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missing data to answer the given query.

PLAQUE https://github.com/yiminl18/filterplusdb.git

PLAQUE is a data processing system that takes a query plan by a given optimizer as
input, and learns new predicates to skip unnecessary computations at query run time.
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Today, data-driven analysis and applications exploit vast streams of data that are perpetu-

ally generated and collected from numerous data sources. Such a surge in data production,

which has reached over 10,000 Exabytes [26], is driving transformative advancements in

sectors such as transportation, emergency services, and health and wellness. Before data

is queried and used by downstream data-driven analytical tasks, various computationally-

intensive computations often need to be performed. Such tasks include data cleaning, data

integration, and/or data enrichment operations that often execute expensively AI/ML mod-

els incur non-trivial costs. Such computationally expensive tasks can often not be performed

at data ingestion time due to the rate at which data is produced. Periodic, offline compu-

tation is also infeasible due to the volume of data. Query processing in such a situation

requires careful incorporation and co-optimization of computationally expensive operations

into the query engine that can streamline query analysis and enhance execution efficiency in

terms of time and resources.

The goal of this thesis is to develop mechanisms to support computationally expensive op-

erations (e.g., enrichment, imputations, information extraction, data interpretation) within

data management systems in order to support interactive analysis. While the techniques

developed in the thesis have wide applicability, our focus is on emerging smart space appli-
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cations. Smart spaces consist of sensor-embedded physical spaces that capture and represent

the dynamic state of the physical infrastructure, and that of people interacting with the phys-

ical infrastructure, and with each other. Data management in smart spaces opens several

new challenges one of which is the ability to support interactive analytics on very large vol-

umes of data being captured at large velocities. The problems studied in this thesis draw its

motivation from such challenges.

In Chapter 3 we develop a query-time missing value imputation framework, entitled LaZy

Imputation during query Processing (ZIP), that modifies relational operators to be imputation-

aware in order to minimize the joint cost of imputing and query processing. The modified

operators use a cost-based decision function to determine whether to invoke imputation or

to defer it to downstream operators to resolve missing values. The modified query processing

logic ensures results with deferred imputations are identical to those produced if all missing

values were imputed first. ZIP includes a novel outer-join-based approach to preserve missing

values during execution, and a bloom filter-based index to optimize the space and running

overheads. Extensive experiments on both real and synthetic data sets demonstrate orders-

of-magnitude improvements in query processing when ZIP-based deferred imputations are

used.

In Chapter 4, we present a system for automated Predicate LeArning at QU ery timE

(PLAQUE), that automatically infers new predicates while running queries in order to ac-

celerate query execution. PLAQUE represents a significant departure from prior work on

learning predicates which are either limited to queries containing selection conditions on

certain columns (e.g., columns involved in a join in the query), or require statistics to be

collected and maintained from data, such as range set. We identify several opportunities to

learn predicates from various query conditions, such as aggregation, equi join, theta join,

and group by/having conditions at query time. In PLAQUE, learned predicates are pushed

down to the optimal positions in a given query plan tree in order to maximize their bene-
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fits. A novel partial-order based approach is developed for such a purpose. Furthermore, we

introduce a pre-learning technique for predicate inference before query optimization, which

synergistically combines with the runtime learning approach of PLAQUE to further enhance

performance. Comprehensive evaluations on both synthetic and real datasets demonstrate

that our learned predicates accelerate query execution by an order of magnitude, and the

improvements are even higher (two orders of magnitude) when computationally expensive

operators (imputations/enrichment) in the form of User-Defined Functions (UDFs) are uti-

lized in queries. PLAQUE, thus, significantly benefits data-driven analytical applications.

In Chapter 5, we shift the interest to applying techniques developed in the thesis to data

processing and query analytics in smart spaces. We first develop LOCATER, an indoor

localization solution based on WiFi connectivity data. LOCATER is zero-cost, accurate

(90% accuracy), and passive without the need to install any new hardware in the building

or new software on users’ phones. LOCATER has already been deployed and is operational

in the USA and India, across three distinct locations (UCI, BSU, Plaksha), and in over 40

UCI buildings for four years. LOCATER serves as a representative compute-intensive task

in building smart space applications. We conduct a case study by building two applica-

tions using LOCATER, occupancy, and contact tracing applications. Our case study clearly

demonstrates the benefits of using our query processing techniques – ZIP and PLAQUE in

building campus scale smart space applications. For instance, we show queries without these

optimizations, which were impractical to execute interactively can be used for interactive

analytics.
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Chapter 1

Introduction

In a traditional data processing pipeline, the system transforms and integrates data from

multiple sources before storing it in a database. Nowadays, streams of data are continuously

generated and captured by various data sources, such as devices, sensors, applications, and

services, all connected across multiple heterogeneous networks. Numerous studies indicate

a rapid surge in the data created by hundreds of billions of interconnected devices used by

several billion people, leading to the generation of over 10,000 Exabytes of data [26]. The

large volume of data opens new opportunities for transformational improvements in domains

like transportation, emergency response, and health and wellness.

Before such abundant data can be queried and used for downstream data-driven analyt-

ical tasks, various computationally-expensive operations may need to be performed. For

instance, the real-world data is often dirty with possible missing data, incorrect data, in-

consistent data, or duplicated data [71], and thus data cleaning [78, 116, 102, 33] as a

potentially compute-intensive task is often performed to improve the quality of data to en-

able data-driven decision making. Another compute-intensive task is data enrichment [48],

which associates a tag/label with a data object to support the downstream analytics. Data
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enrichment is often expensive since it requires the use of computation and I/O intensive

machine learning/artificial intelligence (ML/AI) model training and deployment [82, 87, 35].

Performing compute-intensive tasks given large and rapidly generated data sets poses sig-

nificant challenges. Consider a use case which motivates our work. At UC Irvine, for the

past 4 years, we have been using continuously generated WiFi connectivity data captured

over a campus wireless networks for fine-grained localization using a WiFi-based localization

framework entitled LocatER [79]. LocatER exploits a person’s recent connection history to

predict the room a person is in given the access point a person is connected to (which cor-

responds to an imputation problem [79]). LocatER takes roughly 400ms per event for such

an imputation.1 With 1000s of WiFi access points, about 30,000+ individuals connected

to the network and tens of thousands of WiFi events per second, it would take over one

hour to process one second of data collected from the WiFi infrastructure during peak load.

Clearly, it would be impossible to perform missing location enrichment/cleaning tasks on

the complete data sets or as data arrives on-the-fly when the compute-intensive tasks are

expensive.

In this thesis, our objective is to develop solutions to support expensive compute-intensive

tasks for downstream query processing. We study the problem in the context of relational

databases (RDB) and SQL as a query language for specifying analytic tasks. We focus

on the following two main directions of exploration. First, we consider a lazy approach

to implementing expensive pre-processing tasks, such as enrichment and/or imputations.

Such tasks are delayed and lazily evaluated during query processing, such that any complex

computation is only performed on a subset of data required for analysis. Second, we develop

novel approaches to learning new query predicates during query execution to accelerate query

processing. The learned predicates allow us to significantly reduce query processing costs by

skipping unnecessary work at query time.

1This is based on a 16 core 2.50GHz Intel Xeon CPU, 64GB RAM, and 1TB SSD.
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Lazy Execution. In this work, we consider a common data cleaning problem – missing value

imputation as a compute-intensive task, which could be probably expensive. As discussed

above, using LOCATER to impute one second of data collected from the WiFi infrastructure

during peak load would take over one hour of processing for an offline cleaning approach,

which is prohibitively costly if the volume of data is large and cost per imputation is high.

Likewise, an online approach that imputes location value as soon as data is ingested is

clearly infeasible. Instead, we adopt an alternate query-time approach that cleans data

lazily when the need arises. Motivated by similar requirements as the example above, a

query-time approach to cleaning/imputation has become popular in several recent studies

[25, 24, 49, 34, 39, 48].

Query time cleaning offers several benefits. It significantly reduces the wasted effort and com-

putational resources by cleaning only parts of the data actually needed in analysis instead

of indiscriminately cleaning the entire dataset. This is especially important when cleaning

is expensive and/or datasets are very large, making cleaning the data fully infeasible. Pre-

dicting the dataset analysts might use (and cleaning only such data as a pre-analysis step)

is often not feasible (e.g., when a common analysis operation consists of ad-hoc queries on

the data) [28]. In such situations, the only recourse is to support data cleaning with query

processing.

Query-time data cleaning opens new challenges, the prominent part of which is to minimize

cleaning performed during query processing to reduce latency. We develop ZIP, a laZy

Imputation query Processing approach that exploits query semantics to reduce the cleaning

overhead. When processing records with missing values, ZIP may delay imputations until

later - such a lazy approach to imputing can be beneficial if the record with the missing value

gets eliminated in the query tree, thus, avoiding imputations unnecessary for answering the

query. Delaying imputations will increase processing costs if imputation could not be avoided.

ZIP, given a query plan for an SQL query, develops an execution strategy that minimizes
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the overall (joint) cost of imputing missing data and executing the query.

Learning Predicates. In this part of the thesis, we seek a new approach to query pro-

cessing, entitled Predicate LeArning at QU ery timE (PLAQUE), that automatically learns

predicates during query execution (beyond those listed explicitly) in order to filter out tuples

that would not result in any query results as early as possible during query processing. To

illustrate the key idea behind PLAQUE, we examine a slightly modified and simplified ver-

sion of TPC-H Query Q-10 that includes a theta-join condition. In this query, the predicates

o orderdate < ’1993-01-01’ and p brand = ’:10’ can be pushed down to orders and part tables.

However, the query contains no predicates on the lineitem table that could be used to prune

away non-matching tuples in lineitem that do not result in any query results. Thus, any

query plan will scan over all records in the lineitem table.

SELECT MAX(l discount)

FROM part, lineitem, orders

WHERE p retailprice < l extendedprice AND o orderkey = l orderkey AND o orderdate <

’1993-01-01’ AND p brand = ’:10’

Consider that all records in the lineitem table that result in an answer satisfies a predicate

l discount > 0.7. If the system could learn such predicates, it could significantly accelerate

query execution by pushing such predicates down in the query tree in order to filter records

in the lineitem table. Only a small fraction of lineitem records will need to join with the

orders and parts tables resulting in significant savings.

Several prior works have explored learning additional predicates to reduce downstream pro-

cessing, other than those specified explicitly in queries. Several such approaches learn pred-

icates prior to query execution based on exploiting query predicates on join columns (e.g.,

[29, 88, 52, 107]. For instance, if there were a query predicate l orderkey < 5) in a TPCH

query, such techniques would infer a predicate such as o orderkey < 5) to speed up query
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execution. Such techniques are, however, of limited applicability since in queries with equi

joins, additional predicates on the join column are rare, as observed in several real datasets

and synthetic benchmarks. For instance, none of the queries in TPC-H [19] or TPC-DS [18]

contain additional predicates in join columns in equi joins. As such, for such queries, above

mentioned techniques do not help reduce query execution costs. Another work [67] main-

tains data statistics (e.g., min and max of columns) at the data block level. Such statistics

are used for sideways information passing over equi joins and are effective in accelerating

query execution, especially in big-data systems such as Hive [106] or Pig [91] where data

is partitioned across clusters. The work, however, is limited to equi joins. An alternate

strategy is to infer predicates to add to queries on the fly during query execution. Such a

strategy has previously been explored in [62, 121, 93] largely in the context of hash-joins in

the main-memory database setting. In particular, a hash join R ▷◁ S over relations R and S

first creates a hash table for one relation, (a.k.a., build relation). For each tuple t from the

other relation, (a.k.a., probe relation), the hash join will use the join key value in t to retrieve

the matching tuples in the hash table. Such strategies build summarization data structures,

such as bloom filters [7], for the build table and use them to skip tuples in the probe table.

We note that approaches that learn predicate prior to execution [29, 88, 52, 107], and those

that learn predicates during execution, can be considered complementary - they can both be

used in conjunction.

In Chapter 4 of the thesis, we propose PLAQUE that like [62, 121, 93] learns predicates

to add to query during query processing. Unlike prior work on which it builds, PLAQUE

considers a much more aggressive and adaptive approach to learning predicates. PLAQUE

devises ways to infer new predicates from a range of relational operators with a variety of

implementations (not limited to just hash-joins). In PLAQUE predicates are inferred from

aggregation operators such as min and max, theta-joins, equi-joins, group-by operators,

and having conditions, within a given query. PLAQUE does not rely on the existence of

predicates on the join columns in the original query (as is the case with [29, 88, 52, 107]),
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enabling it to be applied to a broad set of queries including TPCH and TPC-DS queries.

We conduct extensive experiments demonstrating that adding the learned predicates using

our strategies can achieve significant improvement ranging from 2x-30x, especially in queries

containing expensive User-Defined-Functions (UDFs) where improvement can be up to 100x

in the SmartBench benchmark [54].

While the above techniques are general and useful in several domains where data-intensive

computation is used, our particular interest is the smart space context, wherein smart phys-

ical infrastructure, such as a smart building and/or smart campus, interacts with humans

immersed in the physical environment for a variety of tasks. Such tasks range from real-time

control (e.g., improved occupancy-based heating/air-conditioning control, locating/finding

people and/or resources such as empty rooms, dynamic contact tracing to determine who

came across who at different places in campus) to analytical tasks such as evaluating building

management policies, understanding group interactions between building/campus occupants,

to exploiting workplace social networks to improve productivity. A key challenge in all of

these applications is the need to localize a person both outside and more importantly inside

buildings. Accurate locations of people enable a variety of essential location-based applica-

tions in smart spaces, such as determining occupancy of rooms, thermal control based on

occupancy [21], determining density of people in a space and areas/regions of high traffic

in buildings —applications that have recently gained significance for COVID-19 prevention

and monitoring in workplaces [109, 55]. The technical challenge in localizing people inside

the buildings is how to develop a zero-cost, accurate, and off-the-shelf solution without the

additional hardware and software to enable a potentially widely used solution. To this end,

we develop a series of data cleaning solutions based on WiFi connectivity data to locate

users to semantic indoor locations such as buildings, regions, and rooms.

LOCATER: A Semantic Indoor Localization Solution using Data Cleaning

In Chapter 5 of the thesis, we offer a zero-cost indoor localization solution by exploring the
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data cleaning challenges that arise in using WiFi connectivity data to locate users to semantic

indoor locations such as buildings, regions, and rooms. WiFi connectivity data consists of

sporadic connections between devices and nearby WiFi access points (APs), each of which

may cover a relatively large area within a building. Our system, entitled semantic LOCATion

cleanER (LOCATER), postulates semantic localization as a series of data cleaning tasks -

first, it treats the problem of determining the AP to which a device is connected between

any two of its connection events as a missing value detection and repair problem. It then

associates the device with the semantic subregion (e.g., a conference room in the region) by

postulating it as a location disambiguation problem. LOCATER uses a bootstrapping semi-

supervised learning method for coarse localization and a probabilistic method to achieve

finer localization. LOCATER does not require any new hardware to be installed in the

environment or any participation of end users to install software on the phones. LOCATER

is able to achieve 90% accuracy which is quite usable for many location-based applications.

It is worth mentioning that The LOCATER has already been deployed and is operational in

the USA and India, across three distinct locations (UCI, BSU, Plaksha), and in over 40 UCI

buildings for four years. LOCATER performs similarly to a commercial system Occuspace

in a UCI Library testbed.

While LOCATER is accurate, using LOCATER to impute/enrich one missing location is

not cheap, which takes around 400ms. LOCATER provides a motivating context and use

case for the research developed in this thesis. In particular, we conduct a case study to

show how to use the lazy approach (i.e., ZIP) and the learned predicates (i.e., PLAQUE)

to make location-based data processing and query processing interactive, without sacrificing

the quality of the query results.

In this thesis, we make the following concrete contributions:

• We develop a query-time missing value imputation framework, entitled ZIP, that mod-
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ifies relational operators to be imputation-aware in order to minimize the joint cost of

imputing and query processing without sacrificing the quality of query results.

• We build PLAQUE that is able to learn new predicates from various query conditions,

such as aggregate, equi join, theta join, and group by/having conditions during the

execution of the query. The predicates learned during query execution are pushed down

immediately to optimal positions in the query tree in order to benefit the remainder

of the query execution by skipping rows early based on a novel partial-order based

approach.

• We develop a zero-cost, accurate, and passive indoor localization system based on WiFi

connectivity events by using data cleaning technologies, entitled LOCATER.

• We build two real applications using LOCATER, occupancy and contact tracing, and

optimize the data/query processing inside these applications by using the proposed

lazy approach ZIP and the learned predicates in PLAQUE to improve the performance

of these applications in a real-world UCI WiFi testbed.

The remainder of the thesis is structured as follows. Chapter 2 describes the related work.

In Chapter 3, we show the design and experimental results of ZIP. Chapter 4 describes

the learned predicates in PLAQUE. In Chapter 5 we present our LOCATER technology.

Chapter 6 conducts a case study where we build two applications using LOCATER, and use

ZIP as well as PLAQUE to accelerate these real applications in the UCI campus testbed.
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Chapter 2

Related Work

In this chapter of the thesis, we describe several works related to our thesis. First of all,

we introduce the concept of data cleaning as well as several problems/challenges in data

cleaning area in Section 2.1. Data cleaning is closely related to ZIP since ZIP explores a lazy

approach to reducing the overhead of missing value imputation, which is a common data

cleaning problem. LOCATER develops a set of data cleaning technologies, and it would

benefit from the background of the data cleaning area. Second, we describe the query-time

data cleaning in Section 2.2, the focus of which is the query-time data processing serving

as an important related work to ZIP. Third, we describe the previous work of predicate

inference in Section 2.3 to develop strategies to learn new predicates, which is closely related

to PLAQUE. Finally, we describe two data systems that support query-time data processing

and enrichment, TippersDB and EnrichDB, in Section 2.4.
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2.1 Data Cleaning

Data warehousing, analysis, and mining technologies have brought about revolutionary

changes to numerous scientific and business domains. Data-driven applications are increas-

ingly popular to gain a better understanding and insight into new discoveries in disciplines

such as medical imaging, biomedical engineering, earth sciences, and so on. The effectiveness

of such data-driven technologies as decision support tools, data exploration, and scientific

discovery tools, is closely tied to the quality of data to which such techniques are applied. It

is well recognized that the outcome of the analysis is only as good as the data on which the

analysis is performed [60]. Errors in analysis due to dirty data can snowball into incorrect

decisions and, as a result, dirty data can be costly.

Data quality challenges can be both at the schema level or at the instance/data level. We

focus below on instance-level problems that refer to the errors and inconsistencies in the

actual data content which cannot be visible at the schema level. In this thesis, we mainly

focus on instance/data level quality. Several well-recognized data cleaning problems at the

instance level are entity resolution, data consistency, missing value imputation, etc.

Entity Resolution

The goal of entity resolution (ER) problem [45] is to find records in a data set that refer to

the same object/entity across possibly different sources (e.g., product catalogs, web tables,

files, etc.). Such a problem often arises when we merge multiple tables (from different data

sources) to create a single merged table. Objects, in different data sources may not be

referred to using a common identifier leading to the ER challenge.

To see a concrete example in Table 2.1, consider merging product information across multiple

websites and/or product tables. The same products may be referred to very differently in
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Table 2.1: Camera Products

.

battery Year Price provider
EOS 5D3 LP-E6 2014 1899 BestBuy

EOS 5D mark III LPE6 2013 1934 eBay
EOS 5Diii LPE6 2014 2010 amazon

two listings. Consider, for example, a comparison-shopping application that has crawled

product information from different vendors such as eBay, BestBuy and Amazon to create

an integrated product table. Such an application will require mechanisms to determine

which products in the different sites refer to the same real-world entity. The table below

shows possible entries for the same entity, Canon EoS 5D Mark 3 – collected from different

sources. The representations of data across data sources are different and must be reconciled

to support comparison shopping.

Missing Value Imputation

A large number of real-world datasets contain missing values. Reasons include human/-

machine errors in data entry, unmatched columns in data integration, etc. Imputation

approaches can roughly be characterized as statistics-based, rule-based, master-data-based,

time-series-based, or learning-based approaches [78].

Statistics-based Imputation Approaches. Missing data can be missing completely at random

or conditioned on existing values (observed and missing). Methods in the statistical com-

munity hinge on leveraging the inherent statistical properties and interdependencies within

the dataset to estimate and replace missing values. One of the fundamental techniques of

this approach is mean or median imputation [23]. In this technique, the missing value of a

specific variable is replaced with the mean or median of the known values of that variable.

This method provides a quick and easy way to handle missing data, however, it can lead to

an underestimation of variances and correlations if the percentage of missing data is high.
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Another line of methods is regression imputation [96, 100], which relies on the relationships

between variables to estimate missing values. This method develops a regression model using

the variable with missing data as the dependent variable and other related variables as pre-

dictors. This model is then used to predict the missing values. While regression imputation

can offer more accurate estimations than mean or median imputation, it assumes a perfect

correlation between variables, which might not always be the case, leading to over-fitted

results. Multiple imputation [97] is a more advanced technique. It creates several imputed

datasets, performs analysis on each of them, and then consolidates the results to generate

a single inference. This method is particularly beneficial as it introduces variability across

the imputed datasets, acknowledging and accounting for the uncertainty associated with

imputed values.

Master-based Imputation Approaches. Knowledge-based missing value imputation leverages

external databases or knowledge repositories [37] to fill in the gaps in a dataset. For in-

stance, if a certain dataset has missing information about a person’s job title, an external

professional database like LinkedIn could be used to find and fill in that missing data. This

method requires that there is a reliable and accurate external source of data available that’s

relevant to the missing values in the dataset. One major advantage is that it can provide

highly accurate imputations if a good knowledge base is used. However, privacy concerns,

accessibility, and compatibility between the dataset and the knowledge base are challenges

that need to be considered. Crowdsource-based missing value imputation [114, 115, 95], on

the other hand, utilizes the collective intelligence of a large group of people, typically via

the internet, to fill missing values. This approach is often employed when the task requires

human insight, and judgment, or when no automated imputation method is suitable. Crowd-

sourcing can be particularly effective when dealing with data that requires specific expertise

to interpret, or when the missing values can be determined from the context provided by

other data points. However, the accuracy of this method depends on the crowd’s expertise,

and maintaining quality control can be challenging.
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Time Series Data Imputation. Imputation strategies in time series data [70, 30, 79] are often

performed by learning patterns over historical data to forecast current missing values or using

the correlation across the time series. Missing value imputations on time series data can be

classified as either matrix-based or pattern-based, according to the underlying method they

use. Matrix-based algorithms [74] operate on the assumption that the original data matrix,

even with missing values, can be represented or approximated as a low-rank matrix. The

goal then is to find this low-rank matrix that best fits the observed (non-missing) entries.

Techniques often used for matrix completion include Singular Value Decomposition (SVD)

and its variants, which decompose a matrix into the product of simpler matrices, filling

in the missing values during the process. Pattern-based recovery techniques [83] assume

that a high degree of similarity exists between series. When a block is missing in a base

series, an algorithm would leverage the similarity to any number of reference series. The

observed values in the reference series are treated as a query pattern. Any blocks matching

that pattern may reveal candidate replacement values in the base series. An example is

LOCATER [79] that imputes each missing location of a user at a time stamp by learning

the users’ pattern from historical data, such as the most often visited places and the closest

group at certain time intervals.

Rule-based Missing Value Imputation. Rule-based imputation methods based on differential

dependencies [102] or editing rules [43] often impute missing values by replacing them with

corresponding values of similar objects. In particular, [102] tries to fill the missing data with

the values of its neighbors who share the same information. Such neighbors could either be

identified certainly by editing rules or statistically by relational dependency networks. In

particular, [102] identifies a more extensive class of similarity neighbors, with value similarity

relationships identified by similarity rules. By tolerance of small variations, the enriched

(similarity) neighbors can fill in more missing data that are not revealed by the very limited

equality neighbors. Based on the similarity rules, they further devise a randomized algorithm

with an expected performance guarantee to impute the missing data.
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Learning-based Imputation Approaches. Several learning-based techniques are used to im-

pute missing data by learning the pattern or features from a clean training data set. Such

techniques, as in [87], may use models such as generative adversarial network (GAN) [27]

that can take over hours to train. Such techniques are, hence, not suitable for being called

from within online analysis queries due to long latency due to training prior to imputation.

Given such a limitation, several prior works have explored reducing the training time of

learning-based methods. Miao et al [87] select a small representative sample (about 5%) to

speed training by about 4x while maintaining imputation accuracy guarantees. Two widely

used learning approaches, XGboost [35] and LightGBM [69] use histograms to speed up

training. (Their APIs are available in standard Python packages [6].) Using histograms can

reduce training time dramatically - e.g., Xgboost [6] using histograms takes 69.8s on a one-

million size table with 10 attributes using 700k training samples and achieves an accuracy of

0.985, while it takes only 1s while training on the 20k samples used by Miao’s approach [87]

to achieve 0.971 accuracy. Sampling and histogram methods make learning-based methods

amenable to online processing by dramatically reducing learning costs.

2.2 Query-time Data Cleaning

The query-time strategy has been explored in several data cleaning problems, such as con-

flicting values detection and repair using denial constraints [49, 38], entity resolution prob-

lems [24, 25].

Daisy [49] performs probabilistic repair of denial constraint violations on-demand, driven by

the exploratory analysis that users perform. In particular, Daisy seamlessly integrates data

cleaning into the analysis by relaxing query results and executes analytical query workloads

over dirty data by weaving cleaning operators into the query plan.

14



QDA [24] studies the Query-Driven Entity Resolution problem in which data is cleaned “on

the fly” in the context of a query. It developed a query-driven entity resolution framework

that efficiently issues the minimal number of cleaning steps solely needed to accurately answer

the given selection query. In particular, QDA exploits the specificity and semantics of the

given SQL selection query to reduce the cleaning overhead by resolving only those records

that may influence the query’s answer. It computes answers that are equivalent to those

obtained by first using a regular cleaning algorithm, and then querying on top of the cleaned

data.

While QDA focuses on the selection query, QuERy [25] extends the query-time entity res-

olution solution to Selection-Projection-Join (SPJ) queries. The objective of QuERy is to

efficiently and accurately answer complex SPJ queries issued on top of dirty data. The

predicates in those queries may be associated with any attribute in the entity sets being

queried. In particular, QuERy leverages the selectivities offered by the query predicates to

reduce the amount of cleaning (by only deduplicating those parts of data that influence the

query’s answer) and thus, minimizes the total execution time of the query. There are two

variants of QuERy, lazy-QuERy and adaptive-QuERy. The former uses a lazy architecture

that attempts to avoid cleaning until it is necessary for the system to proceed. The latter is

an adaptive cost-based technique that tries to devise a good plan to decide when to perform

cleaning.

ImputeDB [34] explores a dynamic optimization strategy to design query plans for queries

over relations with missing data. In particular, ImputeDB introduces two new operators -

drop and impute. For any predicate where the condition being evaluated is over an attribute

that may contain missing values, ImputeDB introduces one of these two operators. For

any tuple that passes through the impute operator, ImputeDB will call the corresponding

imputation function to resolve the tuple prior to passing it to the predicate in the original

operator in the query tree. In contrast, for a drop operator, it will simply drop the tuples

15



whose corresponding attribute contains a missing value. Note that the placement of impute/-

drop operators explores a trade-off between the accuracy of results and the corresponding

overheads, especially when imputations can be expensive and dominate the query evaluation

cost. For instance, if we only introduce the drop (impute) operator, query processing will be

fast (slow).

2.3 Predicate Inference

Predicate inference refers to the problem of discovering new predicates besides a given SQL

query to extend the predicate pushdown benefit to speed up query execution.

Some research works study sideways information passing (SIP) [62, 93, 67] over joins. [62,

93] focus on SIP during query execution by building summarization data structure such as

bloom filter on the build table which is used to skip rows in the probe table. [67] studies SIP

by creating data-induced predicates (diPs) from data before query execution by maintaining

the range set data structure for each data block, and is suitable for equi join conditions. In

particular, diPs are suitable for big-data systems, e.g., SCOPE, Spark, Hive, or Pig clusters

that run SQL-like queries over large datasets, where data statistics such as the maximum

and minimum value of each column are at different granularities of the input. Using data

statistics, diPs convert predicates on a table to data skipping opportunities on the joining

tables at query optimization time. The method begins by using data statistics to eliminate

partitions on tables that have predicates. Second, using the data statistics of the partitions

that satisfy the local predicates, the proposed diPs capture all of the join column values

contained in such partitions. All of these steps happen during query optimization where the

optimizer effectively replaces each table with a partition subset of that table; the reduction

in input size often triggers other plan changes (e.g., using broadcast joins which eliminate

a partition-shuffle) leading to more efficient query plans. diPs are applicable when data
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is stored in blocks/clusters, and certain statistics such as maximum and minimum values

are maintained for each data block. diPs focus on learning new predicates from equi join

conditions, and they are not able to learn predicates from other query operators/conditions.

Another line of the work move predicates using magic sets [29, 88], algebraic equivalence [52],

value-based pruning [107], or infer new predicates based on syntax-driven rewrite rules [120].

These techniques are applicable when there exist predicates on join columns. However,

this case is not often seen especially for queries containing equi joins as observed in several

real data sets and synthetic benchmarks since join columns tend to be opaque as system-

generated identifiers 1 One representative work Sia [120] explores synthesized predicates to

move predicates around the query blocks. Consider a SQL query:

SELECT * FROM A,B WHERE A.id=B.id

AND A.val+10>B.val+20 AND B.val+10>20

For this query, the optimizer may only move the third predicate (B.val + 10 > 20) below the

join operator. It cannot push down the second predicate (A.val + 10 > B.val + 20) below

the join operator since it depends on columns from both tables A and B. Sia deduces a new

predicate A.val > 20 which can be inferred from the original query, and the new predicate is

weaker than the original predicates (i.e., it accepts all the tuples that the original predicates

accept). Adding this new predicate into the query will allow the optimizer to effectively

push down the new predicate into table A and thus achieve a potentially better plan. Sia

only works when there exist predicates on the join columns, such as B.val + 10 > 20.

Prior research has also explored the use of data properties, such as functional dependencies

and column correlations, to accelerate query processing [32, 61, 72]. However, determining

these properties can be computationally expensive (e.g., [61] employs a student t-test for

each column pair). Moreover, it remains uncertain whether these properties can be sustained

1There do not exist predicates in all queries in TPC-H [19] and TPC-DS [18].
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as data evolves. Additionally, imprecise data properties may have limited utility in query op-

timization (e.g., a soft functional dependency, which does not retain set multiplicity, cannot

ensure the accuracy of specific plan transformations involving group-bys and joins).

2.4 Systems for Query-Time Enrichment

Overcoming the challenge/difficulty of on-the-fly enrichment/cleaning of data as it arrives

when data rates are very high have previously been studied in systems including Tip-

persDB [56] that supports sensor-based applications integrating sensor data processing with

online data analytics, and EnrichDB [48, 47] that supports query-time data enrichment.

EnrichDB is a data management system that seamlessly integrates data enrichment during

online data analytics. Enrichment often consists of complex compiled code, declarative

queries, and/or expensive machine learning/signal processing code. EnrichDB is motivated

by emerging application domains (such as sensor-driven smart spaces, IoT applications, and

social media analysis) that require incoming data to be appropriately enriched prior to being

used. Many industrial as well as research systems have started to explore effective ways to

execute data enrichment in order to support online data processing, but much of this effort

has focused on optimizing enrichment at the time of data ingestion. EnrichDB’s design

represents a significant departure from the above in that it explores seamless integration of

data enrichment all through the data processing pipeline - at ingestion, triggered based on

events in the background, and progressively during query processing. EnrichDB is based on

the premise that enriching data in its entirety at ingestion can be wasteful (if applications

do not use require all of the data to be enriched to the highest level possible), may result in

unacceptable latencies (if the speed of data arrival is higher than can be enriched), or not be

feasible (if enrichment functions are learned and incorporated into the system at a later time

after ingestion during analysis). By pushing enrichment to query time, EnrichDB scales data
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processing to environments where data rates prevent enrichment on data ingestion. While the

system scales to fast and large datasets, it, nonetheless, comes at the cost of increased latency

of queries which now need to enrich data during query processing. EnrichDB addresses the

latency challenge by supporting progressive query processing. In EnrichDB, cheap and fast

(though may not be very accurate) enrichment functions are used to enrich data which,

in turn, is used to generate initial results for queries. The system progressively executes

more expensive (and more accurate) functions to enable progressive refinement of query

results. As a result, users/analysts can have access to approximate query answers quickly

which can then be refined over time. EnrichDB uses a clever integration of incremental

view maintenance (IVM) technology [103] to support the progressive generation of results.

The existing implementation of EnrichDB is based on a carefully designed middleware that

coordinates the execution of queries over the underlying database engine. We note that

the goals of EnrichDB and the research performed in this thesis are very related. Indeed,

our approach to lazy imputation of missing value during query processing explored in ZIP

can be incorporated into EnrichDB to further improve on the latency challenge it addresses.

Likewise, predicate learning in PLAQUE to accelerate queries could also be incorporated into

EnrichDB to improve its performance. One can view our thesis contributions as exploring

optimizations/techniques that are complementary to the progressive computation approaches

currently implemented in EnrichDB.

TippersDB [56] is another system developed in our research group related to our work

on query-time imputation. TippersDB has been designed to support data virtualization

for smart space applications. In particular, TippersDB offers several unique features, se-

mantic abstraction, transparent translation, query-driven translation, and progressive query

processing.

Semantic abstraction. TippersDB supports a novel two-tier data model that separates the

sensor data from the higher-level semantic data. TippersDB models the physical world/-
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domain as physical entities and relationships. TippersDB uses an Entity-Relational Model

suitably extended to support the dynamic nature of an evolving smart space for this pur-

pose. In particular, attributes of entities (and relationships between them) may be static

or dynamic that may change over time. For instance, a person’s name may be static, but

his/her location may change with time. Likewise, relationships between entities may be

dynamic. E.g., if the system captures the fact of persons entering into rooms, then based on

the movement of a person, a new relationship between a person and a room may dynamically

emerge. In addition to representing data at the semantic level, TippersDB represents data

at the sensor level in the form of data streams. It provides mechanisms for the specification

of functions to translate data at the sensor level into higher-level semantic abstraction. Such

a layered data model decouples application logic from sensors and alleviates the burden of

dealing with sensor heterogeneity from application programming which greatly reduces the

complexity of developing smart-space applications.

Transparent translation. TippersDB optimizes the translation of sensor data to generate

semantic/application-level information. TippersDB associates observing functions with the

dynamic properties, which observe the “value” of the attribute/relationships through sensors.

Also, TippersDB maintains a representation of sensors and their coverage (i.e., what entities

in the physical world they can observe) as a function of time.

Query Driven Translation. Sensor data translation can be done at ingestion or during query

execution. In IoT-based systems, sensors continuously generate data, causing the data arrival

rates to be very high. Processing sensor data at ingestion using streaming systems [41] leads

to significant overhead. Therefore, complete sensor data translation at ingestion is not

viable. The alternate strategy of translating sensor data at query time is more suitable. Not

only does it avoid the large ingestion time delay, but it also reduces redundant translation of

sensor data if the applications end up querying (a small) portion of the data. This query-time

translation is also consistent with the modern data lake view architecture where we store and
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process only data that is needed. TippersDB uses such an architecture and performs query-

driven translation by adding translation as an operator inside the query plan, co-optimizing

translation, and query processing.

Dynamic translation of sensor data to higher-level observations is akin to data enrichment

and TippersDB exploits and expands upon the EnrichDB codebase to support progressive

query processing. In particular, TippersDB develops progressive query processing techniques

that progressively translate data and provide early results to the user. To progressively

return results, TippersDB returns results of lower quality or at a coarse level early and

keeps returning results of better quality and at a finer-grained level as more and more time

passes. The design of TippersDB is complicated by an additional challenge beyond the way

progressiveness is implemented in EnrichDB. In the EnrichDB setting, exact functions are

readily available to enrich and interpret raw data. However, in the context of TippersDB’s

automated translation, the exact sensor data needed for generating higher-level data may

not be known immediately. For instance, if the query is exploring the location of a person

P , while the system may know that the location can be determined using techniques such as

LOCATER (see Chapter 5) on WiFi access point logs, it is not immediately obvious that the

logs of which access point may have information to locate a person. In the worst situation,

one may have to process data from all sensors to be able to locate a person P . TippersDB

contains several techniques to improve upon such a translation task by learning semantic

filters from data that can be used to prioritize (or filter away) data from sensors to reduce

the complexity of translation.

TippersDB, like EnrichDB shares significant objectives with the research described in this

thesis. Indeed, one of the key chapters of the thesis on LOCATER, a WiFi-based indoor

localization technology has been incorporated into TippersDB and the resulting system has

been transitioned to US Navy as well as deployed in several sites as will be discussed in

Chapter 5.
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Chapter 3

ZIP: Lazy Imputation during Query

Processing

3.1 Introduction

A large number of real-world datasets contain missing values. Reasons include human/ma-

chine errors in data entry, unmatched columns in data integration [71], etc. Failure to clean

the missing data may result in the poor quality of answers to queries that may, in turn, neg-

atively influence tasks such as machine learning [76], data analytics, summarization [53, 59],

etc. built on top of data.

Missing value imputation has been extensively studied in the literature, especially from the

perspective of ensuring accuracy [78, 116, 102, 33]. Traditionally data cleaning (including

missing value imputation) is performed during the Extract, Transform, and Load (ETL) data

processing pipeline as an offline data preparation process that cleans all the data prior to

loading it into the warehouse to make it available for analysis. Such a data preparation step

is often costly if the data is large and if the cost per imputation is high. In situations where
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a database continuously ingests new data containing missing values, performing imputation

at the time of ingestion becomes impractical, especially when data arrives at rates such

that imputing missing values cannot be done cost-effectively. For example, LOCATER

(as described in Chapter 1) takes roughly 400ms to impute one missing location on WiFi

connectivity data. With 1000s of WiFi access points, about 30,000+ individuals connected

to the network and tens of thousands of WiFi connectivity events per second, it would

take one hour of processing per one second of data during peak load. Carrying out such

operations during ingestion is clearly infeasible. Similar observations of impossibility to

perform enrichment/imputations on data as it arrives have also been made in prior works

such as [48, 39] in different contexts - e.g., when enriching tweets with sentiment tags that

may require executing complex sentiment analysis1. As a result, recent works have explored

alternate data cleaning pipelines that clean data lazily at the time of query processing when

the need for clean data arises [25, 24, 49, 34].

As discussed earlier in Chapter 1, query time cleaning offers several benefits. It significantly

reduces wasted effort and computational resources by cleaning only parts of the data actually

needed in analysis instead of indiscriminately cleaning the entire dataset. This is especially

important when cleaning is expensive and/or datasets are very large, making cleaning of the

data fully infeasible. Predicting the dataset analysts might use apriori so as to clean such

data as a pre-analysis step is often not feasible (e.g., when a common analysis operation

consists of ad-hoc queries on the data) [28]. In such situations, the only recourse is to

support data cleaning with query processing.

Query-time data cleaning opens new challenges, the prominent of which is to minimize

cleaning performed during query processing to reduce latency. This chapter develops ZIP,

a laZy Imputation query Processing approach that exploits query semantics to reduce the

cleaning overhead. When processing records with missing values, ZIP may delay imputations

1[39] shows that sentiment inference on 1.6 million tweets in Sentiment140 dataset [50] takes hours to
execute.
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sid faceID Time location
1 20 12pm 2206
2 41 2pm NULL (N1 = 3001)
3 20 1pm NULL (N2 = 2206)
4 35 3pm NULL (N3 = 2099)
5 NULL (N4 = 26) 1pm 3119
6 NULL (N5 = 55) 2pm 2214

Table 3.1: Camera-Snapshots (C)

Name Type faceID
Mike faculty NULL (N6 =20)
Robert graduate 65
John faculty NULL (N7 =55)

Table 3.2: User (U)

until later - such a lazy approach to imputing can be beneficial if the record with the missing

value get eliminated in the query tree, thus, avoiding imputations unnecessary for answering

the query. Delaying imputations, comes at an increase in processing cost, if imputation could

not be avoided. ZIP, given a query plan for an SQL query, develops an execution strategy

that minimizes the overall (joint) cost of imputing missing data and executing the query.

We illustrate the key intuition behind ZIP through an example below.

3.1.1 A Case for Lazy Imputation

Consider a real camera-based localization application in Donald Bren Hall building, UCI,

which is instrumented with the camera used to locate people. A tuple in Camera-Snapshots

(Table 3.1) stores the location (i.e., room) of a person (i.e., faceID determined using face

recognition) at a given time (i.e., the timestamp). The faceID of a person could be determined

by matching camera data with picture(s) of a person stored in the database or through a

model trained using such pictures. User (Table 3.2) and Space (Table 3.3) tables store the

metadata about registered users and space. There are 10 missing values (shown as NULL)

in the 3 tables, and we also display the corresponding imputed values (shown as blue color in
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Room Building
2214 NULL (N8 =DBH)
2206 DBH
2011 DBH
3119 NULL (N9 =ICS)
2065 NULL (N10 =DBH)

Table 3.3: Space (S)

the bracket). Let us consider a simple query, find all snapshots (sid) for graduate students in

room 2099. Such a query joins Camera-Snapshots with the User table, after selecting tuples

matching query predicates on each table as shown in Figure 3.1.

Let us consider various possible query-time imputation strategies in different query plans.

Figure 3.1-a) is the plan where all selections are pushed down. In such a plan, all the missing

values under location column (i.e., N1, N2, N3) must be imputed since the selection operator

σlocation=′2099′ requires missing values to be imputed prior to execution. After imputations,

only one tuple with sid 4 satisfies the selection condition, and will thus be passed onto the

join operator. Since the faceID of this tuple (i.e., 35) does not match any faceID in Table 3.2,

the query execution will terminate.

One may be tempted to consider the additional imputation overhead (i.e., N1, N2, N3 ) of

Plan 1 to be a result of pushing selections to the leaf level. This raises the issue whether

the savings resulting from modifying the operators could be achieved simply by making the

optimizer aware of the expensive nature of imputations which may, then, consider imputation

required by the selection operator σlocation=′2099′ as expensive (as in [58]) resulting in the

operator to be pulled above the join condition, such as Plan 2 in Figure 3.1-b). Even such a

plan would still require two imputations for N4, N5. Furthermore, such a plan would incur

significant execution overhead for tuples for which attribute values are not missing, since the

input size to join from table C will be the cardinality of C table without any filtering. Thus,

the benefits that can be achieved by modifying the operator implementation cannot simply

be mimicked by changing the optimizer.
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⋈C.faceID=U.faceID

Πsid

C

σlocation=′￼2099′￼

U

a) Plan 1 c) ZIP plan

σU.type=graduate

̂⋈ C.faceID=U.faceID

̂Π sid

C

̂σ location=′￼2099′￼

U

̂σ U.type=graduate

ρ

⋈C.faceID=U.faceID

Πsid

C

σlocation=′￼2099′￼

U
b) Plan 2

σU.type=graduate

Figure 3.1: Imputation in Different Query Plans.

Now let us now consider the strategy illustrated in Figure 3.1-c) wherein each operator o is

replaced by a corresponding imputation-aware operator ô. A modified operator ô behaves

exactly the same as the original operator o for tuples that do not contain missing values.

For instance, for tuples with sid 1, 5, and 6 for which location attribute is not missing,

σ̂location=′2099′ evaluates the predicate right away (and drops the tuples since they do not

match the predicate). For tuples with missing values (i.e., tuples with sid 2, 3, and 4), the

modified operator σ̂location=′2099′ may decide to either impute the missing value and compute

the predicate, or delay the imputation for the downstream operator to perform. Delaying

imputation can prevent unnecessary imputations, if such a tuple (whose imputations are

delayed) does not satisfy predicates associated with the downstream operators. In our ex-

ample, if σ̂location=′2099′ forwards the tuples with sid 2, 3, 4 in Table 3.1 to the downstream

join without imputing N1, N2, N3, it would have resulted in the savings of all three imputa-

tions since the tuples do not meet the join condition (the only graduate student in the User

table has a faceID of 65 which does not match the faceID of tuples with sid 2,3, and 4)!

Such a lazy strategy would possibly minimize the imputation costs without sacrificing the

quality of the result. In the example above, saving two or three imputations may appear to

be of little benefit compared to the additional complexities that could arise in maintaining

state and modifying operators, in practice, when tables are large and imputation costs are

relatively expensive such savings quickly add up. For instance, even for the simple query
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discussed above if Camera-Snapshots contains millions of rows, imputing all the missing

locations would be very expensive.

3.1.2 Challenges in Supporting Laziness

ZIP uses such a lazy strategy that enables operators to defer imputations to later in the hope

that the need for imputation may become unnecessary if the tuple with the missing value gets

eliminated by downstream operators thereby reducing imputation overhead. A strategy that

defers imputation to downstream operators, such as ZIP, has to be designed carefully. If a

tuple whose imputation was delayed is not eliminated (e.g., due to conditions associated with

downstream operators) rises to the top, it will finally be imputed by a newly added operator

in ZIP (ρ) which will result in the evaluation of all the query predicates associated with

the missing value and possible generation of tuples that emanate from the tuple containing

the imputed value. Of course, the modified operators that had been executed before must

have saved enough state to perform delayed predicate evaluation, and to generate all the

answers the tuple would have been generated had it been imputed eagerly. In the remainder

of the chapter, we develop ZIP that supports modified operators with the ability to defer

imputations to later to benefit from the pruning power of downstream operators to reduce

imputations during query processing. ZIP always updates imputed values in the database,

avoiding repeated imputations for the same missing value, which offers an advantage for a

query workload that frequently visits the same subset of data.

3.1.3 Contributions

The chapter introduces a ZIP framework to answer SQL queries over data that may contain

missing values. The primary contributions include (a) a simple modification to the logic of

relational operators that empowers operators to choose to either impute or delay missing
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values, (b) a decision function to enable operators to determine whether the imputation

should be performed right away or delayed based on a cost-based analysis of tradeoffs between

the two choices, (c) efficient mechanisms to maintain the state of the execution and the

modified query processing logic to continue execution over imputed values so as to generate

the right query results. ZIP designs modified operator logic for a wide range of operators, such

as selection, join, projection, aggregate-group by, union, and set minus and can handle a large

class of queries of significant complexity including nested queries. Extensive experiments on

both real and synthetic data sets demonstrate orders-of-magnitude improvements in query

processing when ZIP-based deferred imputations are used.

In the rest of the chapter, in Section 3.2, we overview of the approach. Section 3.3 to 3.6

describe ZIP algorithm. Section 5.6 evaluates ZIP, and Section 5.7 concludes this chapter.

3.2 ZIP Overview

This section provides an overview of how ZIP achieves delayed imputation by appropriately

modifying the relational operators. We will use the query shown in Figure 3.2 to illustrate

ZIP. We shift to this query instead of a simpler query we used in the previous section to

contrast ZIP from ImputeDB since the simpler query will no longer suffice to illustrate all

the cases ZIP needs to handle to ensure correct execution. The Figure 3.3-a) shows the

query tree generated by a third-party optimizer, (e.g., a standard commercial system such

as PostgreSQL or a specialized plan generated by ImputeDB). ZIP modifies such a plan by

replacing operators by their modified versions and by adding a new operator ρ at the top of

the tree as shown in Figure 3.3-b) that imputes missing values whose imputation has been

delayed by previous operators. ZIP has been implemented in the context of pipeline query

execution using an iterator interface. The execution starts from the root of the query tree by

calling a root.getNext() that retrieves tuples from the child nodes that satisfy the associated
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SELECT C.sid FROM C, U, S

WHERE C.faceID = U.faceID AND

C.location = S.room AND S.building = ‘DBH’ AND

C.location in {2065, 2011, 2082, 2206}

Figure 3.2: Query

a) Original Query Plan Tree b) ZIP Query Plan Tree 

Loc = {2065, 2011,2082,2206}

(2, 41, 2pm, N1)

1

(NULL, NULL, 2, 41, 2pm, N1)

(4, 35, 3pm, N3)

U.faceID are imputed 

t1

t2

t3

Loc = {2065, 2011,2082,2206}

Figure 3.3: ZIP query plan.

conditions. Child nodes, in turn, recursively call the getNext() operator on their children.

ZIP modifies the relational operators to process incoming tuples that contain missing values

differently. Other tuples (that do not contain missing values) are processed exactly as they

would be by the original operator. In particular, ZIP does not change the underlying operator

implementation - for instance, the relational operator can continue to use hash/sort/nested

loop/index-based operator implementations supported in the underlying database without

change. ZIP simply routes tuples containing missing values through a sequence of steps (i.e.,

filter, verify, decision function, and generate) that will be discussed soon. Thus, besides code

to implement such steps, ZIP only changes the routing logic of operators which requires a

very small amount of new code (approximately 500+ lines) while preserving the existing

code of the database.

Missing Value Representation: Before we discuss how modified operators are imple-

mented in ZIP, we first specify how ZIP represents missing attribute values. In ZIP missing

values are represented using NULLs. However, to differentiate between a value of an attribute

being NULL or missing, the relational schema is extended with an additional attribute that
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Figure 3.4: Modified Operators.

contains a bit per attribute of the relation. If the value of attribute a in a tuple t is missing,

its value is NULL and its corresponding bit is set to 1. If attribute a is NULL but its bit is

0, then a is not missing, instead, it is NULL.

Routing logic of modified operator. Figure 3.4 shows the modified logic of the unary

and binary operators. The tuple incoming to the operator first passes through a filter step

(the purpose of which will become clear momentarily). It is then checked to determine if the

attribute value (on which the operator is defined) is missing (by checking for the appropriate

bit in the additional attribute stored in the tuple). If the value is not missing, the tuple

is directed to the I-operation, i.e., Imputation-aware operation, which, for such tuples,

implements the exact same logic as the original operator. If the value is missing, the tuple

is diverted through a decision function (DF) which may decide to either impute or delay the

imputation of the missing value. If imputation is delayed, the tuple again is routed to the

I-operation which, in turn, forwards the tuple to downstream operators with missing values

preserved without checking the associated predicate, if any, with the operator. For unary

operators (e.g., selection), the tuple is forwarded as is, and for binary operators (e.g., join)
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the tuples are forwarded to the next operator in the pipeline in a way similar to the way

they are in an outer-join as illustrated in the example below. For projection operators, ZIP

preserves all attributes in a tuple that contain missing values and that may be imputed later.

Tuples that the decision function decides to impute are first routed to the verify and the

generate steps. The goal of the verify step is to determine if the imputed value satisfies all

the predicates associated with the previous operators (and hence the tuple would have made

it to the current operator). If a tuple t passes the verify step, the generate step is invoked on

t. This step generates all additional tuples that would have resulted by executing the logic

of upstream operators had t been imputed at the very beginning of query execution. The

generated tuples, now with missing values imputed, are passed through the operator logic

and processed just the same way the the original unmodified operator would have processed

tuples. The imputed value of an attribute a in a tuple t may also be present in other tuples

in multi-join queries. When a is imputed, all the tuples with the imputed values will be

forwarded to generate step in order to generate all the results as we discussed in Section 3.5.

To see how data flows through modified operators in ZIP, consider a tuple t1 = (2,41,2pm,N1)

in table C with a missing value in the location field for a query illustrated in Figure 3.3-b.

Further, let us assume that the selection operator delays imputation. Thus, t1 is passed to

the join operator as it is. The modified join operator, which is also defined on the location

field, will decide whether to impute the missing location field or to delay its imputation

further. If the join decides to delay, it preserves the missing value in a location in a way

similar to the way outer joins preserve tuples. In particular, it generates a tuple t2 =

(NULL,NULL,2,41,2pm,N1) where N1 is the preserved missing value and the NULLs repre-

sent that the values of those fields are NULL. Here we denote Ni by missing values and the

associated value of NULL for null values.

We next explain the roles verify, filter, generate and decision function (DF) play in the

implementation of the modified operator.
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Verify: The verify operator is invoked whenever a missing value is imputed in the current

operator to check if, had it been imputed earlier, it would have caused the tuple to be

eliminated by a prior upstream operator. In such a case, the tuple can be dropped since

such a tuple would not have passed the logic of a prior operator and would, thus, have not

reached the current operator. To see such a case, consider the missing value N1, and assume

the decision function decides to delay its imputation in σ̂C.location inLoc. If this value is imputed

later during query processing (e.g., in operator ρ), ( 2 in Figure 3.3), the imputed value

must satisfy every predicate that applies to the imputed value in the upstream operators

prior to ρ.

Filter: Filter operator in ZIP works in a manner dual to verify - while verify is used to

check if a tuple whose missing value imputation was delayed in a prior (upstream) operator

can be pruned after imputation since it would have failed predicates in prior operators, the

filter test is used to prune tuples based on predicates associated with future downstream

operators that the tuple will not satisfy. Filter test associated with an operator o can,

thus, result in early pruning of tuples saving imputations. To see how the filter works,

consider Figure 3.3. Assume that the decision function associated with the join operator

▷̂◁C.faceID=U.faceID decides to impute all missing values of U.faceID. Further, assume that

the ▷̂◁C.faceID=U.faceID is implemented as a hash join and U is the build table used in the hash

join. In such a case, all possible values U.faceID (i.e., {20, 65, 55}) could take would have

been determined early in the pipeline query processing as soon as the build phase of the hash

join is complete. Now consider tuples in table C (e.g., t3) passing through σ̂C.location inLoc.

Such tuples will be pruned if their faceID is not in {20, 65, 55}. In this example, t3 with

faceID 35 will not join any tuples in U and will, thus, not be part of the answer.

Generate: In operator o, the generate step is responsible to generate possible tuples that

satisfy all the previous upstream predicates of o. For instance, in the query tree in Figure 3.3,

if the imputation of N1 is delayed by the join operator until later (say, until ρ executes),
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necessary joining tuples that could have resulted from t1 will need to be generated. To

this end, ZIP needs to maintain the states of all tuples that flow through the join operator

and uses the state to support a carefully designed mechanism that ensures correct query

answer even when imputations are delayed. When and how the generate step executes will

be described in Section 3.5.

Decision function: ZIP creates a decision function associated with each operator to deter-

mine whether to impute the missing values or delay imputation. Intuitively, it is tempting to

delay imputing in operator o if imputations are expensive and the downstream operators of

o are selective. If the tuple is eliminated by a downstream operator, the imputation required

to execute o would be saved. On the other hand, if ZIP decides to impute missing values

right away, the imputed tuple will have a chance to be eliminated by the current operator

saving execution cost. The decision function is a cost-based solution to estimate the ex-

pected execution cost of imputing right away versus delaying the imputation, and chooses

the option with lower cost. We discuss the decision function in Section 3.6.

ρ Operator: ZIP adds a new operator ρ at the top of the tree which imputes all missing

values in the attributes associated with query predicates that have not been imputed so far.

The structure of the ρ operator is the same as that of unary operator with the difference that

for ρ the decision function is always set to impute2. Like other unary operators, once a tuple

is imputed in the ρ operator, it goes through the verify step, and if passing verification, goes

through the generate step. Since ρ is the final operator, the way ρ executes the generate

differs slightly compared with other operators as will be discussed in Section 3.5. We note

that ρ will impute any missing values in the projected attributes if any and removes all

attributes in the imputed tuples that were not part of the projection in the query. 3

2We could alternatively, also consider drop operator, similar in spirit to ImputeDB, which will allow our
technique to explore the cost-quality tradeoff as well.

3When a tuple with multiple missing values reaches ρ, ZIP simply prefers imputing attributes in selection
conditions. An alternative strategy can be first imputing the missing value with the lowest estimated
imputation cost.
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Roadmap: In the remainder of this chapter, we first describe the implementation of the

verify and filter operators in Section 3.3. The imputation-aware operations (i.e., I-operation)

and answer generation (i.e., the generate step) are described in Section 3.4 and Section 3.5

respectively. Finally, we show the design of the decision function (i.e., the DF step) in

Section 3.6. We restrict the discussion to the modified versions of the select, project, and

join operators and illustrate query processing in ZIP through the SPJ queries.

3.3 Verify and Filter Steps

Implementation of Verify and Filter steps of an operator o requires ZIP to maintain several

data structures that we discuss next.

3.3.1 Data Structures

Verify Set. Verify set for operator o consists of all the predicates over the attribute Ao

which are associated with all the upstream operators (i.e., those that appear below o in the

query tree), where Ao are the attributes associated with the predicate in o. Figure 3.5 shows

the verify sets for all operators in the query tree in Figure 3.3.

Filter Set. A filter set for an operator o consists of predicates defined over attributes

associated with the tuples that are input to o. These predicates correspond to conditions

associated with operators that are downstream to o (i.e., are higher up in the query tree)

and are defined over attributes other than Ao on which o is defined. As an example, consider

selection operator o = σS.Building=′DBH′ in Figure 3.3-b) where Ao = {S.Building}. We add

the predicate {S.room = C.location} from the downstream join operator to the filter set

since it is defined on the attribute S.room which is different from the attribute S.Building

on which the selection operator is defined. The filter set for o = σS.Building=′DBH′ can be
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̂σ S.building=′ DBH′ 

Verify Set: {}
Filter Set:  {S.room=C.location, S.room in Loc}

Verify Set: {}
Filter Set:  {C.faceID =U.faceID}

Verify Set: {C.location in Loc}
Filter Set:  {C.faceID =U.faceID}

Verify Set: {}
Filter Set:  {}

Verify Set: {all predicates}
Filter Set:  {}

ρ Verify Set: {all predicates}
Filter Set:  {}

̂Π sid

̂⋈ C.faceID=U.faceID

̂⋈ S.room=C.location

Figure 3.5: Verify Set and Filter Set.

expanded further by additional predicates which can be inferred from the current filter set.

In the example, the predicate {C.location in Loc} coupled the filter {S.room = C.location}

enable filter set of o = σS.Building=′DBH′ to be expanded to {S.room = C.location, S.Room

in Loc}. The conditions in the filter set are used in ZIP to eliminate tuples earlier that will

eventually be eliminated by downstream operators, thereby saving unnecessary imputations.

Bloom Filters. ZIP constructs a bloom filter [7] for each join attribute in the equi-join

operator in a query Q. Such a bloom filter, BF (a) for the attribute a is constructed in-

crementally as the tuples are processed by the modified join operator. That is, when the

modified operator processes a (non-missing) attribute value, it stores the value in the bloom

filter BF (a). Likewise, whenever a missing value in a tuple for a join attribute is imputed

(either as part of the join or a further downstream operator) and passes the verification test,

it is added to the corresponding bloom filter. The bloom filters help prune/filter tuples early

in upstream operators based on downstream join conditions. For instance, in the example

above, using the bloom filter, the operator σS.Building=′DBH′ could use the join condition in

its filter set (e.g., {S.room = C.location} to check if the room associated with the current
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Impute U.faceID:
N6 = 20, N7 = 55

Impute:
N2 = 2206

delay

delay
delay

Figure 3.6: ZIP Query Plan Tree.

tuple matches any C.location using the bloom filter BF (C.location). In addition to helping

implement the filter step, ZIP uses bloom filter in the modified join will also be used to

support the modified join operator (as will be discussed in Section 3.4).

Bloom Filter Completeness. A bloom filter BF (a) for a join attribute a in a query Q is said

to be complete with respect to Q if BF (a) contains all values of a that could result in tuples

in the answer set of Q. Note that the completeness condition does not require all values of

a to be in BF (a). Tuples that are filtered away by the selection/join operators may not be

in BF (a) for it to be considered complete. More formally, let Q be a query over relations

R1, R2, . . . , Rn. W.L.O.G, let a be an attribute in R1 that participates in a join predicate

in Q. The bloom filter BF (a) is said to be complete w.r.t. Q if for all tuples t1 ∈ R1, such

that there exist tuples t2, t3, . . . , tn in R2, R3, . . . , Rn that along with t1 produce a tuple in

the answer set (i.e., tuples t1, t2, . . . tn together satisfy all the predicates associated with Q),

BF (a) contains t.a.
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g) The generate step in ρ
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Figure 3.7: Pipeline ZIP.

We denote the event during query processing that causes the bloom filter BF (a) to become

complete as BFC(a) and we refer to it as a completeness event for BF (a). ZIP will need to

test when the bloom filter completeness for an attribute a in a join is reached to correctly

generate query answers. For BFC(a) to be reached, two conditions should be held. First, all

the tuples with missing values in a should have been imputed or eliminated and there should

be no missing values. To test such a condition, for a query Q, ZIP maintains a missing value

counter MC(a) that records the number of missing values for each attribute a in Q. Such

an array is initialized using the metadata or statistics maintained by in database. Whenever

a missing value in attribute a is imputed or dropped, (e.g., as a result of a filter operator),

ZIP reduces the count of MC(a) appropriately.

Second, reaching BFC(a) further depends upon the specific join algorithm used to compute

a join. Consider a join RL.a ▷◁ RR.b, where RL and RR are the left and right relations

respectively, and a and b are join attributes. When there is no ambiguity, we will refer

to RL and RR simply as L and R. If this join (L.a ▷◁ R.b) is implemented using nested

loop, for inner relation R, bloom filter BF (R.b) contains all values in R.b (i.e., BFC(R.b) is

reached) when there are no more missing values of R.b and the first pass of relation R has

been processed. For outer relation L, such a condition becomes true only when all tuples
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have been processed through the join operator. For hash joins, similar to nested loop, the

bloom filter contains all values as soon as the hash table based on build relation has been

built and for outer relation such a condition is reached when all tuples have been processed.

For sort merge, or multi-pass hash join, the bloom filters for both relations L and R contain

all values as soon as the sort or hash table build is finished. ZIP maintains for each attribute

a in a join a boolean, entitled JC(a) that becomes true when all the values in attribute a

have been processed. For instance, if a is in the build relation of a join, JC(a) becomes true

when the build phase is fully executed. ZIP modifies the scan operator to detect and set JC

conditions when all tuples in a relation have been consumed. 4

Thus to determine BFC(a) ZIP simply needs to check when both MC(a) = 0 and JC(a) =

true has been reached.

3.3.2 Verify and Filter Implementation

To implement verify and filter operation, for incoming tuples, ZIP only needs to check

conditions stored in verify and filter set to determine if the tuples satisfy them or not. If the

conditions are selections, tuples can be evaluated right away. For join conditions, we check if

the bloom filters of the join attributes are complete or not. If they are complete in pipeline

query processing, we use the bloom filter to test if the tuple satisfies this join condition.

For instance, consider operator σ̂S.building=′DBH′ whose filter set contains a join condition

S.room = C.location in Figure 3.5. For tuple t received by σ̂S.building=′DBH′ , if S.room is

not missing, and the bloom filter BF (C.location) is complete, ZIP uses BF (C.location) to

check if S.room has any matched values in BF (C.location). If BF (C.location) returns false,

we drop tuple t. This check operation is safe because the bloom filter does not have a false

negative. Otherwise, we do nothing and let t pass.

4In the case of index scan, JC becomes true when all the tuples that satisfy scan condition are consumed.
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3.4 Impute-Aware Operators

In this section we describe the impute-aware operation, i.e., I-operation in Figure 3.4, for

selection, projection, join and ρ operators.

Unary Operators: I-operation for the select, project, and ρ operators are straightfor-

ward. For selection, I-operation simply evaluates the selection predicate if the corresponding

attribute value is not missing. Otherwise, it forwards the tuple to the next operator. I-

operation for the projection operator, besides forwarding attributes in the projection, also

preserves values associated with attributes in query predicates for tuples that have missing

values in those attributes. The I-operation for the ρ operator at the top of the tree returns

the tuples after projecting to the attributes in the final results. We illustrate the execution

using an example in Figure 3.6 and Figure 3.7. Figure 3.6 is the ZIP query plan for the

query in Figure 3.2, and the decisions taken by the decision functions in each operator are

marked. In Figure 3.7-b) to g), the numbered red circle represents the tuples returned by

getNext() for each operator. Assume ZIP decides to delay imputations in two selection

operators σ̂S.Building=′DBH′ and σ̂C.location inLoc, and their getNext() tuples are shown in Fig-

ure 3.7-b) and Figure 3.7-c), respectively. The projection operator Π̂sid returns tuples in

Figure 3.7-f), it not only projected sid, but also all the attributes in query predicates.

Join Operator: The I-operation for the join operator is more complex. Consider a modified

join operation ▷̂◁L.a=R.b, and a tuple t that reaches I-operation of the join in either relation

L or R. Note that such a tuple t has passed through the filter, decision function, verify, and

generate steps in Figure 3.4. W.L.O.G, let t belongs to relation L. First, if the attribute

value a in t, t.a, is not missing, ZIP adds t.a into the bloom filter BF (a) and simply uses the

original join implementation to join t with tuples in R whose b values are not missing. For

instance, if the query plan specified a hash (or an index, or nested-loop) join, ZIP simply

continues to use the original code for such joins that were part of the database prior to
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modifying the operators to be impute-aware. If t.a is missing, however, ZIP bypasses the

original join code and instead generates a new output tuple that contains all the attribute

values of t including the missing value, and NULL values for all the attributes of the other

relation. ZIP preserves the missing value of t.a for later query processing by creating a tuple

similar to the tuple created by the left-outer join. Likewise, if t ∈ R, then ZIP creates a

corresponding tuple by concatenating NULLs for the attributes in L.

In addition, for one of the two inputs (i.e., L or R) for the join operator o = ▷̂◁L.a=R.b, ZIP

maintains a list of tuple identifiers of the base relations from which the missing value of

L.a or R.b originated. These lists are denoted by L(o, a) and L(o, b) respectively. ZIP only

populates one of L(o, a) and L(o, b) leaving the other empty. ZIP chooses the list that is

expected to be smaller (e.g., with a lower number of missing values in the corresponding

base relation) to reduce overhead. Thus, if either of the two inputs do not contain missing

values, ZIP will choose that attribute, and hence both lists would be empty. These lists, as

we will see in Section 3.5, are required to ensure result tuples are generated only once with

no duplicates.

To illustrate the modified join operator, consider the join operator ▷̂◁S.room=C.location in Fig-

ure 3.7-d), where only C.location has missing values. We assume the decision function

decides to delay imputation in this join operator. The tuple 1 in Figure 3.7-d), is a joined

tuple from tuple 1 in S relation in Figure 3.7-b) and tuple 1 in C relation in Figure 3.7-c).

All the other tuples, i.e., tuples 2 - 4 in Figure 3.7-e), are the right outer join results of S

and C where the missing values N1, N2, and N3 are preserved with NULLs in columns in S

side.

Note that a missing value may appear in multiple tuples if one tuple t matches multiple

tuples in the join operation. In Figure 3.8, in the join operation ▷̂◁C.faceID=U.faceID , N1

appears more than once in the join result. To prevent having to impute the same missing

value more than once, when a missing value is imputed, references to the value in all tuples
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̂⋈ C.faceID=U.faceID

Figure 3.8: Example of Missing Value Duplication.

are replaced at the same time. For this purpose, we maintain a link in main memory from

the missing values to all tuples in which they appear. When a missing value is imputed, all

of these tuples with the missing attribute imputed will be passed on to the generate step to

compute the corresponding results.

3.5 The Generate Step

This section describes how ZIP generates tuples when a tuple with an attribute (whose

imputation had been delayed by a previous operator) is imputed as part of a downstream

operator (e.g., another relational operator or the ρ operator). Let the generate step be

invoked when a missing value in attribute a of a tuple t is imputed and passes the verify step

for an operator o. The generate step reconstructs all the tuples that would be present in the

output of o to which t.a would have contributed, had t.a been imputed earlier. The essential

idea in the generate step is to replay the joins on tuple t contributed by the imputation of

t.a, as shown in Algorithm 1.

Given operator o, let UJ(o, a) be the set of predicates associated with join operators upstream

of o whose associated predicate contains attribute a. UJ(o, a) can be identified from the join

predicates in the verify set of o. For instance, UJ(ρ, C.location) = {S.room = C.location}.

Note that UJ(ρ, C.location) does not contain join condition C.faceID = U.faceID even

though it is also an upstream join of ρ since it does not contain C.location. If UJ(o, a)
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Algorithm 1: generate step in operator o
Input: o, t, a

1 T ← {t}
2 if Check Replay Ready (o, a) then
3 new T ← ∅
4 for oj ∈ UJ(o, a) do
5 for ti ∈ T do
6 new T ← new T ∪ Replay(ti, oj , a)

7 T ← new T

8 return T to the I-operation of o

is empty, then tuple t is forwarded to the I-operation in o. (Line 8) Otherwise , for each

predicate p in UJ(o, a), the generate step first checks if the attribute (other than a) in p has

reached its bloom filter completeness (i.e., BFC(b) is true, where b is an attribute in p, and

b ̸= a) by calling Check Replay Ready (o, a). In such a case it generates all the tuples

that would have resulted from the imputed value of a in t by replaying the joins (Line 3-7).

Note that if any attribute presented in predicates in UJ(o, a) (other than a) is not bloom

filter complete, the join processing for the tuple containing the imputed value cannot be

processed fully right now. Hence, the original generate step after imputation would simply

forward the tuple to the I-operation of o which will forward it to downstream operators

for future processing similar to the way I-operators pass tuples containing missing values

(Line 8). If o is the ρ operator (and, thus, there is no further downstream operator for

o to push the tuple whose join processing is not complete), ZIP banks such tuples whose

Check Replay Ready (o, a) fails until the time the condition becomes true. Once the

condition becomes true, the tuple is rerouted to generate all the relevant results using the

replay function. For tuples not delayed by ρ, all the generated answers are returned as

output by passing the tuples to the corresponding I-operation of ρ.

Note that for all tuples delayed in the ρ operator, eventually theCheck Replay Ready (o, a)

will become true, which requires that the BFC(b) be true for any attribute b that is an at-

tribute in any predicate p in UJ(o, a) other than a. Reaching BFC(b) requires MC(b) = 0

and JC(b) = true. The condition JC(b), as discussed in Section 3.3.1, is a property of the
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join algorithm used and will eventually always be met for all attributes as the scan for the

base relation containing b has processed all the tuples that satisfy the predicates (if any)

associated with the scan. The condition MC(b) will also be eventually reached as the ρ

operator continues to impute the remaining missing values.

Replay Function: We now explain the Replay function in Algorithm 2. Consider ex-

ecuting the replay function for a tuple t in operator o, and assume the join condition is

a = b. ZIP first checks if the imputed value t.a is in the bloom filter of attribute b, i.e.,

BF (b). If a matched value is not found, then the tuple t will not join with any tuple in

the current join operator o and thus an empty set is returned. (Line 2-3) Otherwise, if the

bloom filter matches the imputed value of a, ZIP first retrieves all the tuples in the relation

that match with t on the join attribute a using the index built on a (Line 4), and removes

the tuples stored in the L(o, b) to prevent from generating possible duplicated join answers.

Its correctness will be clear in a later discussion part in this section. ZIP then updates each

such matched tuple to t and returns the results by using the merge function. (Line 7-8) 5

We illustrate the Generate Step (including the replay and merge functions) using an example

in Figure 3.7. Consider the generate step in ρ operator in Figure 3.7-g. When the input tuple

to ρ (tuple 2 in Figure 3.7-f), t = {NULL,NULL, 3, 20, N2, 20} with missing C.location

N2 is imputed as 2206, ZIP generates the answers resulting from this imputation for all the

join conditions containing C.location in the tree. In this query tree, ▷̂◁S.Room=C.location is the

only upstream join operator of ρ that is applicable to C.location. We further assume that

the bloom filter of S.room is complete. For instance, assume S.room does not have missing

values and is the build side of join. When ZIP replays t = {NULL,NULL, 3, 20, N2, 20}

using join condition S.Room = C.location, ZIP checks BF (S.room) = {2206, 2011, 2065}

and the imputed value 2206 is found. ZIP then retrieves the matched tuple in relation S

which is {2206, DBH}, and updates t to {2206, DBH, 3, 20, 2206, 20}, as shown as the tuple

5ZIP requires indices on all join attributes. If such an index does not exist, ZIP will create a hash index
as part of the execution of the join operator.
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Algorithm 2: Replay
Input: t, o, a

1 b : the join attribute in o other than attribute a
2 if t.a not in BF (b) then
3 return ∅
4 else
5 Tmatched ← look up(t.a)
6 Tmatched ← Tmatched \ L(o, b)
7 Ans← ∅
8 for ti ∈ Tmatched do
9 Ans← Ans ∪merge(t, ti)

10 return Ans

2 in Figure 3.7-g. Note that such updates can be easily achieved since the schema of each

composite tuple is maintained in each operator and we could project the matched tuples into

corresponding fields in t by aligning their schema.

Discussion:

The correctness of ZIP requires 1) soundness: the tuples returned by ZIP would have been

returned had we imputed in the base relations prior to executing the query; 2) completeness:

ZIP will not miss a result; 3) non-duplicates: ZIP will not generate duplicated results. We

focus on the join execution since proving the correctness of the other operators, i.e., unary

operators, is simpler. Consider join operation L.a = R.b, let T L
d be the tuples in L that pass

filter and verify steps and have missing values in L.a, and T L
c be the tuples in L that pass

filter and verify steps and do not have missing values in L.a, respectively. Likewise, T R
d and

T R
c are similarly defined. L.a ▷◁ R.b can be rewritten as (T L

c ∪ T L
d ) ▷◁ (T R

c ∪ T R
d ). In join

operator o =▷◁L.a=R.b, the I-operation of o will implement T L
c ▷◁ T R

c as normal join. Tuples

in T L
d and T R

d will be pushed to the downstream operators by appending NULLs for the

attributes in the other relation. In later query processing, when the bloom filter of R.b is

complete, T L
d ▷◁ R.b will be computed by the generate step. Similarly, when L.a reaches its

bloom filter completeness condition, L.a ▷◁ T R
d will be generated. Note that this may result

in the duplicated results for T L
d ▷◁ T R

d . Recall that ZIP maintains a list L(o, a) (or L(o, b))

44



in every join operator o to prevent the generation of such duplicated tuples. (See Line 6 in

Algorithm 2)

3.6 Decision Function

In the decision function in ZIP, the decision of whether a missing attribute value should be

imputed prior to the execution of the operator or should imputation be delayed depends

upon whether the imputation method is non-blocking or blocking. We focus on an adaptive

cost-based solution for non-blocking imputations, denoted by ZIP-adaptive. For blocking

imputations, we use a lazy strategy, denoted by ZIP-lazy, which always delays imputing

until the tuple with the missing value reaches the imputation operator ρ. Alternatively, we

can use an eager strategy, wherein imputations are performed as soon as required.

3.6.1 Obligated Attributes

Non-blocking imputations in ZIP can be placed anywhere in the query tree since ZIP, through

operator modification, decouples imputation from the operator implementation. To guide

the actions of each operator, we first define a concept of obligated attributes for relations in

query Q. Intuitively, an attribute a in R is obligated if missing values of a in R ”must” be

imputed in order to answer the query, i.e., for such attributes, its values cannot be eliminated

as a result of other query conditions or due to imputation of other missing values.

Definition 3.1. (Obligated Attributes) Given the set of attributes in the predicate set

of a query Q (denoted by AQ), an attribute a in relation R is said to be obligated if

• attribute a appears in a predicate in Q, i.e., a ∈ AQ, or a is one of the attributes listed

in a projection operator; and
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• all attributes of R (other than attribute a) do not appear in any predicate in Q. That

is, ∀a′ ∈ R− a, a
′
/∈ AQ.

If an attribute a ∈ R is neither in the projection list nor in AQ, imputing its missing values

will not be required to answer Q and hence a would not be obligated. Likewise, if a predicate

in AQ contains an attribute b which is also in R, it is possible that such a predicate may

result in the tuple of R to be eliminated thereby making imputation of the corresponding

a value (in case it was missing) unnecessary. Thus, again, such a possibility would prevent

a from being classified as obligated. As an example in Table 3.2, U.faceID is an obligated

attribute for query Q in Figure 3.2 because other attributes U.name and U.type are not in

any predicate of query Q and U.faceID is in join predicate U.faceID=T.faceID.

Since missing values of obligated attributes must always be imputed, there is no benefit in

delaying their imputations. In contrast, imputing could potentially reduce the number of

tuples during query processing. As a result, the decision function in the ZIP operators never

delay such imputations. For the remaining attributes, ZIP performs a cost-benefit analysis

to decide whether to impute a missing value or delay its imputation.

3.6.2 Decision function

For each operator o in the query tree, ZIP associates a decision function df(a, o) for all

attributes a that appear in the predicate associated with o. The decision to delay/impute

missing values has implications on both imputation and query processing costs. Consider a

tuple t in relation R = (a, b, c, d) and a query tree in Figure 3.9-a). Say t1 = (N1, 1, 2, 3) (N

represents missing value), if we delay imputing t1.a, and t1.b does not join with any tuples

in the other relation, we can avoid imputing t1.a. On the other hand, imputing t2.a for

t2 = (N1, N2, 2, 3), could prevent imputation of t2.b, if the imputed value of t2.a is filtered

in the selection operator. Imputing t2.a may also reduce query processing time since it does
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not require the operator on attribute b to be executed.

Since decisions on whether to impute/delay are made per tuple containing missing values

locally by the operator, the decision function must not incur significant overhead. In making

a decision for operator o1 over attribute value t.a of a tuple t, ZIP assumes if t contains other

missing values in attributes, say t.b on which predicates are defined in downstream operators,

say o2, those operators will decide to impute t.b if the tuple t reaches those operators. For

instance, in the query tree in Figure 3.9-a), in making a decision for imputing /delaying

t.a, i.e., N1, in developing a cost model we assume that the missing value N2 (t.c) will be

imputed right away. This prevents ZIP from recursively considering a larger search space that

enumerates, which leads to a potentially exponential number of other possibilities wherein

downstream operators may delay/impute.

We build a cost model below to estimate the impact of delay/impute decision on both the

imputation cost and the query processing cost based on which the operators make decisions

in ZIP. To compute the imputation and query processing costs associated of the decision for

an operator, ZIP maintains the following statistics:

• impute(a): Cost of imputing a missing value of attribute a, computed as an average over

all imputations performed so far for missing values of a.

• Selectivity of selection operator oi, Søi =
|Ts|
|Tc| , where Tc (Ts) are tuples that are processed

(satisfy) the predicate associated with øi.

• Selectivity of join operator between relation L and R computed as Soi =
|Ts|

|TL||TR| , where TL

(TR) are tuples in relation L (R) and Ts are tuples that satisfy oi
6

• TTJoino: the average time to join tuples in (join) operator o; 7

• To: the average number of evaluation tests to perform per tuple in operator o for tuples

without missing values in the attribute to be evaluated in o. 8 If o is a join operator,

6We exclude those tuples containing missing values from Ts, Tc, TL and TR.
7We also use the notation TTjoino for selection operator, in this case, TTjoino = 0.
8A tuple with missing value in the attribute that passes through o will be pushed to the above operator
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Figure 3.9: Decision Function Example.

evaluation tests refer to join tests. Otherwise, if o is selection operator, we set To = 1.

To bootstrap the process of statistics collection, ZIP initially delays all imputations forcing

tuples to rise up to the top of the tree, and these tuples can be dropped if they fail some

predicates en route. During this process, ZIP collects imputed tuple samples to compute

impute(a) and to determine other statistics such as T (o), join cost TTJoino and selectivity

Soi . These statistics are then adaptively updated during query processing.

Cost Model for Imputations.

We illustrate how to estimate the imputation cost.

Consider a query tree in Figure 3.9-a), and a tuple t =(N1, 2, N2, 3). To decide whether to

impute or delay missing value t.a (N1), ZIP estimates the total imputation cost in case it

chooses to impute or to delay imputing t.a. The set of possible executions that may result

for either of the decisions are illustrated in the decision tree shown in Figure 3.9-b). Each

without evaluation immediately, and thus To for such tuple is 1.
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path of the tree corresponds to a possible outcome based on the decision to impute/delay

imputing t.a. For instance, in path p5, t.a is imputed but fails the predicate in o1, while in

path p3, t.a is delayed and t passes the predicates associated with o2 and o3, and reaches the

imputation operator ρ, where t.a is imputed and evaluated in ρ using predicate associate with

o1. The estimated imputation cost in the case of imputing (delaying) t.a, is the summation of

the expected imputation cost of all paths in the left (right) side of the tree, i.e., p1, p2, p5, p6.

(p3, p4, p7, p8). The expected costs of various paths (shown in Figure 3.9-c) are computed as a

weighted sum of imputations along the path, where the weight corresponds to the probability

of execution of that imputation. For instance, for path p1, we impute t.a with the probability

of 1, and, subsequently impute t.c with the probability of So1So2 . Thus, the cost of path p1

is impute(a) + So1So2impute(c).

Cost Model for Query Processing. Since join costs dominate query execution over the

unary operators in most cases, ZIP estimates query processing costs by the corresponding

join costs. Consider the same decision tree in Figure 3.9-b). The expected query processing

cost if we impute (delay) t.a is the sum of the expected query processing costs for all the

paths on the left (right) side of the tree. Figure 3.9-d) lists the probability of each path, and

also, its query processing cost. The probability is estimated based on the selectivity of the

predicates along the path, and the cost is estimated by summing execution cost of execution

of operators along the path incurred in processing tuple(s) that are generated as a result of

processing t. Take p6 as an example. Its corresponding probability is So1(1 − So2) since t

passes o1 but fails o2. The estimated cost for processing t (shown in Figure 3.9-a) in operator

o1, denoted by QP (o1), is To1 ∗ TTJoino1 which is 0 in this example since o1 is a selection

operator for which To is 1 and TTJoino1 = 0. The cost QP (o2) = To1To2 ∗ TTJoino2 since

o2 is a join operator and To1To2 is the estimated number of join tests to perform in o2. The

decision function will decide to impute missing values if the estimated cost of imputation is

lower. Otherwise, if the estimated cost of query processing is lower, the imputation will be

delayed.
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3.7 Experimental Evaluation

In this section, we evaluate ZIP over two real data sets and one synthetic data set. We

implemented ZIP on top of a database prototype system, SimpleDB [4] 9. Note that the

ImputeDB optimizer is also implemented in SimpleDB. We did so, so that we can directly

measure the improvements due to ZIP on ImputeDB query plans.

3.7.1 Experimental Setup

We used the following three data sets to evaluate ZIP.

WiFi. The first data set consists of WiFi connectivity events at University of California,

Irvine. WiFi-based occupancy determination has recently received a lot of attention due

to the pandemic with several companies offering related products [12, 16, 15] and research

projects [73, 79, 77]. The database consists of three tables, users, wifi and occupancy with

4018, 240, 065 and 194, 172 number of tuples, and total 383, 676 missing values respectively.

WiFi records the continuous connectivity data of devices - i.e., which device is at which

location in which time interval. occupancy records the number of people at different locations

over time.

CDC NHANES. We use the subset of 2013–2014 National Health and Nutrition Exami-

nation Survey (NHANES) data collected by the U.S. Centers for Disease Control and Pre-

vention (CDC) [1]. 10 The CDC data set has three tables, demo, exams, and labs, which are

extracted from a larger complete CDC data set. demo, exams and labs have 10175, 9813,

and 9813 tuples, respectively, and all of them have 10 attributes. Among them, there are a

total of 24 attributes that contain missing values, whose missing rate ranges from 0.04% to

9SimpleDB, developed at MIT has been used for research purposes at several universities including MIT,
University of Washington, and Northwestern University.

10We thank ImputeDB [34] for providing this data set whose link can be found in [3].
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97.67%, with a total of 81, 714 missing values.

Smart Campus. To test ZIP on larger datasets, we generated a smart-campus data set

consisting of 3 synthetic sensor tables, WiFi, Bluetooth, Camera, a space table (that connects

sensors to locations) user table (that connects a user to a device mac-address). In addition,

two additional tables are derived from the sensor data. The first table location consists of

the location of users over time and the second table occupancy consists of the number of

people at a given location over time. smart-campus data set has totally 1,892,500 tuples and

1,634,720 missing in occupancy and location and occupancy tables.

Query Set We create three query workloads to evaluate ZIP, random (with random selec-

tivity), low-selectivity and high-selectivity. In each query workload, the majority of queries

are SPJ-aggregate queries that contain select, project, join, aggregate (group by) operations.

SP queries are also included. Each query workload contains 20 queries.

Imputation Methods Note that any imputation approach could be approapiately used

in ZIP, and we choose several popular and easily used methods, which could be called in

standard Python library or be well-packaged in Github. For the CDC NHANES dataset we

use three imputation approaches, Top-k nearest neighbor [13] (KNN), XGBoost [35, 6], and

histogram-based mean value imputation [34]. Of these, the first two are blocking while the

third is non-blocking. KNN, XGBoost, and mean value imputations are widely used and

their implementations are available in standard Python packages, such as sklearn or xgboost.

For the WiFi and Smart Campus data set to impute location and occupancy values, in

addition to using the above three approaches, we further use a proprietary non-blocking

imputation method LOCATER [79] (LOC in short). We now describe the complexity of

each imputation method to impute one missing entry. Mean takes constant time O(C) to

find the mean value in a histogram. LOC uses O(Nk) where N is the average number of rows

of the queried person and k is the iteration number, recommended as 10. KNN takes O(Nd)

where N and d are the number of rows and columns in the table to be imputed. XGboost
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Time(secs) # of Imp (∗103)
Data Sets Imputation QTC-Eager ZIP-lazy ZIP-adaptive QTC-Eager ZIP-lazy ZIP-adaptive

WiFi

Mean 1.6 2.3 1.6 79 3.2 74
LOC 393.4 19.1 19.2 78 3.4 3.6
KNN 769.2 30.6 - 79 3.3 -

XGboost 144.7 126.2 - 79 3.2 -

CDC
Mean 0.12 0.12 0.12 12.1 1.3 10.7
KNN 9.63 1.02 - 12 1.3 -

XGboost 42.5 37.8 - 11.9 1.3 -

Smart
Campus

Mean 3.8 9.6 3.8 16 4.7 15.9
LOC 97.8 32.5 27.2 16 4.7 4.8
KNN 157.1 44.3 - 16 4.6 -

XGboost 101.8 72.6 - 16 4.7 -

Table 3.4: ZIP VS QTC-Eager.

(Seconds) Min Max Avg Avg Speed Up
WiFi 3.9 46.3 19.2 1200X

WiFi-Large 6.2 74.5 33.6 19607X

Table 3.5: ZIP VS Offline.

takes O(tdxlogn) to train, and O(td) to infer one missing value, where t is the number of

trees, d is the average height of the tree and n is the number of non-missing values in training

data.

Strategies Compared We evaluate the two versions of ZIP - ZIP-lazy and ZIP-adaptive

as defined in Section 3.6 with a baseline query-time strategy, QTC-Eager, that imputes

missing values eagerly without delay during query execution as soon as the imputed value

is required during query processing. Comparing ZIP to QTC-Eager will show the benefits

of the lazy imputation strategy. We also compare against the offline approach that first

imputes all missing data and then runs queries. In Experiment 1 to 5 below, we use the

query plan generated by PostgreSQL as the input for ZIP to execute. 11 In Experiment 6, we

incorporate ZIP with query plans generated from ImputeDB and explore the performance

of the combination.
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Figure 3.10: ZIP VS Offline.

3.7.2 Evaluation

Experiment 1: ZIP VS Offline. To show the needs of query-time imputation (i.e., ZIP)

by comparing with the offline approach, we collected a larger real data set WiFi-large by

extending the WiFi data set from one building to 40+ buildings over campus, and we report

the runtime of ZIP and the offline approach in Table 3.5 and Figure 3.10. In Figure 3.10,

the offline approach takes 6.4 hours in WiFi data set and estimated 183 hours in WiFi-large 12

data set, respectively. In contrast, in Table 3.5, ZIP has only 19.2 and 33.6 seconds of run

time in WiFi and WiFi-large data sets, and it speeds up the offline approach by 1200X and

19607X in WiFi and WiFi-large data sets.

Experiment 2: ZIP VS QTC-Eager. In Table 3.4 we report the runtime (in seconds)

and number of imputations, i.e., the number of missing values imputed for QTC-Eager,

ZIP-lazy and ZIP-adaptive approaches using the random query set. Note that LOC is

applied on WiFi and Smart-Campus since it is not applicable on CDC data set. We compare

the performance of QTC-Eager with ZIP-lazy and ZIP-adaptive in WiFi, CDC, and Smart-

Campus in Figure 3.11, Figure 3.12, and Figure 3.13, respectively. We show the percentage of

11We implement an API in simpleDB that could read and translate the PostgreSQL plan to be executed
in its executor.

12We stop cleaning at 10 hours and the offline approach only imputes around 5% missing data.
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Figure 3.11: ZIP VS QTC-Eager in WiFi Data.

run time and number of imputations performed by ZIP-lazy and ZIP-adaptive compared to

QTC-Eager. time ratio is the run time of ZIP-lazy (or ZIP-adaptive) divided by the time of

QTC-Eager times 100 (percentage). Similarly, # Imp ratio is the percentage of imputation

numbers.

We make several observations. First, ZIP-lazy and ZIP-adaptive perform similarly and they

both outperform QTC-Eager by around 20x when expensive imputations are used, which

demonstrates that delaying imputations significantly improves performance when imputa-

tions are expensive. Second, when cheap imputations are used such as Mean imputation,

ZIP-adaptive tends to impute data first since doing so will potentially save the query pro-

cessing time by reducing temporary tuples, and thus has similar imputations as QTC-Eager.

This shows that the decision function in ZIP-adaptive works correctly and is able to actively

adjust its decision based on the cost of imputations. Third, ZIP-lazy requires slightly fewer

imputations than ZIP-adaptive since it always delays imputation to the end of processing,

while ZIP-adaptive performs similarly as ZIP-lazy inWiFi and CDC and ZIP-adaptive slightly
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Figure 3.12: ZIP VS QTC-Eager in CDC Data.

outperforms ZIP-lazy in Smart Campus due to the more complex join workload (higher join

selectivity). Fourth, as expected, when learning approaches are used whose training time

dominates the inference costs (e.g., as in XGboost), reducing the number of imputations will

not offer a big improvement. For instance, ZIP-lazy imputes 11.6% of imputations needed

for QTC-Eager, but it takes 89% run time of QTC-Eager (i.e., saving only 11%).

Experiment 3: Quality of Query Answer. The quality of query answer depends upon

the imputation method used and the query itself. Figure 3.14 plots the accuracy of impu-

tation methods (AccI) and that of the corresponding query answers (AccQ). AccI is the

percentage of correctly imputed values. For aggregate queries, AccQ is measured as |AT −A
AT |,

where AT is the true answer and A is the answer returned using an imputation method. For

set-based queries, AccQ is measured using Jaccard similarity. Using different imputations

with different accuracies, the accuracy of query answers is also different. The experiment

above highlights the impact of the choice of the imputation method on query answer quality.

To measure the difference between answers returned by ZIP and the offline approach, we use
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Figure 3.13: ZIP VS QTC-Eager in Smart Campus Data.
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Figure 3.14: Accuracy of Imputations and Query Answer
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Symmetric-Mean-Absolute-Percentage-Error (SMAPE) [85] (also used by ImputeDB [34]).

SMAPE is computed as a tuple-wise absolute percentage deviation between ZIP & offline

approach. Since ZIP-lazy and ZIP-adaptive all return exactly the same answers as offline,

the SMAPE value for all is 0.

Experiment 4: Query Selectivity Effects. We use the query template below to generate

low-selectivity and high-selectivity query workloads: SELECT a, AVG(b) FROM R1, ..., Rn

WHERE [PredJ ] [PredS] GROUP BY a., where PredJ and PredS are join and selection

predicates. We varied the selectivity of each selection predicate as 0, 0.2, 0.4, 0.6, 0.8, 1, and

the selectivity of join predicate is set to be low and high by modifying the matching numbers

of joined attribute values. KNN is applied in CDC data set, while in WiFi and Smart-Campus

data set, LOC is used to impute location and occupancy, and Mean-value is used to impute

other missing values. In CDC and WiFi data set, we report the effect from the selectivity of

selection predicates in Figure 3.15, and the effects from both join and selection selectivity

are evaluated in the synthetic data set in Figure 3.16. In this and later experiments, if no

ambiguity, we call ZIP the hybrid of ZIP-lazy and ZIP-adaptive – ZIP always uses ZIP-

adaptive for non-blocking imputations and ZIP-lazy for blocking imputations.

The number of imputations and running time increase for both QTC-Eager and ZIP when the

selectivity of predicates increases, though ZIP has considerably lower overhead and running

time at all selectivity levels. In CDC, since KNN is costly and join operations are selective,

ZIP delays imputations in selection operators. Join predicates help eliminate tuples reducing

imputations needed thus reducing cost. In WiFi where join attributes (e.g., location) have

missing values, instead of paying expensive imputations (e.g., LOC) to impute all missing

values in join attributes as QTC-Eager, ZIP delays the imputations of the missing values in

join and allow the downstream operators to wisely choose cheap imputations (e.g., Mean)

for missing values that are not in join attributes to help eliminate tuples if the correspond-

ing predicates are selective. In the synthetic data set, when the join operators are highly
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(a) WiFi Data Set.
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(b) CDC Data Set.

Figure 3.15: Selectivity Effects on Real Data Set.

selective, (i.e., selectivity is low) as in Figure 3.16(a), ZIP delays imputing missing values

in selection operators to exploit join operators to help eliminate most tuples and thus save

most imputations. When join is less selective (i.e., more result tuples in Figure 3.16(b)) but

the selection predicates are selective, ZIP might choose to partially delay the imputations

in join attributes and the downstream operators that could be selective due to other selec-

tions, to help remove tuples to avoid expensive imputations in join attributes (e.g., location).

However, when the selection predicates are also less selective and query processing overhead

is higher than imputation costs, ZIP prefers imputing missing values immediately same as

QTC-Eager.

Experiment 5: The effect of Missing Rates.Figure 3.17 shows how missing rates affect

the query performance. With the increasing missing rates, the runtime and imputation times

taken by ZIP slightly increase and tend to converge, since the amount of imputations needed

to answer a given query depends on the selectivity of the query. For the set of queries

with fixed selectivities, their performance will not be dramatically affected by the number

of missing data in the data, which demonstrates the robustness of ZIP.

Experiment 6: ZIP with ImputeDB plans. We investigate ZIP using ImputeDB-
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(a) Low Join Selectivity.
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(b) High Join Selectivity.

Figure 3.16: Selectivity Effects on Synthetic Data Set.

generated query plans. ImputeDB [34] adds impute and drop operators to a query plan

based on a parameter α (0 ≤ α ≤ 1) that balances efficiency and quality. Higher the value

of α, more drop operators are used causing more tuples with missing values to be dropped.

To incorporate ImputeDB plans in ZIP, we added the drop operators that mirror the drop

operator in ImputeDB. Given an ImputeDB plan, the impute operators are treated as regular

while ZIP impute operators that could be evaluated lazily based on the decision function.

The drop operators check if a tuple contains missing values in the appropriate attribute and,

if so, drop the tuple. We generated several plans based on varying α from 0 to 1 and execute

the plan both in ImputeDB and in ZIP modified as above to support ImputeDB plans with

drop operator.

Figure 3.18 shows the average quality (1-SMAPE) versus runtime of queries for the CDC and

WiFi data using the KNN imputation approach on random query sets for ImputeDB plans

with and without ZIP. Each line plot shows 6 points corresponding to α = 1, 0.8, 0.6, 0.4, 0.2,

and 0 from left to right. The improvements are 10x to 25x when α = 0 (i.e, when ImputeDB

plan optimizes for quality, choosing impute over drop). When α increases, the relative

improvements due to ZIP reduces. This is expected since ZIP only applies to tuples that

are imputed. With increasing α more tuples are dropped reducing the need for ZIP. When
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the cost-quality tradeoff across ImputeDB plans with and without ZIP, to achieve the same

level of quality, plans with ZIP require significantly less time. Furthermore, ImputeDB plans

when executed with ZIP achieve significantly higher quality in the same amount of time

spent in query processing. Thus, the execution of ImputeDB plans with ZIP significantly

dominates the ImputeDB plans without ZIP. The experiment clearly establishes that even in

use cases where we explore cost-quality tradeoffs, ZIP-optimization can help improve systems

such as ImputeDB that explore such tradeoffs, and ZIP and ImputeDB are complementary

approaches integration of which provides a powerful query time imputation approach.

Experimental Summary. We below summarize the main outcomes of the experiments in

ZIP and what we learned.

• The offline approach that first imputes all the missing data and then performs query

processing is not practical when the size of the data is large and the imputations are

expensive as shown in Experiment 1. In such a case, ZIP is able to support interactive

analysis and outperforms the offline approach by up to 19607X in a large WiFi data

set.

• By comparing with another baseline approach QTC-Eager which is the underlined

query processing technique in the state-of-the-art system, EnrichDB, ZIP outperforms

QTC-Eager by around 20X when expensive imputations are used, such as LOCATER

or KNN. It shows the benefits of the lazy imputation strategy.

• ZIP will generate the exact same query answers as the offline approach.

• ZIP provides higher improvement when the queries are more selective, and ZIP is

relatively robust to the missing rates in the dataset.

• ZIP used together with the ImputeDB plan (the state-of-the-art system to generate

query plans that optimize for missing value imputation), outperforms the ImputeDB

60



0.2 0.4 0.6 0.8
Missing Rate

3.5

4

4.5

5

5.5

Im
pu

ta
tio

ns

103

ZIP

0.2 0.4 0.6 0.8
20

25

30
R

un
in

g 
T

im
e(

se
co

nd
s)

ZIP

Figure 3.17: Missing Rate Effects.
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Figure 3.18: ZIP + ImputeDB.

by 10X to 25X, which shows that ZIP and ImputeDB can be used complementarily to

further improve the performance of the system.

3.8 Conclusion

This chapter studies query-driven missing value imputation and proposes ZIP, a technique

to intermix query processing and missing value imputation to minimize query overhead.

Specifically, ZIP co-optimizes imputation cost and query processing cost, and proposes a

new implementation based on outer join to preserve missing values in query processing.

Extensive experiments on both real and synthetic data sets show that ZIP outperforms the

offline approach by up to 19607 times in a real WiFi data set.
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Chapter 4

PLAQUE: Automated Predicate

Learning at Query Time

In this chapter, we introduce our second strategy to accelerate query execution to support

interactive analysis when computationally expensive operations are used, by learning new

predicates at query runtime.

4.1 Introduction

Predicate pushdown based on selectivity and cost estimates is a key strategy used to optimize

queries in relational databases. Pushing predicates down in a query tree could lead to

significant savings by reducing the size of data that migrates to downstream operators. In

this chapter, we seek a new approach to query processing, entitled PLAQUE, automated

Predicate LeArning at QU ery timE, that learns selective predicates during query execution

beyond those listed explicitly in order to filter out tuples that would not result in any

query results as early as possible during query processing. To illustrate the key idea behind
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PLAQUE, we examine a slightly modified and simplified version of TPC-H Query Q-10 that

includes a theta-join condition. 1 In this query, the predicates o orderdate < “1993-01-01”

and p brand = “:10” can be pushed down to the orders and part tables. However, the query

contains no predicates on the lineitem table that could prune non-matching records in the

lineitem table that do not result in any query answers. Thus, any query plan will scan over

all records in the lineitem table.

SELECT MAX(l discount)

FROM part, lineitem, orders

WHERE p retailprice < l extendedprice AND o orderkey = l orderkey AND o orderdate <

“1993-01-01” AND p brand = “:10”

Consider that all records in the lineitem table that result in an answer satisfy a predicate

l discount > 0.7 - we will momentarily see how PLAQUE learns such predicates. Query

execution can be significantly accelerated by pushing such predicates down in the query to

filter records in the lineitem table. Only a small fraction of records in the lineitem table will

need to join with the orders and part tables resulting in significant savings.

Several prior works have explored learning predicates, other than those specified explicitly in

queries, to reduce downstream query processing. Such approaches [29, 88, 52, 107], typically

learn predicates prior to the execution of the query, especially based on exploiting query

predicates on join columns. For instance, if the query above contained a predicate l orderkey

< 5) in addition to the other predicates listed in the query, techniques such as [120] could

infer a new predicate o orderkey < 5) which could then be used to filter tuples from the orders

table to speed up the query execution. Such prior work on learning predicates, however, is of

limited applicability since queries containing equi joins seldom contain additional selection

predicates on the join column. This can be observed by examining such equi join queries

over several real datasets and synthetic benchmarks such as TPC-H [19] or TPC-DS [18] in

1The similar query is used in previous works [111, 119] to evaluate theta-join in TPC-H benchmark.
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which none of the equi join queries contain additional predicates on the join columns. As

such, above mentioned techniques rarely result in a significant reduction of the execution

cost in the benchmark queries. An alternate strategy that empowers predicates learned

ahead of query execution has been explored in [67]. In this strategy, the system maintains

data statistics (e.g., min and max of columns) at the data block level which is used for

sideways information passing over equi joins to accelerate query execution, especially in big-

data systems such as Hive [106] or Pig [91] where data is partitioned across clusters. The

work, however, is limited to equi joins.

In this chapter, similar to [62, 121, 93], we propose PLAQUE that learns predicates during

query processing. In contrast to them, PLAQUE takes a much more comprehensive, as well

as, an adaptive approach to learning and using predicates in query execution. PLAQUE

infers new predicates not just during the execution of hash-join as in [62, 121, 93], but based

on a range of relational operators including aggregation operators such as min and max, theta

joins, equi joins, group-by operators, and having conditions in queries. In PLAQUE, as the

query execution proceeds and records pass through operators in the query tree, the system

learns new predicates to reduce the downstream data processing. Such predicates learned

are further refined as query processing proceeds and more data is seen, resulting in improved

filters. Furthermore, based on the operator, predicate learning in PLAQUE occurs not just

when the system uses a hash-based operator implementation, such as in hash-joins, but also

when nested-loop or sort-merge algorithms are used. In PLAQUE, predicate learning and

maintenance including predicate refinement is performed efficiently and remains a negligible

part of query execution cost. PLAQUE in addition to saving computation cost by pruning

unnecessary records, also supports checking of newly-learned predicates using an index-based

implementation to reduce I/O cost, and decides on the optimal placement of the learned

filters. The placement of the operator depends upon when it is learned and a simple rule

such as pushing the predicate as far down the tree as possible may not be optimal. Finally,

PLAQUE uses a pre-learning approach to learning new predicates before the execution of
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the actual query. This approach fully leverages the power of the optimizer to create a good

query plan early, and it is complementary to and combined with the run time predicates

learning approach to form a hybrid strategy to boost query performance.

Comprehensive experiments on two benchmarks (TPCH [19] and SmartBench [54]) and one

real dataset (IMDB) [14] in Section 5.6 demonstrate that adding the learned predicates using

PLAQUE can achieve significant improvement ranging from 2x-33x, especially in queries

containing expensive User-Defined-Functions (UDFs) where improvement can be up to 100x

in SmartBench [54].

Specifically, this chapter makes the following contributions.

• We build a system entitled PLAQUE that explores a set of novel approaches to infer

predicates during query execution from the aggregate, equi join, theta join, group-by,

and having conditions in the given query.

• PLAQUE places the learned predicates wisely in the given query tree to maximize the

benefits from predicates pushdown using a partial-order based graphical approach.

• PLAQUE exploits the learned predicates using index and in-memory predicates to effec-

tively save both I/O cost and memory footprint.

• We conduct a set of comprehensive experiments on both real and synthetic benchmarks to

evaluate the effectiveness of our learned predicates. We further test the learned predicates

on queries with UDFs to demonstrate their broader applicability.

4.2 PLAQUE Overview

PLAQUE learns predicates that act as filters to reduce the load on the downstream oper-

ations to accelerate query processing. Before we discuss how PLAQUE works, we briefly

discuss opportunities that exist during query processing and can be exploited to learn pred-
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Figure 4.1: Learned Predicates in PLAQUE.
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Figure 4.2: Data Observations to Learn Predicates in PLAQUE.

icates.

Opportunities to Learn Predicates

Consider a pipeline query plan tree illustrated in Figure 4.1-a) that corresponds to the

query plan generated by PostgreSQL (Version 14.6) for the TPC-H query in Section 1. In

this plan, ⋊⋉l orderkey=o orderkey is implemented as a hash join and nested loop join is used

for ⋊⋉l extendedprice>p retailprice. One such opportunity to learn a predicate to accelerate query

execution is to exploit the hash join implementation of ⋊⋉l orderkey=o orderkey that was proposed

in the previsous works such as [62, 93]. In particular, since the orders table is the build table

and the lineitem table is the probe table, once the hash table on the orders table has been

built, all values of the join column of the orders table are known when they have been read

during the build phase. Such information can be used to learn a predicate p1 = l orderkey ∈
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pok that corresponds to all values of o orderkey in the build table (i.e., the orders table) as

shown in Figure 4.2. p1 can be used to filter tuples in the probe side (i.e., the lineitem table).

p1 in this example is a membership predicate that is effective to reduce the size of tuples

for the downstream operators. We can alternatively implement the predicate learned from

the equi join as a range predicate, which is amenable to support index scan to bring the

additional I/O savings.

Besides exploiting equi joins (hash joins in particular) to learn filters, let us explore how

other relational operators offer additional opportunities. We continue to use the example in

Figure 4.2. For ease of illustration, we use small instances of the lineitem, part and orders

tables, respectively.

After the execution of the build phase for the orders table, during the probe phase over

the lineitem table, assume a tuple (1, 0.3, 20) ( 1 in Figure 4.2) rises to the join operator

⋊⋉l orderkey=o orderkey where it joins appropriate records in the orders and part tables to reach

the aggregate operator Aggmax(l discount). At this stage, we can establish that the final

query answer (i.e., MAX(l discount)) is at least 0.3, since 0.3 is the current maximum

l discount in the quantifying tuples reaching the aggregate operator so far. We can, thus,

create a new predicate p2, i.e., l discount > 0.3, and push this predicate down to p in

Figure 4.1-b). Such a predicate can potentially reduce the query execution cost significantly,

especially if the maximum value of l discount in the lineitem table is close to 0.3 in an

ideal setting. In this case, all the future tuples in the lineitem table can be eliminated from

consideration! In our current example, the second tuple 2 in the lineitem table will be

dropped away by p2 since its l discount value is 0.04 which is less than 0.3.

Consider now the third tuple 3 in the lineitem table that joins with the record in the orders

table to reach the nested loop join with the part table. Assume it fails to meet the condition

l extendedprice > p retailprice in the theta join for every record in the part table. As a

result, we can learn a new predicate p3 = l extendedprice > 10, since the failure of tuple
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3 with l extendedprice = 10 to join any tuple in the part table establishes all values of

p retailprice must be greater than or equal to 10. Thus all values in l extendedprice must

be greater than 10 in order to successfully join and produce an answer. Such a filter will

allow the tuple 4 in the lineitem table to be eliminated since it violates p3, which implies

that it must fail the theta join operator.

Note that the predicates learned above can be refined to more selective predicates as data

processing proceeds. To see this, consider the fifth tuple 5 in the the lineitem table. When

it joins with the orders table and reaches ⋊⋉l extendedprice>p retailprice, if it fails to join with any

tuple in the part table, we can thus update p3 to a more selective predicate as l extendprice >

12. Likewise, when the tuple 6 in the lineitem table reaches the aggregate operator with

l discount as 0.8, we can similarly update p2 to be a more selective predicate l discount > 0.8.

The more selective predicates can prune additional tuples early further to reduce query

execution costs.

The example above illustrates several opportunities to learn predicates that can serve as the

filters to accelerate query processing from different relational operations – from equi join (p1),

theta join (p3), and MIN/MAX (p2). In Section 4.3 we consider a more comprehensive set of

relational operators that can help determine predicates. We note that several predicates we

learn can be refined as query processing proceeds as illustrated above - e.g., the predicates

learned from theta join conditions, aggregations such as MIN/MAX. Furthermore, different

types of predicates can be learned from equi join conditions (e.g., range filters or membership

filters), and such predicates can be implemented in different ways - as filters in memory or

using an index, in which case, it could potentially reduce I/O cost of reading a relation from

disk. Finally, note that the predicates learned from equi joins could potentially provide more

benefit if they are learned from a more downstream join operator. For instance, consider

the theta join condition l extendedprice > p retailprice in Figure 4.1-b), if we modify it to

be an equi join l extendedprice = p retailprice and assume it uses hash join with the part
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table as the build table. The predicates learned from p retailprice when the hash table of

the part table is built can be pushed further down to the scan of the lineitem table. As a

part of p in Figure 4.1-b), such a predicate would prune tuples early by using the condition

from a downstream join operator.

We have highlighted several opportunities to infer predicates during query execution that

can help accelerate query execution. To our best knowledge, PLAQUE is the first such

comprehensive attempt to explore learning and refining predicates during query processing

to prune away redundant tuples which do not result in query results. Before we discuss

PLAQUE architecture, we first highlight some key challenges that arise in learning predicates

that will be addressed by PLAQUE.

Challenges

Learning predicates and using them to accelerate query execution leads to several challenges.

One such challenge is to devise ways to infer and refine predicates by exploiting semantics

and implementing various relational operators that comprise a query. The learned predi-

cate should be selective so that it prunes away as many records as possible. However, the

predicate must simultaneously be correct in the sense that its usage does not change query

results. Second, where should we insert the learned predicates in the query tree? Pushing

the predicates down to the scan (leaves) of the query tree might not always be the best
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option, as we will show later in Section 4.5. Third, it is critical to implement the learned

predicates carefully such that applying them will not introduce significant overhead while

ensuring the correctness of the learned predicates.

PLAQUE Design

PLAQUE addresses the above challenges by making careful design choices. The overview

of the architecture of PLAQUE is in Figure 4.3. Given a SQL query, in PLAQUE a query

optimizer first generates a query plan that is sent to the query executor. During query exe-

cution, PLAQUE will capture certain events to either learn new predicates, or update/refine

predicates that have been learned previously. PLAQUE ensures that such additions and

refinements of the predicates do not change the results of the original query. Learning or

refining predicates in PLAQUE are implemented using ECA rules [17] based on the state

of execution of the query. An ECA rule consists of three components: an event is defined

as [WHEN: event, IF: condition, THEN: action]. For example in Figure 4.2, consider

the first tuple 1 in the the lineitem table, and the following event: [WHEN: the tuple 1

reaches the aggregate operator Aggmax(l discount), IF the tuple 1 is the first tuple reaching

Aggmax(l discount), THEN a predicate l discount > 0.3 is created. Similarly, PLAQUE

will detect events to learn/update new predicates from MIN/MAX, theta join, equi join,

HAVING/GROUP BY conditions in Section 4.3.

Once the new predicates are learned, PLAQUE applies the learned predicates in the query

executor to speed up the execution. This is achieved in PLAQUE through two subtasks:

• Deciding how to implement the learned predicates in the executor, i.e., whether or not to

use index-scan. (discussed in Section 4.4)

• Deciding where to place the learned predicates in the given query plan tree. PLAQUE

makes the decision based on evaluating the dependencies among different query blocks of a

query tree and determining a placement strategy designed to maximize the benefit of predi-
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cate placement (discussed in Section 4.5).

Finally, the executor returns the query answer to the end users or the end applications.

PLAQUE has been implemented in the Apache project VanillaDB [20, 112], which consists

of several key components, such as query executor and optimizer, which were suitably mod-

ified for a reference implementation of PLAQUE. In particular, PLAQUE added the code

to implement the learned predicates in VanillaDB by creating in-memory predicates or in-

dex predicates, which require minimal modifications to current DBMS codes with negligible

overhead. The in-memory predicate is implemented as an in-memory checker that is directly

applied to the data flow among operators during query execution to eliminate any tuple that

fails the corresponding predicate, while the index predicate is implemented as index-scan to

fetch tuples using an index. We discuss the two implementations in detail in Section 4.4.

Furthermore, the mechanisms to add and dynamically refine predicates during query execu-

tion using ECA rules were added to the codebase. Overall, PLAQUE was implemented by

adding approximately 500+ lines of code on VanillaDB. We anticipate a similar relatively

modest effort extending other open-source DBMSs, such as PostgreSQL, to support learned

predicate based to accelerate query execution as a part of our future work.

4.3 Predicate Creation

In this section we describe how PLAQUE learns predicates from various relational operations

in a given query, including MIN/MAX aggregate, theta join, equi join, and group by/having

conditions. In particular, PLAQUE aims to learn two types of predicates during query

execution, i.e., range predicate and membership predicate which are of the form [a op v] and

[a ∈ V ] respectively, where op is a relational operator such as >, ≥, etc., v is a value in the
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domain of attribute a, and V is a set of such values.

Predicates learned in PLAQUE that are used to modify the query do not result in a change

of the final answers returned by the query. Furthermore, PLAQUE uses a monotonic

refinement approach to modifying the learned predicates wherein a predicate p may be

replaced by a predicate p′ learned later if p′ is more selective compared to p, i.e., p′ → p.

For example, a predicate a > 10 may be replaced by a > 20 since the latter is more

selective. PLAQUE uses such a monotonic refinement strategy to filter more tuples thereby

improving performance. Monotonic refinement of the learned predicates does not jeopardize

the correctness of the approach, which produces exactly the same results as that produced

by the original query without the learned predicates.

4.3.1 MIN/MAX Aggregation

Consider an aggregate query with max or min conditions on attribute a, MAX(a), or

MIN(a). Let t be a tuple and t.a be the attribute value of a in tuple t. We first de-

scribe the event that causes the corresponding ECA rule (discussed in Section 4.2) to trigger

the creation of a predicate learned from extremal aggregate operators. We restrict our dis-

cussion to the MAX operator. The logic for MIN is very similar and follows directly from

the discussion below.

Event 1. Predicate Creation from MAX Operator.

WHEN: MAX(a) operator receives a tuple t

IF: t is the first tuple MAX(a) receives

THEN: a predicate p, a > $a, is created, where $a = t.a.

Note that a > $a satisfies the predicate correctness since none of the records with values of

a ≤ $a would satisfy the query answer. As an example in Figure 4.2, consider the first tuple
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1 in the lineitem table. A predicate l discount > 0.3 is created when the tuple 1 reaches

Aggmax(l discount) with l discount as 0.3. Eliminating records with l discount ≤ 0.3 will

not change the query results.

Once a predicate is learned from MAX aggregate operator, it may be updated later during

query processing. Such a refinement is captured by the following event.

Event 2. Predicate Refinement from MAX Operator.

WHEN: MAX(a) aggregate operator receives a tuple t

IF: the predicate p associated with MAX(a) exists and t.a > $a

THEN: update p to be a > $a, where $a = t.a.

The predicate refinement based on the MAX(a) operator defined above is monotonic and

hence the refinement may filter additional records since the corresponding predicate is more

selective. We note that the predicates learned from a MAX operator would be the most

effective if the true maximum value or a value close to it appears early in the lineitem table,

which will then allow early pruning of the most tuples in the lineitem table that would fail

the aggregate operator.

4.3.2 MIN/MAX with GROUP BY

Let us now consider MIN and MAX predicates in conjunction with GROUP BY operators.

For now, let us assume there is no HAVING clause in the query which is addressed separately

in Section 4.3.3. Let a be the attribute on which the MAX or MIN value is computed, and b

is the attribute used to create groups, e.g., SELECT MAX(a), b, FROM..., WHERE..., GROUP

BY b. For such a GROUP BY aggregate operator, PLAQUE adds an initial predicate p as

follows at the beginning of the query processing.
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Event 3. Predicate Initialization MIN/MAX GROUP BY.

WHEN: at start of query execution

THEN: Add a predicate p = ¬(b ∈ $groups), where $groups = ∅.

Predicate p initially will return true for any tuple since $groups = ∅. When a tuple t

reaches the aggregation operator, the predicate p is appropriately modified by adding a new

predicate pi as a disjunct, where pi corresponds to a predicate for the group (i.e., the b value)

associated with the tuple t.

Event 4. Predicate Addition MIN/MAX GROUP BY.

WHEN: MAX(a) operator receives a tuple t

IF: t is the first tuple MAX(a) receives in the group whose group value b = t.b

THEN: create a predicate pi = (b = bi) ∧ (a > $ai), where $ai = t.a. Modify the variable

$groups in the predicate p associated with the aggregation to $groups ∪ {bi}. Finally, add

pi as a disjunct to p creating a modified/extended version of p. More formally, let p = ¬(b ∈

$groups} ∨ p′. 2 The predicate p is modified to be: p = ¬(b ∈ {$groups ∪ {bi}} ∨ p′ ∨ ((b =

bi) ∧ (a > $ai)).

Consider the modified TPCH query in Section 4.1 where the aggregate attribute a =

l discount and the group attribute is l shipmode = {“Air”, “Mail”, ...}. When the first

tuple t reaches the aggregate operator whose t.l shipmode =“Air” and t.l discount = 0.3,

the predicate p is updated to ¬(b ∈ {“Air”}) ∨ ((b =“Air”) ∧ (a > 0.3)). At this time

instance, if we were to apply the learned predicate p on a new tuple t′ to check if t′ can be

skipped or not, and assume t′.l shipmode = “Mail”, the predicate returns true and tuple t′

will pass since its group does not associate with any filtering condition.

The newly learned disjunct to the predicate p associated with the GROUP BY aggregation

2Note that after initialization, when ¬(b ∈ $groups), then p′ is empty. As more disjuncts get added to
the predicate p, the subsequent value of predicate p has a non-empty p′ which itself contains one disjunct
for each group that has been observed so far.
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operator contains a filtering condition (a > $ai) which is further refined as more tuples of

the same group bi are seen as the query execution proceeds.

Event 5. Predicate Refinement from MIN/MAX GROUP BY.

WHEN: MAX(a) operator receives a tuple t

IF: t is in group bi where bi ∈ $groups, and t.a > $ai

THEN: update p to p = ¬(b ∈ $groups) ∨ p′ ∨ ((b = bi) ∧ (a > $ai), where $ai = t.a.

When a new tuple t reaches the aggregate operator whose t.l shipmode = “Air” and

t.l discount = 0.8, the predicate p is refined to ¬(b ∈ { “Air” })∨ ((b = “Air” )∧ (a > 0.8)).

For each group bi, $ai is the maximum value in this group observed so far during execution.

In Section 4.4, we will detail how to implement such a disjunction of predicates.

We note that the above strategy of maintaining a predicate for each group to filter tuples

may introduce non-trivial storage and processing overhead when the number of groups is

large. PLAQUE uses several optimizations to reduce such overhead. To reduce the overhead

of maintaining and checking a disjunction for each group, PLAQUE maintains predicates for

a small set of k groups. We choose the k groups for which to maintain predicates based on

estimating the size of different groups by a bootstrapping approach that processes an initial

sample of records without any predicates. From the sample, we determine the top-k largest

groups and then subsequently learn filters on the chosen bi values for those top-k groups.

The intuition behind the choice is that predicate-based filtering will be the most effective

on such groups with larger size. We can further reduce the overhead of checking if a value

of b in a tuple has/has not been previously observed (i.e., ¬(b ∈ {$groups) by maintaining

$groups as a bloom filter. Note that the false positives in a bloom filter do not jeopardize

the correctness - it only implies that PLAQUE will not be able to form a predicate on bi if

the bloom filter indicates that bi is already in $groups as a false positive.
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4.3.3 Conditions in HAVING Clause

Consider a query with having condition, SELECT Agg(a), b FROM R1, . . ., Rn WHERE . . .

GROUP BY b HAVING Agg(a) op v, where a is the aggregate attribute and b is the group

attribute. op is one of > | ≥ | < | ≤ | =, v is a value, and Agg = max | min | sum | count.

During the query execution, the aggregate operator maintains the aggregated value Agg(a),

such as SUM(a), for each group. Agg(a) will be updated when any new tuple reaches the

aggregate operator.

Consider the scenario where Agg is count, and HAVING condition is count(a) < 100. If the

HAVING condition becomes false, i.e., count(a) ≥ 100, it will always remain false during

later query execution for that group. On the other hand, for the HAVING condition count(a)

> 100, once it becomes true, it will always remain true in the future when more tuples

are processed. We capture such a concept by defining in-preserving and out-preserving

properties for the condition in the HAVING clause. Subsequently, we describe how to learn

predicates that can be used to filter tuples based on the conditions in the HAVING clause.

Definition 4.1 (In/Out-Preserving Property of Having Condition). A conditionH = [Agg(a)

op Constant] in the HAVING clause is in-preserving, if H becomes true at any instance t

during query execution based on partially observed tuples, H always remains true at any

instance t′ where t′ > t, when more tuples have been observed. On the other hand, H is

out-preserving, if H is false at an instance t during query execution, it remains false at any

future instance t′ where t′ > t when more data has been observed. □

Given the above concepts of In/Out preserving conditions, we can now define the event to

create the corresponding predicate.

Event 6. Predicate Learned From Having.

WHEN: Agg(a) in a HAVING condition is updated for the group with group value bi
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IF: the HAVING condition is out-preserving, and Agg(a) fails the condition

THEN: a membership predicate pi = ¬{bi} is created.

Whenever an out-preserving having condition becomes false during query execution in the

group whose group value is bi, PLAQUE learns the predicate pi to skip all later tuples in the

same group. In particular, for any tuple t, if t.b = bi, t fails the predicate pi and it will be

skipped. Note that the In/Out-preserving property of HAVING containing MIN, MAX or

COUNT aggregation can be decided together with op in advance of the query execution. For

instance, max(a) > 100 is in-preserving, and max(a) < 100 is out-preserving. As for the sum

aggregate operation, if the data statistics of attribute a are known in advance that all values

in a are non-negative, then the out-preserving property of sum can also be determined prior

to the query execution. For instance, sum(a) < 100 is out-preserving if ∀v ∈ V als(a), v ≥ 0.

4.3.4 Learning from Theta Join

We show how to learn predicates from theta join conditions in the given query during the

query execution. Let R be a relation. Consider a theta join condition between relations

R1 and R2, R1 ▷◁a op b R2, where a and b are two attributes, and op := > | ≥ | < | ≤. To

better illustrate the idea, without loss of generality, let us assume op is >, i.e., the theta

join condition is a > b. We first define the event to trigger the creation of predicates learned

from a theta join operator.

Event 7. Predicate Creation From Theta Join Operator.

WHEN: tuple t ∈ R1 arrives at a theta join operator, R1 ▷◁a> b R2

IF: t is the first tuple that fails to join with any tuples in R2,
3

THEN: a predicate p, a > $a, is created, where $a = t.a

3The above observation can be easily captured during query execution since the join output for t in the
current theta join operator will be empty (NULL).

77



A tuple t ∈ R1 failing to join with any tuple in R2 implies that for any tuple t
′ ∈ R2 that

comes to this theta join operator, the attribute value of t
′
.b must be greater than or equal

to t.a, i.e., b ≥ t.a. Since a > b, this naturally implies a > t.a. Consider the tuple 3 in the

lineitem table in Figure 4.2. As shown in Section 4.2, the theta join ⋊⋉l extendedprice>p retailprice

learns a predicate p retailprice ≥ 10 when the tuple 3 of the lineitem table fails to join any

tuple in the part table.

Once the predicate p = a > $a is learned, it could be updated during later query execu-

tion when $a is updated to a larger value. In particular, we define the event of predicate

refinement from a theta join operator below.

Event 8. Predicate Refinement From Theta Join Operator.

WHEN: a tuple t ∈ R1 arrives at a theta join operator, R1 ▷◁a> b R2

IF: p = a > $a, t fails to join with any tuples in R2, and t.a > $a

THEN: the predicate p is updated to be, a > $a, where $a = t.a.

The predicate refinement discussed above is monotonic. The operand $a in predicate a > $a

is the maximum value of attribute a in the tuple from R1 that failed the join test in the

theta join operator so far. So the failure of a larger a value to join any tuple in the theta

join can be used to refine the predicate to a more selective predicate while ensuring the

correctness of the execution. This was illustrated in Figure 4.2 by refining the predicate

from l extendedprice > 10 to l extendedprice > 12 when processing the tuple 5 of the

lineitem which also failed to join with any tuples in the part table in theta join operator

⋊⋉l extendedprice>p retailprice.

Likewise, when the op in a theta join condition is ≥, we follow Event 7 and Event 8 to learn

exactly the same predicate as the one when op is >. In contrast, when the op is < or ≤, the

learned predicate is a < $a, where $a is the minimum value of the attribute a in the tuple

from R1 that failed the join test in the theta join operator so far.
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Theta join R1 ▷◁a op b R2

Outer relation R1 R2

op > or ≥ < or ≤ > or ≥ < or ≤
Predicates a > maxa a < mina b < minb b > maxb

Table 4.1: Learned Predicates for Theta Join
.

Symmetrically, for a theta join R1 ▷◁a> b R2, if there is a tuple coming from the right side

of the join, i.e., R2 and it fails the join test, we create a predicate b < $b, where $b is the

minimum value of R2.b in the tuples from R2 that fail the join test in this theta join operator

so far during query execution.

In a nested loop implementation of a theta join R1 ▷◁a> b R2, if a tuple rises from R1 and the

join algorithm checks the entire R2 relation to perform the join, we refer to R1 as the outer

relation and R2 as the inner relation. Table 4.1 summarizes all the predicates that can be

learned from a theta join condition based on the op and on which side the tuple t ascends

into the join. In Table 4.1, we denote maxa and mina by the maximum and minimum

values in the attribute a that fail the join test so far during query execution. It can easily be

shown that the process of replacing predicates added to the query tree earlier by the stronger

predicates discovered later in the execution is monotonic, thus ensuring the correctness of

the execution.

Analysis: The effectiveness of the predicates learned from theta joins in accelerating query

processing depends on the implementations of the joins. The most commonly used theta

join implementations can be categorized as (block-based) nested loop join, index nested

loop join or sort merge joins with a few variants, such as ripple join [57], that performs join

R ▷◁ S by sampling tuples from both relations simultaneously. Consider a theta join operator

R1 ▷◁a> b R2 and let the join be implemented using nested loop join or index nested loop join.

Without loss of generality, assume R1.a is the outer relation where each tuple t in R1 reaches

the operator, and then the operator checks if t matches any tuples in the inner relation R2.
4

4For index join, the inner relation corresponds to the one that performs the index scan for each tuple
coming from the outer relation. Ripple join switches the inner and outer relations during join execution.
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The learned predicates from such a join operator are expected to provide improvement when

(block-based) nested loop join, index join and ripple join are used and the values in R1.a

reaching the theta join operator is not sorted. The advantage of the predicate would not

benefit a sort merge join implementation since tuples are processed in the sorted order and

all the remaining tuples yet to be processed satisfy the learned predicate and would not be

pruned further.

4.3.5 Learning from Equi Join

Equi join is one of the most commonly used SQL operators. We start with identifying several

opportunities to learn predicates from an equi join.

To identify the opportunities to learn predicates from an equi join, we first need to define

the concept of a convergence point.

Definition 4.2 (Convergence Point). Let R be a relation that participates in a join in a

query Q. A convergence point for R with respect to the join operator is defined to be the

earliest point in the query execution when all the possible tuples of R that could possibly

participate in the join have passed through the join operator at least once. □

The convergence point of a relation participating in a join depends upon the join algorithm

used. For instance, in the case of a hash join, the convergence point of the build relation

occurs when the corresponding hash table has been built. In the query plan tree in Figure 4.1,

the convergence point of the orders table is reached after the hash table of the orders table

has been built. Similarly, the convergence point of the part table is reached when the first

outer loop of the lineitem table is complete in the join operator ⋊⋉l extendedprice>p retailprice

when a nested loop join is used. At the convergence point for a relation in a join, all possible

values of the relation that could participate in the join have already been observed and this
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Figure 4.4: Convergence Points of Relations.

information can be exploited in learning the appropriate predicates from equi joins. Note

that different relations reach convergence points at different time instances, based on the join

implementations. For instance, in Figure 4.4 the convergence point for the lineitem table

occurs close to the end of query execution since the lineitem table is the probe table and we

have to consume all tuples from the lineitem table to complete the query. In general, for a

one-pass hash join or nested loop join, their build table or inner table will potentially reach

the convergence points early during query execution when the build phase is complete or the

first outer loop is complete. For multi-pass hash join, such as a grace hash join, and sort

merge join, both relations will reach their convergence points when the scan or sort for both

relations is complete.

We can learn either membership or range predicates from equi joins at the convergence point

of the participating relations.

Event 9. Predicate Creation from Equi Join.

WHEN: R1 reaches its convergence point

THEN: define a predicate p on relation R2 on the join column R1.a. p is either a set of

range predicates that cover the attribute values in R1.a, or p is a membership predicate

a ∈ V als(R1.a), where V als(R1.a) consists of all values in R1.a.

We next discuss how membership/range predicates are learned.

Learning Membership Predicate from Equi Join: When a relation R reaches its convergence

point early during query execution, we can learn a membership predicate pm from join

attribute in R. We adopt the choice of bloom filters to implement membership predicates as
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Figure 4.5: Range Predicates Learned From Equi Join.

in the previous work [93, 121, 62] to enable more efficient filtering due to the succinct nature

of the bloom filters.

Membership predicates can save the computational cost of computing joins by filtering

records that will not join with records in the other relation. Such functions, however, do

not save the I/O cost of reading tuples from disk. For such a benefit, we instead can learn

index-based range predicates. Below we describe the range predicate learning strategy used

in PLAQUE that brings about 3x I/O savings compared with the membership filter as shown

in Section 5.6. We will show how to implement index scan using the range predicates learned

from equi join conditions in Section 4.4.

Learning Range Predicate from Equi Join: Consider an equi join operator ▷◁R1.a=R2.b, where

a and b are join attributes in R1 and R2. Assume that R1 reaches its convergence point

early during query execution (e.g., R1 is the build table), and thus all values of R1.a are

known early at the convergence point. Our goal is to learn a set of range predicates from

the values in R1.a that can be pushed down to the other relation R2 relation (e.g., the probe

side) in the query plan tree to help filter away tuples using an index on R2, thus saving I/O

costs. Figure 4.5 shows the histogram of values in R1.a (blue buckets) 5 where the size of

5Assume the value type of R1.a is an integer, which can easily be relaxed to double or float.
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the bucket is the unit size, i.e., 1. Let Pr = {pir} be a set of range predicates. Our approach

to learning range predicates does not explicitly construct the histogram for R1.a, and we use

the histogram in Figure 4.5 for better illustration in determining the range predicate. To

learn Pr from a set of values in R1.a in the equi join condition ▷◁R1.a=R2.b, several factors are

considered.

• Completeness : the learned range predicates Pr should not introduce false negatives, i.e.,

Pr should contain all values of R1.a. Otherwise using Pr on the probe side will incorrectly

filter potentially correct values in the query answer.

• Effectiveness : Pr should not result in a large number of false positives. One possible

learned predicate for R1.a in Figure 4.5 is pr = {[2, 21]}, which has zero false negatives.

However, pr is not effective since it has large false positives. (e.g., [5, 7], [12, 18]) Instead,

Pr = {[2, 4], [8, 11], [19, 21]} may be a better set of predicates learned from R1.a since it

does not introduce any false positives nor false negatives.

• Complexity : the number of predicates in Pr should be constrained. If we simply learn the

unit predicates by creating one predicate for one unit value, such as [2, 2], [3, 3], ...[21, 21],

Pr downgrades to a membership-like predicate but using a less efficient implementation.

In this case, |Pr| will be equal to the number of distinct values in the column R1.a, which

increases the complexity of predicate implementation as we will show in Section 4.4.

The predicate pr we learn from an equi join condition on an attribute a has the format [l, u],

where l and u represent the lower and the upper values in attribute a. 6 Let l(pr) be the

number of domain values covered by the predicate, where l(pr) = u − l + 1. For a value v,

we denote by v ∈ pr if v is in the interval of pr. Formally, we define the Range Predicate

Learning (RPL) problem as follows.

Definition 4.3 (Range Predicate Learning). Given a set of values V in the join attribute

and k, the maximum number of range predicates to learn, RPL aims to find a set of range

6a ∈ [l, u] is equivalent to a ≥ l ∧ a ≤ u.
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Algorithm 3: k-Max-Gap

Input: V, k
Output: a set of range predicates, Pr

1 Sort V in the ascending order
2 Initialize a max-heap, h← ∅
3 for vi ∈ V do
4 di = vi+1 − vi
5 gi = (vi, vi+1)
6 Construct key-value pair kv = [di → gi]
7 Insert kv in h

8 G = {gi} ← htop−(k−1) // Return the set of gaps with top(k-1) largest

distance

9 Pr ← DropGap(V,G)
10 return Pr

predicates Pr = {pir}, such that,

(RPL)min
∑
pir∈Pr

l(pir) (4.1)

s.t. |Pr| ≤ k (4.2)

∀v ∈ V, v ∈ Pr. (4.3)

The condition 4.2 in the RPL problem guarantees that the number of learned range predicates

is at most k (i.e., complexity), and the condition 4.3 makes sure the learned predicates will

contain all attribute values and thus no false negatives (i.e., completeness). By minimizing

the total length of range predicates, we are able to maximize the effectiveness of the predicates

since a lower number of false positives will be introduced by more concise predicates.

The RPL problem is NP-hard which can be proven using a reduction from the Size-constrained

weighted set cover problem [51], a generalization of the weighted set cover problem. In par-

ticular, each value v ∈ V is an object, and each predicate pr ∈ Pr is a set with weight as

l(pr). Size-constrained weighted set cover problem seeks to select at most k sets to cover all

objects and the sum of the weights of selected sets is minimized. Correspondingly, RPL aims

to choose at most k predicates (efficiency) to cover all values (completeness) with minimum
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total predicate length (effectiveness).

We below present an efficient greedy solution to RPL, k-Max-Gap, in Algorithm 3. Given a

set of values V in the join attribute in an equi join operator and k, the maximum number

of range predicates to learn, Algorithm 3 returns at most k range predicates. Let gap gi be

the distance between two consecutive values vi and vi+1, where vi ∈ V, vi+1 ∈ V . k-Max-Gap

seeks to find the top-(k-1) gaps with the largest distances in V , and drop these gaps from

V to generate k range predicates. In particular, we sort all values in V and initialize a max

heap h. (Line 1-2) We compute the distance di for every consecutive value pair (vi, vi+1),

which are inserted into a max heap. (Line 3-6) We retrieve top-(k-1) gaps G with the largest

distance di from the max heap. (Line 7) Finally, we generate Pr by dropping the set of gaps

G from V .

Consider the example in Figure 4.5. Assume k = 3, i.e., |Pr| ≤ 3, meaning that we try to

find at most 3 range predicates. We first sort the values in the join key, and find the top-2

largest gaps between two consecutive values in the join key, and they are (11, 19) and (4, 8).

Dropping these two gaps from the value interval of the join key leads to three predicates,

[2, 4], [8, 11] and [19, 21].

4.3.6 Sideway Information Passing

In the previous sections, we specify how PLAQUE learns predicates from different relational

operators. In addition, PLAQUE uses a sideway information passing (SIP) approach to

learn new predicates based on the predicates learned from relational operators when queries

involve joins (equi joins or theta joins).

SIP via Equi Join. Consider an equi join ▷◁R1.a=R2.b. Without loss of generality, assume

we have learned a predicate p1 which is applicable in the join column R1.a, e.g., p1 = R1.a >
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10, PLAQUE learns a new predicate p2 in R2.b by passing p1 via equi join condition, i.e.,

p2 = R2.b > 10.

SIP via Theta join. Consider a theta join ▷◁R1.a opR2.b, where op := > | ≥ | < | ≤ | ̸=.

Without loss of generality, assume we have learned a predicate p1 which is applicable in

the join column R1.a. If p1 is a membership predicate, i.e., R1.a ∈ V als(R1.a), and op

is the operator ̸=, then PLAQUE learns a new predicate p2 on R2.b where p2 is R2.b /∈

V als(R1.a). Alternatively, if op is >, then PLAQUE can learn a predicate R2.b <= x, where

x is the maximum of the elements in V als(R1.a). Similar predicates can be learned for other

instantiation of the operator, e.g., if op is <, then we can learn the predicate R2.b >= x,

where x is the minimum value in V als(R1.a).

Likewise, PLAQUE learns appropriate predicates on R2.b values based on a set of range

predicates learned over R1.a. Consider a predicate p1 consisting of a set of ranges: p1 =

pr1∨pr2∨ ...∨prn, where pri = [li, ui] and ui < li+1 learned over R1.a. Based on the operator

op in the theta join ▷◁R1.a opR2.b, PLAQUE learns predicates on R2 as follows. If op is >, then

the predicate learned on R2.b corresponds to R2.b ≤ x, where x = un, and un is the largest

value in the range predicates covering R1.a values. Likewise, if op is <, we add a predicate

R2.b ≥ x, where x = l1, where l1 is the smallest value in the range predicates covering R1.a.

Note that in both the above cases, if l1 or un are not bounded, we do not learn any predicate

on R2. For instance, if the first range predicate on R1.a corresponded to R1.a ≤ 5, then its

range is (−∞, 5]. Thus, in such a situation, since l1 is not bounded, no predicate on R2 will

result from the above join condition.

Above, we have specified a few cases of how SIP predicates are learned in the case of theta

joins. The comprehensive set of learned predicates depends upon the set of operators in the

theta join, but the essential logic is similar to the one highlighted above.
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4.4 Predicate Implementation

In this section, we discuss how PLAQUE implements the learned predicates as either an

in-memory predicate or as an index predicate.

In-memory Predicate. The in-memory predicates can be either a range predicate, a

membership predicate, or a disjunction of range predicates as in the MIN/MAX with GROUP

BY (see Section 4.3.2).

A membership predicate is implemented by converting the value set to a bloom filter. Note

that the bloom filter will not have false negatives but may introduce false positives. Such

a false positive may result in tuples going through but such tuples will be eliminated by

the downstream operators, and thus will not generate wrong answers. In-memory range

predicates are simply implemented as range conditions. The disjunction of range predicates

learned from MIN/MAX with GROUP BY is converted into a map, where the key is the

group value and the value corresponds to the filtering condition in the corresponding group.

Index Predicate. In-memory predicates are easy to implement and can be placed every-

where in the query tree. While they offer great flexibility and are able to eliminate tuples

early during query execution, they do not help reduce the I/O cost of query execution. The

alternate implementation of the learned predicates using an index can additionally offer I/O

saving. The index-based implementation of the learned predicates is, however, more complex

since refining predicates dynamically during query execution with more selective predicates

becomes more complex when using an index-based implementation. Consider the case with

the predicates learned from MIN/MAX aggregate operators and theta join operator in Sec-

tion 4.3 for instance. Furthermore, shifting the original scan in the given query plan tree to

an index scan of learned predicates at query execution time, if not carefully implemented, will
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generate duplicated query answers, as will be clear shortly. The index-based implementation

of predicates needs to be implemented carefully only when it will bring obvious performance

improvement.

We thus consider implementing the index-based predicate p when the following conditions

are satisfied:

• The index of the attribute that a learned predicate p operates on already exists in the

database.

• p is able to be pushed down to just above the scan of relation R that p is applicable in

the query plan tree.

• The original scan of R is not an index scan. Otherwise, the benefit from p using index

scan would be diminished, and implementing index scan using more than one predicate

adds high complexity to the executor, and thus it is not worthy.

• p is a range predicate instead of a membership predicate.

We begin with a short bootstrapping phase to estimate the selectivity of a learned predicate

p, i.e., the percentage of the tuples satisfying p over all the sampled tuples so far during

the bootstrapping phase. During this stage, p is implemented as an in-memory predicate.

If the selectivity of p is lower than a predefined threshold 7 (i.e., p is selective), we shift p

from an in-memory predicate to an index predicate. Let T be the timestamp when the index

predicate is built and operated, and Tuples be a set of tuples in R that have been already

processed during query execution before T . An index scan p on R typically retrieves all

tuples satisfying p, which might contain a subset of Tuples, leading to potential duplication

of query answers. PLAQUE uses a low-overhead strategy to prevent duplication. For the

table scan on relation R, the rows are accessed in the increasing order of the record id (RID)

for efficient sequential I/O. Let cur RID be the RID of the row in R at the time T when

7The choice of index predicate also depends on the size of relation that the predicate is applied on. The
larger the size, the more improvement from the index predicate with a reasonable selectivity is expected.
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the index predicate p is built. We add a predicate RID > cur RID implemented as an

in-memory predicate in p immediately to prevent the duplication of the already processed

rows whose RID is smaller than or equal to cur RID.

4.5 Predicate Placement

We next discuss the strategy used in PLAQUE to place the learned predicates during query

execution in a given query tree so as to maximize its benefit of filtering away spurious

tuples. Predicate placement in the traditional context before query execution is relatively

straightforward. The query optimizers typically push down predicates as far down the query

tree and as close to the relational scan as possible. Interestingly, when predicates are learned

mid-flight during query execution, their placement as far down the query tree as possible

might not be a good strategy. For example, consider a scenario where PLAQUE learns a new

predicate R.a > val at a given stage during execution. Assume that the relation R was part

of a join condition and was designated as a build table in a hash-join. Pushing the predicate
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below the hash function in such a case, if the build process has already occurred by the time

the predicate is learned, would not help since the hash table based on R is already built. In

contrast, placing the predicate perhaps above the hash-join to reduce the number of tuples

that reach downstream operators could still be very useful in accelerating query execution.

In general, one has to be careful on where and how to place operators in the query tree,

when predicates are not known apriori and are learned during query execution. Our goal in

this section is to develop a strategy that maximizes the impact of the predicate by placing

it at an appropriate location in the query tree.

In a pipeline query plan, a query is often executed in several blocks based on the specific

implementations in relational operators, where all operations in one block are pipelined.

Consider a four-way join aggregate query plan tree in Figure 4.6, where R1 and R2 are

joined using Index Nested Loop Join (INLJ), and all the other joins are hash joins. For each

hash join, the probe phase is executed after the build phase is complete, leading to naturally

two blocks of execution, i.e., build and probe.

Figure 4.6 shows four execution blocks in the query tree, represented by nodes A,B,C,D

with different colors. Let bi be a block where all the operations can be executed using

pipelining. In Figure 4.6, node A is one block where the INLJ, two probing operations, and

aggregate operation can be pipelined together, while the build operation in Join 2 is in one

individual block, i.e., node B in Figure 4.6. Similarly, the probe phase of Join 4 can be

pipelined with the build phase of Join 3 in node C, while the build of R5 in Join 4 is an

individual block.

We formulate the query execution on a given query plan tree as a partial order graph to

capture the order of block executions.

Definition 4.4 (Join Graph). Let G = (V , E) be a directed graph, where each bi ∈ V

represents a block and eij ∈ E denoting that the execution of block bj must be executed after
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Algorithm 4: Predicate Insertion

Input: p,G = (V , E)
1 b := node where p is created
2 DesG(b) := the set of descendants nodes of b in G
3 for bi ∈ DesG(b) ∪ {b} do
4 pushdown(p, bi)

bi is complete. □

For example, the join graph in Figure 4.6 has four nodes, A,B,C, and D. The edge from B

to A denotes that all the operations in A can be executed only when the build table of R3

is complete.

Formulating query execution as a partial order join graph is helpful in identifying where to

place the learned predicates. On one hand, we wish to push the learned predicates as low

as possible in the query tree to maximize their benefits to potentially skip more rows early

during query execution. On the other hand, it is not beneficial to place the predicates in a

block whose execution has already been completed before the time when the predicates are

learned. The partial order join graph provides a way forward in determining where to place

the predicates as shown in the example below.

Assume a range predicate pr is learned from the max operator (e.g., Agg in Figure 4.6), and

it is applicable in R1, then the best location to place pr is just above the scan of R1, since

doing so will prune tuples earliest. However, if pr is applicable to R3, inserting pr above the

scan of R3 will not help remove tuples since the build phase of R3 is complete before the pr

is learned in the aggregate operator. Instead, the best location for pr is R1 if R3 is joined

with R1. Intuitively, we wish to push the learned predicate as deep as possible in the query

plan tree, while ensuring the predicate will effectively prune tuples.

We formally describe the algorithm to place any learned predicate in the query plan tree in

Algorithm 4. Given a learned predicate p and the partial order execution graph G = (V , E),

we first identify the node b ∈ V where p is created. (Line 1) Second, we identify the set of
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descendant nodes of b in graph G, DesG(b), i.e., the set of nodes that are reachable from b.

(Line 3-4) Finally, in block b and each block in DesG(b), we push down the predicate p into

each such block if p is applicable in the corresponding relations in the block.

We below use an example to illustrate the Algorithm 4. In Figure 4.6, assume a predicate

p is learned in node D (i.e., after the hash table of R5 is complete). Obviously, p cannot

be pushed down further in D. Consider the set of descendants of D, i.e., {C,B}. p can be

pushed down in C to the probe of R4, and it can also be immediately pushed down above the

scan of the applicable base relation in node A via Join 3, for instance, if Join 3 is R1 ▷◁ R4,

then p can be pushed down above the scan of R1. Similarly, a predicate p learned in the node

C after the build table of R4 is complete can be passed through Join 3 and pushed down to

the node A. Note that p learned in C will not help eliminate tuples in its ancestor nodes

in the graph G, such as D, since p is learned after the block D is fully executed. When the

predicate p is learned from Agg in the node A (e.g., max or min operator), the only node

we can push p down is A since A does not have any child nodes in the graph. In particular,

p can be pushed down appropriately into the different execution points in A based on the

applicable attribute of p. For instance, if p is applicable in either R1 or R2, then p can be

pushed down to the scan of R1 or R2. If p is applicable in R3, then p will be placed in

probe phase in Join 2 in the node A, which is not the deepest location in A, but will help

eliminate tuples early for downstream operations in A, such as the probe phase in Join 3

and aggregation.

4.6 A Pre-Learning Approach

We present a complementary approach to learning predicates prior to the query execution

which we refer to as, PreL. With the addition of PreL, the modified data flow in PLAQUE is

shown in Figure 4.7. Note that the predicates learned by PreL for a query Q are appended
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to Q. The modified query Q′ is optimized to empower the optimizer to exploit the newly

learned predicates. For instance, the optimizer may push down the predicate learned by

PreL during optimization.

The key idea of the pre-learning approach before the query run is walking through a set of

possibly small relations without finishing the query run to learn predicates fast. Consider

the query in Section 4.1. Can we simply scan the part table applied by p brand = “:10”

or the orders table applied by o orderdate < “1993-01-01” to learn useful predicates based

on the join column values prior to query execution? To this end, we propose a strategy by

modifying the nested-loop-join algorithm.

The pre-learning approach is executed in the following steps. Given a query plan tree T , let

o be the lowest operator above any join operator in plan tree T , 8 such as the projection

operator ΠR1.a in Figure 4.8. We simply modify this operator o to o
′
such that it will

terminate after it receives the first tuple. Second, we force the optimizer to use a nested loop

join for every join operator ▷◁ and constraint the shape of the tree to be left deep tree 9. For

each join operator ▷◁, we slightly modify it to be ▷◁
′
by adding one condition: when R1 ▷◁

′
R2

receives the first tuple t from its outer relation R1, ▷◁
′
forces to iterate all tuples in its inner

relation R2, union t with a random tuple in R2, and pushed the composite tuple above. 10

The goal of the pre-learning approach is not to generate correct query answers, but to walk

8If there is no join in the query, such as a selection-projection query, it is often trivial and fast to run
without the need of predicate optimization.

9This can be achieved by adding hints in the database, such as PostgreSQL.
10In our implementation, we simply choose the first tuple in R2 to be unioned with t.
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through the inner relations as much as possible in join operators early, such that we can

learn predicates from the scanned inner relations. Note that the output of the pre-learning

approach PreL is a set of learned predicates, instead of the query answers from the modified

nested loop join, and thus PreL is correct since the approach to learning predicates from join

conditions as used in Section 4.3 is correct.

We below use an example in Figure 4.8 to illustrate PreL. Consider the query plan tree in

Figure 4.8, where every join operator uses a nested loop join, and R1 is the driving (outer)

relation, R2, R3 are the inner relations. When the first tuple [2, 7] from R1 arrives at the

join operator ▷◁
′
R1.a=R2.a

. The inner relation R2 will be scanned one pass. Instead of finding

any matched tuples in the inner relation as a standard nested-loop-join does, we modify the

action to let the join operator pick a random tuple (e.g., [3, 4] in R2) from the inner relation

and push the composite tuple (e.g., [2, 7, 3, 4]) above. Similarly, when the composite tuple

arrives at ▷◁
′

R1.b=R3.b
, the inner relation R3 is scanned and the composite tuple [2, 7, 3, 4, 1, 5]

is sent above. The query execution terminates when the projection operator Π
′
R1.a

receives

the first tuple [2, 7, 3, 4, 1, 5]. During this process, R2 and R3 are scanned exactly one pass

and there exists only one composite tuple flowing during query execution.
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PreL is a one pass algorithm, and all the inner relations will be scanned only one time,

leading to efficient query execution. Note that the size of the inner relations is often smaller

than that of the driving relations since we force the optimizer to choose a nested loop join

plan. This observation often leads to fast execution of PreL in practice.

During the execution of PreL, we are able to learn a set of predicates P fast on their

corresponding join attributes from all the inner relations (as colored in the green box in

Figure 4.8). For each join condition, if it is an equi join, a set of range predicates can

be learned given the available values in the join attribute in the inner relation using the

predicate learning approaches described in Section 4.3. For a theta join, we can easily get

the maximum maxa or minimum value mina of the join attribute a in the inner relation

after the corresponding selection predicates are applied. For example, consider the maxa

and mina computed after σ2 as shown as the lowest green box in Figure 4.8. maxa and

mina are valid since they are computed based on the tuples in R2 satisfying the selection

predicates σ2. Based on the certain theta join condition, we could develop the corresponding

range predicates based on Table 4.1.

We further propose a hybrid approach by setting a time budget T for the pre-learning

approach to execute and will stop pre-learning to use all the predicates it has learned so far

within the time budget T .

4.7 Experimental Evaluation

We evaluate the ability of PLAQUE to accelerate query execution using two synthetic data

sets and one real data set. PLAQUE along with the techniques for learning predicates are

implemented in an Apache project VanillaDB [20, 112].
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4.7.1 Methodology

Data Sets

• TPC-H. We use TPC-H (SF=1) as our first data set generated using standard datagen [19]

which creates uniformly distributed data. The default TPC-H does not represent a practical

data distribution, which is often skewed. Therefore, we further use a modified datagen [2] to

create TPC-H datasets with different amounts of skew, i.e., Zipf factor as 1 and 2, respec-

tively.

• SmartBench. To evaluate the learned predicates on User-Defined-Functions (UDFs) bench-

mark where UDFs are used in queries, we choose SmartBench [54] which is derived from a

smart space sensor system and focuses on analytics of IoT data. Smartbench contains multi-

ple sensor tables, such as Bluetooth, WiFi, or cameras as well as a space table that connects

sensors to locations. In SmartBench, several UDFs are supported, such as location and oc-

cupancy computations.

• IMDB. We finally use a real data set IMDB [14], which contains files with a total size of

around 4GB.

Queries

In TPC-H we use query Q2, Q3, Q4 and Q5. 11 In addition to testing the query Qi to

test the effect of MIN and MAX optimizations, we also test PLAQUE for Qi with the

aggregate operation modified to MAX and MIN, denoted by Qi-max and Qi-min to evaluate

the predicates learned from MIN/MAX conditions. Furthermore, we construct two new

queries Q23 and Q24 to increase the complexity of the query workload. In the SmartBench

we use three queries, Q3, Q5, and Q10, where two UDFs are used in the queries, computing

11Minor query modifications or rewriting are made while preserving the query complexities and semantics
such that they can be supported by VanillaDB which does not support specific SQL features, such as nested
queries.
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Figure 4.9: Query Run Time on TPCH.

location of a person [79] and occupancy of a room [80]. In the IMDB data set, we manually

create four selection-projection-join-aggregate queries (i.e., Q1-Q4), and for each query Qi

we modify the aggregate condition to be MAX and MIN, and thus creating additional two

queries Qi-max and Qi-min for each Qi.

Compared Approaches

We compared the performance of the following six strategies. (1) VanillaDB: standard

query optimizer and executor implemented in VanillaDB [20, 112]. (2) Sia [120]: Sia learns

synthesized predicates given a SQL query before query execution. (3) PreL: the pre-learning

approach described in Section 4.6. (4) QuickStep (QS) [93]: QS builds bloom filters for

the build table in a hash join and use them to filter (5) PLAQUE. (6) PLAQUE +PreL:

the hybrid approach described in Section 4.6 that combines the predicates learned in PreL

and PLAQUE.

97



Q3 Q3-max Q3-min Q5 Q5-max Q5-min Q10 Q10-max Q10-min

SmartBench Queries (log10-scale)

10
1

10
2

10
3

10
4

10
5

R
u

n
n

in
g

 T
im

e
 (

M
ill

is
e

c
o

n
d

s
)

VanillaDB

Sia

PreL

QS

PLAQUE

PLAQUE+PreL

Figure 4.10: Query Run Time on SmartBench.

4.7.2 Experimental Results

Performance of Learned Predicates

We start with reporting the performance of our learned predicates on TPCH (Zipf is 0 using

the standard datagen [19]), SmartBench and IMDB data sets in Figure 4.9, Figure 4.10 and

Figure 4.11, respectively.

Performance on TPCH. In Figure 4.9, the learned predicates in queries except for MIN/-

MAX queries in PLAQUE are able to achieve an improvement over the VallinaDB from 2.3x

(Q2) to 3.5x (Q24), and these improvements become 5.3x (Q4-min) to 33.5x (Q23-min) for

MIN/MAX queries. This observation shows that the learned predicates could significantly

speed up query execution especially when the MIN/MAX is used as the aggregate condition,

the learned predicates are able to skip a large number of tuples to be processed, thus leading

to significant savings.

Performance on SmartBench. In Figure 4.10, we use log10 scale to plot the query

running time. The improvement of PLAQUE over the standard query executor, VallinaDB,

is up to 6.6x for non-MIN/MAX queries and 58x for MIN/MAX queries. It demonstrates

that, when queries contain expensive UDFs, the impact of filtering tuples as done by learned
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Figure 4.12: Improvement Ratio on Different Selectivities.

predicates is even more significant.

Performance on IMDB. In the IMDB data set in Figure 4.11, we made similar observa-

tions. The predicates learned in PLAQUE improve the standard query executor, VallinaDB,

by around 2x (Q1) to 3.7x (Q4) for join queries without MIN/MAX aggregate conditions,

and the improvement goes up from 2.2 (Q3-max) to 5.7x (Q4-min).

Comparison with Sia. Among 18 queries in the TPCH benchmark, Sia is only able to

generate new predicates for Q24, by leveraging the condition l shipdate < “1992-07-01” and

l shipdate > l commitdate, to create a new predicate l commitdate < “1992-07-01”. Sia fails

to learn new predicates for all queries in SmartBench and IMDB workloads. Sia works well

when queries contain additional predicates on join columns. PLAQUE works in a much wider
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spectrum of queries and achieves higher performance improvements. Sia is complementary

to PLAQUE and the predicates learned by Sia before query execution could be combined

with the one learned by PLAQUE during query run time.

Comparison with QS. QS focuses on the hash join and builds the bloom filter for the

hash table, which is used to filter tuples in the probe table. The filtering approach of QS is

included already in PLAQUE. Its counterpart is learning the membership predicate from a

hash join. However, PLAQUE expands the opportunities to learn predicates in several ways

based on a much larger repertoire of operators and supports both main memory and index-

based implementation of the predicate. The experimental results clearly demonstrate that

PLAQUE significantly outperforms QS by 6.3X, 10.4X, and 2.4X in TPCH, SmartBench

and IMDB, respectively.

Comparison with PreL. PreL by itself improves the performance by around 1.3X, 2.2X,

and 1.2X compared with the standard query execution without any optimization (i.e., Vanil-

laDB), in TPCH, SmartBench and IMDB data sets, respectively. However, our adaptive

approach PLAQUE outperforms PreL considerably by around 16.3X, 21.6X, and 2.36X in

TPCH, SmartBench, and IMDB, respectively. It demonstrates that PLAQUE can learn

more effective predicates than PreL which is only able to learn predicates from equi join and

theta conditions on the small relations within the time budget.

Comparison with PLAQUE +PreL. Interestingly, we observe a slight improvement

in PLAQUE when appending the predicates learned from PreL. In particular, the hybrid

approach PreL+PLAQUE outperforms PLAQUE by 1.12X, 1.01X, and 1.17X in TPCH,

SmartBench and IMDB data sets, respectively. This points to an interesting future direction

of work that explores a much more carefully designed pre-learning approach that can boost

the performance of PLAQUE even further.
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The Effect of Query Selectivity

Figure 4.12 examines the performance of PLAQUE over the standard query executor on

queries with different selectivities. We select five queries from TPCH, SmartBench (SB

for short), and IMDB data sets, i.e., TPCH-Q2, TPCH-Q4, SB-Q3, SB-Q10, and IMDB-

Q4, and report the results in Figure 4.12(a). We also select their corresponding MAX

queries in Figure 4.12(b). We vary the selectivity of a query to be 0.2, 0.4, 0.6, 0.8. A

query with a lower selectivity indicates it is more selective because a lower number of tuples

are in the results. We plot the improvement ratio under various selectivities of the query

workloads. The improvement ratio corresponds to the run time of VallinaDB (i.e., standard

query executor) divided by that of the PLAQUE, i.e., T ime(V allinaDB)
T ime(PLAQUE)

. For join queries without

MIN/MAX aggregate conditions, when queries are more selective (low selectivity value), the

improvement due to PLAQUE is larger. This is because for any equi join operator o, if one

of its inputs, such as the left side of o, oL, is highly selective, then PLAQUE would be able

to learn selective predicates from the tuples coming to o from its left side oL, and pass the

learned selective predicates along the query plan tree using the algorithm in Section 4.5,

leading to larger improvement.

For aggregate queries with MAX conditions in Figure 4.12(b), interestingly, we have made a

different observation. The improvement from the learned predicates is larger when the query

is less selective (higher selectivity value). This is because when the query is less selective, the

tuples will probably reach the aggregate operator at an earlier time and thus the predicates

can be learned earlier and updated to be more selective in the aggregate operator using

the predicate creation algorithm in Section 4.3. On the other hand, when the query is less

selective, the improvement brought by the predicates learned from join operators is smaller

as observed in Figure 4.12(a). It turns out the improvement due to the predicates from

MAX operator is more significant than the one learned from join operators, thus leading

to an overall performance improvement with the increase of selectivity. This observation
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Figure 4.13: Improvement Ratio on Different Data Distributions.

indicates that the predicates learned in MIN/MAX aggregate conditions will work better

for slow queries that are less selective, which demonstrates that such learned predicates are

even more suitable for long-running queries with significant overheads.

The Effect of Data Distributions

In this experiment, we explore the effect of data distributions on the query performance in

Figure 4.13. In particular, we use a modified datagen [2] to create TPC-H datasets with

different amounts of skew, i.e., Zipf factor as 1 and 2, respectively. The standard TPC-H [19]

comes with a Zipf as 0, which means that the data values have a uniform distribution in

each column. We report the improvement ratio of PLAQUE over the VallinDB, and discuss

the result for queries with and without MAX aggregate conditions in Figure 4.13.

For join queries without MIN/MAX aggregate conditions (left picture in Figure 4.13), the

improvement due to the learned predicates becomes larger on a more skewed data set with a

higher Zipf value. This is expected because using the algorithm in Section 4.3.5 to learn new

predicates, we are able to learn a more selective predicate from equi join conditions when

values are more skewed. We have similar observations for the MAX aggregate queries. The

improvement from the learned predicates slightly increases on a more skewed data set, which
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Figure 4.14: Improvement Ratio on Various k for Predicates Learned from Equi Join.

is primarily contributed by the predicates learned from equi join conditions, and it turns out

the predicates learned from MAX aggregate condition are less sensitive to the skewness of

the data set than the predicates learned from join conditions.

Parameter Selection in Join Queries

In Section 4.3.5, when we learn range predicates from equi join conditions, we use k to specify

the maximum number of range predicates we wish to learn from an equi join condition. In

this experiment, we explore the effect of k on the query performance of TPCH-Q2 and

TPCH-Q4, by varying k from 1 to 30, and report the improvement ratio in Figure 4.14.

When k is 1, both queries Q2 and Q4 have the same run time as the standard query executor

without improvement. In this case, one range predicate learned from the equi join condition

contains the maximum and minimum values on one side of the join input, which will not help

eliminate any tuples, and thus will not improve the query performance. When k increases,

the improvement ratio quickly increases and then flattens out when k reaches about 10

for both Q2 and Q4. When k is too large, such as 30, the improvement ratio is slightly

lower. This is because learning too many range predicates, which will although improve
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the selectivity of the overall learned predicates marginally, leads to additional complexity of

applying the learned predicates in the query processing. Empirically, we recommend k as 10

to be the ideal setting when we learn predicates from equi join conditions.

Experimental Summary.

We below summarize the main outcomes of the experiments in PLAQUE and what we

learned.

• PLAQUE provides the highest improvement in the MAX/MIN (aggregate/group-by)

queries by up to 33.5X in TPCH, 58X in SmartBench, and 5.7X in IMDB.

• PLAQUE also achieves considerable improvements in the queries involving equi-join

or theta-join conditions without MIN/MAX operations by 3.2X, 4.8X, and 2.9X in

TPCH, SmartBench, and IMDB datasets on average, respectively.

• For the queries with equi-join or theta-join conditions without MIN/MAX, lower se-

lectivity of the queries, larger improvement brought by PLAQUE, while for the queries

with MIN/MAX conditions, larger improvements are observed on less selective queries.

• PLAQUE tends to perform better in more skewed data sets when the query predicates

will become more selective due to the skewness of data.

• We recommend learning at most 10 range predicates when learning predicates from

equi-join conditions.

4.8 Conclusion

In this chapter, we studied the predicate inference problem at query run time. We proposed

a set of approaches to learn new predicates from aggregate, equal join, theta join, group
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by/having conditions, and further place the learned predicates wisely in the given query

plan tree to maximize their benefit of skipping rows early during query execution, leading to

possibly significant improvement. The learned filters exhibit monotonic properties, becoming

increasingly selective during query processing. we further introduced a pre-learning technique

for predicate inference before query optimization, which is synergistically combined with

the run time learning approach PLAQUE to enhance performance. Experiments on both

synthetic and real datasets demonstrated that our learned predicates can accelerate query

execution by up to 33x, and this improvement increased to up to 100x when User-Defined

Functions (UDFs) are utilized in queries.
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Chapter 5

LOCATER: Cleaning WiFi

Connectivity Datasets for Semantic

Localization

In the previous chapters, we developed ZIP and PLAQUE techniques to support the in-

teractive analysis at query time when computationally expensive operations are required

in the data processing pipeline. While these techniques are general and useful in several

domains where data-intensive computations are used, our particular interest is in emerging

smart space applications. Data management in smart spaces opens several new challenges,

and one of the most prominent challenges is to support interactive analytics on very large

volumes of data being captured at large velocities.

In smart space infrastructure, such as a smart building or smart campus, there are a variety

of tasks ranging from real-time control, such as occupancy-based heating/air-conditioning

control, to analytical tasks, such as evaluating building management policies. A key challenge

in all of these applications is the need to localize a person both outside and more importantly
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inside buildings.

In this chapter, we describe an indoor localization solution, entitled LOCATER, to localize

a person inside buildings based on WiFi connectivity data by using a series of data cleaning

technologies. We further build a real case study in Chapter 6 later to show how ZIP and

PLAQUE can benefit the real applications built using LOCATER in the UCI campus testbed.

5.1 Introduction

This chapter studies the challenge of cleaning connectivity data collected by WiFi infrastruc-

tures to support semantic localization inside buildings. By semantic localization, we refer to

the problem of associating a person’s location to a semantically meaningful spatial

extent such as a floor, region, or a room.

Semantic localization differs from and complements the well-studied problem of indoor po-

sitioning/localization [94, 40] that aims to determine the exact physical position of people

inside buildings (e.g., coordinate (x,y) within radius r, with z% certainty). If indoor position-

ing/physical localization could be solved accurately, it would be simple to exploit knowledge
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about the building’s floor plan and layout to determine the semantic location of the de-

vice. However, despite over two decades of work in the area [81, 40, 118], and significant

technological progress, accurate indoor positioning remains an open problem [118]. Among

others, the reasons for this include technology limitations such as costs associated with the

required hardware/software [84, 117, 113, 99], the intrusive nature and inconvenience of these

solutions for users [68, 40, 94] who require specialized hardware/software, and algorithmic

limitations to deal with dynamic situations such as occlusions, signal attenuation, interfer-

ence [89, 110, 77]. As a result, applications that depend upon accurate positioning and those

that could benefit from semantic localization have faced challenges in effectively utilizing

indoor localization technologies.

While indoor localization methods have targeted applications such as indoor navigation and

augmented reality that require highly accurate positioning, semantic localization suffices for

a broad class of smart space applications such as determining occupancy of rooms, thermal

control based on occupancy [21], determining density of people in a space and areas/regions

of high traffic in buildings —applications that have recently gained significance for COVID-

19 prevention and monitoring in workplaces [109, 55], or locating individuals inside large

buildings [64, 89]. Despite the utility of semantic localization, to the best of our knowledge,

semantic localization has never before been studied as a problem in itself.1

This chapter proposes a location cleaning system, entitled LOCATER to address the problem

of semantic localization. LOCATER can be viewed as a system, the input to which is a log

of coarse/inaccurate/incomplete physical locations of people inside the building that could

be the result of any indoor positioning/localization strategy or even the raw logs collected by

WiFi APs. The output of LOCATER is a clean version of such a log with the semantically

1Prior work on indoor localization [65, 66] have evaluated their positioning techniques by measuring the
accuracy at which devices can be located physically inside/outside a room. Such work has neither formulated
nor addressed the semantic localization challenge explicitly. Instead, naive strategies such as degree of spatial
overlap/random selection of an overlapping room out of the several choices are used for their experimental
study.
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Figure 5.2: Example.

meaningful geographical location of the device in the building – viz., a floor, a region, or, at

the fine granularity, a room. Current solutions determine the physical location of a device

and use simple heuristics (e.g., the largest overlap with the predicted region) for room-level

localization. In contrast, LOCATER postulates associating a device to a semantic location

as a data cleaning challenge and exploits the inherent semantics in the sensor data capturing

the building usage to make accurate assessments of device locations. LOCATER, we believe,

is the first such system to study semantic localization as a problem in its own right.

While LOCATER could be used alongside any indoor positioning/localization solutions, we

built LOCATER using a localization scheme that uses connectivity events between devices

and the WiFi hardware (viz., access points –APs–) that constitute the WiFi infrastructure of

any organization. Such connectivity events, generated in the network when devices connect to

an AP, can be collected in real-time using a widely used SNMP (Simple Network Management

Protocol), a more recent NETCONF [42], a network management protocol, or from network

Syslog [44] containing AP events. Connectivity events consist of observations in the form

of ⟨mac address, time stamp, wap⟩ which correspond to the MAC of the WiFi-enabled

connected device, the timestamp when the connection occurred, and the WiFi AP (wap)

to which the device is connected. Since APs are at fixed locations, connectivity events can
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be used to locate a device to be in the region covered by the AP. In Figure 5.2(a) an event

e1 can lead to the observation that the owner of the device with mac address 7bfh... was

located in the region covered by wap3, which includes rooms 2059, 2061, 2065, 2066, 2068,

2069, 2072, 2074, 2076, and 2099, in Figure 5.1(a)) at the time stamp 13:04:35.

Using WiFi infrastructure for coarse location, as we do in LOCATER, offers several distinct

benefits. First, since it is ubiquitous in modern buildings, using the infrastructure for se-

mantic localization does not incur any additional hardware costs either to users or to the

built infrastructure owner. Such would be the case if we were to retrofit buildings with

technologies such as RFID, ultra-wideband (UWB), Bluetooth, camera, etc. [81]. Besides

being (almost) zero cost, another artifact of the ubiquity of WiFi networks is that such a

solution has wide applicability to all types of buildings - airports, residences, office spaces,

university campuses, government buildings, etc. Another key advantage is that localization

using WiFi connectivity can be performed passively without requiring users to either install

new applications on their smartphones or actively participate in the localization process.

Challenges in exploiting WiFi connectivity data. While WiFi connectivity datasets

offer several benefits, they offer coarse localization – e.g., in a typical office building, an AP

may cover a relatively large region consisting of dozens of rooms, and as such, connectivity

information does not suffice to build applications that need semantic localization. Using

WiFi connectivity data for semantic localization raises the following technical challenges:

• Missing value detection and repair. Devices might get disconnected from the network

even when the users carrying them are still within the space. Depending on the specific de-

vice, connectivity events might occur only sporadically and at different periodicities, making

prediction more complex. These lead to a missing values challenge. For example, in Fig-

ure 5.2(b) we have the raw connectivity data for device 7fbh at time 13:04:35 and 13:18:11.

Location information between these two consecutive time stamps is missing.
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• Location disambiguation. APs cover large regions within a building that might involve

multiple rooms and hence simply knowing which AP a device is connected to may not offer a

room-level localization. For example, in Figure 5.2, the device 3ndb connects to wap2, which

covers rooms: 2004, 2057, 2059,..., 2068. These values are dirty for room-level localization.

Such a challenge can be viewed as a location disambiguation challenge.

•Scalability. The volume of WiFi data can be very large. For instance, on the campus

of University of California, Irvine, with over 200 buildings and 2,000 plus APs, we generate

several million WiFi connectivity tuples in one day on average. Thus, data cleaning technique

needs to be able to scale to large data sets.

To address the above challenges, LOCATER uses an iterative classification method that

leverages temporal features in the WiFi connectivity data to repair the missing values. Then,

spatial and temporal relationships between entities are used in a probabilistic model to

disambiguate the possible rooms in which the device may be. LOCATER cleans the WiFi

connectivity data in a dynamic setting where we clean objects on demand in the context

of queries. In addition, LOCATER caches cleaning results of past queries to speed up the

system. Specifically, we make the following contributions:

• We propose a novel approach to semantic indoor localization by formalizing the chal-

lenge as a combination of missing value cleaning and disambiguation problems in Sec-

tion 5.2.

• We propose an iterative classification method to resolve the missing value problem in

Section 5.3 and a novel probability-based approach to disambiguate room locations

without using labeled data in Section 5.4.

• We design an efficient caching technique to enable LOCATER to answer queries in

near real-time in Section 5.5.
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• We validate our approach in a real-world testbed and deployment. Experimental results

show that LOCATER achieves high accuracy and good scalability on both real and

simulated data sets in Section 5.6.

5.2 Semantic Localization Problem

The problem of semantic localization consists of associating each device with its location at

any instance of time at a given level of spatial granularity.

5.2.1 Space Model

LOCATER models space at three levels of spatial granularity2:

Building: The coarsest building granularity B takes the values B = B1, ..Bn, bout, where

Bi = 1...n represents the set of buildings and bout represents the fact that the device is not

in any of the buildings. We call a device inside a building as online device and outside as

offline device.

Region: Each building Bi contains a set of regions G = {gj : j ∈ [1...|G|]}3. We consider

a region gj to be the area covered by the network connectivity of a specific WiFi AP [104]

represented with dotted lines in Figure 5.2(a). Let WAP = {wapj : j ∈ [1...|WAP|]} be the

set of APs within the building. Hence, |G| = |WAP| and each wapj is related to one and

only one gj. Interchangeably, we denote by Cov(wapj) as the region covered by wapj. In

Figure 5.2(a), there exist four APs wap1, ..., wap4 and thus there exist four regions such that

G = {g1, g2, g3, g4}. Regions can often overlap.

2The technique can be easily adapted to other spatial models conforming to the nature of the underlying
space.

3We drop the parameter from G(Bi) and simply refer to it as G since we are dealing with inside a given
building.
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Table 5.1: Model variables and shorthand notation.

Variable(s) Definition/Description

B = {B1, .., Bn, bout}; gj ∈ G; rj ∈ R buildings; regions; rooms

R(gj) set of rooms in region gj

wapj ∈WAP; di ∈ D WiFi APs; devices

δ(di); gapts,te(di) time interval validity of di; gap as-
sociated to di in [ts, te]

li ∈ L semantic location relation

Room: A building contains a set of rooms R = {rj : [1...|R|]} where rj represents the ID of

a room within the building – e.g., r1 → 2065. Furthermore, a region gi contains a subset of

R. Let R(gi) = {rj : [1...|R(gi)|]} be the set of rooms covered by region gi. Since regions

can overlap, a specific room can be a part of different regions if its extent intersects with

multiple regions. For instance, in Figure 5.2(a) room 2059 belongs to both regions g2 and

g3.

We consider that rooms in a building have metadata associated. In particular, we classify

rooms into two types: (i) public: shared facilities such as meeting rooms, lounges, kitchens,

food courts, etc., that are accessible to multiple users denoted by Rpb ⊆ R; and (ii) private:

rooms typically restricted to or owned by certain users such as a person’s office, denoted by

Rpr ⊆ R such that R = Rpb ∪Rpr.

5.2.2 WiFi Connectivity Data

Let D = {dj : j ∈ [1...|D|]} be the set of devices and TS = {tj : j ∈ [1...|TS|]} the set of time

stamps.4 Let E = {ei : i ∈ [1...|E|]} be the WiFi connectivity events table with attributes

{eid, dev, time, w} corresponding to the event id, device id (dev ∈ D), the time stamp when

it occurred (time ∈ TS), and the WiFi AP that generated the event (w ∈ WAP ). (As

shown in Figure 5.2(b)) For each tuple ei ∈ E, we will refer to each attribute (e.g., dev) as

4The granularity of tj can be set on various scenarios.
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Figure 5.3: Connectivity events of device di and their validity.

ei.dev.
5

Connectivity events occur stochastically even when devices are stationary and/or the signal

strength is stable. Events are typically generated when (i) a device connects to a WiFi AP

for the first time, (ii) the OS of the device decides to probe available WiFi APs around, or

(iii) when the device changes its status. Hence, connectivity logs do not contain an event for

every instance of time a device is connected to the WiFi AP or located in space. Because

of the sporadic nature of connectivity events, we associate to each event a validity period

denoted by δ. The value of δ depends on the actual device di and is denoted by δ(di). In

Figure 5.3 we show some sample connectivity events of device di. Let the Valid Interval for an

event ei be V Ii = {V Ii.st, V Ii.et}, where V Ii.st (V Ii.et) is the start (end) time stamp of this

interval. Considering the connectivity events of device di, the valid interval for event ei can be

considered in three ways. 1) If the subsequent (previous) event ej of the same device happens

after (before) ei.time + δ(ei.dev) (ei.time − δ(ei.dev)), then V Ii.et = ei.time + δ(ei.dev)

(V Ii.st = ei.time − δ(ei.dev)); (e.g., event e0 in Figure 5.3) 2) Otherwise if the subsequent

(previous) event ej happens close to ei (|ei.time − ej.time| < δ(ei.dev)), V Ii.et = ej.time

(V Ii.st = ei.time). (e.g., e1 is valid in (t1 − δ(di), t2), and e2 is valid in (t2, t2 + δ(di)) in

Figure 5.3). While we assume that an event is valid for δ period, there can be portions of

time in which no connectivity event is valid in the log for a specific device. We refer to such

time periods as gaps. Let gapts,te(di) be the gap of device di that starts at ts and ends at te

time stamp. In Figure 5.3, gapt0,t1(di) represents a gap of di whose time interval is [t0, t1].

5We use the device’s unique MAC address to represent it.
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5.2.3 Semantic Location Table

The semantic localization challenge of determining the location of device di at any time tj

at a given spatial granularity can be viewed as equivalent to creating a Semantic Location

Table, L = {li : i ∈ [1...|L|]}. The table L has the attributes {lid, dev, loc, st, et}, where the

device dev is in the location loc from time st to et. The table L is such that for any device

dev and any time t, there exists a tuple in L such that st ≤ t ≤ et.

We can form the table L from the event table E as follows: for each event ei ∈ E we create a

corresponding tuple lj ∈ L, where lj.dev = ei.dev, lj.loc = Cov(ei.w), and its start and end

times correspond to the validity interval of the event ei, i.e., lj.st = V Ii.st and lj.et = V Ii.et.

We further insert a tuple lj corresponding to each gap in the event table E. For each gap

gapts,te(di), we generate a tuple lj ∈ L such that devj = di, stj = ts, etj = te, locj =

NULL. Furthermore, let Lc = {li : loci ̸= NULL} be the set of tuples whose location is not

NULL, and Ld = L \ Lc be the set of tuples whose location is NULL. We further define

L(dj) = {li : devi = dj} as the set of tuples of device dj and LT be the set of tuples of device

di happening in time period T .

In Figure 5.2(c), we transform the raw WiFi connectivity data to a semantic location table.

In this example, we assume δ = 1 minute for all devices. e1 in Figure 5.2(b) corresponds to

l1 in Figure 5.2(c), where timestamp is expanded to a valid interval, and the gap between e1

and e5 in Figure 5.2(b) corresponds to the tuple l2 in Figure 5.2(c).

5.2.4 Data Cleaning Challenges

The table L, which captures the semantic location of individuals, contains two data cleaning

challenges corresponding to the coarse and fine-grained localization.
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Coarse-Grained Localization: Given a tuple li with li.loc = NULL, consists of imputing

the missing location value to a coarse-level location by replacing it with either li.loc = bout

or li.loc = gj for some region gj in building Bk.

Fine-Grained Localization: Given a tuple li with li.loc = gj, consists of determining the

room rk ∈ R(gj) the device li.dev is located in and updating li.loc = rk.

We can choose to clean the entire relation L or clean it on demand at query time. In practice,

applications do not require knowing the fine-grained location of all the users at all times.

Instead, they pose point queries, denoted by Query = (di, tq), requesting the location of

device di at time tq. Hence, we will focus on cleaning the location of the tuple of interest at

query time.6 Thus, given a query (di, tq), LOCATER first determines the tuple in L for the

device di that covers the time tq. If the location specified in the tuple is NULL, the coarse-

level localization algorithm is executed to determine first the region in which the device is

expected to be. If fine-grained location is required, the fine-grained localization algorithm is

executed to disambiguate amongst the rooms in the region.

5.3 Coarse-Grained Localization

LOCATER uses an iterative classification algorithm combined with bootstrapping techniques

to fill in the missing location of a tuple lm with lm.loc = NULL for the device lm.dev. In the

following, we will refer to such a tuple as a dirty tuple. For simplicity, we use devi, sti, eti

and loci to denote li.dev, li.st, li.et, li.loc, respectively.

The algorithm takes as input, LT (devm), a set of historical tuples of the device devm in the

time period T consisting of N past days before the query time, where N is a parameter set

6Notice that we could use query-time cleaning to clean the entire relation L by iteratively cleaning each
tuple, though if the goal is to clean the entire table better/more efficient approaches would be feasible. Such
an approach, however, differs from our focus on real-time queries over collected data. Similar query-time
approaches have been considered recently in the context of online data cleaning [49, 24].

116



experimentally (see Section 5.6). For a tuple li, let sti.time be the time part of the start

timestamp, sti.date be the date part of the start timestamp, and sti.day be the day of the

week. 7 We define the following features for each tuple li ∈ LT (devi):

• sti.time, eti.time: the start and end time of tuple lj.

• duration δ(lj): the duration of the tuple (i.e., eti.time− sti.time).

• sti.day (eti.day): the day of the week in which tuple lj occurred (ended).

• loci−1, loci+1: the associated region at the start and end time of the tuple.

• connection density ω: the average number of logged connectivity events for the device

devi during the same time period of li for each day in T .

The iterative classification method trains two logistic regression classifiers based on such

vectors to label gaps as: 1) Inside/outside and 2) Within a specific region, if inside.

Bootstrapping. The bootstrapping process labels a dirty tuple as inside or outside the

building by using heuristics that take into consideration the duration of the dirty tuple

(short duration inside and long duration outside). We set two thresholds, τl and τh, such

that a tuple is labeled as bin if δ(lj) ≤ τl and as bout if δ(lj) ≥ τh. If the duration of a tuple is

between τl and τh, then we cannot label it as either inside/outside using the above heuristic.

Such dirty tuples are marked as unlabeled. We partition the set of dirty tuples of device di,

Ld
T (devm), into two subsets – Slabeled, Sunlabeled. For tuples in Slabeled that are classified as

inside of the building, to further label them with a region at which the device is located, the

heuristic takes into account the start and end region of the gap as follows:

• If locj−1 = locj+1, then the assigned label is locj−1. In particular, if the regions at the

start and end of the tuple are the same, the device is considered to be in the region for

the entire duration.

• Otherwise, we assign as label a region gk which corresponds to the most visited region

7We assume that gaps do not span multiple days.
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Algorithm 5: Iterative classification algorithm.

Input: Slabeled,Sunlabeled
1 while Sunlabeled is not empty do
2 classifier ← TrainClassifier(Slabeled);
3 max confidence← −1, candidate tuple← NULL;
4 for tuple ∈ Sunlabeled do
5 prediction array, label← Predict(classifier, tuple);
6 confidence← variance(prediction array);
7 if confidence > max confidence then
8 max confidence← confidence;
9 candidate tuple← tuple;

10 Sunlabeled ← Sunlabeled − candidate tuple ;
11 Slabeled ← Slabeled + (candidate tuple, label) ;

12 return classifier;

of devj in connectivity events that overlap with the dirty tuple whose connection time is

between stj.time and etj.time.

Iterative Classification. We use iterative classification to label the remaining (unlabeled)

dirty tuples Sunlabeled, as described in Algorithm 5. For each device di, we learn logistic re-

gression classifiers on Slabeled by using the function TrainClassifier(Slabeled) in Algorithm 5.

The learned classifiers are then used to classify the unlabeled dirty tuples associated with

the device.8

Algorithm 5 is firstly executed at the building level to learn a model to classify if an unlabeled

dirty tuple is inside/outside the building. To this end, let L be the set of possible training

labels - i.e., inside/outside the building. The method Predict(classifier, gap), returns an

array of numbers from 0 to 1, where each number represents the probability of the dirty tuple

being assigned to a label in L (all numbers in the array sum up to 1), and the label with the

highest probability in the array. In the array returned by Predict, a larger variance means

that the probability of assigning a certain label to this dirty tuple is higher than other dirty

tuples. Thus, we use the variance of the array as the confidence value of each prediction. In

8We assume that connectivity events exist for the device in the historical data considered, as is the case
with our data set. If data for the device does not exist, e.g., if a person enters the building for the first time,
then, we can label such devices based on aggregated location, e.g., the most common label for other devices.
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each outer iteration of the loop (Line 1-11), as a first step, a logistic regression classifier is

trained on Slabeled. Then, it is applied to all tuples in Sunlabeled. For each iteration, the dirty

tuple with the highest prediction confidence is removed from Sunlabeled and added to Slabeled

along with its predicted label. This algorithm terminates when Sunlabeled is empty and the

classifier trained in the last round will be returned. The same process is followed to learn a

model at the region level for dirty tuples labeled as inside the building. In this case, when

executing the algorithm L contains the set regions in the building (i.e., G). The output is a

classifier that labels a dirty tuple with the region where the device is located.

Given the two trained classifiers, for a dirty tuple lm, we first use the inside/outside classifier

to classify lm as inside or outside of the building. If the tuple lm is classified as outside, then

locm = bout. Otherwise, we further classify the tuple lm using the region classifier to obtain

its associated region. Then, the device will be located in such region and LOCATER will

perform the room-level fine-grained localization as we will explain in the following section.

5.4 Fine-Grained Localization

Given a query Q = (di, tq) and the associated tuple lm whose location has been cleaned by

the coarse-level localization algorithm, this step determines the specific room rj ∈ R(lm.loc)

where di is located at time tq. As shown in Figure 5.2(c), tuples l1, l3, are logged for two

devices d1 and d2 with MAC addresses 7fbh and 3ndb, respectively. Assume that we aim

to identify the room in which device d1 was located at 2019-08-22 13:04. Given that d1 was

connected to wap3 at that time, the device should have been located in one of the rooms in

that region g3 – i.e., R(g3) = {2059, 2061, 2065, 2069, 2099}. These are called candidate rooms

of d1, and we omit the remaining candidate rooms 2066, 2068, 2072, and 2074 for simplicity.

The main goal of the fine-grained location approach is to identify in which candidate room

d1 was located.
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5.4.1 Affinity Model

LOCATER’s location prediction is based on the concept of affinity which models relation-

ships between devices and rooms.

• Room affinity : α(di, rj, tq) denotes the affinity between a device di and a room rj (i.e.,

the chance of di being located in rj at time tq), given the region gk in which di is located

at time tq.

• Group affinity : α(D, rj, tq) represents the affinity of a set of devices D to be in a room rj

at time tq (i.e., the chance of all devices in D being located in rj at tq), given that device

di ∈ D is located in region gk at time tq.

Note that the concept of group affinity generalizes that of room affinity. While room affinity

is a device’s conditional probability of being in a specific room, given the region it is located

in, group affinity of a set of devices represents the probability of the set of devices being

co-located in a specific room rj at tq. We differentiate between these since the methods we

use to learn these affinities are different, as will be discussed in the following section. We

first illustrate how affinities affect localization prediction using the example in Figure 5.4,

which shows a hypergraph representing room and group affinities at time tq. For instance,

an edge between d1 and the room 2065 shows the affinity α(d1, 2065, tq) = 0.3. Likewise,

the hyperedge ⟨d1, d2, 2065⟩ with the label 0.12 represents the group affinity, represented as

α({d1, d2}, 2065, tq) = 0.12. If at time tq device d2 is not online (i.e., there are no events

associated with d2 at tq in that region), we can predict that d1 is in room 2061 since d1’s

affinity to 2061 is the highest. On the other hand, if d2 is online at tq, the chance that d1

is in room 2065 increases due to the group affinity α({d1, d2}, 2065, tq) = 0.12. The location

prediction for a device di, thus, must account for both the room and group affinity.

Room Probability. Let Pr(di, rj, tq) be the probability that a device di is in room rj at

time tq. Given a query Q = (di, tq) and its associated tuple lm, the goal of the fine-grained
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Figure 5.4: Graph view in fine-grained location cleaning.

location prediction algorithm is to find the room rj ∈ R(lm.loc) of di at time tq, such that

rj has the maximum Pr(di, rj, tq),∀rj ∈ rj ∈ R(lm.loc). We first describe how affinities are

estimated.

5.4.2 Affinity Learning

Learning Room Affinity. One of the challenges in estimating room affinity is the poten-

tial lack of historical room-level location data for devices - collecting such data would be

prohibitively expensive, especially when we consider large spaces with tens of thousands of

people/devices. Our approach, thus, does not assume the availability of room-level local-

ization data which could have been used to train specific models.9 Instead, we compute it

based on the available background knowledge and space metadata.

To compute α(di, rj, tq), we associate for each device di a set of preferred rooms Rpf (di) –

e.g., the personal room of di’s owner based on space metadata, or the most frequent rooms

di’s owner enters based on background knowledge. Rpf (di) is an empty set if di’s owner

does not have any preferred rooms. If rj is one the preferred rooms of di, i.e., rj ∈ Rpf (di),

9Extending our approach to handle when such data is obtainable for at least a subset of devices is
interesting and part of our future work.
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we assign to rj the highest weight denoted by wpf . Similarly, if rj is a public room, i.e.,

rj ∈ (R(gx) ∩Rpr)⧹Rpf
di
, we assign to rj the second highest weight denoted by wpb. Finally,

if rj is a private room, i.e., rj ∈ (R(gx) ∩ Rpr)⧹Rpf (di), we assign to rj the lowest weight

denoted by wpr. In general, these weights are assigned based on the following conditions:

(1) wpf > wpb > wpr and (2) wpf + wpb + wpr = 1. The influence of different combinations

of wpf , wpb, wpr is evaluated in Section 5.6.

We illustrate the assignment of these weights by using the graph of our running example. As

already pointed out, d1 connects to wap3 of region g3, where R(g3) = {2059, 2061, 2065, 2069,

2099}. In addition, d1’s office, room 2061, is the only preferred room (Rpf (d1) = {2061})

and 2065 is a public room, such as a meeting room. Hence, the remaining rooms in Rpf (d1)

are other personal offices associated with other devices. Based on Figure 5.4, a possible

assignment of wpf , wpb, wpr to the corresponding rooms is as follows: α(d1, 2061, tq) =
wpf

1
=

0.5, α(d1, 2065, tq) =
wpb

1
= 0.3, and any room in R(g3) \ (Rpf (d1) ∪Rpb) – i.e., {2059, 2069,

2099} shares the same room affinity, which is wpr

3
= 0.066.

Note that since the room affinity is not data-dependent, we can pre-compute and store it

to speed up the computation. Furthermore, preferred rooms could be time-dependent. For

instance, the user is expected to be in the break room during lunch, while being in the office

during other times. Such a time-dependent model would potentially result in more accurate

room-level localization if such metadata is available.

Learning Group Affinity. Before describing how we compute group affinity, we first define

the concept of device affinity, denoted by α(D), which intuitively captures the probability

of devices/users being part of a group and be co-located which serves as a basis to compute

group affinity. Consider all the tuples in L. Let L(di) = {lj : devj = di} be the set of

tuples corresponding to device di ∈ D, and L(D) be the tuples of devices in D. Consider

the set of semantic location tuples such that for each tuple la ∈ L(di), belonging to that set,

and for every other device dj ∈ D \ di, there exists a tuple lb ∈ L(dj) where devices la.dev
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and lb.dev are in the same region at approximately the same time, i.e., TRa ∪ TRb ̸= ∅

and la.loc = lb.loc (not NULL). Intuitively, such a tuple set, referred to as the intersecting

tuple set, represents the times when all the devices in D are in the same area since they

are connected to the same WiFi AP. We compute device affinity α(D) as a fraction of such

intersecting tuples among all tuples in L(D).

Given device affinity α(D), we can now compute the group affinity among devices D in

room rj at time tq, i.e., α(D, rj, tq). Let Ris be the set of intersecting rooms of connected

regions for each device in D at time tq: Ris =
⋂
R(li.loc), li ∈ Ltq(D). If rj is not one of the

intersecting rooms, rj /∈ Ris, then α(D, rj, tq) = 0. Otherwise, to compute α(D, rj, tq), we

first determine conditional probability of a device di ∈ D to be in rj given that rj ∈ Ris at

time tq.

Let @(di, rj, tq) represent the fact that device di is in room rj at time tq, and likewise

@(di, Ris, tq) represent the fact that di is in one of the rooms inRis at tq. P (@(di, rj, tq)|@(di, Ris, tq))

=
P (@(di,rj ,tq))

P (@(di,Ris,tq))
, where P (@(di, Ris, tq)) =

∑
rk∈Ris

P (@(di, rk, tq)). We now compute α(D, rj, tq),

where rj ∈ Ris as follows:

α(D, rj, tq) = α(D)
∏
di∈D

P (@(di, rj, tq)|@(di, Ris, tq)) (5.1)

Intuitively, the group affinity captures the probability of the set of devices being in a given

room based on the room level affinity of individual devices, given that the individuals carrying

the devices are co-located, which is captured using the device affinity.

We explain the notation using the example in Figure 5.4(b). Let us assume that the device

affinity between d1 and d2 is .4, i.e., α({d1, d2}) = .4. The set Ris = {2065, 2069, 2099}. We

compute α({d1, d2}, 2065, tq) as P (@(d1, 2065, tq)|@(d1, Ris, tq)) =
.3

.3+.06+.06
= .69. Similarly,
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P (@(d2, 2065, tq)|@(d2, Ris, tq)) = .4
.4+.01+.5

= .44. Finally, α({d1, d2}, 2065, tq) = .4 ∗ .69 ∗

.44 = .12.

5.4.3 Localization Algorithm

Given a query Q = (di, tq), its associated tuple lm, and candidate rooms R(lm.loc), we

compute the room probability Pr(di, rj, tq) for each rj ∈ R(lm.loc) and select the room with

the highest probability as an answer to Q. We first define the concept of the set of neighbor

devices of di, denoted by Dn(di). A device dk ∈ Dn(di) is a neighbor of di if: (i) dk is

online at time tq (inside the building); (ii) α({di, dk}, rj, tq) > 0 for each rj ∈ R(lm.loc);

and (iii) R(lm.loc) ∩ R(gy) ̸= ∅, where R(gy) is the region in which dk is located. In

Figure 5.4(b), d2 is a neighbor of d1. Essentially, neighbors of a device di could influence the

location prediction of di since they will contribute a non-zero group affinity for di.

Since we use the concept of neighbor always in the context of a device di, we will simplify

the notation and refer to Dn(di) as Dn. Since processing every device in Dn can be computa-

tionally expensive, the localization algorithm considers the neighbors iteratively until there

is enough confidence that the unprocessed devices will not change the current answer. Let

D̄n ⊆ Dn be the set of devices that the algorithm has processed. We denote as P (rj|D̄n) the

probability of rj being the answer of Q given the devices and their locations in D̄n
10 that

have been processed by the algorithm so far. Using Bayes’s rule:

P (rj|D̄n) =
P (D̄n|rj)P (rj)

P (D̄n|rj)P (rj) + P (D̄n|¬rj)P (¬rj)
(5.2)

where we estimate P (rj) using the room affinity α(di, rj, tq).

10We could express the above, as explained in Section 5.4.2, as P (@(di, rj , tq)|D̄n) but we simplify the
notation for the brevity of the following formulas. rj being the answer of query Q means di is in rj at time
tq, and we write rj here for simplicity.
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Figure 5.5: Graph view in fine-grained location cleaning.

We first compute P (rj|D̄n) under a simplified assumption that the probability of di to be

in room rj given any two neighbors in Dn is conditionally independent. Then, we consider

that multiple neighbor devices may together influence the probability of di to be in room rj.

Independence Assumption. Since we have assumed conditional independence: P (D̄n|rj) =∏
dk∈D̄n

P (@(dk, rj, tq)|rj) where @(dk, rj, tq) represents that dk is located in rj at time tq.

By definition, P (@(dk, rj, tq)|rj) =
P (@(dk,rj ,tq),rj)

P (rj)
. The numerator represents the group

affinity, i.e., P (@(dk, rj, tq), rj) = α({dk, di}, rj, tq). Similarly, P (@(dk, rj, tq),¬rj) = 1 −

α({dk, di}, rj, tq).

P (rj|D̄n) = 1/

(
1 +

∏
dk∈D̄n

(1− α({dk, di}, rj, tq))∏
dk∈D̄n

α({dk, di}, rj, tq)

)
(5.3)

To guarantee that our algorithm determines the answer of Q by processing the minimum

possible number of devices in D̄n, we compute the expected/max/min probability of rj being

the answer based on neighbor devices in Dn. We consider the processed devices D̄n as well

as unprocessed devices Dn \ D̄n. Thus, we consider all the possible room locations (given by

coarse-localization) for unprocessed devices. We denote the set of all possibilities for locations

of these devices (i.e., the set of possible worlds [5]) by W(Dn \ D̄n). For each possible world

W ∈ W(Dn \ D̄n), let P (W ) be the probability of the world W and P (rj|D̄n,W ) be the

probability of rj being the answer of Q given the observations of processed devices D̄n and

the possible world W . We now formally define the expected/max/min probability of rj given
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all the possible worlds.

Definition 1. Given a query Q = (di, tq), a region R(gx), a set of neighbor devices Dn, a

set of processed devices D̄n ⊆ Dn, and the candidate room rj ∈ R(gx) of di, the expected

probability of rj being the answer of Q, denoted by expP (rj|D̄n), is defined as follows:

expP (rj|D̄n) =
∑

W∈W(Dn\D̄n)

P (W )P (rj|D̄n,W ) (5.4)

The maximum probability of rj, denoted by maxP (rj|D̄n), is:

maxP (rj|D̄n) = max
W∈W(Dn\D̄n)

P (rj|D̄n,W ) (5.5)

The minimum probability can be defined similarly.

The algorithm terminates the iteration only if there exists a room ri ∈ R(gx), for any other

room rj ∈ R(gx), ri ̸= rj, such that minP (ri|D̄n) > maxP (rj|D̄n). However, it is often

difficult to satisfy such strict condition in practice. Thus, we relax this condition using the

following two conditions:

1. minP (ri|D̄n) > expP (rj|D̄n)(or P (rj|D̄n))

2. expP (ri|D̄n)(or P (ri|D̄n)) > maxP (rj|D̄n)

In Section 5.6 we show that these loosen conditions enable the algorithm to terminate effi-

ciently without sacrificing the quality of the results.

A key question is, how do we compute these probabilities efficiently? To compute the maxi-

mum probability of di being in rj, we can assume that all unprocessed devices are in room

rj as described in the theorem below.
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Algorithm 6: Fine-grained Localization

Input: Q = (di, tq), Dn, L, lm
1 Stop flag ← false;
2 D̄n ← ∅;
3 for dk ∈ Dn do
4 D̄n ← dk;
5 for rj ∈ R(lm.loc) do
6 Compute P (rj|D̄n);

7 if Dn independent then
8 Find top-2 probability P (ra|D̄n), P (rb|D̄n);
9 Compute minP (ra|D̄n),maxP (ra|D̄n), expP (ra|D̄n);

10 Compute minP (rb|D̄n),maxP (rb|D̄n), expP (rb|D̄n);
11 if minP (ra|D̄n) ≥ expP (rb|D̄n) or expP (ra|D̄n) ≥ maxP (rb|D̄n) then
12 Stop flag ← true;

13 if Dn dependent then
14 if ∀D̄nl ⊆ D̄n, α({D̄nl, di}, rj, tq) = 0 then
15 Stop flag ← true;

16 if Stop flag == true then
17 break;

18 return ra;

Theorem 1. Given a set of already processed devices D̄n, a candidate room rj of di ,and

the possible world W where all devices Dn \ D̄n are in room rj, then, maxP (rj|D̄n) =

Pr(rj|D̄n,W ).

Proof of Theorem 1. Consider another possible world W0 where some unseen devices

are not in rj. We denote by W0(d) the room where d is located in W0. We can transform W

to W0 step by step, wherein each step for a device that is not in rj in W0, we change its room

location from rj to W0(d). Assuming the transformation steps are W, Wn, ..., W1, W0, we

can prove easily: Pr(rj|D̄n,W ) > Pr(rj|D̄n,Wn) > ... > Pr(rj|D̄n,W1) > Pr(rj|D̄n,W0).

Likewise, to compute the minimum probability, we can simply assume that none of the

unprocessed devices are in room rj. The following theorem states that we can compute the

minimum by placing all the unprocessed devices in the room (other than rj) in which di has

the highest chance of being at time tq.
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Theorem 2. Given a set of already processed devices D̄n, a candidate room rj ∈ R(gx),

rmax = argmaxri∈R(gx)\rjP (ri|D̄n), and a possible world W where all devices in Dn \ D̄n are

in room rmax, then, minP (rj|D̄n) = P (rj|D̄n,W ).

Proof of Theorem 2. Consider another possible world W0 where some unseen devices

are not in room rmax and d is located in room W0(d). We can transform W to W0 step by

step, wherein each step for a device which is located in room W0(d) ̸= rmax in W0, we change

its value from rmax to W0(d). Assuming the transformation steps are W, Wn, ..., W1, W0, we

can prove easily: Pr(rj|D̄n,W ) < Pr(rj|D̄n,Wn) < ... < Pr(rj|D̄n,W1) < Pr(rj|D̄n,W0).

For the expected probability of rj being the answer of Q, we prove that it equals to P (rj|D̄n).

Theorem 3. Given a set of independent devices Dn, the set of already processed devices D̄n,

and the candidate room rj, then,

expP (rj|D̄n) = P (rj|D̄n).

Proof of Theorem 3. We compute each possible world’s probability based on the prob-

abilities of the rooms being the answer, which are computed based on observations on D̄n.
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expPr(rj|D̄n) =
∑

W∈W(Dn\D̄n)

Pr(W )Pr(rj|D̄n,W ) (5.6)

=
∑

W∈W(Dn\D̄n)

Pr(W |D̄n)
Pr(rj, D̄n,W )

Pr(D̄n,W )

=
∑

W∈W(Dn\D̄n)

Pr(W |D̄n)
Pr(D̄n)Pr(rj,W |D̄n)

Pr(D̄n)Pr(W |D̄n)

=
∑

W∈W(Dn\D̄n)

Pr(W |D̄n)
Pr(D̄n)Pr(rj|D̄n)Pr(W |D̄n)

Pr(D̄n)Pr(W |D̄n)

=
∑

W∈W(Dn\D̄n)

Pr(W |D̄n)Pr(rj|D̄n)

= Pr(rj|D̄n)

Relaxing the Independence Assumption. We next relax the conditional independence

assumption we have made so far. In this case, we cannot treat each neighbor device in-

dependently. Instead, we divide D̄n into several clusters where every neighbor device in a

cluster has non-zero group affinity with the rest of the devices. Let D̄nl ⊆ D̄n be a cluster

where ∀dk, d
′

k ∈ D̄nl, α({dk, d
′

k}, rj, tq) > 0. In addition, group affinity of devices of any

pair of devices in different clusters equals zero, i.e., ∀dk ∈ D̄nl, d
′

k ∈ D̄nl′ , where l ̸= l
′
,

α({dk, d
′

k}, rj, tq) = 0. In Figure 5.5(b), D̄n1 = {d2, d3, d4} and D̄n2 = {d5, d6}. Naturally,

we have D̄n =
⋃

l D̄nl. In this case, we assume that each cluster affects the location prediction

of di independently.

Thus, probability P (D̄n|rj) =
∏

l P (D̄nl|rj). For each cluster, we compute its conditional

probability P (D̄nl|rj) = P (D̄nl,rj)

P (rj)
, where P (D̄nl, rj) = α({D̄nl, di}, rj, tq). The reason is that

P (D̄nl, rj) is the probability that all devices in D̄nl and di are in room rj, which equals

α({D̄nl, di}, rj, tq) by definition. Thus,
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P (rj|D̄n) = 1/(1 +
1−

∏
l α({D̄nl, di}, rj, tq)
1− α(di, rj)

) (5.7)

the algorithm terminates when the group affinity for any cluster turns zero.

Finally, we describe the complete fine-grained location cleaning algorithm in Algorithm 6.

Given Q = (di, tq), we observe only the neighbor devices at time tq (Line 4-5). Next,

we compute the probability of P (rj|D̄n) for every candidate room in R(lm.loc) (Line 7-8).

If devices are independent, we select two rooms with top-2 probability and use loosen stop

condition to check if the algorithm converges (Line 10-14). Otherwise, we check if all clusters

have zero group affinity (Line 15-17). Finally, we output the room when the stop condition

is satisfied (Line 13-16).

5.5 System Implementation

We describe the prototype of LOCATER built based on the previous coarse and fine-grained

localization algorithms. Also, we describe a caching engine to scale LOCATER to large

connectivity data sets.

Architecture of LOCATER. Figure 5.6 shows the high-level architecture of the LO-

CATER prototype. LOCATER ingests a real-time stream of WiFi connectivity events (as

discussed in Section 5.2). Additionally, LOCATER takes as input metadata about the space

which includes the set of WiFi APs deployed in the building, the set of rooms in the building,

including whether each room is a public or private space, the coverage of WiFi APs in terms

of a list of rooms covered by each AP, and the temporal validity of connectivity events per

type of device in the building.
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Figure 5.6: Architecture of LOCATER.

LOCATER supports queries Q = (di, tq) that request the location of device di at time tq,

where tq could be the current time (e.g., for real-time tracking/personalized services) or a past

timestamp (e.g., for historical analysis). Given Q, LOCATER’s cleaning engine determines if

tq falls in a gap. If so, it executes its coarse-grained localization (Section 5.3). If at tq, di was

inside the building, the cleaning engine performs the fine-grained localization (Section 5.4).

Given a query with associated time tq, LOCATER uses a subset of historical data, such as

X days prior to tq, to learn both room and group affinities. We explore the impact of the

amount of historical data used on the accuracy of the model learned in Section 5.6.

Scaling LOCATER. The cleaning engine computes room and group affinities which require

time-consuming processing of historic data. Algorithm 6 iteratively performs such compu-

tations for each neighbor device of the queried device. In deployments with large WiFi

infrastructure and a number of users, this might involve processing large sets of connectivity

events which can be a challenge if the applications expect real-time answers. LOCATER

caches the computations performed to answer queries and leverages this information to an-

swer subsequent queries. Such cached information constitutes what we will refer to as a
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Figure 5.7: Generation of global affinity graph (d) from local affinity graphs (a,b,c).

global affinity graph Gg = (Vg, Eg), where nodes correspond to devices and edges correspond

to pairwise device affinities. Given a query Q = (di, tq), LOCATER uses the global affinity

graph Gg to determine the appropriate order in which neighbor devices to di have to be

processed. Intuitively, devices with a higher device affinity with respect to di have a higher

impact on the computation of the fine-grained location of di. For example, a device that is

usually collocated with di will provide more information about di’s location than a device

that just appeared in the dataset. We empirically show in our experiments that processing

neighbor devices in decreasing order of device affinity instead of a random order makes the

cleaning algorithm converge much faster.

(1) Building the local affinity graph. The affinities computed in Section 5.4 can be viewed

as a graph, which we refer to as local affinity graph Gl = (V l, E l), where V l = D̄n ∪ di. In

this time-dependent local affinity graph, each device in D̄n, as well as the queried device di,

are nodes and the edges represent their affinity. Let elab ∈ E l be an edge between nodes da

and db and w(elab, tq) be its weight measuring the probability that da and db are in the same

room at time tq. The value of w(elab, tq) is computed based on Algorithm 6 as w(elab, tq) =∑
rj∈R(gx) α({da,db},rj ,tq)

|R(gx)| .
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(2) Building the global affinity graph. After generating a local affinity graph for di at time

tq, this information is used to update the global affinity graph. We will illustrate the process

using Figure 5.7. Given the current global affinity graph Gg = (Vg, Eg) and a local affinity

graph Gl = (V l, E l), the global affinity graph Gg = (V̂g, Êg) is updated by setting V̂g = Vg∪V l

and Êg = Eg ∪E l. Note that, as the affinity graphs are time-dependent, in the global affinity

graph we associate each edge included from an affinity graph with its timestamp tq along

with its weight. Hence, in the global affinity graph, the edge in between two nodes is a

vector that stores the weight-timestamp pairs associated with different local affinity graphs

vgab = {(w(elab), t1), ..., (w(elab), tn)}. When merging the edge set, we merge the corresponding

vectors – i.e., vgab = vgab ∪ w(elab, tq) for every egab ∈ Eg. For instance, in the global affinity

graph in Figure 5.7(d), which has been constructed from three different local affinity graphs

in Figure 5.7(a),(b),(c), the edge that connects nodes d1 and d2 has the weight-timestamp

values extracted from each local affinity graph (.4, t1), (.3, t2), (.5, t3). To control the size

of the global affinity graph, we could delete past affinities stored in the graph (w(elab), ti),

τ− ti > Ts, where τ is the current time and Ts is a threshold defined by users, e.g., 3 months.

(3) Using the global affinity graph. When a new query Q = (di, tq) is posed, our goal is to

identify the neighbor devices that share high affinities with di and use them to compute the

location of di using Algorithm 6. Given the set Dn of devices that are neighbors to di at

time tq, we compute the affinity between di and each device dk ∈ Dn, denoted by w(egik, tq),

using the global affinity graph. As each edge in the global affinity graph contains a vector of

affinities with respect to time, we compute the affinity by assigning a higher value to those

instances that are closer to the query time tq as follows: w(e
g
ik, tq) =

∑j=n
j=1 ljw(e

l
ik, tj), where

lj follows a normal distribution, µ = tq and σ2 = 1 that is normalized. Finally, we create

a new set of neighbor devices N g(di) and include each device dk ∈ Dn in descending order

of the computed affinity w(egik, tq). This new set replaces Dn in Algorithm 6. Thus, the

algorithm processes devices in descending order of the affinity in the global affinity graph.
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5.6 Experimental Evaluation

We implemented a prototype of LOCATER and performed experiments to test its perfor-

mance in terms of the quality of the cleaned data, efficiency, and scalability. The experiments

were executed in an 8 GB, 2 GHz Quad-Core Intel Core i7 machine with a real dataset as well

as a synthetic one. We refer to the implementation of LOCATER’s fine-grained algorithms

based on the independent and dependent assumptions as I-FINE and D-FINE. Correspond-

ingly, we will refer to the system using those algorithms as I-LOCATER and D-LOCATER,

respectively.

5.6.1 Experimental Setup

Dataset. We use connectivity data captured by the TIPPERS system [86] in Donald Bren

Hall (DBH) building at University of California, Irvine, with 64 WiFi APs, 300+ rooms

including classrooms, offices, conference rooms, etc., and average daily occupancy of about

3,000. On average, each WiFi AP covers 11 rooms. The dataset, DBH-WIFI, contains 10

months of data, from Sep. 3rd, 2018 to July 8th, comprising 38, 670, 714 connectivity events

for 66, 717 different devices.

Ground truth. We collect fine-grained locations of 28 distinct individuals as the ground

truth. We asked 9 participants to log their daily activity within the building for a week.

Such activity includes the rooms where they were located and how much time they spent in

them. The participants filled in comprehensive and precise logs of their activity amounting

to 422 hours in total. We also selected three cameras in the building that cover different

types of spaces, i.e., faculty offices area, student offices area, and lounge space. We manually

reviewed the camera footage to identify individuals in it. The area covered is in the portion

of the DBH building, so we identified 26 individuals and 7 of them were also participants in
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the daily activity logging. We requested the identified individuals for their MAC address.

If a person p with MAC address m was observed to enter a room r at time t1 and left the

room at time t2, we created an entry in our ground truth locating m in room r during the

interval (t1, t2).

Queries. We generated a set of 10, 028 queries, denoted by Q, related to individuals in the

ground truth. There are a total of 3, 129 queries for participants that logged their activities

and 6, 899 queries for individuals detected in the camera images. The number of queries per

individual is approximately the same, as far as differences in the labeled elements per user

allow it.

Baselines. The traditional indoor localization algorithms are either based on active localiza-

tion or passive localization using information such as signal strength maps. Hence, we defined

two baselines used in practice for the coarse and fine-grained localization based on connec-

tivity logs and background information. The baselines are defined as follows: Baseline1 and

Baseline2 use Coarse-Baseline for coarse localization and for fine-grained localization they

use Fine-Baseline1 and Fine-Baseline2, respectively. In Coarse-Baseline, the device is con-

sidered outside if the duration of a gap is at least one hour, otherwise, the device is inside

and the predicted region is the same as the last known region. Fine-Baseline1 selects the

predicted room randomly from the set of candidates in the region whereas Fine-Baseline2

selects the room associated with the user based on metadata, such as his/her office.

Quality metric. LOCATER can be viewed as a multi-class classifier whose classes cor-

respond to all the rooms and a label for outside the building. We use the commonly

used accuracy metric [105], defined next, as the measure of quality.11 Let Q be the set

of queries, Qout,Qregion,Qroom be the subset of queries for which LOCATER returns cor-

11Accuracy, as defined in the chapter, is exactly the same as other micro-metrics such as micro-precision,
recall, and F-measure [101]. Micro-level metrics are, often, more reflective of the overall quality of the
multi-level classifier, such as LOCATER, when the query dataset used for testing is biased towards some
classes.
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Figure 5.8: Thresholds tuning.
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Figure 5.10: Impact of historical data used on accuracy.

rectly the device’s location as being outside, in a specific region, and a specific room,

respectively. Accuracy of the coarse-grained algorithm can then be measured as: Ac =

(|Qout| + |Qregion|)/|Q|. Likewise, for fine-grained and overall algorithms, accuracy corre-

sponds to Af = |Qroom|/|Qregion|, and Ao = (|Qroom|+ |Qout|)/|Q|, respectively.

5.6.2 Evaluation

Accuracy on DBH-WIFI Dataset

We first test the performance of LOCATER, in terms of accuracy, for the DBH-WIFI dataset.

As LOCATER exploits the notion of recurring patterns of movement/usage of the space, we

analyze the performance w.r.t. the level of predictability of different user profiles. We consider
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the fact that some people spend most of their time in the building in the same room such

as their offices as a sign of predictable behavior. We can consider this as their “preferred

room”. We group individuals in the dataset into 4 classes based on the percentage of time

they spend in their preferred room: [40, 55), [55, 70), [70, 85) and [85, 100), where [40, 55)

means that the user spent 40-55 percent of the time in that room. In other words, no user

in the ground truth data spent less than 40% of his/her time in a specific room.

Impact of thresholds in coarse localization. The coarse-level localization algorithm

depends upon two thresholds: τl and τh. We use k-fold cross-validation with k = 10 to tune

them. We vary τl’s value from 10 to 30 minutes and τh’s value from 60 to 180 minutes. We fix

τh = 180 when running experiments for τl and fix τl = 20 when running experiments for τh.

From Figure 5.8 we observe that, with the increasing of τl, the accuracy increases first and

then slightly decreases after it peaks at τl = 20. For τh, when it increases, accuracy gradually

increases and levels off when τh is beyond 170. We also test the parameters computed by

a confidence interval, which are τl = 16.4 and τh = 177.3. The accuracy achieved by

this parameter setting is 84.7%, which is close to the best accuracy (85.2%) achieved by

parameters tuned based on cross-validation.

Iterative classification for coarse localization We test the robustness of the iterative

classification method. We vary the quality of the initial decisions of the heuristic strategy

without iterations by setting the parameters (τl, τh) to (20, 160), (16, 177), (40, 80), and

(60, 60). For each query, we terminate the coarse localization algorithm at different stages

as a percentage of the maximum iterations the algorithm would perform, and report Ac in

Figure 5.9. We observe that for a high quality initial decision, the iterative classification

improves the accuracy significantly with an increasing number of iterations. Also, for those

relatively bad initial decisions with the initial accuracy 58% and 65%, the improvement

achieved by the iterative classification is small but it always increases. We also show that

for the parameters decided by the Gaussian confidence interval method i.e., (16, 177), which
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Figure 5.11: Caching accuracy.

does not rely on the ground truth data, the iterative classification method works very well.

Impact of weights of room affinity. We examine the impact of weights used in computing

room affinity, wpf , wpb, wpr. We report the fine accuracy of the four weight combinations

satisfying the rules defined in that section: C1 = {0.7, 0.2, 0.1}, C2 = {0.6, 0.3, 0.1}, C3 =

{0.5, 0.3, 0.2}, and C4 = {0.5, 0.4, 0.1}. For C1, C2, C3, C4, Af of I-FINE is 81.8, 83.4, 82.3,

82.4, and Af of D-FINE is 86.1, 87.5, 86.6 and 86.4, respectively. We observe that all the

combinations for both I-FINE and D-FINE obtain a similar accuracy with C2 achieving a

slightly higher accuracy. Hence, the algorithm is not too sensitive to the weight distributions

in this test. Also, D-FINE outperforms I-FINE by 4.6% on average.

Impact of historical data. We use historical data to train the models in the coarse al-

gorithm and to learn the affinities in the fine algorithm. We explored how the amount of

historical data used affects the performance of LOCATER. We report the coarse, fine, and

overall accuracy for the [40,55)% and [55,70)% predictability groups, in Figure 5.10(a), Fig-

ure 5.10(b), and Figure 5.10(c), respectively. The graphs plot the accuracy of the algorithm

with increasing amounts of historical data, from no data at all up to 9 weeks of data. The

accuracy of the coarse-grained algorithm increases with increasing amount of historical data
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and it reaches a plateau when 8 weeks of data are used. The reason is that the iterative

classification algorithm used to train the model becomes more generalized the more data

is used for the training. The performance of the fine-grained algorithm is poor when no

historical data is used since this effectively means selecting the room just based on its type.

However, when just one week of historical data is used the performance almost doubles. The

accuracy keeps increasing with an increasing number of weeks of data though the plateau is

reached at 3 weeks. The results show that the kind of affinities computed by the algorithm

are temporally localized. The overall performance of the system follows a similar pattern.

With no data, mistakes made by the fine-grained localization algorithm penalize the overall

performance. With increasing amounts of historical data, the performance increases due to

the coarse-grained algorithm labeling gaps more correctly. In all the graphs, the performance

of the overall system and its algorithms increases with the increasing level of predictability

of users.

Robustness of LOCATER with respect to room affinity. LOCATER’s approach to

disambiguating locations exploits the prior probability of individuals being in specific rooms

(room affinity). In this experiment, we explore the robustness of LOCATER when we only

know the prior for a smaller percentage of people. We randomly select users for whom we

compute and associate a room affinity to each candidate room based on historical data and

room metadata. For the rest, we consider a uniform room affinity for all the candidate

rooms. We repeat the experiment 5 times and report the average fine accuracy: Af . We set

the percentage of users with refined room affinities to 0%, 25%, 50%, 75%, and 100%, and

the corresponding Af is 6.2, 57.1, 71.3, 81.1, 87.1. We observe that the accuracy is poor

when equally distributed affinity is considered for all users. When a refined room affinity

is computed for a small portion of users (25%), the accuracy increases significantly to 57.1.

Increasing the number of users with refined room affinity makes the accuracy converge to

87.1. Thus, we expect LOCATER to work very well in scenarios where the pattern of building

usage and priors for a significant portion of the occupants is predictable.
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Figure 5.12: Scalability testing

Impact of caching. We examine how the fine-grained algorithm’s caching technique

(see Section 5.4) affects the accuracy of the system. We compute the accuracy of both I-

LOCATER and D-LOCATER compared to their counterparts using caching I-LOCATER+C

and D-LOCATER+C. Figure 5.11 plots the overall accuracy of the system averaged for all

the tested users. We observe that adding caching incurs a reduction of the accuracy from

5%-10%, which does not significantly affect the performance. This means that the device

processing order generated by the caching technique maintains a good accuracy while de-

creasing the cleaning time (see Section 5.6.2).

Probability distribution of results. We show the probability distribution computed

by LOCATER for each of the rooms in the set of candidate rooms for a given query. In

particular, we plot the highest probability value associated with any room (Prh), the dif-

ference between the highest and second highest probability (∆Pr), and the summation of

the remaining probabilities (
∑

r). We report the statistics over all the queries in Table 5.2.

We observe a long tail distribution for the set of different rooms output by LOCATER. In

particular, there are 69% queries whose highest probability is in [.4, .6), 43% queries whose

difference of the highest and second highest probability is [.2, .3) and 51% queries where the

sum of top-2 probabilities is greater than .6.
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Table 5.2: Probability distribution of rooms.

Prh [0, .2) [.2, .4) [0.4,.6) [.6, .8) [.8, 1)

Percent of queries 0 19 69 12 0

∆Pr [0, .1) [.1, .2) [.2,.3) [.3, .4) [.4, .5)

Percent of queries 4 17 43 20 16∑
r [0, .2) [.2,.4) [.4, .6) [.6, .8) [.8, 1)

Percent of queries 32 51 15 2 0

Table 5.3: Accuracy for different predictability groups.

Ac|Af |Ao [40, 55) [55, 70) [70, 85) [85, 100) Q
Baseline1 56|10|24 63|8.0|25 67|10|26 73|12|28 64|10|26
Baseline2 62|45|39 67|63|50 69|75|57 76|93|72 68|67|53

I-LOCATER 76|72|61 83|78|70 87|84|77 93|87|84 85|83|75
D-LOCATER 76|77|63 83|82|72 87|87|79 93|92|88 85|87|79

Comparison with baselines. We compare the accuracy of LOCATER vs. baselines for

different predictability groups, and the average of accuracy for all people as Q in Table 5.3,

where each cell shows the rounded-up values for Ac, Af , and Ao. We observe that both

I-LOCATER and D-LOCATER significantly outperform Baseline1 regardless of the pre-

dictability level of people. This is due to the criteria to select the room in which the user is

located when performing fine-grained localization. Deciding this at random works sometimes

in situations where the AP covers a small set of large rooms but incurs errors in situations

where an AP covers a large set of rooms. For example, in our dataset up to 11 rooms are

covered by the same AP. Baseline2 uses a strategy where this decision is made based on

selecting the space where the user spends most of his/her time if that space is in the re-

gion where the user has been localized. This strategy only works well with very predictable

people. Hence, LOCATER outperforms Baseline2 in every situation except for the high-

est predictable group where Baseline2 obtains a slightly better accuracy. The accuracy of

D-LOCATER is consistently higher than I-LOCATER. Both of them perform significantly

better than the baselines except for the situation highlighted before.

Macro results. We report macro precision, recall, and F-1 measure for Baseline1, Base-

line2, I-LOCATER, and D-LOCATER, respectively. Macro precision (recall) is defined as
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Table 5.4: Macro results of LOCATER for different methods.

Precision Recall F-1
Baseline1 21.8 33.5 26.4
Baseline2 58.7 46.2 51.7

I-LOCATER 78.2 73.7 76.7
D-LOCATER 81.3 76.4 78.8

the average of precision (recall) of all classes. As shown in Table 5.4, LOCATER achieved

significantly better precision and recall than baselines and the performance of D-LOCATER

is slightly better than I-LOCATER.

Efficiency and Scalability

We first examine the efficiency of LOCATER on the DBH-WIFI dataset. We report the

average time per query when the system uses or does not the stopping conditions described in

Section 5.4. With the stop condition, LOCATER takes 563 milliseconds while it takes 2,103

milliseconds without it. Without stop conditions, I-LOCATER has to process all neighbor

devices, whereas with the stop conditions the early stop brings a considerable improvement

in the execution time.

We conduct scalability experiments both on real and synthetic data. We randomly select

a subspace of a building by controlling its size using as parameters the number of WiFi

APs, rooms, and devices. For the real dataset, DBH-WIFI, we extract four datasets, Real1,

..., Real4. The number of WiFi APs for these four datasets are 10, 30, 50, 64, and the

number of rooms is 46, 152, 253, and 303, and the number of devices is 41,343, 60,885,

63,343, 64,717, respectively. To test the scalability of LOCATER on various scenarios, we

generated four synthetic datasets simulating the following environments, which we list in

order of increasing predictability: airport, mall, university, and office. For each of them,

we used a real blueprint, Santa Ana’s airport for the first scenario, and created types of

people, such as TSA staff, passengers, etc., and events they attend such as security checks,
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and boarding flights, based on our observations. We report the running time of LOCATER

on the Mall scenario. In particular, we generated four synthetic datasets, Mall1, ..., Mall4.

We plot the average time cost per query on the DBH-WIFI and the Mall data sets in

Figure 5.12. The main observations from the results on both datasets are: 1) The caching

strategy decreases the computation time of D-LOCATER significantly, and D-LOCATER

performs slightly better than I-LOCATER; 2) With the caching technique LOCATER has

great scalability when the size of space increases to large scale to support a near-real-time

query response, in particular, around 1 second for D-LOCATER and half a second for I-

LOCATER.

Experimental Summary.

We below summarize the main outcomes of the experiments in PLAQUE and what we

learned.

• The accuracy of LOCATER to predict a coarse-level (region) and fine-level (room)

location is 85% and 87% on average in a real DBH-WiFi data set when using 3 weeks

of historical data.

• LOCATER performs better for those more predictable groups with an accuracy over

90% on average, while LOCATER performs less accurately for very unpredictable users

with mostly random trajectories.

• LOCATER is able to predicate a coarse-level (region) and fine-level (room) location

within 73 milliseconds and 563 milliseconds on average.

• LOCATER predicts the locations of the users based on their historical trajectories as

well as the space metadata without the installation of the new hardware or software.

LOCATER is mostly suitable for location-based applications that need more aggre-

gated information derived from the locations of the individuals, such as occupancy, or
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the semantic locations instead of pin-point physical locations.

5.7 Conclusion

In this chapter, we propose LOCATER which cleans existing WiFi connectivity datasets to

perform semantic localization of individuals. The key benefit of LOCATER is that it: 1)

Leverages existing WiFi infrastructure without requiring the deployment of any additional

hardware, such as monitors typically used in passive localization; 2) Does not require explicit

cooperation of people, like active indoor localization approaches. Instead, LOCATER lever-

ages historical connectivity data to resolve coarse and fine locations of devices by cleaning

connectivity data. Our experiments on both real and synthetic data show the effective-

ness and scalability of LOCATER. Optimizations made LOCATER achieve near real-time

response.

LOCATER’s usage of WiFi events, even though it does not capture any new data other than

what WiFi networks already capture, still raises privacy concerns since such data is used for

a purpose other than providing networking. Privacy concerns that arise and mechanisms to

mitigate them, are outside the scope of this work and are discussed in [36, 46, 92]. For de-

ployments of LOCATER, we advocate performing data collection based on informed consent

allowing people to opt-out of location services if they choose to.
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Chapter 6

Case Study

6.1 Introduction

In this chapter, we describe a case study based on the smart space to highlight the contribu-

tions of all three technical parts of our work in this thesis, ZIP, PLAQUE, and LOCATER.

Recall that in the previous chapters, we explored two techniques ZIP and PLAQUE to

optimize query processing for data-intensive computations. In particular, ZIP explores a lazy

approach to impute minimal missing data to answer a given query, and PLAQUE identifies a

set of opportunities to learn new predicates at query runtime to accelerate query execution.

In Chapter 5, we further introduced an indoor localization technology, LOCATER, to find

the indoor location of an individual at any given time instance based on data cleaning

technologies using WiFi connectivity data. Although LOCATER provides several unique

benefits, e.g., LOCATER is passive, free, and accurate, using LOCATER to predict indoor

location is not cheap, and it takes around 0.4 seconds on average to impute one missing

location.
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macAddress timeStamp WiFiAP
9867... 2019-04-25 15:03:02 3142-clwa-2099
9867... 2019-04-25 15:07:13 3142-clwa-2059
9867... 2019-04-25 15:09:22 3142-clwa-2059

Table 6.1: Raw WiFi Connectivity Data.

In this case study, first, we describe two applications built using LOCATER technology,

occupancy computation and, contact tracing. Both applications result in SQL queries as we

will show in Section 6.4 and Section 6.3. Next, we show how ZIP and PLAQUE make both

contact tracing and occupancy applications execute at interactive rates in Section 6.5. We

start with specifying the setup of the case study on the campus of University of California,

Irvine (UCI).

6.2 Setup

The first data set we use in this case study is the real WiFi connectivity events data (see

Chapter 5 for the detailed description), which is collected by OIT (Office of Information

Technology) at the University of California, Irvine. We store the WiFi connectivity data in

the TIPPERS database system [86].

WiFi connectivity data, as shown in Table 6.1, consists of the following three key fields, i.e.,

the mac address of a device that uniquely identifies a device, the timestamp of connection,

and the identifier of a WiFi Access Point (WiFiAP). In the first tuple in Table 6.1, a device

with a mac address starting with 9867 connects to WiFiAP 3142-clwa-2099 at the time stamp

2019-04-05 15:03:02. The mac address of a hand-held device, such as a mobile phone, serves

as a surrogate for the owner of the device.

Besides the raw WiFi connectivity data, we also create a User table as shown in Table 6.2

and a Space table as shown in Table 6.3. The User table stores the user profiles, such as

name, the mac address of the device they registered in TIPPERS, and the type of user such
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Name macAddress type
Mike 9867... faculty
Robert 3b26... graduate
John 7145... faculty

Table 6.2: User.

spaceID spaceName spaceType area
23 3142-clwa-2099 region 60
26 3142-clwa-2059 region 60
113 2065 room 25
116 2099 room 35
201 Donald Bren Hall Building 450

Table 6.3: Space.

macAddress timeStamp regionLocation roomLocation
9867... 2019-04-26 15:03:02 23 NULL
9867... 2019-04-26 15:07:13 26 NULL
9867... 2019-04-26 15:09:22 26 NULL

Table 6.4: Semantic WiFi Connectivity Data.

as graduate or faculty. The Space table stores the metadata of the spaces with different

granularities. For instance, in the first tuple in Table 6.3, a location with spaceID 23 is a

region whose name is 3142-clwa-2099 and has a physical area of 60 m2.

With the Space table, we transform the raw WiFi connectivity data received from OIT into

a semantic WiFi connectivity table as shown in Table 6.4. Each connectivity log in the

semantic WiFi connectivity table has a region location (i.e., regionLocation) and a room

location (i.e., roomLocation), where the region location is the area/location covered by

the corresponding WiFiAP in the raw connectivity table, and initially, the room locations

for all connectivity events are missing represented as NULL values in the semantic WiFi

connectivity table. Note that the region location and room location correspond to the

spaceIDs of the corresponding locations stored in the Space table. For instance, the region

location in the first tuple in the semantic WiFi connectivity table is 23 corresponding to the

region 3142-clwa-2099, which is the WiFiAP covering this region location.

The last data set we use in the case study is the Presence table (see Chapter 5 for a detailed

description), as shown in Table 6.5, which contains the region and room locations of people

during different time intervals. For instance, in the first tuple in the Presence table in

Table 6.5, a device with a mac address starting with 9867 is in the region covered by WiFiAP
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macAddress startTime endTime regionLocation roomLocation
9867... 2019-04-26 15:02:02 2019-04-26 15:04:02 23 NULL
9867... 2019-04-26 15:04:02 2019-04-26 15:06:13 NULL NULL
9867... 2019-04-26 15:06:13 2019-04-26 15:08:13 26 NULL
9867... 2019-04-26 15:08:13 2019-04-26 15:08:22 NULL NULL
9867... 2019-04-26 15:08:22 2019-04-26 15:10:22 26 NULL

Table 6.5: Presence.

3142-clwa-2099 with a spaceID as 23 in the Space table from 2019-04-05 15:02:02 to 2019-

04-05 15:04:02, but its room location is missing.

Chapter 5 describes how to construct the Presence table from the semantic WiFi connectivity

data in detail. We briefly summarize the construction of the Presence table below to keep this

chapter self-contained. First, for each connectivity event in the semantic WiFi connectivity

table at timestamp t, the Presence table creates a new tuple storing the information that

the same device is in the region covered by the corresponding WiFiAP one minute before

and after the connection time stamp t. For instance, the first, third, and fifth tuples in

the Presence table in Table 6.5 are transformed from the first three tuples in the WiFi

connectivity table, respectively. For the same device, the gap between two consecutive

tuples in the Presence table will correspond to a new tuple whose region and room location

are missing. For example, the second and the fourth tuples in the Presence table are the

tuples representing such gaps.

We will show later in building contact tracing and occupancy applications, we need to write

SQL queries on the Presence table, semantic WiFi connectivity table, User table, and Space

table to realize the key functionalities in both applications. In the SQL queries, LOCATER

is used as a User-Defined-Function (UDF) to impute any missing location if required.

We formally specify the LOCATER UDF below. Let LOCATER(loc,mac,t) be the LOCATER

UDF, which takes as input a location loc, the mac address of a device mac as well as a times-

tamp t. If the location loc is not missing, then LOCATER(loc,mac,t) simply returns loc as

the predicted location. Otherwise, LOCATER(loc,mac,t) will call LOCATER technology de-
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scribed in Chapter 5 to predict the location of the device with mac addressmac at timestamp

t.

6.3 Occupancy

Occupancy, i.e., the number of people in a certain location at a given time, is essential for

many applications, such as building energy control [90] and space planning [98]. For example,

Agarwal, et al. [22] observed that the heating, ventilating, and air-conditioning (HVAC)

energy consumption was reduced between 10% to 15% based on the occupancy detection

in offices. Leephakpreeda, et al. [90] proposed an occupancy-based lighting control, and

showed that the energy consumption of the application can be reduced between 35% to 75%.

Additionally, occupancy is also a key mitigation strategy for COVID-19 [80] as users could

use occupancy-based applications to be aware of the people’s density inside buildings to

reduce the chance of exposure.

We build the occupancy application by leveraging the LOCATER technology described in

Chapter 5. LOCATER is able to predict a semantic location, such as floor/region/room, of

an individual at a given time instance. However, knowing the location of each individual is

not enough to generate an accurate occupancy as there are several challenges in estimating

the occupancy based on WiFi connectivity data. First of all, one person often has multiple

devices, such as a phone, laptop, and iPad, so simply counting the number of appearances of

devices in the WiFi connectivity data would lead to over-counting of the actual occupancy.

Second, not all connectivity logs are generated by people, and could instead be generated by

static devices, such as a printer, or computers in a lab/office. Finally, many passer-by devices

that connected to some WiFi AP but left the corresponding region immediately should not

be counted in the occupancy of the region of interest. Detecting passer-by devices from WiFi

connectivity data is also an important factor to ensure an accurate occupancy estimation.
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SELECT DISTINCT COUNT(WiFi.mac)
FROM WiFi
WHERE WiFi.timeStamp > st AND WiFi.timeStamp < et
AND LOCATER(WiFi.regionLocation,WiFi.mac,WiFi.timeStamp) = loc

Figure 6.1: Occupancy Query

We describe the logic of the basic occupancy application in Section 6.3.1. We improve

the approach described in Section 6.3.1 to develop a more accurate model of occupancy in

Section 6.3.2. Finally, we show a use case scenario for occupancy application in Section 6.3.3.

6.3.1 Basic Occupancy Application Logic

The occupancy application takes the semantic WiFi connectivity events as the input as

shown in Table 6.4, wherein each WiFi connectivity event, a device with mac address maci

is associated with a region location and room location at time ti.

To ask for the occupancy in a location in the given time range inside a building, one can

issue a point query Q = (st, et, loc), where st, et represent the start and end time stamps,

and loc corresponds to the location of interest, such as region or room. The output of the

occupancy application will be an occupancy count, i.e., number of people, in location loc in

the given time interval (st, et).

In order to determine the occupancy of a location loc in the time interval (st, et), the occu-

pancy application generates the occupancy query in Figure 6.1 in the semantic WiFi connec-

tivity table (WiFi table for short) as shown in Table 6.4.

In the occupancy query, if the given location loc is room, the LOCATER UDF would be

LOCATER(WiFi.roomLocation,WiFi.mac,WiFi.timeStamp).

The occupancy application allows more complex queries to be asked. For instance, if we wish

to know the count of people of a given type, such as faculty or graduate, we can do so by
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augmenting the above SQL query with additional predicates, such as User.type = ’graduate’.

In general, the occupancy application allows the predicates on any of the fields listed in the

User Table 6.2 or Space Table 6.3.

6.3.2 Improvements

We note that the answer to the occupancy SQL query in Figure 6.1 can be inaccurate when

comparing it with the ground truth. First, the connectivity logs could be generated from

a person who passes by the location specified in the occupancy query, without entering the

location. Such a person should not be included in the occupancy counts. For example, a

person who passes by a building B and is outside of the building should not be counted as the

occupant of B. We develop an algorithm to detect and eliminate passer-by devices. Second,

a user may carry more than one device which connects to the same WiFi AP, which results

in over-counting of occupancy. For instance, if one carries both a tablet and a mobile phone

which connect to the same WiFi AP, the occupancy count for this individual should be one

instead of two. We develop an algorithm to deduplicate such duplicate devices. Third, the

environment may contain static devices connecting to the network, which could introduce

false positives. For instance, the connected printers should not be counted as occupants. We

address this challenge by developing a method to detect static devices.

We next describe our approach to detecting passer-by devices, duplicate devices, and static

devices. Each of the algorithm described below has been incorporated as UDFs which can

either be invoked during the processing of the occupancy query in Figure 6.1 to determine a

more accurate occupancy.

Passer-by Devices

When a person carrying WiFi-equipped devices passes by a region r covered by some WiFi
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AP without staying in the region r, such devices are called passer-by devices, and they

should not be counted into occupancy of the region r. For example, students walking by a

building without entering it are false positives for occupancy estimation of the building and

sub-regions inside that building.

To compute the occupancy of a location loc that is covered by a WiFi AP ap during the

time interval (st, et), we observe that the WiFi connectivity events associated with ap for

a passer-by device concentrate on a fairly short time interval with limited numbers. For

example, most passer-by devices generate less than 5 connectivity logs associated with ap

within 1 minute based on our empirical study. We express the logic of the algorithm to

detect passer-by devices using ECA rule [17] as [WHEN, IF, THEN].

WHEN: a device d connects to the same WiFi AP of the location loc in the occupancy

query. Let Ed = {e1, e2, ..., en} be the set of connectivity events of d during the time interval

(st, et) in increasing order of the timestamp of the events

IF: |Ed| < k and |en.timeStamp− e1.timeStamp| < T

THEN: d is a passer-by device.

The above ECA rule captures the connectivity pattern of a typical passer-by device in our

empirical studies, where we set k = 5 and T = 1 minute, turning out to be an effective filter

to detect passer-by devices.

We implement the algorithm to detect passer-by devices as a tabular UDF [11, 10]. Let

Passerby(R, WiFi) be a tabular UDF of the removal of the passers-by devices, which takes as

input a single-column relation R with a field WiFi.mac and the semantic WiFi relation WiFi.

The output of Passerby(R, WiFi) is a single-column relation R′ with the same field WiFi.mac,

where the device in each tuple in R′ is not a passer-by.

To incorporate Passerby(R, WiFi) at query time into the occupancy query in Figure 6.1,
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we create a view, Occupancy-NoPasserby, and implement Passerby(R, WiFi) below. When

the occupancy query returns a single-column relation with WiFi.mac, for each device d in

WiFi.mac, Passerby(R, WiFi) first retrieves all the connectivity tuples associated with d in

WiFi relation, and uses the defined ECA rule to determine if d is a passer-by or not. The

tuple corresponding to d will be eliminated if d is a passer-by device.

CREATE VIEW Occupancy-NoPasserby AS

SELECT Passerby(WiFi.mac,WiFi)

FROM WiFi

WHERE WiFi.timeStamp > st AND WiFi.timeStamp < et

AND LOCATER(WiFi.regionLocation,WiFi.mac,WiFi.timeStamp) = loc

Duplicate Device Detection

If one person carries multiple devices connecting to the same WiFi AP, counting the connec-

tions for each of such devices would over-count the occupancy. The task of duplicate device

detection is to determine a set of devices that belong to the same person and remove the

duplicates when counting occupancy.

The algorithm of duplicate device detection consists of two phases, the offline phase, and

the online phase. In the offline phase, the algorithm learns a similarity graph based on the

Presence table, wherein each node represents a device and each edge corresponds to the

similarity between two devices. As will be clear shortly, similarity is a metric to measure the

likelihood of two devices belonging to the same individual. We determine the likelihood by

estimating the similarity of the trajectories of two devices over time. In the online phase,

given a set of devices D, the algorithm deduplicates the devices based on the similarity graph

and returns a set of devices D′ ⊆ D such that there do not exist two devices di, dj ∈ D′

belonging to the same user.
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Offline Phase. We start by building a similarity graph based on a subset of the Presence

table during the time interval (st, et) as shown in Table 6.5. Note that the similarity graph

will be updated offline periodically by using the newer data in the Presence table.

Let G(V,E) be the similarity graph, where V is the set of devices represented by their

unique mac addresses, and E is a set of edges. Let eij ∈ E be the edge between device di

and dj. Let Sim(i, j) be the similarity of trajectories between devices di and dj, which is

also the weight of edge eij. The trajectory of device di consists of a set of consecutive tuples

of device di in the Presence table during the time interval (st, et). Sim(i, j) = CD(i,j,st,et)
et−st

,

where CD(i, j, st, et) is the total length of the duration time when devices di and dj are in

the same region during time range (st, et). 1 After constructing the similarity graph, we

cluster the nodes in the graph using k-means clustering algorithmk 2 with a constraint that

the number of nodes in any cluster can be no larger than k. k is the bound of the maximum

number of devices a person can carry. 3 In the resulting clusters, the devices in one cluster

represent the devices belonging to the same user since they share the highest similarities

with each other. Note that if a user u has self-reported and registered all her devices in

TIPPERS, we can use this information to form the corresponding cluster in the similarity

graph without performing clustering of the devices reported by the user u.

Online Phase. We implement the algorithm of duplicate device detection as a tabular

UDF [11, 10], which is executed at the query time. Let Deduplication(R,G) be the tabu-

lar UDF of device deduplication. Deduplication(R,G) takes as input a single-column relation

R with a field WiFi.mac and the similarity graph G. The output of Deduplication(R,G) is an-

other single-column relation R′ with the same field WiFi.mac. For any two tuples ri, rj in R′,

let di, dj be their corresponding attribute value in the field WiFi.mac. For any such devices

1We choose region since the region-level localization by LOCATER is much cheaper than the room-level
localization, and thus enables efficient computation of similarity.

2Any other clustering algorithm such as DBSCAN [31] would suffice.
3In our implementation, we set k as 5, which turns out to be effective enough to enable accurate duplicate

device detection.
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di, dj, they are not in the same cluster in the similarity graph G. When there exist multiple

devices in one cluster, Deduplication(R,G) picks a random representative of the cluster among

these devices and returns it.

To further remove the duplicate devices from the occupancy count, we create a view,

Occupancy-NoPasserby-NoDuplication based on the view Occupancy-NoPasserby below.

CREATE VIEW Occupancy-NoPasserby-NoDuplication AS

SELECT Deduplication(WiFi.mac,G)

FROM Occupancy-NoPasserby

Static devices

The connectivity logs generated by the static devices, such as printers and computers in a

computer lab/personal offices, should not be counted as occupancy. Thus we need to detect

static devices based on their connectivity patterns. We developed a simple offline strategy

to identify and maintain a list of static devices. First, we identify a set of devices D1, each

of which predominately connects to a unique WiFi AP for a relatively long time. They may

sporadically connect to the neighboring WiFi APs, and connect back to the WiFi AP that

is mostly often connected. In contrast, mobile devices carried by people tend to connect a

larger number of WiFi APs in a larger area more frequently. Second, we collect a set of

devices D2 that constantly generate connectivity logs at night, such as from 3:00 am to 6:00

am as we set in our implementation since such connectivity events would not possibly be

continuously generated by a mobile device carried by a person for a long time. Let the list

of static devices we identified be SD = D1 ∩D2, which is periodically updated.

Let StaticDevices(R,SD) be the tabular UDF of the removal of static devices. StaticDe-

vices(R,SD) takes as input a single-column relation R with a field WiFi.mac and the main-

tained static devices SD, and it returns another single-column relation R′ by removing the
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tuples from R whose WiFi.mac is in the static devices SD. Note that the step of removing

static devices can be done prior to query execution or at query time since it is cheap. To

incorporate the StaticDevices(R,SD), we create a view Occupancy-NoPasserby-NoDuplication-

NoStatic based on the defined view Occupancy-NoPasserby-NoDuplication below.

CREATE VIEW Occupancy-NoPasserby-NoDuplication-NoStatic AS

SELECT StaticDevices(WiFi.mac,SD)

FROM Occupancy-NoPasserby-NoDuplication

Finally, by incorporating three UDFs in the occupancy query in Figure 6.1, we get the

advanced occupancy query in Figure 6.2.

SELECT COUNT(*)
FROM Occupancy-NoPasserby-NoDuplication-NoStatic

Figure 6.2: Advanced Occupancy Query.

6.3.3 Use Case Scenario

We have had the occupancy application deployed and running in more than 40 buildings

at University of California, Irvine (UCI) for over four years. Figure 6.3 is our occupancy

application that displays the occupancy for each floor in engineering buildings in low/medi-

um/high levels on the UCI campus. The application could also display the exact occupancy

number for other granularities of locations, such as building/floor/region/room, at any cus-

tomized time range. It is worth mentioning that the occupancy information displayed in the

dashboard could be updated automatically based on the window query, such as giving the

occupancy of a given location in the last 10 minutes, by ingesting the streaming data and

updating the occupancy numbers in near real-time.
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Figure 6.3: Occupancy Use Case Scenario.
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6.4 Contact Tracing

We now introduce the second application, contact tracing, which we built using LOCATER

technology.

Contact tracing technology has emerged as a key mitigation strategy for COVID-19 [108].

Several systems based on technologies ranging from Bluetooth [8], GPS, and WiFi [75] have

been developed and widely adopted worldwide. The success of such technology, however,

depends upon the participation by a large segment of the population (some estimates sug-

gest > 80% [9]), while several studies [63] have shown that the adoption rate of existing

technologies remains much lower, limiting their effectiveness. While WiFiTrace [109] also

builds a contact tracing application using WiFi connectivity data, they assume data is clean

without resolving data cleaning challenges.

In contrast to contact tracing systems such as the above that either require users to down-

load apps/install new software or operating system, and trust the third parties with their

location/proximity data, we build a new system, T-COVE, which is passive (does not require

users to actively participate in the protocol), does not capture any additional information

about individuals other than what is already captured by WiFi networks, and targets the

technology at the organizational level. While T-Cove is designed to support the organiza-

tion level mitigation of COVID-19, the underlying technology can be used for several distinct

applications including smart occupancy-based HVAC control, estimating occupancy during

disasters for evacuation planning, understanding individuals’ behavior as related to space,

etc.
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6.4.1 Contact Tracing Model

Before we discuss contact tracing, let us first specify how we model contact. Different

countries have different protocols for defining contact. For instance, in the USA in the

context of COVID-19, contact is defined as being within 6 feet of an affected person for a

cumulative total of 15 minutes or more over a 24-hour period [108]. We define contact as the

user and the affected person being in the same room for a cumulative total of τ1 minutes or

more over a τ2-hour period. Although two people in the same room might not be within 6

feet (i.e., false negatives), our definition does not introduce false positives and it is easy to be

used for practical deployments where several follow-up steps are normally taken to ascertain

contact.

Given the above definition of contact tracing model, we capture the essence of contact tracing

through the following three queries:

• ReportQuery (QR = {name,mac, st, et}): that given the name of an affected person

carrying a device with the mac address mac, determines the locations (i.e. regions/-

rooms) and times the person visited those locations. We ask the user to report the

mac address of their phone, and we store this information in the User table.

• CheckQuery (QC = {name, st, et}): that allows a user to check if he or she came in

contact with any affected users during a given time interval {[st, et)}.

• ContactQuery (QT = {st, et}): that returns the set of people who have been exposed

to any affected user during the time period {[st, et)}.

The queries above taken together form the basic contact tracing application that we have

built using LOCATER.

The fundamental SQL query for all the ReportQuery, CheckQuery, and ContactQuery is to
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SELECT LOCATER(Presence.roomLocation,Presence.macAddress,t) AS Location, Pres-
ence.startTime AS Start time, Presence.endTime AS End time
FROM Presence, User
WHERE Presence.macAddress = User.macAddress
AND User.name = name
AND Presence.startTime ≥ st AND Presence.endTime ≤ st
AND Presence.startTime ≥ et AND Presence.endTime ≤ et

Figure 6.4: Presence Query.

find the trajectories, i.e., (location, time interval), for an individual. We write the Presence

Query in Figure 6.4 to compute the trajectories at room level, i.e., the room locations for a

person whose name is name during the time interval (st,et).

Note that in the presence query, the parameter t inside the LOCATER UDF can be any time

instance at the corresponding time interval (Presence.startTime, Presence.endTime), and t is

set as (Presence.startTime+Presence.startTime)/2, since we assume that in each tuple (time

interval) in the Presence table, the room location of a person is same.

ReportQuery directly uses the query answer of the presence query as the trajectories of a

user which are then stored in the Affected Trajectories table which has the same schema as

the Presence table. The Affected Trajectories table essentially stores the trajectories of all

affected users. CheckQuery compares the results of the presence query with the trajectories

of the affected people stored in the Affected Trajectories table to identify if a person contacts

any affected user or not. ContactQuery will call CheckQuery for a group of people to perform

contact tracing.

6.4.2 Use Case Scenario

To test ZIP and PLAUQE, we implemented the contact tracing application over the data

captured from the Donald Bren Hall (DBH), at University of California, Irvine. DBH houses

the School of Information and Computer Sciences. DBH has 64 WiFi AP each covering
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ReportQuery: QR={‘11d58fd604e31332d0e061f9e445058af’�Ň�������������������Ň��ņŇ�������������������} 
Graph Data Table Data

ContactQuery: QR={‘2020-01-17 10:00:00’�Ň�������������������Ň} 
Graph Data

Figure 6.5: Contact Tracing Use Case Scenario.

approximately 11 rooms, 300+ rooms, and the average number of people in the building is

greater than 1000. The dataset contains 10 months of data, from Sep. 3rd, 2019 to July

8th, 2020, comprising 38, 670, 714 connectivity events for 66, 717 different devices. For the

purpose of the study, we randomly select 100 devices to mimic the affected people.

In Figure 6.5, we show the output of ReportQuery, and ContactQuery.

• ReportQuery: An affected user carrying a device with mac address starting with

11d5 reports herself in the time interval from “2020-01-17 10:00:00” to “2020-01-17

12:00:00”. The left graph in Figure 6.5 shows the predicated trajectories (blue nodes)

of the affected person (orange node). One blue node represents a part of the trajectories

by storing the following key fields, the region location (in regionLabel) and room

location (in roomLabel) of a person during a time interval (startT ime, endT ime).

The trajectories reported by a person can also be represented in a table in Figure 6.5.

• ContactQuery: The right graph in Figure 6.5 shows the set of people (red nodes)

who were in contact with any affected person (orange nodes) during the time interval

from “2020-01-17 10:00:00” to “2020-01-17 12:00:00”.
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6.5 Evaluation

We evaluate ZIP and PLAQUE in the context of contact tracing and occupancy applications

as part of this case study. Note that the improvement due to ZIP and PLAQUE is evaluated

independently, since ZIP and PLAQUE have been implemented in different database systems,

and it is thus difficult to evaluate the performance due to ZIP and PLAQUE techniques being

used simultaneously. 4

Data Sets. We use two real data sets in UC Irvine campus to evaluate the effect of ZIP,

WiFi and WiFi-large. WiFi consists of one week of WiFi connectivity events at the Donald

Bren Hall Building (DBH) in UCI. WiFi records the continuous connectivity data of devices

- i.e., which device is at which location in which time instance, and WiFi has a total of

325,925 connectivity logs. We further collected a larger real data set WiFi-large by extending

the WiFi data set from one building to 40+ buildings over campus within one week with

8,799,975 connectivity logs.

Query Workload. We generate a query workload that contains 20 queries, where 10 queries

are based on the presence query in Figure 6.4, and others are based on the occupancy query

in Figure 6.2. Both the occupancy query and presence query can join with the Space and

User tables to support more complex queries. In the generated query workload, we developed

more complex selection-projection-join queries with optional aggregations developed from the

basic presence query and occupancy query. In particular, in the generated query workload,

we select a random user in the User table for the presence queries and a random location in

the Space table for the occupancy queries. The time interval (st, et) in the query workload is

generated randomly below. Let tmin and tmax be the minimum timestamp and the maximum

timestamp in the data set. 5 We first generate two random timestamps t1 and t2 in the value

4We note that it is an important future work to implement ZIP and PLAQUE in one database system to
maximize the performance of the improvement from both technologies.

5Both WiFi and WiFi-large data sets consist of one week of connectivity events from ’2018-05-01’ to
’2018-05-07’. Thus we set tmin =’2018-05-01 00:00:00’ and tmax =’2018-05-07 11:59:59’.
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range [tmin, tmax]. Next let st = min(t1, t2) and et = max(t1, t2) be a randomly sampled

start time and end time of a time interval used in the queries.

We now explore the optimization opportunities by using ZIP and PLAQUE to accelerate the

query processing in the generated query workload.

6.5.1 ZIP Optimization

As described in Chapter 3, given a large data set that contains missing data, instead of

performing imputations for all missing entries in the data set, ZIP performs a lazy execution

to impute minimal missing values to answer a given query. ZIP is a query time approach

that co-optimizes the missing value imputations and query execution. The query answer

returned by ZIP is exactly the same as the one returned by the offline approach that first

imputes all missing data and then runs query processing.

We now explore the optimization opportunity brought by ZIP to speed up the occupancy

and contact tracing applications by optimizing the generated query workload.

Compared Strategies.

• Offline is the approach that first imputes all missing locations in the WiFi data, and

then performs query execution.

• QTC-Eager is another query-time strategy that imputes missing values eagerly without

delaying imputations during query execution as soon as the imputed value is required

during query processing. Comparing ZIP to QTC-Eager will show the benefits of the

lazy imputation strategy. QTC-Eager is the underline strategy used in the state-of-

the-art technology ImputeDB [34] (see Chapter 3 for the detailed description).
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(Seconds) Min Max Avg Avg Speed Up VS Offline Avg Speed Up VS QTC-Eager

WiFi 1.3 32.7 9.1 1822X 19.2X

WiFi-Large 3.5 55.8 27.5 20736X 186X

Table 6.6: ZIP in the Presence Queries.

(Seconds) Min Max Avg Avg Speed Up VS Offline Avg Speed Up VS QTC-Eager

WiFi 3.1 49.3 19.6 273X 4.6X

WiFi-Large 6.3 82.9 41.5 2315X 42X

Table 6.7: ZIP in the Occupancy Queries.

Experimental Results.

We report the runtime of ZIP and its improvement over the offline and QTC-Eager ap-

proaches in the presence query workload in Table 6.6, and occupancy query workload in

Table 6.7. In the presence query workload, we observe that ZIP has 9.1 and 27.5 seconds of

run time in WiFi and WiFi-large data sets on average, and it speeds up the offline approach by

1822X and 20736X in WiFi and WiFi-large data sets. ZIP also outperforms the QTC-Eager

strategy by 19.2X and 186X in WiFi and WiFi-large data sets, respectively. In the occupancy

query workload, we similarly observed improvements due to ZIP in both WiFi and WiFi-large

data sets. But the improvement due to ZIP in the occupancy query workload is less than

the improvement in the presence query workload. This is because the occupancy queries

tend to be less selective than the presence queries in our query workload. For instance,

compared with a presence query that determines the trajectories of a person during time

interval (st, et), an occupancy query that determines the occupancy at location loc during

the same time interval needs to clean the missing locations for all devices in the time interval

(st, et) if there are no other predicates to help reduce the complex.

The above observations clearly show that adding ZIP optimization considerably improves

the performance of the queries in the generated query workload to support an interactive

analysis in the occupancy and contact tracing applications.
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(Minutes) Min Max Avg
VanillaDB 1.2 13.5 4.2
PLAQUE 0.08 6.9 0.8

Table 6.8: PLAQUE VS VanillaDB.
(Presence Queries, WiFi)

(Minutes) Min Max Avg
VanillaDB 3.8 22.3 7.6
PLAQUE 0.6 8.6 1.9

Table 6.9: PLAQUE VS VanillaDB.
(Occupancy Queries, WiFi)

(Minutes) Min Max Avg
VanillaDB 18.3 287.2 128.3
PLAQUE 0.3 7.8 2.3

Table 6.10: PLAQUE VS VanillaDB.
(Presence Queries, WiFi-large)

(Minutes) Min Max Avg
VanillaDB 28.5 384.7 202.8
PLAQUE 0.9 17.3 3.1

Table 6.11: PLAQUE VS VanillaDB.
(Occupancy Queries, WiFi-large)

6.5.2 PLAQUE Optimization

PLAQUE, as described in Chapter 4, explores the opportunities to learn predicates at query

run time to accelerate query execution from various operators, such as MIN/MAX aggre-

gate, theta-join, equi-join, GROUP BY/HAVING. We implemented PLAQUE technology in

VanillaDB [20], which is an Apache database prototype project. VanillaDB contains several

key components in a relational database system, such as the storage, query optimizer, and

query executor where several popular join algorithms are implemented, such as hash-join,

index-join, sort-based-join, nested-loop-join.

Compared Strategy.

• VanillaDB. VanillaDB, serves as the representative of a standard query engine without

PLAQUE optimization, i.e., VanillaDB calls LOCATER UDF to compute the required

location whenever the need comes during query execution.

By adding PLAQUE optimizations, the system automatically adds and refines new predicates

in the query plan tree associated with the given query in the middle of a query execution to

speed up the query processing. We run VanillaDB in the same datasets, WiFi and WiFi-large,

using the presence and occupancy query workloads.
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Experimental Results.

In the WiFi data set, as shown in Table 6.8 and Table 6.9, adding the new predicates learned

in PLAQUE improves the standard query execution without PLAQUE optimizations in

VanillaDB by 5.25X and 4X on average in the presence query workload and the occupancy

query workload, respectively.

When we evaluate PLAQUE in a larger data set WiFi-Large in the same query workload,

as shown in Table 6.10 and Table 6.11, the improvements due to PLAQUE becomes more

significant. In particular, PLAQUE outperforms VanillaDB by 55.8X and 65.4X on average

in the presence query workload and the occupancy query workload, respectively. It shows

that PLAQUE will offer more advantages in the larger data set since it can potentially skip

more expensive UDF calls by using the learned predicates in PLAQUE.

6.6 Conclusions

In this chapter, we build two real applications, occupancy and contact tracing, using LO-

CATER, which itself is a standalone data cleaning technology to predict the indoor location

of an individual at a given time instance at an accuracy of 90% on average. We further

explored the optimization opportunities by using the ZIP (described in Chapter 3) and

PLAQUE (described in Chapter 4) to improve the performance of both applications. Both

ZIP and PLAQUE significantly improved performance. For instance, for Presence Queries

ZIP brought down the execution time from 5115 seconds of the baseline QTC-Eager to

27.5 seconds, and PLAQUE optimization brought down execution times from 7698 to 138

seconds. Likewise, for occupancy queries, both PLAQUE and ZIP brought in significant

improvements. However, we note that the execution time for both Presence queries and

Occupancy queries remain above 27.5 and 41.5 seconds respectively (on WiFi-Large) which,
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while significantly improved over baselines, is still on the high side for interactive analytics.

This prompts us to a future work that explores combining both PLAQUE and ZIP to reduce

execution time further, and possibly integrating it with progressive computing, as imple-

mented in EnrichDB [48, 47] to bring down the execution times to what would truly be an

interactive rate of query execution. Combining these strategies into the same system likely

introduces new opportunities for deeper co-optimization of the system, which may lead to

further exciting research.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

In today’s data-driven analysis and applications, vast streams of data are generated at high

rates. For instance, there are 20k WiFi connectivity logs per minute at UCI campus dur-

ing the busy hour. We need to process the data appropriately prior to it being used for

the downstream applications/analysis. The goal of this thesis is to develop mechanisms

to support computationally expensive operations, such as data enrichment, imputations,

information extraction, and data interpretation, in data management systems to support

interactive analysis.

The data flow pipeline is similar to the traditional data flow for analytical or hybrid ana-

lytical/transactions applications with some differences, the key of which is that data must

be transformed prior to being used in building applications. Such transformations are remi-

niscent of data cleaning, data preparation, and data enrichment tasks in modern analytical

data flows. In both cases, data cleaning/preparation/enrichment is expensive and, as the

thesis argued, can hardly be done completely during the data ingestion time. For instance,
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as we have shown imputing one hour of missing locations in WiFi connectivity data takes

more than 180 hours prior to query analysis.

As a result, we explore a different data flow pipeline motivated by the recent data lake

and ELT (Extract-Load-Transform) where raw data is processed only when needed, also

known as query-time approach or analysis-aware approach. The key idea of the query time

approach is to only perform the data computations that are related to the given queries,

minimizing the required computations to be performed and thus scaling to large volumes

of data sets. However, since the query-time approach moves the computations from pre-

processing to query-time, it increases the query latency. The thesis explored two strategies,

a lazy approach (i.e., ZIP) and a predicate-learning approach (i.e., PLAQUE), to reduce such

latency to optimize query processing for compute-intensive tasks as described in Chapter 3

and Chapter 4.

In Chapter 3, we introduced ZIP, a query-time approach to reduce the missing value im-

putations during query execution. Specifically, ZIP co-optimizes imputation cost and query

processing cost by modifying relational operators to be imputation-aware. The modified

operators use a cost-based decision function to determine whether to invoke imputation or

to defer imputations to the downstream operators to resolve missing values. The modified

query processing logic ensures the results with deferred imputations are identical to those

produced if all missing values were imputed first. ZIP includes a novel outer-join-based

approach to preserve missing values during execution, and a bloom filter-based index to

optimize the space and running overhead. ZIP outperforms the offline approach by up to

19607 times in a real UCI WiFi data set.

In Chapter 4, we introduced PLAQUE, a system that is able to learn new predicates at query

time from various operators, such as MIN/MAX aggregate, theta join, equi join, GROUP

BY, HAVING. By placing the learned predicates in their optimal locations in the query

plan tree, and supporting various implementations of the learned predicates (in-memory
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predicate or index-predicate), PLAQUE is able to accelerate query execution considerably.

Comprehensive evaluations on both synthetic and real datasets demonstrate that the learned

predicate approach adopted by PLAQUE can significantly accelerate query execution by up

to 33x, and this improvement increases to up to 100x when User-Defined Functions (UDFs)

are utilized in queries.

We next explored the use of the above technologies in a real-world smart space use case in

UCI by building LOCATER to find the indoor location of an individual inside a building

based on WiFi connectivity data. LOCATER in itself is a novel technical contribution since

it is the first principled approach that uses data cleaning to predict the indoor missing

location. As described in Chapter 5, LOCATER is free, does not require any new hardware

to be installed in the building, nor require the active participation of users, such as installing

applications in users’ phone. LOCATER has been deployed in over 40 buildings in UCI for

four years since 2019 with an accuracy of 87% on average.

Finally, we concluded the thesis with a real-world case study (described in Chapter 6) where

we build two applications, occupancy, and contact tracing, by using LOCATER technology.

We also implemented ZIP and PLAQUE optimizations inside these applications, demon-

strating that with the help of ZIP and PLAQUE, these real applications we built in UCI can

scale to large data sets.

7.2 Future Work

While our work on developing the lazy and predicate learning approaches opens several new

directions of research as future work.

Future work in ZIP
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In Chapter 3, we described a lazy approach entitled ZIP to co-optimize query processing and

missing value imputation. ZIP imputes a minimal missing number of data to answer the

given query. It opens several interesting technical directions to be explored further. First,

when deciding whether or not a missing value needs to be imputed or its imputation should be

delayed, ZIP uses a cost-based solution decision function. This decision function is applied

at the level of individual missing values. It would be interesting to explore if a decision

function could be applied on the column level instead of a tuple level to further reduce the

overhead of decision making in ZIP. While a column-level decision making strategy could

improve the performance further, how to adaptively update the decision based on the cost

estimation during query execution in such a strategy is non-trivial.

Second, ZIP is most suitable for non-blocking imputation methods such as rule-based, time-

series-based, knowledge base or crowdsourcing-based imputation approaches. However, ZIP

poses some limitations when the blocking imputation methods are used, such as a learning-

based approach that is able to impute a missing value only after the complete table data

is used for training purposes. In the current ZIP system, when using such a learning-based

imputation approach to impute a column C with missing data in one relation R, ZIP needs

to load the complete relation R and uses the tuples whose attribute value under column C

is not missing to construct a training data set to train a model D. ZIP will then use D

to impute any missing data in the column C. In this case, if the training cost dominates

the inference cost, ZIP will not provide much benefit. How to design strategies inside ZIP

to make it more suitable and to better support such learning-based imputation approaches

remains an important future work in ZIP to enhance its adoption.

Future work in PLAQUE

In Chapter 4, we described PLAQUE which is able to learn a suite of new predicates at query

runtime to accelerate query execution from various query operators, such as MIN/MAX

aggregate, theta join, equi join, GROUP BY, and HAVING. It leads to several interesting
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future directions of research. First, in the current system implementation of PLAQUE,

PLAQUE keeps updating all the learned predicates during query execution to maximize the

effectiveness of the learned predicates. However, the frequent updates of a learned predicate

might not be worth it if the predicate is not effective in filtering tuples in the remaining

query execution. In such a situation, the overhead incurred by PLAQUE to update the

predicates might not be justified. One direction of the work is to explore a trade-off between

the updating frequency and the effectiveness of the learned predicates. Specifically, can we

set a frequency f to update the predicate every k time units (or every k tuples) so that

PLAQUE can co-optimize the predicate learning overhead and its power to filter tuples in

the system. Another challenge is how to model and estimate the effectiveness of a learned

predicate during query execution to achieve the above trade-off.

Second, PLAQUE so far focuses on optimization for a single query. It would be interesting

to explore the knowledge from the query workload or domain knowledge to further learn new

predicates or improve the learned predicates during query execution. In particular, if there

exist strong patterns in a query workload, such as determining the maximum occupancy at

a given location during a certain time interval every day, the information from the previous

queries might be useful to improve future queries with similar query patterns.

Future work in LOCATER

In Chapter 5 we described LOCATER, a data cleaning technology to predict the indoor

location of an individual. LOCATER is a passive and free solution since it only explores the

WiFi connectivity data, which offers great usability since LOCATER does not require any

new hardware to be installed in the building or the installation of any applications on users’

phones. However, if there is some information that is already available in the environment

as domain knowledge, exploiting such information would potentially improve the accuracy

of LOCATER. For instance, if the knowledge of the meeting schedule of a group is available

(e.g., group X will have regular meetings in room L during certain time intervals weekly), such
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an event schedule calendar would be useful to be explored and embedded into LOCATER

system by implementing as an add-on API. The robustness and the accuracy of LOCATER

can be improved by exploring such new information in the environment or even combining

it with other available sensors in the building, such as cameras. It would be interesting to

explore how to integrate different knowledge from various data sources into LOCATER to

make it a more reliable and robust software.

Building Database System based on ZIP and PLAQUE

Lastly, we talk about future work in terms of system building at a more conceptual level.

In our current work, different pieces of technologies, ZIP and PLAQUE, have been imple-

mented independently in different database prototypes. ZIP is implemented in the Sim-

pleDB [4], a database prototype system developed at MIT that has been used for research

purposes at several universities including MIT, University of Washington, and Northwestern

University. PLAQUE is implemented in an Apache project VanillaDB [20, 112], codebase of

which includes key components, such as query executor and optimizer. It would be useful

to fully integrate ZIP and PLAQUE in EnrichDB or TippersDB or other database systems,

such as PostgreSQL, Spark or AsterixDB.

Second, besides the lazy approach used in ZIP, and the predicate learning approach explored

in PLAQUE, another useful idea, progressiveness, has been also widely explored in EnrichDB

and TippersDB as we introduced in Chapter 2. A progressive approach explores the trade-

off of the quality of query answers and the time overhead it takes to return the result. It

aims to return query results fast in the early stage of query processing whose quality will

be improved over time. All of the above approaches, lazy, predicate learning as well as

progressive approaches, are all query-time strategies that aim to reduce the query latency.

How to combine and implement three approaches together into one data system carefully

remains an important challenge and future work.
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Last but not least, the proposed technologies, such as ZIP or PLAQUE, focus on the single-

node machine, and it is exciting to explore the extension of current systems to a distributed

data system. Especially, an intriguing avenue of exploration would be the extension of

PLAQUE, automatic predicate learning at query runtime, to distributed data systems. Con-

sider a distributed database system comprising n nodes or machines. Each node is allocated

a data partition and conducts query processing independently. If we can learn effective

predicates at each node and facilitate communication of these learned predicates among all

nodes, it may yield a significant improvement in overall performance. Additionally, opti-

mizing data partitioning based on learned predicates presents another interesting direction.

One unique property of the learned predicates is the order of the stored data. For example,

in the case of a query requesting the maximum value in attribute A, subject to a set of pred-

icates, if the data values in A are stored in decreasing order, the learned predicate from the

max aggregate condition would prove optimal at the very early stages of query processing.

This optimization occurs as soon as the aggregate operator receives its first tuple during the

pipeline query processing. Such potential extensions of predicate learning could significantly

enhance query processing in distributed systems, a topic we are keen to explore further.
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