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EPIGRAPH

The whole of science is nothing more than a refinement of every day thinking.

It is for this reason that the critical thinking of the physicist cannot possibly be restricted to the

examination of concepts of his own specific field.

He cannot proceed without considering critically a much more difficult problem,

the problem of analyzing the nature of everyday thinking.

—Albert Einstein
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A computational investigation on spatial and temporal dynamics of cAMP

by

Michael Getz

Doctor of Philosophy in Chemical Engineering

University of California San Diego, 2020

Professor Padmini Rangamani, Chair

Professor Pradipta Ghosh, Co-Chair

Signaling networks are spatiotemporally organized in order to sense diverse inputs from

the extracellular space, process information, and carry out specific cellular tasks. Various

hormones and growth factors stimulate target cells through second messenger pathways, which

in turn regulate cellular phenotypes. Cyclic adenosine monophosphate (cAMP) is a ubiquitous

xviii



second messenger that facilitates numerous signal transduction pathways; its production in cells is

tightly balanced by activation of adenylate cyclases (ACs), i.e. “sources,” and phosphodiesterases

(PDEs) that hydrolyze it, i.e. “sinks.” Since cAMP regulates various cellular functions, including

cell growth/differentiation, gene transcription/protein expression, and hormone secretion, this has

been exploited for the treatment of numerous human diseases. Here, we discuss two methods of

information encoding in the cAMP pathway– regulation of cellular cAMP through GIV/Girdin in

cancers and spatiotemporal control of sources and sinks of cAMP in pancreatic β cells. In the

first part, we describe a network-based compartmental model of non-canonical cAMP signaling

which reveals that Guanine nucleotide Exchange Modulators (GEMs), such as GIV/Girdin, serve

as “tunable valves” that cells may employ to finetune cellular levels of cAMP. In the second

part, we model the spatiotemporal regulation of Ca2+-cAMP in pancreatic β cells. Ca2+, cAMP,

and Protein Kinase A (PKA) exist in an oscillatory circuit characterized by a high degree of

feedback allowing specific controls based on oscillation frequencies. We describe a novel mode of

regulation within this circuit involving a spatial dependence of the relative phase between cAMP,

PKA, and Ca2+. We show nanodomain clustering of Ca2+-sensitive adenylyl cyclases drives

precisely in-phase cAMP oscillations with Ca2+ within the membrane nanodomain, whereas

Ca2+-sensitive phosphodiesterases maintain out-of-phase oscillations within the general plasma

membrane outside of the nanodomain, providing a striking example and novel mechanism

of cAMP compartmentation. Disruption of this precise in-phase relationship perturbs Ca2+

oscillations, suggesting that the relative phase within an oscillatory circuit can encode specific

functional information. Thus, mathematical modeling of spatiotemporal dynamics of second

messengers gives insight into their cellular function.
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Chapter 1

The versatile cAMP, A balancing act

between “Sources” and “Sinks”.

For cells to properly react to their environment, cells must constantly sense their external

environment and correctly relay them to the intracellular environment. While sensing is mediated

by a myriad of cell-surface receptors, relaying such signals depends on protein scaffolding,

enzymatic reactions and the production of second messengers, such as cyclic nucleotides [1,2]. Of

the various cyclic nucleotides, the first to be identified was cyclic adenosine 3,5-monophosphate

(cAMP), a universal second messenger used by diverse forms of life, such as unicellular bacteria,

fungi, protozoans, and mammals. cAMP relays signals triggered by hormones, ion channels,

metabolism, and neurotransmitters [reviewed in [3, 4]]. cAMP also binds and regulates other

cAMP-binding proteins such as cyclic nucleotide gated channels, PKA, and Epac1. Intracellular

levels of cAMP are regulated by the antagonistic action of two classes of enzymes: adenylyl

cyclases (ACs) and cyclic nucleotide phosphodiesterases (PDEs). ACs are membrane-bound

enzymes that utilize ATP to generate cAMP; the latter transmits signals from cell-surface receptors

to second messengers. In contrast, PDEs are soluble enzymes and catalyze the degradation of
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the phosphodiester bond resulting in the conversion of cAMP to AMP. Most ACs are activated

downstream from G-protein-coupled receptors (GPCRs) by interactions with the α subunit of

the Gs protein (Gαs). Gαs is released from heterotrimeric αβγ G-protein complexes following

binding of agonist ligands to GPCRs and binds to and activates AC [5]. Alternatively, AC activity

can be inhibited by ligands that stimulate GPCRs coupled to Gi and/or cAMP can be degraded

by PDEs. PDE4, for instance, is activated by protein kinase A (PKA), a downstream effector of

cAMP, resulting in a negative feedback loop between cAMP and PDE4s [6–9]. Thus, the level of

cAMP in cells is a fine balance between synthesis by ACs, degradation by PDEs, and feedback

through the PKA-PDE loop [3].

In some cell types, including neurons, cardiomyocytes, and pancreatic β cells, cAMP

concentrations oscillate intracellularly [10, 11], and the oscillations encode dynamic signaling

information (e.g. signal strength, duration, and target diversity) into parameters such as frequency

and amplitude [12, 13]. This is perhaps best exemplified in the β cell where Ca2+, cAMP, and the

downstream cAMP-dependent kinase Protein Kinase A (PKA) constitute a highly-coordinated

oscillatory circuit characterized by multiple feedback mechanisms [14–16] and is responsible

for integrating metabolic and signaling information in order to regulate diverse functions [17].

In addition to temporal control, biochemical pathways are also spatially organized within the

cell, and coordination between spatial and temporal regulatory modes can drive many interesting

phenomena such as compartmentalized signaling [18, 19]. Both Ca2+ and cAMP are highly

spatially compartmentalized and form signaling microdomains or nanodomains [20, 21]. While

Ca2+ levels are locally controlled by channels, pumps, and intracellular buffering systems

[4, 22], cAMP is thought to be regulated via controlled synthesis by adenylyl cyclases (ACs)

and degradation by phosphodiesterases (PDEs) [23, 24]. Despite extensive studies on cAMP

compartmentation, the mechanisms that spatially constrain this mobile second messenger still

remain poorly understood [25–27].
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Dysregulated circuits that give rise to too much or too little cAMP can be unhealthy;

in fact, deregulated signaling events with resultant abnormal levels of cellular cAMP is a key

pathophysiologic component in many human diseases (Figure 1.1; see Table 2.1). In the context

of cancers, multiple studies across different cancers [breast [28], melanoma [29], pancreas [30],

etc.] agree that high levels of cAMP are generally protective, whereas low cAMP levels fuel

cancer progression [reviewed in [31]]. High cAMP inhibits several harmful phenotypes of

tumor cells such as proliferation, invasion, stemness, and chemoresistance, while enhancing

differentiation and apoptosis (Figure 1.1).

Figure 1.1: An emerging paradigm for modulation of cellular cAMP. (A) Schematic sum-
marizing the role of cyclic AMP (cAMP) in diverse biological processes. In cancers (top right),
cAMP is largely protective as it inhibits proliferation, invasion, chemoresistance, and promotes
apoptosis and differentiation of tumor cells. Similarly, in the context of organ fibrosis, cAMP
is a potent anti-fibrotic agent because it inhibits proliferation and migration and triggers apop-
tosis and return to quiescence for myofibroblasts, the major cell type implicated in fibrogenic
disorders. Red lines indicate suppression and green lines indicate promotion.

Therapies that target the canonical GPCR/G-protein-cAMP signaling pathway have been

successfully translated to the clinics, and they account for 40% of currently marketed drugs that
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can treat a wide range of ailments [32], from hypertension to glaucoma. However, such strategies

have largely failed to impact cancer care or outcome. Thus, how tumor cells avoid high levels

of cAMP, despite the fact that there are is generally hyperactivation of receptors (“sources”), is

puzzling. Efforts to elevate cAMP using PDE inhibitors, although perceived as successful at

the bench (reviewed in Table 3 in [33]), showed controversial results in well-designed clinical

trials [34], suggesting that inhibiting the “sinks” alone may not be enough. Consequently, despite

a well-thought out therapeutic goal, i.e., elevate cAMP, a strategy to accomplish the same in

chronic diseases like cancers has not emerged. Here we highlight the importance of an emergent

field / paradigm in trimeric GTPase signaling and in the regulation of cellular cAMP; we discuss

its importance in the tonic and robust suppression of cAMP, especially in the context of cancers.

1.1 Enter GEMs: An emerging paradigm in

GPCR-independent G protein and cAMP signaling

Recent studies by the Ghosh lab and others have shown that heterotrimeric G proteins can

be activated by integrins and growth factor receptor tyrosine kinases (RTKs) (reviewed in, [35]).

Although these receptor classes are not typically coupled to heterotrimeric G proteins like the

G protein-coupled receptors (GPCRs), both classes of receptors have been shown to modulate

heterotrimeric G proteins and successfully transduce external stimuli into an intracellular cAMP

signal [36, 37]. Where these receptors differ from GPCRs is that unlike GPCRs that rapidly

perturb cAMP for a finite period of few hundred seconds, growth factor RTKs and Integrins

signal over longer periods of time (~60 minutes) after an acute stimulus before reaching a steady

state [38, 39]. Who or what may allow these receptors to couple to and modulate G proteins

remained a puzzle for decades. One mechanism for such coupling that has emerged just within

this past decade is non-receptor (i.e., cytosolic) modulators of G proteins that may contextually
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and dynamically scaffold unlikely receptor classes to heterotrimeric G proteins. More specifically,

studies focused on GIV (also known as Girdin/HkRP1/APE) the prototypical member of the

family of proteins known as Guanine nucleotide Exchange Modulator (GEMs) have exposed the

critical roles of a class of cytosolic scaffolds that use their modularity and motifs to trigger G

protein signaling downstream of growth factor receptors [40–48] and integrins [49–52]. There

have been four GEMs identified thus far, all implicated in diverse signaling paradigms: GIV was

independently independently discovered by four groups [53–56] in 2005, Calnuc/Nucleobindin 1

and 2 (NUCB1 and NUCB2) in 2011 [57] and Daple in 2015 [58].

A series of studies from our group and others helped understand the unique features and

different set of rules of GEM-dependent (and hence, GPCR-independent) G protein signaling

[35, 59]. In brief, this signaling pathway has a distinctive temporal and spatial features and an

unusual profile of receptor engagement: diverse classes of receptors, not just GPCRs can engage

with GIV to trigger such activation. Such activation is spatially and temporally unrestricted, that

is, can occur both at the plasma membrane (PM) and on internal membranes discontinuous with

the PM, and can continue for prolonged periods of time. GEMs act within diverse signaling

cascades and couple activation of these cascades to G-protein signaling via an evolutionarily

conserved motif of ~30 amino acids that directly binds and modulates Gαi and Gαs proteins.

It is via this short motif that GIV-GEM serves as a GEF for Gαi and as a GDI for Gαs in

a temporally-spatially segregated manner that is controlled by two kinases [42]. Despite this

apparent paradox of modulating Gαi and Gαs , both forms of modulation lead to suppression

of cellular cAMP [35]. Thus, unlike the canonical G protein/cAMP signaling paradigm, which

is rigid (finite, is triggered exclusively by GPCRs and transduced via either Gi or Gs at a time,

primarily at the PM), the temporal and spatial features of non-canonical G protein/cAMP signaling

via GIV-family of cytosolic GEMs are unusually complex and relaxed. GIV uses this relaxed

circuitry to integrate, reinforce and compartmentalize signals downstream of a diverse classes of

receptors and G proteins in a way that enables it to orchestrate cellular phenotypes in a sustained
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manner. While the molecular mechanisms that govern the unique spatiotemporal aspects of

non-canonical G protein activation by GIV and the relevance of this new paradigm in health and

disease has been reviewed elsewhere [59], the structural basis for GEM-dependent G protein

activation has just begun to emerge. A recently published study [60] used the combined synergy

of x-ray crystallography, molecular dynamics simulations, and other biophysical and biochemical

approaches to reveal that despite differences in how GPCRs and GEMs bind G-proteins, they

converge into allosteric mechanisms that cause a similar disruption of key nucleotide contacts in

the hydrophobic core of the nucleotide-binding domain. Despite these insights, the impact of the

unusual complex and relaxed spatiotemporal aspects of GEM-dependent G protein activation on

cAMP production was difficult to deduce intuitively, and hence, required investigations from a

systems level.

Chapter 1, in part, is as it may appear in WIREs Syst Biol Med, Getz, M , Ghosh, P,

Rangamani, P, Regulating cellular cyclic AMP: “Sources”, “Sinks”, and now, “Tunable Valves”.

The dissertation author was the primary author of this material.
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Abstract

Cellular levels of the versatile second messenger, cyclic-(c)AMP are regulated by the

antagonistic actions of the canonical G protein→adenylyl cyclase pathway that is initiated by G-

protein-coupled receptors (GPCRs) and attenuated by phosphodiesterases (PDEs). Dysregulated

cAMP signaling drives many diseases, e.g., its low levels facilitate numerous sinister properties

of cancer cells. Recently, an alternative paradigm for cAMP signaling has emerged in which

growth factor-receptor tyrosine kinases (RTKs; e.g., EGFR) access and modulate G proteins

via a cytosolic guanine-nucleotide exchange modulator (GEM), GIV/Girdin; dysregulation of

this pathway is frequently encountered in cancers. In this study, we present a network-based

compartmental model for the paradigm of GEM-facilitated cross-talk between RTKs and G

proteins and how that impacts cellular cAMP. Our model predicts that the cross-talk between

GIV, Gαs, and Gαi proteins dampens ligand-stimulated cAMP dynamics. This prediction was

experimentally verified by measuring cAMP levels in cells under different conditions. We further

predict that the direct proportionality of cAMP concentration as a function of receptor number and

the inverse proportionality of cAMP concentration as a function of PDE concentration are both

altered by GIV levels. Taken together, our model reveals that GIV acts as a tunable control-valve

that regulates cAMP-flux after growth factor stimulation. For a given stimulus, when GIV levels

are high cAMP levels are low and vice versa. In doing so, GIV modulates cAMP via mechanisms

distinct from the two most-often targeted classes of cAMP modulators, GPCRs and PDEs.

Running title: A mathematical model for growth factor-stimulated cAMP signaling

Abbreviations used: cAMP – Cyclic adenosine monophosphate; RTK –Receptor Tyrosine

Kinase; EGFR – Epidermal growth factor receptor; GEM – G protein exchange modulator; GEF

– Guanine nucleotide exchange factor; GDI – Guanine nucleotide dissociation inhibitor; SH2 –

Src homology 2; PM – plasma membrane; DAG – Diacylglycerol; EGF – Epidermal growth
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factor; AUC – Area under the curve; AC – Adenylyl cyclase; PDE – Phosphodiesterase; AMP

– adenosine monophosptate; ATP – adenosine triphosphate; CDK5 – cyclin dependent kinase

5; PKC-θ – Protein kinase C θ; PLC-γ – Phospholipase C γ; Epac1 – Exchange factor directly

activated by cAMP 1; RIA – Radioimmunoassay; IBMX – 3-isobutyl-1-methylxanthene.
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Introduction

Cells constantly sense cues from their external environments and relay them to the interior;

sensing and relaying signals from cell-surface receptors involves second messengers such as

cyclic nucleotides [1, 2]. Of the various cyclic nucleotides, the first to be identified was cyclic

adenosine 3,5-monophosphate (cAMP), a universal second messenger. cAMP relays signals

triggered by hormones, ion channels, and neurotransmitters [3], and also binds and regulates

other cAMP-binding proteins such as PKA and Epac1 [61].

Intracellular levels of cAMP are regulated by the antagonistic action of two classes

of enzymes: adenylyl cyclases (ACs) and cyclic nucleotide phosphodiesterases (PDEs). ACs

are membrane-bound enzymes that utilize ATP to generate cAMP. PDEs, on the other hand,

are soluble enzymes that catalyze the degradation of the phosphodiester bond resulting in the

conversion of cAMP to AMP. Overall, the level of cellular cAMP in physiology is finely balanced

between synthesis by AC, degradation by PDEs, and regulatory feedback loops from PKA→PDE

[3, 6–9] or others that act on ACs and PDEs [62–64]. Too much or too little cAMP is seen in

many diseases. For example, high levels of cAMP have been shown to be generally protective

in diverse cancers (e.g., breast [28], melanoma [29], pancreas [30], etc.), whereas low cAMP

levels fuel cancer progression [reviewed in [31]]. This is because cAMP inhibits several harmful

phenotypes of tumor cells such as proliferation, invasion, stemness, and chemoresistance, while

enhancing differentiation and apoptosis. Although drugs targeting the canonical GPCR/G-protein-

cAMP signaling pathway have successfully translated to the clinic for tackling a wide range of

ailments [32], from hypertension to glaucoma, such strategies have largely failed to impact cancer

care or outcome. Thus, how tumor cells avoid high levels of cAMP appears to be incompletely

understood, and therapeutic strategies to elevate cAMP remain unrealized.

Recently, the regulation of cAMP by non-canonical G protein signaling that is initiated by
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growth factors [35, 65–67] has emerged as a new signaling paradigm. Growth factor signaling

is a major form of signal transduction in eukaryotes, and dysregulated growth factor signaling

(e.g., copy number variations or activating mutations in RTKs, increased growth factor produc-

tion/concentration) is often encountered in advanced tumors and is frequently targeted with

varying degrees of success [68]. A body of work published by us and others have revealed that

RTKs bind and activate trimeric G proteins via a family of proteins called Guanine-nucleotide

Exchange Modulators (GEMs; [35]). GEMs act within diverse signaling cascades and couple

activation of these cascades to G protein signaling via an evolutionarily conserved motif of

∼30 amino acids that directly binds and modulates Gαi and Gαs proteins. Most importantly,

GIV-GEM serves as a GEF for Gαi and as a GDI for Gαs [42]. Despite this apparent paradox,

both forms of modulation lead to suppression of cellular cyclic AMP [66]. By demonstrating

how GIV, a prototypical member of a family of cytosolic guanine nucleotide exchange mod-

ulators (GEMs; [35, 42]), uses a SH2-like module [43] to directly bind cytoplasmic tails of

ligand-activated RTKs such as EGFR [41], we provided a definitive structural basis for several

decades of observations made by researchers that G-proteins can be coupled to and modulated by

growth factors (reviewed in [69]). A series of studies that have followed since have revealed that

growth factor-triggered non-canonical G protein→cAMP signaling through GIV has unique spa-

tiotemporal properties and prolonged dynamics that are distinct from canonical GPCR-dependent

signaling [reviewed in [65]]. In parallel, studies have also found that high levels of GIV expression

fuels multiple ominous properties of cancer cells, e.g., invasiveness, chemoresistance, stemness,

survival, etc., and is associated with poorer outcome in multiple cancers. Inhibition of GIV’s G

protein modulatory function has emerged as a plausible strategy to combat aggressive traits of

cancers [70] (reviewed in [35, 67]). These findings provide us a unique opportunity to investigate,

from a systems leve, how modulation of trimeric GTPase Gαi and Gαs by GIV downstream of

growth factors regulates cAMP and what impact might such regulation have on the aggressiveness

of cancers.
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In this study, we develop a mathematical model of cAMP signaling that is triggered

by ligand stimulation of EGFR, and to investigate how cAMP dynamics in cells is affected by

the GIV-Gαi/s and PDE axes. Further, we also sought to connect the findings from the cell-

based model to survival data from cancer afflicted patients by identifying the most consequential

variables within this signaling pathway. In doing so, this model not only interrogates the crosstalk

between two of the most widely studied eukaryotic signaling hubs [RTKs and G proteins], but

also reveals surprising insights into the workings of GIV-GEM and provides a mechanistic and

predictive framework for experimental design and clinical outcome.

Results and discussion

Phenomenological model reveals that GIV-associated timescales modulate

cyclic AMP dynamics

The emerging paradigm of non-canonical modulation of Gαi/Gαs proteins by growth

factor RTKs is comprised of several temporally and spatially separated components (Figure 2.1A).

We first developed a phenomenological model to identify the network topology of RTK-G protein-

cAMP signaling (Figure 2.1B). This network captures the key events of the steps shown in

(Figure 2.1A). Briefly, receptor (R) stimulation is modeled using a time-dependent function

S(t) to result in active receptor R∗. R∗ then acts on GIV at two time scales – τ1 for GIV-GEF

activation and τ2, for GIV-GDI activation. cAMP synthesis is directly proportional to the level of

internalized, endosomal receptor R∗i with a time scale of τ3. GIV-GDI inhibits the internalized

receptor and GIV-GEF inhibits cAMP production. Even though none of the components in this

model reflect actual biochemical species, the simplified model has the advantage of capturing the

key timescales of the events leading up to cAMP production from RTKs. Varying these timescales

alters the dynamics of GIV-GEF, GIV-GDI, and cAMP (Figure 2.1C, D, A.1E). Additionally, this
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model has the advantage of being parametrized by a small number of variables and parameters

(see SOM for details). Simulations from this model predict that GIV-GEF activation is rapid,

whereas GIV-GDI activation is slow (Figure 2.1C). This temporal response is observed for a

wide range of parameters with the internalization and degradation rates, k4,k5, as leading order

contributors across most time points (Figure A.1). τ delays are shown to have lower contributions

in cAMP response then the major rates, k4,k5 (Figure A.1). cAMP dynamics predicted from this

simple model show a delayed increase in cAMP corresponding to the time scale of GIV-GDI

in Figure 2.1D. Furthermore, changing the receptor density shows that the presence of GIV

suppresses the cAMP production; the role played by GIV in modulating cAMP is stronger in

higher RTK concentrations because of the competing effects of Gαs and Gαi. This leads us to

arrive at two conclusions: First, the network topology in the toy model, with GIV as the central

regulator, is able to capture cAMP dynamics. Second, RTK copy number alone is an incomplete

determinant of cAMP; RTK and GIV together determine cAMP concentrations.

Construction and experimental validation of a compartmental model for

non-canonical G-protein signaling triggered by growth factors

Although the phenomenological model in (Figure 2.1) allowed us to identify key features

of RTK-G protein-cAMP signaling, it does not contain enough information to compare simulation

output against experimental measurements. Therefore, the topology model was expanded to a

larger biochemical reaction network such that the modules reflected the timescales τ1, τ2, and τ3

within a larger network model (Figure 2.2A). The model consists of four modules – Module 1

focuses on the well-established dynamics of EGFR [71–73] (Table A.4); Module 2 represents the

dynamics of the formation of the EGFR·GIV·Gαi complex, representing τ1 (Table A.5; within

this complex GIV-GEM serves as a GEF for Gαi); Module 3 represents the dynamics of the

formation of the Gαs·GIV-GDI complex, representing τ2 for GEF to GDI conversion (Table A.6;
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within this complex GIV-GEM serves as a GDI for Gαs); and Module 4 represents the dynamics

of cAMP formation and represents τ3 for Gαs activation by internalized receptors (Table A.7,

A.8).

Within each module, the biochemical reaction network includes several known interactions

curated from the literature along with kinetic parameters (see Tables S2-S6 for references). How-

ever, to our knowledge, no mathematical models of GIV-GEM interactions within the RTK→G

protein→cAMP pathway exist. Therefore, we had to estimate kinetic parameters for certain

reactions in each module. Of the 76 kinetic parameters in the model, 57 parameters were from

the literature while 19 were fit to experimental data. We fit the model to the experimentally mea-

sured dynamics of the EGFR·GIV·Gαi complex (Figure 2.2B) and the Gαs·GIV-GDI complex

(Figure 2.2C). Because the actual concentration of this complex in cells is not known, and is

likely to vary from cell to cell, we analyzed peak times and fold change of these complexes.

The temporal dynamics of these normalized densities of both these complexes generated from

simulations were in good agreement with experimental measurements, as determined by PLA

and GST pulldown assays [42, 74] carried out in HeLa cells responding to EGF. We provide a

detailed discussion of parameter estimation, goodness-of-fit, and uncertainty quantification in later

sections. Our choice of experimental assays for validating the model and fitting parameters were

carefully chosen into consideration the strengths and weaknesses of each assay (see Methods).

We used this modular network to investigate the role played by GIV in regulating the dynamics

of EGFR, EGFR·GIV·Gαi complex, Gαs·GIV-GDI complex, and cAMP.

Biological prediction: Compartmentalized modulation of Gαi and Gαs by GIV-GEM gov-

erns EGF-triggered cyclic AMP dynamics

Because EGF/EGFR triggers activation of Gαi at the PM first, followed by activation of

Gαs on the endosomes later, production of cAMP must be a balance between the antagonistic
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actions of these two G proteins on membrane-bound ACs (Table A.7). We assumed that the

PM-pool of Gαi inhibits the AC→cAMP pathway at the PM. Similarly, because Gαs is activated

predominantly on endosomes and endosomal ACs [eACs] can be stimulated to synthesize cAMP

locally [75], we assumed that the endosomal-pool of Gαs likely stimulates the eAC→cAMP

pathway (Table A.7). To capture the dynamics of cAMP in our model network, we included such

compartmentalized G protein-AC interactions.

Our model predicted that the early inhibition of cAMP is due to the Gαi-mediated

inhibition of AC (the green regime) (Figure 2.2D); cAMP production is increased later due

to the activation of Gαs on the endosome (the blue regime) (Figure 2.2D). These dynamics

are consistent with previously published GIV-dependent cAMP dynamics, measured by FRET

[42]. While activation of GIV-GEF occurs earlier [within 5 min] at the PM, conversion of

GIV-GEF to GIV-GDI occurs later [15-30 min] when EGFR is already compartmentalized in

endosomes (Figure 2.1A); such temporally separated compartmentalized modulation of two

Gα-proteins with opposing effects on AC ensures suppression of cAMP at both early and later

times during EGF signaling [42]. Because GIV modulates both Gαi and Gαs in different

compartments and at different time scales, the model predicts that increasing GIV concentration

should dampen overall cAMP response to EGF, and that decreasing GIV concentration should do

the opposite (Figure 2.2D, compare GIV = 0.01 µM with GIV = 10 µM). These predictions were

validated experimentally by measuring cAMP in control (shControl) and GIV-depleted (shGIV;

>95% depletion by band densitometry, see Figure A.2E) cells at various time points after EGF

stimulation (Figure 2.2E) by a radioimmunoassay (RIA). We found that compared to control

cells, cellular levels of cAMP were always higher, both at early and late time points after EGF

stimulation. In fact, when superimposed, the model and experiment showed good agreement

throughout 60 min (Figure A.3, A.7, A.8). As expected, sensitivity analyses confirmed that

cAMP is sensitive to the initial concentrations of PDE and AC, and the reaction rates associated

with AC, internalization, PKA, and PDE (Tables A.14, A.17).
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To dissect what might be the relative contributions of the two G protein modulatory

functions of GIV [GEF versus GDI] on cAMP production, we investigated cAMP dynamics in

three conditions (Figure 2.2D) – 1) GEF-deficient but GDI-proficient (mimicked experimentally

by the GIV-S1764D/S1689D mutant, GIV-DD [42], 2) both GEF- and GDI-deficient (mimicked

experimentally by GIV-F1685A mutant, GIV-FA [42,76], and 3) GEF-proficient but GDI-deficient

(an in silico mutant because there is no known mutant yet that can mimic this situation in

experiments). In the first scenario, where GIV’s GEF function is selectively lost, but GDI function

is preserved, increase in cAMP concentration occurred early (Figure 2.2D, dashed cyan line) as

observed previously in cells expressing the GIV-DD mutant [42]. In the second scenario, where

both GEF and GDI functions were lost, increase in cAMP concentration occurred early and such

elevation was sustained (Figure 2.2D, dashed dark green line), as observed previously in cells

expressing the GIV-FA mutant [42]; this mirrored the profile observed in GIV-depleted cells

(Figure 2.2D, solid green line). Finally, in the third scenario, selective blocking of GIV’s GDI

function using an in silico mutant resulted in an early decrease followed by a prolonged increase

in cAMP concentration (Figure 2.2D, dot-dashed blue line).

While the dynamics of cAMP production provide insight into how different conditions

lead to changes in concentration, the area under the curve [AUC] for cAMP concentration provides

information critical for decision-making, buffers from time scale variations, and averages the

effect of fluctuations in concentrations [77]. AUCs for cAMP at different time points were

calculated to investigate how the cumulative cAMP signal varies under different GIV conditions

(Figure 2.2F). For the control bars (in orange), we observe that at the 5 min time point, the AUC

is negative. This represents the initial decrease in cAMP concentration. The AUC becomes

positive and increases by 15 min, signifying a net accumulation of cAMP. The AUCs look similar

in the GIV-FA mutant [defective in both GDI and GEF functions] as well as in the absence of GIV,

i.e., it increases progressively through 60 min (Figure 2.2F, compare the light green and dark

green bars). If GIV levels are increased (10 µM , red bars) the AUCs remain negative throughout,
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showing the sustained nature of the dampening effect of GIV on cAMP. This dampening effect

on cAMP is achieved primarily via activation of Gαi in the short term [GEF regime] and via

inhibition of Gαs in the long term [GDI regime]. These findings are in keeping with the previously

suspected role of GIV in reducing cellular cAMP, but the model reveals the relative contributions

of GIV’s GEF and GDI functions separated in time and space at a resolution that is experimentally

unachievable.

Biological prediction: GIV dampens EGF/EGFR-triggered cyclic AMP production

Common wisdom from canonical signaling suggests that an increase in stimulus through

receptor copy number leads to a proportional increase in cAMP concentration. Therefore, we

would expect that an increase in EGFR density would lead to an increase in cAMP concentration.

But the phenomenological model indicated that cAMP concentration depends on both the receptor

copy number and GIV concentration, Figure 2.1D. We investigated how GIV concentration

affects cAMP dynamics with varying EGF/EGFR numbers. When GIV concentrations were

set to 0.01 µM in the model (to simulate cells that don’t have GIV), increased input signals

triggered increased output signals (Figure 2.3A, A.10); this effect was even more pronounced in

the absence of PDE (Figure 2.3E). This proportional response was lost when GIV concentrations

were set to high levels (GIV = 10 µM Figure 2.3B), i.e., increased input signals failed to initiate

proportional output signals; this effect was virtually unchanged and robustness was preserved

despite the absence of PDE (Figure 2.3F). These effects are also evident by comparing the AUCs

across the simulated conditions (Figure 2.3C, G).

To test these predictions, we measured cAMP by RIA in control and GIV-depleted HeLa

cells as in Figure 2.2E, except in this instance we measured only at 60 min, but with varying doses

of EGF [experimental equivalent of variable input in simulations]. To recapitulate simulations in

the presence or absence of PDE, assays were carried out in parallel in the presence or absence of 3-
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isobutyl-1-methylxanthine (IBMX), an inhibitor of PDE (Figure 2.3D, H). In the presence of GIV,

cAMP production is robustly suppressed in response to increasing EGF ligand (Figure 2.3G).

In the absence of GIV, cAMP production is sensitive to increased EGF, an effect that is further

accentuated when PDEs are inhibited with IBMX (Figure 2.3K). Taken together, these results

indicate that GIV primarily serves as a dampener of cellular cAMP that is triggered downstream

of EGF. Unlike PDE, which reduces cellular cAMP by degrading it, GIV does so by fine-tuning

its production by G proteins and membrane ACs. Thus, our model identified that GIV is a critical

determinant of cAMP concentrations in response to EGFR signaling.

Model reveals that GIV-GEM may serve as a tunable valve for cAMP flux;

high GIV implies low flux, whereas low GIV implies high flux

In order to quantify the extent of crosstalk between EGFR and GIV, we conducted

simulations for a wider range of EGFR [36-1800 molecules/µm2] and GIV concentrations

[0.01-10 µM] and calculated the AUC for the cAMP dynamics (Figure 2.4A, B, A.11). In a

low-EGFR state, varying GIV concentrations only resulted in cAMP changes within a narrow

range; however, in a high-EGFR state varying GIV concentrations achieved a larger variance in

cAMP (Figure 2.4A). To further dissect this space, we plotted the variations in AUC for EGFR

and GIV variations (Figure 2.4B). The value of AUC corresponding to the control (GIV 1µM

and EGFR 240 molecules/µm2, Table A.11) is approximately 0.45 µM ·min and is denoted by

the yellow color and marked as a black solid line for different EGFR and GIV concentrations in

the heat map; elevated cAMP level is denoted by green and reduced cAMP by red. We observed

that increasing EGFR increased cAMP AUC in the setting of low GIV concentrations. But

when GIV concentrations are high, cAMP AUC remained low regardless of increasing levels of

EGFR, indicating that the impact of increasing GIV on cAMP AUC was higher than the impact

of increasing EGFR. Therefore, GIV levels in conjunction with EGFR levels, can be thought of
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as key determinants and high GIV in the setting of high EGFR may facilitate tonic suppression of

cAMP levels regardless of pathway stimulation.

Another factor that plays an important role in regulating cAMP levels is PDE. We next

conducted simulations for different GIV (0.01 to 1 µM) and PDE (0.04 to 2.5 µM) concentrations

to identify how the crosstalk between these two variable components regulates cAMP levels.

Within each category of PDE concentration [low vs high PDE states; (Figure 2.4C, A.12), cAMP

levels are the highest when GIV levels are lowest, and vice versa. In the setting of low PDE

activity, the impact of changing GIV was the highest, i.e., the range of cAMP response was the

widest. By contrast, in the setting of high PDE activity, the impact of changing GIV on the cAMP

levels was minimal. These effects can be seen when comparing the AUCs for the low vs high

PDE states, calculated over 1 hr (Figure 2.4C). While there is no significant change in the AUC

with increasing GIV in a high-PDE state (red bars), increase in GIV leads to a decrease in cAMP

in PDE state (green bars). That is, for a given GIV concentration, the effect of PDE is always

stronger. Furthermore, a heat map of cAMP AUCs (Figure 2.4D) shows the interplay between

PDE and GIV concentrations over a wide range. For low PDE concentration, increasing GIV

decreases cAMP AUC, but the cAMP AUC is well above the yellow value (marked as control).

However, increase in PDE concentration leads to a dramatic decline in cAMP AUC even when

GIV levels are low; this condition is likely to result in futile cycling [high cAMP production

due to low GIV and high cAMP clearance due to high PDE signaling]. Together, these findings

indicate that the effect of GIV concentration on cAMP levels in cells is discernible only when

PDE activity is low. Because high PDE state virtually abolishes all effects of GIV-dependent

inhibition of cAMP production, we also conclude that in this GIV-PDE crosstalk, PDE is a

dominant node and GIV is the subordinate node.

Our network model has helped us identify key design principles of the action of GIV-

GEM within the EGF/EGFR signaling circuit by enabling construction of a map to identify
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the relationship between the key components– input[EGFR]→valve[GIV]→output[cAMP]→

sink[PDE] (Figure 2.4E), validate the impact of such relationship with experimental assessment

of cellular cAMP (Figure 2.2, 2.3) and interpret the role of each component in the context of

network architecture. That there is a complex, non-linear and non-intuitive crosstalk between

EGFR, GIV, and PDE in regulating cAMP levels is evident from the fact that the isoplanes, which

capture the same cAMP AUC are not flat but are bent surfaces in this space. It appears that

variation of cellular concentration of functionally active GIV-GEM molecules serves as the most

tunable component that regulates the flow of signal from EGF/EGFR [input] to cAMP [output]

(Figure 2.4E). At low concentrations of GIV, such as those found in normal tissues, cAMP levels

are sensitive to increased signal input via EGF/EGFR, i.e., higher input elicits higher output. Such

sensitivity is virtually abolished and replaced by robustness at higher GIV concentrations found

in a variety of cancers, i.e., higher input fails to elicit higher output and instead, cAMP levels stay

at low and relatively constant. This 3-way interplay between EGFR, GIV and PDE is obvious

also in experimental data derived from HeLa cells (Figure 2.3D, H) suggesting that GIV acts a

tunable valve for the input-output relationships that govern RTK-G protein-cAMP signaling.

Clinical predictions from the model – from math to man

The signaling network model built using dynamic protein-protein interactions and enzy-

matic reactions during signal transduction predicts that GIV dampens cAMP signaling in response

to EGF/EGFR stimulation over a 60-min time course [35,65–67]. We chose to stick to 60 min

because this is the time period when almost all the tyr-phosphorylated EGFR pool disappears,

which coincides with the entry of EGFR into late endosomes, where ~60 % total EGFR remains

while the remaining 40% is degraded in the endosomes [2]. In fact, modeling studies using a

plethora of experimentally determined parameters [3] have concluded that transient responses

exhibit pronounced maxima, reached within 15-30 sec of EGF stimulation and followed by a
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decline to relatively low (quasi-steady-state) levels in all parameters tested at 60, 90 and 120

minutes; findings emphasized that ~60 min is the earliest time that is reflective of steady-state,

whether it is immediate post-receptor event or gene change response or cellular phenotypes. We

next asked if we could relate this prediction to patient clinical data for survival which reflect a

steady-state that evolves over years, not just weeks or months. Numerous prior studies [28–31]

have shown that low cAMP facilitates several ominous tumor cell traits, and hence, is permissive

to cancer progression and worse outcome. Consistently, numerous studies have confirmed that

high GIV levels (which our model predicts will lead to a tonic suppressed cAMP state regardless

of the degree of stimuli) are generally associated with aggressive tumor cell traits and poorer

clinical outcomes.

We begin by redefining the input and output for our system. The inputs for these analyses

are EGFR mRNA, GIV mRNA, and PDE mRNA, which we use as a surrogate measure of

copy number of proteins because others have shown that mRNA can indeed predict protein copy

numbers per cell [78]and that mRNA abundance positively correlates with protein levels in healthy

and cancer tissues [79]. The output is patient survival probability over time, an outcome which

reflects tumor’s aggressiveness, which we use as a surrogate measure of low or suppressed cAMP

states. Then, the prediction from the signaling model can be recast as the following hypotheses

– EGFR gene-expression levels or PDE gene-expression levels, which by themselves are yet to

emerge as clinically useful prognosticators of survival, should become important determinants

when analyzed within context of GIV. We formulate and test two hypotheses in the following

sections.
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Concurrent upregulation of both GIV and EGFR maximally reduces cAMP and carries

poor prognosis in colorectal tumors

To determine the impact of crosstalk between EGFR and GIV on clinical outcome,

we compared the mRNA expression levels to disease-free survival (DFS) in a data set of 466

patients with colorectal cancers (see Methods). Patients were stratified into negative (low) and

positive (high) subgroups with regard to GIV (CCDC88A) and EGFR gene-expression levels

with the use of the StepMiner algorithm, implemented within the Hegemon software (hierarchical

exploration of gene-expression microarrays online; [80]) (Figure 2.5A). Kaplan-Meier analyses

of DFS over time showed that among patients with high EGFR, expression of GIV at high levels

carried a significantly poorer prognosis compared to those with low GIV (Figure 2.5B, A.13).

Among patients with low EGFR, expression of GIV at high or low levels did not impact survival

(Figure 2.5C, A.13). Among patients with low EGFR, expression of GIV at high or low levels did

not impact survival (Figure 2.5C). That the impact of EGFR-GIV interplay on patient survival are

significant in a rigorous Kaplan-Meier analysis of a sufficiently large cohort of patients, despite

numerous independent variables indicates that the interplay between EGFR and the G protein

modulator, GIV is an important determinant of cancer progression. More importantly, patients

with tumors expressing high EGFR did as well as those expressing low EGFR provided the levels

of GIV in those tumors was low. These findings reveal that 1) high levels of EGFR signaling does

not, by itself, fuel aggressive traits or carry a poor prognosis, but does so when GIV levels are

concurrently elevated; 2) in tumors with low GIV, the high EGFR signaling state may be critical

for maintaining high cAMP levels and therefore, critical for dampening several aggressive tumor

traits.

23



Concurrent downregulation of both GIV and PDE activity maximally increases cAMP and

carries a good prognosis in colorectal tumors

Next, to determine the impact of crosstalk between various PDE isoforms and GIV

on clinical outcome, we carried out using the StepMiner algorithm, implemented within the

Hegemon software on the same set of 466 patients with colorectal cancers as before, except

patients were now stratified into low and high subgroups with regard to GIV (CCDC88A) and

PDE gene-expression (Figure 2.5D-F). Among the 11 known PDE isoforms, we evaluated those

that have previously been linked to colon cancer progression [PDE5A (Figure 2.5D-F), 4A and

10A (Figure A.13)]. Kaplan-Meier analyses of DFS over time showed that although expression

of GIV at high levels was associated with disease progression and poorer survival in both low and

high PDE groups, the risk of progression was not statistically significant in the high-PDE state

(Figure 2.5E) but highly significant in the low-PDE state (Figure 2.5F). Thus, the low GIV/low

PDE signature carried a better prognosis compared to all other patients. Consistent with the fact

that cAMP is a potent anti-tumor second messenger, these findings reveal that – 1) high levels of

PDE signaling may not be a bad thing, especially when GIV levels are low; 2) in tumors with

low PDE signaling, the low GIV signaling state may serve as a key synergy for driving up cAMP

levels and therefore, critical for dampening several aggressive tumor traits.

Discussion

Systems biology aims to understand and control the properties of biological networks;

experimental data collected using top-down approaches are used to construct in silico bottom-up

models, with the ultimate goal of generating experimentally testable predictions. In this work,

we used a systems biology approach to construct the first-ever compartmental network model

of growth-factor triggered cAMP signaling, and identified two key features of non-canonical G
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protein signaling via GIV-GEM.

First, we identified that compartmentalized RTK signaling at the PM and on the endo-

somes directly imparts a delayed and prolonged cAMP dynamics lasting over an hour, which is

distinct from the canonical GPCR/G protein pathway; GPCRs initiate more rapid and finite cAMP

dynamics in the order of msec to min (Figure A.5) [81]. In the case of GPCRs, the PM-based

signals are believed to be the dominant component of the overall cAMP dynamics with signal at-

tenuation during endocytosis (Figure A.5) [82]. By contrast, in the case of RTK-mediated cAMP

dynamics via GIV-GEM, the post-endocytic (i.e., endosomal signaling) component constitutes a

dominant component of the overall cAMP dynamics that are triggered by RTKs (Figure A.5).

What may be the impact of these distinct temporal features on RTK signaling? It is noteworthy

that RTK-triggered cAMP dynamics that are modulated by GIV-GEM spans 5 min to > 60 min,

which coincides with other RTK signaling, trafficking events and transcriptional response, i.e.,

the major temporal domain of RTK activity, the so-called “window of activity” [83]. The 5 min

to 1 h time scale encompasses the time of peak mRNA expression of many immediate-early

genes (which peak at 20 min) and delayed-early genes (which peak between 40 min and 2 hours);

these transcriptional targets not only generate feedback within the RTK-signaling cascade, but

also set up crosstalk with other signaling pathways [83, 84]. In fact, GIV-GEM has indeed been

found to modulate myriad downstream signaling pathways from the activity of small GTPases,

kinases and phosphatases, to transcription factors [reviewed in [65]]; how GIV-GEM has such a

widespread and broad impact had remained a mystery. It is possible that such broad impact could

stem from GIV’s ability to modulate the cellular levels of the versatile second messenger cAMP

in a sustained manner throughout the window of RTK activity although other mechanisms might

also be at play.

Second, our model identifies that GIV-GEM acts a tunable valve for cAMP by operating

at the knot of a bow-tie architecture. Because layering of control of [information] flow is believed
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to conform to an hourglass architecture [85], in which diverse functions and diverse components

are intertwined via universal carriers, GIV’s ability to control the universal carrier, cAMP, could

explain why GIV has been found to be important for diverse cellular functions and impact diverse

components [65].

Third, our work also provides valuable clues into the impact of increased robustness at

high-GIV states in cancers. Robustness in signaling is an organizing principle in biology, not

only for the maintenance of homeostasis but also in the development and progression of chronic

debilitating diseases like cancers; it is widely accepted that tumor cells hijack such robustness to

gain growth and survival advantage during the development of cancer [83, 86, 87]. Consistently,

we found that GIV mRNA levels and DNA copy numbers are invariably higher across multiple

cancers when compared to their respective normal tissue of origin (Figure A.14, A.15). Because

GIV has been found to regulate several harmful properties of tumor cells across a variety of

cancers (multiple studies, reviewed in [67]), it is possible that the high-GIV driven robustness

maintains cAMP at low constant levels despite increasing input signals as a tumor evolves when

targeted by biologicals or chemotherapy agents. Such a phenomenon could be a part of a higher

order organizing principle in most aggressive cancers, and therefore, justify GIV as a potential

target for network-based anti-cancer therapy.

Furthermore, the crosstalk between EGFR and GIV the we define here, and its impact

on clinical outcome provide a plausible explanation for some long-standing conundrums in the

field of oncology. Deregulated growth factor signaling (e.g., copy number variations or activating

mutations in EGFR, increased growth factor production/concentration) is often encountered and

targeted for therapy in advanced cancers [68]. Although activating EGFR mutations, copy number

variations, and levels of EGFR protein expression seem to be closely related to each other [88],

the prognostic impact of EGFR expression in cancers has been ambiguous [89]. In some cancers,

high EGFR copy numbers are associated with poor outcome [90, 91]; in others, high EGFR
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expression unexpectedly favors better overall and progression-free survival [92–94]. Thus, due

to reasons that are unclear, not all tumors with high EGF/EGFR signaling have an aggressive

clinical course. Dysregulated GIV expression, on the other hand, is consistently associated with

poorer outcome across a variety of cancers [66]. Our findings that GIV levels in tumors with

high EGFR are a key determinant of the levels of the anti-tumor second messenger cAMP, have

provided a potential molecular basis for why elevated EGFR signaling in some tumors can be

a beneficial in some, but a driver of metastatic progression in others. Because cAMP levels in

tumor cells and GIV levels have been previously implicated in anti-apoptotic signaling [95] and

the development of chemoresistance [96], it is possible that the GIV-EGFR crosstalk we define

here also determines how well patients may respond to anti-EGFR therapies, and who may be at

highest risk for developing drug resistance. Whether such is the case, remains to be evaluated.

Similarly, in the context of PDE, it has been demonstrated that overexpression of PDE isoforms

in various cancers leads to impaired cAMP and/or cGMP generation [24]. PDE inhibitors in

tumour models in vitro and in vivo have been shown to induce apoptosis and cell cycle arrest in a

broad spectrum of tumour cells [97]. Despite the vast amount of preclinical evidence, there have

been no PDE inhibitors that have successfully translated to the cancer clinics. For example, based

on the role of cAMP in apoptosis and drug resistance, our model predicts that those with low

GIV/high EGFR [high cAMP state] are likely to respond well to anti-EGFR therapy inducing

tumor cell apoptosis, whereas those with high GIV/high EGFR [low cAMP state] may be at

highest risk for developing drug resistance. Similarly, our finding that low PDE levels in the

setting of high GIV carries a poor prognosis predicts that the benefits of PDE inhibitors may be

limited to patients who have low GIV expression in their tumors. Whether such predictions hold

true, remains to be investigated.

27



Model Limitations

Although our model captures experimentally observed time courses and generates testable

hypotheses, it has a few major limitations. From a model development standpoint, the com-

partmental well-mixed model we used does not account for the spatial location and geometries

of the different compartments and cell shape, many of which can affect the dynamics of cell

signaling [98, 99]. Furthermore, a major concern is the estimation of kinetic parameters for

the different reactions. Of the 76 kinetic parameters in our model, a large majority (57) were

from models published before. 19 parameters, all of which are related to GIV interactions with

internalization, Gαs , and Gαi were estimated from experimental data. The uncertainty in some

of these parameters was quite large (Figure A.6). While sloppy parameter space is a problem

common to many signaling networks [100], in this case, it is exacerbated by the fact that the model

we have constructed is the first of its kind for this pathway. The issue with kinetic parameters

also reflects the fact that the field of RTK-G protein regulation is relatively young and makes the

case for more quantitative investigations of GIV-GEM modulated signaling. By themselves, these

facts can lower the confidence in the exact temporal dynamics predicted by the model. However,

our confidence in the model is bolstered by the timescales predicted by the phenomenological

model and implications for patient survival data.

Additionally, our model focuses exclusively on cAMP as output signal and does not

account for other EGF/EGFR-driven signaling pathways that are known to regulate cellular

responses such as the Ras-Raf-MEK-ERK pathway. This pathway is known to modulate cAMP

and be modulated by GIV via the ability of the latter to affect adaptor protein recruitment to the

cytosolic tail of EGFR [41]. However, the vast parameter space associated with model building

indicates that this pathway would require its own study. In addition, the dynamics of ERK1/2

activation on the endosomal structure would have to be explored due to GIV-GEM’s interaction

with endosomal maturation through Gαs. The model expansion would lead to an even larger
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parameter space, with less available data.

Moreover, our model focuses exclusively on EGFR and does not account for the diverse

classes of receptors [multiple RTKs, GPCRs, integrins, etc.] that also use GIV to access and

modulate G proteins. Model validations used HeLa cells not only because this is the most common

model cell line that has been used exhaustively to study both GIV and EGFR biology by us and

others, but also because it has a modest level of expression for both EGFR and GIV. Despite

these restrictions, we can identify some fundamental features of growth factor-triggered cAMP

signaling for the first time using systems biology, including the role of compartmentalization,

cross-talk between EGFR and GIV, GIV-dependent robustness within the RTK-cAMP signaling

axis, and cross-talk between PDE and GIV in controlling cAMP concentration. Although there

exists many different signaling pathways downstream of EGFR. GIV-GEM is the only direct

link between EGFR and G Proteins to date. Due to the high congruency between the model and

validation this leads to two possibilities: either GIV-GEM interaction operates on a standalone

basis, or there exist additional feedback loops where GIV-GEM acts as a leading order contributor

(Figure A.9).

Conclusions

We conclude that GIV utilizes compartmental segregation to modulate the dynamics of

RTK→G protein→cAMP signaling and confers robustness to these dynamics by functioning

as a tunable control valve. Future systems efforts will build on this model to unravel further

exciting features of GIV as a critical hub for signaling regulation at the knot of a bowtie [101]

and elucidate the hidden complexity that arises from network architecture in non-canonical G

protein signaling.
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Methods

Modular construction of the reaction network

A biochemical network model was constructed to capture the main events in the signal

transduction cascade from EGF to cAMP through GIV (Figure 2.2A). We constructed the

compartmental computational model in a modular manner, where each module represents key

events within the network. . The model was trained using key data sets published over the past

decade on GIV-GEM, most notably, those that defined the spatio-temporal kinetics of EGFR·GIV,

EGFR·GIV·Gαi interactions [41, 47, 70], dynamics of phosphoregulation of GIV-GEM [74, 102],

and most importantly, the dual modulation of Gαi/s by GIV-GEM that is brought about by

temporally and spatially separated phosphorylation events [42]. Last, but not least, we also used

published role of Gαs in the feedback regulation of endocytic downregulation of EGF/EGFR

signaling [40].

The model contains 76 kinetic parameters. 19 parameters were fit with varying confidence

values(Figure A.6). Each kinetic parameter used in this model originated from peer-reviewed

publications of computational models or from experimental measurement. The EGF/EGFR and

trimeric GTPase related kinetic parameters were taken from work done by multiple independent

groups, often cross-validated across groups engaged in studying each of these paradigms/pathways.

For the GIV-related parameters that originate at the interface between the two pathways (EGFR

and G proteins) we have used [42].

We note here that while there are many more biochemical components involved in

signaling from EGF to cAMP, our choice of components was based on experimentally measured

temporal dynamics of GIV-GEF and GIV-GDI functions. The modules are as follows.

Module 1 consists of EGFR activation through EGF and internalization dynamics leading
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degradation due to the Gαs·GIV-GDI complex. This module includes the phenomenon that

endosomal maturation and EGFR degradation in lysosomes requires the presence of inactive

Gαs [GDP-bound state] [40]. The presence of Gαs in the inactive state promotes maturation of

endosomes, shuts down the mitogenic MAPK-ERK1/2 signals from endosomes and suppresses

cell proliferation [40]. In the absence of Gαs or in cells expressing a constitutively active

mutant Gαs, EGFR stays longer in endosomes, MAPK - ERK1/2 signals are enhanced and cells

proliferate [40] (Figure A.5).

Module 2 contains EGFR-mediated activation of p35 and downstream activation of Gαi

though GIV-GEM; the fromer activated CDK5 which phosphorylates GIV at S1764 allowing the

ability to activate Gαi [102]. This phosphoevent does not impact GIV’s ability to inhibit Gαs [42]

(Figure A.2B).

Module 3 contains EGFR-mediated activation of PLC-γ and downstream activation of

PKC-θ; the latter phosphorylates GIV at S1689 and terminates its ability to activate Gαi [102].

This phosphoevent does not impact GIV’s ability to inhibit Gαs [42]. Consequently, when it

comes to G protein modulatory functions of GIV, phosphorylation by PKC-θ converts GIV-GEF

into GIV-GDI (Figure A.2D).

Module 4 contains the dynamics of the AC and how it synthesizes cAMP, leading to

downstream effectors and controllers (Figure A.2C) we currently only consider PDE feedback for

cAMP reduction. Overall, the model contains 56 reactions. The complete set of reactions for each

of the modules, their parameters and interactions, and the list of assumptions underlying network

construction are provided as online supplementary materials (Tables A.4 – A.8, Figure A.8).

We assumed that the signaling components were present in large-enough quantities, and

different concentrations of each component were computed to explore how varying expression

levels in different tissues/cell types impact the signaling pathway. Such assumption allowed us
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to generate a deterministic dynamical model. The model contains six different compartments:

(i) PM, (ii) extracellular space, (iii) cytosol, (iv) endosomes, and (v) endosomal membranes.

It was assumed that each compartment is well-mixed and fluxes were used to depict transport

across the different compartments so that the dynamic changes in the concentrations of the

different components can be tracked. Each interaction was modeled as a chemical reaction either

using mass-action kinetics for binding-unbinding reactions, and Michaelis-Menten kinetics for

enzyme-catalyzed reactions, as is standard for models such as this [103, 104].

The network of interactions was constructed using the Virtual Cell modeling platform

and was later transferred to COPASI (version 4.24, build 197) (http://www.nrcam.uchc.edu,

http://copasi.org/). We chose this platform because it is a user-friendly computational cell biology

software, which allows us to generate the system of differential equations based on the input

reactions and has been used successfully to model signaling networks of various sizes with a

high degree of numerical accuracy [105–108]. The model was later exported into COPASI to

leverage the inbuilt fitting techniques. Also, the Virtual Cell and COPASI platform has built-in

capabilities to conduct dynamic sensitivity analysis, which is an important aspect of dynamic

systems modeling. As we discuss in later sections, we use this capability to identify sources of

system robustness and sloppiness.

Characteristics of the signaling cascade

In order to characterize the dynamics of the different protein activities, we use the area

under the curve for the concentration versus time curve [77]. The area under the curve gives the

total signal activated over the time of observation and for the ith species is given by AUCi in Eq.

2.1. This gives a measure of the total signal for different conditions.

AUCi =
∫

∞

0
Xi(t)dt (2.1)
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Comparison with experimental data

Raw data corresponding to Figure 1C and D of [42] was used for model fitting. The data

was normalized such that the initial value was 1. Parameter fitting using COPASI [109] was used

to then match the normalized experimental data against the model output, with corresponding

expected initial values based on the experimental method. Goodness of fit between experimental

values and model output was determined using a root mean squared error (RMSE).

Choice of assays for model validation

We chose to validate our temportal-spatial model for the dynamic assembly of the

EGFR·GIV·Gαi

and Gαs·GIV-GDI complexes using previously published protein-protein interaction assays car-

ried out in cells responding to EGF [42]. For EGFR·GIV·Gαi complexes that are formed within

5 min after ligand stimulation at the plasma membrane, we modeled the GST pulldown assays

carried out using GST-GIV-CT that is expressed in cells (and hence, phosphomodified in response

to EGF stimulation) and endogenous Gαi. The findings of these pulldown assays mirrored

observations by FRET-based [47] and co-IP assays [41,43]. For Gαs·GIV-GDI complexes that are

formed later and on endosomes, we modeled the proximity-ligation assays (PLA) on endogenous

GIV and Gαs proteins, which provide a crude estimate of complexes on endomembranes.

Dynamic parametric sensitivity analysis

Since a continuing challenge in building computational models of signaling networks

is the choice of kinetic parameters, we conducted a dynamic parametric sensitivity analysis.

This sensitivity analysis of the model was performed with the goal of identifying the set of

parameters and initial concentrations that the model response is most sensitive to. The log

33



sensitivity coefficient of the concentration of the ith species Ci, with respect to parameter k j is

given by [110, 111]

Si, j =
∂ lnCi

∂ lnk j
(2.2)

Since we are studying a dynamical system and not steady state behavior, we used COPASI

to calculate the local log sensitivity at the 5, 15, 30, and 60 minute points (Figure A.4). The

resulting values give information about the time dependence of parametric sensitivity coefficients

for the system at those points. The variable of interest, Ci is said to be robust with respect

to a parameter k j if the log sensitivity is of the order 1 [110]. We refer the reader to [110,

111] for a complete introduction to dynamical sensitivity analysis. We conducted dynamic

sensitivity analysis for all the kinetic parameters, initial concentrations of the different species,

and compartment sizes in the model (Figure A.4). The variation (delta factor) used was 0.001

with a delta minimum of 1x10−12; for a value X, S∈ [0.999X ,1.001X ]. Sensitive parameters or

corresponding outputs of interest (cAMP, Gαs·GIV-GDI, EGFR·GIV·Gαi) are reported in Tables

S12-S18.

Measurement of cAMP

HeLa cells were serum starved (0.2 % FBS, 16 h) and incubated with isobutylmethylxan-

thine (IBMX, 200 µM, 20 min) followed by EGF. Stimulation was carried out either using fixed

EGF concentrations followed by assessment of cAMP at various time points (as in Figure 2.3B)

or using varying EGF concentrations followed by an assessment of cAMP at 60 min (as in Fig-

ure 2.3F-J). Reactions were terminated by aspiration of media and addition of 150 µl of ice-cold

TCA 7.5% (w/v). cAMP content in TCA extracts was determined by radioimmunoassay (RIA)

and normalized to protein [(determined using a dye binding protein assay (Bio-Rad)] [65, 112].
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Data is expressed as fmol cAMP / µg total protein.

Stratification of colon cancer patients in distinct gene-expression subgroups

and comparative analysis of their survival outcomes

The association between the levels of GIV (CCDC88A) and either EGFR or PDE mRNA

expression and patient survival was tested in cohort of 466 patients where each tumor had

been annotated with the disease- free survival (DFS) information of the corresponding patient.

This cohort included gene expression data from four publicly available NCBI-GEO data-series

(GSE14333, GSE17538, GSE31595, GSE37892) [113–116], and contained information on 466

unique primary colon carcinoma samples, collected from patients at various clinical stages (AJCC

Stage I-IV/Duke’s Stage A-D) by five independent institutions: 1) the H. Lee Moffit Cancer Center

in Tampa, Florida, USA (n = 164); 2) the Vanderbilt Medical Center in Nashville, Tennessee,

USA (n = 55); 3) the Royal Melbourne Hospital in Melbourne, Australia (n = 80); 4) the Institut

PaoliCalmette in Marseille, France (n = 130); 5) the Roskilde Hospital in Copenhagen, Denmark

(n = 37). To avoid redundancies (i.e. identical samples replicated two or more times across

multiple NCBI-GEO datasets) all 466 samples contained in this subset were cross-checked to

exclude the presence of duplicates. A complete list of all GSMIDs of the experiments contained

within the NCBI-GEO discovery dataset has been published previously [80]. To investigate the

relationship between the mRNA expression levels of selected genes (i.e. CCDCDDC, Wnt5a,

EGFR and FZD7) and the clinical outcomes of the 466 colon cancer patients represented within

the NCBI-GEO discovery dataset, we applied the Hegemon software tool [80]. The Hegemon

software is an upgrade of the BooleanNet software [117], where individual gene-expression

arrays, after having been plotted on a two-axis chart based on the expression levels of any two

given genes, can be stratified using the StepMiner algorithm and automatically compared for

survival outcomes using Kaplan-Meier curves and log-rank tests. Since all 466 samples contained
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in the dataset had been analyzed using the Affymetrix HG-U133 Plus 2.0 platform (GPL570), the

threshold gene-expression levels for GIV/CCDC88A, PDE and EGFR were calculated using the

StepMiner algorithm based on the expression distribution of the 25,955 experiments performed on

the Affymetrix HG-U133 Plus 2.0 platform. We stratified the patient population of the NCBI-GEO

discovery dataset in different gene-expression subgroups, based on either the mRNA expression

levels of GIV/CCDC88A alone (i.e. CCDC88A neg vs. pos), PDE alone (i.e., PDE neg vs.

pos), EGFR alone (i.e. EGFR neg vs. pos), or a combination of GIV and either EGFR or PDE.

Once grouped based on their gene-expression levels, patient subsets were compared for survival

outcomes using both Kaplan-Meier survival curves and multivariate analysis based on the Cox

proportional hazards method.
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Figure Legends
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Figure 2.1: An emerging paradigm for modulation of cellular cAMP by growth factors.
(A) A schematic showing the compartmental features of Gαi and Gαs modulation downstream
of EGFR, based on previously published work [35, 40, 42]. (B) A circuit diagram of the
phenomenological model for non-canonical G protein→cAMP axis that is initiated by EGFR
through GIV-GEM’s action on Gαi (inhibits AC) and Gαs (activates AC). Red lines indicate
inhibition and black lines indicate activation. (C-D) Simulations for a set of 5000 random
parameters for the network shown in B. (C) Dynamics of GIV-GEF and GIV-GDI activity from
the model presented in (B). Lognormal standard deviations for GEF and GDI are shown in gray,
with the black line showing the mean. (D) Dynamics of cAMP concentration from the model
presented in (D). Lognormal standard deviations for GEF and GDI are shown for different
receptor densities (R=0.1, 1, 10) in the presence (yellow line) and absence of (green line) GIV.
Sensitivities of the model across all simulation time are shown in Figure A.1 for both GIV(A)
and no GIV cases (B)
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Figure 2.2: Dynamics of growth factor triggered cAMP signaling via GIV. (A) A reaction
network model showing the different signaling nodes and connections from EGFR to the
cAMP→PKA signaling axis. Solid lines indicate a binding interaction; interrupted lines indicate
enzymatic reaction. The color key (right, boxed) denotes the different cellular compartments.
(B) Simulations of dynamics of the formation of the EGFR·GIV·Gαi complex, shown as the
normalized membrane density, based on network module in (A). Experimental data was obtained
from Figure 1D and S1 of [42] . (C) Dynamics of the formation of the Gαs·GIV-GDI complex,
a prerequisite event for inhibition of Gαs by GIV, were simulated based on the network diagram
shown in (A). The membrane density of this complex was normalized to its initial value.
Experimental data were obtained from Figure 1C of [42]. (D) Simulations of cAMP dynamics
in response to EGF stimulation showing a dip in cAMP during the early phase 0-5 min phase
(green region) and a delayed increase at approximately 10-60 min phase (blue region). These
dynamics are dependent on GIV concentration; yellow line (control GIV in the model), red
(high GIV), and green (low GIV). Three other conditions are also shown: 1) GIV in the absence
of its GEF effect on Gαi (the GIV-DD mutant), 2) in the absence of both its GEF and GDI
effects (GIV-FA mutant), and in the absence of its GDI effect (in the presence of an in silico
GDI-deficient mutant). (E) control or GIV-depleted (shGIV) HeLA cells were serum starved
(0.2% FBD, 16h) prior to stimulation with 50nM EGF for the indicated time points. Bar graphs
compare the cAMP levels in shC vs shGIV cells at each time point; data are shown as mean ±
S.D. for three independent experiments. ns= not significant; ∗∗p=0.01,∗∗∗∗p=0.0001. (F) The
area under the curve (AUC) for cAMP dynamics was calculated for different time points after
EGF stimulation. The magnified image shows the AUC at 5 min. The model 95% confidence
intervals and their related effects on the system dynamics can be found in Figure A.6
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Figure 2.3: Effect of varying EGF/EGFR on growth factor triggered cAMP signaling. (A-
B) Simulations comparing the impact of variable input signals [via EGF/EGFR] on cAMP
dynamics in low GIV (A) and high GIV (B) states. (C) AUCs calculated from A and B are
displayed. (D) Control (shC) or GIV-depleted (shGIV) HeLa cells or GIV-depleted cells rescued
with shRNA-resistant GIV-WT (GIV+) were stimulated with EGF and assessed for cAMP levels
at 60 min for three different concentrations of EGF. Bar graphs compare the cAMP levels in
response to varying EGF concentrations. Error bars indicate mean ± S.D. of three independent
experiments. ns= not significant; ∗p=0.05; ∗∗p=0.01; ∗∗∗p=0.001. (E-F) Same as (A-B) with
reduced concentration of PDE to mimic inhibition of cAMP in low GIV (E) and high GIV (F)
states. (G) AUC calculations for (E) and (F). (H) Same as in G, with one additional step of
pre-treatment of cells with 200 µM IBMX (20 min) prior to EGF stimulation. Error bars indicate
mean ± S.D. of three independent experiments. ∗p=0.05; ∗∗p=0.01; ∗∗∗p=0.001; ∗∗∗∗p=0.0001.
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Figure 2.4: The impact of expression levels of EGFR, GIV, and PDE on cAMP dynamics.
(A-B) AUCs for simulations comparing the impact of variable GIV expression on cAMP
dynamics in low EGFR (red) and high EGFR (green) states. (B) A heat map shows the area
under the curve for cAMP concentration over 1 h for different concentrations of GIV [X-axis]
and EGFR receptor [Y-axis]. The black line, over the yellow region, corresponds to the control
condition in the simulation. (C-D) AUCs for simulations comparing the impact of variable GIV
expression on cAMP dynamics in high PDE (red) and low PDE (green) states. (D) A heat map
shows the area under the curve for cAMP concentration over 1 h for different concentrations
of GIV [X-axis] and activity levels of PDE [Y-axis]. The black line, over the yellow region,
corresponds to the control condition in the simulation. (E) A 4-D map showing the relationships
between EGFR (input signal), GIV (control valve), and PDE (degradation sink) on cAMP
dynamics (output signal). The different planes on this map correspond to the same value of
cAMP AUC (see color key on right). The control value is shown in yellow (0.45 µM.min).
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Figure 2.5: The impact of levels of expression of EGFR, GIV, and PDE on cAMP dy-
namics; clinical outcome [disease-free survival] in patients with colorectal cancers. (A-C)
Hegemon software was used to graph individual arrays according to the expression levels of
EGFR and GIV (CCDC88A) in a data set containing 466 patients with colon cancer (see Meth-
ods); (A). Survival analysis using Kaplan-Meier curves showed that among patients with high
EGFR, concurrent expression of GIV at high levels carried significantly worse prognosis than
those with low GIV (B). Survival analysis among patients with low EGFR showed that levels
of expression of GIV did not have a significant impact on DFS (C). (D-F) Hegemon software
was used to graph individual arrays according to the expression levels of PDE5A and GIV
(CCDC88A) in a data set containing 466 patients with colon cancer (see Methods; D). Survival
analysis using Kaplan-Meier curves showed that among patients with high PDE5A, high vs
low GIV expression did not carry any statistically significant difference in DFS (E). Survival
analysis among patients with low PDE5A showed that patients whose tumors had high levels of
expression of GIV had a significantly shorter DFS than those with tumors expressing low levels
of GIV (F).
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Supplementary materials

Supplementary text and materials can be found at MBoC [118], included in appendix A.

Chapter 2, in full, is a reprint of the material as it appears in M. Getz, L. Swanson, D.

Sahoo, P. Ghosh, and P. Rangamani. A predictive computational model reveals that GIV/Girdin

serves as a tunable valve for EGFR-stimulated Cyclic AMP Signals. Molecular Biology of the

Cell, pages mbc.E18–10–0630, 2019. The dissertation author was the primary investigator and

author of this paper.
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2.1 As a tunable valve between the ”sources” and ”sinks”,
GEMs enable tonic modulation of cAMP, impart robust-
ness

With the ultimate goal of generating experimentally testable predictions, recently we used

a systems biology approach to understand the design principles of the GEM-dependent biological

network with a focus on cAMP signaling [118]. We constructed the first-ever compartmental

network model of growth-factor triggered cAMP signaling, and identified two key features of

non-canonical G protein signaling via GIV-GEM. We focused the study on the epidermal growth

factor (EGF) and its receptor (EGFR) because this pathway had the most experimental evidence

to use towards building mathematical models and well-validated tools/readouts/approaches to

validate/test model-inspired predictions. This endeavor resulted in three major findings.

First, the model implicated compartmentalized RTK signaling at the PM (where GIV

serves as a GEF that triggers activation of Gαi) and on the endosomes (where GIV serves as a GDI

that inhibits activation of Gαs) as a key contributor to the delayed and prolonged cAMP dynamics

that is observed over an hour. Consequently, RTK-GIV-triggered cAMP dynamics spans 5 to

¿60 min, which coincides with other RTK-triggered mitogenic signaling pathways, trafficking

events, and transcriptional response; This is the major temporal domain of RTK activity, the

so-called “window of activity” [119]. Second, the model predicted and experimentally validated

that GIV-GEM may serve as a tunable “valve” for cAMP regulation in cells. When all the

known compartmental and reaction kinetics were accounted for, the model indicated that GIV

levels (which vary in pathologic states; see Table 2.1), in conjunction with EGFR levels, can be

thought of as key determinants, and high GIV in the setting of high EGFR may facilitate tonic

suppression of cAMP levels regardless of pathway stimulation. In a low-EGFR state, varying

GIV concentrations resulted in cAMP changes only within a narrow range; however, in a high-

EGFR state, varying GIV concentrations achieved a larger variance in cAMP. In a low-GIV state,
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varying EGFR concentrations resulted in cAMP changes; however, in high-GIV states, cAMP

concentrations remained low regardless of increasing levels of EGFR. GIV levels, in conjunction

with EGFR (”source”) levels, emerged as key determinants, and high-GIV state regardless of the

levels of activation of EGFR resulted in tonic suppression of cAMP levels, reminiscent of the

actions of ”valves” in any conduit [Figure 2.6]. The ”valve” appears to be “closed” at high-GIV

states, despite high levels of ”sources”, and hence, when ”sources” and ”valve” were compared

head to head, the ”valve” emerged as the dominant determinant of cellular levels of cAMP.

Third, the model also compared head to head the relative strengths of ”valves” and

”sinks”. We found that the effect of GIV concentration on cAMP levels in cells is discernible

only when PDE activity is low; a high-PDE state overshadowed all effects of changing levels

of GIV and virtually abolished GIV-dependent changes in cAMP levels. When PDE activities

are high, cAMP levels do not go up even in low-GIV states, likely because increased production

is balanced by increased degradation. Why would a cell waste energy (ATP) in such a ‘futile

cycle’? This situation is reminiscent of the maintenance of steady-state cGMP levels in the

sub-µM range in thalamic neurons by concomitant guanylyl cyclase and PDE2 activities [120]

and cAMP levels in pyramidal cortical neurons by concomitant AC and PDE4 activities [121].

Prior studies have suggested that such tonic cAMP production and PKA activity enable signal

integration and crosstalk with other cascades [122]; unlike an on/off system gated exclusively by

Gαsproteins, tonic activity allows both up- and downregulation by activation of Gαior inhibition

of Gαs(via GIV-GEM) and by PDEs. Our findings suggest that such up/down tunability is best

achieved by changing the cellular concentrations of GIV. Because these predictions were also

experimentally validated, PDEs (”sinks”) were determined as a dominant node and GIV (”valve”)

as the subordinate node. Overall, these findings cemented the importance and relevance of

GIV-GEM as a tunable ”valve” for cellular cAMP within a new network module where there

can be many ”sources” (EGFR, and other receptors that also engage GIV-GEM) and ”sinks”

(diverse subtypes of PDEs). The impact of tuning the ”valve” up or down (by changing levels
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of GIV-GEM) was most pronounced in the setting of high ”sources” (i.e., ligand activation

of multiple receptors) and low ”sinks” (PDE activity). While cAMP levels were flexible and

responsive to ligand stimuli when GIV levels were maximally tuned down and the ”valve” was

open, robust suppression of cAMP was seen when GIV levels were maximally tuned up and the

”valve” was closed [see Figure 2.6].

Because the flow of information in layers within signal transduction circuits in general

[85, 101, 123], and more specifically for RTKs like EGFR [119, 124] is believed to conform to

bow-tie microarchitecture, and cAMP is considered as one of the universal carrier molecules at

the knot of such bowties which determines robustness [101], we conclude that GIV-GEM operates

at the knot of the bow-tie as a tunable valve for controlling robustness within the circuit [Figure

2.7]. Because layering of control of information flow is believed to conform to an hourglass

architecture [85], in which diverse functions and diverse components are intertwined via universal

carriers, GIV’s ability to control the universal carrier, cAMP could explain why GIV has been

found to be important for diverse cellular functions and impact diverse components [65]. In an

hourglass architecture, the lower and higher layers tend to see frequent evolutionary changes,

while the carriers at the waist of the hourglass appears to be constant/invariant and sometimes,

virtually ‘ossified’. Of relevance to our model, the importance of cAMP appears to be indeed

ossified from unicellular organism to human alike, and GEMs like GIV are expressed ubiquitously

in all tissues from fish to man and GIV-like GEMs have so far been identified as early as in C.

elegans [125].

2.1.1 Implications of the new network for cAMP signaling in disease patho-
genesis

There are several implications of the newly built network model, which we summarize

below.
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First, our work provides valuable clues into the impact of increased robustness at high-GIV

states in cancers. Robustness in signaling is an organizing principle in biology, not only for the

maintenance of homeostasis but also in the development and progression of chronic debilitating

diseases like cancers; it is widely accepted that tumor cells hijack such robustness to gain growth

and survival advantage during the development of cancer [86, 87, 119]. Consistently, GIV mRNA

levels and DNA copy numbers are invariably higher across multiple cancers when compared to

their respective normal tissue of origin [summarized in [118]. Because GIV has been found to

regulate several sinister properties of tumor cells across a variety of cancers (multiple studies,

reviewed in [67], it is possible that the high-GIV driven robustness maintains cAMP at low

constant levels despite increasing input signals as a tumor evolves when targeted by biologics or

chemotherapy agents. Such a phenomenon could be a part of a higher order organizing principle

in most aggressive cancers, and therefore, justify GIV as a potential target for network-based

anti-cancer therapy.

Second, the findings from network modeling impacts biomarker development. Multiple

biomarker studies in bona fide EGFR-driven cancers (lung cancer, colon cancer, and GBMs)

that are currently treated with anti-EGFR agents have tried to harness the ability to measure

EGFR protein or mRNA as predictive or prognostic biomarkers to tell us which patients will do

better or worse. However, none have panned out. Our model predicted that changing levels of

EGFR may be overshadowed in high-GIV states that can robustly suppress cellular cAMP. This

prediction from our model, and the decades-old body of experiments showing that the impact

of such tonic cAMP suppressive state on tumors is expected to be an increase in aggressive

traits (Table 2.1) prompted us to hypothesize that levels of expression of EGFR may provide

meaningful information about tumor aggressiveness only if it is evaluated in tumors with low GIV.

Our findings on patients validated these predictions using one of the most important readouts of

cancer aggressiveness, i.e., patient survival– i.e., high vs low EGFR levels correlated with poor vs

good outcomes only when tumors had low GIV. By contrast, EGFR levels were irrelevant when
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tumors had high GIV. Moreover, consistent with the mathematical model which showed that

high-GIV/high-EGFR states were accompanied by a robust inhibition of cAMP despite high levels

of stimuli, Kaplan–Meier curves for a high GIV/high EGFR signature carried the worst prognosis

compared to all other patients combined. Thus, high levels of EGFR signaling does not, by itself,

fuel aggressive traits or carry a poor prognosis, but does so when GIV levels are concurrently

elevated. In addition for tumors with low GIV, the high EGFR signaling state may be beneficial

for maintaining high cAMP levels and therefore, critical for dampening several aggressive tumor

traits (Table 2.1). Because cAMP levels in tumor cells and GIV levels have been previously

implicated in anti-apoptotic signaling [95] and the development of chemoresistance [96], it is

possible that the GIV-EGFR crosstalk we modeled recently also determines how well patients may

respond to anti-EGFR therapies and who may be at highest risk for developing drug resistance.

Whether such is the case, remains to be evaluated.

Third, the network model may also guide the development of anti-cancer therapeutics. For

example, in the context of PDEs, it has been demonstrated that overexpression of PDE isoforms in

various cancers leads to impaired cAMP and/or cGMP generation [24]. PDE inhibitors in tumour

models in vitro and in vivo have been shown to induce apoptosis and cell cycle arrest in a broad

spectrum of tumour cells [97]. Despite the vast amount of preclinical evidence, there have been

conflicting reports on its efficacy in the clinic [34]. Our finding that low PDE levels in the setting

of high GIV carries a poor prognosis predicts that the benefits of PDE inhibitors may be limited

to patients who have low GIV expression in their tumors. Similarly, in the context of anti-EGFR

therapies, researchers have come to realize that anti-EGFR therapeutics may unpredictably lead

to two flavors of outcome that are attributed to kinase-independent functions of EGFR [reviewed

in [126]] on the one hand, they may achieve the desirable therapeutic benefits, but on the other

hand, their use may trigger the acquisition of resistance during treatment or may cause more harm

in tumors that are innately resistant. Our model predicts that those with low GIV/high EGFR

[high cAMP state] are likely to respond well to anti-EGFR therapy inducing tumor cell apoptosis,
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whereas those with high GIV/high EGFR [low cAMP state] may be at highest risk for developing

drug resistance. Whether such predictions hold true, and whether these insights may impact

patient outcomes remains to be seen.

Fourth, the network model helps extrapolate findings to other disease states beyond

cancers that are fueled by aberrant cAMP signaling, where GIV levels are also concomitantly

altered. Because our network model revealed how the ‘tunability’ of the ”valve” impacts tonic

levels of cellular cAMP over long time spans reaching steady-state kinetics, and valve-like GEMs

are indeed found to be persistently dysregulated (either up- or downregulated) in diverse chronic

disease states beyond cancers (cataloged in Table 2.1), it is possible that GIV levels may need to

be maintained only within a narrow range in the healthy state [middle; Figure 2.7]. Because GIV

is expressed at very high levels in the brain and reproductive organs (testes and ovary) and only in

low levels in epithelial cells [54, 55], it is likely that the optimal physiologic range of expression

varies between cell types. What is clear is that in each disease state, the level of GIV expression

and its predicted impact on cellular cAMP (based on our model) is consistent with the observed

impact of cAMP in disease pathogenesis [see Table 2.1]. It is noteworthy that each of these

disease states have multiple different classes of receptors (”sources”) and, in some cases also

PDEs (”sinks”) implicated in pathogenesis, further supporting the previously drawn conclusion

that GIV-GEM may be operating as a tunable valve es at the knot of the bow-tie shaped network,

controlling robustness within the circuit; persistent ”open” or ”closed”-states of the valve may

contribute to disease pathogenesis perhaps via its ability to control cellular concentrations of

second messengers such as cAMP [Figure 2.7].

2.1.2 Conclusions and Perspective

Cellular levels of cAMP impacts a wide range of signals in diverse pathways, and a cell’s

ability to maintain these levels within a physiologic range is critical for health. Too much or
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too little cAMP is often encountered in disease states. Although diverse ”sources” (receptors)

and ”sinks” within the cAMP network may be contributing to these diseases, it is possible that a

tunable ”valve” such as GEMs that is stuck persistently in either ”open” or ”closed” state may

be a common (i.e., an invariant) contributor or driver in the disease network. Because GIV and

GEMs like GIV have been implicated in multiple disease states, GEMs constitute a hitherto

untapped class of targets that could be exploited for reinstating physiologic cAMP signaling in

multiple diseases.

Chapter 2.1, in part, is as it may appear in WIREs Syst Biol Med Getz, M , Ghosh, P,

Rangamani, P, Regulating cellular cyclic AMP: “Sources”, “Sinks”, and now, “Tunable Valves”.

The dissertation author was the primary author of this material.
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Table 2.1: GIV, cAMP levels and disease states

Disease state Tissue Levels of
GIV-GEM/GEM
activity, and
implicated in
disease

Derangement of
cAMP (predicted)

Derangement of cAMP pathway (experimentally
confirmed and implicated in disease pathogenesis)

Cancers [EMT,
invasion and
metastasis,
stemness]

Tumor
cells and
stroma

Elevated levels of
mRNA and
protein; GEM
function ON
[multiple studies,
summarized
in [67]]

Suppressed than normal Suppressed (pharmacologic elevation inhibits
motility, invasion) [127–132]

Cancers
(emergence of
resistance)

Tumor
cells

Elevated levels of
mRNA and
protein; GEM
function
ON [133–135]

Suppressed than normal Suppressed (pharmacologic elevation overcomes
resistance, increase apoptosis) [95, 136]

Nephrotic
syndrome

Podocytes GIV is elevated
and activation of
its GEF function
is required for
podocyte
recovery [137]

Nephritic glomeruli generated less cyclic AMP than
normal glomeruli (11 and 26 pmol) [138]. Attenuated
generation of cyclic AMP in response to ligands is
connected to the augmented accumulation of
fibronectin in nephritic glomeruli [139]

Liver fibrosis Hepatic
stellate
cells,
Kupffer
cells

Elevated levels of
mRNA and
protein; GEM
function
ON [112]

Suppressed than normal Augmentation of forskolin-induced increase in
intracellular cyclic AMP level (inhibitory effect on
HSC activation [140]). Quiescent HSCs have high
levels of cAMP-PKA-phospho-CREB signaling,
which decreases upon HSC activation; activation of
PKA restores phospho-CREB levels and inhibits
proliferation of activated HSCs [141, 142].

Type II DM,
Insulin resistance

Muscle
(skeletal)

Decreased levels
of GIV [70, 143]

Elevated than normal High levels of cAMP induces insulin
resistance [144–149]; [150]. Insulin triggers PDE
activity for cAMP degradation. [151]. PDE3B is
activated by Akt downstream of insulin [152]. Levels
of PDE3B are reduced in DM, and restored by
TZDs [153].

Alzheimer’s
disease

Neurons Decreased levels
of GIV
protein [154]

Increased (predicted) Increased [155]

Autism Cultured
periph-
eral
blood
lympho-
cytes

Gain of copy
number for
GIV [156].

Suppressed cAMP
(predicted)

Low cyclic AMP confirmed in programmed neuronal
stem cells. Compensatory high cAMP in CSF and
peripheral blood. Addition of cAMP restored
defective signaling within the cAMP pathway.

Acute myocardial
infarction and
other vascular
endothelial injury
Cardiac and
smooth muscle
cells

Elevated
levels of
mRNA
and
protein
[157–
159]

Suppressed
cAMP (predicted)

Suppressed in acute MI
in humans: Reviewed
in [160]. Suppression of
cAMP after vessel
injury is required for
neointima repair
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Figure 2.6: Schematic summarizing the unique impacts of GIV-GEM on the
EGFR→cAMP pathway, as revealed by systems biology. Top: Within the ‘bow-tie’ microar-
chitecture of layered signal flow in any circuit, incoming signals from RTKs like EGFR [signal
input; left] are integrated by core proteins like GIV [center] that activate second messengers like
cAMP, which subsequently impacts multiple target proteins such as kinases, phosphatases, and
transcription factors [output signals; right]. Prior systems biology work had concluded that cellu-
lar concentrations of cAMP is a key determinant of robustness at the core of information (signal)
flow [85, 101, 123]. While cAMP production is tuned up or down by variable levels of GIV
and its compartmentalized action on Gai/Gas and ACs within the RTK-cAMP pathway, cAMP
degradation by PDEs serves as a dominant sink [drain pipe]. Bottom: Within the hourglass mi-
croarchitecture for vertical flow of ‘control’, up/down-regulation of GIV-GEM in cells serves as
a tunable control valve, allowing cells to control cAMP production in cells responding to growth
factors. When GIV-GEM expression is low [as seen in the normal epithelium], increasing input
signals can trigger some of the highest levels of cellular cAMP, thereby conferring sensitivity
(left). Increasing GIV-GEM expression throttles the cAMP response [middle], such that, when
GIV-GEM is expressed highly [as seen across all cancers, cAMP levels remain low, regardless
of the amount of input signals, thereby conferring robustness [right]].
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Figure 2.7: Schematic summarizing the diverse pathologic states that feature either too
little or too much GIV. Because of its ability to serve as a tunable valve for cellular cAMP
concentrations, too high or too low levels of expression of GIV may robustly regulate the tonic
levels of cAMP in cells. Low GIV-states are associated with high cAMP (top), high GIV-states
are associated with low cAMP (bottom). Text boxes on the right list pathophysiologic conditions
associated with deregulated GIV and cAMP states (see also Table 2.1).
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Chapter 3

Spatially compartmentalized phase
regulation of a Ca2+-cAMP-PKA
oscillatory circuit

B. Tenner1,2, M. Getz3, B. Ross2, D. Ohadi4, C. Bohrer1, E. Greenwald2, S. Mehta2,

J. Xiao1, P. Rangamani3,4,*, J. Zhang1,2,*

Signaling networks are spatiotemporally organized in order to sense diverse inputs, process

information, and carry out specific cellular tasks. In pancreatic β cells, Ca2+, cyclic adenosine

monophosphate (cAMP), and Protein Kinase A (PKA) exist in an oscillatory circuit characterized

by a high degree of feedback, which allows for specific signaling controls based on the oscillation

frequencies. Here, we describe a novel mode of regulation within this circuit involving a spatial

dependence of the relative phase between cAMP, PKA, and Ca2+. We show that nanodomain

clustering of Ca2+-sensitive adenylyl cyclases drives oscillations of local cAMP levels to be

precisely in-phase with Ca2+ oscillations, whereas Ca2+-sensitive phosphodiesterases maintains

out-of-phase oscillations outside of the nanodomain, representing a striking example and novel

mechanism of cAMP compartmentation. Disruption of this precise in-phase relationship perturbs

Ca2+ oscillations, suggesting that the relative phase within an oscillatory circuit can encode
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specific functional information. This example of a signaling nanodomain utilized for localized

tuning of an oscillatory circuit has broad implications for the spatiotemporal regulation of

signaling networks.
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3.1 INTRODUCTION

Cyclic adenosine monophosphate (cAMP) and Ca2+ act as essential second messengers

in almost every cell type and regulate many functional pathways within a cell, such as hormonal

signal transduction, metabolism, and secretion [3, 4]. In some cell types, including neurons,

cardiomyocytes, and pancreatic β cells, these messengers’ concentrations oscillate intracellularly

[10, 11], and the oscillations encode critical signaling information (e.g. signal strength, duration,

and target diversity) into parameters such as frequency and amplitude [12, 13]. This is perhaps

best exemplified in the β cell where oscillations of Ca2+ drive pulsatile insulin secretion [17]

as well as oscillations in cAMP levels [15, 16]. Furthermore, Ca2+, cAMP, and the downstream

cAMP-dependent kinase Protein Kinase A (PKA) constitute a highly-coordinated oscillatory

circuit responsible for integrating metabolic and signaling information [14]. In addition to

temporal control, biochemical pathways are also spatially organized within the cell [18, 19].

Both Ca2+ and cAMP are highly spatially compartmentalized and form signaling microdomains

or nanodomains [20, 21]. While Ca2+ levels are locally controlled by channels, pumps, and

intracellular buffering systems [4, 22], cAMP is thought to be regulated via controlled synthesis

by adenylyl cyclases (ACs) and degradation by phosphodiesterases (PDEs) [23, 24]. Despite

extensive studies on cAMP compartmentation, the mechanisms that spatially constrain this mobile

second messenger remain poorly understood [25–27]. Furthermore, it is not clear how spatial

regulation of a second messenger influences its dynamic behaviors in the context of coordinated

oscillations.

In this study, we investigated the spatiotemporal organization of the Ca2+-cAMP-PKA

oscillatory circuit in pancreatic β cells and discovered that the relative, oscillatory phase between

cAMP/PKA and Ca2+ is spatially regulated within signaling nanodomains. By combining live-

cell dynamic imaging, super-resolution microscopy, and computational modeling, we further

found that fine-scale, compartment-specific perturbations of this precise phase dynamic impacts
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Ca2+ oscillations in the β cells. These findings suggest that the relative phase in oscillatory

signaling circuits, like the amplitudes and frequencies of biochemical signals, represents yet

another mode of informational encoding and processing, which is subjected to spatiotemporal

regulation within the cell.

3.2 RESULTS

3.2.1 The relative phase of β cell cAMP and Ca2+ oscillations is compart-
mentalized

In order to study the spatiotemporal relationship between key players of the Ca2+-cAMP-

PKA circuit, we chose to focus our attention on an important class of molecular scaffolds,

A-Kinase Anchoring Proteins (AKAPs), which are responsible for recruiting PKA to specific

substrates at distinct subcellular locations. In several excitable cell types, the plasma membrane

(PM) localized scaffold protein AKAP79 (AKAP150 rodent ortholog) has been shown to organize

a macromolecular complex with binding partners that include PKA, the voltage-gated Ca2+

channel CaV 1.2, Protein Kinase C (PKC), the Ca2+/calmodulin-dependent protein phosphatase

calcineurin, Ca2+-sensitive ACs, AMPA receptors, and many others [161]. Due to the extensive

and multivalent nature of AKAP79/150 and a report describing the functional impairment of

glucose-stimulated insulin secretion (GSIS) in pancreatic β cells upon its knock-out [162], we

hypothesized that the AKAP79/150 scaffold might play an important role in the spatiotemporal

regulation of the Ca2+-cAMP-PKA oscillatory circuit. Specifically, we were interested in testing

if AKAP79/150 is able to create a spatially-distinct compartment in which recruitment of signaling

effectors can locally fine-tune and reshape signaling dynamics within the circuit [163, 164]. In

order to test this hypothesis, we monitored intracellular cAMP and Ca2+ using the FRET-based

cAMP biosensor (Ci/Ce)Epac2-camps [165] and the red Ca2+ indicator RCaMP [166] in MIN6

β cells. By fusing (Ci/Ce)Epac2-camps to the full-length AKAP79 scaffold and transiently
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transfecting the targeted sensor, we measured cAMP concentration changes in the immediate

vicinity of AKAP79/150 (Fig. 3.1a). As a control, we also targeted the cAMP probe to the

general plasma membrane by adding a lipid modification domain [167]. These targeted biosensors

allowed us to compare the dynamics within the AKAP79/150-specific compartment versus the

general plasma membrane compartment (Fig. 3.1a).

Although both targeted sensors were effectively trafficked to and uniformly distributed

along the plasma membrane (Supplementary Fig. 3.7a,b), we observed notable differences

in their respective cAMP signals relative to Ca2+ oscillations after triggering the circuit (Fig.

3.1b) with tetraethylammonium chloride (TEA, 20mM), a potent K+ channel blocker. cAMP

oscillations measured within the AKAP79/150 compartment were in-phase with oscillating Ca2+

such that each transient spike in intracellular Ca2+ was closely associated with a transient increase

in cAMP (Fig. 3.1c) (n=60). This was in sharp contrast to cAMP oscillations measured within

the general plasma membrane compartment where each local Ca2+ peak corresponded to a local

trough in cAMP (n=24), followed by a slow reversal of both signals to a pre-stimulated baseline

(Fig. 3.1d). While this out-of-phase cAMP-Ca2+ oscillations were consistent with those observed

in the cytoplasm of β cells, in phase cAMP-Ca2+ oscillations had not be observed under these

conditions [14, 168]. To quantify the cAMP-Ca2+ phase relationship, we measured the lag time

by calculating the cross-correlation between the two normalized, oscillatory signals and finding

the absolute value of the shortest delay yielding the maximum correlation (see appendix B for

details) (Fig. 3.1e). In-phase cAMP oscillations corresponded to short lag times (typically ¡20

sec) while out-of-phase oscillations mostly possessed longer lag times. Within the AKAP79/150

compartment, cAMP lagged behind Ca2+ by an average of only 13±3sec; however, cAMP within

the general plasma membrane compartment oscillated with a lag time of 47±4sec, relative to Ca2+

(Fig. 3.1f). This stark difference in the cAMP-Ca2+ phase relationship suggests that the relative

phase of this oscillatory circuit is compartmentalized and hints at differential regulation of the

circuit between the AKAP79/150 compartment and the general plasma membrane compartment.
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3.2.2 Oscillatory phase is regulated by balanced activities of Ca2+-sensitive
ACs and PDEs

Given that in-phase cAMP oscillations were only observed within the AKAP79/150

compartment (Fig. 3.1c) and out-of-phase cAMP oscillations were observed in the general

plasma membrane compartment (Fig. 3.1d) and cytoplasm [14], we hypothesized that Ca2+

oscillations are coupled to cAMP oscillations by a ubiquitous mechanism throughout the cell,

while additional mechanisms specifically regulate the phase relationship within the AKAP79/150

compartment. We first sought to identify the component that is responsible for coupling cAMP

dynamics to Ca2+ dynamics globally. Since TEA induces continuous Ca2+ oscillations, we

determined the temporal relationship between Ca2+ and cAMP at the general plasma membrane

more precisely by measuring the impulse response of the circuit following a transient membrane

depolarization. After the addition of KCl (15mM) followed by a subsequent washout to elicit a

transient influx of Ca2+ [169], we observed a synchronous cAMP decrease (n=20) followed by a

return to baseline (Fig. 3.2a). This data suggests that increasing cytosolic Ca2+ was coupled to

a decrease in cAMP at the plasma membrane via Ca2+-sensitive AC or PDE activities. Given

that Ca2+-inhibited ACs (AC5, AC6) have low specific activity both in the presence and absence

of physiological Ca2+, as well as a lower distribution in the pancreas [170], we instead focused

on probing the roles of PDEs. The Ca2+-dependent PDE1 family in MIN6 cells, specifically

PDE1C, has been implicated in modulating GSIS [171]. Indeed, acute addition of 8MM-IBMX

(100 µM), a relatively selective PDE1 inhibitor, effectively uncoupled cAMP dynamics from

Ca2+ oscillations (Fig. 3.2b, Supplementary Fig. 3.8a) (n=18), indicating that Ca2+-triggered

activation of PDE1 mediates the transient cAMP decreases. We also observed that the overall

increase in cAMP led to an increase in the Ca2+ oscillation frequency, consistent with the

previously identified role of cAMP/PKA in regulating the Ca2+ oscillations [14]. We tested the

roles of two additional families of abundant PDEs in pancreatic β cells, PDE3 and PDE4, by

acute pharmacologic inhibition. While treating cells with either milrinone (PDE3 inhibitor, 10µM,
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n=12) or rolipram (PDE4 inhibitor, 1µM, n=15) slightly increased cAMP levels, neither inhibitor

had an effect on cAMP-Ca2+ coupling or relative phase (Supplementary Fig. 3.8b,c). These

data suggest that PDE1 is the key component that couples Ca2+ and cAMP oscillations within

this signaling circuit.

How is the phase relationship between Ca2+ and cAMP regulated within distinct signaling

compartments? In order to gain a more quantitative understanding of the regulation of the

cAMP-Ca2+ phase relationship, we created a simplified mathematical model involving Ca2+,

cAMP, and Ca2+-driven PDE and AC activity components [172] (Fig. 3.2c, see appendix B for

details). This simple circuit represents the key aspects of the oscillatory cAMP-Ca2+ circuit and

is applicable to different signaling compartments. Opposed to the Ca2+-stimulated PDE1 [173] is

the Ca2+-stimulated AC8 [174, 175], an abundant Ca2+-sensitive transmembrane AC isoform

in β cells that has been shown to mediate sustained insulin secretion and associate with the

AKAP79/150 scaffold [169, 176, 177]. By computationally manipulating the activity of each arm,

we found that cAMP can oscillate either out-of-phase or in-phase when a simulated Ca2+ pulse

train is used as an input (Fig. 3.2c). In particular, when the relative activity of PDE1 is greater

than the activity of AC8, Ca2+-driven cAMP degradation dominates, resulting in an out-of-phase

cAMP-Ca2+ relationship. On the other hand, if the relative activity of AC8 is greater than that of

PDE1, Ca2+-stimulated cAMP production is favored and an in-phase relationship is observed,

consistent with previous modeling studies [178, 179].

Thus, our simplified model indicates that the phase relationship can be tuned by altering

the relative strength between Ca2+-sensitive ACs and PDEs (Fig. 3.2c). This model provided a

blueprint for understanding the interplay between the Ca2+-stimulated AC/PDE balance and the

cAMP-Ca2+ phase relationship within the AKAP79/150 compartment. Based on the findings

from our model, we predicted that decreasing the relative contribution of AC8 will shift the

cAMP-Ca2+ phase relationship from in-phase to out-of-phase, as the relative contribution from
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Ca2+-triggered PDE1 increases. To test this prediction, we knocked-down endogenous AC8 in

the MIN6 cells [180] and observed that most cells exhibited an out-of-phase cAMP oscillation

within the AKAP79/150 compartment (avg. lag time 37±9sec, n=11) (Fig. 3.2d), indicating an

AC8-specific role in mediating the cAMP-Ca2+ phase signature.

Conversely, increasing the relative contribution of AC8, for example by increasing the

concentration of AC8, should shift the cAMP-Ca2+ phase relationship from out-of-phase to

in-phase. To test this prediction, we overexpressed full-length AC8 and examined the effect in the

general plasma membrane compartment. Interestingly, we found that AC8 overexpression reversed

the out-of-phase cAMP-Ca2+ phase relationship in a titratable manner where the percentage

of in-phase oscillating cells correlated with increasing amounts of the cotransfected AC8 (avg.

lag time 23±2 sec, n=56) (Fig. 3.2e, Supplementary Fig. 3.9a-c). This demonstrates that

higher levels of AC8 are sufficient to reverse the cAMP phase at the plasma membrane. In

summary, these phase manipulation experiments suggest that the cAMP-Ca2+ phase relationship

is representative of a sensitive, compartmentalized balance between the Ca2+-stimulated activities

of PDE1 and AC8.

3.2.3 Membrane-localized AKAP150:AC8 nanoclusters regulate cAMP-Ca2+
oscillatory phase

The close spatial juxtaposition between the AKAP79/150 and general plasma membrane

compartments presents a significant challenge for cAMP compartmentation where cAMP os-

cillations are distinctly regulated within these adjacent signaling domains. Indeed, how cAMP,

a rapidly diffusing small molecule, is spatially compartmentalized in cells is not yet clearly

understood, especially given the low catalytic efficiency of a single cAMP-producing AC and

degrading PDE [25,181]. Given that AKAP79/150 exists in nanoclusters at the plasma membrane

in multiple cell types [182, 183] and associates with AC8 in β cells [176], we hypothesized that
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AC8 could form nanoclusters on the plasma membrane of MIN6 cells and compartmentalize

cAMP dynamics. To test this hypothesis, we examined the spatial organization of AC8 and

AKAP150 at the membrane using Stochastic Optical Reconstruction Microscopy (STORM). We

found the AKAP150 molecules were organized in clusters with a mean radius of 127±9nm and an

average nearest-neighbor spacing of 313±20nm between cluster centers (n=20) (Fig. 3.3a), con-

sistent with many recent reports demonstrating AKAP79/150’s tendency to cluster/multimerize in

other cell types [182–185]. Thus, the AKAP79/150 compartment-specific cAMP phase is likely

representative of the balanced cAMP generation and degradation within these AKAP clusters.

Due to the known interaction between AKAP79/150 and AC8 [176], next we probed the

spatial organization of AC8 using STORM. We found AC8 also distributes non-uniformly at the

plasma membrane and clusters with a mean radius of 88±8nm and an average nearest-neighbor

spacing of 292±16nm between cluster centers (n=16) (Fig. 3.3b). With the evidence of the

nanoscale organization of AKAP150 and AC8 on the plasma membrane, we further hypothesized

that the increased spatial density of Ca2+-driven cAMP sources within the AKAP150 clusters, in

conjunction with dispersed PDE1 in the cytosol [24, 186], is important in compartmentalizing

cAMP production and mediating the in-phase cAMP signal at the AKAP79/150 scaffold. To test

this idea, we sought to build a mathematical framework to describe the spatial compartmentaliza-

tion of the in- and out-of-phase cAMP-Ca2+ oscillations. Briefly, we used the AKAP79/150:AC8

cluster pattern measurements from the STORM imaging to set model parameters in a hexag-

onal prism domain (200nm edge, 600nm depth) with one AKAP79/150:AC8 cluster centered

in the domain for simulation (Fig. 3.4a, see appendix B for model development details). We

extended a previous well-mixed β cell model [14] to include the Ca2+-sensitive PDE1 and a

3D spatial component with cAMP diffusion (DcAMP = 60 µm2/s, [187]). By localizing AC8

within the AKAP79/150:AC8 cluster on the plasma membrane face and leaving PDE1 well-mixed

throughout the volume, we could simulate Ca2+-driven cAMP oscillations that were in-phase

within the immediate vicinity of a cluster, but sharply transitioned out-of-phase outside the cluster.
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Specifically, during a Ca2+ influx event, Ca2+-triggered cAMP production dominated at the

center of the AKAP79/150 cluster while Ca2+-triggered cAMP degradation was favored outside

the cluster at the PM and in the center of the unit volume (Fig. 3.4a). Not surprisingly, the

regime that recapitulates this phase relationship is sensitive to the spatially-restricted AC8/PDE1

balance and the diffusivity of cAMP. Assuming that AC8 clustering is driven by AKAP150:AC8

interactions, weakening this interaction would then reduce the AC8 cluster stabilization and lead

to a redistribution of AC8 away from the nanoclusters and a decrease in the local concentration of

AC8 within the clusters (Fig. 3.4c). Without the high local concentration of AC8 driving a net

positive cAMP production within an AKAP79/150 cluster, the spatial domain at the PM where

cAMP oscillates in-phase with Ca2+ is predicted to shrink while the out-of-phase regime expands

and can reverse the phase at the cluster center (Fig. 3.4d).

To test this prediction, we overexpressed the amino terminus of AC8 (AC81−106) required

for interaction with AKAP79/150 [176] in order to compete with the binding of endogenous

AC8 with the endogenous AKAP150 scaffold. The disruption of the AKAP150:AC8 interaction

was validated by using proximity ligation assay (PLA) as an in situ assay for visualizing the

interaction between AKAP150 and AC8. Compared to non-transfected cells, cells expressing the

AC81−106 peptide had a 39±4% reduction in the number of PLA signals, indicating a decrease

in AKAP150:AC8 interaction (Supplementary Fig. 3.10a,b). Furthermore, STORM imaging

showed that overexpression of the AC81−106 peptide led to a decrease in the percentage of AC8

single molecule localizations within AC8 nanoclusters (n=9) (Fig. 3.5a), consistent with the

predicted redistribution of AC8 molecules (Fig. 3.4b). To test the functional impact of loss

of AC8 molecules from the nanoclusters, we measured AKAP79/150-localized cAMP in the

presence of AC81−106 and observed a significant increase in the average lag time (43±6sec,

n=33) (Fig. 3.5c). This is due to a higher proportion of cells exhibiting out-of-phase cAMP

oscillations, indicating that the AKAP79/150:AC8 competitor peptide was sufficient in reversing

the phase relationship in the AKAP79/150 compartment. Interestingly, we also observed many
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cells displaying irregular Ca2+ oscillations as indicated by a disruption in the periodic timing of

individual cells’ Ca2+ peaks (Fig. 3.5c). This nanoscale perturbation establishes the regulatory

role of the AKAP79/150:AC8 interaction in mediating the compartmentalized cAMP-Ca2+ phase

relationship.

3.2.4 AKAP79/150-mediated phase relationship modulates oscillatory Ca2+

Next we more systematically examined the impact of perturbing the precisely regulated

phase relationship within the AKPA79/150 compartment. Due to the modulatory role of PKA

in the Ca2+-cAMP-PKA oscillatory circuit and the interaction between PKA and AKAP79/150,

we wondered how the in-phase cAMP oscillations with respect to Ca2+ are translated into

PKA activities and if spatial compartmentalization of the phase relationship is also maintained

at the PKA activity level. Therefore, we extended our 3D model to include AKAP79/150-

associated PKA (see appendix B for model details). According to this extended model, PKA

activity oscillations exhibit distinct phase relationships with respect to Ca2+ within and out of

the AKAP79/150 compartment (Supplementary Fig. 3.11a). To test this prediction, we fused

our FRET-based biosensor for PKA activity (AKAR4) [188] to either full-length AKAP79 or

the PM-targeting motif and expressed the sensors in MIN6 cells. Upon TEA stimulation, PKA

activity was observed to oscillate with a lag time of time 25±6sec (n=15) within the AKAP79/150

compartment but with a lag time of 55±8sec (n=12) (Supplementary Fig. 3.11b-d) at the

general plasma membrane, indicating that the compartmentalized phase relationship is preserved

from cAMP to PKA.

Spatiotemporal organization of PKA signaling and its phosphorylation targets via AKAPs

have been implicated in regulating several important pathways. For example, PKA has been

shown to phosphorylate CaV 1.2 in an AKAP79/150-dependent manner and this modification can

influence the open probability of the channel [189], suggesting a mechanistic link between local
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cAMP/PKA activity and global oscillatory Ca2+. Thus, we sought to study the functional role of

the spatially-compartmentalized cAMP-Ca2+ phase relationship in regulating intracellular Ca2+

dynamics. We measured Ca2+ oscillations by RCaMP either in the presence of the EGFP-tagged

AKAP79/150:AC8 disruptor peptide, AC81−106, or EGFP alone as a control. Population-wide

differences in Ca2+ dynamics, such as strength and timing, were observed in AC81−106-transfected

cells and visualized in heat maps depicting the normalized Ca2+ signal per cell versus time (Fig.

3.6a). Interestingly, we found that the expression of the disruptor peptide was correlated with

a significant decrease in the peak ratio between the second Ca2+ peak and the first Ca2+ peak

(control avg. -1.6%, n=270; AC81−108 avg. -10.8%, n=562), post TEA addition, indicative of less

sustained oscillations (Fig. 3.6b,c). In addition to intracellular Ca2+ concentration, the precise

timing of internal oscillatory events is critical for modulating the β cell’s functions, such as glucose

homeostasis and pulsatile insulin secretion [190]. In the presence of the disruptor peptide, cells

also exhibited a longer elapsed time between oscillatory Ca2+ peaks (control avg. 3.9±0.1min,

n=270; AC81−108 avg. 4.6±0.1min, n=562), suggesting that the timing of the signaling circuit was

disturbed (Fig. 3.6b,c). In addition to the precise timing, the regularity of cytoplasmic Ca2+ in β

cells is crucial in mediating pulsatile insulin secretion from the pancreas [191,192]. By stratifying

the disruptor peptide-expressing cell population into “low”, “medium,” and “high” expressers,

and performing a blinded classification of responding cells based on the regularity of the Ca2+

oscillation (see appendix B for details), we found a positive correlation between the percentage

of cells exhibiting irregular oscillations and the expression level of the disruptor peptide (42%

for low-expressing vs. 68% for high-expressing AC81−106 disruptor) (Fig. 3.6d). Taken together,

these data signifies that the compartmentalized cAMP-Ca2+ phase relationship regulates the

oscillatory Ca2+ signal and plays an important role in determining the pace, regularity and

sustainability of the Ca2+ oscillations.
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3.3 DISCUSSION

Biological oscillations represent a rich way of encoding information. Here we show the

phase in an oscillatory signaling circuit, like the amplitude and frequency, represents a novel

mode of informational encoding which itself can be spatiotemporally regulated. In the case

of the Ca2+-cAMP-PKA circuit, the oscillatory cAMP/PKA phase relative to a widespread

Ca2+ signal is distinctly regulated within two adjacent plasma membrane compartments through

intracellular organization of scaffolds and signaling effectors. Localized perturbation of this

spatial phase signature disrupts global Ca2+ oscillations and thus has far-reaching consequences

on the functional landscape of the β cell.

Compartmentalization of cAMP/PKA signaling is instrumental in processing a diverse

set of inputs and mediating specific cellular functions; however, the mechanistic details of

compartmentalization are still largely unresolved [26]. Given the measured kinetic rates of most

ACs and PDEs, coupled with apparent fast diffusion of the small cAMP molecule, the generation

of local cAMP gradients around single enzymes is unmaintainable [181]. Context-dependent

discrepancies in some of the kinetics (i.e. differences of in vitro versus in vivo measurements) or

slower cAMP diffusion due to buffering have been proposed as potential mechanisms for cAMP

compartmentalization [187]. Here we propose that the nanoscale organization of key cAMP

effectors and regulators as a novel mechanism for cAMP compartmentation. Despite the slow

rates measured for individual ACs, we computationally and experimentally describe conditions

in which the generation of compartmentalized cAMP can emerge from the clustering of many

AC8 enzymes at the membrane and bulk distribution of PDE1 in the cytoplasm. Alternations to

this nanoscale organization lead to dysregulated Ca2+ oscillations, demonstrating the functional

importance in maintaining this organization. This system also serves as a general demonstration

of how a cell can translate a global signal (Ca2+) into a compartmentalized signal (cAMP/PKA

activity) by local activation and global inhibition, a strategy that is likely utilized in many other
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cellular contexts.

Multiple mechanisms could contribute to the consequences of reversing the compartmen-

talized cAMP phase at AKAP79/150 in β cells. AKAPs can recruit PKA to regulate channel

activities [182, 193, 194], such as in the regulation of voltage-mediated Ca2+ entry via PKA-

dependent phosphorylation of CaV 1.2 [189] or the modulation of store-operated Ca2+ entry

by both PKA-dependent STIM1 and Orai1 phosphorylation [195, 196]. Additional levels of

regulatory feedback within the Ca2+-cAMP-PKA oscillatory circuit have also been identified,

such as a negative feedback loop involving PKA phosphorylation of AC8, thereby fine-tuning the

circuit dynamics [197]. Localized cAMP/PKA signaling at the AKAP79/150 scaffold might also

play a role in directly regulating downstream insulin secretion due to close interactions between

AKAP79/150 and the insulin secretory granules via CaV 1.2 [198]. Several important processes

and components of the secretory machinery have been identified as targets of PKA signaling

here, such as PKA-dependent mobilization of granules [199] and modulation of the synaptosomal

protein SNAP25 [200]. In addition to PKA-dependent secretory control, cAMP has recently been

implicated to play a role in fusion pore formation via a cAMP-regulated guanine exchange factor

Epac [201]. Compartmentalized cAMP/PKA signaling at the AKAP79/150 macromolecular

complex is likely involved in the regulation of many β cell processes and more work will be

needed to further establish the link between the oscillatory circuit and the mechanisms involved

in decoding the information embedded in the local phase relationship.

The Ca2+-cAMP-PKA oscillatory circuit in pancreatic β cells integrates many important

regulators of cellular function, and the precise coordination of each is required for proper signaling

control. Here we have uncovered a spatiotemporal organization of the circuit where the oscillatory

phase between cAMP/PKA and Ca2+ depend on the spatial proximity of the AKAP79/150

scaffold protein. The construction principles of this signaling nanodomain, including the spatial

distributions of sinks and sources, likely represent a generalized strategy for the generation of
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many other compartmentalized signals and provide a unique modality in which cells embed,

process, and produce signaling information.
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3.4 Materials and Methods

3.4.1 Gene Construction

For AKAP79-(Ci/Ce)Epac2-camps, AKAP79 (from Dr. John D. Scott) was PCR amplified

to have HindIII/BamHI digestion sites and (Ci/Ce)Epac2-camps (from Dr. D. Cooper) was PCR

amplified to have BamHI/EcoRI digestions sites. Both fragments were inserted into pcDNA3

(Invitrogen) backbone for mammalian expression (cAMP sensor is C terminal to AKAP79).

For AKAP79-AKAR4, a similar approach was taken where AKAR4 was dropped between

BamHI/EcoRI. For AC8 (from Dr. D. Cooper), AC81−108, and PDE1C (cDNA from Dr. Yan

Chen), Gibson Assembly was used to insert the genes into the pcDNA3 mammalian expression

vector. The shAC8 construct for AC8 knockdown was previously verified and a gift from Dr.

Jochen Lang. RCaMP was a gift from Dr. Loren Looger.

3.4.2 Cell Culture

MIN6 cells (a mouse insulinoma β cell line) were plated onto sterilized glass coverslips in

35-mm dishes and grown to 50–90% confluency in DMEM (10% FBS, 4.5g/L glucose) at 37°C

with 5% CO2. Cells were transfected using Lipofectamine 2000 (Invitrogen) and grown 20–48 h

before imaging.

3.4.3 Imaging

Cells were washed twice with Hanks’ balanced salt solution buffer and maintained in the

dark at room temperature. Cells were imaged on a Zeiss Axiovert 200M microscope with a cooled

charge-coupled device camera (MicroMAX BFT512, Roper Scientific, Trenton, NJ) controlled by

METAFLUOR 6.2 software (Universal Imaging, Downingtown, PA). Dual cyan/yellow emission

ratio imaging used a 420DF20 excitation filter, a 450DRLP dichroic mirror, and two emission

filters [475DF40 for CFP and 535DF25 for YFP]. RFP fluorescence was imaged using a xxx
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excitation filter, a xxx dichroic mirror, and a 653DF95 emission filter. GFP fluorescence was

imaged using a 480DF30 excitation filter, a 505DRLP dichroic mirror, and a 535DF45 emission

filter. These filters were alternated by a filter-changer Lambda 10–2(Sutter Instruments, Novato,

CA). Exposure time was 50–500 ms, and images were taken every 10–30 s. Fluorescence images

were background-corrected by subtracting the fluorescence intensity of background with no cells

from the emission intensities of cells expressing fluorescent reporters. The ratio of yellow/cyan

emission, RFP intensity, and GFP intensity were then calculated at different time points. The

values of all time courses were normalized by dividing each by the average basal value before

drug addition. Custom Java code, MATLAB scripts, and CellProfiler (Broad Institute) pipelines

were written to segment cells, select ROIs, and analyze traces.

For confocal imaging, images were collected with a C2 plus on a Nikon Ti2 inverted

microscope equipped with a Plan Apo lambda 60x oil immersion objective NA 1.4. YFP

fluorescence fluorescence was excited with the 488nm line from a LU-N4 laser. Images were

acquired with a DUVB detector collecting emission from 495nm to 600nm with a virtual spectral

GaAsP detector controlled by NIS Elements software. The pinhole was set at 30µm. Frame size

was 1024 x 1024pix.

3.4.4 Super-resolution Imaging (STORM)

For fixed-cell stochastic optical reconstruction microscopy (STORM) imaging, cells

were fixed with 4% paraformaldehyde (PFA) and 0.2% glutaraldehyde (GA) for 20 min and

then washed with 100 mM glycine in Hanks’ balanced salt solution (HBSS) to quench the free

PFA. Cells were permeabilized and blocked in a permeabilization solution with 0.1% Triton

X-100, 0.2% bovine serum albumin, 5% goat serum, and 0.01% sodium azide in HBSS. The

cells were then incubated overnight at 4°C with an anti-AC8 antibody (Abcam, ab196686) at

a 1:2000 dilution or an anti-AKAP150 (Millipore Sigma 07-210) antibody at a 1:500 dilution,
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followed by 1 to 2 hours with goat anti-rabbit Alexa 647–conjugated antibody (ThermoFisher

Scientific, A21245) at 1:1000 dilution. The cells were then post-fixed again in 4% PFA and

0.2% GA, quenched with 100 mM glycine in HBSS, and washed with HBSS to prepare for

imaging. Immediately before imaging, the medium was changed to STORM-compatible buffer

(50 mM tris-HCl (pH 8.0), 10 mM NaCl, and 10% glucose) with glucose oxidase (560 µg/ml),

catalase (170 µg/ml), and mercapto-ethylamide (7.7 mg/ml). STORM images were obtained

using a Nikon Ti total internal reflection fluorescence (TIRF) microscope with N-STORM, an

Andor IXON3 Ultra DU897 EMCCD, and a 100× oil immersion TIRF objective. Photoactivation

was driven by a Coherent 405-nm laser, while excitation was driven with a Coherent 647-nm

laser. All image analysis and image reconstruction were performed using both Nikon Elements

analysis software and custom-written MATLAB scripts. Blinking correction was performed by

implementing the pairwise Distance Distribution Correction (DDC) algorithm [202]. Cluster

property measurements were performed using Ripley-K analysis and custom mean-shift code for

segmentation.

3.4.5 Proximity Ligation Assay

Antibodies for AC8 and AKAP150, mentioned in STORM section, were buffer exchanged

into DPBS and conjugated with MINUS or PLUS oligos, following the Sigma DuoLink in

situ Probemaker kits. PLA experiments were performed using the Duolink®in situ red kit for

proximity ligation assays according to the provided protocol. The only protocol modification

was to extend the amplification time by 50 min. Briefly, cells were fixed and permeabilized as in

the STORM experiments before incubation with PLUS and MINUS oligo-conjugated primary

antibodies for 30 min at 37°C each with washes after each step. Ligation of the nucleotides

and amplification of the strand occurred sequentially by incubating cells with first ligase then

polymerase and detection solution. PLA experiments with AKAP95 antibodies from different

species were used as positive controls in HEK293T cells, and experiments with just one oligo-
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labeled primary antibody or the other were our negative control. Images were acquired on a

Nikon Ti Eclipse epifluorescence scope with z-control and maximum intensity projections were

created. A cross section of the nucleus (3.6-5 µm) was also acquired and the number of dots per

cell was counted using the nucleus as reference.

3.4.6 Computational Modeling

3.4.7 Well-mixed system
Assumptions

• Signaling components are present in large enough quantities that concentration changes are

smooth and move in a deterministic fashion.

• Well-mixed kinetic rate constants contain conversion factors between compartments, i.e

membrane to cytosol.

• Binding interactions occur rapidly enough such that any kinetic parameter, k, remains

constant on surfaces [203].

• A-kinase-anchoring protein (AKAP) does not alter the activity of the catalytic subunits of

Protein kinase A (PKA) instead it only affects localization.

• Ca2+ independent activity of Adenylyl cyclase (AC) is of the same strength as inactive

Ca2+ dependent Adenylyl cyclase (AC8) and stays at a constant value.

Model Development

We constructed a biochemical network to represent interactions between Ca2+ and cAMP

in β-cells, Figure 3.1B, [14, 204] after a depolarization event. The computational model con-

sidered the dynamics of calcium, potassium, leaky, and calcium-sensitive potassium channels
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(Table B.1). Importantly, we included feedback of PKA with KATP channels and the inclusion

of Ca2+-sensitive ACs and PDEs. The model contains 92 parameters with 11 free parameters.

The values of the parameters are constrained through both previously peer-reviewed publication

results [14, 173, 174, 205, 206] and with new experimental results using obtained FRET mea-

surements. To constrain source and sink activation rates, previously published literature of AC

and PDE stimulus-response curves (of related isoforms) was utilized [173, 174]. COPASI was

used to calculate initial guesses for kinetic activation parameters. FRET measurements took

precedence over binding curves, especially for the spatial model (section 3.4.9) where further

fitting routines were performed to refine the model. Model variations were performed to attain

both semi-physiological concentrations (within the ranges of the sensor) and phase (period and

relation) information. Predictions are made on qualitative behavior as opposed to quantitative as

proper parameter fitting would require much more data than available for this system.

Values and reaction sets used in the well-mixed model can be found in Tables B.1, B.2,

B.3, and B.5. The network of interactions was constructed using COPASI (version 4.23, build

184)

(http://www.nrcam.uchc.edu, http://copasi.org/). The model was built in COPASI to leverage the

inbuilt fitting techniques for initial parameter guesses pre-FRET.

Well-mixed computational results

The network shown in Figure 3.1B has been shown to exhibit oscillations through cAMP

variation due to the action of PKA on IP3 receptors and KATP Plasma membrane channels.

This network has been studied in many labs previous work [14, 171, 190, 204, 207] and has been

explored to show:

• The system can be moved in and out of phase through tuning of AC [204].
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• The oscillation rate can be tuned through PKA feedback to KATP channels [14].

• Both Ca2+ sensitive PDE and AC is necessary for oscillations to occur [14].

Our model results agree with the above findings.

Variations in the connection strength of sources and sinks also introduced another finding–

changing the component’s (source or sink) variability in the regime of Ca2+ spiking (0.1-1.2µM)

a switch in phase can also be observed, Figure B.2. Compared to well-mixed results, Figure

B.2a, by decreasing the activation rate of Ca2AC from 56 to 0.6 s−1, a switch in phase can occur,

Figure B.2c. Yet, we notice how increasing PDE activity does not switch the phase Figure B.2b,

only after subsequently decreasing PDE and CaM association does cause the phase change Figure

B.2d. This is due to both changes being required for the activity variation of PDE to out perform

that of AC. These findings lead to more questions about how source and sink activities relate in a

variable Ca2+ regime.

Well-mixed reaction tables

See appendix B for model tables.

3.4.8 Minimal model to explore Ca2+-cAMP phase behavior

Based on the well-mixed model, we propose a minimal circuit to understand the phase

behavior of Ca2+-cAMP. Consider the following system in Figure 3.2c, where Ca2+ is the

stimulus which uses a pulse train to set influx times, AC is an activator, PDE1C is an inhibitor,

and cAMP is the response element.
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Assumptions

The system is in a state such that the change in cAMP allows for further Ca2+ influx in a

semi predictable manner, as represented by the pulse train. Therefore this system is deemed to

be stable if there exists a Ca2+ value that gives a stable solution for cAMP. All constants must

be positive to remain physically relevant. We assume that there exists a constant independent

source and sink within the system. The Ca2+ dependent and independent sources are localized

homogeneously on the membrane, with both sinks located uniformly in the cytosol. For simplicity,

we assume that the activation function for both AC and PDE1C are linear functions of Ca2+ of

the form aS+b.

Governing Equations

We define a stimulus (S, Ca2+) and a response element (R, cAMP). The well-mixed rate

of change function for cAMP is then given by,

dR
dt

= v1 (a1S+b1)− v2 (a2S+b2)R+ vip− vidR

Here, v1 denotes the velocity of cAMP production by AC, v2 the rate of degradation by PDE, and

vip and vid the rates of independent production and degradation respectively.

Analytical solutions for the minimal model

To analyze if the system lies in an in- or out-of-phase state we find the direction of the

system change after initialization to S0 [i.e. the basal stimulus (initial concentration of Ca2+)].

First we must solve for R0 (initial concentration of cAMP) by setting dR
dt = 0, we find:

R0 =
v1 (a1S0 +b1)+ vip

v2 (a2S0 +b2)+ vid
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We start the system at equilibrium and prescribe a discontinuous pulse of S from S0 to Sh, akin to

VGCC opening allowing Ca flux. Therefore solving for the sign of R, we sobtain

dR
dt
|t=0 = v1 (a1Sh +b1)+ vip− (v2 (a2Sh +b2)+ vid)

v1 (a1S0 +b1)+ vip

v2 (a2S0 +b2)+ vid

dR
dt
|t=0 =

(v1a1(v2b2 + vid)− v2a2(v1b1 + vip))(Sh−S0)

v2 (a2S0 +b2)+ vid

Since we consider the sign we can then characterize the solution by

v1a1(v2b2 + vid)

v2a2(v1b1 + vip)
> 1 in phase (low τ)

v1a1(v2b2 + vid)

v2a2(v1b1 + vip)
= 1 transition (flat line)

v1a1(v2b2 + vid)

v2a2(v1b1 + vip)
< 1 out of phase (high τ)

This model was then computationally run to confirm the results with arbitrary parameters (Figure

3.2c). The system was ran with all parameters at 1 except v1 and v2 at values of 4 and 2,

respectively and vice-versa.

Numerical implementation of the minimal model

We performed numerical simulations in MATLAB R2018b and checked against analytic

solutions provided in the previous section. Minimal model solutions are found in Figure 3.2c.

3.4.9 Simulations of the full spatial systems

For computational simplification, simulations were performed with a Gaussian profile on

the top boundary, the size of the domain and Gaussian profile were informed by STORM images,

Figure 3.3. The system is a hexagonal prism with outer radius of 0.4µm and depth 0.6µm with

periodic boundary conditions in the x and y planes, see Figure 3.4a. The top plane is assumed

to be the membrane and the bottom is a no flux condition. For the membrane plane, a Gaussian

78



profile was normalized such that the average value is 4x10−10 mol
m2 . The Ca2+ sensitive AC initial

conditions (Gaussian profile) is fixed for all simulation time by setting the diffusion constant to

≈0.

Assumptions

• Membrane patterns are pre-existing and not effected by a single signaling event such that

no diffusion occurs.

• Clustering events were approximated by a Gaussian profile in the center of the hexagonal

prism.

Model development

Although our system does show the ability to oscillate in and out of phase in a well-

behaved manner, this will not produce our desired form if a homogenous boundary is present.

Previous studies have looked at spatial gradients in the context of cAMP and PKA and found out

that a localization must occur for the system to form one [208]. Therefore, when moving to a

3D spatial map, we must consider how two solution regimes can be recovered. Experimental

data suggest that AKAP dimerizes and may form oligomers [161, 209], which is important for

the function of these cells [210]. This could allow spatial instabilities like those seen in [211]

used to describe post synaptic domains. The final Gaussian profile on the top boundary had the

size of the domain and Gaussian profile informed by STORM images of AC clustering (Figure

3.3). Statistics of the images show that, on average, 90% of the AC in storm sits within 54 nm of

the cluster center. The system was determined to be 0.35x0.35x0.6 µm hexagonal prism with a

Gaussian standard deviation of 25 nm.

Kinetic parameters were used the same as the well-mixed model, except for a few cases

in which tuning through surface/volume relationships were needed. Post fitting was performed
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to further refine the relationship of PDE and AC through use of obtained FRET measurements

(see section 3.4.10). Due to the large computational expense of the model PDE interactions were

reduced to two steps (Table B.8).

Numerical Simulation

The well-mixed network was imported into COMSOL Multiphysics®5.4 (Build:295), to

solve the spatial model with in-homogeneous boundary conditions.

PKA spatial response mirrors cAMP

PKA with full diffusion values (≈10µm2s) did not follow cAMP dynamics and only

elicited one global response. We asked if this was due to AKAP patterning at the surface, which

should mirror the AC profile at the surface. Adding this interaction into the model did not allow

any sizable spatial gradient to develop. Recent work has suggested the PKA catalytic subunit

in the presence of non-excess cAMP is effectively activated but its diffusion is restricted [212].

By varying the diffusion constant, we found PKA activity could follow cAMP dynamics in

the nanocluster and PM compartments in our computational model for restricted diffusivities

(Supplementary Fig. 3.11a). We experimentally tested this prediction using the AKAP79-

fused and PM-targeted PKA activity sensors and found that indeed PKA activity did follow the

cAMP-Ca2+ phase relationship within the two compartments (Supplementary Fig. 3.11b-d).

This suggests that anchored PKA holoenzyme action is much more restricted than originally

anticipated.

3.4.10 Comparisons to experimental data

Raw FRET data (Figure 3.1) was used for model refinement. The data was compared for

oscillation time and phase, with expected cAMP concentration falling in the sensors sensitive
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range of ≈0.1-10µM. Voltage gated channel sensitivities were not tuned, and only connection

strengths between CaM to ACs and PDEs, which are largely less constrained in comparison, were

varied. Values modified from the well-mixed model values can be found in Tables B.6, B.7, B.8.

Model validation and predictions

The model was validated on predictions to concentration perturbations (AC, PDE, ect.)

and disruption of patterning (AC binding disruption) and their changes to the phase of the

signal. The system, once moved to the spatial model, was allowed free parameters along the four

component axis for connection and strength of ACs and PDEs. This includes the flux differential

between basal and activated ACs and PDEs.

Spatial reaction tables

See appendix B for model tables.

Chapter 3, in full, has been submitted for publication as it may appear in ELife, Brian

Tenner, Michael Getz, Brian Ross, Donya Ohadi, Christopher H. Bohrer, Eric Greenwald, Sohum

Mehta, Jie Xiao, Padmini Rangamani, Jin Zhang, Spatially compartmentalized phase regulation

in the Ca 2+ -cAMP-PKA oscillatory circuit. The dissertation author was the second author of

this material.
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Figure 3.1: The phase of oscillating cAMP is shifted between the AKAP79/150 compart-
ment and the general plasma membrane compartment, relative to Ca2+. (A) Depiction of
the AKAP79 compartment and plasma membrane compartment, including the targeted cAMP
biosensor (Ci/Ce)Epac2-camps to measure the compartment-specific cAMP signaling. Schemat-
ics of the lyn-(Ci/Ce)Epac2-camps and AKAP79-(Ci/Ce)Epac2-camps sensors. (B) Network
diagram describing the key players in the Ca2+-cAMP-PKA oscillatory circuit in the β cell. (C)
Representative single cell trace of an in-phase oscillating β cell with AKAP79-(Ci/Ce)Epac2-
camps and RCaMP, whole-cell fluorescence measured. Red trace is cAMP (cyan direct channel
divided by CY-FRET channel) and black trace is Ca2+ (RFP). (D) Representative single cell
trace of an out-of-phase oscillating β cell with lyn-(Ci/Ce)Epac2-camps and RCaMP, whole-cell
fluorescence measured. Blue trace is cAMP (cyan direct channel divided by CY-FRET channel)
and black trace is Ca2+ (RFP). (E) Cross-correlation between the oscillatory Ca2+ and cAMP
signals from the representative in-phase AKAP79 (red) and out-of-phase plasma membrane
(PM, blue) β cells from C, D. Time lag (sec) between the cAMP and Ca2+ signals for the two
compartments (AKAP79/150, red, is 13sec ± 3sec and PM, blue, is 47sec ± 4sec) (p¡0.05).
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Figure 3.2: The oscillation phase is regulated by a balance between Ca2+-sensitive AC
and PDE activity. (A) Impulse response of plasma membrane cAMP (blue) to a spike in Ca2+

entry (black), triggered by KCl-mediated membrane depolarization (wash in/out). The transient
decrease in PM-cAMP is coupled to the transient increase in intracellular Ca2+. (B) Acute
inhibition of Ca2+-sensitive PDE1 decouples the out-of-phase PM-cAMP oscillations from
Ca2+ oscillations, as observed in this representative cell trace (Ca2+ - black, PM-cAMP – blue).
(C) The oscillatory phase of cAMP can be manipulated by tuning the relative activity of Ca2+-
sensitive PDE and AC, as demonstrated by a simple toy model. (D) Knocking down AC8 is
correlated with an increase in the time lag for oscillatory cAMP at the AKAP79/150 microdomain
(37sec), indicating more cells exhibiting out-of-phase cAMP oscillaitons (representative cell
trace, Ca2+ - black, AKAP79/150-cAMP – red). (E) Co-expressing AC8 is sufficient to reverse
the phase of cAMP at the PM (23s) to in-phase (representative cell trace, Ca2+ - back, PM
cAMP – blue).
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Figure 3.3: AKAP150 and AC8 both form nanoclusters at the surface of MIN6 β cells. (A)
Representative super-resolution STORM image of the AKAP150 scaffold (scale 5µm, inset
500nm). Ripley-K analysis measures the average radii of the nanoclusters and indicates that
AKAP150 forms clusters of 127nm. The nearest-neighbor distance distribution describes the
distance between nanoclusters (average distance for AKAP150 is 313nm). (B) Representative
super-resolution STORM image of Ca2+-sensitive AC8 (scale 5µm, inset 500nm) depicts AC8
nanoclusters of average radius 88nm and average nearest-neighbor distance 292nm.
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Figure 3.4: cAMP-Ca2+ phase relationship can be described by a 3D reaction-diffusion
model involving clusters of AKAP79/150 and AC8. (A) 3D reaction-diffusion model with a
single AKAP79/150:AC8 co-cluster positioned at the PM in the β cell in a hexagonal prism
volume. cAMP oscillates in-phase immediately within the AKAP79/150:AC8 nanocluster due
to the high effective concentration of AC8, but out-of-phase at the PM or cytosol due to the
presence of PDE1 (cAMP – red, Ca2+ - blue). (B) Disruption of AKAP79/150:AC8 interaction
can redistribute AC8 from within the cluster to the PM, shown by the half-Gaussian cross-
sections and representative AC8 concentration heatmaps at the PM. (C) Heatmap depicting the
time lag (s) for AC8 distribution (% Gaussian) and spatial distance (nm) from cluster center
along PM.
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Figure 3.5: Disruption of the AKAP79/150:AC8 interaction is associated with a redistri-
bution of AC8 at the PM and a phase shift of cAMP at the AKAP79/150 nanodomain.
(A) Over-expression of the N-terminus of AC8 that is necessary and sufficient for mediating
the AKAP79/150:AC8 interaction redistributes AC8 from within nanoclusters to the general
PM, as seen in the STORM image (scale 5µm, inset 500nm) and measured by the percent of
localizations that fall into nanoclusters. (B) AKAP150 nanoclustering is unaffected by the AC8
N-terminal fragment. (C) Disruption of the AKAP79/150:AC8 interaction lengthens the time
lag between the cAMP (red) and Ca2+ (black) signals at the AKAP79/150 compartment (avg.
time lag in absence of disruptor is 13sec± 3sec, and presence of disruptor 43sec± 6sec, p¡0.05)
due to more cells displaying out-of-phase cAMP oscillations.
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Figure 3.6: Ca2+ oscillatory dynamics are affected by expression of the disruptor peptide
in β cells. (A) Heatmap depicting Ca2+ oscillations for 220 randomly selected cells with EGFP
alone co-expressed (control) or EGFP-tagged AC81−106 (AKAP79/150:AC8 disruptor), ordered
by a mixed parameter describing the time lag between the first two Ca2+ peaks and the avg.
timelag between all Ca2+ peaks. (B) Schematic describing two Ca2+ oscillatory parameters,
the ratio between the first two Ca2+ peaks and the interpeak timing. (C) The peak ratio is
decreased in the presence of the AKAP79/150:AC8 disruptor, indicating less of a sustained Ca2+

oscillatory response. Over-expression of the disruptor also lengthens the timing between peaks.
(D) Expression level of the disruptor is correlated with an increase in the percentage of cells
eliciting irregular oscillations.
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Figure 3.7: Supplementary; The AKAP79/150 and PM targeted sensors are localized at
the plasma membrane. (A) Confocal image of lyn(Ci/Ce)Epac2camps showing efficient
localization of the probe at the PM in MIN6 cells (YFP channel, scale 5µm). (B) Confocal image
of AKAP79-(Ci/Ce)Epac2camps also depicting localization of the scaffold-fused biosensor at
the PM in MIN6 cells (YFP channel, scale 5µm).
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Figure 3.8: Supplementary; The Ca2+-dependent cAMP response is dependent on PDE1,
but not PDE3 or PDE4. (A) Representative single cell traces depicting the decoupling of
oscillating cAMP at the PM (measured by lyn-(Ci/Ce)Epac2camps, purple trace) from oscillating
Ca2+ (black trace) upon inhibition of PDE1C with 8MM-IBMX. (B) Representative single cell
traces showing that the phase of cAMP at the PM (purple trace) relative to Ca2+ (black trace)
is not affected by inhibition of the abundant PDE3 (milrinone). (C) Representative single cell
traces showing that the phase of cAMP at the PM (purple trace) relative to Ca2+ (black trace) is
also not affected by inhibition of PDE4 (rolipram).
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Figure 3.9: Supplementary; The cAMP-Ca2+ phase relationship at the PM can be tuned
by expression of the Ca2+-dependent AC8. (A) Plot depicting a dose-dependence between
the time lag of cAMP at the PM and the amount of AC8 co-transfected. (B) Representative
single cell trace of an oscillating β cell with 0ng of an AC8 expression vector co-transfected,
illustrating an out-of-phase cAMP-Ca2+ phase relationship. Purple trace is cAMP at PM and
black trace is Ca2+. (C) Representative single cell trace of an oscillating β cell with 1µg of an
AC8 expression vector co-transfected, illustrating an in-phase cAMP-Ca2+ phase relationship.
Purple trace is cAMP at PM and black trace is Ca2+.
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Figure 3.10: Supplementary; Expression of the N-terminus of AC8 is sufficient to perturb
the interaction between endogenous AKAP150 and AC8 in MIN6. (A) Widefield maximum
intensity projections of a Proximity Ligation Assay to depict the extent of interactions between
AC8 and AKAP150 in MIN6 β cells (scale 10µm). Expression of EGFP-tagged AC81−106 results
in less PLA puncta per cell. (B) # of PLA signals per AC81−106-expressing cell is significantly
decreased compared to non-transfected control (p<0.05).
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Figure 3.11: Supplementary; Oscillating PKA activity phase is also spatially compartmen-
talized at the PM. (A) By extending our 3D model, PKA activity is predicted to oscillate near
the center of the AKAP79/150:AC8 cluster with a short time delay and a longer delay outside
of the cluster, relative to Ca2+. (B) Experimentally-measured time lag between PKA activity
oscillations and Ca2+ for AKAP79 (orange) and the general PM (teal) compartments. (C) Rep-
resentative single cell trace showing in-phase PKA activity within the AKAP79 compartment.
Orange trace is PKA activity at AKAP79 (CY-FRET channel divided by cyan donor channel)
and black trace is Ca2+ (RFP). (D) Representative single cell trace showing out-of-phase PKA
activity within the general PM compartment. Teal trace is PKA activity at PM (CY-FRET
channel divided by cyan donor channel) and black trace is Ca2+ (RFP).
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Chapter 4

cAMP spatiotemporal interactions and
outcomes are deeply coupled with
fine-tuned machinary.

Many process of cells have increasingly been studied in terms of spatial heterogeneity

though such processes as phase transitions. Localization of catalysts can then play a crucial role

in controlling spatial and temporal signals. What function does this interaction elicit, and how is

this process controlled; more importantly, how is this misregulated?

Chapter 2 we discussed a novel protein interaction allowing for a ‘tunable valve’ function

on cAMP output. We conclude that GIV utilizes compartmental segregation to modulate the

dynamics of

RTK→G protein→cAMP signaling and confers robustness to these dynamics by functioning

as a tunable control valve. Future systems efforts will build on this model to unravel further

exciting features of GIV as a critical hub for signaling regulation at the knot of a bowtie [101]

and elucidate the hidden complexity that arises from network architecture in non-canonical G

protein signaling.

Chapter 3 we discussed the many biological systems which show complex spatial response
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upon a stimulus impulse, or depolarization event, where losing this interaction causes the network

to misbehave. Ca2+-cAMP pancreatic insulin release, arrhythmia, and brain voltage models all

rely on proper depolization for function. We disscussed how the Ca2+-cAMP Beta Cell system

and how membrane heterogeneity effects and controls the elicited response.

We can consider the well mixed dynamic results to answer how can we control the phase;

as previously shown in chapter 3, under certain assumptions a 4 component model system is

built and analyzed to describe the phase relationship to input parameters. In order to form a

spatial gradient within the reaction network’s topology a heterogeneous boundary condition must

exist, we discuss how heterogeneous conditions exist; and postulate at a turing pattern generated

through set interaction rules of receptors and scaffolds.

We can therefore build a set of models to test for the existence of Turing patterns. Simular

to other plasma membrane Turing patterns, Haselwandter et al. [211, 213] has shown a crucial

interaction that must exist is self assembly into homo-trimers. For our set of rules this is satisfied

through CaV β [214], patterning events are likely centered around CaV β and AKAP interactions

as hinted at in AC81−106 (AKAP79/150:AC8 disruptor) expressed experiments (Supplementary

Figure 3.10). Methods to determine existence of a Turing pattern can be found in Sections

C and D in which patterning events can be observed for multiple cytosol/plasma membrane

coupled systems. These findings hint at an intricate interaction between the boundary and volume.

With large heterogeneous variations, solutions with phase shifts become more common. This

emphasizes the strength of the patterning events at the PM, instabilities must exist that sufficiently

drive a concentration gradient to obtain our desired solution type. It therefore becomes obvious

that expansions to further elucidate these interactions are needed in both the PM and volume

space.

Therefore it can be concluded that the control of sources and sinks in the persepective

of cAMP can be a viable condition for disease states to arise. Understanding these conditions

94



continue to be a stuggle within the medical and computational communities. Continued studies

on these network motifs and others continue to be viable sources for identifying novel targets for

treatment.
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Appendix A

Supplemental Materials for A predictive
computational model reveals that
GIV/Girdin serves as a tunable valve for
EGFR-stimulated Cyclic AMP Signals
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A.1 Supplementary Movie Legends

Supplementary Movie 1: Activation of Gαs in response to EGF, as determined by

nanobody Nb37-GFP in control HeLa cells [shControl]. The movie shows EGF-dependent activa-

tion of Gαs as detected by live-cell imaging using the Gαs conformational biosensor nanobody

Nb37-GFP that binds and helps detect the nucleotide-free intermediate during Gαs activation [82].

In control HeLa cells responding to EGF little or no Gαsactivity was seen. Quantification of these

findings have been published in [42] (Magnification, 63 x).

Supplementary Movie 2: Activation of Gαs in response to EGF, as determined by nanobody

NB37-GFP in GIV-depleted HeLa cells (shGIV). The movie show EGF-dependent activation of

Gαs as detected by live-cell imaging using the Gαs conformational biosensor nanobody Nb37-

GFP that binds and helps detect the nucleotide-free intermediate during Gαs activation [82].

Compared with controls (Movie S1), in GIV-depleted cells a significant increase in Gαs activity

was seen on vesicular structures that are likely to be endosomes. Quantification of these findings

have been published in [42] (Magnification, 63x).
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A.2 Introduction to modeling chemical reactions

A.2.1 Mass-action kinetics

We generated an ordinary differential equation (ODE) for every species using mass-action

kinetics for each binding reaction. The law of mass action states that the rate of a chemical

reaction is proportional to the product of the concentration of the reactants raised to the power of

their stoichiometric coefficient. For example, consider the one-reaction system:

X +Y 
 2Z, (A.1)

where the forward and backward rates are k1 and k2. The differential equations describing the

dynamics of species X ,Y , and Z under mass-action kinetics are:

d[X ]

dt
= k2[Z]2− k1[X ][Y ] (A.2)

d[Y ]
dt

= k2[Z]2− k1[X ][Y ]

d[Z]
dt

= k1[X ][Y ]− k2[Z]2.

Mass action kinetics rely on the assumption that the rate constant, k, is constant over time.

However, within a restricted space such as a membrane, the rate constant may change over time

due to restricted diffusion and mass action kinetics may not be accurate [203]. We assumed that

most binding interactions occur rapidly enough such that k remains constant.
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A.2.2 Michaelis-Menten kinetics

We used Michaelis-Menten kinetics to model enzyme-catalyzed reactions. When a

reaction is catalyzed by an enzyme with kinetic properties kcat and KM,

S E P,

then the reaction rate is given by

d[S]
dt

=−kcat [E][S]
KM +[S]

=
d[P]
dt

. (A.3)

For Michaelis-Menten kinetics to apply, the concentrations of the reactants and products

must be in large enough quantities, and one of the following conditions must apply:

1. The concentration of substrate is very much larger than the concentration of products:

[S]�[P].

2. The energy released in the reaction is very large: ∆G� 0.

A.2.3 Transport between compartments

Flux between different cellular compartments was modeled as a reaction rate that captures

the rate of species transport per unit time. For the transport of species A between compartments c

and d, we used rate equations of the form

dAc

dt
=−k1[Ac]+ k2[Ad], (A.4)

where k1 and k2 are the transport in and out of compartment c respectively. When utilizing

flux for compartmental transport it is important to note the interaction is only valid when the
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compartments are large and the corresponding surface area conversion factors are accounted for.

Reactions that used fluxes to model different cellular components as follows: phosphorylated

EGF-EGFR2 internalization [R4], EGFR internalization [R8], Gαi transport to an endosome

[R19], Gαi-GDP transport to PM [R21], AC internalization [R32], and Gαs internalization [R37].

A.3 Model development for growth-factor based cAMP sig-

naling

A.3.1 Phenomenological model

We defined a simple, phenomenological model for the system based on information from

legacy literature, Figure 2.1A, simple fluxes were chosen to capture the biochemical interactions

with a minimal number of components. The phenomenological model aims to identify the

‘minimal’ network module that can capture the interactions of EGFR, GIV, and G proteins to

modulate cAMP flux, independent of parameter values. We define these interactions as follows:

Table A.1: Description of the simplified interactions of the phenomenological model.

Reaction Explanation

k2[EGFR(t)][EGF(t)]S(t) S(t)=1 for 0 < t < 30 and 0 otherwise; binding interaction with
ligand

k5[EGFR∗2i(t)](1+
sc[GDI(t)])

degradation scaling with GDI concentration from basal by sc

k6[EGFR∗2(t−δ2)][GIV(t)] activation delay of GEF - approximation of Cdk5 chain

k7[EGFR∗2(t−δ3)][GEF(t)] activation delay of GDI - approximation of PKC chain

kbase(1−
kACI[EGFR∗2(t)][GEF(t)])

inhibition of AC - decreases basal rate as a function of EGFR
and GEF

kAC[EGFR∗2i(t−δ1)] activation of AC - assumed as a function delayed on internal
EGFR concentration
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EGF is presented as a stimulus from 0 to 30 minutes with constant value on 1 and 0 at

all other times. This mirrors stimulus used in experimental conditions. EGFR and cAMP

concentrations are initialized at 1. GIV concentration is set by mass conservation GIV =

1− [GEF ]− [GDI]. All other initial conditions are set to 0. The phenomenological model

was then modeling by the following ODEs.

d[EGFR]
dt

= −k2[EGFR(t)][EGF(t)]S(t)+ kr2[EGF-EGFR(t)]

d[EGF-EGFR]
dt

= k2[EGFR(t)][EGF(t)]S(t)− kr2[EGF-EGFR(t)]...

−2k3[EGF-EGFR(t)]2 +2kr3[EGFR∗2(t)]
d[EGFR∗2]

dt
= 2k3[EGF-EGFR(t)]2−2kr3[EGFR∗2(t)]− k4[EGFR∗2(t)]+ kr4[EGFR∗2i(t)]

d[EGFR∗2i]
dt

= k4[EGFR∗2(t)]− kr4[EGFR∗2i(t)]− k5[EGFR∗2i(t)](1+ sc[GDI(t)])

d[GEF]
dt

= k6[EGFR∗2(t−δ2)][GIV(t)]− kr6[GEF(t)]...

−k7[EGFR∗2(t−δ3)][GEF(t)]+ kr7[GDI(t)]
d[GDI]

dt
= k7[EGFR∗2(t−δ3)][GEF(t)]− kr7[GDI(t)]

d[cAMP]
dt

= (kbase + kAC[EGFR∗2i(t−δ1)])(1− kACI[EGFR∗2(t)][GEF(t)])− kdeg[cAMP(t)]

This model has 3 time delays, 15 kinetic parameters, and 7 variables. To constrain the

model, a large range of possible parameters were simulated, as shown in Table A.2. Parameter

values are chosen though uniformly distributed values across x∈ [a, b] were the parameter is

defined as 10x. kbase was set to be equal to kdeg such that the steady state of cAMP is 1. The

value of kbase is assumed as it only encodes the basal degradation and production rates (which
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control max and min peak values). Simulations were conducted for 5000 runs and log-normal

distributions were calculated and reported (Figure 2.1). A secondary variation was also performed

with all parameters fixed except time delays, τ. The values for the variation are chosen from

uniformly distributed values across x∈ [a, b]. 5000 runs for each simulation were conducted and

normal distributions were calculated and reported (Figure A.1).

Table A.2: Values used to simulate the phenomenological model for a primary kinetic variation
and a secondary time delay variation.

Parameter primary range secondary range units

τ1 0.5 [0.1, 8.1] min

τ2 5 [0.1, 8.1] min

τ3 3 [0.1, 8.1] min

kbase = kdeg 0.25 0.25 ]s−1,s−1

k2 [100, 102] 101 s−1]−1

kr2 [10−1, 101] 100.5 s−1

k3 [100, 102] 101 s−1]−1

kr3 [10−1, 101] 100.5 s−1

k4 [10−3, 10−1] 10−1 s−1

kr4 [10−4, 10−2] 10−2 s−1

k5 [10−3, 10−1] 10−2 s−1

k6 [10−1, 100] 100 s−1]−1

kr6 [10−2, 10−1] 10−1.5 s−1

k7 [10−1, 100] 10−0.5 s−1]−1

kr7 [10−3, 10−2] 10−2.5 s−1

kAC [100, 101] 101 s−1

kACI [10−1, 100] 101 ]−2

sc [100, 102] 101 s−1
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A.3.2 Sensitivity analysis of the phenomenological model

To determine the relative sensitivities of each parameter across the simulation time,

variance-based sensitivity analysis was performed [215–217]. The analysis describes the sensitivi-

ties of the phenomenological model with respect to the uncertainty in kinetic parameters k. Given

the model form, the first order effect of the factor Xi on the variance is VXi(EX∼i(Y |Xi)), where X∼i

is the matrix of all factors but Xi. When compared against the total variance, Si is retrieved, where

Si =
VXi(EX∼i(Y |Xi)

)

V (Y ) . The total index STi does the same but considers all higher order effects of Xi

through calculation of EX∼i(VXi(Y |Xi)). To find these values, a hypercube composed of two inde-

pendent sampling matrices A and B of size Nx2k is created (where k is the number of uncertain

parameters and N is the number of random samples). A third matrix is then sampled, Ai
B, defined

as the matrix A with the ith column sampled from matrix B. We then define VXi(EX∼i(Y |Xi)) =

1
N ∑

N
j=1 f (B) j( f (Ai

B) j− f (A) j) and EX∼i(VXi(Y |Xi)) =
1

2N ∑
N
j=1( f (A) j− f (Ai

B) j)
2. The solution

in Figure A.1 used N=20000 and i=14 (excluding time delays and the basal cAMP rates) and

results are shown for the sensitivities across the complete simulation time (excluding small

variance values, which are unreliable and insignificant).

A.3.3 Compartment sizes

We conducted simulations using the following compartments for a computational HeLa

cell: cytoplasm, plasma membrane, endosome, endosomal membrane, and a nucleoplasm. We

assumed that the cell was spherical shaped and used a cytosolic volume of 2000 µm3 [218]. We

assumed the endosomes to be fixed in size during the time course of signaling, with a diameter of

87 nm [71], slightly smaller than the size of a large endosome (100nm). Villasenor et al. [219]

reported that about 50 endosomes are created after 30 min of 10 ng
mL EGF stimulation in HeLa
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cells. Using this value, we calculated the total endosomal volume to be 0.138 µm3 and surface

area of 5 µm2 using V = n4
3πr3 and membrane area by A = n4πr2, where n is the final number of

endosomes. The different compartment sizes are shown in Table A.3.

Table A.3: Sizes of different compartments used within the model

Compartment size Notes and References
EC 5000 µm3 -
PM 1256 µm2 [218]
Cytosol 2000 µm3 [218]
Endosome 0.138 µm3 [219], Est.
Endosomal membrane 5 µm2 [219], Est.
Nucleosol 200 µm3 Assumed 10% of Cytosol

A.3.4 Model Kinetics

We conducted simulations for 60 min based on the time course of RTK→cAMP signaling

[42]. We did not account for the regeneration of ATP and PIP2, and assumed that these values

are constant and high. We did not include mitogen-activated protein kinase (MAPK) or calcium

pathways in this model. This model has 76 kinetic parameters of which 19 are fit and the

remainder are taken from the literature. Of the 19 kinetic parameters that were fit, 7 of them

affect cAMP dynamics but only 4 change the dynamics of cAMP.

A.3.5 Module 1: EGF Receptor Module

The receptor module captures the key events of

1. Ligand binding and dimerization.

2. Receptor activation and internalization.
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3. Receptor endosomal recycling.

4. Receptor Gαs-GDP dependent degradation.

This module is based on Shoerberl et al. [71] for EGFR activation, internalization, and recycling.

Binding of EGFR to scaffolding proteins was not included in this model. Gαs·GIV-GDI dependent

degradation of EGFR was modeled based on [40]. Although the exact mechanism of Gαs-GDP

based degradation is unknown, we used a constitutive model to capture the effect of degradation of

EGFR by Gαs using a Gαs-GDP independent basal rate and a Gαs-GDP dependent catalytic rate.

In this Module there are 10 reactions, 14 kinetic parameters. Of these, 3 were fit to experimental

data (Figures 2.2, A.3)

Kinetic parameters

The kinetic binding parameters were chosen based on the values given in Schoeberl et

al. [71], Berkers et al. [72], and French et al. [73]. The rate of EGF binding to EGFR at the

plasma membrane was set through values reported in Berkers et al. [72]. The binding rate of

endosomal EGF to EGFR was set by the relative ratio of pH=6 and pH=7.4 as shown in French et

al. [73]. Degradation of EGFR was set through the global parameters kb, basal degradation, and

kc, Gαs-GDP-dependent degradation. The internalization and degradation rates were modified to

fit experimental data for receptor internalization as shown in [219, 220] and for experimental data

shown in Figure 2.1E-F, A.3.

A.3.6 Module 2: Transactivation of Gαi by EGFR via GIV-GEF interac-

tions

The GIV-GEF module captures the key events of
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1. Activation of GIV through CDK5.

2. GIV·EGFR binding and amplification of receptor signaling events.

3. Formation of EGFR·GIV·Gαi complex and activation of Gαi.

The activating step for GIV-GEF is CDK5-mediated phosphorylation of S1674 on GIV

[42]. GIV-GEF is then later turned “off” by PKC-θ, which is activated downstream of PLC-γ.

Once activated, GIV-GEF binds to EGFR and Gαi-GDP to assemble the EGFR·GIV·Gαi complex

[41]. Previously published pathways, kinetics and dynamics of CDK5 activation were used

to build the model [221–223] (see ‘Kinetic parameters’ section below). We did not track the

dynamics of βγ in this model. In this Module there are 7 reactions, 14 kinetic parameters. Of

these, 4 were fit to experimental data (Figures 2.2, A.3).

Kinetic parameters

Kinetic parameters were determined through a combination values from the literature

and experimental data fitting. Activation of p35 by the receptor (Table A.5 reaction 12), was

determined using rates from Bhalla et al. [103] and by fitting simulations to new (cAMP time-

course) and previously published experimental data (GIV-GEM IB), Figure 2.1E-F, A.2E-F,

A.3 , [42]. The rate of p35 degradation was determined based on the known half-life of 20 to

30 min [224] then refit to the GIV-GEF curve, Figure A.3. Maximum binding of CDK5 to p35

(Table A.5 reaction 13), was set to 80% based on published experimental data [221]. Binding of

CDK5 to active p35 was assumed to be very rapid. The rate of GIV-GEF activation by CDK5

(Table A.5 reaction 14), was fit to immunoblotting data [42] (Figure 2.1E-F, A.2E-F, A.3).

EGFR2·GIV and EGFR·GIV·Gαi formation rates were determined by fitting of experimental

data using COPASI [225] and using the experimentally determined dissociation constant (Kd) of

EGFR·GIV·Gαi formation [41, 70].
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A.3.7 Module 3: Transinhibition of Gαs by EGFR via GIV-GDI

The GIV-GDI module captures the key events of

1. PLC-γ activation and PIP2 hydrolysis.

2. Enhanced PLC-γ activation through EGFR2·GIV.

3. DAG dependent PKC-θ activity.

4. Termination of GIV-GEF [for Gαi], and its conversion to GIV-GDI through PKC-θ and

reduction of GEF activity.

The action of PKC-θ on GIV was based on prior work [42], which showed that targeted

phosphorylation on site S1689 terminates GIV’s GEF function, only allowing GDI function to

be active. For the purposes of our model, it was assumed that the PLC-γ→PKC-θ axis acts after

CDK5, as shown previously [42]. In doing so, the PLC-γ→PKC-θ axis phosphorylates GIV-GEF

that is activated by CDK5, but not inactive GIV [42].

In the model, activation of PKC-θ was achieved through the action of PLC-γ. PLC-γ

activation was modeled to be a function of both EGFR and EGFR2·GIV; the latter assumption was

made based on prior work [41], which showed that GIV enhances EGF triggered PLC-γ signaling.

Once active, PLC-γ hydrolyzes PIP2, creating IP3 and DAG [226]; DAG then binds and activates

PKC-θ, inducing the localization of the latter to the PM. PKC-θ then phosphorylates GIV-GEF in

both the unbound and the receptor bound form. Gαs·GIV-GDI complex formation and function

was based on [40, 42] where it was shown to only act of the GDP form of Gαs. In this Module

there are 11 reactions, 16 kinetic parameters. Of these, 6 were fit to experimental data (Figures

2.2, A.3).
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Kinetic parameters

The initial choice of kinetic parameters were based on the previously published rates for

activation of PLC-γ, PIP2, and IP3 degradation [103]. These parameters were then refined by

fitting the dynamics of the Gαs·GIV-GDI complex to immunobloting data [42] (Figure 2.1E-F,

A.2E-F, A.3); the rate of GDI activation through PKC-θ and the rate of formation of the Gαs·GIV-

GDI complex were determined by fitting simulations to immunoblot data (Figure 2.1E-F, A.2E-F,

A.3).

A.3.8 Module 4: Reactions for the production and degradation of cAMP

The cAMP module captures the key events of

1. Inhibition of basal activity of the PM-pool of AC by Gαi.

2. Activation of endosome-pool of AC by Gαs.

3. Internalization of AC, Gαs, Gαi.

4. Production of cAMP, activation of PKA, and PDE.

In the model, we assumed that AC activation through EGFR occurs only on the endosome [37,222],

because we assumed that EGFR is only able to activate Gs proteins on the endosome. Binding of

internalized Gαs-GTP to AC activates and allows increased catalytic activity of AC [227]. The

binding of Gαi to AC was modeled to reflect the inhibition of all AC activity [228]. AC inhibition

was allowed to occur on both membranes.

cAMP production by AC was modeled with Michaelis-Menten kinetics [227]. Because

cellular ATP is in the millimolar range [229], a large excess compared to the concentrations

of the signaling molecules, the concentration of ATP was assumed to be constant. Once four
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cAMP molecules bind to the four distinct binding sites on PKA, the quadruple occupancy leads

to activation of the catalytic subunit, PKAc, which separates from regulatory subunit [230]. In

our model, PKA activation was modeled using a Hill equation [231]. We assumed that PKAc had

the same steady state concentration in the nucleosol as the cytosol. PDE activation through PKAc

and enzymatic function was based on [227]; cAMP is degraded by PDE. We did not consider any

AKAPs or AKIPs because they fall outside the scope of the current model; it possible that their

inclusion may impact response strength and timescales. In this Module there are 23 reactions, 14

kinetic parameters. Of these, 3 were fit to experimental data (Figures 2.2, 2.3, and A.3 were fit

to Figure A.8).

Kinetic parameters

Previously published activation kinetics of the AC→cAMP→PKA cascade [227] were

modified to be closer to observed experimental values [232, 233]. Alousi et al. [232] estimated a

ratio of Gαs to AC of greater than 33.3, while Post [233] reported a value of 78.3 in isolated adult

rat ventricular myocytes. We therefore chose a ratio of 50 to set our initial values. The binding

rates of Gαs-GTP and Gαi-GTP to AC were based on values in [227]. Rates of inactivation

of Gαs and Gαi bound to AC were determined by the GTP hydrolysis activity of AC [234].

Internalization rates of Gαs and AC were defined as the same parameter, kint , determined through

fitting to immunoblot data [42] (Figure 2.1E-F, A.2E-F, A.3). The kinetic rates governing

PKA activity were determined by using steady state dose-response curves to fit a Hill equation

(Figure A.8) [231], dissociation of cAMP from the regulatory subunits [235], and reformation of

the PKA holoenzyme.
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A.3.9 Role of additional interactions from CDK5 and PKC-θ to PDE

Previous studies have shown that both CDK5 [236] and PKC-θ [237] influence PDE

activation. We modeled interactions of CDK5 and PKC-θ to activation of PDE, leading to further

suppression of the cAMP signal; the additional interactions are shown in Table A.9. The addition

of these interactions did not alter the time course of cAMP production but reduced the amount of

cAMP produced Figure A.9.

Kinetic parameters

We tested the role of additional PDE activation pathways through CDK5 and PKC-

θ [236, 237]; We assumed these interactions would double the maximum PDE concentration

based on previously published data [236, 237] that has shown that suppressing the affects of

CDK5 and PKC-θ on PDE reduced PDE activity by 1.25 to 1.5-fold.

A.4 Parameter estimation, model access, and additional re-

sults

The simulations for the phenomenological network, shown in Figure 2.1, were carried out

in MATLAB using dde23. The MATLAB files used to generate results can be found in supplemen-

tary files under the name GETZ 2019 cAMP.m (Figure 2.1) and GETZ 2019 cAMP timedelay.m

(Figure A.1E). Code for the variance based sensitivity is GETZ 2019 cAMP sens.m (Figure A.1).

The simulations for the full network, shown in Figure 2.2, were carried out in COPASI.

The COPASI files used to generate results can be found in supplementary files under the name

GETZ 2019 cAMP full.m (Figure 2.2), GETZ 2019 cAMP full PM EM.m (Figure A.5), and

GETZ 2019 cAMP full feedback.m (Figure A.9). COPASI (http://copasi.org/) is supported by
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National Institutes of Health, NIH (USA) (Grant GM080219 NIGMS), BBSRC (UK) (Grant

BB/J019259/1), and BMBF Federal Ministry of Education (Germany). Previous versions of

the full model were build in the Virtual Cell [VCell]. The Virtual Cell is supported by NIH

Grant Number P41 GM103313 from the National Institute for General Medical Sciences. A

detailed protocol/user guide on how to develop models in Virtual Cell has been published

elsewhere [106, 238].

A.4.1 Parameter estimation with COPASI

Parameter estimation was originally carried out using COPASI [225] built into the

VCell program [106]. Parameter estimation was then expanded into the COPASI environ-

ment. Fitting was conducted simultaneously on GIV-GEF(IB), GIV-GDI(IB), cAMP(RIA),

EGFR·GIV·Gαi (IB), and Gαs·GIV-GDI (PLA) data with respective initial values (IB carries a

higher initial GIV concentration due to experimental over expression). The particular estimation

method used was evolutionary programming (EP) for 300 generations with a 25 population size

using 1 random number generator. This was performed for two runs before results were reported.

Evolutionary programming functions as follows: once presented with a optimization problem,

i.e. minimizing error between the absolute values of experimental data and simulation data

(E=|y1− y2|), the algorithm develops a set of potential solutions by varying parameters chosen

by the user. At the next “generation” each individual solution produces two “offspring” one of

the same solution and one with slight random parameter variations. Therefore, at the end of this

generation there are double the number of potential solutions. These are then reduced to the

original number of solutions by comparing the error against the other solutions, keeping only the

lowest errors and deleting all other solutions. For more information on this method see [239].
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A.4.2 EGFR dynamics at the plasma membrane and the endosomal mem-

brane

Module 1 of the reaction network models the dynamics of EGFR at the PM and the

endosome (Figure A.2A, Table A.4). At the PM, EGFR is activated by ligand binding, receptor

dimerization, and cross-phosphorylation; activated EGFR is internalized to the early endosome

through endocytosis, from where it can be either recycled or degraded [71]. Active PM EGFR also

forms a complex with GIV-GEM, and via GIV with Gαi, leading to the activation of Gαi [42]. On

the other hand, while it remains unclear when and where EGF/EGFR activates Gαs, it is known

that a pool of GIV that is on endosomes containing internalized EGFR binds and inactivates

Gαs on the endosomal membrane. Once inactivated, Gαs-GDP enhances the degradation rate of

internalized, endosomal EGFR, thereby limiting the pool of receptors available for recycling to

the PM and serves to attenuate growth factor signaling [40].

Simulations from the model show that EGFR dynamics is governed by multiple time-

scales when ligand stimulation triggers the redistribution of receptors from the PM to different

pools (Figure A.5A). The PM-pool of active receptors increases rapidly upon ligand stimulation

(Figure A.5A, red line) and subsequently recruits GIV, forming GIV-GEF·EGFR complexes

(Figure A.5A, purple line). The endosomal pool of active receptors increases at a slower

time scale (Figure A.5A, yellow line) than the PM-pool of active receptors. Recycling of the

endosomal pool of receptors to the PM leads to a small second burst in the PM pool of receptors

around 10 min (Figure A.5A, yellow line). These findings are in agreement with Schoeberl et

al. [71], indicating that our model accurately captures the EGFR dynamics. The total number

of active receptors decreases over time because of Gαs-GDP-dependent receptor degradation

(Figure A.5A, blue line). The pool of receptors in the GIV-GEF·EGFR complex subsequently

interact with Gαi at the PM to form the EGFR·GIV·Gαi complex. The effect of kinetic parameters

of EGFR dynamics is shown in Figure A.7A-Cand we find that the balance of PM-pool versus
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internalized pool of EGFR is closely regulated by both the internalization rate and the Gαs-GDP

dependent receptor degradation rate [40].

A.4.3 Dynamics of Gαi signaling: activation kinetics are shaped by both

upstream EGFR dynamics and downstream PLC-γ→ DAG→PKC-

θ signaling events

We next asked how EGFR dynamics affect the dynamics of Gαi signaling at the PM.

Activation of EGFR at the PM triggers a series of downstream events, including the activation

of CDK5 at the PM by its cofactor, p35 [240]. CDK5 phosphorylates GIV at Ser(S)1675 and

enhances GIV’s ability to bind Gαi, i.e., CDK5 turns inactive GIV to into active GIV-GEF [74].

This allows GIV to couple Gαi to EGFR by assembling ternary EGFR·GIV·Gαi complexes

at the PM [47] and activate Gαi in the vicinity of ligand-activated EGFR (Module 2 in the

model, Figure A.2A, Table A.4, A.5). EGFR also triggers the activation of the PLC-γ-DAG-

PKC-θ pathway [241]; PKC-θ phosphorylates GIV at S1689 and terminates GIV GEF activity

towards Gαi [102]. Such sequential phosphorylation has another function – it converts GIV that

is a GEF for Gαi(GIV-GEF) into GIV that now serves as a GDI for Gαs(GIV-GDI); GIV-GDI

binds and inhibits GDP exchange on Gαs [42].

We asked, how do the CDK5 and the PLC-γ pathways regulate dynamics of the EGFR·GIV·Gαi com-

plex formation, which is the key precursor event essential for transactivation of Gαi by EGF/EGFR

[43, 47].

Sensitivity analyses showed that despite the substantial number of model parameters

(Tables A.12 and A.15), the formation of the EGFR·GIV·Gαi complex is sensitive only to a few

kinetic parameters and initial conditions over time (Tables A.12 and A.15, Figure A.7). For

example, a ten-fold variation of the forward rate for the binding of GIV-GEF to the activated
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receptor (k f in reaction 15, Table A.5) affected the peak values of the complex formation but not

the temporal features of the EGFR·GIV·Gαi complex formation (Figure A.7D). Similarly, the

activation of the GIV-GEF function by CDK5 (reaction 14, Table A.5) affected the density of the

complex but not the temporal dynamics (Figure A.7E).

The dynamics of the EGFR·GIV·Gαi complexes, however, were sensitive to the initial

concentrations of Gαi (expected), GIV (expected), Cdk5 (expected), PIP2 (unexpected) and

PLC-γ (unexpected) (Table A.12). The sensitivity of EGFR·GIV·Gαi complex formation to PIP2

and PLC-γ likely stems from network cross-talk, because the PLC-γ→DAG→PKC-θ pathway

terminates GIV-GEF, triggering the dissociation of GIV and Gαi, which triggers the disassembly

of the EGFR·GIV·Gαi complexes (Figures A.2A, A.2B). Changes in PLC-γ impacted both

the density and temporal dynamics of the EGFR·GIV·Gαi complexes. As expected, when the

PLC-γ→DAG→PKC-θ pathway is inhibited, the lifetime of GIV-GEF is prolonged and vice

versa. This effect is evident when comparing the normalized densities against experiments

(Figure A.7F).

We conclude that early activation of GIV-GEF, and the observed dynamics of the assem-

bly of EGFR·GIV·Gαi complexes are not only dependent on the upstream kinetics of EGFR

activation, but also on the downstream conversion of GIV-GEF to GIV-GDI, mediated by the

PLC-γ→DAG→PKC-θ pathway. Findings also indicate that the connections within the network

effectively capture the dynamics of transactivation of Gαi by EGFR via GIV-GEF.
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A.4.4 Dynamics of Gαs activation is most compatible with delayed activa-

tion triggered by internalized EGFR and inactivation by GIV-GEM

on endosomes

Although GIV-GDI inhibits the activity of Gαs-GTP [42], the exact mechanism of Gαs ac-

tivation by EGFR is currently unknown. Prior studies have shown that Gαs is located on early,

sorting and recycling endosomes [242] and that upon EGF stimulation, its activation/inactivation

on endosomes regulates endosome maturation and EGFR degradation [243]; in cells without

Gαs, or in those expressing a constitutively active mutant Gαs, internalized EGFR stays longer

in endosomes, thereby, prolonging signaling from that compartment [40]. We asked when and

where Gαs is activated. Because compartmentalized EGFR signaling (PM versus endosomes)

occurs on different time scales (Figure A.2A), and Gαi and Gαs have different timescales of

activation [5 min and 15 min respectively] [42], we reasoned that computationally predicted

dynamics of all three possible scenarios of compartmentalized Gαs activation i.e. [1) exclusively

at the PM 2) exclusively at the endosomes; and 3) both at the PM and then on the endosomes

(Figure A.5B), can provide insights into which option might be in accordance with the actual

observed time scales for the same.

In the first scenario, where ligand-activated EGFR triggers Gαs activation exclusively

at the PM, activation is predicted to be rapid with peak concentration at 35 sec, similar to the

case of β2-adrenergic receptors peak activity at 15 sec [244] (also see Figure A.5C); this kinetic

pattern mimics the dynamics of rapid EGFR activation at the PM. In the second scenario, where

ligand-activated EGFR triggers Gαs activation exclusively on endosomal membranes, the time

of peak activity is around 15 min (Figure A.5C, red line), in accordance with the time scales

of Gαs activation and cAMP production [42]. Finally, if we consider a scenario where ligand-

activated EGFR triggers Gαs activation both at the PM and on endosomes, we observe a first peak

of rapid activation at around 35 sec, followed by a second burst at around 15 min. In all three
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scenarios, activation of Gαs [concentration of Gαs-GTP] was higher in the absence of GIV’s GDI

activity (i.e., when the concentration of GIV is set to zero; Figure A.5C). Based on the dynamics

of EGFR at the PM [rapid, almost instantaneous] and on the endosome [approximately 10 min]

(Figure A.5A) and similar timescales for Gαs activation observed from the different modes of

Gαs activation (Figure A.2E), we predict that Gαs is likely activated on endosomes.

To validate model predictions, we used a Gαs conformational biosensor, nanobody Nb37-

GFP that binds and helps detect the nucleotide-free intermediate during Gαs activation [42]. Prior

studies have extensively validated this tool and demonstrated its ability to detect Gαs activation

in real time, both at the PM (seen as a burst of signal in the cell periphery) and within early and

recycling endoscomes (seen as dynamic punctate vesicles inside cells [82, 245–247]. In control

cells, no significant Gαs activity was detected, neither at the PM, nor on endosomes, neither before,

nor after ligand stimulation, indicating that Gαs is either not activated after EGF stimulation

or that its activity is efficiently suppressed by some modulator, presumably GIV, for sustained

periods of time. In GIV-depleted cells [80-85% depletion of endogenous GIV by shRNA sequence

targeting the 3’ UTR [42] Figure A.2F], Gαs activity was easily detected roughly 15 min after

ligand stimulation and exclusively on vesicular structures, likely to be endosomes (Figure A.2F);

no such signal was noted at the PM, which is where canonical activation of Gαs by GPCR is

initiated [42]. These results obtained in live cells using conformation sensitive antibodies reveal a

much delayed and compartmentalized pattern of non-canonical cyclical activation/inactivation

of Gαsdownstream of EGF; findings are also consistent with our in vitro enzymology assays

published previously [42] in that GIV’s GDI function normally inhibits Gαs activity (hence not

much fluorescence in control cells, but increased signals in GIV-depleted cells). As for what

activates Gαs downstream of EGF/EGFR, few studies have shown that EGFR binds Gαs [37,248]

through its juxtamembrane region [249], and that this interaction triggers phosphoactivation

of Gαs [248]. Such transactivation of Gαs by EGFR in cardiomyocytes is accompanied by

augmented AC activation, elevation of cAMP, increased heart rate and contractility [248, 250].
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Our model neither proves nor disproves this model for direct transactivation of Gαs by EGFR, but

reveals that activation of Gαs is delayed and pinpoints endosomes as the site of such activation.

Finally, we evaluated the dynamics of formation of the Gαs·GIV-GDI complex [Module

2; Figure 2.1F], the precursor event that is essential for transinhibition of Gαs by EGF/EGFR

[42]. Our model for the dynamics of assembly of Gαs·GIV-GDI complexes (Table A.4, A.6,

A.7) included the kinetics of receptor internalization, Gαs activation by internalized receptors,

conversion of GIV-GEF to GIV-GDI by the PLC-γ→DAG→PKC-θ pathway, and the Gαs-GDP-

dependent degradation of endosomal EGFR (Figure A.2A). Simulations from this model showed

a good qualitative agreement between normalized Gαs·GIV-GDI complex formation between

model and cell-based experiments [42].

The role of kinetic parameters and initial conditions affecting the formation of the

Gαs·GIV-GDI complex were explored in detail (Figure A.7) and we found that the dynam-

ics of Gαs·GIV-GDI complex formation is more sensitive to internalization and degradation

of EGFR than to any other kinetic parameters. However, our model was unable to capture the

precipitous reduction in the normalized concentrations of Gαs·GIV-GDI complexes at 60 min.

We speculate that the discrepancy between model and experiment may stem from the fact that

the model is fine-tuned to compute the Gαs·GIV-GDI complexes that are located exclusively on

the endosomes, whereas the experiment assessed Gαs·GIV-GDI complexes in whole cells (not

restricted to the endosomes) by proximity ligand assays (PLA) on endogenous proteins or by

GST pulldown assays using cell lysates as source of Gαs. Experimentally, it is not yet possible

to assess specifically the number of cytosolic versus endosomal vs other membrane-localized

Gαs·GIV-GDI complex numbers in living cells responding to EGF. Because Gαs on endosomes

escapes redistribution after ligand stimulation, it has a prolonged half-life to enable sustained

signaling from that location [251]. It is possible that the endosomal pool of GIV-GDI has a

similarly prolonged half-life, which could explain the unexpectedly high number of complexes
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predicted at 60 min.

Alternatively, the discrepancy may simply reflect an incompleteness in network modeling.

For example, one plausible group of unknown proteins that are missing in our model are down-

stream phosphatases that presumably act on GIV-GDI on endosomes, and are responsible for the

decline in the number of Gαs·GIV-GDI complexes at later time points.
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Tables
Table A.4: Reactions for Module 1, outlining EGFR activation, internalization, and degradation.
In this table there are 10 reactions, 14 kinetic parameters. Of these, 3 were fit to experimental
data (Figures 2.2, A.3).

# Reaction Reaction flux Kinetic Parameters Ref.

1 EGF+EGFR↔
EGF·EGFR

k f [EGF][EGFR]−
kr[EGF-EGFR]

k f =3 s−1 ·µM−1,
kr=0.014 s−1

[71–
73]

2 2 EGF·EGFR↔
EGF·EGFR2

k f [EGF·EGFR]2−
kr[EGF·EGFR2]

k f =0.01 µm2

s.molecule ,
kr=0.1 s−1

[71]

3 EGF·EGFR2↔
EGF·EGFR*2

k f [EGF·EGFR2]
−kr[EGF·EGFR*2]

k f =1 s−1, kr=0.01 s−1 [71]

4 EGF·EGFR*2↔
EGF·EGFR*2i

k f [EGF·EGFR2] k f =0.002 s−1 [71,
219,
220]

5 EGFi+EGFRi→
EGF·EGFRi

k f [EGFi][EGFRi]
−kr[EGF·EGFR2i]

k f =0.14 s−1 ·µM−1,
kr=0.0195 s−1

[71–
73]

6 2 EGF·EGFRi→
EGF·EGFR2i

k f [EGF·EGFRi]2−
kr[EGF·EGFRi]

k f =1x10−20 µm2

s.molecule ,
kr=0.1 s−1

[71]

7 EGF·EGFR2i→
EGF·EGFR*2i

k f [EGF·EGFR2i]
−kr[EGF·EGFR*2i]

k f =1 s−1, kr=0.01 s−1 [71]

8 EGFRi→ EGFR k f [EGFRi]− kr[EGFR] k f =0.005 s−1,
kr=5x10−5 s−1

[71]

9 EGF·EGFR*2i→ (kbase + kc[Gs-GDPi
+Gαs·GIV-
GDI])∗[EGF·EGFR2i]

kbase=1.1x10−8 s−1,
kc=2.2x10−7 µm2

s.molecule

[40, 71,
219] 1

10 EGFi→ EGFdeg (kbase + kc[Gs-GDPi
+Gαs·GIV-GDI])∗[EGFi]

kbase=1.1x10−8 s−1,
kc=2.2x10−7 µm2

s.molecule

[71]

1This reaction occurs on all EGFR species on the endosome.
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Table A.5: Reactions for Module 2, outlining protein-protein interactions leading to the transac-
tivation of Gαi by EGFR via GIV-GEF. In this table there are 7 reactions, 14 kinetic parameters.
Of these, 5 were fit to experimental data (Figures 2.2, A.3).

# Reaction Reaction flux Kinetic Parameters Ref.

11 p35→ p35* kcat [EGF-EGFR2][p35]
KM+[p35] −

kr[p35*]
KM=957molecule

µm2 ,

kcat=0.1 s−1, kr=0.001
s−1

[98,
224]

12 p35*+CDK5→ CDK5* k f [p35*][cdk5]−
kr[cdk5*]

k f =45 µM−1 · s−1,
kr=10 s−1

[221,
222]

13 GIV→ GIV-GEF kcat [CDK5*][GIV]
KM+[GIV ]

−kr[GIV-GEF]
KM=6 µM, kcat=0.6
s−1, kr=0.006 s−1

Est.1,
[221]

14 GIV-GEF +
EGF·EGFR*2↔
EGFR2·GIV

k f [GIV-GEF][EGF·EGFR*2]−
kr[EGFR2·GIV]

k f =0.0015 µM−1 · s−1

kr=1.1x10−7 s−1
[41]

15 Gαi-GDP + EGFR2·GIV
↔ EGFR2·GIV·Gαi

k f [EGFR2·GIV][Gαi-GDP]−
kr[EGFR2·GIV·Gαi]

k f =5 µm2

s.molecule ,
kr=1150 s−1,
(Kd=0.24 µM)

[70]

16 EGFR2·GIV·Gαi→
Gαi-GTP +EGFR2·GIV

k f [EGFR2·GIV·Gαi] k f =14.5 s−1 [103]

17 Gαi-GTP→ Gαi-GDP k f [Gαi-GTP] k f =0.139 s−1 [234]

1Using experimental CDK5 activities [221], an initial guess was used for the rate, and then refined through fitting
simulations to experimental data.

2Internalization rates were found by fitting simulations to experimental data.
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Table A.6: Reactions for Module 3, outlining protein-protein interactions leading to the transib-
hibition of Gαs by EGFR via GIV-GDI activation. In this table there are 11 reactions, 16 kinetic
parameters. Of these, 5 were fit to experimental data (Figures 2.2, A.3).

# Reaction Reaction flux Kinetic Parameters Ref.

18 PLC-γ*→ PLC-γ k f [PLC-γ*] k f =3.8x10−4 s−1 [98]1

19 PLC-γ→ PLC-γ* kcat [EGFR2·GIV][PLC-γ]
KM+[PLC-γ] kcat=0.1 s−1, KM=1 µM [41,

98].2

20 PIP2→ IP3+DAG kcat [PLC-γ*][PIP2]
KM+[PIP2] kcat=14 molecule

µm2.µM.s ,

KM=5000 molecule
µm2

[103]

21 IP3→ Inositol k f [IP3] k f =2.5 s−1 [103]

22 PKC-θ+DAG→ PKC-θ* k f [PKC-θ][DAG]
−kr[PKC-θ*]

k f =0.1 µM−1 · s−1,
kr=1x10−5 s−1

[252,
253]

23 DAG→ DAGdeg k f [DAG] k f =6.7 x 10−4 s−1 [253]

24 PKC-θ*→ PKC-θ +
DAGdeg

k f [PKC-θ*] k f =0.028 s−1 [253]
Est.3

25 EGFR2·GIV→ GIV-GDI +
EGF-EGFR*2

kcat [PKC-θ][EGFR2·GIV]
KM+EGFR2·GIV kcat=2.5 s−1,

KM=35 molecule
µm2

[103]

26 GIV-GEF→ GIV-GDI kcat [PKC-θ][GIV-GEF]
KM+[GIV−GEF ] kcat=1 s−1, KM=6 µM [103]

27 GIV-GDI→ GIV k f [GIV-GDI] k f =0.0011 s−1 Est.1

28 GIV89p→ GIV k f [GIV89p] k f =0.01 s−1 Est.

1Degradation rate set to assumed 30 min half life, assumed no activation through EGFR
2assumed to be a generic rate of 0.1 s−1 and 1µM
3Degradation rate of DAG assumed 10x faster when bound to PKC-θ, values were fit using a 10x faster rate as a

starting point.
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Table A.7: Reactions for Module 4, outlining reactions for the activation and inhibition of
cAMP. In these tables there are 23 reactions, 14 kinetic parameters. Of these, 6 were fit to
experimental data (Figures 2.2, A.3), and 3 were fit to Figure A.8.

# Reaction Reaction flux Kinetic Parameters Ref.

29 AC↔ ACi k f [AC] -kr[ACi] k f int=4.6x10−5 s−1

krint=8.8x10−5 s−1
Est.1

30 AC+Gαi-GTP→
ACinactive

k f [AC][Gαi-GTP] k f =0.523 µm2

s.molecule [227,
228]

31 ACinactive→
AC+Gαi-GDP

k f [ACinactive] k f =0.1667 s−1 [234]2

32 Gαs-GDP-βγ→
Gαs-GDP-βγi

k f [Gαs-GDP-βγ]
-kr[Gαs-GDP-βγi]

k f int=4.6x10−5 s−1

krint=8.8x10−5 s−1
[98]
Est.1

33 Gαs-GDP-βγi→
Gαs-GTPi+βγi

kcat [EGF-EGFR*2i][Gαs-GDP-βγi]
KM+[Gαs-GDP-βγi]

kcat=0.4 s−1,
KM=3000 molecule

µm2

[98]
Est.3

34 Gαs-GDPi +GIV-GDI
↔ Gαs-GDP-GDI

k f [Gαs-GDP][GIV-GDI]−
kr[Gαs-GDP-GDI]

k f =2.9 µM−1 · s−1,
kr=0.0015 s−1

[254]
Est.1

35 Gαs-GDPi +GIV↔
Gαs-GDP-GDI

k f [Gαs-GDP][GIV-GDI]−
kr[Gαs-GDP-GDI]

k f =2.9*0.05
µM−1 · s−1, kr=0.0015
s−1

[254]
1

36 Gαs-GTPi→
Gαs-GDPi

k f [Gαs-GTPi] k f =0.139 s−1 [227]

37 → I, Gαs-GDP-GDI→ k f [Gαs-GDP-GDI+Gαs-GDPi],
[I][Gαs-GDP-GDI]

kI=4.3x107 s−1 Est4

38 Gαs-GDPi + βγi→
Gαs-GDP-βγi

k f [Gαs-GDP][βγ] k f =0.00148 µm2

s.molecule [227]

39 ACi + Gαs-GTP→
AC*

k f [Gαs-GTP][AC] k f =0.0021 µm2

s.molecule [227]

1Rate found through immunoblot data fitting; unphosphorylated state set to GDI binding rates(#34) with ratio of
activities.

2set at the same rate of Gαs GAP activity.
3set with immunoblot data fitting around values used in [98], after converting units to surface density.
4Assumed an integral degradation of the Gαs·GIV-GDI complex to recover the 60 minute experimental time

point, The exact action is unknown.
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Table A.8: Reactions for Module 4(cont.)

# Reaction Reaction flux Kinetic Parameters Ref.

40 AC*→ ACi +
Gαs-GDP

k f [AC*] k f =0.1667 s−1 [234]

41 ATP→ cAMP kcat ([AC]+κ[ACi])[ATP]
KM+[ATP] kcat=0.12 s−1,

KM=1030 µM, κ=0.004
[227]1

42 ATP→ cAMP kcat [AC*][ATP]
KM+[ATP] kcat=13 s−1, KM=315 µM [227, 232]

43 cAMP→ AMP kcat [PDE][cAMP]
KM+[cAMP] kcat=2 s−1, KM=1.51 µM [227]

44 4cAMP + R2C2
→ 2PKA + R2

kcat [R2C2][cAMP]1.75

K1.75
M +[cAMP]1.75 kcat=0.05 s−1, KM=0.54

µM
[231, 255]

45 R2 →
R2u + 2cAMP

k f [R2] k f =0.0167 s−1 [235]

46 R2u→
R2uu + 2cAMP

k f [R2u] k f =2.78 x 10−4 s−1 [235]

47 R2uu + 2PKA→
R2C2

k f [R2uu][PKA]2 k f =10 µM−2 · s−1 Est.2

48 PDE→ PDE* kcat [PKA][PDE]
KM+[PDE] kcat=5 s−1, KM=0.5µM [227]

49 PKA↔ PKAinact k f [PKA]− kr[PKAinact] k f =1x10−4 s−1, kr=1 s−1 [103]

50 cAMP→ AMP kcat [PDE*][cAMP]
KM+[cAMP] KM=1.26 µM, kcat=5 s−1 [227]

51 PDE*→ PDE kcat [PP-PDE][PDE*]
KM+[PDE*] KM=8 µM, kcat=5 s−1 [227]

1κ is the conversion factor from PM to EM
2Rate was determined through fitting steady state responses to a Hill function, see Figure A.8
3Rates were set to preserve the expected longer timescale events
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Table A.9: Reactions for the additional interactions modeling the effect of PKA and CDK5
phosphorylation of PDE.

# Reaction Reaction flux Kinetic Parameters Reference

52 PDE→ PDE* kcat [PKCθ*][PDE]
KM+[PDE] KM=0.89 µM, kcat=15 s−1 [237]

53 PDE→ PDE* kcat [CDK*][PDE]
KM+[PDE] KM=0.5 µM, kcat=1 s−1 [236]

Table A.10: Reactions for rapid production of cAMP at the PM (blue line in Figure A.5) using
the dynamics shown in [81].

# Reaction Reaction flux Kinetic Parameters Ref.

54 Gαs-GDP-βγi→
Gαs-GTP + βγ

kcat [EGF-EGFR*2+EGFR2·GIV][Gαs-GDP-βγi]
KM+[Gαs-GDP-βγi]

KM=3000 molecule
µm2 ,

kcat=0.4 s−1

Est.1

55 AC+Gαs-GTP→ AC* k f [AC][Gαs-GTP] k f =0.525 µm2

s.molecule [227]

56 AC*→ AC+Gαs-GDP k f [AC*] k f =0.1667 s−1 [227]

57 Gαs-GTP→ Gαs-GDP k f [Gαs-GTP] k f =0.139 s−1 [227]

58 Gαs-GDP+βγ→
Gαs-GDP-βγi

k f [Gαs-GDP][βγ] k f =0.125 µm2

molecules.s [227]

59 Gαs-GDP+GIV-GDI→
Gαs·GDI

k f [Gαs-GDP][GIV-GDI]-
kr[Gαs·GDI]

k f =2.9 µM−1 · s−1,
kr=0.0015 s−1

[227]

60 ATP→ cAMP kcat [AC*][ATP]
KM+[ATP] KM=315 µM, kcat=13

s−1
[227]

1rates were set the same on PM as on Endosomal Membrane
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Table A.11: Initial conditions for components (components not listed have zero initial condi-
tions)

Species Initial
concentration

Compartment Notes and References

EGFR 240
molecule.µm−2

PM [218, 256]

EGF 0.05 µM EC Experiment stimulation
PLC-γ 0.1 µM Cytosol Assumed
PKC-θ 0.1 µM Cytosol Assumed
ATP 5000 µM Cytosol [227]
cAMP 0.0045 µM Cytosol basal SS1

PKA 0.0066 µM Cytosol basal SS1

PDE 0.345 µM Cytosol basal SS1

R2C2 0.0967 µM Cytosol basal SS1

AMP 1000 µM Cytosol [227]
PDEp 0.055 µM Cytosol basal SS1

PPPDE 0.2 µM Cytosol Assumed
GIV 0.831 µM Cytosol Set such that GIVtotal = 1 µM
GIV-GEF 0.05 µM Cytosol Assumed; immunoblot values
GIV89p 0.1 µM Cytosol Assumed; GDI initial form
Gs-GDIb 786

molecule.µm−2
Edosomal
membrane

Assumed

CDK5 0.05 µM Cytosol Assumed; [221]
R2 6x10−5 µM Cytosol basal SS1

R2u 0.004 µM Cytosol basal SS1

R2uu 0.0025 µM Cytosol basal SS1

p35 957
molecule.µm−2

PM Set such that p35total = 1 µM

Gαi-GDP 48 molecule.µm−2 PM Set to exp. immunoblot value.
AC 30 molecule.µm−2 PM Average of [227] and [232]
PIP2 9570

molecule.µm−2
PM Assumed

EGFR·GIV·Gαi 0.01
molecule.µm−2

PM experimental immunoblot value

Gαs-GDP-βγ 1500
molecule.µm−2

PM Calculated from AC to
Gαs ratio [233]

Gαs·GIV-
GDI

75 molecule.µm−2 Endosomal
membrane

experimental immunoblot value

1All basal steady sates are set by running basal AC stimulation until a stable response was received.
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Table A.12: Local sensitivity analysis of EGFR·GIV·Gαi complex with respect to initial conditions. The
colors indicate the sensitivity to the respective parameter; red indicates that the EGFR·GIV·Gαi complex
is sensitive to changes in the initial concentration of the corresponding parameter (i.e. sensitivity index
greater than 1) and blue indicates that the EGFR·GIV·Gαi complex is partially sensitive to changes in the
initial concentration of the corresponding parameter (i.e. sensitivity index greater than 0.5) over the time
course of signaling. Sensitivity is shown at 5, 15, 30, and 60 min intervals.

Initial Parameter 5 min 15 min 30 min 60 min

Gαi-GDP 7.3312

PLC-γ 0.78 0.89 1.15

Table A.13: Local sensitivity analysis of Gαs·GIV-GDI complex with respect to initial conditions. The
colors indicate the sensitivity to the respective parameter; red indicates that cAMP is sensitive to changes
in the initial concentration of the corresponding parameter (i.e. sensitivity index greater than 1) and blue
indicates that Gαs·GIV-GDIis partially sensitive to changes in the initial concentration of the corresponding
parameter (i.e. sensitivity index greater than 0.5) over the time course of signaling. Sensitivity is shown at
5, 15, 30, and 60 min intervals.

Initial Parameter 5 min 15 min 30 min 60 min

Cdk5 1.18 0.7

GIV 1.15 0.76

PLC-γ 0.89

PKC 0.66

Table A.14: Local sensitivity analysis of cAMP with respect to initial conditions. The colors indicate
the sensitivity to the respective parameter; red indicates that cAMP is sensitive to changes in the initial
concentration of the corresponding parameter (i.e. sensitivity index greater than 1) and blue indicates that
cAMP is partially sensitive to changes in the initial concentration of the corresponding parameter (i.e.
sensitivity index greater than 0.5) over the time course of signaling. Sensitivity is shown at 5, 15, 30, and
60 min intervals.

Initial Parameter 5 min 15 min 30 min 60 min

AC 329 376 512 1980

PDE 0.78 0.74 0.6 0.54
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Table A.15: Local sensitivity analysis of EGFR·GIV·Gαi complex with respect to the model kinetic
parameters. The colors indicate the sensitivity to the respective parameter; red indicates that the
EGFR·GIV·Gαi complex is sensitive to changes in the value of the corresponding parameter (i.e. sensitivity
index greater than 1) and blue indicates that the EGFR·GIV·Gαi complex is partially sensitive to changes
in the value of the corresponding parameter (i.e. sensitivity index greater than 0.5) over the time course of
signaling. Sensitivity is shown at 5, 15, 30, and 60 min intervals. The index in the square brackets refer to
the reaction number.

Parameter[reaction] 5 min 15 min 30 min 60 min

k f [R31] 0.7

k f [R16] 0.6

k f [R24] 0.84 1 0.87

kcat[R25] 0.76 0.64 1.03

kcat[R19] 0.72 0.77 1.29

km[R19] 0.66 0.71 0.82

k f [R4] 0.63 2.44 7.44

km[R20] 7.88

km[R25] 4.33

kr[R11] 0.96

kr[R1] 0.61

kr[R12] 0.54

kr[R3] 0.53

kr[R13] 0.53
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Table A.16: Local sensitivity analysis of Gαs·GIV-GDI complex with respect to the model kinetic
parameters. The colors indicate the sensitivity to the respective parameter; red indicates that the Gαs·GIV-
GDI complex is sensitive to changes in the value of the corresponding parameter (i.e. sensitivity index
greater than 1) and blue indicates that the Gαs·GIV-GDI complex is partially sensitive to changes in the
value of the corresponding parameter (i.e. sensitivity index greater than 0.5) over the time course of
signaling. Sensitivity is shown at 5, 15, 30, and 60 min intervals. The index in the square brackets refer to
the reaction number.

Parameter[reaction] 5 min 15 min 30 min 60 min

kI[R37] 1.08

k f [R4] 0.7

kcat[R13] 1.23 0.71

km[R13] 1.09 0.63

k f [R35] 0.95 0.58

k f [R38] 0.92 0.58

kcat[R26] 0.84 0.52

kr[R13] 0.51

k f [R14] 1.02

k f [R36] 0.9

kcat[R19] 0.87

km[R26] 0.8

km[R19] 0.79

k f [R24] 0.65

k f [R13] 0.6

k f [R24] 0.59
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Table A.17: Local sensitivity analysis of cAMP with respect to the model kinetic parameters. The colors
indicate the sensitivity to the respective parameter; red indicates that the cAMP production is sensitive to
changes in the value of the corresponding parameter (i.e. sensitivity index greater than 1) and blue indicates
that cAMP production is partially sensitive to changes in the value of the corresponding parameter (i.e.
sensitivity index greater than 0.5) over the time course of signaling. Sensitivity is shown at 5, 15, 30, and
60 min intervals. The index in the square brackets refer to the reaction number.

Parameter[reaction] 5 min 15 min 30 min 60 min

k f int 1.04 0.64

kcat[R41] 0.88 0.57 0.5

k f [R30] 0.78 0.64

k f [R16] 0.71 0.6

k f [R14] 0.67

kcat[R43] 0.67 0.57

km[R43] 0.67 0.64

km[R25] 0.53

h[R44] 0.93 1.27

k f [R4] 0.69

Table A.18: Local sensitivity analysis of components with respect to the model compartment sizes. The
colors indicate the sensitivity to the respective parameter; red indicates that the cAMP production is
sensitive to changes in the value of the corresponding parameter (i.e. sensitivity index greater than 1) and
blue indicates that cAMP production is partially sensitive to changes in the value of the corresponding
parameter (i.e. sensitivity index greater than 0.5) over the time course of signaling. Sensitivity is shown at
5, 15, 30, and 60 min intervals. The index in the square brackets refer to the reaction number.

Component[Compartment] 5 min 15 min 30 min 60 min

cAMP[PM] 0.71

Gαs·GIV-GDI[PM] 2.44 1.54 0.7

Gαs·GIV-GDI[Cyto] 1.25 0.85
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A.5 Supplementary Figures
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Figure A.1: (Supplementary to Figure 2.1): (A-B) Sensitivities of the phenomenological
model across time through the variance based sensitivity analysis. Reported sensitivities are
shown for both the GIV (A) and no GIV (B) cases. In both the GIV and no GIV cases the
highest order sensitivities are shown to always include the degradation and internalization. But,
the presence of GIV lowers the AC contribution in the late time scales. (C-D) Total sensitivities
of each parameters show the same trend with even higher contributions for both internalization
and degradation. Thus, it can be determined that the internalization and degradation rates are
key parameters that the system is sensitive to, especially at later times. (E) Variations of the τ

delays were performed and the normal distributions of the cAMP profile are reported for the no
GIV (green) and GIV (yellow) conditions.
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Figure A.2: (Supplementary to Figure 2.2): (A) Network module showing the interactions
of Gαs and Gαi with GIV at the PM and the endosome membrane. (B) A reaction network
model showing the different signaling nodes and connections from EGFR to the AC signaling
axis. Solid lines indicate a binding interaction; interrupted lines indicate enzymatic reaction.
(C) Network showing receptor interactions with feedback from Gαs-GDP whose presence
on endosomes accelerates receptor degradation due to rapid endosomal maturation [40].(D)
Network module showing the activation of GIV-GDI and binding of Gαs with GIV at the
the endosome membrane. For all networks, the color key (right, boxed) denotes the different
compartments in which the components reside.(E) Equal aliquots of lysates of Hela cells used in
(E) were analyzed for GIV depletion by immunoblotting(IB). Band densitometry confirmed >
95% depletion of GIV. (F) Freeze-frame images from live cell movies showing the dynamics of
Gαsactivation in response to EGF, as determined by a biosensor that binds and helps detect the
nucleotide-free intermediate during Gαs activation [42]. Control (shControl) and GIV-depleted
(shGIV) Hela cells expressing GFP-tagged anti-Gαs·GTP conformational biosensor, nanobody
Nb37-GFP were serum starved overnight and stimulated with 50 nM EGF and analyzed by
live cell imaging using a Leica scanning disk microscope for 20 min. Freeze frames from
representative cells are shown. In the presence of GIV (shControl) little or no Gαs activity was
seen after EGF stimulation; however, in GIV-depleted cells, Gαs activity was seen on vesicular
structures, likely to be endosomes (arrowheads; see Supplementary Movies 1-2). Bright puncta
= active Gαs on endocytic vesicles and/or endosomes. Bar = 10 µm.
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Figure A.3: (Supplementary to Figure 2.2): Parameter estimation and validation of the
cAMP, and cytosolic GEF and GDI concentrations concentration. (A-B) Comparison of
simulation and experimental data for GIV-GEF and GIV-GDI. The concentration of GIV-GEF
and GIV-GDI was normalized to its peak value and compared against experimental data (*).
Experimental data were obtained from Figures 1D and S1 of [42], in which protein-protein
interaction assays were performed using lysates of cells responding to EGF. (C) Comparison
of cAMP time course from simulations and experiments. Simulations of dynamics of the
production of cAMP based on the network modules was performed. The concentration of
cAMP was normalized to its initial value and compared experimental data in which control or
GIV-depleted (shGIV) HeLA cells were serum starved (0.2% FBD, 16h) prior to stimulation
with 50nM EGF for the indicated time points. cAMP produced in response to EGF was
measured by radioimmunoassay (RIA) as detailed in the main text ‘Materials and method’
section. Error bars indicated mean S.D of three independent experiments. ns= not significant;
∗∗p=0.01,∗∗∗∗p=0.0001. cAMP was normalized against the initial value to ensure the pre-
stimulation steady state concentrations of cAMP are satisfied.
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Figure A.4: (Supplementary to Figure 2.2): Sensitivities of all components in the model.
Parameter sensitives taken at 5(A), 15(B), 30(C), and 60 min(D), (see supplementary file
indexnumbers.csv) for index numbers. See Tables A.12, A.15, A.13, A.16, A.14, A.17, A.18
for the sensitivities of the fitting components against sensitive parameters.
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Figure A.5: (Supplementary to Figure 2.2): (A) Graphs display the dynamics of different
pools of EGFR over 1 hour as determined by simulations. EGFR dimer dynamics at the
PM (red line), at the endosome (yellow line), bound to GIV-GEF (purple line), and in the
EGFR·GIV·Gαi complex (green line) are shown. The total number of dimerized receptors (blue
line) decreases over time due to receptor degradation. (B) Simulations conducted for the module
shown in A shows that Gαi-GTP dynamics at the PM are unaffected by the compartment in which
Gαs-GTP is activated. (C) Simulations conducted for the module shown in A comparing the
dynamics of Gαs activation in response to growth factor stimulation in 3 compartmental settings
[see color key] and in the presence [solid lines] or absence [interrupted] of GIV. Activation
of Gαs at the PM alone is predicted to have a rapid activation and inactivation kinetics, while
Gαs activation on the endosome membranes is predicted to confer prolonged dynamics over
longer time scales. In all cases, the presence/absence of GIV only impacts the prolonged
phase, predicting higher Gαs activation without GIV. (D) Simulations of cAMP dynamics that
is initiated by the canonical GPCR-stimulated pathway (β2-adrenergic receptor stimulating
Gαs; blue line) and the non-canonical RTK-stimulated pathway that is modulated by GIV-GEM
(red lines; solid = with GIV; interrupted = without GIV). In both cases, cAMP values (y axis)
were normalized to the max value during a 60 min simulation. Canonical signaling is finite
with a predominant PM phase, the non-canonical pathway features prolonged time scales due
to a predominant endosomal phase. The interrupted line at approximately 5 min indicates the
time period when ligand activated EGFR is typically rapidly endocytosed, marking a watershed
between end of PM and beginning of endosomal phase of signaling.
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Figure A.6: (Supplementary to Figure 2.2): Confidence intervals (95%CI) were calculated
for the fit parameters for both high(solid line) and low (dashed line) bounds. When performing
single variable variations, the confidence with respect to cAMP can be classified into 3 classes:
(A) sensitive with qualitative change in cAMP dynamics, (B) sensitive without qualitative
change in cAMP dynamics, and (C) insensitive. Of the 19 fit, 7 are sensitive, but only 4 change
the form of the solution. Of those 4, internalization rate can be treated as a phenomenological
constant used to fix time courses (among other steps). This leaves us with three other parameters,
that are GIV related, and poorly constrained. These can be explained by the relatively new
pathway we are working on and these parameters can be refined as more data is made available.
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Figure A.7: (Supplementary to Figure 2.2): Simulations are shown for the dynamics of
the PM (red line) and endosomal (yellow line) pools of EGFR computed over 1 h based on
network Module 1. Parameter variations were conducted for values one order of magnitude
above and below the control value for (A) basal degradation rate (reaction 9 in Table A.4),
and (B) rate of Gαs-GDP dependent catalytic degradation of EGFR (reaction 9 in Table A.4),
(C) receptor internalization rate (reaction 4 in Table A.4). The solid line shows the value
used in the control model, the dot dashed lines represent a ten-fold increase the value of
the parameter from the control value and the dashed lines represent a ten-fold decrease in
the value of the kinetic parameter from the control value. Variation of the basal degradation
rate of EGFR doesn’t affect either the PM or endosomal receptors(A; see also Figure A.6).
Variation of the Gαs-GDP-dependent catalytic degradation rate of EGFR affects the endosomal
receptor pool proportionally, with no discernible effect on the PM receptor pool (B; see also
Figure A.6). On the other hand, variation in the rate of internalization of EGFR affects
both the PM and endosome pool of receptors. An increase in the rate of internalization of
EGFR leads to a rapid decrease in the PM receptor pool with a corresponding rapid increase
in the endosome pool of receptors (C). (D) the effect of the binding rate constant of GIV-
GEF to ligand-bound, dimerized EGFR (reaction 14 in Table A.5) on the dynamics of the
formation of the EGFR·GIV·Gαi complex. (E) the effect of CDK5-mediated phosphorylation
of GIV to GIV-GEF on the formation of the EGFR·GIV·Gαi complex (kcat reaction 13 in
Table A.5).(F) Simulations display the effect of PKC-θ-mediated phosphorylation at S1689 for
GIV-GEF·EGFR, resulting in conversion of GIV-GEF to GIV-GDI (reaction 25 in Table A.6;
see also Figure A.6). Changing this kcat changes the dynamics of the EGFR·GIV·Gαi complex
formation such that a decrease in this rate constant leads to a prolonged lifetime of the complex.
(G) Variation of the binding rate of GIV-GDI binding rate to Gαs-GDP (reaction 34 in Table A.7)
affects both the density of the bound Gαs·GIV-GDI molecules and the temporal dynamics. (H)
Varying the internalization rate of dimerized EGFR, from the PM to the endosomal compartment
(reaction 4 in Table A.4) dramatically changes the dynamics of the Gαs·GIV-GDI complex
formation. Faster internalization rates of EGFR lowered the density of the complex and the
complexes were assembled earlier than observed in experiments (H). Reducing the rate of EGFR
internalization, on the other hand, also lowered the density of Gαs·GIV-GDI complexes, and
they were assembled later. Variations of the internalization of receptors greatly effected cAMP
and PKA production within simulations (J,K; blue line) leading to a high (high internalization)
or long and low (low internalization) response. (I) The dynamics of the Gαs·GIV-GDI complex
formation are affected by the catalytic degradation rate of internalized dimerized EGFR, which
is enabled by Gαs-GDP [40] (reaction 9 in Table A.4). The effect of changing this parameter
was proportional on both the membrane density of the Gαs·GIV-GDI complex and affected
the peak time and dynamics of the complex formation. Because the degradation of internalized
EGFR requires endosomal maturation that is enhanced by Gαs-GDP [40], increasing the rate
of Gαs-GDP dependent endosome maturation and EGFR degradation decreased the Gαs-GDI
density and increased the rate of the Gαs·GIV-GDI complex formation, whereas decreasing
the rate of the Gαs- GDP-mediated EGFR degradation increased the density of the complex
formation and slowed down the process. Variations of the catalytic degradation of receptors
greatly effected cAMP and PKA production within simulations (J,K; green line) leading to
a low (high degradation) or high and sustained (low degradation) response. Variation of the
Gαs·GIV-GDI interpolation function (reaction 37 in Table A.7) affects both the density and
timescales of cAMP(L) and Gαs·GIV-GDI(M) with a high rate leading to an ShGIV type
response due to low Gαs·GIV-GDI densities (M)
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Figure A.8: (Supplementary to Figure 2.2): Parameter estimation and validation of
cAMP-PKA interactions. Dose response curve for PKA activation as a function of cAMP
concentration was calculated from simulations and compared against previously published
experiments. The red starred line shows the normalized PKA activation from [231] and the blue
line shows the model PKA activation as a function of cAMP concentration. Experimental data
from Bruystens et al. [231] was fit to a Hill function to obtain a Hill coefficient of n=1.73 and
an EC50=54 nM. These values were used in our model (Module 4, Reactions 47-50) to obtain
a good qualitative agreement between simulations and experimental data for cAMP-mediated
activation of PKA.
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Figure A.9: (Supplementary to Figure 2.2): Effect of PKC-θ and CDK5 phosphorylation
on PDE phosphorylation. Simulations of the impact of phosphorylation of PDE by PKC-θ and
CDK5 (reactions are shown in Table A.9) on (A)cAMP and (B) PKC-θ are shown. The control
values of cAMP and PKC-θ without accounting for either of the two feedforward interactions
are shown in blue. Inclusion of the feedforward loops. i.e., phosphorylation of PDE by either
CDK5 alone (red) or PKC-θ alone (yellow), or both (purple) are also displayed. When both
CDK5 and PKC-θ feedback loops are taken into account (purple), PDE activity appears to be
enhanced because cellular cAMP dynamics are significantly dampened.
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Figure A.10: (Supplementary to Figure 2.3): Concentration of GIV proteins in cells af-
fects peak cAMP time. Simulations were performed by varying the concentration of GIV with
values ranging from 0.05 to 10 µM, the peak times for cAMP were then extracted (A). These
times were then plotted on a bar graph (B). cAMP peak times were found to shorten and then
lengthen with increasing GIV concentrations in a non-linear manner. The initial, low GIV, peak
time decrease is due to the action of Gαs·GIV-GDI shortening the timescale of Gαs activation.
While the later, high GIV, increase is due to the cAMP the action of Gαi inhibition becoming
more prevalent over the Gαs generation of cAMP.
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Figure A.11: (Supplementary to Figure 2.4): Impact of varying EGFR and GIV concen-
trations on cellular levels of cAMP (A) cAMP AUC, computed at 1 h is shown for different
values of GIV and EGFR. Time-course of cAMP for various EGFR concentrations at (B) GIV=5
µM, (C) GIV=2.5 µM, (D) GIV=1.26 µM, (E) GIV=0.5 µM, (F) GIV=0.15 µM, (G) GIV=0.04
µM are shown.
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Figure A.12: (Supplementary to Figure 2.4): Impact of varying PDE and GIV concentra-
tions on cellular levels of cAMP. (A) cAMP AUC, computed at 1 h is shown for different
values of GIV and PDE. Time-course of cAMP for various PDE concentrations at (B) GIV=5
µM, (C) GIV=2.5 µM, (D) GIV=1.26 µM, (E) GIV=0.5 µM, (F) GIV=0.15 µM, (G) GIV=0.04
µM are shown.
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Figure A.13: (Supplementary to Figure 2.5): The impact of levels of expression of GIV
and PDE on cAMP dynamics; comparison of model predictions and clinical outcome
[disease-free survival] in patients with colorectal cancers. (A-D) GIV expression status in
colon cancers has an impact on disease-free survival (DFS) only when the level of expression
of various PDE isoforms are low. Hegemon software was used to analyze individual arrays
according to the expression levels of GIV (CCDC88A) and either PDE4A (A), or 5A (B), 10A
(C), 4D (D) in a data set containing 466 patients with colon cancer (Left panels, A-D; see
Methods; E). Survival analysis using Kaplan-Meier curves showed that among patients with
high PDEs [middle panels, A-D], high vs low GIV expression did not carry any statistically
significant difference in DFS (all p values > 0.05). Survival analysis among patients with low
PDEs [right panels, A-D] showed that patients whose tumors had high levels of expression of
GIV had a significantly shorter DFS than those with tumors expressing low levels of GIV (all p
values < 0.05). See also Figure 2.5 for patient survival curves for PDE5A isoform and GIV on
DFS.
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Figure A.14: (Supplementary to Figure 2.5): GIV mRNA expression is elevated in various
cancers. Expression levels of GIV [CCDC88a] mRNA in normal vs. cancers was analyzed in
publicly available RNA Seq datasets using Oncomine.org. PMIDs listed under each box plot
refers to the original manuscript associated with the dataset.
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Figure A.15: (Supplementary to Figure 2.5) Copy numbers of GIV-gene is elevated in
various cancers. Copy numbers of GIV gene is elevated in various cancers. TCGA datasets
were analyzed for copy number variations (CNV) in GIV gene [CCDC88a] in normal vs. cancers
using Oncomine.org.
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Appendix A, in full, is a reprint of the supplemental material as it appears in M. Getz,

L. Swanson, D. Sahoo, P. Ghosh, and P. Rangamani. A predictive computational model reveals

that GIV/Girdin serves as a tunable valve for EGFR-stimulated Cyclic AMP Signals. Molecular

Biology of the Cell, pages mbc.E18–10–0630, 2019. The dissertation author was the primary

investigator and author of this paper.
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B.1 cAMP Analysis and Quantification

AKAP79-(Ci/Ce)Epac2-camps transfected cells displayed cAMP oscillations that were

either in-phase or out-of-phase with their respective Ca2+ signal. This was in sharp contrast

to responsive lyn-(Ci/Ce)Epac2-camps transfected cells where all cells yielded only out-of-

phase oscillations. We found a strong correlation between the AKAP79-fused sensor expression

level and the observed cAMP-Ca2+ phase relationship, with cells having lower levels of sensor

present displaying predominantly in-phase cAMP oscillations and cells with higher levels of

the AKAP79/150-fused biosensor exhibiting out-of-phase oscillations (Accessory Fig. B.1a-

c). Overexpression of the AKAP79 scaffold likely changed the stoichiometry of the signaling

complexes and resulted in unsuccessful targeting of the biosensor to functional AKAP79/150

domains, and so in this manuscript we considered only TEA-responsive cells below an AKAP79

expression threshold determined by the YFP acceptor fluorescence (Accessory Fig. B.1a-c).

B.2 Time Lag Calculation

Due to the heterogeneity of cellular Ca2+ and cAMP/PKA activity oscillatory responses

in each cell (i.e. variations in frequency, amplitude, and regularity), we sought an applicable

metric to describe the phase relationship. Here we measure the lag time (sec) between the Ca2+

signal trace and the cAMP/PKA activity signal trace. Specifically, we high-pass filtered both the

Ca2+ and cAMP/PKA activity traces (approx.. 20 min) to subtract out slowly varying baseline

changes, normalized the traces so that the maximum intensity/FRET ratio was set to 1, and then

computed the cross-correlation to measure the signal overlap for different lag times. To calculate

the lag time, we identified peaks in the cross-correlation passing a peak prominence cutoff and

found the absolute value of the shortest lag time corresponding to a peak maximum. For in-phase

oscillations, the lag time was typically small (τ ≤ 20 sec) due to the two signal traces oscillating

in synchrony. However, out-of-phase oscillations typically corresponded to longer lag times (τ ¿
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20 sec) due to the anti-phasic relationship seen in the peak timing and peak shape. Analysis was

performed with custom scripts in MATLAB and Java, and pipelines in CellProfiler.

B.3 Quantification of Nanodomain Perturbation Effects on
Global Ca2+

In order to measure the effects of AKAP79/150:AC8 disruption on Ca2+ dynamics, we

transiently transfected and expressed AC81−106 in MIN6 and measured Ca2+ with RCaMP. For

quantification of the interpeak timing and peak ratio, we first selected cells that responded to the

TEA treatment, identified Ca2+ peaks passing a peak prominence cutoff, and finally calculated

the avg. time between peak maxima and RFP intensity ratio between the second and first Ca2+

peak maxima. To find the percentage of cells with regular vs. irregular Ca2+ oscillations, we

randomized all Ca2+ traces from the experimental and control samples and performed a blinded

classification to sort the single cell traces as regular, irregular, or nonresponsive. Analysis was

performed with custom scripts in MATLAB and Java, and pipelines in CellProfiler.

B.4 Well-mixed system

B.4.1 Well-mixed reaction tables
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Table B.1: Voltage Gated Channel Reactions

# Species Expression Parameters Ref.

1 Membrane Volt-
age

dV
dt = −ICa−IK−IL−IKCa

Cm
Cm=5.3 pF [14]

2 Ca2+ current ICa = gCam∞(V −ECa) gCa=600 pS,
ECa=100 mV

[14]

3 Fraction of open
VGCC (at steady
state)

m∞ = 1
2

(
1+ tanh

(
V−v1

v2

))
v1=-20 mV,
v2=24 mV

[14]

4 K+ current IK = gKw(V −EK) gK=240 pS,
ECa=-75 mV

[14]

5 Fraction of open
K+ channels (at
steady state)

dw
dt = φ(w∞−w)

τ
φ=35 1

s [14]

6 Time constant for
K+ channel open
probability

τ = 1
cosh

(
V−v3

2v4

) v3=-16 mV
v4=11.2 mV

[14]

7 leak current IL = gL(V −EL) gL=150 pS,
EL=-75 mV

[257]

8 Ca2+ gated K+

current
IKCa = gKCa

Ca
Ca+KKCa

(V −EK) gKCa=2000 pS,
ECa=-75 mV,
KKCa=5 µM

[14]
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Table B.2: Ca Flux and Reactions

# Reaction Reaction flux Kinetic Parameters Ref.

9 → Ca jCaV (1+
kPKAV [PKA])+
jCaI

kPKAV =3000s−1 ·µM−1 [14]

10 jCaV fi(−αICa−
vLPM[Ca])

fi=1x10−5 α=0.0045 µM·fA−1·s−1 vLPM=75−1 [14]

11 jCaI
CkIP3R[PKA]A[Ca]
1+A[Ca]+[B][Ca]2

([Castores]-[Ca])-
Vs[Ca]2

K2
s +[Ca]2

Ks=10µM, Castores=1.56µM, Vs=0.1µM · s−1,
kIP3R=0.05, A=0.2869µM−1, B=2.869µM−2,
C=0.2133

[14]

12 2Ca + CaM↔
Ca2CaM

k f [Ca][CaM]−
kr[Ca2CaM]

k f =3.6 s−1 ·µM−1, kr=8 s−1 [206]

13 Ca + Ca2CaM
↔ Ca3CaM

k f [Ca][Ca2CaM]−
kr[Ca3CaM]

k f =11 s−1 ·µM−1, kr=195 s−1 [206]

14 Ca + Ca3CaM
↔ Ca4CaM

k f [Ca][Ca3CaM]−
kr[Ca4CaM]

k f =59 s−1 ·µM−1, kr=500 s−1 [206]

15 AC + Ca2CaM
↔ CaM·AC

k f [AC][Ca2CaM]−
kr[CaM·AC]

k f =1.7 s−1 ·µM−1, kr=10 s−1 [174,
175]

16 CaM·AC +
2Ca↔ AC*

Kcat
[Ca][CaM·AC]

Ca+Km
−

kr[AC*]
Kcat=59.5 s−1, Km=0.1 µM, kr=10 s−1 [174,

175]

17 PDE +
Ca2CaM↔
CaM·PDE

k f [PDE][Ca2CaM]−
kr[CaM·PDE]

k f =435 s−1 ·µM−1, kr=1 s−1 [173]

18 CaM·PDE +
2Ca↔ PDE*

Kcat
[Ca][CaM·PDE]

Ca+Km
−

kr[PDE*]
Kcat=1.81 s−1, Km=0.18 µM, kr=1 s−1 [173]

19 PDE +
Ca4CaM↔
PDE*

k f [PDE][Ca4CaM]−
kr[PDE*]

k f =435 s−1 ·µM−1, kr=1 s−1 [173]
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Table B.3: cAMP Reactions

# Reaction Reaction flux Kinetic Parameters Ref.

20 → cAMP kbase([CaM·AC]+ [AC]+
[ACind])+ kact[AC*]

kbase=0.1 s−1, kact=0.785
s−1

[14,
204]

21 cAMP→ kbase[cAMP] [CaM·PDE]+[PDE]
[cAMP]+Km

+

kact
[cAMP][PDE*]

[cAMP]+Km

kbase=0.2 s−1, Km= 0.6
µM kact=2.5 s−1

[14,
204]

22 cAMP→ Vind
[cAMP]

[cAMP]+Km
Vind=2.5 µM · s−1, Km=
1.4 µM

[14,
204]

23 cAMP + R2→
R2b

k f [cAMP][R2]− kr[R2b] k f =1 s−1 ·µM−1,
kr=0.00033 s−1

[205]

24 cAMP + R2b→
R2ba

k f [cAMP][R2b]− kr[R2ba] k f =1 s−1 ·µM−1,
kr=0.00105 s−1

[205]

25 cAMP + R2b→
R2bb

k f [cAMP][R2b]− kr[R2bb] k f =1 s−1 ·µM−1,
kr=0.00132 s−1

[205]

26 cAMP + R2ba
→ R2bba

k f [cAMP][R2ba]− kr[R2bba] k f =1 s−1 ·µM−1,
kr=0.0013 s−1

[205]

27 cAMP + R2bb
→ R2bba

k f [cAMP][R2bb]− kr[R2bba] k f =1 s−1 ·µM−1,
kr=0.00103 s−1

[205]

28 cAMP + R2bba
→ R2bbaa

k f [cAMP][R2bba]− kr[R2bbaa] k f =1 s−1 ·µM−1,
kr=0.0114 s−1

[205]

29 PKA + R2→
R2C

k f [PKA][R2]− kr[R2C] k f =1 s−1 ·µM−1,
kr=1.26E-7 s−1

[205]

30 PKA + R2b→
R2bC

k f [PKA][R2b]− kr[R2bC] k f =1 s−1 ·µM−1,
kr=2.52E-7 s−1

[205]
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Table B.4: cAMP Reactions (cont.)

# Reaction Reaction flux Kinetic Parameters Ref.

31 PKA + R2ba→ R2baC k f [PKA][R2ba]−
kr[R2baC]

k f =1 s−1 ·µM−1,
kr=3.4E-6 s−1

[205]

32 PKA + R2bba→
R2bbaC

k f [PKA][R2bba]−
kr[R2bbaC]

k f =1 s−1 ·µM−1,
kr=0.000936 s−1

[205]

33 PKA + R2bbaa→
R2bbaaC

k f [PKA][R2bbaa]−
kr[R2bbaaC]

k f =1 s−1 ·µM−1, kr=0.645
s−1

[205]

34 cAMP + R2C→
R2bC

k f [cAMP][R2C]−
kr[R2bC]

k f =1 s−1 ·µM−1,
kr=0.000659s−1

[205]

35 cAMP + R2bC→
R2baC

k f [cAMP][R2bC]−
kr[R2baC]

k f =1 s−1 ·µM−1,
kr=0.0142s−1

[205]

36 cAMP + R2baC→
R2bbaC

k f [cAMP][R2baC]−
kr[R2bbaC]

k f =1 s−1 ·µM−1,
kr=0.358s−1

[205]

37 cAMP + R2bbaC→
R2bbaaC

k f [cAMP][R2bbaC]−
kr[R2bbaaC]

k f =1 s−1 ·µM−1,
kr=7.84s−1

[205]

38 PKA + R2bC→
R2bC2C

k f [PKA][R2bC]−
kr[R2bC2]

k f =1 s−1 ·µM−1,
kr=0.00324 s−1

[205]

39 PKA + R2C→ R2C2 k f [PKA][R2C]−
kr[R2C2]

k f =1 s−1 ·µM−1,
kr=2.81E-6 s−1

[205]

40 PKA + R2baC→
R2baC2

k f [PKA][R2baC]−
kr[R2baC2]

k f =1 s−1 ·µM−1, kr=0.666
s−1

[205]

41 cAMP + R2C2→
R2bC2

k f [cAMP][R2C2]−
kr[R2bC2]

k f =1 s−1 ·µM−1,
kr=0.762s−1

[205]

42 cAMP + R2bC2→
R2baC2

k f [cAMP][R2bC2]−
kr[R2baC2]

k f =1 s−1 ·µM−1,
kr=2.91s−1

[205]
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Table B.5: Initial Conditions

# Species Initial Value Reference

IC1 AC8 1 µM

IC2 ACind 1 µM

IC3 Ca2+ 1 µM

IC4 CaM 10 µM

IC5 cAMP 0.1 µM

IC6 PDE1 1 µM

IC7 PDE4 0.4 µM

IC8 R2C2 0.4 µM

IC9 V -60 mV
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B.5 Simulations of the full spatial systems

B.5.1 Reaction tables of modified well-mixed parameters for the spatial
model

Table B.6: Ca Flux and Reactions modified from Table B.1

# Reaction Reaction flux Kinetic Parameters Ref.

S1 → Ca jCaV (1+
kPKAV [PKA])+
jCaI

kPKAV =100µM−1 FRET
con-
straint

S2 jCaV fi(−αICa−
vLPM[Ca])

fi=1x10−6, α=4.15x105 mol ·m−2·A−1·s−1,
vLPM=7.5x10−4 m · s−1

[14]

S3 jCaI
CkIP3R[PKA]A[Ca]
1+A[Ca]+[B][Ca]2

([Castores]-[Ca])-
Vs[Ca]2

K2
s +[Ca]2

Ks=10µM, Castores=1.56µM, Vs=0.1µM · s−1,
kIP3R=0.05µM−1s−1, A=0.2869µM−1,
B=2.869µM−2, C=0.2133

[14]

S4 AC +
Ca2CaM↔
CaM·AC

k f [AC][Ca2CaM]−
kr[CaM·AC]

k f =10.8 s−1 ·µM−1, kr=10 s−1 FRET
con-
straint

S5 CaM·AC +
2Ca↔ AC*

Kcat
[Ca][CaM·AC]

Ca+Km
−

kr[AC*]
Kcat=90 s−1, Km=1 µM, kr=10 s−1 FRET

con-
straint

S6 PDE +
Ca2CaM↔
CaM·PDE

k f [PDE][Ca2CaM]−
kr[CaM·PDE]

k f =0.25 s−1 ·µM−1, kr=1 s−1 FRET
con-
straint

S7 CaM·PDE +
2Ca↔ PDE*

Kcat
[Ca][CaM·PDE]

Ca+Km
−

kr[PDE*]
Kcat=60 s−1, Km=1 µM, kr=1 s−1 FRET

con-
straint

S8 PDE +
Ca4CaM↔
PDE*

k f [PDE][Ca4CaM]−
kr[PDE*]

k f =0.25 s−1 ·µM−1, kr=1 s−1 FRET
con-
straint
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Table B.7: cAMP Reactions modified from Table B.3

# Reaction Reaction flux Kinetic Parameters Ref.

S9 → cAMP kbase([CaM·AC]+ [AC]+
[ACind])+ kact[AC*]

kbase=0.2 s−1, kact=23.55 s−1,
ACind=3x10−8 mol ·m−2

FRET
con-
straint

S10 cAMP→ kbase[cAMP] [CaM·PDE]+[PDE]
[cAMP]+Km

+

kact
[cAMP][PDE*]

[cAMP]+Km

kbase=0.6 s−1, Km= 0.6 µM
kact=720 s−1

FRET
con-
straint

S11 cAMP→ Vind
[cAMP]

[cAMP]+Km
Vind=0.25 µM · s−1, Km= 1.4 µM FRET

con-
straint

S12 2cAMP + R2C2
→ R2C + PKA

k f [cAMP]2[R2C2]−
kr[R2C][PKA]

k f =20 min−1 ·µM−2, kr=12
min−1 ·µM−1

S13 2cAMP + R2C→
R2 + PKA

k f [cAMP]2[R2C]−
kr[R2][PKA]

k f =20 min−1 ·µM−2, kr=12
min−1 ·µM−1

Table B.8: Added AKAP interactions for the spatial model

# Reaction Reaction flux Kinetic Parameters Ref.

S14 AKAP + R2→ AKAP-R2 k f [R2][AKAP-R2C2]−
kr[AKAP-R2]

k f =1 s−1 ·µM−1

k f =0.1 s−1
Est.

S15 AKAP + R2C→
AKAP-R2C

k f [R2C][AKAP-R2C2]−
kr[AKAP-R2C]

k f =1 s−1 ·µM−1

k f =0.1 s−1
Est.

S16 AKAP + R2C2→
AKAP-R2C2

k f [R2C2][AKAP-R2C2]−
kr[AKAP-R2C2]

k f =1 s−1 ·µM−1

k f =0.1 s−1
Est.

S17 2cAMP + AKAP-R2C2
→ AKAP-R2C + PKA

k f [cAMP]2[AKAP-R2C2]−
kr[AKAP-R2C][PKA]

k f =20 min−1 ·µM−2,
kr=12 min−1 ·µM−1

S18 2cAMP + AKAP-R2C→
AKAP-R2 + PKA

k f [cAMP]2[AKAP-R2C]−
kr[AKAP-R2][PKA]

k f =20 min−1 ·µM−2,
kr=12 min−1 ·µM−1
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Table B.9: ICs and diffusion

# Species Initial value Diffusion Ref.

SIC1 Ca2+ 0.001µM 100 µm2

s [258], Est. from steady state

SIC2 CaM 2.9 µM 10 µm2

s Est. from steady state1

SIC3 Ca2CaM 0.1 µM 10 µm2

s Est. from steady state1

SIC4 Ca3CaM 4x10−3 µM 10 µm2

s Est. from steady state1

SIC5 Ca4CaM 1x10−2 µM 10 µm2

s Est. from steady state1

SIC6 R2 0.04 µM 10 µm2

s Est. from steady state1

SIC7 R2C2 0.2 µM 10 µm2

s Est. from steady state1

SIC8 PKA 0.05 µM 0.01 µm2

s Est. from steady state, diffusion fitted

SIC9 PDE1 0.9 µM 10 µm2

s Est. from steady state1

SIC10 PDE1act 1x10−3 µM 10 µm2

s Est. from steady state1

SIC11 CaMPDE1 1x10−3 µM 10 µm2

s Est. from steady state1

SIC12 AC 4x10−10 mol
m2 0 Est.

SIC13 CaMAC 0 mol
m2 0 Est.

SIC14 ACact 0 mol
m2 0 Est.

SIC15 ACind 4x10−10 mol
m2 1 µm2

s Est.2

SIC16 V -60 mV 1 µm2

s [14, 207]2

SIC17 cAMP 4x10−6 µM 60 µm2

s [187], Est. from steady state

1For all cytosolic species without well constrained diffusions we defined them as 10 µm2

s
2For all membrane species without well constrained diffusions we defined them as 1 µm2

s
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Figure B.1: Phase of cAMP correlates with expression level of the AKAP79-(Ci/Ce)Epac2-
camps. (A) Scatter plot of the time lag (sec) and the YFP donor channel intensity (normalized
to non-saturating maximum) for each cell expressing AKAP79-(Ci/Ce)Epac2camps. Cells with
higher expression of the probe correlated with a longer time lag, therefore a YFP intensity
threshold was designated for analysis purposes. (B) Representative single cell trace of an
oscillating β cell with a YFP donor intensity below the threshold, depicting in-phase cAMP
oscillations relative to Ca2+. Red trace is cAMP (cyan direct channel divided by CY-FRET
channel) and black trace is Ca2+ (RFP). (C) Representative single cell trace of an oscillating β

cell with a YFP donor intensity above the threshold, depicting out-of-phase cAMP oscillations
relative to Ca2+. Red trace is cAMP (cyan direct channel divided by CY-FRET channel) and
black trace is Ca2+ (RFP).

Appendix B, in full, is the supplemental of material that has been submitted for publication

as it may appear in ELife, Brian Tenner, Michael Getz, Brian Ross, Donya Ohadi, Christopher

H. Bohrer, Eric Greenwald, Sohum Mehta, Jie Xiao, Padmini Rangamani, Jin Zhang, Spatially

compartmentalized phase regulation in the Ca 2+ -cAMP-PKA oscillatory circuit. The dissertation

author was the second author of this material.
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Figure B.2: Phase is driven by activity variability within the Ca2+ oscillatory regime.
System phase can be switched by tuning the association of CaM to sources (ACs) and sinks
(PDEs). (a) At base system conditions, the system acts in an in-phase manner. (c) Decreasing
the rate of Ca2+ association to the AC-CaM complex causes the phase to switch to out-of-phase.
(b) increasing basal PDE activity does not allow a phase switch, only after decreasing PDE and
CaM association rates will the system allow a phase switch (c). A phase switch is controlled by
the variability in the activity of source or sink. If the sink dominates, then the system is out of
phase. If the source dominates, the system is in phase.
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Appendix C

Stability analysis in spatial modeling of cell
signaling

Michael C. Getz1, Jasmine A. Nirody2, and Padmini Rangamani31

1 Chemical Engineering Graduate Program, University of California San Diego, La Jolla, CA,

USA.

2 Biophysics Graduate Program, University of California, Berkeley, CA, USA.

3 Department of Mechanical and Aerospace Engineering, University of California San Diego, La

Jolla, CA, USA.

Advances in high-resolution microscopy and other techniques have emphasized the

spatio-temporal nature of information transfer through signal transduction pathways. The com-

partmentalization of signaling molecules and the existence of microdomains are now widely

acknowledged as key features in biochemical signaling. To complement experimental observa-

tions of spatio-temporal dynamics, mathematical modeling has emerged as a powerful tool. Using

modeling, one can not only recapitulate experimentally observed dynamics of signaling molecules,

but also gain an understanding of the underlying mechanisms in order to generate experimentally

testable predictions. Reaction–diffusion systems are commonly used to this end; however, the
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analysis of coupled nonlinear systems of partial differential equations, generated by considering

large reaction networks is often challenging. Here, we aim to provide an introductory tutorial

for the application of reaction–diffusion models to the spatio-temporal dynamics of signaling

pathways. In particular, we outline the steps for stability analysis of such models, with a focus on

biochemical signal transduction.
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C.1 Introduction

Biochemical signal transduction is critical for information transfer from the extracellular

environment to the intracellular structures. The spatio-temporal activation profile of signaling

proteins affects the gene expression patterns and can result in different functional responses

within the cell. Furthermore, specificity of signaling is determined by the spatial and temporal

dynamics of the downstream components [259]. The localization of the signaling components to

the various subcellular locations including internal membranes and membrane microdomains has

a strong impact on cellular function [259].

Spatial segregation of enzymes can lead to intracellular concentration gradients of sig-

nalling molecules [259, 260]. Using a mathematical model for a membrane bound activator and

a cytoplasmic inactivator, it was shown that cell size and shape control signaling pathways; the

resulting intracellular gradients can be used to define regions where specific enzyme reactions

may proceed and other regions where the reactions may not proceed [260]. This work highlighted

the role of spatial segregation of the activator and deactivator. When the activator and inactivator

are both present in the same cellular compartment, there will be no gradient of the activated state

of the signaling component. This is particularly relevant to events such as phosphorylation (spa-

tial separation of kinase and phosphatase) and GTPase activation (spatial separation of guanine

nucleotide exchange factor (GEFs) and GTPase activating protein (GAPs)) and in general for the

role of spatial compartmentalization and shape in the generation of signaling gradients [98].

In addition to dynamics governed by the different compartments of the system, the nature

of the temporal dynamics can also affect the signaling dynamics. Signaling cascades exhibit a large

variety of dynamical features such as multistability [261–263] and oscillations [172, 264, 265],

which are often parameter dependent. Coupling these dynamical behaviors with their spatial

counterparts can then give rise to very interesting spatial patterns depending on the balance
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between reaction and diffusion. However, the analysis of partial differential equations, particularly

studying the dependence of the system response on parameters is non-trivial. The stability

analysis of partial differential equations is a complex topic that is contained in many mathematics

textbooks [266–269], but not often presented in a manner accessible to a systems biologist.

Therefore, we provide here a tutorial that introduces the stability analysis of reaction-diffusion

equations.

This tutorial begins with a broad overview of spatio-temporal dynamics of pattern for-

mation at multiple scales in biology (Figure C.1A) and lays out a general modeling framework.

Then using three specific examples, we demonstrate how to conduct the stability analysis. We

envision that this tutorial will enable the reader to carry out preliminary analyses of parameter

space for reaction-diffusion equations and set the stage for more detailed analysis.

C.2 Pattern formation and reaction-diffusion equations at dif-
ferent scales

C.2.1 Turing patterns: reaction diffusion models at the organism scale

The history of pattern formation in reaction-diffusion systems can be traced back to Alan

Turing [270]. In 1952, Turing showed that under specific conditions, the solution of reaction-

diffusion equations can result in the formation of stable patterns [270]. The primary feature of

such a model system is a short-range activation and a long-range inhibition [271]. The resulting

competition between the different diffusion rates can then lead to formation of stable patterns.

Although the reactions in the original model were between two sets of hypothetical molecules

randomly diffusing and reacting, the analysis is a central feature of studying reaction-diffusion

equations. Subsequently, Murray and others expanded this idea to propose that the formation

of animal coat patterns could be explained by Turing patterns (Figure C.1A). Of course, these

patterns are at the length scale of an organism, significantly larger than the length scale of single
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Figure C.1: Examples of spatio-temporal patterns at different biological length scales. (a)
Organism length scale patterning is seen in leopard spots (top) and conus sea shells (bottom)
(Source: Wikimedia commons, open access images). (b) Cellular length scale patterning during
cellular polarization with Rho/Rac during chemotaxis. (c) Second messenger signaling and
cross talk between cAMP and Ca2+ is an example of a spatio-temporal signaling response of
small molecules within cells.

cell signaling, and even though no particular morphogen has been identified with coat patterns,

the phenomenological framework using the Turing model to explain the stripes and spots of

animals helps us understand the balance between diffusion and chemical reaction rates and how

these manifest themselves as “diffusion-driven instabilities” [263].

More recently, Turing patterns have been applied to the analysis of fish stripe patterns [272]

and sea shell patterns [273]. Kondo and colleagues showed that during sexual conversion in two

species of Genicanthus, which share almost all of their morphological properties, the directional

stripe patterns arise transiently in random positions and computational analysis using Turing

patterns can be very powerful in analyzing the evolution of these patterns. Additionally, Meinhardt

et al. [273] had previously shown pigment patterns in mollusc shells can be explained through

Turing patterns (Figure C.1A). We reproduce the analysis of the classical Turing model in Section

C.5.1.
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C.2.2 Pattern formation in development: reaction diffusion models at the
tissue scale

Pattern formation is a critical part of embryonic development and maturation determining

cell sorting and cell fate. During vertebrate limb development, chondrogenesis, a process involving

precartilage condensation occurs periodically along the anterior-posterior axis of the distal tip

region. Since this region has no pre-existing periodic pattern, a Turing-like model was suggested

to be a potential underlying mechanism [274]. Subsequently, transforming growth factor β

(TGF-β) was hypothesized to be the molecule responsible for the observed cell sorting during

development [275]. Miura et al. also showed that the behavior of TGFβ2 exemplifies a system

capable of satisfying the Turing pattern requirement of short-range activation, through TGFβ2

mRNA promotion, and long-range inhibition criteria, through a lateral inhibitory mechanism [275],

which is as yet unknown. Studies on this mechanism constitute ongoing research [276].

Another dramatic example of pattern formation within tissues can be seen in in the

Drosophila eye, which is formed from 800 ommatidia structures [277]. Each ommatidia has

20 distinct cells and the cells in the ommatidia and the ommatidia themselves arrange in a very

precise repeating pattern resembling a crystalline structure [278]. The formation of this complex

structure is driven by a cell-to-cell signaling cascade and drives the observed specification of cell

order in the tissue. The signaling interaction that drives this cellular patterning is thought to be

the Notch-Delta cascade for lateral inhibition. Which as Physical biology of the cell describes

as “a process in which one cell assumes a particular fate and then communicates that fate to

neighboring cells preventing them from doing the same thing, allowing for a separate fate” [278].

Notch-Delta signaling leads to a spatially inhomogeneous assembly of cells during development

and “salt and pepper patterns” [277, 278].
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C.2.3 Patterns within cells: intracellular signaling

The idea of Turing pattern formation can be easily extended to intracellular signaling,

since the cascade of biochemical reactions often display non linear chemical kinetics [278].

An excellent example of this is the activation of the small Rho GTPases, Rho and Rac for cell

polarization through spatial amplification (Figure C.1B). It has been shown that the system of

three Rho GTPases involved in cell polarization Cdc42, Rac, and Rho, can be reduced to a pair of

active and inactive proteins in a phenomenological model (Figure C.1B) [279]. Mori et al. [262]

used the simplified model to identify the wave-pinning behavior of Rho and Rac during cell

polarization, which we will discuss as an example in this tutorial (Section C.5.2).

Intracellular signaling-related patterns are also observed in bacteria; polarization may also

be caused by transient signals such as the dynamics of the Min proteins in E. coli [280]. The

main polarization arises from the binding of Min D and Min E, which delocalizes the previously

membrane associated MinD into the cytosol. This interaction results in a wave of high MinE

concentration traveling from the cell center to a pole, where it dissipates. MinD reassembles

on the membrane at the other pole and attracts a fresh pool of MinE, causing the wave-like

disassembly of MinD again. This model explains the pole-to-pole oscillation of MinC/D and how

this impacts the assembly of the bacterial cytoskeletal protein FtsZ in the center of the cell prior

to cell division.

Second messenger molecules such as Ca2+and cAMP are central to many signaling

pathways, including G-protein coupled receptor signaling and growth factor signaling [281,

282]. Both these second messengers are known to exhibit oscillatory dynamics, a feature

critical to their function in cells [264]. Additionally, the formation of cAMP microdomains

and Ca2+sparks and waves are examples of small molecules effecting distinct spatio-temporal

patterns to regulate signaling and downstream effects at specific locations in cells. Not only do

these two small molecules regulate a multitude of processes, they also interact (Figure C.1C) to
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couple their dynamic behavior and generate signaling crosstalk downstream of receptors [172]. A

phenomenological model for second messenger signaling is explored in Section C.5.3.

C.3 Spatio-temporal modeling of signaling: the need for anal-
ysis

Mathematical models have proven to be extremely useful in elucidating the properties

of biological signaling networks [39, 283, 284]. While well-mixed models of signaling can be

described using ordinary differential equations (ODEs) to quantify the dynamics of various

signaling components, in order to consider the spatial aspects of signaling, we need to consider

reaction-diffusion models that can be described using partial differential equations (PDEs) [99,

227, 285].

Signaling models often result in systems of coupled non linear partial differential equa-

tions, with multiple parameters. Non linear models often exhibit a rich behavior as parameters

are varied, making analysis of these systems challenging. One way to analyze these systems of

PDEs is to conduct simulations across a range of parameters. There have been an increasing

number of tools to computationally model signaling that use finite-element, finite-volume and

finite-difference methods [286]. The finite-element solution method (FEM) reduces the PDE form

to an intergral differential equation for an approximate solution aiming to minimize error with a

fast solution. Finite difference (FD) uses the surrounding spatial coordinates to convert the PDE

into a system of linear algebraic equations in an explicit (uses the current timestep), or implicit

(uses the next time step, found through analytic methods) fashion. Finite volume method is

similar to FEM and FD except that this method uses the volume integral of the governing equation.

Commercial examples for a finite difference solver include MATLAB’s 1D finite difference solver

pdepe. Commercial examples of a finite element solver is COMSOL’s PDE solver. Since, many

other tools have been developed to help with modeling signaling networks such as VCell [287]
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and MCell [288–290].

Despite the tools available to numerically solve PDEs, it is important to understand some

basic features about the stability behavior of these equations for a variety of reasons. One, simple

analysis methods help us identify the parameter space that we want the system to operate in. Two,

understanding how the structure of the equations govern their steady state behavior can inform the

development of new models. And three, experimental design for both in vitro and in vivo systems

can be informed by the analysis of key components (see the Rho/Rac example in Section C.5.2).

One of the ongoing challenges facing the systems biology community is that the methods

of analysis are often found in mathematics textbooks and the material may or may not be

accessible to a researcher wishing to conduct such an analysis. This tutorial aims to provide

an example based approach on how to conduct stability analysis for PDEs, with the examples

geared towards cell signaling. This material is not intended to replace the mathematical biology

textbooks but to present a gentle introduction to a complex topic and lowering the barrier to

cross-disciplinary study. All Mathematica and MATLAB files used are provided as supplementary

material.

C.4 General model framework: how to conduct analysis

C.4.1 Reaction-diffusion equations

We consider chemical reactions occurring along a one-dimensional segment (0≤ x≤ L),

which serves as an approximation of a transection of the cell. Here, we provide a general example

with two species U and A. We denote the concentrations of these species as u and a respectively,
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both in units of molecules/length. The partial differential equations are:

∂a
∂t

= Da
∂2a
∂x2 + f (a,u)

∂u
∂t

= Du
∂2u
∂x2 +g(a,u). (C.1)

The choice of functions f (a,u) and g(a,u) are dependent on the type of the reactions being

modeled, f (a,u) and g(a,u) often contain parameters that represent the reaction rate constants.

We will first outline the general analysis method to understand the steady state behavior and then

apply it to three specific systems to demonstrate its usefulness. We note that this material can be

found in textbooks that discuss analysis of PDEs [263, 267, 268] and is succinctly reproduced

here for completeness.

C.4.2 Stability analysis for the well-mixed system

The first step is to find steady state solutions (a∗,u∗) of the purely kinetic system (in the

case of homogeneous spatial conditions, i.e. “well-mixed” ), we solve for ( f (a,u),g(a,u)) =

(0,0). Additionally, in some systems, if A and U are conserved, we impose that the initial amount

of A(A0) and U(U0) satisfies P =U0 +A0 =U(t)+A(t), where P is a constant denoting the total

amount of species. Depending on the form of f (a,u) and g(a,u), multiple steady states may

exist.

Note that these homogenous equilibria also serve as steady states for the spatially extended

system. We wish to analyze their stability throughout the parameter space. We must therefore

linearize the functions f (a,u) and g(a,u) to discern their behavior. After linearizing around a(t)

and u(t) by a taylor series expansion where ∆a and ∆u are small, the function returns as,

∂∆a
∂t

= f (a(t),u(t))a ∗ (∆a)+ f (a(t),u(t))u ∗ (∆u)+O(|a|2)+O(|u|2)

168



where f (a(t),u(t)) is the function value at time t and f (a,u)a, f (a,u)u denote the partial deriva-

tives of f (a,u) with respect to a and u. The linearized expression can then be shown in the form

of a Jacobian, [∂∆a
∂t

∂∆u
∂t ]

T = J|(a∗,u∗)[∆a ∆u]T . The Jacobian matrix for the purely kinetic system

is therefore,

J|(a∗,u∗) =

 f (a∗,u∗)a f (a∗,u∗)u

g(a∗,u∗)a g(a∗,u∗)u

 . (C.2)

Note this method of analysis only holds int the local area around the homogenous equilibria and

fails if the point is too far or second order effects are not negligible.

Next, for the well mixed system, we look at the eigenvalues, denoted as λ, of the Jacobian

matrix to analyze the linear stability of these states under small perturbations from equilibrium

[267]. An equilibrium point is said to be stable if the eigenvalues of the J|(a∗,u∗) all have real parts

less than or equal to zero and unstable if any one eigenvalue has a real part greater than zero. For

certain choices of reaction parameters, both two stable and one unstable steady states exist; this

is called the bistable regime. Within this region, either of the two steady states may be reached

for the same set of kinetic parameters, depending on the initial conditions of the system (i.e.,

the ‘starting’ concentrations). Bistability is a common feature in biochemical reaction networks,

particularly those containing positive feedback loops [291]. Through bistability, positive feedback

loops may allow for a sustained cellular response to a transient external stimulus [291], a central

feature in cell polarization. For example, in bistable systems such as MAP kinase, there are two

stable steady states and one unstable steady state and a sustained response upon stimulation is

exibited [281, 292].
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C.4.3 Stability analysis for the spatial model

What happens when we consider a spatially heterogeneous system? In order to obtain the

spatially heterogeneous solutions, we linearize Equations (C.1) about the steady state to obtain,

∂

∂t

∆a

∆u

=

Da 0

0 Du

 ∂2

∂x2

∆a

∆u

+ J

∆a

∆u

 . (C.3)

Here, J is the Jacobian for the (spatially homogeneous) reaction equations. In order to analyze

the stability of this system with respect to perturbations, we must first note that now these

perturbations depend both on time and space. A convenient form for such perturbations is

∂

∂t [∆a ∆u] = [∆a ∆u]e−λteikx, where the term eikx is a common way of representing a spatial

wave, where k is the wavenumber of the Fourier mode (we refer the interested reader to [268]).

Substituting this into the linearized Equation (C.3) leads to the Jacobian of the spatially extended

system

J∗ =

 f (a,u)a−Dak2 f (a,u)u

g(a,u)a g(a,u)u−Duk2

 . (C.4)

The eigenvalues of this matrix allow us to study the stability properties of the system:

nonnegative eigenvalues correspond to a loss of stability of the system. Since the eigenvalue

expressions contain the unknown parameter k, we consider a one parameter family of solutions,

one for each wavenumber. Note that the eigenvalues for the well-mixed system are achieved

when k = 0. Primarily, we are interested in the emergence of heterogeneous patterns that occur

via perturbations within a finite range of critical wavenumbers 0≤ kc ≤ kmax [263, 268] .

The value of these critical wavenumbers becomes important when we are faced with

a finite domain size. Since cells are of finite size, we want to investigate how the length

of the domain affects the system response. This is because the spatial pattern that emerges

from an instability corresponding to a wavenumber k has wavelength ω = 2π

k ; accordingly, for
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finite systems, only values of k above a certain threshold will generate any meaningful spatial

patterns [263, 268] .

These equations can also be normalized through diffusion [263] to receive:

J∗ =

 γ f (a,u)a− k2 γ f (a,u)u

γg(a,u)a γg(a,u)u−Dk2

 . (C.5)

where γ is the “scale factor” (γ = S
Da

) correcting for the size of the domain (S) and D = Du
Da

thus

allowing easier relation of diffusive ratios to stability profiles. The normalized 2 component case

is expanded and applied in Section C.5.1.

C.5 Examples of spatio-temporal dynamics

In this section, we demonstrate the above analytical protocol using three examples, each

representing a distinct origin of spatial patterning. First, we discuss Turing’s “diffusion-driven

instability” using morphogenesis as a classical example. Second, we consider a situation in which

spatial patterns arise even though the criteria for Turing instabilities are not met, via the “pinning”

of a traveling wave. To illustrate this phenomena, we turn to a simple model of eukaryotic cell

polarization. And finally, we demonstrate using a four-component example, how oscillations in

second messenger signaling can be analyzed to identify the governing length and time scales of

the system.

C.5.1 Patterns in organisms: “how the leopard got its spots”

Morphogenesis, the process by which an embryo gains its structure during development,

is one of the most studied problems in biology. In particular, Turing’s model of pattern formation,

originally applied to the development of animal coat patterns [270], proved useful for describing

this phenomenon. Murray [263] used and analyzed the following system of non linear reactions,
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which has since become the classical example of the Turing instability. In this system, f (a,u)

and g(a,u) are described as follows:

f (a,u) = b−a− ρau
1+a+Ka2 (C.6)

g(a,u) = α(c−u)− ρau
1+a+Ka2 ,

where b, α, ρ, K, and c are positive parameters. Since, modified and more complex networks for

Turing pattern generation have developed [293–295].

Well-mixed model

We first begin with the analysis of the well-mixed model before considering the full

reaction-diffusion system. This system has two homogeneous steady states, which are obtained

by solving f (a,u) = 0 and g(a,u) = 0. The solutions to f (a,u) = 0 and g(a,u) = 0, which are

the nullclines are shown in Figure C.2(A). The intersection of the two nullclines gives the three

fixed points for a and u. We denote them (a∗1,u
∗
1), (a

∗
2,u
∗
2), and (a∗3,u

∗
3). These solutions depend

on the different parameters present in f (a,u) and g(a,u). An analytic solution can also be found

by rearranging the equations to obtain a cubic equation and finding its roots. All non-imaginary

positive solutions are admissible but we do not explicitly write out the cubic expression for the

sake of brevity.

Next, we construct the Jacobian of this system to obtain

J =

 ρu(Ka2−1)
(1+a+Ka2)2 −1 −aρ

1+a+Ka2

ρu(Ka2−1)
(1+a+Ka2)2 −α− aρ

1+a+Ka2

 . (C.7)

We then evaluate the eigenvalues of this Jacobian matrix for the different steady states. Under

certain parameter choices, we receive three solutions (remembering to ignore any imaginary

solutions to the cubic equation) we now evaluate the stability of these points. For these sets,

(a∗1,u
∗
1) and (a∗3,u

∗
3) return negative eigenvalues for the Jacobian meaning they are stable. However
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for (a∗2,u
∗
2) the eigenvalues of the Jacobian has positive real parts, indicating that (a∗2,u

∗
2) is

unstable and in the presence of any perturbations at (a∗2,u
∗
2) the system will head to the solutions

(a∗1,u
∗
1) or (a∗3,u

∗
3). The solution space depends on the model parameters. In Figure C.2 B and C,

we show how the solution space for a∗ depends on the parameters b and c respectively.

Spatial patterns

The criteria for an equilibrium point to undergo a diffusion-driven instability are as

follows.

• First, the equilibrium point must be stable for the purely kinetic system and the loss of

stability in the steady state must be purely spatially dependent, so we can consider (a∗1,u
∗
1)

or (a∗3,u
∗
3) but not (a∗2,u

∗
2). In other words they must satisfy the conditions:

fa +gu < 0 (C.8)

fagu− fuga > 0 (C.9)

to make the eigenvalues of the Jacobian positive and therefore stable for the kinetic system.

• Second, the Jacobian of the spatially extended system must satisfy the following to undergo

a spatial instability:

tr(J∗) = D fa +gu > 0, (C.10)

det(J∗) = (D fa +gu)
2−4D( fagu− fuga)> 0. (C.11)

For the above system, the conditions for the Turing mechanism are met, and spatial patterning

through a diffusion-driven instability can occur. Note that there are six parameters left in the

system, including D = Du/Da, b, c, K, α, and ρ. In Figure C.2, we fix K, α, and ρ and study the

effect of D on the phase space admitting Turing patterns over the ranges of parameters b and c.
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Figure C.2: Steady state behavior for the Turing model. For (a)-(d), The following parameters
are fixed as follows: α = 1.5,ρ = 13,K = 0.125, b = 160, c = 140. (a) The nullclines show the
intersection of f (a,u) = 0 and g(a,u) = 0 and the three steady states at the chosen parameters.
(b) Variations of the parameter c and (c) variations of the parameter b affect the steady states of
a. The two stable steady states a∗1 and a∗3 are shown as solid blue and green lines, respectively;
the unstable steady state a∗2 is shown as a dashed line. (d) Region of parameter space in the
system (Eq. C.7) that allows for Turing patterns for the ratio of diffusion constants D = Da/Du:
D = 10−1 (green), D = 10−2 (blue) and D = 0 (red). As the D increases, the region over which
Turing patterns can be observed increases. (e-f) Simulations of Eq. C.7 were conducted in
MATLAB’s 1D PDE solver pdepe. The parameters used were α = 1.5,ρ = 13,K = 0.125,c =
80,b = 100, and Da = 0.1. For a system size for L=10 a single stripe appears at the center.
Concentrations of a (e) and u (f) are shown. Initial conditions were set as randomized along x
around the values [a,u]=1.

When D = 10, the range of b and c over which Turing patterns are observed is small. However, as

D increases, the range of b and c increases. Biologically, this means when U diffuses much faster
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than A, the range of parameters b and c over which Turing patterns can be observed increases.

For more details on linear instabilities via the Turing mechanism, we again refer the interested

reader to [263]. A representative pattern is shown in Figure C.4, where MATLAB’s 1-D PDE

solver, pdepe, was used to generate solutions based on initial conditions randomized along the

spatial dimension, x, around the values [a,u]=1.

Key takeaway points

Classical Turing systems consist of two components, usually an activator and an inhibitor.

Since Turing’s original paper on pattern formation via a reaction-diffusion mechanism, several

models have been proposed that are applicable to a wide variety of biochemical problems

[293–295].

Above, we have described and analyzed Thomas’ model for substrate inhibition based on

experiments in which an immobilized enzyme on a membrane reacts with diffusing substrate and

co-substrate molecules [296]. This model, and several others proposed after it [297, 298] help us

understand biologically plausible mechanisms of signaling. Some of the key points to note from

studies of Turing patterns are noted below.

1. Specific kinetics are required for Turing patterns. Two component mechanisms, like

the one described in Eq. C.7, can generate spatially heterogeneous patterns. Whether

or not systems are capable of generating spatial patterns through a Turing mechanism

depends on the reaction kinetics. In particular, we have outlined the conditions required in

Eqs. C.8,C.10,C.11. In general, these systems crucially have an activation-inhibition form

(Figure C.1A). Further details on such mechanisms can be found in [263].

2. Diffusion can lead to instabilities under certain conditions. Given that the kinetics

fulfill the conditions outlined above, Turing instabilities can arise only if the ratio of
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diffusion constants, D = Du/Da 6= 1. These spatial heterogeneities arise especially when

the diffusion constant of the activator in the system is smaller than that or the inhibitor

(called LALI, or “local activation, lateral inhibition” mechanisms). The concept of diffusion-

driven instability was groundbreaking when it was first proposed because diffusion was

long-considered to be a stabilizing presence.

C.5.2 Cell polarization

Polarization is fundamental to eukaryotic motility, morphogenesis, and division. Cell

polarization is the process of reorganization of the cytoskeleton into distinct front and back regions

in response to a stimulus. Recently, Mori et al. [262] presented the “wave pinning polarization” or

WPP model, a minimal model of cell polarization, that demonstrated both bistability and spatial

patterning. In this system, the kinetics of the two species are given by:

f (a,u) = u
(

k0 +
γa2

K2 +a2

)
− ko f f a (C.12)

g(a,u) =− f (a,u) =−u
(

k0 +
γa2

K2 +a2

)
+ ko f f a.

After their initial proposal of the WPP model [262], the authors considered several

important extensions [299–301]. However, a full characterization of the equilibrium behavior of

the system as a function of the properties and amount of the GTPases has been rarely discussed.

In one study, local perturbation analysis was utilized to discuss system behavior in terms of the

GTPase properties [302]. In this section, we outline such a characterization for the basal rate of

activation k0 and the average amount of total protein p.

Well-mixed model

As before, we begin by analyzing the reaction-only ODE model before considering the

full reaction-diffusion system. The WPP model has three steady states, which we denote (a∗1,u
∗
1),
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(a∗2,u
∗
2), and (a∗3,u

∗
3). To assess the stability of each of these steady states, we look at the Jacobian

matrix of the system:

J =

 2auK2γ

(a2+K2)2 − koff k0 +
γa2

K2+a2

− 2auK2γ

(a2+K2)2 + koff −k0− γa2

K2+a2

 . (C.13)

Example equilibrium curves for γ = 1,koff = 1,K = 1 are shown for various values of

average total protein p in Figure C.3. For the WPP model, a∗1 and a∗3 are stable (shown as

green and blue solid lines, respectively), while a∗2 is unstable (shown as a black dashed line).

To illustrate this, consider the basal rate parameter k0 as a function of an external stimulus S

(i.e., k0 = k∗0S). Now, we can look to the plots in Figure C.3 as dose-response curves — the cell

responds to external stimulus S by producing the activated protein A.

As S (and consequently k0) is slowly increased, the concentration of A follows along the

curve corresponding to a∗1 (green) until it crosses the bistable region, after which the equilibrium

value is suddenly larger at a∗3 (blue). If the stimulus is removed, and the level of S decreases,

the higher-valued equilibrium is maintained within the bistable region; this behavior, where the

dose-response relationship is in the form of a loop rather than a curve, is called hysteresis. If

the bistable regime is large enough, in particular if it extends to k = 0, an essentially irreversible

response to transient stimuli may be elicited (as is seen for p = 3 in Figure C.3(D)).

Figure C.4(a) shows the bistability region for the WPP model as the total average protein

concentration p and the basal activation rate k0 are varied. From the sloping shape of the bistable

region, we can see that for sufficiently high values of total protein (for the set of parameters in

Figure C.4(a) (gray region), p ≥ 3), an ‘irreversible’ response may be generated: both steady

states are stable even when the stimulus is removed, at k0 = 0.
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1-D spatial model

Having characterized the bistable regime of the well-mixed model, we now turn our

attention to the full reaction-diffusion system. The homogenous equilibria also serve as steady

states for the spatially extended system and as before, we are interested in their stability throughout

the parameter space.

Recall that for the spatially homogenous system, we turned to the Jacobian to analyze the
linear stability of these states under small perturbations from equilibrium. The eigenvalues of J
are

λ
± =

1
2

[(
fa− fu− (DA +DU)k2)±√( fa− fu− (DA +DU)k2)2−4(DADU k4 +(DA fu−Du fa)k2)

]
.

(C.14)

As the expressions for the eigenvalues now contain the additional unknown k, we are now

interested in a family of solutions, one for each wavenumber. The eigenvalues for the nonspatial

system are achieved when k = 0, and are given by λ− = fa− fu and λ+ = 0; therefore any

spatially homogeneous perturbation will relax back to the spatially uniform steady state. We are

instead interested in the emergence of heterogeneous patterns that occur via perturbations within

a finite range of critical wavenumbers 0≤ kc ≤ kmax.

The region of ‘linear instability’ is highlighted in orange in Figure C.4 (b) for k = 0.2

µm−1. This corresponds to a pattern of wavelength ω = 2π

k ≈ 30 µm. This length scale is

intermediate among the motile eukaryotic cells that use Rho GTPases to generate polarity. In

this region, one or both of the steady states, (a∗1,u
∗
1) and (a∗3,u

∗
3), lose stability with respect to an

inhomogeneous perturbation as shown above (see Figure C.4 (b)).

We note that the region computed is for diffusion coefficients DU = 10 µm2s−1 and DA =

0.1 µm2s−1. A similar parameter topology (with slightly larger regions of instability) was found

in a reduced one-species model where infinite cytoplasmic diffusion was assumed [303]. The
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disparity in diffusion coefficients assumed in Figure C.4 presupposes the compartmentalization

of the two species: a protein diffuses far more slowly on the membrane than in the cytosol (here,

we assume the ratio of diffusion coefficients to be ≈ 0.01 [304]). In the following sections, we

will assess the importance of this presumption. In addition, the parameter space for the full model

can admit a surrounding region where front-like solutions are observed. In this region, a stalled

wave can appear when the system is subjected to a directed stimulus (e.g., a gradient), sufficiently

‘noisy’ initial conditions, or if the domain exhibits some intrinsic polarity at t = 0. The parameters

chosen by Mori et al. fall within this region; their simulations demonstrate that this ‘intrinsic

polarity’ may arise via ‘sufficiently noisy’ initial conditions, as seen in Figure C.4 [262]. It is

important to note that all patterns are similar and only differ due to different initial conditions (as

in what side the wave pins on). [305]

To find solutions allowing this stalled wave solution we look for a solution containing a

critical value of species u, uc, which is in the bistable regime. uc describes the point at which

the ‘wave front’ speed switches sign, and therefore is the solution with no ‘wave front’. The

boundaries of this regime are calculated by solving for values where the forward rate of reaction,

uc

(
k0 +

γa2

K2+a2

)
, equals the reverse rate, ko f f a, across the high, a+, and low, a−, solution. This

solution is called the Maxwell condition and admits the ranges of u in which a stalled wave is

possible: [262]

I(b) =
∫ a+

a−
f (a,u)da = 0. (C.15)

We then use the mass conservation condition to compute this region in (k0, p) space. While this is

not analytically feasible for the WPP model, numerically solving the integral provides an accurate

characterization of this region. The method outlined here is not specific to the WPP model, or

even to models of cell polarity. To make such a phase-space analysis more accessible to the

biological community, we provide an easy-to use GUI to allow readers to analyze the stability

properties of other systems of interest.
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A representative wave pinning pattern generated using MATLAB’s 1-D PDE solver,

pdepe, is shown in Figure C.4. To induce a spatial gradient initial conditions were set as the basal

solution of (a∗1, u∗1), then a∗1 was set as 2a∗1R where R is a random number between 0 and 1. To

obtain a spatially differing solution the random distribution of R must be heavy towards one side

of the cell.

Key take-away points

The analysis above provides us significant insight into the behavior of the WPP model

throughout the parameter space (Figure C.4). Using this, we can point out several notable

properties of the model as they pertain to cell polarization. We note these below properties are

predicted using analyses performed on a 1D spatial model. Extension of the model to three, or

even two, dimensions may (and likely do) result in different behaviors [306].

1. Importance of compartmentalization: The Rho GTPase family is large and varied, and

is present in eukaryotes spanning from C. elegans to humans. However, one common

feature of these proteins is compartmentalization: the active form is bound to the membrane,

while the inactive form diffuses in the cytoplasm [307]. This feature has been shown to

be important for cell polarization [262, 299, 300]. We illustrate the necessity of membrane

localization by considering how the phase space of the WPP model in Figure C.4 changes

if both species are contained in the cytoplasm.

Qualitatively, the dependence of polarization on compartmentalization is relatively intuitive.

As A and U constitute GTP- and GDP-bound versions of a single protein, their cytoplasmic

diffusion rates are likely very similar. Given this, one would not expect the formation of

any sort of regular pattern with no initial spatial structure.

We show this quantitatively by defining the ratio of the diffusion rates D = DA/DU , and
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considering the effect of this quantity on the regimes allowing spatially heterogeneous

solutions. For one membrane-bound and one cytoplasmic species, we take this ratio to be

≈ 0.01 [304].

When D = 1, no spatially heterogeneous patterns can be generated, and this region disap-

pears altogether. However, as D decreases, spatial patterns are supported for a finite range

of wavenumbers (Figure C.4(b)) [299]. As the rate of diffusion of U increases, the maxima

of λ(k) move towards k = 0, eventually displacing the uniform steady state in the limit

DU→∞ [303]. This trend is not symmetric — as D increases from 1, there is no consequent

extension of the multistable regime. This is similar to the formation of Turing patterns in

local excitation, global inhibition models; for an overview of this brand of models with

respect to cell polarization, we refer the reader to several excellent reviews [262, 300, 306].

2. Benefit of being big: In addition to the importance of different diffusion rates between

active and inactive forms, we can use the fact that the range of critical wave numbers is

bounded above to consider the existence of a corresponding lower bound on the length of

the cell L.

The value of the maximum critical wavenumber kmax for a feasible value of D is quite

low (Figure C.4). This suggests that smaller cells are less sensitive to polarization, while

larger cells are able to respond more robustly. Interestingly, this result has been observed

experimentally: cells were found to become significantly more sensitized as they were

flattened in a confined channel [260, 308, 309] .

3. Spontaneous polarization: Recall that k0 can be written as a function of the concentration

of some stimulus S: k0(S) = k∗0S. This formulation allows us to characterize parameter

values which allow for spontaneous polarization in the absence of a directed external

stimulus.
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Certain, but not all, cells are able to spontaneously self-polarize. In the WPP model, we

consider the regimes crossed in Figure C.3(d) by the line k0 = 0. We see that polarization

in the absence of a stimulus is possible if the value of p is sufficiently high. Given sufficient

initial conditions, due to the slow diffusion of a, the value of p will increase only on one

side of the cell to achieve sufficient p concentrations. This is consistent with experimental

observations that the constitutive expression of Rho GTPases result in extension of randomly

oriented lamellopodia and membrane ruffling [310] .

4. Polarization strategies: The parameter space topology for the WPP model contains two

distinct regions that allow for non-homogenous equilibrium solutions. Because of the

choice of parameters in Mori et al. [262], the system behavior in only one of these regions,

corresponding to stalled-wave solutions (shaded in blue in Figure C.3) was explored.

In general, Turing patterns form more easily (i.e., in response to far smaller perturbations)

than patterns formed by a wave-pinning mechanism. However, they occur on a far slower

timescale [262, 300, 306]. The existence of a Turing-like instability regime in addition to

a region which admits stalled-wave solutions presents cells with multiple strategies for

polarization.

C.5.3 Second messenger signaling and oscillations

In this section, we demonstrate the stability analyses as applied to a phenomenological

model of second messenger signaling. Small molecules such as cAMP and Ca2+play important

roles in intracellular signaling. These two molecules play critical roles in many cell types,

including smooth muscle cells and neurons [311, 312]. The frequency and amplitude modulation

of Ca2+sparks by contractile and relaxant agents is an important mechanism regulating smooth

muscle function [311]. In neurons, voltage-gated Ca2+channels initiate synaptic transmission

[313–315].
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In the hippocampus, the presence of AC types I and VIII and its sensitivity to Ca2+stimulation

implicates AC in mammalian learning and memory, along with hippocampal long-term poten-

tiation. The critical component to this AC interaction is the evidence that increased glutamate

NMDA-receptor-mediated Ca2+ entry is associated with a cAMP elevation [172]. Through this

interaction a network loop connecting cAMP to Ca2+ was developed by Cooper et al. (Figure

C.1C).

Both Ca2+and cAMP are also known to oscillate and form cellular microdomains, spatially

restricting their signaling feature. cAMP signaling is mediated by the canonical signaling pathway

of the α subunits of G-proteins regulating adenylyl cyclase (AC) activation. Adenylyl cyclase

is an enzyme that catalyzes the synthesis of cAMP from ATP. On the other hand, the canonical

signaling through Ca2+is through the binding of IP3 to IP3 receptors on the endoplasmic reticulum

(ER), releasing Ca2+from the ER stores. Experiments also show that cAMP and Ca2+oscillate

and regulate each other through stimulation or inhibition of specific AC isoforms. In some cases,

protein kinase C (PKC), Ca2+, and Gβγ subunits are thought to stimulate or inhibit specific AC

isoforms more effectively than the Gα unit. Specifically, the stimulation of ACs type I, III, and

VIII is mediated by calmodulin. The mechanism of action of Ca2+ on AC isoforms V and VI (as

of the Cooper et al. paper in 1995) is unknown and is not performed by calmodulin [172].

The phenomenological model that couples Ca2+and cAMP dynamics was first described

in [172]. We use this model to show how the methods described above can be extended to a

system containing more than two components. This model can also be expanded to the heart

as they express types II, III, IV, V, VI, VII, and IX AC. Since types V and VI can be inhibited

by Ca2+, a larger reaction network can be created using all AC isoforms and Ca2+and cAMP

microdomains can be analyzed. These additional interactions may be neccesary for fine tuning of

excitation-contraction coupling [265]. The dynamical system for a four component Ca2+-cAMP
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network shown in Figure C.1(C) is given by:

d[x]
dt

= a[w]−b[x],
d[y]
dt

= c−d[y],
d[z]
dt

= e[y]− f [z],
d[w]
dt

= h−g[w](C.16)

c = cm
xN1

xN1 +KN1
1

, g = gm
zN2

zN2 +KN2
2

where x is the cAMP concentration, y is the number of available active channels, z is the free

cytosolic Ca2+ concentration, w is the available AC. The stimulus through G-protein is modeled

through the parameter a. The non linear terms c and g (Eq. C.17) are Hill coefficients used to

model the cooperative binding interactions of cAMP to channels, as c, and Ca2+to AC, as g.

update rest of parameters.

Well mixed model

For the well-mixed system, with initial conditions xi = 1, yi = 0.05, zi = 0.1, wi = 0.5

oscillatory kinetics were observed (Figure C.5). Initial conditions were chosen by Cooper et

al [172] such that dy
dt =

dz
dt =

dw
dt = 0 at time 0. The nature of the oscillations depend on the

value of a; for a = 5 (Figure C.5A), we obtain damped oscillations and for a = 2, we obtain

stable oscillations (Figure C.5B). In order to understand this system, we first analyze the ODE

model. For the system shown in Eq. C.16, there exists only one steady state denoted (x∗,y∗,z∗,w∗).

Analytic methods become rather complicated, and therefore we used MATLAB’s fsolve function

to calculate this steady state. Using fsolve, we approximate the critical point by finding the point

where all functions equal 0, up to a determined tolerance. This is therefore an iterative method

for the minimization of all of the function sums. To assess the stability of this state we consider
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the Jacobian matrix given by

J =



−b 0 0 a

cm
N1K

N1
1 xN1−1(

xN1+K
N1
1

)2 −d 0 0

0 e − f 0

0 0 −gm
N2K

N2
2 zN2−1(

zN2+K
N2
2

)2 w −gm
zN2

zN2+K
N2
2


(C.17)

For this Jacobian, the criteria for oscillations around the fixed point are the presence of a purely

imaginary eigenvalue (the real part is zero). The change from a negative real eigenvalue to a

purely imaginary eigenvalue, in Figure C.6(a), hints the presence of a Hopf bifurcation. We

should note that this condition is not sufficient to characterize the oscillatory nature of the solution,

since the Jacobian only considers the first order effects and oscillations exist in the second-order

space. For larger systems, and when using numerical tools, it is important to look for real parts

around zero rather than exactly zero [267,269]. We refer the reader to [269] for expanded analysis

of Taylor series. To better show second order stability we create a bifurcation plot (Figure C.6(c)).

In order to create this figure the local maximas of cAMP were recorded as the system underwent

a Runge-Kutta 4th order code, these points are then plotted across the scanned parameter [263].

These points then correspond with the highest value of cAMP in each cycle. For this system, if

the dots converge to a single point the solution will remain stable. Bifurcation plots typically

are used to analyze complex behaviors in mathematical solutions, such as xt+1 = xt + rxt(1− xt)

which exhibits bounded chaotic solutions for certain parameters [316].

The stability of the system’s oscillatory kinetics can be described as a function of a as

shown in Figure C.6(a). Although some of the eigenvalues have negative real parts (Figure

C.6(b)) the largest real valued eigenvalue dominates the system’s stability. From the analysis of

the Jacobian and bifurcation plot, we then expect to see a limit cycle in the range 0.43≤ a≤ 4.6,

which is exactly what is observed in the numerical simulations of the ODEs (Eq. C.16) We
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therefore conclude that the system experiences a Hopf bifurcation as it moves from a single

stable point to a stable limit cycle. A simplified model showing how to analytically solve for a

bifurcation and test for the regimes in a 3 component model can be seen in Wilhelm et al. [317]

1-D spatial model

What happens to the stability of this oscillatory system in the presence of diffusion?

To study the effect of diffusion, we now characterize the stability of the steady states of the

well-mixed system in a spatially extended model. As in the previous sections, we utilize the

modified Jacobian to find spatial component effects.

J =



−b−Dxk2 0 0 a

cm
N1K

N1
1 xN1−1(

xN1+K
N1
1

)2 −d−Dyk2 0 0

0 e − f −Dzk2 0

0 0 −gm
N2K

N2
2 zN2−1(

zN2+K
N2
2

)2 w −gm
zN2

zN2+K
N2
2

−Dwk2


(C.18)

Diffusive constants of cAMP and Ca2+were taken to be 444 µm2/s [318] and 530 µm2/s

[319]. Since the ion channel and AC are membrane-bound components, their diffusion constants

were assumed to be 0.1 µm2/s. The diffusion constants were chosen based on biological relevance

[318,319]. To analyze the modified Jacobian, we set the model value of a= 2 and the wavenumber

k (Figure C.6(d) and(e)). We can see that a spatial effect possibly exists for very low values of

k and a. This is due to the fact that diffusion stabilizes the Jacobian. Regardless of the value

of diffusion, the Jacobian has negative eigenvalues and k only serves to spatially stabilize the

system.

To verify that this was indeed the case, we conducted numerical simulations for the
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reaction-diffusion system; results are shown in Figure C.5(c)-(f). The system was initialized

with the initial condition u0 = 2R[xi yi zi wi] where, R, is a random number between 0 and 1.

This puts the mean of all values across space at the well mixed starting condition. System

boundary conditions were set as no flux and it was assumed at all points in the system there

is a membrane/cytosol interface. We observe that the oscillations for the different species are

maintained across time (vertical axis) but no change in observed in spatial dimension (horizontal

axis).

C.5.4 Key take-aways

From our analysis of a four-component model for Ca2+-cAMP signaling, we observe a

few important characteristics of the system.

1. Size sometimes doesn’t matter: Within the Cooper model there is no spatial effect, and

even at very small k values or large system sizes, this spatial effect is minimal at under 1%

when compared against the maximum spatial value. No sustained spatial patterning occurs

as this gradient is left over from the randomized starting condition. Within models there

does not have to exist a spatial gradient, especially when only one stable point exists as it

will always settle around that point (assuming it is not unstable).

2. History matters: Random perturbations will start a limit cycle even in the inactive “a=1”

state, a value inferred from initial conditions such that it accounts for the steady state

history of the system (pre-stimulus). Since in the “a=1” case only one unstable point exists,

there may be improper system control and/or chosen kinetic rates may be incorrect if this

behavior is not expected. Initial conditions must satisfy the system’s history, because the

space exists before stimulation and must satisfy these basal (pre-stimulus) rates.

3. Oscillations and diffusion: Characterizing oscillations through imaginary eigenvalues
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in the Jacobian can characterize undamped, damped, and unstable kinetics. Doing varia-

tions across parameters of interest allows the user to find when the system’s oscillatory

behavior changes providing a powerful tool to describe parameters and conditions for these

occurrences.

C.6 Conclusions and Perspectives

Mathematical modeling has served to complement experiment to further our understanding

of biological systems. Recent experimental advances in knowledge of these systems have allowed

us to construct more and more complex models and our knowledge of the spatial organization of

the cell has made us increasingly aware of the structured nature of the cellular environment in

which information transfer through signal transduction takes place.

Despite this knowledge, biological models often neglect this structure and consider bi-

ological networks in a homogeneous spatial environment. These purely kinetic models are

computationally more tractable, but can fail to capture the biological reality. However, incorporat-

ing spatial structure into these mathematical models leads to challenging mathematical analyses.

In particular, for systems involving spatial patterning, the behavior of the system can vary widely

with parameter choice. Complementing the simulation strategies with analysis methods can help

us identify the parameter space in which interesting or unexpected behavior can be observed.

Above, we have outlined the steps for a comprehensive analytic treatment of spatial structure

arising from reaction-diffusion models.

We should note that numerical schemes for solving PDEs have been developed over the

last few years [320–322]. These tools complement the analysis of reaction-diffusion systems in

cell signaling, particularly for large systems where analytical treatment is not possible. Using

three distinct examples (Turing mechanism, wave-pinning, and second-messenger signaling),

188



we have summarized a tutorial for stability analysis of reaction-diffusion models. We expect

that a systems biologist interested in this topic will find this tutorial as a helpful starting point to

conduct such analyses.

A challenge or perhaps, an opportunity for the future, is studying reaction-diffusion

systems with growing domains. Such systems arise in cases of cell membrane deformation

coupled with composition variation on the membrane [323], cell motility [324, 325], and even

in subcompartments of neurons such as dendritic spines [326]. These are cases where only

numerical or computational methods provide the framework to study the problem at hand and the

development of computational tools and their application to biological problems, and obtaining

qualitative and quantitative research are areas of ongoing research in many groups including ours.
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Figure C.3: Steady state behavior for the wave pinning polarization (WPP) model. For all of the
above plots, we chose: γ = 1, koff = 1,K = 1, p = 2.8,k0 = 0.03 and vary around p, the average
amount of total protein, and k0, the basal activation rate. (a) The nullclines show the intersection
of f (a,u) = 0 and g(a,u) = 0 and the three steady states at the chosen parameters. (b) Variations
of k0 at p=2.5, (c) Variations of k0 at p=2.7, (d) Variations of k0 at p=3. The two stable steady
states a∗1 and a∗3 are shown as solid blue and green lines, respectively; the unstable steady state a∗2
is shown as a dashed line. For a range of k0, all three steady states exist and are real-valued; this
region is shaded in red; this range increases with p, eventually resulting in an irreversible system
response when it reaches k0 = 0. (e) Parameter space topology for the full partial differential
equation (PDE) model when DU = 10µm2second−1 and DA = 0.1µm2second−1. The region of
linear instability is shown shaded in orange for wavenumber k = 0.2 µm−1. This corresponds
to a perturbation of length L = 2π

k ≈ 30µm. Smaller values of k result in an expansion of the
linear instability region; larger values of k result in the region shrinking. An additional domain
is shown shaded in blue, in which front-like solutions are supported when given a sufficiently
strong (or spatially graded) perturbation. The parameter choice made by Mori et al. (purple
point) lies in this region.
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Figure C.4: Examination of the rise of Turing patterns by loss of stability given critical wave
numbers k. (a) A small segment of the parameter space is highlighted for the full spatial WPP
model, showing regions where neither (region 1), one (regions 2 and 3), or both (region 4) of
the equilibrium points become unstable. (b) An illustration of the loss of the linearly instability
regime as D approaches 1. Plots show the magnitude of the real part of the rightmost eigenvalue
for both equilibria within each of the regions highlighted in (a). Plots are shown for k ∈ [−1,1].
When D = 10−2, corresponding to the localization of the active form to the membrane, a finite
range of critical wavenumbers is observed; this range disappears when D = 1. Simulations of
Eq. C.12 were conducted in MATLAB’s 1D PDE solver pdepe. The parameters chosen, from
Mori et al.: k0 = 0.067,K = 1,γ = 1,ko f f = 1,Da = 0.1,Du = 10 for a system size for L=10
µm. A gradient from the back to the front of the system can be seen by the concentrations of a
(c) and u (d). Initial conditions were set as the basal solution of (a∗1, u∗1), to induce the gradient
a∗1 was set as 2a∗1R where R is a random number between 0 and 1.
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Figure C.5: Well mixed results for the Cooper model showing damped oscillations (a) a = 5
and a stable limit cycle (b) a = 2. Species are represented as x = cAMP, y =active channels,
z =Ca2+, w =AC. (c)–(f) Partial differential equation (PDE) simulation results of the Cooper
model, notice no spatial effects exist and the components only oscillate with time. The results
show the well mixed model is recovered and the concentrations are spatially even. Panel (c)
shows the concentration of cAMP, panel (d) shows the concentration of active channels, panel
(e) shows the concentration of Ca2+, and panel (f) shows the concentration of active AC.
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Figure C.6: Stability of the Ca2+ - cAMP system across the parameter a. λ denotes the
eigenvalue of the system, negative values are stable and positive values should be unstable. The
system’s second order influences stabilize the kinetics keeping the system from going unstable at
the low positive eigenvalues and making the system always stable. Panel (a) shows the maximum
real eigenvalue, panel (b) shows all four eigenvalue solutions; there exists two conjugate pairs.
panel (c) shows the bifurcation plot showing the system is always stable across a as the peaks
all converge to one point. We expect to see a limit cycle in the range 0.43≤ a≤ 4.6. The higher
the real eigenvalue the larger the amplitude of the kinetic oscillations. (d) and (e) Stability
across wavenumber (k) showing the maximum real eigenvalue (d) and the maximum imaginary
eigenvalue (e). The system quickly heads toward a stable non-oscillatory solution, indicating
that no spatial effects through spatial instability are possible within our parameter space.
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Protein aggregation on the plasma membrane (PM) is of critical importance to many

cellular processes such as cell adhesion, endocytosis, fibrillar conformation, and vesicle transport.

Lateral diffusion of protein aggregates or clusters on the surface of the PM plays an important

role in governing their heterogeneous surface distribution. However, the stability behavior of the

surface distribution of protein aggregates remains poorly understood. Therefore, understanding

the spatial patterns that can emerge on the PM solely through protein-protein interaction, lateral

diffusion, and feedback is an important step towards a complete description of the mechanisms

behind protein clustering on the cell surface. In this work, we investigate the pattern forma-

tion of a reaction-diffusion model that describes the dynamics of a system of ligand-receptor

complexes. The purely diffusive ligand in the cytosol can bind receptors in the PM, and the

resultant ligand-receptor complexes not only diffuse laterally but can also form clusters resulting

in different oligomers. Finally, the largest oligomers recruit ligands from the cytosol using positive

feedback. From a methodological viewpoint, we provide theoretical estimates for diffusion-driven

instabilities of the protein aggregates based on the Turing mechanism. Our main result is a

threshold phenomenon, in which a sufficiently high recruitment of ligands promotes the input of

new monomeric components and consequently drives the formation of a single-patch spatially

heterogeneous steady-state.
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D.1 Introduction

Biological membranes are unique two-dimensional structures that separate cellular con-

tents from the extracellular environment and regulate the transport of material into and out of the

cell [327,328]. In addition to lipids and carbohydrates, these membranes contain a large proportion

of proteins, the composition of which depends on the cell type [328–332]. One of the interesting

features of membrane proteins is their ability to form clusters on the cell surface [333–335]. This

clustering of proteins on the plasma membrane (PM) results in a spatial heterogeneity in the

distribution of protein densities. Many factors can induce such a spatial heterogeneity, including

lateral diffusion, physical barriers from the cytoskeleton [336], lipid raft affinity [337], and

curvature differences along the membrane [334]. The formation of protein clusters is intimately

related to various cellular phenomena such as polarization, membrane depolarization, receptor

signaling, enzyme activity, and cytoskeletal regulation [214, 262, 338–341].

A particular example of proteins forming clusters on the membrane is well-elucidated by

amyloid-β aggregation/fibrillation in the context of Alzheimer’s disease. It is thought that amyloid-

β can become cytotoxic when it aggregates on the membrane at high levels [342]. Biophysical

measurements show that amyloid-β aggregates become more stable when oligomerized (i.e,

when it forms molecular components from repeating units) on the membrane surface [343,

344] and also can destabilize certain membrane compositions [345]. It is also thought that

membrane components such as cholesterol may initiate aggregation of amyloid-β, which may

then be bolstered by a yet-unidentified secondary feedback mechanism [346]. In general, the

aggregation of proteins on the membrane surface appears to be a common mechanism for

fibrillar protein aggregation and aggregate propagation in a variety of neurodegenerative diseases

[347, 348]. In addition to amyloid-β, surface receptors such as α-amino-3-hydroxy-5-methyl-

4-isoxazolepropionic acid receptor (AMPAR) [349, 350] and membrane-bound kinases such as
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Fyn [351] are known to cluster on the membrane; these clusters have been implicated in neuronal

functioning in physiology [214, 337] and disease [342, 345].

One of the open questions in the field of protein aggregations is the role of the spatial

organization of membrane proteins due to bulk-surface reactions and feedback mechanisms. Math-

ematical modeling has provided substantial insight into the geometric coupling of bulk-surface

reaction-diffusion systems [98, 352, 353], including wave-pinning formulations [262, 354], spatial

patterning [355, 356], and generalized stability analysis [357–359]. From a modeling perspective,

several authors have proposed the classical Smoluchowski coagulation model [360, 361] as a

suitable candidate for describing protein aggregation. The system of differential equations in the

Smoluchowski model deserves attention as it accounts for the changes in concentration of inter-

acting molecules with different sizes. These molecules can thus reversibly aggregate according

to a given aggregation kernel. In the recent past, the use of such kernels [362, 363] allowed a

successful combination of experimental measurements with computational predictions. These

models performed well in terms of comparisons to data and estimation of kinetic parameters such

as the aggregation time and the asymptotic cluster distribution. However, by using the original

Smoluchowski systems of ordinary differential equations (ODEs), these studies lack descriptions

of the spatial protein organization, which can be crucial for the understanding of many cellular

processes. To overcome this limitation, one can explicitly consider molecular diffusion and use

systems of partial differential equations (PDEs), as has been done in the amyloid-β aggregation

models [364–366]. These studies have provided detailed theoretical estimates in terms of bound-

ary conditions and homogenization tools. However, they have restricted the spatial scale to a

small three-dimensional region of cerebral tissue and do not describe intracellular phenomena.

There is thus a need for mathematical models of protein aggregation in the PM with proper spatial

description to account for the numerous cellular processes that occur due to heterogeneous protein

distribution.

197



In this work, our primary goal was to investigate the emergence of spatially heterogeneous

steady-state profiles of membrane protein aggregates to identify how feedback between cytosolic

and membrane components can drive pattern formation on the membrane. To this end, we

merged the concept of bulk-surface reaction-diffusion systems with the Smoluchowski approach

to introduce a new bulk-surface model for membrane protein clustering (Figure D.1 (A)). The

model equations describe a purely diffusive ligand in the cytosol, which then undergoes membrane

binding without any cytosolic aggregation. The resultant membrane-bound protein can diffuse

laterally and also form clusters with different oligomeric sizes. Finally, the oligomers of maximum

size can further recruit more cytosolic proteins, resulting in a positive feedback for the membrane

protein aggregates and stabilization of the oligomers [343, 346]. Following the approach of Ratz

and Roger [358, 359], we then analyzed the model for diffusion-driven instabilities using the

classical Turing mechanisms. We found these interactions allow diffusion-driven instabilities and

pattern formation in the absence of a sustained localized stimulus.

In what follows, we present the model assumptions and derivation in Appendix D.2, the

mathematical analysis including stability analysis in Appendix D.3, and conclude with numerical

simulations (Appendix D.4) and a discussion (Appendix D.5) about our findings in the context of

amyloid-β and clustering of other membrane proteins.

D.2 Model Development

Here we present our bulk-surface reaction-diffusion model for protein aggregation, in-

cluding feedback. We describe our assumptions (Appendix D.2.1) and the governing equations

(Appendix D.2.2) in detail. In Appendix D.2.3, we prove that the total mass of the system is

conserved over time, and in Appendix D.2.4, we non-dimensionalize the model. Finally, in

section Appendix D.2.5, we perform the system’s reduction when the cytosolic diffusion goes to

infinity, following the mathematical approach of Ratz and Roger [358, 359].
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Figure D.1: A bulk-surface compartmental model for protein aggregation. (A) As proteins ap-
proach the surface they can associate and then oligomerize. This oligomerization then drives further
membrane association of monomers. In this figure, we assume that the maximum oligomer size is three
and the arrows represent a state change of U to A1; the dotted line shows the ‘catalytic’ feedback of A3 to
U and A1. (B) A detailed diagram of all chemical reactions for an arbitrary maximum oligomer size N.
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D.2.1 Assumptions

In our system, we assume that U represents the volume component, which can freely

diffuse in the cytoplasm. Upon binding to the plasma membrane, it forms a surface monomer

component A1. The A1 molecules laterally diffuse in the membrane and form the oligomeric

components A j. Here, j denotes the number of A1 molecules in the oligomer, which is at

most N ∈ N. In terms of chemical reactions, U
f

A1 denotes the binding of the cytosolic

component to the plasma membrane with a reaction flux f . The subsequent oligomerization at

the membrane is described by

A j–1 + A1 A j for j = 2,3, ...,N.

We also assume that the flux term f describes ligand binding/unbinding to the cell surface, where

the binding term will be linearly proportional to the concentrations of U in the cytosol and AN in

the plasma membrane. In Figure D.1 (B), we illustrate the reactions taking place in our system: the

exchange between cytosolic and membrane-bound monomer, the formation of dimers, the general

oligomerization reactions, and the positive feedback. The oligomerization process is modeled as

a particular version of the reversible Smoluchowski model for aggregation dynamics [367]. We

also assume that the oligomerization process occurs only by monomer attachment in the mass

action regime. Moreover, to keep the analysis tractable, we do not consider any cooperativity term

such as Hill’s function [368]: the rate at which the different oligomers are formed is independent

of their size.

D.2.2 Governing equations

We represent the cellular domain as the bounded region Ω with smooth boundary Γ = ∂Ω.

We define the concentrations u(x, t) : Ω(0,T ]→ R for the volume component and a j(x, t) :

Γ× (0,T ]→ R for the membrane oligomeric components, where x and t represent the location
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and time, respectively. The molecular mechanisms underlying membrane protein aggregation

and stabilization are quite complex. However, from a feedback standpoint, the so-called “rich

gets richer” phenomenon seems to be prevalent in various systems, especially in the context of

amyloid fibrillation [369–375]. Therefore, we propose a mathematically tractable feedback term

to represent this complex mechanism. The flux term is thus defined as

f (u,a1,aN) = (k0 + kbaN)u− kda1 (D.1)

for k0, kb and kd positive constants, where k0 is the basal binding rate, kb is the rate of AN-

dependent binding rate, and kd is the unbinding rate from the membrane into the cytosol. Then

the governing equations for the spatiotemporal evolution of the different components are given by

∂tu = Du∇
2u (D.2)

∂ta1 = D1∆a1 +(k0 + kbaN)u− kda1−2kma2
1 +2k2a2

− kga1

(
N−1

∑
l=2

al

)
+

N

∑
j=3

k ja j (D.3)

∂ta2 = D2∆a2 + kma2
1− kga1a2− k2a2 + k3a3 (D.4)

∂ta j = D j∆a j + kga1a j−1− kga1a j− k ja j + k j+1a j+1, j = 3, . . . ,N−1 (D.5)

∂taN = DN∆aN + kga1aN−1− kNaN (D.6)

Here, ∇2 and ∆ represent the Laplace and Laplace-Beltrami operators, respectively. The

parameter km represents the rate at which monomers bind to form dimers. The rate kg at which the

oligomers of size greater than two are formed is assumed to be the same for all oligomerization

reactions. Finally, k j represent the rates at which the oligomeric components of size j will release

a single monomer. The boundary condition for a is periodic since the domain is closed and the

boundary condition for u is given by

−Du (n ·∇u)
∣∣∣
x∈Γ

= (k0 + kbaN)u− kda1 (D.7)
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as a balance of the diffusive flux and the reaction rate at the membrane. All parameters and

variables are non-negative real numbers.

D.2.3 Mass conservation

Let nX denote the number of molecules of the component X . For a closed system, we

know that the total number of single molecules must be given by

nU +nA1 +2nA2 + ...+NnAN

since each A j oligomer must have exactly j molecules of A1. From this fact, we define the total

mass of the system, which accounts for spatial compartments (bulk and surface) and the different

molecular size distributions. This is the content of the following.

Proposition D.2.1. Let u, a1, a2,..., aN be solutions of (D.2)–(D.7). Then the quantity

M(t) :=
∫

Ω

u(x, t)dx+
N

∑
j=1

{
j ·
∫

Γ

a j(x, t)ds
}

(D.8)

represents the total mass of the system and is conserved over time, i.e, M(t) = M0 ∀t ≥ 0. In this
case, M0 denotes the initial mass which is given by M0 =

∫
Ω

u(x,0)dx+∑
N
j=1
{

j ·
∫

Γ
a j(x,0)ds

}
Proof. By taking the time derivative of M(t), and assuming u and a j are C 2 solutions for (D.2)–
(D.7), we have

d
dt

M =
∫

Ω

∂tudx+
N

∑
j=1

{
j ·
∫

Γ

∂ta jds
}

For the integral
∫

Ω
∂tudx , we apply the divergence theorem and substitute Eq. (D.7) to

obtain ∫
Ω

∂tudx = Du

∫
Ω

∇
2udx

= Du

∫
Γ

(∇u ·n)ds

=−
∫

Γ

[(k0 + kbaN)u− kda1]ds
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For the summation of surface integrals ∑
N
j=1
{

j ·
∫

Γ
∂ta jds

}
, we substitute the governing

equations to obtain

N

∑
j=1

{
j ·
∫

Γ

∂ta jds
}

=
∫

Γ

[
D1∆a1 +(k0 + kbaN)u− kda1−2kma2

1 +2k2a2− kga1

(
N−1

∑
l=2

al

)
+

N

∑
j=3

k ja j

]
ds

+
∫

Γ

[
2 ·D2∆a2 +2 ·

{
kma2

1− kga1a2− k2a2 + k3a3
}]

ds

+
N−1

∑
j=3

∫
Γ

[
j ·D j∆a j + j ·

{
kga1a j−1− kga1a j− k ja j + k j+1a j+1

}]
ds

+
∫

Γ

N ·
[
DN∆aN ]+N ·

{
kga1aN−1− kNaN

}]
ds

=
N

∑
j=1

jD j ·
∫

Γ

∆a jds+
∫

Γ

(k0 + kbaN)u− kda1ds

=
∫

Γ

((k0 + kbaN)u− kda1)ds

where the last equality comes from the fact that
∫

Γ
∆a jds= 0 as a consequence of the First Green’s

Theorem [376]. We therefore have

d
dt

M =
∫

Ω

∂tudx+
N

∑
j=1

{
j ·
∫

Γ

∂ta jds
}
= 0,

from which we conclude that M(t) = M(0) =: M0 for all t ≥ 0

The mass conservation property for bulk-surface reaction-diffusion models has been

established in different contexts [354, 358]. However, to the best of our knowledge, it has never

been identified in the context of oligomerization reactions.

D.2.4 Non-dimensionalization

We introduce a non-dimensional version of the system that allows a convenient qualitative

interpretation independent of the actual system size, but instead through the ratio of kinetic

parameters to the diffusion contributions. We follow the approach in [358, 359] and define
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U,A1,A2, ...,AN be the dimensional concentration quantities where [U ] = mol/µm3 and [A] =

mol/µm2 for j = 1, . . . ,N. We also define L and T as the spatial and temporal quantities, where

[L] = µm and [T ] = s. We then introduce the non-dimensional variables

û =
u
U
, â j =

a j

A j
( j = 1, . . . ,N), t̂ =

t
T
, and x̂ =

x
L
,

which lead to the transformed domains Ω̂ := {ζ ∈ R3|ζL ∈Ω} and Γ̂ = ∂Ω̂. By denoting ∇̂, ∇̂2,

and ∆̂ as the dimensionless gradient, Laplace, and Laplace-Beltrami operators, respectively, and

using

∇ =
1
L

∇̂, ∇
2 =

1
L2 ∇̂

2, ∆ =
1
L2 ∆̂,

we can apply the chain rule and rewrite the system (D.2)–(D.6) in the form

U
T

∂û
∂t̂

= Du
U
L2 ∇̂

2û, x̂ ∈ Ω̂, (D.9)

A1

T
∂â1

∂t̂
=

D1A1

L2 ∆̂â1 + kdA1

{(
k0U
kdA1

+
kbANU
kdA1

âN

)
û− â1−2

kmA1

kd
â2

1 +2
k2A2

kdA1
â2

− â1

(
N−1

∑
l=2

A jkg

kd
â j

)
+

N

∑
j=3

k jA j

kdA1
â j

}
, x̂ ∈ Γ̂, (D.10)

A2

T
∂â2

∂t̂
=

D2A2

L2 ∆̂â2 + kdA1

(
kmA1

kd
â2

1−
k2A2

kdA1
â2−

kgA2

kd
â1â2 +

k3A3

kdA1
â3

)
, x̂ ∈ Γ̂, (D.11)

A j

T
∂â j

∂t̂
=

D jA j

L2 ∆̂â j + kdA1

(
kgA j−1

kd
â1â j−1−

k jA j

kdA1
â j−

kgA j

kd
â1â j +

k j+1A j+1

kdA1
â j+1

)
,

x̂ ∈ Γ̂, j = 3, . . . ,N (D.12)

AN

T
∂âN

∂t̂
=

DNAN

L2 ∆̂âN + kdA1

(
kgAN−1

kd
â1âN−1−

kNAN

kdA1
âN

)
, x̂ ∈ Γ̂. (D.13)

The boundary conditions in (D.7) can be rewritten as

−DuU
L

(n ·∇û)
∣∣∣
x∈Γ

= kdA1

{(
k0U
kdA1

+
kbAN

kdA1
âN

)
û− â1

}
. (D.14)

Since R > 0, we can define the characteristic concentrations U and A j by dividing the
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total mass of the system per total volume and surface area, respectively. We also define the

characteristic time with respect to the diffusion D1 of the monomeric component across the

cellular surface. Formally, we define

U =
M0

R · |Γ|
, A j =

M0

|Γ|
for j = 1,2, . . . ,N, T =

R2

D1
, L = R, (D.15)

and the dimensionless parameters

k̂0 =
k0U
kdA1

, k̂b =
kbANU
kdA1

, k̂m =
kmA1

kd
, k̂ j =

k jA j

kdA1
( j = 2, . . . ,N),

k̂g =
kgA j

kd
( j = 2, . . . ,N−1), , γ =

kdR2

D1
, D̃ =

Du

D1
, d j =

D j

D1
( j = 2, . . . ,N).

As a result, (D.9) can be written as
∂û
∂t̂

= D̃∇̂
2û, (D.16)

for x̂ ∈ Ω̂ with boundary condition

−D̃
(

n · ∇̂û
)∣∣∣

x∈Γ

= γ
{[

k̂0 + k̂bâN
]

û− â1
}
. (D.17)

for x̂ ∈ Γ̂. Finally, for the surface components, (D.10)–(D.13) can be written as

∂â1

∂t̂
= ∆̂â1 + γ

{[
k̂0 + k̂bâN

]
û− â1−2k̂mâ2

1 +2k̂2â2

−k̂gâ1

(
N−1

∑
l=2

â j

)
+

N

∑
j=3

k̂ jâ j

}
, (D.18)

∂â2

∂t̂
= d2∆̂â2 + γ

(
k̂mâ2

1− k̂2â2− k̂gâ1â2 + k̂2â3
)
, (D.19)

∂â j

∂t̂
= d j∆̂â j + γ

(
k̂gâ1â j−1− k̂ jâ j− k̂gâ1â j + k̂ j+1â j+1

)
, j = 3, . . . ,N (D.20)

∂âN

∂t̂
= dN∆̂âN + γ

(
k̂gâ1âN−1− k̂N âN

)
. (D.21)
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D.2.5 System Reduction when Du→ ∞

We further reduce our system by assuming the limit of rapid cytosolic diffusion, which

has been experimentally observed for chemotaxis in amoebae [304], membrane-associated PHδ1

molecules [377], and several other studies [259, 303, 378–383]. From a modelling perspective,

this assumption has also been extensively explored, especially in the context of cell polarization

[262, 354, 358, 384]. The resulting system is uniquely defined on the membrane surface, and

the bulk variable u will be represented by an integral operator also called a non-local functional.

Our approach closely follows the work of Ratz and Roger [358, 359], though our system can

be N-dimensional in principle. Formally, if we assume Du→ ∞ and if the initial concentration

of û is constant over Ω̂, then û no longer depends on space and u = u(t). Therefore, the mass

conservation law given by (D.8) implies

û(t)|Ω̂|+
N

∑
j=1

{
j ·
∫

Γ̂

â jds
}
= M0 (D.22)

where M0 = û(0)|Ω̂|+∑
N
j=1
{

j ·
∫

Γ̂
â j(s,0)ds

}
is the total mass of the dimensionless system. We

then define the non-local functional

U[â1, â2, ..., âN ](t) :=
1
|Ω̂|

[
M0−

N

∑
j=1

{
j ·
∫

Γ̂

â jds
}]

as in [358, 359]. Finally, we drop all the hats to obtain the reduced system

∂a1

∂t
= ∆a1 + γF1(a1,a2 . . . ,aN) (D.23)

∂a j

∂t
= d j∆a j + γF j(a1,a2 . . . ,aN), j = 2, . . . ,N (D.24)
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where

F1 = [k0 + kbaN ]U[a1,a2, ...,aN ]−a1−2kma2
1 +2k2a2− kga1

(
N−1

∑
l=2

a j

)
+

N

∑
j=3

k ja j,

F2 = kma2
1− k2a2− kga1a2 + k2a3,

F j = kga1a j−1− k ja j− kga1a j + k j+1a j+1, j = 3, . . . ,N

FN = kga1aN−1− kNaN .

In the next sections, we will provide analytical estimates and numerical simulations to

analyze the stability properties of the reduced system (D.23)–(D.24).

D.3 Mathematical Analysis

Obtaining the mathematical conditions for the existence of diffusion-driven instabilities

is a crucial step for understanding the origin of heterogeneous steady-state solutions [263, 270].

For membrane proteins, it has been experimentally observed that a heterogeneous distribution of

protein density accounts for several processes that ensure proper cell function, such as receptor

signaling, membrane polarization/depolarization, and calcium channels activity [214, 339, 340]

. For this reason, establishing the precise role of the lateral diffusion in the generation of such

heterogeneity is an important step towards a comprehensive description of pattern formation in

the cellular surface.

In this section, we present the mathematical framework for investigating diffusion-driven

instabilities in the system (D.23)–(D.24). We establish conditions that guarantee the existence and

uniqueness of homogeneous steady-states, or the conditions for having multiple steady-states. We

also present a characterization for the Jacobian Matrix in the case of homogeneous perturbations.

For the non-homogeneous case, the linearization of the non-local functional yields a different

Jacobian matrix, and a family of ordinary differential equations is derived to analyze the stability
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in terms of the eigenfunctions of the Laplace-Beltrami operator. We then apply our framework in

the case N = 2, where we obtain a necessary condition for diffusion-driven instabilities. We start

with the characterization of the homogeneous steady-states.

D.3.1 Homogeneous steady-states

The homogeneous solutions of (D.23)–(D.24) satisfy the ODE system

da j

dt
= γF j(a1,a2 . . . ,aN) j = 1, . . . ,N

and the steady-states in this case are given by a∗ = (a∗1,a
∗
2,a
∗
3, . . . ,a

∗
N) such that

F j(a∗) = 0

for all j = 1, . . . ,N. From FN(a∗) = 0, we obtain a∗N =
kga∗1a∗N−1

kN
and, proceeding recursively, it is

easy to show that

a∗j =
kga∗1a∗j−1

k j
for j = 3, . . . ,N, and a∗2 =

km(a∗1)
2

k2
. (D.25)

Hence a∗j =C j(a∗1)
j where C1 = 1 and

C j =

(
j

∏
i=3

kg

k j

)(
km

k2

)
for j = 2, . . . ,N.

Thus from F1(a∗) = 0, we must have

a∗1 = [k0 + kb a∗N ]
1
|Ω|

[
M0−|Γ|

N

∑
j=1

j ·a∗j

]

=
[
k0 + kb CN(a∗1)

N] 1
|Ω|

[
M0−|Γ|

N

∑
j=1

j ·C j(a∗1)
j

]
. (D.26)

By multiplying both sides by |Ω| and rearranging the (a∗1)
j terms, we can define the
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polynomial

PN(α) =−k0M0 + (|Ω| + k0|Γ|)α + k0|Γ|

(
N−1

∑
j=2

jC jα
j

)

+ CN (k0|Γ|N−M0kb)α
N + kb|Γ|CN

(
N

∑
j=1

jC jα
N+ j

)
, (D.27)

where the roots of PN are the steady-state values a∗1. We then observe that the coefficient

of αN is a non-negative number if and only if

k0|Γ|N−M0kb ≥ 0,

which in this case implies that PN(α) has a unique positive root and therefore that the system has

a unique steady-state. This is the case when kb = 0, which means that the largest oligomers do

not promote ligand binding in the plasma membrane. On the other hand, if k0|Γ|N−M0kb < 0,

then multiple steady-states could exist.

D.3.2 Linear Stability Analysis

Linear stability is a traditional concept from the theory of dynamical systems that treat

the study of the local behavior near a steady-state solution. The term “linear” stands for the

analysis of the linear approximation of a nonlinear system, which can be sufficient to determine if

a steady-state is stable or unstable. In the case of a system of ODEs, the analysis is carried out by

evaluating the eigenvalues of the so-called Jacobian matrix. A similar analysis can be done in

the context of reaction-diffusion systems of PDEs with the analysis of the eigenvectors of the

Laplace operator. A major contribution in this field is due to Alan Turing in the classic paper

“The Chemical Basis of Morphogenesis” [270]. Turing established the notion of diffusion-driven

instabilities and was the first to connect this mathematical idea with the formation of spatially

heterogeneous patterns. In what follows, we first analyze the homogeneous perturbations of the

steady-states by describing the Jacobian matrix of the system. Then we define the conditions for
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diffusion-driven instabilities in our system (D.23)–(D.24).

Homogeneous perturbations

In this section, we investigate the linear stability of the steady-states a∗ against spatially

homogeneous perturbations, that is in the absence of diffusion. Our study is an N-dimensional

version of the approach taken in [358, 359] for a GTPase cycling model. We need to compute the

eigenvalues λ of the Jacobian matrix

J [a∗] = γ

[
∂F ∗j
∂ai

]
1≤i, j≤N

for F j defined in (D.23) and (D.24). If all the eigenvalues of J [a∗] have negative real parts, then

the steady-state is called linearly stable [267]. That means that local perturbations will converge

to the steady-state.

On the other hand, if at least one of the eigenvalues has a positive real part, then it is called

linearly unstable, in which local perturbations will lead the system away from the steady-state.

The next proposition generally characterizes J [a∗]−λI.

Proposition D.3.1. The matrix J [a∗]−λI can be written in the form[
w0−λ w

v H−λI

]
where w0 and λ are real numbers, w ∈ RN−1 is a row vector, v ∈ RN−1 is a column vector, and H
is a (N−1)× (N−1) tridiagonal matrix.
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Proof. We will first calculate
∂F ∗j
∂ai

for i, j = 1,2, . . . ,N . For j = 1 we obtain

∂F ∗1
∂a1

=−
|Γ|(k0 + kba∗N)

|Ω|
−1−4kma∗1−

N−1

∑
l=2

kga∗l ,

∂F ∗1
∂a2

=−2
|Γ|(k0 + kba∗N)

|Ω|
− kga∗1 +2k2,

∂F ∗1
∂ai

=−i
|Γ|(k0 + kba∗N)

|Ω|
− kga∗1 + ki for i = 3,4, . . . ,N−1,

∂F ∗1
∂aN

=−N
|Γ|(k0 + kba∗N)

|Ω|
+

kb

|Ω|

(
M0−|Γ|

N

∑
j=1

j ·a∗j

)
+ kN .

Now for j = 2, we have

∂F ∗2
∂a1

= 2kma∗1− kga∗2,
∂F ∗2
∂a2

=−kga∗1− k2,
∂F ∗2
∂a3

= k3
∂F ∗2
∂ai

= 0, i = 4,5, . . . ,N

and for j = 3 to j = N−1, we obtain

∂F ∗j
∂a1

= kga∗j−1− kga∗j ,
∂F ∗j

∂a j−1
= kga∗1,

∂F ∗j
∂a j

=−kga∗1− k j,
∂F ∗j

∂a j+1
= k j+1,

and
∂F ∗j
∂ai

= 0,

otherwise, and finally for j = N,

∂F ∗N
∂a1

= kga∗N−1,
∂F ∗N
∂a2

= kga∗1,
∂F ∗N
∂aN

=−kN , and
∂F ∗N
∂ai

= 0 otherwise.

We then define J ∗i j := γ
∂F ∗j
∂ai

, w0 := J ∗11−λ, the vectors v,w ∈ RN−1 such that

v = (J ∗21 J ∗31 · · ·J ∗N1)
T and w = (J ∗12 J ∗13 · · ·J ∗1N)
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and

H =



J ∗22−λ J ∗23 0 · · · 0 0 0

J ∗32 J ∗33−λ J ∗34 · · · 0 0 0

...
...

...
...

...
...

...

0 0 0 · · · J ∗N−1N−2 J ∗N−1N−1−λ J ∗N−1N

0 0 0 · · · 0 J ∗NN−1 J ∗NN−λ


(N−1)×(N−1)

which proves the proposition.

Non-homogeneous perturbations

We now consider a perturbation of the form as = (as,1,as,2, ...,as,N) for s ∈ (−1,1) of

the homogeneous steady-state a∗ in the direction of Φ = (ϕ1,ϕ2, ...,ϕN), for non-homogeneous

ϕ j : Γ× (0,T )→ R. Thus for each component, we assume

as, j|s=0 = a∗j and
∂as, j

∂s

∣∣∣∣
s=0

= ϕ j,

so we may write the linear approximation as, j ≈ a∗j + sϕ j for j = 1, . . . ,N

as, j = a∗j + s ϕ j(x, t).

In particular, the linearization of the non-local functional yields U[as]≈U[a∗]+ s( d
ds

∣∣
s=0 U[as])

where (
d
ds

∣∣∣∣
s=0

U[as]

)
=−

N

∑
j=1

d
ds

∣∣∣∣
s=0

∫
Γ

as, jds =−
N

∑
j=1

∫
Γ

ϕ jds. (D.28)

Since we assume that ϕ j ∈ L2(Γ) are orthogonal to the constant perturbations, which were

analyzed in the previous section, we now consider

∫
Γ

ϕ jds = 0 for j = 1, . . . ,N,

which leads to a linearized system with a constant input U[as](t) = U[a∗]. For the approximation
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of the component a1, we thus have

∂tϕ1 = ∆ϕ1 +
N

∑
j=1

J̃1, j(a∗)ϕ j, (D.29)

where

J̃1,1 =−γ

{
1+4kma∗1 + kg

(
N−1

∑
l=2

a∗l

)}
, J̃1,2(a∗) = γ(2k2− kga∗1) ,

J̃1, j(a∗) = γ
(
k j− kga∗j

)
, j = 3, . . . ,N−1, and J̃1,N(a∗) = γ(kN + kb U[a∗]) .

The other terms of the Jacobian matrix remain the same as in the case of the homogeneous

perturbations, so we omit the explicit calculations. In vector notation, we can then write the

linearized system in the form

∂tΦ = D∆Φ+ J̃ (a∗)Φ, (D.30)

where D is a diagonal matrix such that D j j = d j where d1 = 1 and J̃ (a∗) is the modified Jacobian

matrix. We then define N0 := N∪{0} and consider (ωl)l∈N0 ⊂ L2(Γ), an orthonormal basis of

infinitely smooth eigenfunctions of the Laplace-Beltrami operator, i.e,

−∆ωl = ηlωl. where 0 = η0 < η1 ≤ η2 ≤ ·· · .

In the case where Γ is the unitary sphere S2 parametrized by the angles φ ∈ [0,2π) and θ ∈ [0,π) ,

the eigenfunctions have the closed form

cos(mφ)Pm
k (cos(θ)) and sin(mφ)Pm

k (cos(θ))

where k ≥ 0, 0≤ m≤ k and Pm
k (t) are the so-called associated Legendre function (see references

[385, 386] for details).

Then for each j = 1, . . . ,N we can express each component ϕ j as a linear combination

ϕ j = α j0 ω0 + ∑
i∈N

α jl ωl
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where α jl = α jl(t) for l ∈ N0 . Using vector notation, we can define the quantity Al =

(α1l,α2l, . . . ,αNl)
T such that

Φ = A0 ω0 + ∑
l∈N

Ai ωl(x).

By substituting the above expansion in (D.30), we obtain the linear ODE system

dAl

dt
=
[
−ηlD+ γJ̃ (a∗)

]
Al for l = 0,1,2, . . . (D.31)

and diffusion-driven instabilities occur if the above system is unstable for some l ∈ N0. This is

true when at least one eigenvalue λ of the matrix−ηlD+ J̃ (a∗) has a positive real part. Therefore

our target quantity is the so-called dispersion relation

h(l) := max(Re(λ(ηl))) , (D.32)

where Re(z) denotes the real part of a complex number z. Finally, the characteristic polynomials

pl(λ) := det(λI− γJ̃ (a∗)+ηlD) can be written in the form

pl(λ) = λ
N +bl,N−1λ

N−1 + ...+bl,0

where bl,0 = det(−γJ̃ (a∗)+ηlD). Therefore, if bl,0 < 0 for some l ∈ N, and since pl(λ̃)> 0 for

λ̃ sufficiently large (pl(λ)→ ∞ as λ→ ∞), the intermediate value theorem ensures that pl has a

positive root in [0, λ̃] and therefore h(l)> 0.
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D.3.3 Special Case N = 2: Necessary Conditions for Diffusion-Driven In-
stabilities

We now fix N = 2 and analyze the conditions for diffusion-driven instabilities. The

equations are given by

∂ta1 = ∆a1 + γ

{
(k0 + kba2)

|Ω|

[
M0−

∫
Γ

(a1 +2a2)ds
]
−a1−2kma2

1 +2k2a2

}
(D.33)

∂ta2 = d2∆a2 + γ
{

kma2
1− k2a2

}
. (D.34)

and describe the simplest case where a reversible dimerization (formation of oligomers of size

two) occurs on the plasma membrane. Dimerization in the cellular surface is a key factor in

regulation and takes place for numerous molecules, such as ion channels [387], receptor tyrosine

kinases (RTKs) [338, 388], and K-ras GTPases [389]. From a mathematical perspective, the case

N = 2 is more tractable, and therefore can potentially give some insight into the mechanisms of

pattern formation in our model. On the other hand, even this simple case differs substantially from

the previous work of Ratz and Roger [358,359,390], since we only assume reversible mass-action

instead of Michaelis-Menten kinetics, and also because of the particular positive feedback (Eq.

D.1) that has not been considered in previous studies.

We provide a necessary condition in a particular case where the system admits a unique

spatially homogeneous steady-state. We prove that the system does not exhibit diffusion-driven

instabilities provided that kb is sufficiently small. In biological terms, the following result states

that if the AN-dependent binding rate of monomers to the membrane is low enough, which can

be interpreted as a small influence of the largest oligomers in the binding process, then diffusive

effects will dominate, and no protein-distribution heterogeneity will form on the cellular surface.

Theorem D.3.1. Suppose kb ≥ 0 is such that

kb ≤
2

M0
min

{
k0|Γ|,

d2ηi|Ω|
γ

}
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for all i ∈ N. Then the system admits a unique steady-state and no diffusion-driven instability
exists.

Proof. Let a∗ = (a∗1,a
∗
2) be the spatially-homogeneous steady a∗ = (a∗1,a

∗
2), which is obtained

when a∗2 =
km(a∗1)

2

k2
and a∗1 is a solution of P2(α) = 0, where

P2(α) =−k0M0 +(|Ω|+ k0|Γ|)α+
km

k2
(2k0|Γ|−M0kb)α

2

+ kb|Γ|
km

k2
α

3 +2
(

km

k2

)2

kb|Γ|α4.

Now since kb ≤ 2k0|Γ|
M0

, we have 2k0|Γ|−M0kb ≥ 0 and therefore P2 has only non-negative
coefficients except −k0M0, which implies that P2(α) strictly increases for α≥ 0. On the other
hand, P2(α)→ ∞ and hence P2(α̃)> 0 for α̃ sufficiently large. The intermediate value theorem
then ensures that the system admits a unique positive steady-state in [0, α̃]. The Jacobian matrix
with respect to homogeneous perturbations is then given by

J [a∗] = γ

 −1−4a∗1km− |Γ||Ω|
(

kbkm(a∗1)
2

k2
+ k0

)
2a∗1km

2k2 +
kb
|Ω|

[
M0−

(
2km(a∗1)

2

k2
+a∗1

)
|Γ|
]
− 2|Γ|
|Ω|

(
kbkm(a∗1)

2

k2
+ k0

)
−k2


with a second-order characteristic polynomial p(λ) = det(λI− J [a∗]) given by p(λ) =

λ2 +bλ+ c, where

b = γ

(
(a∗1)

2|Γ|kbkm

k2|Ω|
+4a∗1km +

|Γ|k0

|Ω|
+ k2 +1

)
> 0

and

c = γ
2
(

8(a∗1)
3|Γ|kbk2

m

k2|Ω|
+

3(a∗1)
2|Γ|kbkm

|Ω|
+

2a∗1km

|Ω|
(2|Γ|k0− kbM0)+

|Γ|k0k2

|Ω|
+ k2

)
is also positive because 2k0|Γ|−M0kb ≥ 0. From that we conclude that both eigenvalues

λ =
−b±

√
b2−4c

2

must have real negative parts and therefore the steady-states are linearly stable. We then perform
a similar argument for non-homogeneous perturbations. From (D.29), we obtain the modified
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Jacobian matrix J̃ (a∗), and for a given l ∈ N0, we have

J̃ (a∗)−ηlD =

−γ(1+4a∗1km)−ηl γ

{
2k2 +

kb
|Ω|

[
M0−|Γ|

(
2km(a∗1)

2

k2
+a∗1

)]}
2γ a∗1 km −γ k2−d2ηl


with characteristic polynomials pl(λ) := det(λI− γJ̃ (a∗)+ηlD) given by the quadratics pl(λ) =
λ2 +blλ+ cl , where

bl = γ (4a∗1km + k2 +1)+ηl(d2 +1)> 0

and

cl =
[
d2η

2
l + γηl(d2 + k2)+ γ

2k2
]
+2 γkm a∗1

(
2d2ηl−

γkbM0

|Ω|

)
+

2γ2(a∗1)
2|Γ|kbkm

|Ω|

(
1+

2a∗1km

k2

)

In the case l ∈ N, the cl terms are also positive, since we assume

kb ≤
2d2ηl|Ω|

γM0
⇐⇒ 2d2ηl−

γkbM0

|Ω|
≥ 0 ∀i ∈ N,

and in this case the pl(λ) have no roots with positive real parts. In the case l = 0, we know that
η0 = 0, but the modified matrix J̃ (a∗) yields a different linearized system. Thus we have to
analyze the stability of the linear equation given in (D.31) in the case where l = 0, i.e,

dA0

dt
=
[
γJ̃ (a∗)

]
A0

with characteristic polynomial p0(λ) = λ2 +b0λ+ c0 where

b0 = γ (4a∗1km + k2 +1)> 0

and

c0 = γ
2
{

k2−2km a∗1

(
kbM0

|Ω|

)
+

2(a∗1)
2|Γ|kbkm

|Ω|

(
1+

2a∗1km

k2

)}
= γ

2
{

k2−
2kmkba∗1
|Ω|

[
M0−|Γ|

(
a∗1 +2

(a∗1)
2km

k2

)]}
. (D.35)
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We now verify that c0 ≥ 0. In fact, from (D.26) when N = 2, we obtain

1
|Ω|

[
M0−|Γ|

(
a∗1 +2

(a∗1)
2km

k2

)]
=

k2a∗1[
k0k2 + kb(a∗1)

2km
] ,

and therefore by substituting the above equation on (D.35) and using that a∗2 =
km
k2
(a∗1)

2, we obtain

c0 = γ
2k2

1−2
a∗2[

k0
kb
+a∗2

]
 .

Finally, the hypothesis gives us k0
kb
≥ M0

2|Γ| and by using M0−2|Γ|a∗2 ≥ 0 (total mass of a2

at steady-state does not exceeds the total mass of the system) we obtain M0
2|Γ| ≥ a∗2 and therefore

a∗2[
k0
kb
+a∗2

] ≤ 1
2

from which we conclude that c0 ≥ 0. Therefore, the steady-state is stable against non-constant
perturbations.

D.4 Numerical Simulations

We perform numerical simulations to complete our mathematical analysis. In section

D.3, we established the mathematical framework for investigating the existence of diffusion-

driven instabilities and obtained a necessary condition in the case N = 2. However, no sufficient

conditions were explored, and no further analysis was done for N > 2. For this reason, we

complete our analysis by searching for linear instabilities in the parameter space and analyzing

the single-patch steady-state that forms when the parameters lie in the instability regions. In

terms of biological motivation, our analytical estimates provided no conditions that guarantee

the formation of spatial-patterns, which in turn are known to exist in the plasma membrane in

various contexts. Therefore, we can use numerical simulations to obtain heterogeneous patterns
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and analyze their spatial properties.

We start the section by analyzing the parameter regions of bistability (Appendix D.4.1).

Then we investigate whether the stable steady-states become linearly unstable under non-

homogeneous perturbations (Appendix D.4.2). From the linear instability analysis, we obtain

the single-patch non-homogeneous steady-state (Appendix D.4.3). Finally, we study the tem-

poral dynamics of pattern formation (Appendix D.4.4) and the single-patch dependence on the

cell radius (Appendix D.4.5). The numerical simulations were implemented in Matlab R2018a

and Comsol Multiphysics 5.4. In subsections D.7.1 and D.7.1 in the Electronic Supplementary

Material (ESM), we provide the numerical details of our simulations.

D.4.1 Bistability under homogeneous perturbations

We begin by computing the homogeneous steady-states a∗ and the corresponding eigen-

values of the Jacobian matrix J [a∗] under homogeneous perturbations (cf. Appendix D.3.2). We

then explore the parameter regions of bistability where the system admits three steady-states, two

of them stable and one unstable. In the case N = 2, we obtain regions of bistability by change the

basal binding rate k0 and the A2-dependent binding rate kb (Figure D.2). For k0 = 0.015, three

steady-state values for a∗1 emerge depending on kb (Figure D.2 (A)). When k0 also changes, we

obtain both a bistability region (dark-gray) and a single steady-state region (light-gray) (Fig-

ure D.2 (B)). A colored (red,black, and blue) vertical line represents the region from Figure D.2

(A). Other parameter choices also lead to bistability regions (see Figure D.8 (A) for N = 2 and

Figure D.9 (A) for N = 3 in the (ESM)).

D.4.2 Linear instability under non-homogeneous perturbations

In this section, we numerically investigate which parameter values promote linear in-

stability under non-homogeneous perturbations. We fix an eigenmode index l ≥ 1 to explore
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Figure D.2: Steady-states and Parameter Regions for Bistability (N = 2). (A) The value of k0 =
0.015 is fixed, while kb ranges from 1 to 3.5. We then compute the steady-states, which are the solution
of (D.26). The single steady-state branches are shown in red and blue, respectively, while the bistable
branch is shown in black. The dark-grey rectangle illustrates the emergence of bistability, and the dashed
black arrows indicate the stable steady-states. (B) Bistability region for k0 ∈ [0.01,0.03] with k0 = 0.015
marked. The dark gray region contains the kb values for which the system admits a bistability region.
The single steady-state regions are indicated in light-gray. Remaining fixed parameters: R = 1, Γ = 4π,
Ω = 3

4 π, M0 = Γ, km = 1, and k2 = 1.

diffusion-driven instabilities, and let a∗ be a stable steady-state under homogeneous perturba-

tions. We can thus compute the dispersion relation h(l) (Eq. (D.32)) defined in Appendix D.3.2

by calculating the roots of the characteristic polynomials pl(λ). This step was done using the

function eig in Matlab R2018a (see subsection D.7.1 in the ESM for further details on our Matlab

simulations). If h(l)< 0, the steady-state remains stable in the direction of the chosen eigenmode.

In this case, the analysis is inconclusive, since we would also need to determine the stability for

the other eigenmodes. If h(l)> 0, the steady-state becomes unstable for the chosen eigenmode,

and this is sufficient to ensure a diffusion-driven instability [391]. The case h(l) = 0 usually

requires higher-order analysis, so we will not consider it in the context of linear stability.

Given a fixed eigenmode index l, we can then divide the parameter space into four regions.

We will call them Regions 0, 1, 2, and 3, where the numbers reflect the exact number of unstable

steady-states (Figure D.3 (A) for N = 2 and (B) for N = 3). More precisely, we define:
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• Region 0: The single steady-state region where h(l) < 0; There are no unstable steady-

states.

• Region 1: The single steady-state region where h(l) > 0; There is only one unstable

steady-state.

• Region 2: The bistability region where h(l)> 0 for only one stable steady-state; a total of

two unstable steady-states.

• Region 3: The bistability region where h(l)> 0 for both stable steady-state; a total of three

unstable steady-states.

The stability analysis in Region 0 is more subtle and requires further analysis since

the stability criterion needs to be fulfilled for all eigenmodes. However, at least for N = 2,

Theorem D.3.1 ensures that the system remains stable for sufficiently small kb, which appears

to be consistent with the numerical predictions. For higher kb values, the instabilities emerge

in the bistability region (Regions 2 and 3) and also in the single steady-state Regions 0 and 1.

We obtain a similar result for N = 3 (Figure D.3 (B) ). However, it should be noticed that the kb

values promoting linear instabilities are higher (see y-axis ranging from 4 to 14) compared with

the case N = 2. Regions 0, 1, 2, and 3 can be found with other parameter choices (see Figure D.8

(B) for N = 2 and Figure D.9 (B) for N = 3 in the ESM).

Region 1 is known as a Turing-type instability region [263, 270], where the system may

converge to a spatially non-homogeneous steady-state. We analyze this region when we increase

both k0 and kb ranges for different values of the diffusion coefficient d2 (Figure D.4 (A)). As

d2 decreases, Region 1 increases, which illustrates how the system becomes unstable as the

discrepancies between diffusion become higher. A similar phenomenon occurs as we increase

the dimensionless parameter γ, also referred to as the Damköhler number [392], which is the

rate of membrane dissociation of monomers compared to their diffusivity. Increasing γ allows a
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Figure D.3: Parameter Regions of Bistability and Linear Instability (N = 2 and N = 3) We scan
the reaction rates for different parameter values. In the top, the parameter regions in the k0× kb plane
where the system exhibits bistability under homogeneous perturbations. In the bottom, Regions 0, 1, 2,
and 3 divide the k0× kb plane according to the number of unstable steady-states under non-homogeneous
perturbations for the eigenmode l = 1 (see text for details). (A) N = 2, d2 = 0.1, γ = 1000. (B) N = 3,
d2 = d3 = 0.1, γ = 1000. The kb values that promote linear instability are significantly higher for N = 3
compared to the case N = 2. Remaining fixed parameters: R = 1, Γ = 4π, Ω = 3

4 π, M0 = Γ, k2 = k3 = 1,
and km = kg = 1.
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Figure D.4: Changing the diffusion coefficient and the eigenmode of the Laplace-Beltrami opera-
tor for N = 2. (A) For d2 = 1, we show a zoomed plot of the interface of the Regions 1 and 2. Most of
the (k0,kb) in the rectangle [0.01,1.4]× [1,10] belongs to the Region 0, where the system is stable under
non-homogeneous perturbations. However, by decreasing d2 to 0.5 and further to 0.1, the Region 1 (in
orange) significanly increases, which means that the system exhibits a larger instability region for lower
d2 values. In this figure, we fix γ = 10 and l = 1 as the eigenmode index. (B) Linear instability Region 1
for eigenmode index values l = 2, 6, and 8. For l = 2, the system is unstable under non-homogeneous
perturbations for most (k0,kb) values above the diagonal of the rectangle [0.01,2]× [1,10]. As l increases,
Region 1 (in orange) significantly decreases. Therefore, we can analyze the instability of the system
by exploring only the first eigenmode, since Region 1 does not expand as l increases. In this figure, we
fix γ = 100 and d2 = 0.1. Remaining fixed parameters: R = 1, Γ = 4π, Ω = 3

4 π, M0 = Γ, k2 = 1, and
km = 1.

higher dominance of the reaction flux over diffusion effects [393], and thus a larger unstable space

tends to occur (Figure D.10). On the other hand, as the eigenmode index l increases, Region 1

significantly decreases (Figure D.4 (B)). We exhibit the results for l = 2, l = 6, and l = 8. Such a

decrease implies that the Regions 1 for the higher eigenmodes (l > 1) are contained in the Region

1 for the first eigenmode (l = 1). For this reason, to determine the whole instability region in this

case (which is the union of Regions 1 for all eigenmodes), it is sufficient to consider Region 1 for

l = 1.
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D.4.3 The emergence of the single-patch non-homogeneous steady-state

In this section, we investigate the spatio-temporal behavior of our system by numerically

integrating the dimensionless equations. We consider a spherical domain of radius R= 1 and, as in

the previous sections, we fix N = 2 or N = 3. We avoid solving the surface system (D.23)–(D.24)

due to the numerical complexity of the non-local functional. Instead, we solve the dimensionless

bulk-surface equations (D.16)–(D.21) (dropping all the hats) for an extremely high cytosolic

diffusion (D̃ = 108) on (D.16). In this way, our resulting system can be seen as an approximation

of the reduced system when D̃→ ∞. We randomly perturbed the homogeneous steady-states

by considering a small number ε > 0 as the perturbation magnitude and a family {ξ(x)}x∈Γ of

independent random variables uniformly distributed between −1 and 1. In the case where N = 2,

we define the surface initial conditions

a1(x,0) := a∗1 + ε ξ(x) and a2(x,0) := a∗2−
1
2

ε ξ(x) (D.36)

for x ∈ Γ, where the 1
2 accounts for mass conservation (see (D.22)). For the volume component,

we define u(x,0) := u∗ , for x ∈Ω, where u∗ = 1
|Ω| [M0−|Γ|(a∗1 +2a∗2)] also because of the mass

conservation property. For N = 3 we define a∗1 as in (D.36), a j(x,0) := a∗j − 1
5ε ξ(x) for j = 2

and j = 3, and u∗ = 1
|Ω|
[
M0−|Γ|(a∗1 +2a∗2 +3a∗3)

]
.

Remark D.4.1. The element (a∗1,a
∗
2, ...,a

∗
N) is a homogeneous steady-state of the system (D.23)–

(D.24) if and only if (a∗1,a
∗
2, ...,a

∗
N ,u
∗) is a homogeneous steady-state of the system (D.16)–(D.21)

provided that

u∗ =
1
|Ω|

[M0−|Γ|(a∗1 +2a∗2 + ..+Na∗N)]

From the remark above, we can obtain the steady-states of the reduced system (D.23)–

(D.24). Then we can numerically integrate the bulk-surface PDE system (D.16)–(D.21) using

the perturbation scheme described above. In order to associate the parameter regions that lead

to instabilities with the formation of spatial patterns, we select four (k0,kb) values in the four

224



Figure D.5: Linear Instability and Pattern Formation (N = 2). We exhibit the stability analysis
colormap for eigenmode index l = 1 and the final spatial profile of the a1 component. We consider
four (k0,kb) values from Regions 0, 1, 2, and 3, which are colored in light-yellow, orange, red or black,
respectively. For Regions 1, 2, and 3, we observe the emergence of a single-patch spatially heterogeneous
steady-state which is consistent across parameter regions in terms of its circular shape and concentration
gradient. For Region 0, we do not observe a pattern formation for this particular eigenmode. In this figure,
d2 = 0.1, γ = 1000, km = k2 = 1. steady-state values. Region 0: a∗1 = 0.0812, a∗2 = 0.0066, u∗ = 2.7168.
Region 1: a∗1 = 0.3817, a∗2 = 0.1457, u∗ = 0.9806. Region 2: a∗1 = 0.2759, a∗2 = 0.0761, u∗ = 1.7155.
Region 3: a∗1 = 0.1107, a∗2 = 0.0123, u∗ = 2.5942. Remaining fixed parameters: R = 1, Γ = 4π, Ω = 3

4 π,
M0 = Γ, k2 = 1, km = 1.

Regions 0, 1, 2, and 3 (Figure D.5). We fix N = 2 and the eigenmode index l = 1. For each choice

of (k0,kb) , we integrate the system (D.16)–(D.21) to its final state by perturbing a homogeneous

steady-state. We then plot the result for the a1 component and visually inspect the results. For

(k0,kb) in Regions 1, 2, and 3, (colored in orange, red or black, respectively), a single-patch

spatially heterogeneous steady-state emerges. On the other hand, when (k0,kb) belong to Region

0, in which the system is stable for the eigenmode index l = 1, the system converges to its

homogeneous steady-state. This result indicates that the single-patch pattern is consistent across

parameter choices in Regions 1, 2, and 3, once it remains unchanged in its circular shape and

gradient of concentrations. Figure D.11 in the ESM shows a similar result in the case N = 3.
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D.4.4 Temporal evolution and pattern formation

In this section, we further investigate the temporal evolution of the system. We consider

N = 2 and (k0,kb) = (0.025,2.5) which belongs to Region 1 (see Figure D.5). We then observe

the spatial distribution of a1 for different times (Figure D.6 (A)). At t = 0, We apply a random

perturbation of magnitude ε = 10−10 around the unique homogeneous steady-state that is unstable

under non-homogeneous perturbations. The system then smooths due to diffusion and the small

random peaks continuously coalesce and react, until a few large domains emerge at t = 0.099.

At t = 0.114 and t = 0.119, multiple patches of higher a1 concentration emerge. The feedback

term (Eq. (D.1)) then plays its role, once the higher a2 concentration location promotes the

recruitment of more cytosolic component. This leads to the formation of the single-patch profile

at t = 0.159. From that time until the final time (t = 1), the spatial configuration only changes in

terms of concentration gradients. File F1 in the ESM contains a movie of the simulation shown

in Figure D.6 (A) for both monomeric (a1) and dimeric components (a2). In Figure D.12 in the

ESM, we show a similar result for N = 3.

In order to quantify the single-patch size, we quantify the surface area of the high-

concentration locations in the spherical domain. For this purpose, we define the function

I ε
a j
(t) =

∫
Γ

1{a j(x,t)>〈a j〉(t)+ε}ds (D.37)

where ε is the perturbation magnitude, j is the index of the oligomeric component, and 〈a j〉(t) =∫
Γ

a jds is the average concentration of a j across the sphere Γ. We then evaluate the evolution

of I ε
a j
(t) over time (Figure D.6 (B)). We exhibit the results of a single simulation for N = 2 and

N = 3, and ε = 10−10. At early times, when the concentrations a j are close to the steady-state

a∗j across the domain, I ε
a j
(t) remains close to 0. Then the combination of diffusion and the

feedback term makes the concentration gradients increase in a large portion of the domain, as

illustrated in Figure D.6 (A) for t = 0.099, t = 0.114, and t = 0.119 . Finally, the formation
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of the single-patch promotes the decrease of I ε
a j
(t), since the area of high concentration tends

to be small in comparison with the total surface area. Moreover, the concentration outside the

patch tends to be small, which makes the average 〈a j〉(t) assume lower values. Therefore, in the

final times, the locations in the sphere where the concentrations remain above the average can be

associated with the single patch. For this reason, we define the single-patch area

S ε
a j

:= I ε
a j
(t f ),

where t f is the final simulation time. In this work, we avoid an analytical treatment for the

functions I ε
a j
(t). In particular, we base our definition of the single-patch area S ε

a j
on visual

inspection of the curves in Fig 6(B): for N = 2 and N = 3, the quantities I ε
a1
(t) converge to a

final value after a transient increase and subsequent decrease in time. Thus we assume that this

final value gives a good estimate of the single-patch area as a function ε. In Figure D.13 in

the ESM, we illustrate how the percentage of S ε
a j

with respect to the total surface area does not

change significantly as ε changes. We also observe that I ε
a1
> I ε

a2
for all times in the case where

N = 2, and also I ε
a1
> I ε

a2
> I ε

a3
in the case where N = 3. We conclude that S ε

a1
> S ε

a2
(for N = 2)

and S ε
a1
> S ε

a2
> S ε

a3
(for N = 3). In order to better visualize this area shrinking as the oligomer

size increases, we plot the final normalized concentration profiles (Figure D.6 (C)). Given the

arc-length parametrization of a geodesic curve crossing the single-patch region, the concentration

distributions become tighter for a2 compared to a1 in the case N = 2. The inset plot shows the

non-normalized concentrations, where we see that a2 > a1 in the single-patch location. A similar

phenomenon occurs for N = 3: the distribution and maximum value of a j becomes tighter and

larger as j increases from 1 to 3.

D.4.5 Change of the cell radius and single-patch area

We investigate how the single-patch area of a spherical cell depends on its radius R.

From the non-dimensionalization of the bulk-surface system (see Appendix D.2.4), we defined
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Figure D.6: Temporal evolution and pattern formation (A) Spatial distribution of the monomeric
component (a1) at different non-dimensional times. At t = 0, a random perturbation of magnitude
ε = 10−10 is applied to the unstable homogeneous steady-state. At t = 0.099, a small gradient emerges
until t = 0.114, and at t = 0.119, the high-concentration domains begin to coalesce. At t = 0.159, the
system converges to the single-patch profile. Finally, at t = 1, we show the single-patch steady-state
with a final concentration gradient from 0.001 to 12 a.u. In this figure, we consider N = 2, k0 = 0.025,
and kb = 2.5 such that a single steady-state becomes unstable under non-homogeneous perturbations
((k0,kb) belongs to Region 1 in Figure D.5). The steady-state is given by a∗1 = 0.3817 , a∗2 = 0.1457, and
u∗ = 0.9806. A supplemental movie for panel (A) can be found in supplemental file F1. Remaining fixed
parameters: R = 1, Γ = 4π, Ω = 3

4 π, M0 = Γ, k2 = 1, km = 1. (B) Evolution of (I ε
a j
)(t) that gives the

single-patch area S ε
a j

for N = 2 and N = 3 (see text for details). Inset: a single-patch final configuration.
Parameter values: R = 1, γ = 1000, d2 = d3 = 0.1, k0 = 0.016, km = 1, and k2 = 0.44. Top: N = 2,
kb = 1. Bottom: N = 3, kb = 10, kg = km, k3 = k2. Initial conditions: a1(0) = 0.0918, a2(0) = 0.0191,
a3(0) = 0, u(0) = 2.6099. (C) For N = 2 and N = 3, we plot the final normalized a j concentrations on
a geodesic curve parametrized by arc-length. As the oligomer index j increases, the distribution and
maximum value of a j becomes tighter and higher (inset), respectively.
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the characteristic quantities (D.15). In order to move through a dimensional system, we define

the dimensionless parameters as depending on R to preserve a constant volume concentration.

Therefore, we assume a constant U such that M0 ∝ R3, making the dimensionless parameters

functions of R. For this reason, each choice of R will lead to a different solution of the non-

dimensional system (D.16)–(D.21). In particular, it will also change the non-dimensional single-

patch area S ε
a j

. We show the results for R ranging from 0.5 to 5 and two different parameters

(Figure D.7):

area percentage =
S ε

a j

4π
×100 and dimensional area = S ε

a j
R2.

For N = 2 and N = 3, we provide the same total volume concentration for the system. For

clarity, in this section we will refer to the non-dimensional system with the hat (â) notation. We

define the initial conditions as a linear ramp of slope ε around the steady-state

â1(x,0) = â∗1 + ε x̂1 and â2(x,0) = â∗2−
1
2

ε x̂1,

where x̂ = (x̂1, x̂2, x̂3) ∈ Γ̂ and x̂1 is the position with the sphere centered in the origin. In the case

N = 3, we assumed a∗3 = 0. See Figure D.7 caption for details on the parameter choices. We

then observe the same phenomena: the dimensional area (fig. D.7 red; open circles) increases

approximately linearly with R. On the other hand, the area percentage (fig. D.7 black; closed

circles) decreases with R. We can then conclude that although the dimensional area of clusters

increases, the additional spherical area changes at a much faster rate since the area percentage

varies with ≈ 1
R . The effect of N on single-patch area shows both dimensional area and area

percentage are higher for N = 3 (fig. D.7(B)) in comparison with N = 2 (fig. D.7(A)).
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Figure D.7: Change of the cell radius and single-patch area. We quantify the percentage of the total
area and the dimensional area (see text for details), for various radii R ranging from 0.5 to 5. The R value
was changed in the non-dimensional system with a fixed concentration (U) through variations in Γ, γ,
A, k̂0, k̂m, and k̂g (see equations D.16 – D.21). (A) We quantify the Patch size for the N = 2 case (red;
open circles), then normalized against the total area of the sphere (black; closed circles). As the radius
increases, the patch size increases approximately linearly, but the percent area decreases rapidly. (B)
The same simulation for N = 3. As the radius increases the patch size increases, but the total percent
area still decreases. Between cases, we observe the same general qualitative properties for single-patch
area percentage and dimensional area. The major differences arise in the absolute values, as N = 3
creates larger patches. In these simulations, ε = 0.01a∗2, a∗1 = 0.0981, a∗2 = 0.0191, a∗3 = 0, u∗ = 2.6099.
Parameter values: d2 = d3 = 0.1, D̃ = 108, k̂0 =

0.016
R , k̂b = 10, k̂g = k̂m = R, k̂3 = k̂2 = 0.44, γ = 1000R2.
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D.5 Discussion

Protein heterogeneity in the PM is of critical importance to cellular functions. Many

factors influence this heterogeneity, including membrane composition, protein-protein interaction,

phase separation, lateral diffusion, and possible feedback, resulting in the formation of spatial

patterns [333–335]. For this reason, understanding the interplay of aggregation kinetics, lateral

diffusion, and feedback in the formation of spatial patterns is an essential step towards developing

a complete description of the mechanisms behind protein clustering on the cell surface. In this

work, we developed a bulk-surface model for protein aggregation with positive feedback that

exhibits a spatially heterogeneous single-patch steady-state. To the best of our knowledge, this is

the first modeling attempt that merges the reaction-diffusion version of classical Smoluchowski

dynamics with the modern bulk-surface geometrical setup.

A major result from our model is the role played by the feedback term kb aN in the

boundary conditions (D.1). If kb is low enough, the steady-state distribution is spatially uniform,

and no protein heterogeneity exists. For N = 2, we formally proved such a result (Theorem D.3.1),

and for N = 3, we used numerical simulations to observe a similar phenomenon. In particular, in

the total absence of feedback (kb = 0), we observed that spatial heterogeneity is not achievable

when we only considered protein-protein interaction. On the other hand, if kb is sufficiently

high, we observed the emergence of linear instability and therefore patterning on the cellular

surface. Experimental observations have shown that membrane proteins do organize in a spatially

heterogeneous fashion [349–351]. However, the molecular mechanisms are still being investigated

experimentally. The feedback mechanism we proposed here can also be interpreted in purely

biological terms. The largest oligomers recruit ligands from the cytosol, which form ligand-

receptor monomers. If the rate of recruitment of monomers is low, diffusive effects dominate,

and the configuration of the system is homogeneous in space. On the other hand, a higher rate

promotes a significant influx of new monomeric components. Then, continued oligomerization
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generates higher concentrations of the largest components, which closes the positive feedback

loop and drives pattern formation. The largest oligomers can thus be interpreted as self-activators

of pattern formation. For this reason, our mechanism of pattern formation can be related to the

classical Turing framework, where self-activation is required to generate spatial patterns [270,394].

Another interesting aspect of our model is the absence of an explicit description of cooperative

binding. For the wave-pinning model [262, 299, 354], cooperativity is included with a Hill

function, which accounts for the positive feedback. In contrast, our oligomerization reactions

assume only mass-action kinetics, which seems to be insufficient for pattern formation without

the feedback term.

Bistable systems are well known to promote diffusion-driven instabilities in the context

of cell polarization [395, 396]. For the wave-pinning model [262, 299, 354], the structure of the

Hill function is responsible for bistability. Other studies followed a similar approach, using a

particular choice of reaction flux that is naturally associated with a bistable regime [397, 398].

In our model, bistability emerges by the combination of two key ingredients: positive feedback

and mass conservation. This observation becomes clear as we carefully inspect the steady-state

analysis of the reduced system (cf. Appendix D.3.1). First, the equilibrium of the oligomerization

reactions (driven only by mass action kinetics) provides the distribution across the different surface

components. Then, the input from the non-local functional comes into play, as a consequence of

the boundary conditions and mass conservation. The non-local functional at steady-state provides

an extra equation, which gives the equilibrium solutions for the monomeric component. The

particular contribution of the feedback comes from the coefficient CN (k0|Γ|N−M0kb)αN of the

polynomial PN(α). If the coefficient is negative, then the existence of three roots, and therefore

three steady-states, is achievable. In this case, we can compute their stability under homogeneous

perturbations and verify bistability.

Under non-homogeneous perturbations, one or two stable steady-states may become
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unstable, and the system undergoes a diffusion-driven instability. Even more impressive is the

emergence of a linear instability parameter region, called Region 1 in this study, when the system

admits a single steady-state that becomes unstable. We note that in Getz et al. [399], the authors

were able to find a region of linear instability for the Wave-Pinning model that is comparable

with our Region 1. While the authors briefly discussed the changes in that parameter region for

different wave-numbers, here we explicitly showed that the leading eigenmode exhibits a region

of instability that shrinks as the eigenmode index increases. Such instability in the lower modes,

which are associated with the smallest positive eigenvalues of the Laplace-Beltrami operator, has

been often related to a single-patch steady-state pattern [390, 400], which is confirmed for our

system.

The single-patch steady-state consistently appears for parameter values corresponding

to the different instability regions (called as Regions 0, 1,2 and 3). Goryachev et al. [400]

found a similar spatial profile for the Cdc42 GTPase cycle, where the influx of new cytoplasmic

components maintained the cluster steady-state and compensated for its lateral diffusion. A

similar phenomenon seems to happen in our system. An allegory that explains the stable existence

of such heterogeneous steady-states is the so-called “rich gets richer” competition [401]. In this

case, larger domains outcompete the smaller until only one stable domain arises. Our hypothesis

about the existence of the single-patch is based on the role of the positive feedback term. We

assume that the presence of high concentrations of the largest oligomer promotes ligand binding

onto the PM in a linear fashion, without any saturation mechanism or steric effects. As in [400],

this assumption seems to account for a resource competition that excludes the possibility of

multiple patches. In cells, multiple patches of protein aggregates are observed [402]. The

number and size of these aggregates often depend on the particular experimental condition and

the membrane composition. Modeling such observations will require the development of a more

thermodynamically detailed model.
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Based on the insights from our model, we identify future research directions that will

enhance studies such as ours. In the current formulation, we lack a formal explanation for the

emergence and robustness of the single patch steady-state. The spatial aspects of the model

render such analysis hard, but it may be possible to obtain a formal proof by considering a

one-dimensional version of our system as in [262]. Another interesting quantity to be computed

in future studies is the so-called amplitude of the pattern, for which a formal calculation was

recently developed [403]. Additionally, the mathematical challenge for a theoretical stability

result lies in the increasing complexity of the system as N increases. In this case, we have relied

on numerical simulations for N = 3 to identify the threshold phenomenon for diffusion-driven

instabilities. However, future efforts in this direction could open up new mathematical avenues

for stability analysis of increasingly complex systems. Regarding the parameter choices, it’s

important to acknowledge that our parameters were not informed by data. Instead, in this work we

focused on establishing the dimensionless parameter spaces that yield linear instabilities within

the Turing approach. In a different direction, future efforts will be devoted to adapting our system

to specific biological problems. Finally, including the role of curvature and cytosolic diffusion in

the formation of membrane protein aggregates would bring us closer to analyses of biological

and biophysical systems. These are topics of ongoing studies in our group.
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D.7 Electronic Supplementary Material

D.7.1 Details regarding the numerical simulations
Matlab simulations

For computing the roots of the polynomials PN(α) (Eq. D.27), which are the steady-state

values for the monomeric component a∗1, we applied the Matlab R2018a functions sym2poly and

roots. Function sym2poly converts a symbolic polynomial into a vector with the corresponding

polynomial coefficients. We then use the function roots, which computes the polynomial roots.

For the eigenvalues of the Jacobian matrices J [a∗] and J̃ (a∗) (defined in sections D.3.2 and D.3.2,

respectively), we used the function eig that gives the eigenvalues of a matrix.

Comsol simulations

The system runs using the MUltifrontal Massively Parallel sparse direct Solver (MUMPS)

algorithm [404] to solve the Finite Element Method (FEM) problem in COMSOL Multiphysics

5.4(R). As long as the problem is well conditioned (i.e. no long edges/sharp interfaces) the direct

method used should not matter as all algorithms will converge to the same solution. Other direct

solvers available are PARDISO and SPOOLES. A tetrahedral mesh was used for better accuracy

and adaptability at the spherical interface. For faster conversion of the solution, multiple mesh

sizes were utilized. In what follows, we prescribe the details of our numerical simulations:

• Version: 5.4

• Algorithm : MUMPS

• Tolerance: Physics controlled

• Max iterations to reach tolerance: 10

• Mesh size : Automated free tetrahedral mesh generation with constraints:
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– Volume: Max: 0.3, Min: 0.056, Max growth rate: 1.6, Curvature factor: 0.7, Resolu-

tion of narrow regions: 0.4.

– Surface: Max: 0.05, Min: 8E-4, Max growth rate: 1.3, Curvature factor: 0.2, Resolu-

tion of narrow regions: 1.

– Boundary Layer: BL: 8, stretching factor: 1.2, Automatic thickness.

.

Figure D.8: Parameter Regions of Bistability and Linear Instability (N = 2). We scan the reaction
rates for different parameter values. (A) regions where the well-mixed system exhibits bistability. (B)
The corresponding Regions 0, 1, 2, and 3 (see section D.4.2 of the manuscript for details). In the figure,
we fixed d2 = 0.1, γ = 1000, and eigenmode index l = 1. Remaining fixed parameters: R = 1, Γ = 4π,
Ω = 3

4 π, M0 = Γ, k2 = 1, and km = 1 (when not varying)
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Figure D.9: Parameter Regions of Bistability and Linear Instability (N = 3). We scan the reaction
rates for different parameter values. (A) regions where the well-mixed system exhibits bistability. (B) The
corresponding Regions 0, 1, 2, and 3 (see manuscript for details). In the figure, we fixed d2 = d3 = 0.1,
γ = 1000, and eigenmode index l = 1. Remaining fixed parameters: R = 1, Γ = 4π, Ω = 3

4 π, M0 = Γ

,k2 = k3 = 1, and km = kg = 1 (when not varying).
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Figure D.10: Changing the dimensionless parameter γ (N = 2). (A) Changing the reaction parameter
γ for a wider range of k0 and kb allow us to observe instability regions in the single steady-state regime
that are considerably larger than the union of Regions 2 and 3. We observe an increase of Region 1 as γ

increases. (B) A zoom on Region 2 and 3 shows little differences among the profiles, except for γ = 10,
where the Region 3 is significantly reduced. In this figure, we consider d2 = 0.1 and eigenmode l = 1.
Remaining fixed parameters: R = 1, Γ = 4π, Ω = 3

4 π, M0 = Γ, k2 = 1, and km = 1.
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Figure D.11: Linear Instability and Pattern Formation (N = 3). We exhibit the stability analysis
colormap for eigenmode index l = 1 and the final spatial profile of the a1 component. We consider four
(k0,kb) values from Regions 0, 1, 2, and 3, which are colored in light-yellow, orange, red, or black,
respectively. For Regions 1, 2, and 3, we observe the emergence of a single-patch spatially heterogeneous
steady-state, which is consistent across parameter regions in terms of its circular shape and concentration
gradient. For Region 0, we do not observe a pattern formation for this particular eigenmode. In the figure,
we fixed d2 = d3 = 0.1, γ = 1000, eigenmode index l = 1, km = kg = k2 = k3 = 1. steady-state values.
Region 0: a∗1 = 0.1251, a∗2 = 0.0157, a∗3 = 0.002, u∗ = 2.513, Region 1: a∗1 = 0.3439, a∗2 = 0.1183,
a∗3 = 0.0407, u∗ = 0.8922. Region 2: a∗1 = 0.3442, a∗2 = 0.1185, a∗3 = 0.0408, u∗ = 0.8892. Region
3: a∗1 = 0.1598, a∗2 = 0.0255, a∗3 = 0.0041, u∗ = 2.3306. Remaining fixed parameters: R = 1, Γ = 4π,
Ω = 3

4 π, M0 = Γ, k2 = k3 = 1, km = kg = 1.
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Figure D.12: Temporal Evolution and pattern formation (N = 3). Spatial distribution of the three
components (a1, a2, and a3) at different non-dimensional times. At t = 0, a random perturbation
of magnitude ε = 10−10 is applied to the unstable homogeneous steady-state. At t = 0.075, a small
gradient emerges. At t = 0.09, multiple patches can be seen and at t = 0.119 the system exhibits the
single-patch profile. Finally, at t = 1, we show the single-patch steady-state. In the figure, we fixed
d2 = d3 = 1, γ = 1000, km = kg = k2 = k3 = 1, k0 = 0.06, kb = 8 (Region 1). The steady-state is given
by a1(0) = 0.3439, a2(0) = 0.1183, a3(0) = 0.0407, and u(0) = 0.8922. Remaining fixed parameters:
R = 1, Γ = 4π, Ω = 3

4 π,

Appendix D, in full, is a reprint of the material as it appears in L. M. Stolerman, M. Getz,

S. G. L. Smith, M. Holst, and P. Rangamani. Stability Analysis of a Bulk–Surface Reaction

Model for Membrane Protein Clustering. 82(2):30. The dissertation author was the co-first author

of this material.
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Figure D.13: Single-patch area and perturbation magnitude We plot the percentage of S ε
a j

with
respect to the total surface area. We observe that such quantity does not change significantly as ε

changes. In this figure, we assume R = 1, d2 = 0.1, k0 = 0.016, kb = km = 1, k2 = 0.44, a1(0) = 0.918,
a2(0) = 0.0191, γ = 1000, N = 2, and u(0) = 2.6099
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