
UCSF
UC San Francisco Previously Published Works

Title
Modeling Dinophysis in Western Andalucía using an autoregressive hidden Markov model.

Permalink
https://escholarship.org/uc/item/94z577nw

Journal
Environmental and Ecological Statistics, 29(3)

ISSN
1352-8505

Authors
Aron, Jordan
Albert, Paul
Gribble, Matthew

Publication Date
2022-09-01

DOI
10.1007/s10651-022-00534-7
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/94z577nw
https://escholarship.org
http://www.cdlib.org/


Modeling Dinophysis in Western Andalucía using an 
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1Biostatistics Branch, Division of Cancer and Epidemiology, National Cancer Institute, Rockville, 
MD, USA

2Department of Epidemiology, University of Alabama at Birmingham School of Public Health, 
Birmingham, AL, USA

Abstract

Dinophysis spp. can produce diarrhetic shellfish toxins (DST) including okadaic acid and 

dinophysistoxins, and some strains can also produce non-diarrheic pectenotoxins. Although 

DSTs are of human health concern and have motivated environmental monitoring programs in 

many locations, these monitoring programs often have temporal data gaps (e.g., days without 

measurements). This paper presents a model for the historical time-series, on a daily basis, 

of DST-producing toxigenic Dinophysis in 8 monitored locations in western Andalucía over 

2015–2020, incorporating measurements of algae counts and DST levels. We fitted a bivariate 

hidden Markov Model (HMM) incorporating an autoregressive correlation among the observed 

DST measurements to account for environmental persistence of DST. We then reconstruct the 

maximum-likelihood profile of algae presence in the water column at daily intervals using the 

Viterbi algorithm. Using historical monitoring data from Andalucía, the model estimated that 

potentially toxigenic Dinophysis algae is present at greater than or equal to 250 cells/L between < 

1% and >10% of the year depending on the site and year. The historical time-series reconstruction 

enabled by this method may facilitate future investigations into temporal dynamics of toxigenic 

Dinophysis blooms.
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1 Introduction

Following the identification of Dinophysis fortii as the causative agent of shellfish poisoning 

outbreaks in 1976 and 1977 in northeastern Japan, there has been interest in understanding 

the dinoflagellates of the genus Dinophysis (Yasumoto et al. 1978, 1980; FAO and WHO 

2016). Dinophysis has been shown to be toxigenic in a variety of environments (Fux et 

al. 2011; Mafra et al. 2013; Gao et al. 2017), and a global distribution system for these 

toxins is generally recognized (FAO and WHO 2016) as they occur in a multitude of 

different habitats. To date, 10 species of Dinophysis have been shown to produce one or 

two major types of lipophilic toxins, okadaic acid (OA) and its dinophysistoxins derivatives, 

and pectenotoxins (Reguera et al. 2012, 2014). We collectively refer to the set OA, its 

derivatives, and pectenotoxins as diarrhetic shellfish toxins (DST). While all DST are known 

to be harmful, OA is particularly important to study due to the knowledge gap about its 

potential for understudied chronic disease associations (IOC et al. 2005) as well as its likely 

tumor promotion properties (Suganuma et al. 1988; Fujiki et al. 2018; Valdiglesias et al. 

2013). The potential for low-dose chronic exposures of human populations to OA (along 

with pectenotoxins) is environmentally plausible because the toxins may persist in the water 

for extended periods of time (Blanco et al. 2018; Pizarro et al. 2009) and the toxin has been 

found in the absence of Dinophysis (Fernández et al. 2019).

In 1994 the autonomous government of Andalucía implemented a phytoplankton monitoring 

system (Fernández et al. 2019). Since the late 1990s, multiple species of Dinophysis (e.g., 

D. acuminata complex, D. caudata, D. acuta, and D. fortii) have been detected in most of the 

sampled areas (Fernández et al. 2019). Levels of toxins have been found in various species 

of edible shellfish (e.g. Callista chione and Venus verrucose), sometimes exceeding the 

legal limit of 160 μg/kg (e.g. Donax trunculus, Chamelea gallina, Mytilus galloprovincialis, 

and Cerastoderma edule) (Fernández et al. 2019). The concentration of DST in a shellfish 

at a given time is a function of shellfish-specific features such as the rate of uptake, 

biotransformation, and elimination of each particular toxin (Reguera et al. 2014), but also 

reflects the environmental dynamics of toxigenic algae.

Previous efforts to model the dynamics of toxigenic Dinophysis have had limitations. 

Artificial neural networks have been applied to the coast of Huelva in Andalucía (Velo-

Suárez and Estrada 2007); however, that modeling effort used the last 5 weekly D. 
acuminata concentrations as the only input variables to predict the upcoming week’s 

concentration. Kulawiak (2016) used GIS and advanced very-high-resolution radiometer 

data to detect algae blooms in the Baltic sea, but this did not leverage toxin measurements. 

To our knowledge, it has been an unaddressed modeling challenge to account for the fact 

that DST can persist in water for extended periods of time, while also giving interpretable 

model parameters. Hidden Markov Models (HMM) have proven to be an effective modeling 

tool (Zucchini and Macdonald 2009). In addition, they have specifically been used to study 

algal blooms in other contexts and provide a potential scaffold for an improved Dinophysis 
model. Rousseeuw et al. (2015) used a hybrid HMM to detect and understand the dynamics 

of phytoplankton blooms in France using data on nutrients and water characteristics, but 

lacking direct data on algae. In the freshwater harmful algal bloom modeling field, Jiang 

et al. (2016) employed a continuous HMM alongside principal component analysis of 
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water quality parameters and nutrient to forecast microcystins. Kim et al. (2020) analyzed 

chlorophyll-a concentrations, a metric to understand eutrophication, in the Nakdong river 

of South Korea using a continuous HMM. All of these approaches model a multivariate 

outcome of water quality and chemical parameters using a HMM with an unknown number 

of states. Rousseeuw et al. (2015) and Jiang et al. (2016) reduce the dimension of the 

multivariate outcome by clustering and principal components, respectively. Kim et al. (2020) 

models the spatial distribution of chlorophyll-a conditional on the latent state. In our work, 

we use a 2-state HMM to directly infer whether there is algae in the water column over 

time. This is important because we want to reconstruct a daily assessment of this variable for 

health surveillance. Autoregressive HMMs on the other hand, were initially developed for 

speech recognition (Juang and Rabiner 1986, 1985). They have since been applied to various 

issues in recent years (Urban et al. 2020; Bartolucci et al. 2014; Shannon and Byrne 2010), 

but have not been used to model algae.

This paper presents a first-order autoregressive HMM approach to modeling potentially 

toxigenic Dinophysis in western Andalucía with the purpose of reconstructing the 

maximum-likelihood profile of whether algae were absent or present in the water column 

above a threshold count (e.g., ≥ 500 cells / L) at daily intervals using incomplete time-series 

historical data on both DST levels and algal counts. We model the presence/absence of 

algae in the water column by using algae cell counts from water column samples and DST 

measurements (in μg of OA equivalents per kg) from shellfish gathered from the regional 

government’s website. Then, using the estimated model parameters we can reconstruct 

indicators of algae in the water column at a daily interval, even when data is often missing. 

Since OA can remain in the water for extended periods of time, it is important that we allow 

for serial dependence in the model formulation. Specifically, we introduce autoregressive 

dependence in the observed DST measurements after accounting for the hidden Markov 

structure. The forward-backward algorithm needed to be adapted (Stanculescu et al. 2014) 

for computing E-step calculations in order to implement the EM algorithm for maximum-

likelihood in this setting. We assume a first order autoregressive model as algae blooms 

erupts quickly and this assumption provides a useful framework over a longer time horizon 

to capture the quickly moving event. Section 2 presents an in-depth explanation of the model 

while Sect. 3 explains the estimation procedure, along with the adapted forward-backward 

algorithm that can account for both missing data and dependence on previously observed 

states. In Sect. 4 we talk about three simulations which compare estimation with different 

amounts of missing data. In the 5th section we apply our model to the Andalucía data and 

discuss the estimated parameters and we consider our results in Sect. 6.

2 Methods

We consider a binary first order autoregressive HMM for the true algae state in the water 

column to model water sample algae counts and DST. We assume that the true water column 

algae state is binary as algae can either be absent or present in the water column. Let St, Xt
and Y t denote the daily true water column algae state, water sample algae count, and DST 

state, respectively, for day t where 1 < t < T . The domain for these three variables is defined 
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below. Also let S = S1, …, ST , and similarly for X and Y. S, X and Y all have the same 

follow up with equally spaced daily observations.

We assume that algae in the water column can be modelled by a Markov chain, where St
is either 0 or 1 depending on if algae is absent or present in the water column. We define 

the notation rSt to be the probability of starting in state St at time t = 1 and PSt − 1St
to be the probability of transitioning from state St − 1 to state St at time t. Specifically, 

St ∼ MC p01, p10, r1  where p01 denotes the probability of initiating water column algae over 

a day, p10 indicates the probability of ending the episode over a day, and r1 denotes the 

probability of being in the algae state at time t = 1. For use in calculations, we also define 

p00 as the probability of algae remaining out of the water column over a day, p11 as the 

probability of algae continuing to remain in the water column over a day, and r0 as the 

probability of not being in the algae state at time t = 0

To model the algae cell counts from the water sample, we chose a negative binomial as 

it can account for overdispersion in the count data. Xt takes on the integer count of algal 

cells in a sample of water and is conditional on St. Thus the possible values of Xt are 

0 ≤ Xt ≤ ∞. Although Xt is directly observed, it is also subject to measurement error. Due 

to the spatial heterogeneity of the algae and the water sampling technique used (Fernández 

et al. 2019), excess zeros are possible based on the specific latitude and longitude sampled. 

When Xt = 0 we can’t be sure if the sample missed the algae or if algae is truly absent 

from the water column, however when Xt > 0 we know for sure that algae is present in 

the water column. Reversing this, when St = 0 then Xt = 0 but when St = 1 then it is 

possible but not necessary that Xt be greater than 0. We chose to model the absence and 

presence of algae (quantified as above or below the 50 cells/L detection limit), however 

other thresholds can easily be chosen. Appendix A discusses the implications when two 

additional thresholds are considered. When algae is present in the water column, we model 

Xt with a negative binomial distribution with mean μa and size ka where E Xt ∣ St = 1 = μa

and V Xt ∣ St = 1 = μa +
μa2
ka

. This relationship can be concisely summed up as:

Xt =
0 if St = 0
NB μa, ka if St = 1. (1)

We discretized the DST measurements in to four states as a large proportion of values are 

below the quantification limit and are non-normally distributed on all commonly considered 

transformed scales. Discrete measurements also help with the computational feasibility of 

the method. Therefore, let Y t
∗ represents the continuous toxin measurements and let Y t

represent the discretized measurements as follows:
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Y t =

0 if Y t
∗ ≤ 40μg of OA equ/kg

1 if 40 < Y t
∗ ≤ 100μg of OA equ/kg

2 if 100 < Y t
∗ ≤ 160μg of OA equ/kg

3 if Y t
∗ > 160μg of OA equ/kg

(2)

These specific cutoffs were chosen as the limit of detection is 40μg and fisheries must close 

at 160μg while 100μg lies halfway between the two other constraints. The DST states follow 

an ordinal logistic regression model with two regression parameters and three intercept 

parameters. The full model is,

logit P Y t ≤ c = αc + β1 × Y t − 1 + β2 × St (3)

where 0 ≤ c ≤ 2, αc is the intercept parameter, β1 is the regression parameter for the last 

toxin measurement, and β2 is the regression parameter for the current Markov chain state. 

The regression coefficients can be interpreted as: there is eβ1 times the odds of Y t = c + 1 

compared to Y t = c with each increase by one in Yt − 1 and when St increases from 0 to 1 

there is eβ2 times odds of Y t = c + 1 compared to Y t = c. The dependence of Y t on Y t − 1
creates issues when Y t − 1 is missing, however these problems will be dealt with in Sect. 3.

The joint distribution of the latent water column algae state, the observed water sample 

algae count, and DST measurement can be calculated by multiplying the following three 

components: (1) the probability of being in a water column algae state, (2) conditional on 

the water column state, the probability of the algae cell count from the water sample, and (3) 

conditional on the water column state and the last DST state, the probability of the current 

DST state. The complete-data joint distribution can be written as:

f(S, X, Y) = rS1 ∏
t = 2

T
pSt − 1St

× ∏
t = 1

T
NB Xt ∣ μa, ka

St

× ∏
t = 1

T
P Y t ∣ St, Y t − 1 .

(4)

We assume that Y0 = 0 because most values are of Y t are zero. Additionally as a sensitivity 

analysis we ran our analysis where Y0 = 1, Y0 = 2, and Y0 = 3 and the results did not 

change. The estimation procedures are described in the next section. Parametric bootstrap 

standard errors were calculated by simulating data 500 times per site using the estimated 

parameters. Bootstrap standard errors were then calculated for each parameter by calculating 

the standard deviation of the 500 samples. Finally, we apply the Viterbi algorithm to 

reconstruct the highest likelihood hidden state path.
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3 Estimation

We will now introduce the procedure for estimation assuming no missing data. Define the 

indicator variable Z such that

ZSt St =
0 if St ≠ st
1 if St = st .

This indicator function is critical for later computations and can be used with variables other 

than St. We adopt the notation where St refers to the random variable, while st refers to a 

possible value of the random variable St. We use this notation across all random variables. 

This indicator function is equal to 1 when the random variable of choice is equal to a 

specific realization of the random variable. We can then rewrite the complete-data joint 

distribution as:

f(S, X, Y) = ∏
s1 = 0

1
rs1

Zs1 S1 ∏
t = 2

T
∏

s1 = 0

1
∏

s2 = 0

1
pst − 1St

Zst − 1 St − 1 Zst St

× ∏
t = 1

T
NB Xt = xt ∣ μa, ka

St

× ∏
t = 1

T
∏

st = 0

1
P Y t = yt ∣ St = st, Y t − 1 = yt − 1

Zst St .

(5)

As S is not observable, to maximize this likelihood directly we would have to iterate over 

every possible value, thus calculating

∑
s1

k
⋯∑

sT

k
f s1, …, sT , X, Y . (6)

Maximizing this directly becomes intractable as T increases and as T = 2177 days, it is not 

feasible for our application. By using the expectation-maximization (EM) algorithm we can 

maximize this likelihood in a timely manner by alternating between an expectation and a 

maximization step, converging at the estimated parameters. The expectation step calculates 

the following complete-data log likelihood:
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E[logf(S, X, Y) ∣ X, Y] = ∑
s1 = 0

1
E Zs1 S1 ∣ X, Y log rs1

+ ∑
t = 2

T
∑

st − 1 = 0

1
∑

st = 0

1
E Zst − 1 St − 1 Zst St ∣ X, Y log pst − 1st

+ ∑
t = 1

T
E St ∣ X, Y log NB xt ∣ μa, ka

+ ∑
t = 1

T
∑

st = 0

1
E Zst St ∣ X, Y log P yt ∣ st, yt − 1 ,

(7)

where the expectations can all be calculated using the forward-backward algorithm (Baum 

1972).

3.1 Estimation with missing data

Often times some parts of the observable data are missing. As shown in Fig. 1 most 

observations are missing (other areas are shown in Fig. 2). This time frame was chosen as 

spring and summer are often when most algae blooms occur. In our example, when Xt is 

missing we simply leave out the second line of the likelihood calculation, however when 

Y t is missing a more complicated method is required. As the current DST state depends on 

the last DST state, when Y t is missing we must account for it to calculate the probability of 

Y t + 1. By conditioning over all possible DST states for Y t, we can calculate the probability 

of Y t + 1. The complete data joint distribution, accounting for missing data, can be written as

f(S, X, Y) = ∏
s1 = 0

1
rs1

Zs1 S1 ∏
t = 2

T
∏

st − 1 = 0

1
∏

st = 0

1
pst − 1st

Zst − 1 St − 1 Zst St

× ∏
t = 1

T
NB Xt = xt ∣ μa, ka

Z1 St

× ∏
t = 1

T
∏

st = 0

1
∏

yt − 1 = 0

3
∏

yt = 0

3
P Y t = yt ∣ St = st, Y t − 1 = yt − 1

Zst St Zyt − 1 Yt − 1 Zyt Yt ,

(8)

where the complete-data log likelihood is now
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E[logf(S, X, Y) ∣ X, Y] = ∑
s1 = 0

1
E Zs1 S1 ∣ X, Y log rs1

+ ∑
t = 2

T
∑

st − 1 = 0

1
∑

st = 0

1
E Zst − 1 St − 1 Zst St ∣ X, Y log pst − 1st

+ ∑
t = 1

T
E Z1 St ∣ X, Y log NB xt ∣ μa, ka

+ ∑
t = 1

T
∑

st = 0

1
∑

yt − 1 = 0

3
∑

yt = 0

3

E Zst St Zyt − 1 Y t − 1 Zyt Y t ∣ X, Y log P yt ∣ st, yt − 1 .

(9)

To account for the missing data and the dependency in the emissions distribution we 

use the adapted forward-backward algorithm from Stanculescu et al. (2014), however 

our application has a bivariate rather than univariate emissions distribution. For the 

maximization step, we maximize equation (9) given the E step calculations. The E step 

calculations are hard to calculate so we use the Forward-Backward algorithm described 

in the next section. We consider convergence to occur when the log likelihood increase 

between iterations is less than 0.01.

3.2 Forward-backward algorithm

To account for missing toxin values, we will keep track of every possible DST state value. 

Assume that Y t is missing. By calculating the probability of all possible DST states at time 

t, we can then calculate the probability of Y t + 1. We redefine the indicator variable Z to 

account for the scenario of missing data. Let

Zyt Yt =
0 if Yt ≠ yt
1 if Yt = yt or if yt is missing .

The forward quantity is:

αst(t, ω) = P X1 = x1, …, Xt = xt, Y 1 = y1, …, Y t = ω, St = st × Zyt(ω) . (10)

The indicator function, not present in the standard forward quantity, allows us to incorporate 

different possible values of Y t when Y t is missing. If Y t is observed the forward quantity is 

zero except when yt = ω. However, when Y t is missing, ω corresponds to a possible DST 

state value at time t. This quantity is calculated recursively by
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αst(t, ω) =

rs1NB x1 ∣ μa, ka
s1P Y 1 = ω ∣ s1, Y 0 = 0 × ZY1(ω) if t = 1

∑
st − 1 = 0

1
∑

ω0 = 0

3
αst − 1 t − 1, ω0 pst − 1stNB xt ∣ μa, ka

stP Y t = ω ∣ st, Y t − 1 = ω0 × Zyt(ω) if t > 1.

(11)

The backward quantity is defined as

βst(t, ω) = P Xt + 1 = xt + 1, …, XT = xT , Y t + 1 = yt + 1, …, Y T = yT ∣ St = st,
Y t = ω

× Zyt(ω),
(12)

where, similarly to the forward quantity, if Y t is observed the backward quantity is zero 

except when yt = ω and if Y t is missing ω corresponds to a possible DST state value at time 

t. It is also calculated recursively:

βst(t, ω) =

1 if t = T

∑
st + 1 = 0

1
∑

ω0 = 0

3
pstst + 1NB xt + 1 ∣ μa, ka

st + 1P Y t + 1 = ω0 ∣ st + 1, Y t = ω βst + 1 t + 1, ω0 × Zyt(ω) if t < T .

(13)

3.3 Calculating expectations

The expectations from the complete-data log likelihood are calculated as follows:

E Zst St ∣ X, Y = P St = st ∣ X, Y =
∑ω = 0

3 αst(t, ω)βst(t, ω)
P (X, Y)

(14)

E ZSt − 1 St − 1 ZSt St ∣ X, Y

= P St − 1 = st − 1, St = St, X, Y
P (X, Y)

=
∑ω1 = 0

3 ∑ω2 = 0
3 αst − 1 t − 1, ω1 pst − 1stg xt ∣ μa, ka

StP Y t = ω2 ∣ st, Y t − 1 = ω1 βst t, ω2
P (X, Y)

(15)
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E ZS1 St Zyt − 1 Y t − 1 Zyt Y t ∣ X, Y

= P St = s1, Y t − 1 = yt − 1, Y t = yt, X, Y
P (X, Y)

= ∑
s0

P St = s1, Y t − 1 = yt − 1, Y t = yt, X, Y ∣ St − 1 = s0
P (X, Y)

= ∑
s0

αs0 t − 1, yt − 1 ps0s1g xt ∣ μa, ka
s1P yt ∣ s1, yt − 1 βs1 t, yt

P (X, Y)

(16)

P (X, Y) = ∑
sT = 0

1
∑

ω = 0

3
αsT(T , ω) (17)

In equation 15 and 16 the function g xt ∣ μaka  is the probability density function of negative 

binomial distribution with parameters μa and ka, calculating the probability of xt.

4 Simulation

We examine the performance of our proposed method by analyzing three simulations with 

varying amounts of missing data. We simulated data sets with no missing data, one-third 

of the data missing, and 85% of the data missing. For each category, 500 data sets were 

generated with the same follow up length as the data (2177 days). The simulated data 

structure corresponds to the application presented in our application section. These three 

amounts of missing data were chosen as they account for a wide variety of scenarios while 

also testing this specific application, which has (depending on the site) at most 83% of the 

data missing. By varying the level of missingness, we can measure how well our method 

preforms at recovering the true parameters with different levels of information available. 

It should also be noted that this is especially important to test for the DST measurements. 

When there is no missing data the estimation for the DST is straightforward, however with 

missing data the adapted forward backward algorithm explained in the estimation section 

is needed. With more missing data there are longer times between observations, meaning 

more reliance on the proposed adaption to account for Y t when calculating the probability of 

Y t + 1.

For the simulations that have no missing data, the estimates are extremely accurate with 

minimal standard errors. Table 1 contains the simulation estimates for the three different 

levels of missing data, and shows that our method is extremely accurate at recovering the 

true parameters regardless of missing data. Additional computation time is required when 

our method encounters missing data as all possible values of the last DST state are iterated 

over. Thus, the time needed for our method scales linearly with the amount of missing data.

Even with most of the data missing, our method accurately estimates the parameters. 

However, as more data is missing, the standard errors increase. While this increase is quite 

small when one-third of the data is missing, it is much larger when 85% of the data is 
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missing. The standard errors for the 33% missing simulation roughly double when compared 

to the 0% missing simulation, however the standard errors increase by a factor ranging from 

9 to 37 when comparing the 85% and the 0% missing simulations. This can most easily 

be seen in the third row of Table 1 for μa. The estimate itself is accurate across the three 

levels, however the standard error when 85% of the data is missing is extremely large, 

even compared to the standard error when 33% of the data is missing. Despite this high 

variability, there is no relationship between the initial and estimated value in the simulations.

5 Application

5.1 Dataset description

We illustrate our method on data gathered from the regional government of Andalucía’s 

website (Zonas de producción. (n.d.) xxxx). The Andalucían government established a 

phytoplankton toxin monitoring program for shellfish in 1994 to help deal with the recurrent 

blooms of Dinophysis that are linked to DSP outbreaks (Bouza and Aboal 2008). We 

used data on toxin levels, measured in μg of OA equivalent/kg, sampled from the bivalve 

Donax trunculus in the time frame from January 2015 to December 2020. The follow-up 

length is 2,177 days. Toxin levels were calculated as specified by Yasumoto et al. (1984) 

and liquid chromatography-tandem mass spectrometry was used as the chemical analysis 

technique (Fernández et al.2019).Water column samples used to calculate algae cell counts 

were gathered using a 10-meter-long weighted plastic hose. 25mL water samples from 

sedimentation chambers were then used to extrapolate the number of cells/L (Velo-Suárez 

and Estrada 2007). Data from eight geographical sites (areas 1, 2, 3, 4, 5, 6, 7, and 8) were 

analyzed separately. Areas 7 and 8 were recorded as a single area until May 2018 and were 

then split into distinct areas; we analyzed each site in a separate model. Table 2 contains 

some summary statistics about the data.

5.2 Results

Our HMM has two states representing the presence or absence of potentially toxigenic 

Dinophysis algae in the water column at a concentration exceeding a threshold (e.g., ≥ 

500 cells/L). Both the initiation (p01)and termination (p10) probabilities are low as can 

be seen in Table 2, indicating a tendency for algae to stay in or remain out of the water 

column for a number of days (corresponding to the 1 or 0 state of the HMM). Despite the 

minor differences between each of the different sites, there is broad homogeneity among the 

sites with the initiation probabilities being slightly lower than 10% and most termination 

probabilities hovering just above 10%. Within each area, initiation probabilities were lower 

than their corresponding termination probabilities. Although the state path of the hidden 

Markov model is unobserved, it is an important metric to recover as it can be useful in 

determining long-term changes in algae and can have implications for the effects of climate 

change. We reconstructed the hidden state paths using the Viterbi algorithm, producing the 

path with the highest likelihood. Figure 3 shows a visualization of the Viterbi path for area 

1 in 2016 (other areas are shown in Fig. 4). Using the Viterbi path we can then calculate 

different summary statistics for algae presence/absence across time. As shown in Fig. 5, 

distinct trends can be seen within each year and across years. For instance, for areas 1–7 the 

earlier and later years have a higher proportion of algae in the water column when compared 
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to the middle years. The proportion of days with algae was estimated to be at least 54.52 % 

and 61.1% for 2015 and 2019, while in 2017 it was estimated to be at most 48.22%.

As noted previously, we modeled the algae from the water sampled with a negative binomial 

model when St = 1, and assumed that there cannot be any algae in the water sample when St
= 0. When there is algae in the water sample we can assume that St = 1 because otherwise 

it would not be possible for there to be algae present. On the contrary, we cannot draw any 

conclusions when there is not algae in the water sample. This is the case because the algae 

cell count from the water sample is serving as an observable representative of algae in the 

water column with measurement error. Because the algae is not distributed evenly by either 

latitude, longitude, or depth, the water sample may not accurately capture whether algae 

is in the water column. As noted in the methods section, for this application we consider 

algae to be present in the water sample when it can be detected (a threshold of 50 cells 

per liter). We examine the consequences of higher thresholds in appendix A. Areas 3 and 5 

have a mean parameter (μa) around 230–240, while areas 1, 2, 4, and 6 have a higher mean 

parameter ranging from 265 to 290. Area 8 has a larger mean parameter of 320, and area 

7 has a significantly larger mean around 440. Barring area 7, the size parameter (ka in Eq. 

1) is above 1 indicating that the negative binomial model is essential to help account for 

over-dispersion. As area 7 has the largest mean parameter and smallest size parameter (see 

expression 1), this leads to larger, more variable predictions for area 7.

The continuous DST measurements were discretized to form four (0 to 3) DST states, which 

follow an ordinal logistic model. The continuous measurements are highly skewed as the 

limit of quantification is 40 μg of OA equ/kg. Binning the continuous measurements less 

than 40 μg of OA equ/kg reduced the number of distributional assumptions. Unlike the algae 

cell count from the water sample that only depended on the current Markov chain state, 

we assume that the DST states are dependent on the current Markov chain state as well 

as the last DST state. This additional dependency is necessary in the emission distribution 

as major components of DST have been found to be very stable in the water column after 

a Dinophysis bloom (Blanco et al. 2018; Pizarro et al. 2009). This dependency cannot be 

estimated using the standard forward-backward algorithm as the standard HMM assumes 

that the observed states are all conditionally independent given the current latent state. In 

our model, the current observed state is dependent on the previous observed state and the 

current latent state, violating this assumption. Instead, by using procedures developed for 

autoregressive HMMs (Stanculescu et al. 2014), we can incorporate this dependency into 

the estimation procedure. We believe that a first order autoregressive model is applicable as 

algae blooms are rapid events. By having a shorter time dependency we are better able to 

model these events.

Our ordinal logistic model has five parameters: β1 is the effect of the DST state at time t − 1, 

β2 is the effect of the current Markov state, and α0, α1, and α2 are the intercept parameters. 

The effect of the last DST state is additive in relation to the log odds of the probability of the 

current DST state such that the effect of the last DST state is β1 when Y t − 1 = 1, 2 × β1 when 

Y t − 1 = 2, and 3 × β1 when Y t − 1 = 3. Table 3 contains all parameter estimates for the eight 

different areas along with their standard errors.
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Despite the somewhat high standard errors for the regression coefficients, the probabilities 

themselves have a low standard error. The probabilities and standard errors for area 1, 

along with the other areas, are shown in Table 4. Interestingly, we can see the difference 

in predictive power between St and Y t by looking this table. For each area, the difference 

between the left and right halves of the table is not nearly as drastic as the difference 

between the rows, indicating that the autoregressive effect on Y t is indispensable to this 

model.

6 Discussion

In this paper we have focused on the historical reconstruction of an incomplete time-series 

by developing a model that recreates the most likely pattern of Dinophysis spp. algae 

occurrence at each of the eight different sites on a daily timescale, using a HMM with 

extensions to account for challenges inherent to the data. DST measurements were highly 

autocorrelated, even after accounting for the hidden states of the HMM, violating one 

of the standard assumptions of HMMs (Rabiner and Juang 1986). However, by using an 

autoregressive HMM we are able to model this. The sampling frequency of the monitoring 

program resulted in large amounts of missing data (at most 83%). Furthermore, the 

distribution of DST was skewed and left-censored at the assay limits of quantification, 40μg 
of OA equivalents per kg (Zonas de producción.(n.d.) xxxx). We addressed these challenges 

with an advanced HMM that included a bivariate emissions distribution with a negative 

binomial distribution for algae counts and ordinal autoregressive model for the serial DST 

measurements. We showed with simulations that the approach accurately estimated the 

parameters even with extensive missing measurements.

This paper presents a modified forward-backward algorithm in an EM context from 

Stanculescu et al. (2014) with an additional observed variable applied to data from a 

phytoplankton toxin monitoring program in western Andalucía. This generalized form 

allows us to estimate a model with both dependence in the emissions distribution and 

missing data. In our application, DST states are dependent on both the current Markov state 

as well as the last DST state. The proposed method works by keeping track of all possible 

DST states (when the DST state is missing) in the forward-backward algorithm. We can 

then condition on and sum over the most recent DST state to calculate the probability of the 

current DST state. Although this does lead to additional computation complexity, the time 

needed scales linearly with the amount of missing data and is still feasible when nearly all of 

the data is missing.

We applied this method to 2,177 days of algae water samples and DST data from eight 

geographical sites with dates ranging from January 2015 to December 2020. Despite the 

long stretch of time covered in the study, most days had no recorded data. Although the data 

available varied by site, it ranged between 377 (17%) and 524 (24%) days with recorded 

measurements out of the total 2,177 days. Although HMMs have not been applied to this 

problem in this area before, our application of this method shows that HMMs are capable 

of modeling complex processes that don’t necessarily conform to the standard assumptions 

in the presence of large amount of missing data. Running our method on western Andalucía 
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phytoplankton monitoring data we see that accounting for the last DST state requires the 

additional complexity of an autoregressive HMM.

One of the major advantages from our method is that we are able to reconstruct paths 

of the latent variable on a daily interval using historical time-series data in the presence 

of intermittent measurements and measurement error. Rather than forecast the future, our 

method focuses on predicting whether algae were absent or present in the water column for 

every day in our data set. This is useful when trying to identify long term algae trends for the 

different areas across time as well as for health surveillance. The Viterbi algorithm is ideal 

for computing estimates of the entire sequence of latent states. These sequences can later 

be used in downstream analyses that examine the relationship between toxicity and diseased 

risk. By aggregating these sequences, termed Viterbi paths, we are able to identify long term 

trends across years.

The proposed hidden Markov model makes a number of parametric assumptions including 

that the unobserved states follow a first-order Markov model and that the observed DST 

data follow a first-order autoregressive process after accounting for the HMM structure. We 

believe that these are reasonable assumptions since DST remains in the water for extended 

periods of time and algae blooms are rapid events. Latent state estimation should not be 

sensitive to small departures from these underlying assumptions. Therefore, we presume that 

the AR(1)-HMM framework adequately describes the biological process.

In the future, our method can be applied to other types of monitoring program data 

as well. Because most monitoring program data contains missing values, accounting for 

the temporal autocorrelation that is often present is not straightforward. Our method can 

adequately handle both complications simultaneously while also creating historical time-

series reconstructions. Using our method, we are also able to relate two separate processes 

together while we impute the maximum-likelihood profile of the variable of interest.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix A: Varying the algae threshold

This appendix examines the ramifications of adjusting the algae detection threshold. Noted 

previously in prior sections, when any amount of algae is present in the water sample 

we consider algae present in the water column. Although this metric is useful for specific 

scenarios, such as quantifying chronic exposure, it cannot single out larger events like 

harmful algae blooms. Because algae is present year-round, when a lower threshold is 

chosen larger algae events are mixed in with smaller algae events. As this interpretation may 

not be sufficient for a study of harmful algae blooms, we consider three different thresholds. 

By raising the threshold for what we consider algae presence to be, we can study larger 

algae events beyond presence. The two additional thresholds examined are at 250 and 500 

cells/L. 500 cells/L was established by the Andalucía HAB monitoring program as a critical 

threshold, and 250 cells/L was chosen as a halfway point.

As can be seen in the three following heat maps, when the algae threshold is increased our 

model predicts fewer days with algae in the water column. Thus, by raising the threshold 

our model is able to be more precise and pick out days with larger algae events. The drastic 

decrease in predicted algae positive days as the threshold increases indicates that under the 

original 50 cells/L threshold, most of the algae positive days had a low predicted amount of 

algae.

Figure 6 shows the predicted percent of days with algae presence in the water column above 

the three different thresholds, averaged over months, for six years and eight different sites. 

By summing over months, we can look at yearly trends. When the threshold is 50 cells/L 

this figure contains the same information as Fig. 5. The U-shaped pattern present at 50 

cells/L, where the earlier and later years studied had higher predicted algae presence in the 

water column when compared to the middle years, is still prevalent for both the 250 and 

500 cells/L threshold for areas 1–5. Areas 6 has a higher predicted algae presence above the 

threshold in the water column in the beginning and then slowly decreases from 2015 to 2020 

for both the additional thresholds while area 7 and 8 vary by year.
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Fig. 6. 
Heat map of predicted percent of days with algae presence in the water column above the 

three different thresholds. The x axis is years studied and the y axis is the different threshold 

levels. Each of the eight boxes represents a different area. For this figure, months were 

averaged over

Figure 7 shows the predicted percent of days with algae presence in the water column above 

the three different thresholds, averaged over years, for each month and the eight different 

sites. This heat map focuses on monthly trends as it sums over years. For the 50 cells/L 
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threshold, the number of predicted days where algae is above the threshold in the water 

column peaks between April and August, often occurring in May. Areas 1–6 all had the 

highest percentages during the spring and summer months, while areas 7 and 8 also had 

a high predicted percentage in January. Looking at the 250 cells/L threshold, the highest 

percentages occurred between April and October, with most peaks happening in April. Areas 

1, 2, 6, and 7 also had at least one winter month with a high predicted percentage, however 

all areas had the most predicted positive days during the spring and summer months. Finally, 

for the 500 cells/L threshold areas 6 and 7 had the highest predicted percent of days with 

algae above the threshold in January, however area 6 also has high predictions for April and 

May. Area 2 has the highest predicted percent of days in February but is closely followed by 

June and July. The rest of the areas have the highest predicted percent of days between April 

and July.
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Fig. 7. 
Heat map of predicted percent of days with algae presence in the water column above the 

three different thresholds. The x axis is months and the y axis is the different threshold 

levels. Each of the eight boxes represents a different area. For this figure, years were 

averaged over

Figure 8 shows the predicted percent of days with algae presence in the water column above 

the three different thresholds, averaged over areas, for each month and year. This heat map 

sums over geographic differences and lets us examine overall trends, looking at western 
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Andalucía as a whole. Across all years and thresholds (except for the 500 cells/L threshold 

in 2020), there is a higher predicted percent of days of algae above the threshold in the water 

column during the spring and summer, although some years had increased algae during the 

winter as well.

Fig. 8. 
Heat map of predicted percent of days with algae presence in the water column above the 

three different thresholds. The x axis is months and the y axis is the different threshold 
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levels. Each of the six boxes represents a different year. For this figure, areas were averaged 

over

Figures 9 and 10 are similar to Figs. 2 and 3 and show the interpolated Viterbi path for 

2016 when the threshold is 250 and 500 cells/L, respectively. Again, as we increase the 

threshold, the qualification for what counts as algae presence in the water column is harder 

to meet. Therefore, fewer days are predicted to have algae in the water column, however the 

predicted algae events are larger. The decrease in number of days that are estimated to have 

algae in the water column when the threshold is increased can also be seen in these two plots 

as the Viterbi path in Fig. 9 passes through the 1 state more often than the Viterbi path in 

Fig. 10 does.
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Fig. 9. 
Decoded water column state (St) path using the Viterbi algorithm for 2016 for areas 2–8. 

The line is the decoded path while the dots indicate absence and presence of observed algae. 

When algae counts are above the threshold of 250 cells/L, indicated with a black dot at 1, St
must equal one
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Fig. 10. 
Decoded water column state (St) path using the Viterbi algorithm for 2016 for areas 2–8. 

The line is the decoded path while the dots indicate absence and presence of observed algae. 

When algae counts are above the threshold of 500 cells/L, indicated with a black dot at 1, St
must equal one
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Data Availibility Statement

The water sample algae count and DST measurements are available from the Consejería 

de Agricultura, Pesca y Desarrollo Sostenible de la Junta de Andalucía upon reasonable 

request. Code

Abbreviations

OA Okadaic acid

DST Diarrhetic shellfish toxins

DSP Diarrhetic shellfish poison

HMM Hidden markov models
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Fig. 1. 
Sample of observations for a three month period in 2016 for area 1. The left panel shows 

algae count observations while the right shows DST state observations. Dots correspond to 

observations, while x’s signify a missing observation. The dashed line on the left shows the 

algae threshold of 50 cells/L
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Fig. 2. 
Decoded water column state (St) path using the Viterbi algorithm for 2016 in area 1. The 

line is the decoded path while the dots indicate absence and presence of observed algae. 

When algae counts are above 0 we know that St must equal one, however when algae counts 

are 0 we cannot say anything about St. For the figure, this is why when we observe algae 

(indicated by a dot at 1) the path (the line) must pass through it, but when we do not observe 

algae (a dot at 0) the path may or may not pass through it
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Fig. 3. 
Proportion of predicted days with algae presence in the Viterbi path across all areas and 

years
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Fig. 4. 
Sample of observations for a three month period in 2016 for area 2–8. Panels on the left 

shows algae count observations while panels on the right show DST state observations while 

areas are grouped by row. Dots correspond to observations, while x’s signify a missing 

observation. The dashed line on the left shows the algae threshold of 50 cells/L
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Fig. 5. 
Decoded water column state (St) path using the Viterbi algorithm for 2016 for areas 2–8. 

The line is the decoded path while the dots indicate absence and presence of observed algae. 

When algae counts are above the threshold of 50 cells/L, indicated with a black dot at 1, St
must equal one
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Table 1

Comparison of truth and estimated parameter from three different simulations with 0%, 33%, and 85% 

missing data

Truth 0% Missing 33% Missing 85% Missing

p01 0.40 0.40 (0.001) 0.40 (0.001) 0.39 (0.009)

p10 0.20 0.20 (< 1e-04) 0.20 (< 1e-04) 0.20 (0.005)

μa 64.00 63.81 (11.059) 64.46 (16.15) 65.63 (102.612)

ka 0.25 0.25 (< 1e-04) 0.25 (< 1e-04) 0.27 (0.003)

β1 1.00 1.00 (0.002) 1.00 (0.004) 1.00 (0.074)

β2 3.00 3.00 (0.049) 3.00 (0.097) 3.06 (1.717)

α0 3.00 3.00 (0.043) 2.98 (0.09) 2.97 (1.484)

α1 4.00 4.00 (0.054) 3.98 (0.111) 4.01 (1.824)

α2 5.00 5.00 (0.063) 4.98 (0.131) 5.01 (2.192)

Standard errors are in parenthesis
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