases 3, 4, and 5.

Case 9. φ is of the form ∃uψ, or ∀uψ, where u is a variable of sort K. This case can

be neglected by quantifier elimination, since we can always pick a formula equivalent to φ

which has no quantifiers of sort K.

The following auxiliary claims will be used.

Claim 3.5.15. The elements γ0, γ1, γ2, γ3, γ4, γ5 are Z-linearly independent (in Γ viewed as a

Z-module). If K has mixed characteristic (0, p), then ν (p) , γ0, γ1, γ2, γ3, γ4, γ5 are Z-linearly

independent.

Proof. If n0γ0 + . . .+ n5γ5 = 0 with n0, . . . , n5 ∈ Z not all 0, let i ≤ 5 be maximal such that
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ni ̸= 0. Now n0γ0+. . .+niγi = 0, and ni ̸= 0. By indiscernibility of the sequence (γ1, . . . , γ6),

n0γ0+ . . .+ni−1γi−1+niγ6 = 0, but then ni (γi − γ6) = 0, contradicting that ni ̸= 0, γi ̸= γ6,

and Γ is ordered and thus torsion-free. In mixed characteristic, the same argument can be

repeated starting from n0γ0 + . . .+ n5γ5 = mν (p) with n0, . . . , n5,m ∈ Z.

Claim 3.5.16. The elements a∞, a′∞, (α lift (ãi))i∈Z ,
(
β lift

(
ã′j
))

j∈Z , b− a0, b
′ − a′0 are

valuationally independent.

Proof. Define a valuation ν∗ : Z [u, v, x, y, z, w] → Γ∞ (with |u| = |v| = |z| = |w| = 1, |x|,|y|

arbitrary), by, for monomials (which in case of mixed characteristic is taken to include its

coefficient),

ν∗
(
nur∞xr11 . . . x

r|x|
|x| v

s∞ys11 . . . y
s|y|
|y| z

t1wt2
)

:= ν (n) + r∞γ0 + s∞γ1 +
(
r1 + . . .+ r|x|

)
γ2 +

(
s1 + . . .+ s|y|

)
γ3 + t1γ4 + t2γ5,

and the valuation of a polynomial is the minimum of the valuations of its monomials. That

way, for any I, J ⊆ Z with |I| = |x| and |J | = |y| we have:

ν∗ (f (u, v, x, y, z, w)) = ν (f (a∞, a
′
∞, α · lift (ãI) , β · lift (ã′J) , b− a0, b

′ − a′0))

when f is a monomial (where α · lift(ãI) := (α lift(ãi))i∈I), and we need to prove that this

holds for all polynomials f . Given a polynomial f (u, v, x, y, z, w),

ν∗ (f) = ν (n) +m0γ0 +m1γ1 +m2γ2 +m3γ3 +m4γ4 +m5γ5

for some n,m0,m1,m2,m3,m4,m5 ∈ N (with ν (n) ,m0,m1,m2,m3,m4,m5 unique by Claim

3.5.15). Let f̃ (u, v, x, y, z, w) be the sum of monomials in f of the same valuation as f ,

so that every monomial appearing in f̃ (u, v, x, y, z, w) has degree m0 in u, degree m1 in v,

total degree m2 in x, total degree m3 in y, degree m4 in z, degree m5 in w, and has leading

coefficient with valuation ν (n), and ν∗
(
f − f̃

)
> ν∗ (f). Thus

f̃ (u, v, x, y, z, w)

num0vm1zm4wm5
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is a non-zero polynomial in x, y, all coefficients having valuation 0, so it reduces under the

residue map to a nonzero polynomial in x, y. Since the set of elements in the tuples ãI , ã′J

is algebraically independent (they come from an infinite indiscernible sequence), it follows

that
f̃ (u, v, ãI , ã

′
J , z, w)

num0vm1zm4wm5
̸= 0,

and thus a lift of it,
f̃ (u, v, lift (ãI) , lift (ã

′
J) , z, w)

num0vm1zm4wm5
,

has valuation 0. Thus

ν
(
f̃ (a∞, a

′
∞, lift (ãI) , lift (ã

′
J) , b− a0, b

′ − a′0)
)
= ν (n) +m0γ0 +m1γ1 +m4γ4 +m5γ5

and, by homogeneity of f̃ ,

ν
(
f̃ (a∞, a

′
∞, α · lift (ãI) , β · lift (ã′J) , b− a0, b

′ − a′0)
)

= ν (n) +m0γ0 +m1γ1 +m2γ2 +m3γ3 +m4γ4 +m5γ5 = ν∗ (f) .

We have

ν
((
f − f̃

)
(a∞, a

′
∞, α · lift (ãI) , β · lift (ã′J) , b− a0, b

′ − a′0)
)
≥ ν∗

(
f − f̃

)
> ν∗ (f)

(the first inequality holds by the ultrametric property, combined with the fact that it holds

for monomials), so it follows that

ν (f (a∞, a
′
∞, α · lift (ãI) , β · lift (ã′J) , b− a0, b

′ − a′0)) = ν∗ (f)

as well, as desired.

We are ready to prove the two claims.

Proof of Claim 3.5.13. Let φ (x; z;w; b′; a′J) with x =
(
x1, . . . , x|x|

)
and I1, I2, σ, c, d be as in

the statement of the claim, and we analyze the five cases described above. We will assume
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without loss of generality that j1 = 0, where J = (j1, . . . , j|J |) (since if 0 appears somewhere

else in J , J may be re-ordered, and if 0 does not appear in J , it may be added).

The proof for the part regarding a formula φ (y; z;w; b; aI) is identical, switching the roles

of (ai)i∈Z and
(
a′j
)
j∈Z, replacing b′ with b′, and replacing γ5 with γ4.

Case 1. φ (x; z;w; b′; a′J) is of the form n1 · w + m1 · ν (g (x, b′, a′J)) ≤ n2 · w + m2 ·

ν (h (x, b′, a′J)).

It is enough to show that for any polynomial f (x, q, y) (with |x| = |I1| , |y| = |J | , |q| = 1),

we have ν (f (aI1 , b′, a′J)) = ν (f (aI2 , b
′, a′J)), because then

m1 · ν (g (aI1 , b′, a′J)) = m1 · ν (g (aI2 , b′, a′J)) and

m2 · ν (h (aI1 , b′, a′J)) = m2 · ν (h (aI2 , b′, a′J)) ,

so

|= n1 · d+m1 · ν (g (aI1 , b′, a′J)) ≤ n2 · d+m2 · ν (h (aI1 , b′, a′J)) ⇐⇒

|= n1 · d+m1 · ν (g (aI2 , b′, a′J)) ≤ n2 · d+m2 · ν (h (aI2 , b′, a′J)) .

Given a polynomial f(x, q, y), let

f ∗ (u, v, x, y, q) := f
(
x1 + u, . . . , x|x| + u, q + y1 + v, y1 + v, . . . , y|y| + v

)
,

with |u| = |v| = |q| = 1, |x| = |I1|, |y| = |J |, so that

f ∗ (a∞, a
′
∞, α · lift (ãIi) , β · lift (ã′J) , b′ − a′0) = f (aIi , b

′, a′J)

for i ∈ {1, 2} (using that ai = a∞ + α · lift (ãi) and a′j = a′∞ + β · lift
(
ã′j
)

and j1 = 0). Since

ν

(
nar∞∞ (α lift (ãi1))

r1 . . .
(
α lift

(
ãi|x|

))r|x|
(a′∞)

s∞ ·

·
(
β lift

(
ã′j1
))s1 . . .(β lift(ã′j|y|))s|y| (b′ − a′0)

t

)
= ν (n) + r∞γ0 + s∞γ1 +

(
r1 + . . .+ r|x|

)
γ2 +

(
s1 + . . .+ s|y|

)
γ3 + tγ5,
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regardless of i1, . . . , i|x|, if we let

nur∞vs∞xr11 . . . x
r|x|
|x| y

s1
1 . . . y

s|y|
|y| q

t

be a monomial in f ∗ (u, v, x, y, q) minimizing

ν (n) + r∞γ0 + s∞γ1 +
(
r1 + . . .+ r|x|

)
γ2 +

(
s1 + . . .+ s|y|

)
γ3 + tγ5,

then by Claim 3.5.16,

ν (f (aIi , b
′, a′J)) = ν (f ∗ (a∞, a

′
∞, α · lift (ãIi) , β · lift (ã′J) , b′ − a′0))

= ν (n) + r∞γ0 + s∞γ1 +
(
r1 + . . .+ r|x|

)
γ2 +

(
s1 + . . .+ s|y|

)
γ3 + tγ5

for i ∈ {1, 2}.

Case 2. φ (x; z;w; b′; a′J) is of the form f (z, ac (g (x, b, a′J))) =k 0.

It is enough to show that f (σ (c) , ac (g (aI2 , b′, a′J))) = σ (f (c, ac (g (aI1 , b
′, a′J)))), for

which it is in turn enough to show that ac (g (aI2 , b
′, a′J)) = σ (ac (g (aI1 , b

′, a′J))). Since

ai = a∞ + α · lift (ãi) and a′j = a′∞ + β · lift
(
ã′j
)
, there is a polynomial h (u, v, x, y, q) (with

|u| = |v| = |q| = 1, |x| = |I1|, |y| = |J |) such that

h (a∞, a
′
∞, α · lift (ãIi) , β · lift (ã′J) , b′ − a′0) = g (aIi , b

′, a′J)

for i ∈ {1, 2}. As in the proof of Case 1, there are n,m0,m1,m2,m3,m5 ∈ N such that

ν (h (a∞, a
′
∞, α · lift (ãIi) , β · lift (ã′J) , b′ − a′0))

= ν (n) +m0γ0 +m1γ1 +m2γ2 +m3γ3 +m5γ5

for i ∈ {1, 2}. Let h̃ (u, v, x, y, q) be the sum of monomials in h with degree m0 in u, degree

m1 in v, total degree m2 in x, total degree m3 in y, degree m5 in q, and whose coefficient
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has valuation ν (n). That way

ν
(
h̃ (a∞, a

′
∞, α · lift (ãIi) , β · lift (ã′J) , b′ − a′0)

)
= ν (n) +m0γ0 +m1γ1 +m2γ2 +m3γ3 +m5γ5, and

ν
((
h− h̃

)
(a∞, a

′
∞, α · lift (ãIi) , β · lift (ã′J) , b′ − a′0)

)
> ν (n) +m0γ0 +m1γ1 +m2γ2 +m3γ3 +m5γ5.

Then

h∗ (x, y) :=
h̃ (u, v, x, y, q)

num0vm1qm5

is a non-zero polynomial in x, y, all coefficients having valuation 0, so it reduces under the

residue map to a nonzero polynomial in x, y. Since ãIi , ã′J are algebraically independent (by

indiscernibility), it follows that h∗ (ãIi , ã′J) ̸= 0, so h∗ (lift (ãIi) , lift (ã′J)) has valuation 0, and

hence its angular component is its residue, h∗ (ãIi , ã′J). We have

h∗ (ãI2 , ã
′
J) = h∗ (σ (ãI1) , σ (ã

′
J)) = σ

(
h∗ (ãI1 , ã

′
J)
)
.

Thus

ac
(
h̃ (a∞, a

′
∞, α · lift (ãI2) , β · lift (ã′J) , b′ − a′0)

)
= ac

(
nam0

∞ (a′∞)
m1 αm2βm3 (b′ − a′0)

m5
)
ac

(
h̃ (a∞, a

′
∞, lift (ãI2) , lift (ã

′
J) , b

′ − a′0)

nam0∞ (a′∞)m1 (b′ − a′0)
m5

)
= ac (n)

(
ã′0 − b̃′

)m5

h∗ (ãI2 , ã
′
J) = ac (n)

(
ã′0 − b̃′

)m5

σ
(
h∗ (ãI1 , ã

′
J)
)

= σ
(
ac (n)

(
ã′0 − b̃′

)m5

h∗ (ãI1 , ã
′
J)
)

= σ

(
ac
(
nam0

∞ (a′∞)
m1 αm2βm3 (b′ − a′0)

m5
)
·

· ac

(
h̃ (a∞, a

′
∞, lift (ãI1) , lift (ã

′
J) , b

′ − a′0)

nam0∞ (a′∞)m1 (b′ − a′0)
m5

))
= σ

(
ac
(
h̃ (a∞, a

′
∞, α · lift (ãI1) , β · lift (ã′J) , b′ − a′0)

))
.
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Since

ν
((
h− h̃

)
(a∞, a

′
∞, α · lift (ãIi) , β · lift (ã′J) , b′ − a′0)

)
> ν (h (a∞, a

′
∞, α · lift (ãIi) , β · lift (ã′J) , b′ − a′0)) ,

we have

ac (g (aIi , b
′, a′J)) = ac (h (a∞, a

′
∞, α · lift (ãIi) , β · lift (ã′J) , b′ − a′0))

= ac
(
h̃ (a∞, a

′
∞, α · lift (ãIi) , β · lift (ã′J) , b′ − a′0)

)
,

hence

ac (g (aI2 , b
′, a′J)) = ac

(
h̃ (a∞, a

′
∞, α · lift (ãI2) , β · lift (ã′J) , b− a′0)

)
= σ

(
ac
(
h̃ (a∞, a

′
∞, α · lift (ãI1) , β · lift (ã′J) , b′ − a′0)

))
= σ (ac (g (aI1 , b

′, a′J)))

as desired.

Case 3. Clear.

Case 4. φ (x; z;w; b′; a′J) is of the form ∃uψ (x; z, u;w; b′; a′J), where u is a variable of sort

k, and the claim holds for ψ.

If |= φ (aI1 ; c; d; b
′; a′J), then |= ψ (aI1 ; c, e; d; b

′; a′J) for some e ∈ k. Then we have |=

ψ (aI2 ;σ (c) , σ (e) ; d; b
′; a′J), so |= φ (aI2 ;σ (c) ; d; b

′; a′J).

Case 5. φ (x; z;w; b′; a′J) is of the form ∃uψ (x; z;w, u; b′; a′J), where u is a variable of sort

Γ∞, and the claim holds for ψ.

If |= φ (aI1 ; c; d; b
′; a′J), then |= ψ (aI1 ; c; d, e; b

′; a′J) for some e ∈ Γ∞. Then we have

|= ψ (aI2 ;σ (c) ; d, e; b
′; a′J), so |= φ (aI2 ;σ (c) ; d; b

′; a′J).

Proof of Claim 3.5.14. Let φ (x; y; z;w; b; b′) , σi, σ
′
j, π, τ be as in the claim.

Case 1. φ (x; y; z;w; b; b′) is of the form n1 · w + m1 · ν (g (x, y, b, b′)) ≤ n2 · w + m2 ·

ν (h (x, y, b, b′)).
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It is enough to show that for any polynomial f (x, y, u, u′),

π−1 (ν (f (a0, a
′
0, b, b

′))) = ν (f (ai, a
′
0, b, b

′)) = τ−1
(
ν
(
f
(
ai, a

′
j, b, b

′)))
for i, j ̸= 0, because then

n1 · π (d) +m1 · ν (g (a0, a′0, b, b′)) = π (n1 · d+m1 · ν (g (ai, a′0, b, b′))) and

n1 · τ (d) +m1 · ν
(
g
(
ai, a

′
j, b, b

′)) = τ (n1 · d+m1 · ν (g (ai, a′0, b, b′)))

for i, j ̸= 0, and likewise for n2,m2, h, and, as π and τ preserve order, this implies

|= φ (a0; a
′
0;σi (c) ;π (d) ; b; b

′) ⇐⇒ |= φ (ai; a
′
0; c; d; b; b

′)

⇐⇒ |= φ
(
ai; a

′
j;σ

′
j (c) ; τ (d) ; b; b

′) .
To show this, let f ∗ (x, y, u, v) := f (x+ u, y + v, u, v). By Claim 3.5.15 and the choice of

these elements, for i, j ∈ Z, the valuations of ai−b, a′j−b′, b, and b′ are Z-linearly independent

(together with ν (p) if the characteristic is mixed), and hence these are valuationally

independent. Let nxe1ye2ue3ve4 be the monomial in f ∗ (x, y, u, v) minimizing ν (n) + e1γ2 +

e2γ5 + e3γ0 + e4γ1, so that by valuational independence,

ν (f ∗ (ai − b, a′0 − b′, b, b′)) = ν (n) + e1γ2 + e2γ5 + e3γ0 + e4γ1.

This monomial is unique by linear independence (Claim 3.5.15). Since π and τ preserve

order, this monomial also minimizes

π (ν (n) + e1γ2 + e2γ5 + e3γ0 + e4γ1) = ν (n) + e1γ4 + e2γ5 + e3γ0 + e4γ1

= ν (f ∗ (a0 − b, a′0 − b′, b, b′)) , and

τ (ν (n) + e1γ2 + e2γ5 + e3γ0 + e4γ1) = ν (n) + e1γ2 + e2γ3 + e3γ0 + e4γ1

= ν
(
f ∗ (ai − b, a′j − b′, b, b′

))
for i, j ̸= 0.

Case 2. φ (x; y; z;w; b; b′) is of the form f (z, ac (g (x, y, b, b′))) =k 0.
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It is enough to show that

σi (f (c, ac (g (ai, a
′
0, b, b

′)))) = f (σi (c) , ac (g (a0, a
′
0, b, b

′))) and

σ′
j (f (c, ac (g (ai, a

′
0, b, b

′)))) = f
(
σ′
j (c) , ac

(
g
(
ai, a

′
j, b, b

′))) ,
for which it is in turn enough to show that

σi (ac (g (ai, a
′
0, b, b

′))) = ac (g (a0, a
′
0, b, b

′)) and

σ′
j (ac (g (ai, a

′
0, b, b

′))) = ac
(
g
(
ai, a

′
j, b, b

′)) .
Let h (x, y, u, v) := g (x+ u, y + v, u, v). Let nxm1ym2um3vm4 be the (unique, by Claim

3.5.15) monomial in h (x, y, u, v) minimizing ν (n) +m1γ2 +m2γ5 +m3γ0 +m4γ1, so that by

valuational independence, ν (h (ai − b, a′0 − b′, b, b′)) = ν (n) +m1γ2 +m2γ5 +m3γ0 +m4γ1.

Since π and τ preserve order, this monomial also minimizes ν (n)+m1γ4+m2γ5+m3γ0+m4γ1

and ν (n) +m1γ2 +m2γ3 +m3γ0 +m4γ1. For i ̸= 0,

ac
(
n (ai − b)m1 (a′0 − b′)

m2 bm3 (b′)
m4
)

= ac (n) (ac (α) (ãi − ã0))
m1

(
b̃′ − ã′0

)m2

ac (a∞)m3 ac (a′∞)
m4

= ac (n) (ãi − ã0)
m1

(
b̃′ − ã′0

)m2

.

Similarly,

ac
(
n (a0 − b)m1 (a′0 − b′)

m2 bm3 (b′)
m4
)

= ac (n)
(
b̃− ã0

)m1
(
b̃′ − ã′0

)m2

ac (a∞)m3 ac (a′∞)
m4

= ac (n)
(
b̃− ã0

)m1
(
b̃′ − ã′0

)m2

= σi

(
ac (n) (ãi − ã0)

m1

(
b̃′ − ã′0

)m2
)
.
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And for i, j ̸= 0 we have

ac
(
n (ai − b)m1

(
a′j − b′

)m2 bm3 (b′)
m4
)

ac (n) (ac (α) (ãi − ã0))
m1
(
ac (β)

(
ã′j − ã′0

))m2 ac (a∞)m3 ac (a′∞)
m4

= ac (n) (ãi − ã0)
m1
(
ã′j − ã′0

)m2

= σ′
j

(
ac (n) (ãi − ã0)

m1

(
b̃′ − ã′0

)m2
)
.

Since

ν
(
h (ai − b, a′0 − b′, b, b′)− n (ai − b)m1 (a′0 − b′)

m2 bm3 (b′)
m4
)

> ν (h (ai − b, a′0 − b′, b, b′)) ,

we have

ac (h (ai − b, a′0 − b′, b, b′)) = ac
(
n (ai − b)m1 (a′0 − b′)

m2 bm3 (b′)
m4
)

= ac (n) (ãi − ã0)
m1

(
b̃′ − ã′0

)m2

.

Likewise,

ν
(
h (a0 − b, a′0 − b′, b, b′)− n (a0 − b)m1 (a′0 − b′)

m2 bm3 (b′)
m4
)

> ν (h (a0 − b, a′0 − b′, b, b′)) ,

so

ac (h (a0 − b, a′0 − b′, b, b′)) = ac
(
n (a0 − b)m1 (a′0 − b′)

m2 bm3 (b′)
m4
)

= σi

(
ac (n) (ãi − ã0)

m1

(
b̃′ − ã′0

)m2
)
.

And

ν
(
h
(
ai − b, a′j − b′, b, b′

)
− n (ai − b)m1

(
a′j − b′

)m2 bm3 (b′)
m4
)

> ν
(
h
(
ai − b, a′j − b′, b, b′

))
,
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so

ac
(
h
(
ai − b, a′j − b′, b, b′

))
= ac

(
n (ai − b)m1

(
a′j − b′

)m2 bm3 (b′)
m4
)

= σ′
j

(
ac (n) (ãi − ã0)

m1

(
b̃′ − ã′0

)m2
)
.

Since g (ai, a′0, b, b′) = h (ai − b, a′0 − b′, b, b′), g (a0, a′0, b, b′) = h (a0 − b, a′0 − b′, b, b′), and

g
(
ai, a

′
j, b, b

′) = h
(
ai − b, a′j − b′, b, b′

)
, this is what we wanted to show.

Case 3. Clear.

Case 4. φ (x; y; z;w; b; b′) is of the form ∃uψ (x; y; z, u;w; b; b′), where u is a variable of sort

k, and the claim holds for ψ.

For i, j ̸= 0, if |= φ (ai; a
′
0; c; d; b; b

′), then |= ψ (ai; a
′
0; c, e; d; b; b

′) for some e ∈ k.

Then |= ψ (a0; a
′
0;σi (c) , σi (e) ;π (d) ; b; b

′) and |= ψ
(
ai; a

′
j;σ

′
j (c) , σ

′
j (e) ; τ (d) ; b; b

′), so |=

φ (a0; a
′
0;σi (c) ;π (d) ; b; b

′) and |= φ
(
ai; a

′
j;σ

′
j (c) ; τ (d) ; b; b

′). Note that each of these

implications are reversible.

Case 5. φ (x; y; z;w; b; b′) is of the form ∃uψ (x; y; z;w, u; b; b′), where u is a variable of sort

Γ∞, and the claim holds for ψ.

For i, j ̸= 0, if |= φ (ai; a
′
0; c; d; b; b

′), then |= ψ (ai; a
′
0; c; d, e; b; b

′) for some e ∈ Γ∞.

Then |= ψ (a0; a
′
0;σi (c) ;π (d) , π (e) ; b; b

′) and |= ψ
(
ai; a

′
j;σ

′
j (c) ; τ (d) , τ (e) ; b; b

′), so |=

φ (a0; a
′
0;σi (c) ;π (d) ; b; b

′) and |= φ
(
ai; a

′
j;σ

′
j (c) ; τ (d) ; b; b

′). Since π and τ are bijective,

each of these implications is reversible.

This concludes the proof of Theorem 3.5.10.

Remark 3.5.17. This proof of Theorem 3.5.10 also applies to any reduct of an ac-valued

field K whose residue field has a non-constant totally indiscernible sequence to a language

L ⊆ LDenef-Pas such that L contains the relation ν (x1 − y1) < ν (x2 − y2), and every L-

formula is equivalent to a Boolean combination of LDenef-Pas-formulas with no quantifiers of

the main sort. This gives us further examples of NIP theories that are not weakly semi-

equational, such as:
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1. A Henselian valued field of equicharacteristic 0 with algebraically closed residue field.

2. An algebraically closed valued field (of any characteristic).

3. The reduct of either of the above to a valued vector space or valued abelian group.

4. A generic abstract ultrametric space: a two-sorted structure (M,Γ∞), with a linear

order ≤ on Γ∞ that is dense with maximal element ∞ ∈ Γ∞ and no minimal element,

and a function ν : M2 → Γ∞, such that ν (x, y) = ∞ ⇐⇒ x = y, ν (x, y) = ν (y, x),

and ν (x, z) ≥ max (ν (x, y) , ν (y, z)), and such that for every γ ∈ Γ and a ∈ M, there

are (bi)i∈N in M such that ν (a, bi) = ν (bi, bj) = γ for i, j ∈ N.

Remark 3.5.18. If K is a valued field with infinite residue field k, which eliminates

quantifiers of the main sort in the 3-sorted language with sorts K, k, and Γ∞, field structures

on K and k, an ordered monoid structure on Γ∞, the valuation map ν : K → Γ∞, and

a residue map res : K → k which sends elements of O to their residue and everything

else to 0, then a similar argument to the proof of Theorem 3.5.10 can be carried out

without the assumption that k has a non-constant totally indiscernible sequence. Then

(ãi)i∈Z , b̃,
(
ã′j
)
j∈Z ,

b̃′ ∈ k need only be assumed to be algebraically independent, and the automorphisms σ,

σi, and σ′
j of k mentioned in Claims 3.5.13 and 3.5.14 are replaced with the identity on

k. The only steps in the proof affected by these changes are Case 2 in the proofs of each

of Claims 3.5.13 and 3.5.14. But these steps become much simpler, because the relevant

formulas, rather than f (x, ac (g (y))) =k 0 (for variables x of sort k and y of sort K), are

f (x, res (g (y))) =k 0, and in both claims, the only conditions we need to verify involve

plugging in elements with residue 0 into the polynomials g, making the claims easy to verify.

It is unknown to the authors whether this remark applies to any valued fields not already

covered by Theorem 3.5.10 and Remark 3.5.17.

Problem 3.5.19. Is the field Qp semi-equational? (It is weakly semi-equational by distality.)
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3.6 Weak semi-equationality in expansions by a predicate

3.6.1 Context

We recall the setting and some results from [CS13] (as usual, below x, y, z denote arbitrary

finite tuples of variables). We start with a theory T in a language L, and let LP := L∪{P (x)},

where P is a new unary predicate. Let TP := ThLP
(M,A), where A is some subset of M

(interpreted as P). We fix some monster model (M ′, A′) ≻ (M,A) of TP. An LP-formula

ψ(x) is bounded if it is of the form Q0y0 ∈ P . . . Qnyn ∈ Pφ (x, y), where Qi ∈ {∃,∀} and

φ (x, y) ∈ L. We denote the set of all bounded LP-formulas by Lbdd
P and say that the theory

TP is bounded if every LP formula is equivalent modulo TP to a bounded one. Finally, for

L ⊆ L′ ⊆ LP (M) we denote by Aind(L′) the L′(∅)-induced structure on A.

Fact 3.6.1. 1. [CS13, Corollary 2.5] Assume that T is NIP, Aind(L) is NIP and TP is

bounded. Then TP is NIP.

2. [CS13, Corollary 2.6] In particular, if T is NIP, A ⪯ M and TP is bounded, then TP

is NIP.

Some results on preservation of equationality under naming a set by a predicate are

obtained in [MPZ20]. As pointed out in [HN17], the exact analog with distality in place of

NIP is false:

Fact 3.6.2. ([HN17, Theorem 5.1] and the examples after it) The theory of dense pairs

of o-minimal structures expanding a group is not distal (even though it is bounded and the

induced structure on the submodel is distal). More precisely, their proof shows that the

formula φ (x, y) = ¬∃u ∈ P (x = u+ y) is not a weak semi-equation in the theory of dense

pairs.

In this section we show that at least weak semi-equationality of TP can be salvaged, in

the following form.
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Definition 3.6.3. A theory TP is almost model complete if, modulo TP, every LP-formula

ψ (x) is equivalent to a Boolean combination of formulas of the form ∃y0 ∈ P . . . ∃yn−1 ∈

Pφ (x, y), where φ (x, y) is an L-formula.

Theorem 3.6.4. Assume that T is distal, Aind(L) is distal and TP is almost model complete.

Then TP is weakly semi-equational.

Corollary 3.6.5. Dense pairs of o-minimal structures, as well as the other examples discussed

after [HN17, Theorem 5.1], are weakly semi-equational.

We will need the following properties of indiscernible sequences and definable sets with

distal induced structure.

Fact 3.6.6. [ACGZ22, Proposition 1.17] Let T be NIP, and let D be an ∅-definable set.

Assume that Dind is distal. Let (ci : i ∈ Q) be an indiscernible sequence of tuples in M and

let a tuple b from D be given. Assume that (ci : i ∈ Q \ {0}) is indiscernible over b, then

(ci : i ∈ Q) is indiscernible over b as well.

Lemma 3.6.7. Let T be NIP, let D be an ∅-definable set with Dind distal. Let (ai : i ∈ Q)

be an ∅-indiscernible sequence, and let b be such that (ai : i ∈ Q \ {0}) is b-indiscernible. Let

c ∈ D be arbitrary. Then we can find a sequence (ci : i ∈ Q) such that:

• aici ≡b a1c for all i ∈ Q \ {0},

• (aici : i ∈ Q) is ∅-indiscernible, and

• (aici : i ∈ Q \ {0}) is b-indiscernible.

Proof. By b-indiscernibility of (ai : i ∈ Q \ {0}), we can find a sequence (ci : i ∈ Q \ {0}) in

D such that (aici : i ∈ Q \ {0}) is b-indiscernible and aici ≡b a1c for all i ̸= 0. Indeed,

fix any formula φ such that |= φ (a1, b, c), and let (ci : i ∈ Q \ {0}) be arbitrary with |=

D (ci)∧φ (ai, b, ci) for all i ∈ Q \ {0} (exist by indiscernibility of (ai : i ̸= 0) over b). For any
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finite set of formulas ∆, let the formula Ψ∆ (x0z0, . . . , xnzn, b) express that (xizi : i < n) is

∆-indiscernible over b and φ (xi, b, zi) holds. Then by Ramsey we have some 0 < i0 < . . . <

in ∈ Q such that
(
aijcij : j < n

)
satisfies Ψ∆. By b-indiscernibility of (ai : i ∈ Q \ {0}) it

follows that for any i0 < . . . < in ∈ Q \ {0} we have

|= ∃c0 ∈ D . . . cn ∈ DΨ∆ (ai0c0, . . . , aincn; b) .

By compactness we can conclude.

It remains to find a c0 ∈ D such that (aici : i ∈ Q) is ∅-indiscernible. Let I ⊆ Q\{0} be an

arbitrary finite set and let ā0 := (ai : i ∈ I). Let ε > 0 in Q be such that I ⊆ Q\ (−ε, ε). For

each i ∈ Q, let a′i := (ai, ā0) and consider the sequence (a′i : i ∈ (−ε, ε)). It is ∅-indiscernible

since the sequence (ai : i ∈ Q) is, and moreover (a′i : i ∈ (−ε, ε) \ {0}) is indiscernible over

(ci : i ∈ I) ⊆ D (since the sequence of pairs (aici : i ∈ Q \ {0}) is indiscernible). Then by

Fact 3.6.6 we have that (a′i : i ∈ (−ε, ε)) is indiscernible over (ci : i ∈ I). In particular, there

exists an automorphism σ sending a′ε
2

to a′0 and fixing (ci : i ∈ I); hence sending a ε
2

to a0 and

fixing (aici : i ∈ I). As by assumption (aici : i ∈ I, i < −ε) +
(
a ε

2
c ε

2

)
+ (aici : i ∈ I, i > ε) is

indiscernible, applying σ we have that there is c̃0 := σ
(
c ε

2

)
∈ D such that (aici : i ∈ I, i < −ε)

+(a0c̃0)+(aici : i ∈ I, i > ε) is indiscernible. As I was arbitrary, we can then find c0 as wanted

by compactness.

Proof of Theorem 3.6.4. We know by Fact 3.6.1 that TP is NIP. As TP is almost model

complete, so in particular bounded, we have that the structures Aind(LP) and Aind(Lbdd
P ) have

the same definable subsets of An, for all n. But also note that for any set A, the structures

Aind(Lbdd
P ) and Aind(L) have the same definable subsets of An, for all n. Hence the full

structure induced on P in TP is distal, so the lemmas on the indiscernible sequences above

can be applied in TP with D := P.

Let (M ′, A′) be a sufficiently saturated elementary extension of (M,A) |= TP. As TP is

almost model complete by assumption, it is enough to show that every formula in LP of the
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form

φ (x, y) = ∃z0 ∈ P . . . ∃zn−1 ∈ Pψ (x, y, z) ,

where ψ (x, x, z) ∈ L, is a weak semi-equation in TP.

To check Definition 3.2.1, assume (using Remark 3.2.5) that we are given an LP-

indiscernible sequence of finite tuples (ai : i ∈ Q) and a finite tuple b, both in M ′, such that

the sequence (ai : i ∈ Q \ {0}) is LP (b)-indiscernible and |= φ (ai, b) for all i ̸= 0.

In particular, there is some tuple c in P such that |= ψ (a1, b, c) holds.

By Lemma 3.6.7 applied in TP, it follows that there is some sequence (ci : i ∈ Q) with

ci ∈ P such that (aici : i ∈ Q) is LP-indiscernible, (aici : i ̸= 0) is LP (b)-indiscernible and

aici ≡LP
b a1c for all i ̸= 0. In particular |= ψ (ai, b, ci) for all i ̸= 0. But ψ′ (x, z; y) :=

ψ (x, y, z) ∈ L is a semi-equation in T as T is distal, hence we must have |= ψ (a0, b, c0), and

so |= φ (a0, b) holds — as wanted.

Remark 3.6.8. Unlike in the general NIP case, there is a reasonable sufficient criterion for

the boundedness of TP for distal T . We say that T satisfies dnfcp′ (definable nfcp) if for any

M ≺ N |= T and any φ (x, y) , ψ (y, z) ∈ L there is k < ω such that for any b ∈ N , if the set

{φ (x, a) : a ∈ ψ (M, b)} is k-consistent, then it is consistent. By [CS15, Theorem 43], if T

be distal, A ⊆ M is small and uniformly stably embedded, and Aind has dnfcp′, then TP is

bounded.

Problem 3.6.9. 1. In Theorem 3.6.4, can we relax the assumption to “T and Aind(L) are

weakly semi-equational”?

2. Is there an analog of Theorem 3.6.4 for semi-equationality? Even a general result

for equationality seems to be missing (the argument in [MPZ20] for belle pairs of

algebraically closed fields appears to be specific to algebraically closed fields).
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3.7 Some results on Boolean combinations of semi-equations

It is tempting to adapt Lemmas 3.5.1 and 3.5.2 by replacing weak semi-equations with semi-

equations, and removing the assumption that rows and columns without their 0-indexed

elements are b-indiscernible, thus getting criteria that might be usable for showing that

some formula is not equivalent to a Boolean combination of semi-equations. This works

just fine for Lemmas 3.5.1, but the proof of Lemma 3.5.2 relies on the fact that weak semi-

equations are closed under disjunction, and semi-equations are not closed under disjunction.

So we must first study disjunctions of semi-equations.

Definition 3.7.1. An n-dimensional array (ai1,...,in : i1, . . . , in ∈ Z) is path-indiscernible if,

for every f1, . . . , fn : Z → Z such that each fj is either constant or strictly monotone, the

sequence
(
af1(i),...,fn(i)

)
i∈Z is indiscernible.

Remark 3.7.2. 1. Note that a one-dimensional path-indiscernible array is just the same

as an indiscernible sequence.

2. Any indiscernible array, in the sense of e.g. [BYC14, Definition 1.1(1)], is path-

indiscernible (but the converse is not necessarily true).

The following is a standard partite version of Ramsey’s theorem.

Fact 3.7.3. For any A, n, k ∈ N, there is some B ∈ N such that for every f : [B]n → [k]

there are some X1, . . . , Xn ⊆ [B] with |Xi| = A such that f is constant on X1 × . . .×Xn.

Lemma 3.7.4. Let n,m ∈ N with m < 2n. If φ1 (x, y) , . . . , φm (x, y) are semi-equations,

let ψ (x, y) := φ1 (x, y) ∨ . . . ∨ φm (x, y). Then there is no element b and path-indiscernible

array (ai1,...,in)i1,...,in∈Z such that |= ψ (ai1,...,in , b) ⇐⇒ i1 ̸= 0 ∧ . . . ∧ in ̸= 0.

Proof. Divide {(i1, . . . , in) | ij ∈ Z \ {0}} into 2n orthants based on the signs of each of

i1, . . . , in, one for each element of {1,−1}n. By assumption on ψ, for each orthant (s1, . . . , sn)

(sj ∈ {1,−1}), we can choose a function fs1,...,sn : N̸=0 → [m] such that
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|= φfs1,...,sn (i1,...,in)
(as1i1,...,snin) for i1, . . . , in ∈ N̸=0. By Fact 3.7.3, for every A ∈ N there

is some B ∈ N such that for every Y1, . . . , Yn ⊆ N with |Yi| = B, there are Xi ⊆ Yi

with |Xi| = A such that fs1,...,sn is constant on X1 × . . . × Xn. Let N ∈ N, and let

A0, . . . , A2n ∈ N be defined recursively by A0 := N , and Ak+1 is large enough that for

every f : [Ak+1]
n → [m] there are X1, . . . , Xn ⊆ [Ak+1] with |Xi| = Ak and f constant on

X1×. . .×Xn. Then, let g : [2n] → {1,−1}n be a bijection, and define (Xi,j ⊆ N ̸=0)0≤i≤2n,j∈[n]

recursively by X0,i := [A2n ] and Xk+1,i ⊆ Xk,i such that |Xk+1,i| = A2n−(k+1) and fg(k+1) is

constant on Xk+1,1 × . . . × Xk+1,n. Then |X2n,i| = N and every fs1,...,sn is constant on

X2n,1× . . .×X2n,n. That is, we have found an arbitrarily large finite path-indiscernible array(
a′i1,...,in

)
−N≤i1,...,in≤N

such that |= ψ
(
a′i1,...,in , b

)
⇐⇒ i1 ̸= 0 ∧ . . . ∧ in ̸= 0, and for each

orthant (s1, . . . , sn), there is k ∈ [m] such that |= φk

(
a′s1i1,...,snin , b

)
for i1, . . . , in ∈ [N ].

Because m < 2n, by the pigeonhole principle there is some k ∈ [m] such that there

are two distinct orthants (s1, . . . , sn) ̸= (t1, . . . , tn) such that |= φk

(
a′s1i1,...,snin , b

)
and

|= φk

(
a′t1i1,...,tnin , b

)
for i1, . . . , in ∈ [N ]. For ℓ ∈ [n] and −N ≤ j ≤ N , let ij,ℓ := sℓ if

sℓ = tℓ, and ij,ℓ := sℓj otherwise. That way (ij,1, . . . , ij,n)−N≤j≤N is constant or strictly

monotonic in each coordinate, in orthant (s1, . . . , sn) for j < 0, and in orthant (t1, . . . , tn)

for j > 0, so
(
a′ij,1,...,ij,n

)
−N≤j≤N

is indiscernible by path-indiscernibility of the array, and

|= φk

(
a′ij,1,...,ij,n , b

)
for j ̸= 0, but ̸|= ψ

(
a′i0,1,...,i0,n , b

)
and hence ̸|= φk

(
a′i0,1,...,i0,n , b

)
. Since

for every N ∈ N we found some k ∈ [m] for which this holds, there is some k ∈ [m] such

that this holds for infinitely many N , and hence by compactness there are (a∗i )i∈Z such that

|= φk (a
∗
i , b) ⇐⇒ i ̸= 0, contradicting that φk (x, y) is a semi-equation.

Lemma 3.7.5. Let n,m ∈ N with m < 2n. If φ (x, y) , ψ1 (x, y) , . . . , ψm (x, y) are semi-

equations, let ρ (x, y) := ψ1 (x, y) ∨ . . . ∨ ψm (x, y), and θ (x, y) := φ (x, y) ∧ ¬ρ (x, y). Then

there is no b and (n+ 1)-dimensional array (ai,j1,...,jn)i,j1,...,jn∈Z such that:

• the sequence (ai,j1,...,jn)i∈Z is indiscernible for each fixed j1, . . . , jn,

• the n-dimensional array (a0,j1,...,jn)j1,...,jn∈Z is path-indiscernible,
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• |= θ (ai,j1,...,jn) ⇐⇒ i ̸= 0 ∨ j1 = 0 ∨ . . . ∨ jn = 0.

Proof. For any j1, . . . , jn ∈ Z, |= φ (ai,j1,...,jn , b) for i ̸= 0 and φ (x, y) is a semi-equation,

so |= φ (a0,j1,...,jn , b). Then (a0,j1,...,jn)j1,...,jn∈Z is a path-indiscernible array such that |=

ρ (a0,j1,...,jn) ⇐⇒ j1 ̸= 0 ∧ . . . ∧ jn ̸= 0, contradicting Lemma 3.7.4.

Note that the m = n = 1 case of Lemma 3.7.5 is the direct analog of Lemma 3.5.1 for

semi-equations. From this, we obtain a sufficient criterion for failure of a theory to be

semi-equational, which we hope will find future applications.

Proposition 3.7.6. If φ (x, y) is a Boolean combination of semi-equations, then there is

some n ∈ N such that there is no b and (n + 1)-dimensional array (ai,j1,...,jn)i,j1,...,jn∈Z such

that:

• (ai,j1,...,jn)i∈Z is indiscernible for each fixed j1, . . . , jn,

• the n-dimensional array (a0,j1,...,jn)j1,...,jn∈Z is path-indiscernible,

• |= φ (ai,j1,...,jn , b) ⇐⇒ i ̸= 0 ∨ j1 = 0 ∨ . . . ∨ jn = 0,

• all ai,j1,...,jn with i ̸= 0 ∨ j1 = 0 ∨ . . . ∨ jn = 0 have the same type over b.

Proof. Because semi-equations are closed under conjunction (Proposition 3.2.6(2)), any

conjunction of finitely many semi-equations and negations of semi-equations is of the form

ψ (x, y)∧¬θ (x, y) for some semi-equation ψ (x, y) and disjunction of semi-equations θ (x, y).

Thus any Boolean combination of semi-equations is equivalent, via its disjunctive normal

form, to
∨

k∈I (ψk (x, y) ∧ ¬θk (x, y)) for some finite index set I, semi-equations ψk (x, y) for

k ∈ I, and disjunctions of semi-equations θk (x, y) for k ∈ I. Let n ∈ N be such that

each θk is the disjunct of fewer than 2n semi-equations, and suppose there is b and array

(ai,j1,...,jn)i,j1,...,jn∈Z such that (ai,j1,...,jn)i∈Z is indiscernible for each j1, . . . , jn, (a0,j1,...,jn)j1,...,jn∈Z
is path-indiscernible, |= θ (ai,j1,...,jn) ⇐⇒ i ̸= 0∨ j1 = 0∨ . . .∨ jn = 0, and all ai,j1,...,jn with
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i ̸= 0 ∨ j1 = 0 ∨ . . . ∨ jn = 0 have the same type over b. Since

i ̸= 0 ∨ j1 = 0 ∨ . . . ∨ jn = 0 ⇐⇒ |= φ (ai,j1,...,jn , b)

⇐⇒ |=
∨
k∈I

ψk (ai,j1,...,jn , b) ∧ ¬θk (ai,j1,...,jn , b)

and all ai,j1,...,jn with i ̸= 0∨ j1 = 0∨ . . .∨ jn = 0 have the same type over b, there is some k

such that |= ψk (ai,j1,...,jn , b)∧¬θk (ai,j1,...,jn , b) ⇐⇒ i ̸= 0∨j1 = 0∨. . .∨jn = 0, contradicting

Lemma 3.7.5.
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