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ABSTRACT OF THE DISSERTATION

Some classes of smooth bimodules over tracial von Neumann algebras

and their associated 1-cohomology spaces

by

Patrick Jon Hiatt

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2024

Professor Sorin Popa, Chair

We study several classes of Banach bimodules over a II1 factor M , endowed with topologies

that make them “smooth” with respect to Lp-norms implemented by the trace τ on M . In

particular, letting M ⊂ B = B(L2M), and 2 ≤ p < ∞, we first consider the space B(p),

obtained as the completion of B in the norm |||T |||p defined as the supremum of |φ(T )| over

all linear functionals φ ∈ B∗ such that |φ(xY z)| ≤ ∥x∥p∥Y ∥∥z∥p, for all x, y ∈ M and Y ∈ B.

We continue by examining the subspace K(p) ⊂ B(p), obtained as the closure in B(p) of the

space of compact operators K(L2M). We then construct the space Kp ⊂ B of operators that

are ||| |||p-limits of bounded sequences of operators in K(L2M). We prove that Kp are all

equal to the τ -rank-completion of K(L2M) in B, denoted as qKM , which is the subspace of

all operators K ∈ B(L2M) such that there exists a sequence operators Kn ∈ K(L2M) and

projections pn ∈ P(M) with limn ∥pn(K −Kn)pn∥ = 0 and limn τ(1− pn) = 0. We conclude

by proving that any separable II1 factor M admits non-inner derivations into qKM , but that

any derivation δ : M → qKM is a pointwise limit in τ -rank-topology of inner derivations.

This gives us an example of a “non-vanishing” theory of 1-cohomology for II1 factors M .
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CHAPTER 1

Introduction

While Hochschild introduced his cohomology theory for algebras in the mid 1940s, it was

around 1970 that this theory started to be adapted and systematically studied in operator

algebras framework (see the series of papers by Johnson, Kadison and Ringrose [Joh72],

[KR71], [JKR72]). However, problems related to derivations of an operator algebra M with

values in special M -bimodules, such as M itself, which amounts to the 1-cohomology group

of M with coefficients in M , started to be investigated several years earlier, triggered by

Kaplanski’s interest in such problems (see e.g. [Kap53] or the footnote in [SW55]). In a

pioneering result in this direction, it is shown in [SW55] that any derivation of a commu-

tative Banach algebra must be equal to zero, while in [Kad66], [Sak66] is it shown that all

derivations of a von Neumann algebra are inner. More general M -bimodules B were soon

considered, such as algebras B that contain M , notably M ⊂ B = B(H) (see e.g. [Chr82]),

or classical ideals in B(H), like the Schatten-von Neumann p-class cp(H), 1 ≤ p < ∞

( [JP72], [Joh72], [Hoo77]), or the ideal of compact operators ( [JP72]).

Most of the early results in this direction aimed at proving that all derivations of an

algebra M into an M -bimodule B are inner, and more generally on showing that all coho-

mology groups of M with coefficients in B vanish, Hn(M,B) = 0, ∀n. But starting with

the work of Johnson in ( [Joh72], [Joh74]), an interest towards using the cohomology groups

Hn(M,B) as effective invariants for a von Neumann algebra M has emerged. However, while

the amenable-nonamenable dichotomy could soon be established this way, by showing that

a tracial von Neumann algebra M is amenable if and only if H1(M,B) = 0 for any normal

dual Banach M -bimodule B (cf [Joh72], [Con76a], [Con76b], [Eff88]), by early 1980s all ef-
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forts in this direction have stalled. At the “Operator Algebra Summer School” in Kingston

1980, where the main directions of research in this area were presented, two cohomology

problems were particularly emphasized: (1) whether Hn(M,M) = 0, ∀n, for any II1 factor

M ; (2) whether any derivation of a II1 factor M into B(H) is inner when M ⊂ B(H) has

infinite coupling constant (the case when dimMH < ∞ had been settled in the affirmative

in [Chr82]).

These problems are still open, but there has been progress on both. On the one hand,

problem (2) was shown to be equivalent to the similarity problem, asking whether any

bounded representation of any C∗-algebra A, π : A → B(H), is similar to a ∗-representation

(i.e., ∃S ∈ B(H) invertible such that A ∋ x 7→ S−1π(x)S is a ∗-representation), see [Pis04] for

several equivalent formulations and a deep analysis of this problem. On the other hand, it was

shown that Hn(M,M) = 0, ∀n, for many classes of II1 factors with “good decomposability”

features, such as the property Gamma of Murray and von Neumann, existence of Cartan

subalgebras, and more generally existence of a “thin decomposition” of M with respect to

a pair of amenable subalgebras (see [CPS03]). But the perception on these problems has

changed: one now expects that there do exist II1 factors M for which H2(M,M) ̸= 0 and

H1(M,B(L2M⊗ℓ2N)) ̸= 0, and that in fact this should be the case for the free group factors

M = LFn, 2 ≤ n ≤ ∞. However, these cohomology spaces are expected to be difficult to

calculate, and to not be able to make “fine distinctions”, such as to differentiate between

the free group factors LFn, 2 ≤ n ≤ ∞, or show that LF∞ cannot be finitely generated.

A big impetus towards finding a different cohomology theory for II1 factors, one that

would be non-vanishing and calculable, providing an efficient invariant that would reflect

fine structural properties of the algebras involved, came in 2001, triggered by Gaboriau’s

successful generalization to orbit equivalence relations RΓ arising from actions of countable

groups by measure preserving transformations Γ ↷ X of Atyiah’s and Cheeger-Gromov no-

tion of L2-cohomology of groups, leading to his notion of L2-Betti numbers for RΓ satisfying

β
(2)
n (RΓ) = β

(2)
n (Γ), with the striking consequence that free groups of different rank cannot
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be orbit equivalent ( [Gab02]). Since Gaboriau’s L2-cohomology for RΓ can be viewed as a

cohomology theory for the corresponding Cartan inclusion A = L∞(X) ⊂ L(RΓ) = M , of

the group measure space II1 factor associated with the orbit equivalence relation RΓ, it is

an invariant for factors M with unique Cartan decomposition (see [Pop06]), for which one

can simply define associated L2-Betti numbers as β
(2)
n (M) = β

(2)
n (RΓ).

But a more interesting “wishful” L2-cohomology theory along these lines would be for

group factors M = LΓ arising from ICC groups Γ, typically without Cartan subalgebras, for

which one would like to have an identification between the L2-cohomology of LΓ and the

L2-cohomology of the group Γ, with the corresponding L2-Betti number β
(2)
n (LΓ) coinciding

with Atyiah’s L2-Betti number of the group, β
(2)
n (Γ). This problem was much emphasized

by the well know mathematician Alain Connes in his talk at MSRI in the Spring of 2001

( [Con01]).

Several attempts were made in this direction: (a) Connes-Shlyakhtenko proposed in

[CS05] an “everywhere defined” cohomology of M with coefficients in the Murray-von Neu-

mann algebra Aff(M ⊗M op) of operators affiliated with M ⊗M op; (b) Peterson considered

in [Pet09] a “densely defined” L2-cohomology theory for II1 factors; (c) Galatan-Popa con-

sidered in [GP17] a generalized version of the 1-cohomology with coefficients in K(L2M) in

( [JP72], [Pop87]), based on the larger class of smooth bimodules, trying this way to avoid

being always equal to 0, while still vanishing in “amenable directions”.

All these attempts have shortcomings: [Pet09] encountered the difficulty of having to

prove the independence of the cohomology on the dense domain of the derivations; [CS05]

had to be adjusted with some continuity conditions in [Tho08], and that modified version was

shown in [PV15] to always be equal to 0 (this was previously shown in [AK15] and [Ale14] to

hold in certain cases, such as for free group factors); of the two classes of smooth bimodules

proposed in [GP17], one was shown to produce a cohomology that’s always 0 and the other

one has not led so far to non-vanishing examples.

The work in this thesis serves as a new effort towards identifying a class of M -bimodules

3



B that would allow defining a viable cohomology theory, an effective isomorphism invariant,

for the II1 factors M . To begin with, since this approach is somewhat inspired by the L2-

cohomology of groups, one expects B to depend canonically on M and be related in some

ways to the Hilbert space L2M and the space of linear bounded operators acting on it

B(L2M).

Beyond that, a first priority for this thesis was that the 1-cohomology with coefficients

in B should not always vanish, i.e, that there should exist II1 factors M that admit non-

inner derivations into B, especially in the case M = LΓ with β
(2)
1 (Γ) ̸= 0, like Γ = Fn,

2 ≤ n ≤ ∞. Another consideration was that B should host the derivations δc : LΓ → B

coming from 1-cocycles c : Γ → ℓ2Γ, which on the group algebra CΓ = span{ug}g are of the

form δc(ug) = [Tf , ug], where Tf is the diagonal operator implemented by f ∈ ℓ∞Γ, obtained

by “integrating” c over the Cayley graph of Γ (note that one can just take f(g) = −cg(g),

∀g ∈ Γ). This implicitly means that derivations of M into B should be uniquely determined

by their values on weakly dense ∗-subalgebras. At the same time, one would like B to have

an M op-bimodule structure as well, commuting with its M -bimodule structure, potentially

leading to a right M⊗M op-module structure on B. One would further hope that whenever

(uk)
n
k=1 ⊂ U(M) is a finite set of unitaries generating M as a von Neumann algebra, the map

δ 7→ (δ(uk))k gives an injective right-M⊗M op-modular map from the space of derivations

Z1(M,B) into Bn, that would behave well to the quotient by the space of inner derivations

B1(M,B), or by its closure B1 under a suitable topology. If such requirements are met,

this would allow associating a first L2-Betti number for M , β
(2)
1 (M), as the Murray-von

Neumann-Lueck dimension of H̃
1
(M,B) := Z1(M,B)/B1 viewed as a right M⊗M op-module.

These considerations force B to be somewhat related to K(L2M), the space where [Mf , ug]

takes values. So having all this in mind, we consider here the following spaces.

For each p ≥ 2, we consider the Banach space of “compact-like operators” K(p) defined

as follows. We first let B∗(p) be the space of functionals φ on B(L2M) with the property
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that

∥φ∥B∗(p) := sup{|φ(xY z)| | Y ∈ (B)1, x, y ∈ M ∩ (LpM)1} < ∞.

We then let B(p) denote the completion of B(L2M) in the norm

|||T |||p := sup{|φ(T )| | φ ∈ (B∗(p))1}.

Finally, we denote by K(p) ⊂ B(p) the closure in B(p) of the space of compact operators

K(L2M). It is immediate to see that (K(p), ||| · |||p) is both a Banach M -bimodule and a Ba-

nachM op-bimodule. It is also easy to see that for eachX ∈ K(p) the left-right multiplications

by elements in the unit ball of M is ∥ · ∥2 − ||| · |||p continuous (smoothness).

Since the derivations of M = LΓ arising from cocycles c : Γ → ℓ2Γ are often implemented

by bounded operators Mf ∈ B(L2M), we in fact expect that the M -bimodules of interest for

us consist of bounded operators. We thus also consider the spaces Kp := K(p) ∩ B(L2M),

p ≥ 2. We prove that in fact all Kp, 2 ≤ p < ∞, “collapse” to just one space, which we show

to coincide with the closure in B(L2M) of K(L2M) in the so-called τ -rank metric qM , given

by its M -bimodule structure, qM(S, T ) = inf{τ(1− p) + ∥p(T − S)p∥ | p ∈ P(M)}.

Theorem 1.0.1. For each p ≥ 2 denote by Kp the space of operators T ∈ B(L2M) for which

there exists a sequence Kn ∈ K(L2M) such that supn ∥Kn∥ < ∞ and limn |||T −Kn|||p = 0.

Then Kp coincides with the τ -rank-completion qKM of K(L2M) in B(L2M).

We note that the τ -rank-completion qKM also coincides with the strong M -M -comple-

tion of K(L2M) in the sense of [Mag00], although we do not take this perspective here.

Any derivation of M into qKM is indeed determined by its values on any weakly-dense

∗-subalgebra of M . In fact, any derivation of M into qKM is continuous from the unit ball

of M with the ∥ · ∥2-topology to qKM with its qM -metric. Also, qKM is both a Banach M

and M op-bimodule and all derivations arising from non-vanishing 1-cocyles c of Γ into ℓ2Γ

described above give rise to non-inner derivations of M = LΓ into qKM . But in fact any

separable II1 factor M (so including the hyperfinite II1 factor) admits non-inner derivations

into the M -bimodule qKM :
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Theorem 1.0.2. Given any separable diffuse tracial von Nuemann algebra M , there exist

non-inner derivations of M into qKM .

Thus, while the primary objective of getting a non-vanishing 1-cohomology is indeed

being met by the M -bimodules qKM , the above result shows that the associated (clas-

sic Hochschild) 1-cohomology space H1(M, qKM), obtained as the quotient of the space of

derivations Z1(M, qKM) by the space of inner derivations B1(M, qKM), becomes too “wild”,

certainly un-calculable. This means one has to take instead the quotient of Z1(M, qKM) by

a closure B1(M, qKM) with respect to some suitable topology on the space of derivations,

like one does for the L2-cohomology of groups. This should however take into consideration

that the closure of B1 in the ∥ ∥2 − qM pointwise convergence on the unit ball of M is too

weak for this purpose, as one has the following:

Theorem 1.0.3. Let δ : M → qKM be a derivation implemented by T ∈ B(L2M). Then

there exists a net of finite-rank operators Kι with ∥Kι∥ ≤ ∥T∥ such that

lim
ι
qM(δ(x), [Kι, x]) = 0,∀x ∈ M.

Moreover, if L2M is separable, then the net can be taken a sequence.

This thesis is organized as follows. Chapter 2 begins by detailing some preliminaries in the

theory of von Neumann algebras. In Section 2.1 and 2.2 we recall the definition of a tracial

von Neumann algebra (M, τ) as well as their associated Lp-spaces. In Sections 2.3 and 2.4

we fix some of the notation and terminology for Banach bimodules over II1 factors. Lastly,

in Section 2.5 we recall the formal definition of Hoschild cohomology, primarily focusing on

1-cohomology.

In Chapter 3, we begin by defining for each p ≥ 2 the space B∗(p) of functionals φ on

B := B(L2M) with the property that

∥φ∥B∗(p) := sup{|φ(xY z)| ≤ 1, ∀Y ∈ (B)1, x, y ∈ M ∩ (LpM)1} < ∞.

6



We continue by considering its predual, B(p), obtained as the completion of B in the norm

|||T |||p := sup{|φ(T )| | φ ∈ (B∗(p))1}. In Section 3.3 we define the subspace K(p) ⊂ B(p),

obtained as the closure in B(p) of the space of compact operators K(L2M), whose dual

identifies naturally to the “normal part” B∗
n(p) of B∗(p).

In Chapter 4, we define the space Kp ⊂ B of operators that are ||| · |||p-limits of bounded

sequences of operators in K(L2M), define the τ -rank topology on M -bimodules, and prove

Theorem 1.0.1, showing that all Kp coincide with the closure qKM of K(L2M) in B(L2M),

in the τ -rank topology (see Theorem 4.1.5). Then in Section 4.1 we consider the space of

derivations of M into qKM and prove Theorems 1.0.2 and 1.0.3 (see 4.2.3 and 4.2.7).

This thesis is based on [HPP24], of which the author of this dissertation was a primary

investigator and author. Chapter 3 is based on the constructions in Sections 3, 4, and 5.

The main results in Chapter 4 are based on sections 6 and 7.
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CHAPTER 2

Preliminaries

In this chapter, we outline some of the basic preliminary results and definitions used through-

out this thesis. We also fix some of the notation used later in the proof of the main results.

For the sake of brevity, we forgo giving any proof. We refer to [AP17] for a full treatment of

this material.

2.1 von Neumann Algebras

Let H be a complex Hilbert space. Denote by B(H) the space of bounded linear operators

on H. Equipped with the involution x 7→ x∗, given by taking the adjoint, B(H) becomes a

∗-algebra under the operations of addition and composition.

Denote by ∥ ∥ the operator norm on B(H). We call the norm topology, the topology on

B(H) induced by ∥ ∥. In addition to the norm topology, we recall the following two weaker

topologies on B(H).

• The weak operator topology (wo-topology) is the locally convex topology on B(H)

induced by the seminorms pξ,η(T ) = |⟨Tξ, η⟩, for ξ, η ∈ H.

• The strong operator topology (so-topology) is the locally convex topology on B(H)

induced by the seminorms pξ(T ) = ∥Tξ∥, for ξ ∈ H.

A unital ∗-subalgebra M ⊂ B(H) is called a von Neumann Algebra if it closed in the

weak operator topology. By a result of von Neumann known as the bicommutant theorem,

the is equivalent to either

8



• M is closed in the strong operator topology.

• M = M ′′

where here S ′ denote the commutant of S, i.e. the set {T ∈ B(H) | Tx = xT,∀x ∈ M}

For this thesis, we mainly consider tracial von Neumann algebras, i.e. a von Neumann

algebra M with a faithful normal trace τ : M → C. Given a tracial von Neumann algebra

(M, τ), we denote by ∥x∥2 = τ(x∗x)1/2 the 2-norm on (M, τ). We denote by L2M the

completion of M with respect to ∥ ∥2. This space L2M is a Hilbert space, and one can view

M as a ∗-subalgebra of B(L2M). In the particular case that a tracial von Neumann algebra

(M, τ) is infinite-dimensional and has trivial center, i.e. Z(M) = C1, we call M a II1 factor.

Below, we recall some natural examples of tracial von Neumann algebras resulting from

groups and group actions due to Murray and von Neumann [MN36,MN43].

Example 2.1.1. (Group von Neumann algebra) Let Γ be a countable group. Denote by

λ : Γ → U(ℓ2Γ) the left regular representation of Γ on ℓ2Γ, given by λ(g)δh = δgh, for g, h ∈ Γ.

The group von Neumann algebra or Γ is then the von Neumann algebra LΓ generated by

{λ(g) | g ∈ Γ} in B(ℓ2Γ). The group von Neumann algebra LΓ has a trace τ(x) = ⟨xδe, δe⟩.

Moreover, LΓ is a II1 factor precisely when all non-trivial conjugacy classes of Γ are infinite,

i.e. when Γ is an icc group.

Example 2.1.2. (Group Measure Space von Neumann Algebra) Let σ : Γ ↷ (X,µ) be a

measure preserving action of a countable group Γ on a standard probability space (X,µ).

Then one has a representation π : Γ → B(L2(X,µ)⊗ℓ2Γ) given by π(g)(f⊗δh) = σ(g)f⊗δgh,

for f ∈ L2(X,µ) and g, h ∈ Γ. Then the von Neumann algebra L∞(X,µ) ⋊ Γ, generated

by f ⊗ 1, for f ∈ L∞(X,µ) and π(g), for g ∈ Γ, is called the group measure space von

Neumann algebra. Here L∞(X,µ)⋊ Γ has a tracial state τ given by τ(x) = ⟨xue, ue⟩, where

ue ∈ L2(X,µ) ⊗ ℓ2Γ is the vector ue = 1 ⊗ δe. Moreover, in the case the action of Γ is free

and ergodic, L∞(X,µ)⋊ Γ will be a II1 factor.

9



Example 2.1.3. (Hyperfinite II1 Factor) Consider the tensor product R0 =
⊗

n≥1M2(C).

This algebra has a tracial state τ =
⊗

n≥1 tr, where tr is the normalized trace on M2(C)

with tr(1) = 1. Call H the Hilbert space completion of R0 with respect to the Hilbert norm

∥x∥2 = τ(x∗x)1
2
. Then the von Neumann algebra R in B(H) generated by R0 is called

the hyperfinite II1 factor. By a theorem of Connes in [Con76a], R is the unique separable

amenable II1 factor. In particular, if Γ is any icc amenable group (i.e. an amenable group

whose non-trivial conjugacy classes are infinite) then LΓ ∼= R.

2.2 Non-commutative Lp-spaces

Let (M, τ) be a tracial von Neumann algebra. Then for any 1 ≤ p < ∞, ∥x∥p = τ(|x|p)1/p

defines a norm on M . Here the norm ∥x∥p is increasing in p, and the limit limp→∞ ∥x∥p

equal to the operator norm ∥x∥∞ = ∥x∥ on M .

The completion of M in the norm ∥ ∥p is denoted by LpM , called the non-commutative

Lp-space of M . Since ∥ ∥p is increasing in p, one has LpM ⊃ Lp′M whenever p′ ≥ p. One can

naturally identify LpM with the space of densely defined closed operators T on L2M that are

affiliated with M and have the property that |T | has spectral decomposition |T | =
∫
λdeλ

satisfying
∫
λpdτ(eλ) < ∞.

If 1 ≤ p ≤ ∞, then (LpM)1 is closed in Lp′M , for any 1 ≤ p′ ≤ p. Moreover, all of the

∥ ∥p′-topologies on the unit ball (M)1 of M for 1 ≤ p′ < ∞ coincide with the so-topology

on (M)1 and if p < ∞, then all ∥ ∥p′-topologies on (LpM)1, 1 ≤ p′ ≤ p coincide with the

∥ ∥p-topology.

Recall that if 1 ≤ p < ∞, then (LpM)∗ ≃ LqM , where q = p
p−1

(with the usual convention

1/0 = ∞), the duality being given by (ξ, ζ) 7→ τ(ζ∗ξ) for ξ ∈ LpM , ζ ∈ LqM , viewed as

operators affiliated with M . This also shows that if y ∈ M and 1 ≤ p, q ≤ ∞ with 1
p
+ 1

q
= 1,

then ∥y∥p = sup{|τ(yz)| | z ∈ (LqM)1}.
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2.3 Banach Bimodules

Let M be a von Nuemann algebra. Then a Banach M-bimodule B is a Banach space with left

and right multiplication operationsM×B ∋ (x, T ) 7→ xT ∈ B and B×M ∋ (T, x) 7→ Tx ∈ B,

which satisfy

• x(yT ) = (xy)T and (Tx)y = T (xy), for all x, y ∈ M and T ∈ B.

• 1MT = T1M = T , for all T ∈ B.

• ∥xT∥B ≤ ∥x∥M∥T∥B, ∥Tx∥B ≤ ∥T∥B∥x∥M , for all x ∈ M and T ∈ B.

Often times a Banach M -bimodule B is a assumed to have additional structural or topo-

logical properties. For example, if B is the dual of a Banach space B∗ and for each x ∈ M

the maps B ∋ T 7→ xT ∈ B, B ∋ T 7→ Tx ∈ B are continuous with respect to the σ(B,B∗)

topology (also called weak∗-topology), then B is called a dual M-bimodule. Furthermore,

if M is a von Neumann algebra, B is a dual M -bimodule, and for each T ∈ B the maps

M ∋ x 7→ xT ∈ B, M ∋ T 7→ Tx ∈ B are continuous from (M)1 with the σ(M,M∗)-topology

to B with the σ(B,B∗)-topology, then we say that the dual M -bimodule B is normal.

We conclude by listing several examples of Banach M -bimodules.

Example 2.3.1. Let B be any larger unital Banach algebra that contains M with 1M = 1B.

Then B is a Banach M -bimodule with left and right products xT, Tx for x ∈ M , T ∈ B,

being the restrictions of the product in the larger algebra B. In the case M ⊂ B is an

inclusion of von Neumann algebras MBM is in fact a dual normal M -bimodule. For example,

if (M, τ) is tracial then B = B(L2M) becomes a dual normal M -bimodule.

Example 2.3.2. If B is a Banach M -bimodule, then any norm closed two sided ideal J in

the Banach algebra B, which will have a natural M -bimodule structure by restriction from

B. For example, if M ⊂ B(H), then the compact operators K(H) ⊂ B(H) becomes a Banach

M -bimodule.
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Example 2.3.3. Let B be a Banach M -bimodule. Then the dual space B∗ naturally has

an M -bimodule structure given by B∗ ∋ φ 7→ x · φ · y ∈ B∗, ∀x, y ∈ M , which for T ∈ B is

defined by x · φ · y(T ) = φ(yTx). Then with respect to operator norm ∥ ∥B∗ , B∗ becomes a

Bancah dual normal M -bimodule.

Example 2.3.4. Let (M, τ) be a tracial von Neumann algebra viewed in B(L2M). Then

the predual of B(L2M) is the space all normal linear functionals φ ∈ B(L2M)∗, denoted as

B∗
n(L

2M). This forms a norm closed two sided ideal on B(L2M)∗, and hence is aM -bimodule.

In fact, since K(L2M)∗ = B∗
n(L

2M), it is a dual normal M -bimodule.

Example 2.3.5. Let (M, τ) be a tracial von Neumann algebra. Then we note that if

x, y ∈ M and ξ ∈ LpM , then ∥xξy∥p ≤ ∥x∥∥ξ∥p∥y∥. This makes LpM , for 1 ≥ p ≤ ∞, a

Banach M -bimodule. In the case 1 < p ≤ ∞, since LpM = (LqM)∗ for q = p
p−1

, LpM will

be dual and normal.

2.4 Smooth Bimodules

Let (M, τ) be a tracial von Neumann algebra and B a Banach M -bimodule. Following

Galatan and Popa in [GP17], we say an element T ∈ B is smooth if the maps x 7→ xT

and x 7→ Tx are continuous from the unit ball of M with its ∥ · ∥2-topology to B with its

Banach norm topology. We call the smooth part of B, denoted as s∗(B), the set of all smooth

elements in B. In the case s∗(B) = B, we say that B is a smooth bimodule. Of course, s∗(B)

is itself a smooth M -bimodule.

One can check that the compact operators K(L2M) are contained in the smooth part

s∗(B(L2M)). And hence K(L2M) is itself a smooth bimodule. This example is much em-

phasised in [Pop87], [GP17].

In general, s∗(B(L2M)) is strictly larger than K(L2M) (see [GP17, Theorem 1.6]). For

example, assume that M is diffuse and that A ⊂ M is a separable diffuse abelian subalgebra.

Then let {ξn}n∈N ⊂ L2(A, τ) be a a sequence of independent identically distributed real

12



valued Gaussian random variables. Let p be the orthogonal projection of L2M onto the

subspace H0 generated by the {ξn}n∈N. Then one has p ∈ s∗(B(L2M)) but p /∈ K(L2M).

Another example, studied in [PR88], is when M is contained (as a von Neumann subal-

gbera) in a II∞ factor M with a normal semifinite faithful trace Tr and B is the norm closed

∗-ideal of “compact operators” J (M) ⊂ M, consisting of T ∈ M with the property that all

spectral projections e[t,∞)(T
∗T ) corresponding to t > 0 have finite trace, ∀t > 0.

One should mention that in both these examples, the norm ∥ ∥ on the M -bimodule B is

operatorial (see [JP72], [GP17]). That is if T ∈ B, and p ∈ P(M) is a projection in M , then

∥pTp+ (1− p)T (1− p)∥ = max{∥pTp∥, ∥(1− p)T (1− p)∥}. we note that the operator norm

on M is itself operatorial. However, for 1 ≤ p < ∞, the ∥ ∥p-norm fails this operatorial

property.

2.5 1-Cohomology group H1(M,B)

We recall here the definition of the 1-cohomology group H1(M,B) in the sense of Hochschild.

Let M be a von Neumann algebra and B a Banach M -bimodule. We say a linear map

δ : M → B is a derivation if it satisfies the product rule, i.e. if δ(xy) = xδ(y) + δ(x)y for all

x, y ∈ M .

For example, for any fixed element T ∈ B the map AdT : M → B given by AdT (x) =

[T, x] = Tx − xT is a derivation. Any such derivation δ : M → B of the form δ = AdT for

some T ∈ B is called an inner derivation.

Denote by Z1(M,B) the space of all derivations δ : M → B. Call B1(M,B) ⊂ Z1(M,B)

the subspace of all inner derivations. We denote by H1(M,B) the quotient space

H1(M,B) = Z1(M,B)/B1(M,B)

Note that H1(M,B) is the 1-cohomology group, in the sense of Hochschild (c.f. [Hoc45]).

Much of the initial work regarding 1-cohomology for von Neumann algebras revolves
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around proving vanishing results, i.e. that H1(M,B) = 0 for certain classes of bimodule B.

This amounts to proving that all derivations δ : M → B are inner. We recall some of these

vanishing results here.

Example 2.5.1. Let M be a von Neumann algebra. Then H1(M,M) = 0. This follows

from the results of Kadison [Kad66] and Sakai [Sak66].

Example 2.5.2. Let M ⊂ B(H) be a von Neumann algebra, and let K(H) ⊂ B(H) be the

subset of compact operators (see 2.3.2). Then H1(M,K(H)) = 0. This was first proven

in the case when M is amenable by Johnson and Parrot [JP72], and later for a general II1

factor by Popa in [Pop87].

Example 2.5.3. Let (M, τ) be a tracial von Neuamnn algebra. Then H1(M,B(L2M)) = 0.

This follows from a result of Christensen [Chr82]. More generally, if M ⊂ B(H) is a von

Neumann algebra and H has finite coupling constant then H1(M,B(H)) = 0.

Example 2.5.4. Let M ⊂ B(H) be a von Nuemann algebra and B0 be a closed subspace

of the smooth part s∗(B(H)), (see Section 2.4). Then Galatan and Popa in [GP17] proved

H1(M,B0). Since K(H) ⊂ s∗(B(H)), this can be seen as a generalization of H1(M,K(H)) in

Example 2.5.2. Galatan and Popa further showed such a vanishing result holds for a larger

class of smooth and operatorial (in the sense of Section 2.4) bimodules.
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CHAPTER 3

Classes of Smooth Bimodules

Let (M, τ) be a tracial von Neumann algebra, and view M ⊂ B(L2M) as a subalgebra of

B(L2M). Then, as described in Section 2.3, we recall the following four canonical Banach

M -bimodules associated with B(L2M). Namely,

• B(L2M) itself, which is a dual nomal M -bimodule (see example 2.3.1).

• The subspace K(L2M) ⊂ B(L2M) of compact operators. (see example 2.3.2).

• The dual space B∗(L2M) = (B(L2M))∗, which equipped with operator norm ∥ ∥B∗(L2M)

is a dual nomal M -bimodule (see example 2.3.3).

• The subspace of normal linear functionals B∗
n(L

2M) ⊂ B∗(L2M), i.e. the predual of

B(L2M) (see example 2.3.4).

We observe that if one begins with the M -bimodule B∗(L2M), one can construct all four

of the above bimodules by successively taking preduals. Namely, we observe that B∗(L2M) =

(B(L2M))∗, B(L2M) = (B∗
n(L

2M))∗, and B∗
n(L

2M) = (K(L2M))∗.

In this chapter we define, for any 2 ≤ p < ∞, a sort of “Lp-smooth” generalization of

each of these bimodules. In section 3.1, we define for 2 ≤ p < ∞ the smooth M -bimodule

B∗(p). This space can be thought of as the space of linear functionals on B(L2M) that are

“Lp-smooth relative to M”. In section 3.2, we construct a smooth bimodule B(p) analogous

to B(L2M) by taking the predual of B∗(p). Lastly in 3.3, we define an analogue of the

compact operators K(L2M) denoted as K(p).

15



The constructions in Sections 3.1, 3.2, and 3.3 are based on the constructions in Sections

3, 4, and 5 in [HPP24]

3.1 The dual Banach M-bimodules B∗(p), 2 ≤ p < ∞

Fix a tracial von Neumann algebra (M, τ) and we set B = B(L2M). We first consider a

one parameter family of M sub-bimodules B∗(p) ⊂ B∗, 2 ≤ p < ∞, defined as spaces of

functionals on B that are “Lp-smooth relative to M”.

Definition 3.1.1. Let 2 ≤ p < ∞. We denote by B∗(p) the subspace of functionals φ ∈

B∗ = B(L2M)∗ with the property that

∥φ∥B∗(p) := sup{|φ(xTy)| | T ∈ (B)1, x, y ∈ M, ∥x∥p, ∥y∥p ≤ 1}

is finite. Note right away that B∗(p) is a vector subspace of B∗ and that ∥ · ∥B∗(p) is a norm

on it that majorizes the usual norm of functionals in B∗.

Proposition 3.1.2. 1◦ The space B∗(p) is a Banach space with respect to the norm ∥ ·

∥B∗(p).

2◦ If 2 ≤ p′ ≤ p < ∞, then B∗(p′) ⊂ B∗(p). Moreover, for any φ ∈ B∗ we have

∥φ∥ ≤ ∥φ∥B∗(p) ≤ ∥φ∥B∗(p′). Thus, lim
p→∞

∥φ∥B∗(p) = inf
p→∞

∥φ∥B∗(p) ≥ ∥φ∥.

Proof. (1) It remains to check that B∗(p) is complete with respect to the ∥ · ∥B∗(p)-norm. So

take a Cauchy sequence (φn) in (B∗(p), ∥ · ∥B∗(p)). Since the norm ∥ · ∥B∗(p) majorizes the

norm ∥ · ∥B∗ , the sequence (φn) is also Cauchy in B∗. Let φ be its ∥ · ∥B∗-norm limit in B∗.

We claim first that φ ∈ B∗(p). Take any T ∈ (B)1 and x, y ∈ M with ∥x∥p, ∥y∥p ≤ 1. Since

φn → φ with respect to the ∥ · ∥B∗-norm, we can find an m such that

∥φ− φm∥B∗ ≤ ∥xTy∥−1.
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In particular, we see that

|φ(xTy)| ≤ |φ(xTy)− φm(xTy)|+ |φm(xTy)|

≤ ∥xTy∥∥φ− φm∥+ sup
n≥1

|φn(xTy)|

≤ 1 + sup
n≥1

∥φn∥B∗(p).

(3.1)

This last quantity is finite since (φn) was assumed to be Cauchy in B∗(p). It follows then

that |φ(xTy)| is uniformly bounded over all T ∈ (B)1 and ∥x∥p, ∥y∥p ≤ 1, and so φ ∈ B∗(p).

It remains to check that φn → φ with respect to the ∥ · ∥B∗(p) norm. To do this, let S be

the set of elements X in B of the form xTy with T ∈ (B)1 and x, y ∈ M , ∥x∥p, ∥y∥p ≤ 1.

Then we have

lim
n→∞

∥φ− φn∥B∗(p) = lim
n→∞

sup
X∈S

|φ(X)− φn(X)|

= lim
n→∞

sup
X∈S

lim
m→∞

|φm(X)− φn(X)|

≤ lim
n→∞

lim
m→∞

sup
X∈S

|φm(X)− φn(X)|

= lim
n,m→∞

∥φm − φn∥B∗(p).

(3.2)

Since (φn) was Cauchy with respect to the ∥ · ∥B∗(p) norm, it follows that (φn) also converge

to φ with respect to the ∥ · ∥B∗(p) norm. This shows B∗(p) is complete, and thus is a Banach

space.

(2) Now suppose 2 ≤ p′ ≤ p < ∞. For any x ∈ M we have that ∥x∥p′ ≤ ∥x∥p, so

the set {xTy | T ∈ (B)1, x, y ∈ M, ∥x∥p, ∥y∥p ≤ 1} is a subset of {xTy | T ∈ (B)1, x, y ∈

M, ∥x∥p′ , ∥y∥p′ ≤ 1}. Taking supremums in the definition of ∥·∥B∗(p), we conclude ∥φ∥B∗(p) ≤

∥φ∥B∗(p′). The rest of the statement follows immediately.

Proposition 3.1.3. 1◦ Let 2 ≤ p < ∞. If x, y ∈ M and φ ∈ B∗(p), then

∥x · φ · y∥B∗(p) ≤ ∥x∥∥y∥∥φ∥B∗(p), ∥xop · φ · yop∥B∗(p) ≤ ∥xop∥∥yop∥∥φ∥B∗(p).
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Thus, the M and M op bimodule structures on B∗ leave B∗(p) invariant and implement

Banach M-bimodule and M op-bimodule structures on (B∗(p), ∥ · ∥B∗(p)).

2◦ The unit ball (B∗(p))1 is compact in the σ(B∗,B) topology.

3◦ The unit ball (B∗(p))1 is norm closed in B∗.

4◦ For each x, y ∈ M , the map B∗(p) ∋ φ 7→ x · φ · y ∈ B∗(p) is continuous with respect

to the σ(B∗,B)-topology.

Proof. 1◦ Take some 2 ≤ p < ∞. Fix elements x, y ∈ M and a functional φ ∈ B∗(p). Let

T ∈ (B)1 and x′, y′ ∈ M with ∥x′∥p, ∥y′∥p ≤ 1. Then, if we apply x · φ · y to x′Ty′, we get

|[x · φ · y](x′Ty′)| = |φ(yx′Ty′x)| = ∥x∥∥y∥
∣∣∣∣φ( yx′

∥y∥
T
y′x

∥x∥

)∣∣∣∣ .
Notice that we have the bounds ∥yx′/∥y∥∥p ≤ 1 and ∥y′x/∥x∥∥p ≤ 1. It follows by definition

then that

|[x · φ · y](x′Ty′)| = ∥x∥∥y∥
∣∣∣∣φ( yx′

∥y∥
T
y′x

∥x∥

)∣∣∣∣ ≤ ∥x∥∥y∥∥φ∥B∗(p).

Taking the supremum over all T ∈ (B)1 and all x′, y′ ∈ M with ∥x′∥p, ∥y′∥p ≤ 1 gives the

bound ∥x · φ · y∥B∗(p) ≤ ∥x∥∥y∥∥φ∥B∗(p) as desired.

Let us now fix xop, yop ∈ M op. Take T ∈ (B)1 and x′, y′ ∈ M with ∥x′∥p, ∥y′∥p ≤ 1. As

we did before, if we apply xop · φ · yop to x′Ty′, we get

|[xop · φ · yop](x′Ty′)| = |φ(yopx′Ty′xop)| = ∥xop∥∥yop∥
∣∣∣∣φ(x′ yop

∥yop∥
T

xop

∥xop∥
y′
)∣∣∣∣ .

Here this operator yopTxop/∥xop∥∥yop∥ has norm at most 1, so by definition we get

|[xop · φ · yop](x′Ty′)| ≤ ∥xop∥∥yop∥∥φ∥B∗(p).

Taking supremums over all T, x′, y′ will give ∥xop · φ · yop∥B∗(p) ≤ ∥xop∥∥yop∥∥φ∥B∗(p).
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2◦ For x, y ∈ M , let Sx,y ⊂ B∗ be the set of all functionals φ ∈ B∗ such that ∥x·φ·y∥B∗ ≤ 1.

It is clear from the definitions that

(B∗(p))1 =
⋂

∥x∥p,∥y∥p≤1

Sx,y.

Now each of these sets Sx,y is closed in the σ(B∗,B) topology so (B∗(p))1 is also closed in this

topology. Furthermore, notice since the norm ∥ · ∥B∗(p) majorizes the operator norm on B∗

that (B∗(p))1 ⊂ (B∗)1. The Banach-Alaoglu theorem then gives us that (B∗(p))1 is compact.

3◦ This is just a consequence of 2◦.

4◦ Fix elements x, y ∈ M . From 1◦, we know that the map φ 7→ x ·φ · y is a well defined

linear map from B∗(p) to itself. It is also a σ(B∗,B) continuous map on the whole space B∗,

so restricting to B∗(p) proves the claim.

Lemma 3.1.4. Let 2 ≤ p < ∞ and φ ∈ B∗. Assume φ = ωξ,η for some ξ, η ∈ L2M . Then

φ ∈ B∗(p) if and only if ξ, η ∈ LqM , where q = 2p
p−2

, with the conventions 1
0
= ∞. Moreover,

if this is the case, then ∥ωξ,η∥B∗(p) = ∥ξ∥q∥η∥q.

Proof. Take elements x, y ∈ M with ∥x∥p, ∥y∥p ≤ 1 and an operator T ∈ (B)1. By Cauchy-

Schwartz, we have a bound

|ωξ,η(xTy)| = |⟨xTyξ, η⟩| = |⟨Tyξ, x∗η⟩| ≤ ∥Tyξ∥2∥x∗η∥2 ≤ ∥yξ∥2∥x∗η∥2.

This gives a bound

∥ωξ,η∥B∗(p) ≤ sup
∥y∥p≤1

∥yξ∥2 sup
∥x∥p≤1

∥x∗η∥2 = sup
∥y∥p≤1

∥yξ∥2 sup
∥x∥p≤1

∥xη∥2.

Notice that the reverse inequality also holds. For if x, y ∈ M are fixed with ∥x∥p, ∥y∥p ≤ 1,

consider the rank-one partial isometry Tx,y ∈ (B)1 that maps yξ to ∥yξ∥
∥x∗η∥x

∗η. Then

∥yξ∥2∥x∗η∥2 = |ωξ,η(xTx,yy)| ≤ ∥ωξ,η∥B∗(p).

Taking the supremum over x and y gives us the reverse inequality.
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So far we have that

∥ωξ,η∥B∗(p) = sup
∥y∥p≤1

∥yξ∥2 sup
∥x∥p≤1

∥xη∥2.

If we now use the non-commutative version of Hölder’s inequality, then

sup
∥y∥p≤1

∥yξ∥2 = ∥ξ∥q,

where 1/p+ 1/q = 1/2, or q = 2p
p−2

. Similarly,

sup
∥x∥p≤1

∥xη∥2 = ∥η∥q.

This gives the desired result ∥ωξ,η∥B∗(p) = ∥ξ∥q∥η∥q.

A version of the previous lemma actually works for arbitrary positive finite-rank func-

tionals φ ∈ B∗(p).

Lemma 3.1.5. Fix 2 ≤ p < ∞, and let q = 2p
p−2

be as in the last lemma. Let φ ∈ B∗(p) be

of the form φ =
∑n

i=1 ωξi,ξi where ξ1, ξ2, . . . , ξn are in LqM . Then

∥φ∥B∗(p) =

∣∣∣∣∣
∣∣∣∣∣

n∑
i=1

ξiξ
∗
i

∣∣∣∣∣
∣∣∣∣∣
q/2

.

Proof. First we derive a lower bound for ∥φ∥B∗(p). Recall that ∥φ∥B∗(p) is a supremum over

the values |φ(xTy)|, where x, y ∈ M are such that ∥x∥p, ∥y∥p ≤ 1 and T ∈ B(L2M) is such

that ∥T∥ ≤ 1. In particular, if we make T the identity on B(L2M),

∥φ∥B∗(p) ≥ sup
∥x∥p,∥y∥p≤1

|φ(xy)| = sup
∥x∥p,∥y∥p≤1

∣∣∣∣∣
n∑

i=1

⟨xyξi, ξi⟩

∣∣∣∣∣
= sup

∥x∥p,∥y∥p≤1

∣∣∣∣∣
n∑

i=1

τ(xyξiξ
∗
i )

∣∣∣∣∣
= sup

∥x∥p,∥y∥p≤1

∣∣∣∣∣τ
(
xy

n∑
i=1

ξiξ
∗
i

)∣∣∣∣∣ .
(3.3)
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As x and y range over all elements with p norm at most 1, xy can be any element of M with

p/2 norm at most 1. By density, the above supremum is equal to supη∈(Lp/2)1 τ (η
∑n

i=1 ξiξ
∗
i ),

which by duality is the same as ||
∑n

i=1 ξiξ
∗
i ||r, where r is the Hölder conjugate of p/2. A

quick calculation gives
1

r
= 1− 1

p/2
=

p− 2

p
=

1

q/2
.

So we get a lower bound ||
∑n

i=1 ξiξ
∗
i ||q/2 for ∥φ∥B∗(p).

Now we prove the reverse inequality. By definition, ∥φ∥B∗(p) is the supremum over all

sums

φ(xTy) =
n∑

i=1

⟨xTyξi, ξi⟩ =
n∑

i=1

⟨Tyξi, x∗ξi⟩,

where ∥x∥p, ∥y∥p ≤ 1 and ∥T∥ ≤ 1. By Cauchy Schwartz, any one of the inner products

⟨Tyξi, x∗ξi⟩ is bounded by

⟨Tyξi, x∗ξi⟩ ≤ ∥x∗ξi∥2∥Tyξi∥2 ≤ ∥x∗ξi∥2∥yξi∥2.

Thus, we get the upper bound

∥φ∥B∗(p) ≤ sup
∥x∥p,∥y∥p≤1

n∑
i=1

∥x∗ξi∥2∥yξi∥2 = sup
∥x∥p,∥y∥p≤1

n∑
i=1

∥xξi∥2∥yξi∥2.

If we use Hölder’s inequality, then

∥φ∥B∗(p) ≤ sup
∥x∥p,∥y∥p≤1

(
n∑

i=1

∥xξi∥22

)1/2( n∑
i=1

∥yξi∥22

)1/2

≤ sup
∥x∥p≤1

n∑
i=1

∥xξi∥22.

(3.4)

Now, we can write ∥xξi∥22 in terms of τ so that

∥φ∥B∗(p) ≤ sup
∥x∥p≤1

n∑
i=1

τ(x∗xξiξ
∗
i ) ≤ sup

∥x∥p≤1

τ

(
x∗x

n∑
i=1

ξiξ
∗
i

)
.

By the same duality argument, this is equal to ||
∑n

i=1 ξiξ
∗
i ||q/2. This completes the proof.
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We remark that one can calculate an upper bound for ∥φ∥B∗(p) for an arbitrary finite-rank

functional φ ∈ B∗(p) by using the polarization identity combined with Lemma 3.1.5. For a

general, not necessarily finite-rank, φ one has the following.

Proposition 3.1.6. Let 2 ≤ p < ∞ and φ ∈ B∗.

1◦ If φ ∈ B∗(p), then φ∗ ∈ B∗(p) and ∥φ∗∥B∗(p) = ∥φ∥B∗(p). Thus, ℜφ,ℑφ ∈ B∗(p) and

∥ℜφ∥B∗(p), ∥ℑφ∥B∗(p) ≤ ∥φ∥B∗(p).

2◦ If φ ∈ B∗(p), then its normal and singular parts (as functionals in B∗) φn, φs, belong

to B∗(p), with ∥φn∥B∗(p), ∥φs∥B∗(p) ≤ ∥φ∥B∗(p).

Proof. 1◦ By the definitions, one obviously have ∥φ∥B∗(p) = ∥φ∗∥B∗(p) for each φ ∈ B∗. Thus,

φ ∈ B∗(p) implies φ∗ ∈ B∗(p), and hence also the real and imaginary parts of any such φ,

lie in B∗(p). The given upper bounds then follow from the triangle inequality.

2◦ Let φ be any element of B∗(p), and let φn and φs be the normal and singular parts of φ

respectively. Recalling the construction of these functionals, let pM be the central projection

in B∗∗ such that φn = pM · φ and φs = (1− pM) · φ. If x and y are any elements of M such

that ∥x∥p, ∥y∥p ≤ 1, then by using the fact that pM commutes with M we get

x · φn · y = x · (pM · φ) · y = pM(x · φ · y).

If we then apply the usual norm from B∗ we have that

∥x · φn · y∥ = ∥pM(x · φ · y)∥ ≤ ∥x · φ · y∥ ≤ ∥φ∥B∗(p).

Taking the supremum over all x and y with ∥x∥p, ∥y∥p ≤ 1, gives us then that ∥φn∥B∗(p) ≤

∥φ∥B∗(p). The same argument with 1− pM shows that ∥φs∥B∗(p) ≤ ∥φ∥B∗(p).

Corollary 3.1.7. Let 2 ≤ p < ∞ and denote B∗
n(p) = {φ ∈ B∗(p) | φ = φn}. Then B∗

n(p) is

norm closed and σ(B∗,B)-dense in (B∗(p), ∥ · ∥B∗(p)).
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Proof. Take any 2 ≤ p ≤ ∞. Since the space (B∗
n)

∗ = B, the space is B∗
n is σ(B∗,B) dense

in B∗. Moreover, the space L ⊂ B∗
n obtained as the span of functionals of the form ωξ,η with

ξ, η ∈ M̂ ⊂ L2M is clearly dense in B∗
n with respect to the usual norm in B∗. Since L is

contained in B∗(p), this implies that B∗
n(p) is σ(B∗,B) dense in B∗(p).

Next, consider a Cauchy sequence {φn} in B∗
n(p). Since B∗(p) is complete, the sequence

converges to some φ ∈ B∗(p). But for all p, the ∥ · ∥B∗(p) norm dominates the usual norm of

functionals in B∗. Thus, φ is the usual norm limit in B∗ of the normal functionals φn, and

hence it is normal itself, φ ∈ B∗
n, showing that B∗

n(p) is norm closed.

We end this section by noticing that the norm ∥·∥B∗(p) on the M -bimodules B∗(p) satisfies

an interesting property with respect to direct sums, which we will however not use in this

paper.

Proposition 3.1.8. Let (M, τ) be a tracial von Neumann algebras and 2 ≤ p < ∞. As-

sume φ1, φ2 ∈ B∗(p) are supported by mutually orthogonal projections in Z(M), i.e., there

exist z1, z2 ∈ P(Z(M)) such that φi = φi(zi · zi), i = 1, 2. Then for p = 2 we have

∥φ1 + φ2∥B∗(2) = max{∥φ1∥B∗(2), ∥φ2∥B∗(2)} and for 2 < p < ∞ we have ∥φ1 + φ2∥B∗(p) =

(∥φ1∥qB∗(p) + ∥φ1∥qB∗(p))
1/q, where q = p

p−2
.

Proof. Let φ = φ1 + φ2. By definition, ∥φ∥B∗(p) is the supremum of |φ(xTy)| for x, y ∈ M

with p-norm at most 1 and T ∈ B(L2M) with norm at most 1. Since φ is supported on

z1 + z2, we can restrict the values of x and y we take to only those in M(z1 + z2), and

operators T we take to those supported on (z1 + z2)L
2M . With this in mind, consider such

a triple x, y, and T . We can decompose x = x1 + x2 where x1 = z1xz1 and x2 = z2xz2.

Similarly, we can decompose y = y1 + y2 where y1 and y2 are defined in the same manner.

We then define the operator

T =

T11 T12

T21 T22

 ,
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where here Tij = ziTzj. Under this decomposition, we have

|φ(xTy)| = |φ1(x1T11y1) + φ2(x2T22y2)|.

We now wish to maximize this quantity given ∥T∥ ≤ 1 and |x|p, |y|p ≤ 1. First, it is clear

that it is optimal make the off diagonal terms of T equal to 0, and have the diagonal terms T11

and T22 have norm 1. Next, we see by properties of the p-norm in M that |x1|pp+ |x2|pp = |x|pp
and |y1|pp+ |y2|pp = |y|pp. While varying the xi, yi, Tii under these constraints, we calculate the

norm ∥φ∥B∗(p) to be the supremum of

α1β1∥φ1∥B∗(p) + α2β2∥φ1∥B∗(p),

where the αi and βi are in [0, 1] and satisfy αp
1 + αp

2 = 1 and βp
1 + βp

2 = 1. Now let q be such

that 1/q + 2/p = 1, i.e. the Hölder conjugate of p/2. Then the discrete version of Hölder’s

inequality gives us

α1β1∥φ1∥B∗(p) + α2β2∥φ1∥B∗(p) ≤ (αp
1 + αp

2)
1/p(βp

1 + βp
2)

1/p(∥φ1∥qB∗(p) + ∥φ2∥qB∗(p))
1/q

= (∥φ1∥qB∗(p) + ∥φ2∥qB∗(p))
1/q.

(3.5)

Moreover, equality is guaranteed to be achieved for some values of αi and βi. This gives us

∥φ∥B∗(p) = (∥φ1∥qB∗(p) + ∥φ2∥qB∗(p))
1/q.

Raising both sides to the qth power then completes the proof.

3.2 The Banach bimodules B(p), 2 ≤ p < ∞

We now consider the natural preduals of the spaces B∗(p) introduced in the previous section.

Definition 3.2.1. Let 2 ≤ p < ∞. For each T ∈ B = B(L2M), denote |||T |||p = sup{|φ(T )| |

φ ∈ (B∗(p))1}. Noticing that ||| · |||p is a norm on B, we denote by B(p) the completion of B

in this norm.
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Lemma 3.2.2. 1◦ For each T ∈ B, the norms |||T |||p are increasing in p and majorized by

the operator norm ∥T∥, with lim
p→∞

|||T |||p = supp |||T |||p = ∥T∥.

2◦ If T ∈ B and x, y ∈ M , then

|||xTy|||p ≤ ∥x∥p∥T∥∥y∥p, |||xTy|||p ≤ ∥x∥|||T |||p∥y∥,

|||xopTyop|||p ≤ ∥xop∥|||T |||p∥y
op∥.

Proof. 1◦ Take 2 ≤ p ≤ p′ < ∞ and T ∈ B. Since (B∗(p))1 ⊂ (B∗(p′))1 we have that

|||T |||p = sup{|φ(T )| | φ ∈ (B∗(p))1}

≤ sup{|φ(T )| | φ ∈ (B∗(p′))1}

= |||T |||p′ .

(3.6)

So the norms ||| · |||p are increasing as p increases. For any finite 2 ≤ p < ∞, we also have a

bound |||T |||p ≤ ∥T∥, since the unit ball (B∗(p))1 is a subset of (B∗)1. So it follows that |||T |||p
converges as p tends to infinity.

To find the limit of these norms, take x and y any elements of M . Let x̂ and ŷ be the

associated elements of L2M . By Lemma 3.1.4 we have

|⟨T x̂, ŷ⟩| = |ωx̂,ŷ(T )| ≤ |||T |||p∥ωξ,η∥B∗(p) = |||T |||p∥x∥q∥y∥q,

where q = 2p
p−2

. Letting p tend to infinity gives us the bound

|⟨T x̂, ŷ⟩| ≤ ∥x∥2∥y∥2 lim
p→∞

|||T |||p.

If we take the supremum over all x, y ∈ M with ∥x∥2, ∥y∥2 ≤ 1, we get that ∥T∥ ≤ lim
p→∞

|||T |||p.

The result then follows.

2◦ First consider when 2 ≤ p < ∞. Fix x, y ∈ M and T ∈ B. If φ is an element of B∗(p),

then we have a bound

|φ(xTy)| = ∥x∥p∥y∥p∥T∥ ·
∣∣∣∣φ( x

∥x∥p
T

∥T∥
y

∥y∥p

)∣∣∣∣
≤ ∥x∥p∥y∥p∥T∥ · ∥φ∥B∗(p).

(3.7)
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If we take the supremum over all φ with ∥φ∥B∗(p) ≤ 1, this gives the

|||xTy|||p = sup
∥φ∥B∗(p)≤1

|φ(xTy)| ≤ ∥x∥p∥T∥∥y∥p,

which is the first desired inequality. On the other hand, one could also note that

|||xTy|||p = sup
∥φ∥B∗(p)≤1

|φ(xTy)| = sup
∥φ∥B∗(p)≤1

|(y · φ · x) (T )| .

From Proposition 3.1.3, we know that ∥y ·φ ·x∥B∗(p) ≤ ∥x∥∥y∥∥φ∥B∗(p). Thus, it follows that

|||xTy|||p ≤ sup
∥φ∥B∗(p)≤∥x∥∥y∥

|φ(T )| = ∥x∥|||T |||p∥y∥.

This gives the second desired inequality. The case when x and y are elements of M op follows

by the exact same reasoning.

Proposition 3.2.3. Let q = 2p
p−2

as before, and let q′ = 2p
p+2

be the Hölder conjugate of q.

If T ∈ B(L2M) satisfies |||T |||p ≤ 1, then T takes the unit ball of LqM into the unit ball of

Lq′M , thus defining an element T̃ ∈ (B(LqM,Lq′M))1. The map T 7→ T̃ extends uniquely

to a contractive linear map from B(p) into B(LqM,Lq′M), which is injective when restricted

to B(L2M).

Proof. Noticing that for any 2 ≤ p ≤ ∞ one has q ≤ 2 ≤ q′, if T ∈ B(L2M), then for any

vector ξ ∈ LqM ⊂ L2M we have

∥Tξ∥q′ ≤ ∥Tξ∥2 ≤ ∥T∥∥ξ∥2 ≤ ∥T∥∥ξ∥q.

Hence, T restricts to a bounded operator T̃ ∈ B(LqM,Lq′M). Moreover, we notice by

Lemma 3.1.4 that if ξ, η are vectors in LqM , then

|⟨Tξ, η⟩| = |ωξ,η(T )| ≤ ∥ωξ,η∥B∗(p)|||T |||p = ∥ξ∥q∥η∥q|||T |||p.

Thus, the bilinear form u : L2M×L2M → C given by u(ξ, η) = ⟨Tξ, η⟩ restricts to a bilinear

form on LqM × LqM with norm at most |||T |||p. But notice by the noncommutative version

of Hölder’s inequality

sup
∥ξ∥q ,∥η∥q≤1

|⟨Tξ, η⟩| = ∥T∥LqM→Lq′M
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where here, this norm represents the operator norm in B(LqM,Lq′M). Thus we conclude

that ∥T̃∥LqM→Lq′M ≤ |||T |||p. By the ||| · |||p-density of B(L2M) in B(p), it follows that the

map T 7→ T̃ extends uniquely to a contractive linear map on all B(p).

Proposition 3.2.4. 1◦ The restriction of the norm ||| · |||p to M ⊂ B is equal to the norm

∥ · ∥p/2 for L
p
2M .

2◦ If M is assumed to be a factor, then the restriction of the norm ||| · |||p to M op ⊂ B is

equal to the operator norm ∥ · ∥ on M op.

3◦ If M op is viewed as a subset of B(LqM,Lq′M), then the restriction of the norm ∥ ·

∥LqM→Lq′M to M op is equal to the norm ∥ · ∥p/2.

Proof. 1◦ Fix an element of x ∈ M . Let x = u|x| be the polar decomposition of x. Let 1B

be identity operator in B. Then for any φ ∈ B∗(p)

|φ(x)| = |φ(u|x|1/21B|x|1/2)|

≤ ∥u|x|1/2∥p · ∥|x|1/2∥p · ∥1B∥ · ∥φ∥B∗(p)

= ∥|x|1/2∥2p · ∥φ∥B∗(p)

= ∥x∥p/2 · ∥φ∥B∗(p).

(3.8)

Taking the supremum over all φ in (B∗(p))1) gives the inequality |||x|||p ≤ ∥x∥p/2.

Now we prove the reverse inequality. Let q = 2p
p−2

, as in Lemma 3.1.4. Then note

that if ξ and η are vectors in L2M such that ∥ξ∥q = ∥η∥q = 1, Lemma 3.1.4 implies that

|⟨xξ, η⟩| ≤ |||x|||p. Thus, we have that

|||x|||p ≥ sup
∥ξ∥q=∥η∥q=1

|⟨xξ, η⟩|. (3.9)

If we choose q′ such that 1
q
+ 1

q′
= 1 and choose r such that 1

r
+ 1

q
= 1

q′
, then by duality we
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have

sup
∥ξ∥q=∥η∥q=1

|⟨xξ, η⟩| = sup
∥ξ∥q=1

∥xξ∥q′ = ∥x∥r,

so we have a bound ∥x∥r ≤ |||x|||p. Now by our chosen definition of r we check that

1

r
=

1

q′
− 1

q
= 1− 2

q
=

2

p
.

So indeed, we have r = p/2, and the reverse inequality ∥x∥p/2 ≤ |||x|||p holds. This completes

the proof.

2◦ Assume that M is a factor, and take an element xop ∈ M op. By Lemma 3.2.2, we

already know that |||xop|||p ≤ ∥xop∥, so it suffices to check that |||xop|||p ≥ ∥xop∥. To do this,

we will construct a family of functionals φ ∈ B∗(p) such that |φ(xop)|/∥φ∥B∗(p) can come

arbitrarily close to ∥xop∥. From here the result will follow since |||xop|||p ≥ |φ(xop)|/∥φ∥B∗(p)

for all φ ∈ B∗(p)

With this in mind, let’s say we choose a self adjoint element m ∈ M and a finite list of

unitaries u1, u2, . . . , un ∈ M . Then we can define a linear functional φ ∈ B∗(p) by

φ(T ) =
1

n

n∑
i=1

⟨T (uim), uim⟩.

By Lemma 3.1.5, we know that

∥φ∥B∗(p) =

∣∣∣∣∣
∣∣∣∣∣ 1n

n∑
i=1

(uim)(uim)∗

∣∣∣∣∣
∣∣∣∣∣
q/2

=

∣∣∣∣∣
∣∣∣∣∣ 1n

n∑
i=1

uim
2u∗

i

∣∣∣∣∣
∣∣∣∣∣
q/2

.

If we apply this φ to xop, we get

φ(xop) =
1

n

n∑
i=1

⟨xop(uim), uim⟩ = 1

n

n∑
i=1

⟨uimx, uim⟩.

Using that this inner product comes from the trace τ , we can simplify this to be

φ(xop) =
1

n

n∑
i=1

τ(uimx(uim)∗) =
1

n

n∑
i=1

τ(xm2) = ⟨x,m2⟩.

Now, using that |||x|||p ≥ |φ(xop)|/∥φ∥B∗(p), we get the following lower bound

|||xop|||p ≥ |⟨x,m2⟩|

∣∣∣∣∣
∣∣∣∣∣ 1n

n∑
i=1

uim
2u∗

i

∣∣∣∣∣
∣∣∣∣∣
−1

q/2

.

28



Note that this holds for any self adjoint m ∈ M and any choice of unitaries u1, u2, · · · , un.

But by Diximier’s averaging property, we know the ∥ · ∥-norm closure of the convex hull of

the set {um2u∗ : u ∈ U(M)} intersects the center of M . In this case, since M was assumed

to be a factor, the center of M is trivial. In particular, since the trace of any element in

{um2u∗ : u ∈ U(M)} is τ(m2), it follows that τ(m2) is in the ∥ ·∥-norm closure of the convex

hull of this set. Now the operator norm ∥ · ∥ majorizes the norm ∥ · ∥q/2 norm, so the same

averaging result is true in the space Lq/2M . It follows then from the above lower bound that

|||xop|||p ≥ |⟨x,m2⟩| 1

τ(m2)
= |⟨x, m2

τ(m2)
⟩|,

where m2 can be an arbitrary positive element of M . Thus, we conclude that

|||xop|||p ≥ sup
m≥0, ∥m∥1≤1

|⟨x,m⟩|,

where here this supremum runs over all positive m ∈ M with ∥m∥1 = τ(m) ≤ 1.

Now if x was assumed to be positive, duality would force this supremum to be ∥x∥,

which would give us the desired reverse inequality ∥xop∥ ≤ |||xop|||p. In general, we can write

xop = uop|xop| to be the polar decomposition of xop. Note by part 1◦ of Proposition 3.1.3,

that the map T 7→ uopT is an isometry on B(p) with respect to the |||·|||p-norm. In particular,

it follows from the positive case that

|||xop|||p = ||| |xop| |||p ≥ ∥ |xop| ∥ = ∥xop∥,

so the reverse inequality holds for a general xop, which completes the proof of the first claim.

3◦ We see by Hölder’s inequality that ∥xop∥LqM→Lq′M is equal to ∥xop∥r, where r is the

solution to the equation q−1+r−1 = (q′)−1. Using the definition of q and q′, one gets r = p/2,

as desired.

Corollary 3.2.5. If M is a II1 factor, then the map B(p) ∋ T 7→ T̃ ∈ B(LqM,Lq′M) is not

a homeomorphism of Banach spaces.
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Proof. Let xn ∈ (M)1 be so that ∥xn∥ = 1 but ∥xn∥p/2 → 0. If we take Tn = xop
n , then

by Proposition 3.2.4.2◦ we have |||Tn|||p = ∥Tn∥ = ∥xn∥ = 1, while by 3.2.4.3◦ we have

∥T̃n∥LqM→Lq′M = ∥xn∥p/2 → 0.

The next result, which is crucial in proving Theorem 4.1.5 later in this paper (Theo-

rem 1.0.1 in the introduction) should be compared to [Oza10] and Proposition 3.1 in [DEP23]

where similar decompositions are considered. The previous corollary shows however that the

proof strategy employed there will not apply to our current situation.

Lemma 3.2.6. For any T ∈ B(L2M)

|||T |||p = inf{∥a∥p∥S∥∥b∥p : a, b ∈ M,S ∈ B(L2M), aSb = T}.

Proof. Using Lemma 3.2.2, we have that for any decomposition T = aSb with a, b ∈ M and

S ∈ B(L2M) that |||T |||p ≤ ∥a∥p∥S∥∥b∥p. This shows at the very least that |||T |||p is smaller

than this infimum.

To obtain the reverse inequality, we use a convexity argument. To this end, for the

remainder of the proof we consider the following subsets of B(L2M). For any positive

number α, let Cα be the set of operators T ∈ B(L2M) such that we can find a decomposition

T = aSb with a, b ∈ M and S ∈ B(L2M) such that ∥a∥p∥S∥∥b∥p ≤ α. We claim first that

Cα is convex.

For let’s say we have operators T1, T2 ∈ Cα. Then by definition, we can find decom-

positions T1 = a1S1b1 and T2 = a2S2b2 with the ai, bi ∈ M and the Si ∈ B(L2M) such

that ∥ai∥∥Si∥∥bi∥p ≤ α. After rescaling, we may assume without loss of generality that

∥Si∥ = 1 and ∥ai∥p = ∥bi∥p ≤ α1/2. For any λ ∈ (0, 1), we can form the decomposition

λT1 + (1 − λ)T2 = aSb as follows. First, factor λT1 + (1 − λ)T2 as a chain of operators

through L2M ⊕ L2M by noting

λa1S1b1 + (1− λ)a2S2b2 =
(
λ1/2a1 (1− λ)1/2a2

)S1 0

0 S2

 λ1/2b1

(1− λ)1/2b2

 .
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Let au be the polar decomposition of (λ1/2a1 (1 − λ)1/2a2), where a ∈ M is positive, and

let ub be the polar decomposition of
(

λ1/2b1
(1−λ)1/2b2

)
, where here b ∈ M is positive. If we call

S ∈ B(L2M) the product

S = u

S1 0

0 S2

 v.

We arrive at a decomposition T1 + T2 = aSb.

Now we can calculate that

aa∗ = λa1a
∗
1 + (1− λ)a2a

∗
2.

So that

∥a∥2p = ∥aa∗∥p/2 ≤ λ∥a1a∗1∥p/2 + (1− λ)∥a2a∗2∥p/2

= λ∥a1∥2p + (1− λ)∥a2∥2p

≤ α.

(3.10)

By the same logic we also have ∥b∥2p ≤ α. Lastly, we see by inspection that ∥S∥ =

max{∥S1∥, ∥S2∥} = 1. Putting this together, we have then

∥a∥p∥S∥∥b∥p ≤ α (3.11)

It follows then that λT1 + (1− λ)T2 ∈ Cα, so Cα is convex.

Next, let’s say we have an operator T ∈ B(L2M) with |||T |||p = α. We claim that T

is in the |||·|||p norm closure of Cα. For otherwise, since Cα is convex, we can find using

Hahn-Banach a functional φ ∈ B∗(p) with ∥φ∥B∗(p) = 1 such that

Re(φ(T )) > sup
S∈Cα

Re(φ(S)).

Now, by definition we have

Re(φ(T )) ≤ |||T |||p = α.

Moreover, since ∥φ∥B∗(p) was equal to the supremum of all |φ(aSb)| where ∥a∥p, ∥b∥p ≤ 1

and ∥S∥ ≤ 1, it follows that

sup
S∈Cα

Re(φ(S)) = α.
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But this leads to a contradiction, so we must have T ∈ Cα
|||·|||p .

On the other hand, we claim that the closure of Cα in the σ(B(L2M),B∗(p)) topology is⋂
β>α Cβ. For consider

p(T ) = inf{β : T ∈ Cβ}

the seminorm corresponding to the convex sets Cβ. Note that a linear functional φ on

B(L2M) will be bounded with respect to the seminorm p if and only if φ is bounded on any

set Cβ. But as we observed already supS∈Cβ |φ(S)| = β∥φ∥B∗(p), so the only such functional

are in B∗(p). It follows then that the σ(B(L2M),B∗(p)) topology and the weak topology for

(B(L2M), p) coincide. Hence, since Cα was convex, the closure of Cα in the σ(B(L2M),B∗(p))

topology will be the same as the closure of Cα with respect to the seminorm p, which is indeed⋂
β>α Cβ.

To complete the proof, we notice by convexity that the ||| · |||p norm closure and the

σ(B(L2M),B∗(p)) closure of Cα are the same. Hence, for any T ∈ B(L2M) such that

|||T |||p = α we have

T ∈ Cα
|||·|||p = Cα

σ(B(L2M),B∗(p))
=
⋂
β>α

Cβ.

It follows the that we can find decomposition T = aSb with ∥a∥p∥S∥∥b∥p arbitrarily close to

α, and the lemma follows immediately.

Lemma 3.2.7. Assume {un}n ⊂ U(M) is a sequence of unitary elements in M with

τ(u∗
num) = 0 for all n ̸= m. For each T ∈ B(L2M) let E0(T ) ∈ B be the operator that

acts as 0 on H⊥
0 , where H0 = sp({ûn}n) ⊂ L2M , and as the diagonal operator that takes ûn

to ⟨T (ûn), ûn⟩ûn. Then |||E0(T )|||p ≤ |||T |||p, for all 2 ≤ p ≤ ∞. Moreover, if T ∈ B(L2M) is

diagonal with respect to {ûn}n, i.e., E0(T ) = T , then |||T |||p is equal to the operator norm of

T in B(L2M), ∀p.

Proof. By Proposition 3.1.2, one has |||T |||p ≤ ∥T∥, ∀T ∈ B(L2M). If in addition T is

diagonal with respect to {ûn}n and equal to 0 on H⊥
0 , then ∥T∥ = supn |⟨T (ûn), ûn⟩|. But
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by Lemma 3.1.4 and the definition of |||T |||p, the right hand side is larger than or equal to

|||T |||p, showing that |||T |||p ≥ ∥T∥ as well, so altogether |||T |||p = ∥T∥.

For an arbitrary T ∈ B(L2M), by the definition of |||T |||p and Lemma 3.1.4 one has

|||T |||p ≥ |⟨T (ûn), ûn⟩|, ∀n. Thus, |||T |||p ≥ supn |⟨T (ûn), ûn⟩| = ∥E0(T )∥ = |||E0(T )|||p.

Corollary 3.2.8. If M = LΓ and we denote D = ℓ∞Γ ⊂ B(ℓ2Γ) = B(L2M), C = c0(Γ) ⊂

ℓ∞Γ, then for each T ∈ D we have |||T |||p = ∥T∥, ∀p ≥ 2. Thus, C ⊂ D are ||| · |||p-closed in

B(p).

Proof. Since for M = LΓ we have L2M = ℓ2Γ, with {ûg}g as orthonormal basis, the previous

lemma implies that ||| · |||p restricted to D = ℓ∞Γ coincided with the operator norm.

3.3 The Banach bimodules K(p), 2 ≤ p < ∞

Since the ideal of compact operators K(L2M) is a Banach bimodule over both M,M op, its

||| · |||p-completions, 2 ≤ p < ∞, give rise to a one parameter family of bimodules that we

now consider.

Definition 3.3.1. For each 2 ≤ p < ∞, we denote by K(p) the closure of K = K(L2M) in

B(p).

Lemma 3.3.2. Let 2 ≤ p < ∞ and denote q = 2p
p−2

and q′ = 2p
p+2

as before. Following Propo-

sition 3.2.4, for each K ∈ B(p) we denote by K̃ the element it induces in B(LqM,Lq′M).

1◦ If K ∈ K(p), then K̃ takes the unit ball (LqM)1 into a ∥ · ∥q′-compact subset of Lq′M .

2◦ If K ∈ K(p), then for any sequence of unitary elements {un}n ⊂ M that converges

weakly to 0, one has ∥K̃(ûn)∥q′ → 0.
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Proof. 1◦ Note first that if K ∈ K(p) is a finite-rank operator, then K̃ is in K(LqM,Lq′M).

If K is a general element of K(p), then we can find a sequence (Kn) of finite-rank operators

in B(p) such that Kn → K with respect to the ||| · |||p norm. Since the mapping K 7→

K̃ is contractive, we have K̃n → K̃ in B(LqM,Lq′M). Since the space K(LqM,Lq′M) is

closed in B(LqM,Lq′M), and each finite-rank Kn was in K(LqM,Lq′M), it follows that

K ∈ K(LqM,Lq′M) as well.

2◦ As in part 1◦, if K ∈ K(p) is a assumed to be a finite-rank operator the claim follows

immediately. Let now K ∈ K(p) be arbitrary and let (Kn)n be a sequence of finite-rank

operators in B(p) such that Kn → K with respect to the ||| · |||p norm. Now if ϵ > 0 we can

find an m such that

∥K̃ − K̃m∥LqM→Lq′M ≤ |||K −Km|||p < ϵ/2.

Now since Km is finite-rank, we can also find an N such that for all n ≥ N we have

∥Km(ûn)∥q′ < ϵ. Combining these we get for any n ≥ N

∥K(ûn)∥q′ ≤ ∥(K −Km)(ûn)∥q′ + ∥Km(ûn)∥q′

< ∥ûn∥q∥K −Km∥LqM→Lq′M + ϵ/2

< ϵ.

(3.12)

Thus we conclude ∥K̃(ûn)∥q′ → 0 as desired.

Proposition 3.3.3. For each 2 ≤ p < ∞, K(p) endowed with the norm ||| · |||p is a Banach

M-bimodule and Banach M op-bimodule.

Proof. The fact that K(p) is a Banach space is clear from the fact that it is a norm closed

subspace of B(p). The M -bimodule and M op-bimodule structure also follows by restricting

from B(p), and by taking into account that the |||·|||p-dense subsetK(L2M) ofK(p) is invariant

under left and right multiplication by elements of M , M op.
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Recalling that K(L2M)∗ = B∗
n, we now prove the analogous result for the spaces K(p)

and B∗
n(p).

Theorem 3.3.4. For all p ≥ 2, K(p)∗ = Bn(p). Also, for each 2 ≤ p < ∞, K(p) endowed

with its norm ||| · |||p is a smooth M-bimodule, in the sense of definition ??.

Proof. We use the description of preduals in [Kai77] to prove the result. Note first that the

compact operators K(L2M), form a subspace of (Bn(p))
∗. Furthermore, the space K(L2M)

separates points of Bn(p), i.e. for any distinct φ, φ′ ∈ Bn(p) there is a K ∈ K(L2M) such

that φ(K) ̸= φ′(K). This is because the space K(L2M), which is strictly smaller than K(p),

separates the points of its dual B(L2M)∗, which is strictly larger than Bn(p).

Now we claim that the unit ball of B∗
n(p) is compact in the σ(B∗

n(p),K(L2M)) topology.

To see this, consider a net (φα) in the unit ball (B∗
n(p))1. Recall that the norm ∥ · ∥B∗(p)

majorizes the usual norm on B∗ and that (B∗
n(p))1 is a subset of (B∗

n)1. Since the predual of

the space B∗
n of normal linear functionals on B is K(L2M), we have that (B∗

n)1 is compact

in the σ(B∗
n,K(L2M)) topology. Thus, there exists a subnet (φβ) of our original net that

converges to some φ ∈ (B∗
n)1 in the σ(B∗

n,K(L2M)) topology.

We claim further that this φ is actually in B∗
n(p). Let x and y be any elements of M .

Since the space B∗
n is a dual normal Banach M -bimodule, it follows the net x ·φβ ·y converges

to x ·φ ·y in the σ(B∗
n,K(L2M)) topology. Note that this implies ∥x ·φ ·y∥ ≤ supβ ∥x ·φβ ·y∥.

In particular, notice that if x and y are chosen so that ∥x∥p, ∥y∥p ≤ 1, then, since the net

(φβ) lies in (B∗
n(p))1, we would have ∥x ·φ · y∥ ≤ supβ ∥x ·φβ · y∥ ≤ 1. Varying over all x and

y with p-norm less than 1, we gather that ∥φ∥B∗(p) ≤ 1, so indeed our φ lies in (B∗
n(p))1. It

follows then that the unit ball (B∗
n(p))1 is compact in the σ(B∗

n(p),K(L2M)) topology. Using

the description of preduals in [K77], we find that a predual of B∗
n(p) is the norm closure of

K(L2M) in the dual space (B∗
n(p))

∗. By definition this is K(p).

It remains then to check that K(p) is a smooth bimodule. Note that if T ∈ K(p) lies in
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B(L2M), then by Lemma 3.2.2 the maps x 7→ Tx and x 7→ xT are ∥ · ∥2 to ||| · |||p continuous

on the unit ball of M . If T ∈ K(p) is an arbitrary element, then we for any ϵ > 0 there

exists S ∈ K(p) ∩ B(L2M) such that |||T − S|||p < ϵ. But then for any net (xι) in the unit

ball of M such that ∥xι∥2 → 0 we have

|||Txι|||p ≤ |||(T − S)xι|||p + |||Sxι|||p < ϵ+ |||Sxι|||p.

Hence lim supι |||Txι|||p ≤ ϵ. Since ϵ was arbitrary, it follows |||Txι|||p tends to 0. Hence the

map x 7→ Tx is still ∥ · ∥2 to ||| · |||p continuous on the unit ball of M . A similar argument

shows the same for the map x 7→ xT . It follows then that K(p) is smooth.

36



CHAPTER 4

Non-vanishing 1-Cohomology Results

4.1 The qM-topology and the bimodule qKM

In this section we consider a new topology on Banach bimodules over tracial von Neumann

algebras (M, τ), which we will denote qM , that takes into consideration the trace on M , and

which we will refer to as the τ -rank topology (sometimes also called the topology of conver-

gence in measure). When applied to the Banach M -bimodule B(L2M), the restriction of

the qM -topology to the unit ball (B(L2M))1 is “almost the same” as the topology given by

||| · |||p-norms, but finer. However, the qM -closure in B(L2M) of the unit ball of compact op-

erators (K(L2M))1 coincides with its ||| · |||p-closure, thus giving rise to an interesting Banach

M -bimodule of “almost-compact” operators denoted qKM .

Definition 4.1.1. Let B be a Banach M -bimodule. We say that a net (Ti)i ⊂ B is qM -

convergent to T ∈ B if the following conditions are satisfied: supi ∥Ti∥ < ∞; for any ε > 0,

there exists i0 such that for any i ≥ i0 there exists a projection p ∈ P(M) with τ(1− p) < ε,

∥p(Ti − T )p∥ < ε.

Note that if these conditions are satisfied, then ∥T∥ ≤ lim supi ∥Ti∥. Thus, for any finite

r > 0, the qM -convergent nets in (B)r define a topology on (B)r, that we will also denote by

qM . Note also that if r′ ≥ r > 0, then the restriction to (B)r of the qM -topology on (B)r′ ,

coincides with the qM -topology on (B)r.

Note that the qM -topology on any bounded subset of B is implemented by the metric

given by qM(T, S) = inf{τ(1− p) + ∥p(T − S)p∥ | p ∈ P(M)}.
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Given a linear subspace B0 ⊂ B, we denote B0
qM the union over all r > 0 of the qM -

closures of (B0)r in (B)r. Equivalently, B0
qM is the set of all scalar multiples of elements in

(B0)1
qM

.

The qM -topology on (B)r is obviously weaker than the norm topology. A typical example

of a Banach M -bimodule B that we consider is the algebra B(H) of all linear bounded

operators on a Hilbert space H on which M acts normally and faithfully, with the M -

bimodule structure given by left-right multiplication by elements in M . More generally,

we consider (linear) subspaces B ⊂ B(H) with MBM ⊂ B, such as the space of compact

operators K(H) on H. For this class of examples, another natural topology on B is the

s∗-topology. If B = M , then this is easily seen to coincide with the qM -topology on bounded

sets. But in general, the s∗-topology is strictly weaker than the qM -topology on (B)1 (notably

if B = K(H) and M is infinite dimensional, see below).

Proposition 4.1.2. Let B be a dual normal M-bimodule and B0 ⊂ B a norm closed sub-

bimodule.

1◦ For any T ∈ B, the maps (M)1 ∋ x 7→ xT, Tx ∈ B are ∥ · ∥2 − qM continuous.

2◦ (B)1 is complete in the qM -metric (and thus so is (B0)1
qM ⊂ (B)1).

3◦ B0
qM is a Banach M-bimodule.

4◦ Given any norm-separable subspace E ⊂ B0
qM , there exists an increasing sequence of

projections pn ∈ M with pn → 1 such that pnTpn ∈ B0, for all T ∈ E.

Proof. 1◦ If ε > 0 and ∥x∥ ≤ 1 satisfies ∥x∥2 ≤ ε, then the spectral projection p of xx∗

corresponding to the interval [0, ε] has trace at least 1− ε, or else we have ∥x∥22 = ∥px∥22 +

∥(1− p)x∥22 > ∥(1− p)x∥22 ≥ ε2, a contradiction. Thus, we have ∥pxT∥ ≤ ∥px∥∥T∥ ≤ ε and

τ(1− p) ≤ ε. This shows that (M)1 ∋ x 7→ xT ∈ B is ∥ · ∥2 − qM continuous. The proof for

(M)1 ∋ x 7→ Tx ∈ B is similar.

2◦ If Tn ∈ (B)1 is qM -Cauchy, then for any k ≥ 1, there exists nk such that for any
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n,m ≥ nk there exists a projection pk ∈ P(M) with the property that τ(1− pk) + ∥pk(Tm −

Tn)pk∥ ≤ 2−k. Thus, the sequence of projections Pk = ∧l≥kpl, k ≥ 1, is increasing and

satisfies τ(1 − Pk) ≤ 2−k+1, ∥Pk(Tn − Tm)Pk∥ ≤ 2−k for any n,m ≥ nk. By the inferior

semicontinuity of the norm on B with respect to the w∗-topology, it follows that any w∗-

limit point T ∈ (B)1 of the sequence {Tm}m satisfies ∥Pk(T − Tn)Pk∥ ≤ 2−k for any n ≥ nk.

This shows that {Tm}m is qM -convergent to T .

3◦ If Tn is a sequence in B0
qM that converges in norm to some T ∈ B, then Tn is

automatically bounded and by 2◦ we have T ∈ B0
qM as well. The invariance of B0

qM to

left-right multiplication by elements in M is obvious.

4◦ It is sufficient to show the existence of such projections for a countable subset {Ti}i ⊂

(B0)1
qM

. For each i ≤ n ≤ k, there exists a projection pi,k ∈ M and Si,k ∈ (B0)1 such that

∥pi,k(Ti − Si,k)pi,k∥ ≤ 2−k and τ(1 − pi,k) ≤ 2−k/n. Thus, if we let Pn,k = ∧i≤npi,k, then

∥Pn,k(Ti − Si,k)Pn,k∥ ≤ 2−k, ∀i ≤ n, and τ(1 − Pn,k) ≤ 2−k. If we now put Pn = ∧k≥nPn,k,

then Pn is increasing, τ(1−Pn) ≤ 2−n+1, and ∥Pn(Ti−Si,k)Pn∥ ≤ 2−n, ∀i ≤ n ≤ k. For each

fixed m, by applying this to k = n ≥ m and taking into account that PmPn = Pm, it follows

that ∥Pm(Ti − Si,n)Pm∥ ≤ 2−n, ∀i ≤ m. This shows in particular that {PmSi,nPm}n ⊂ (B0)1

is norm-Cauchy and thus convergent to some Xi,m ∈ (B0)1. It also shows that Xi,m satisfy

PmTiPm = Xi,m, while τ(1− Pm) ≤ 2−m+1, ∀i ≤ m.

Definition 4.1.3. Given a tracial von Neumann algebra (M, τ) in its standard representation

on L2M , we denote by qKM the qM -closure of K(L2M) in B(L2M) and call its elements qM -

compact operators.

Notice that besides its M -bimodule structure, the algebra B(L2M) also has an JMJ =

M ′ bimodule structure, where J : L2M → L2M is the canonical conjugacy defined by

J(x) = x∗, x ∈ M ⊂ L2M , and M ′ denotes as usual the commutant of M in B(L2M). The

algebra JMJ = M ′ can be naturally identified with the opposite algebra Mop of M , and we

will retain this notation for JMJ .
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Proposition 4.1.4. The space qKM is a norm closed ∗-subspace of B(L2M), which is both

an M-bimodule and an Mop-bimodule.

Proof. By applying Proposition 4.1.2 to B0 = K(L2M) ⊂ B(L2M) = B, it follows that qM is

a norm closed M -bimodule. It is clearly an Mop-bimodule and closed under the ∗-operation.

Theorem 4.1.5. For each 2 ≤ p < ∞ denote by Kp the space of all operators T ∈ B =

B(L2M) with the property that there exists a sequence of compact operators Kn ∈ Kp such

that supn ∥Kn∥ < ∞ and limn |||T −Kn|||p = 0. Then Kp = qKM .

Proof. To see that qKM ⊂ Kp let us show that the qM -topology on the unit ball of B(L2M)

is stronger than the ||| · |||p-topology, ∀2 ≤ p < ∞. Indeed, by Lemma 3.2.2, if T ∈ B(L2M)

and P ∈ P(M), then we have

|||T |||p ≤ |||PTP |||p + |||PT (1− P )|||p + |||(1− P )T |||p

≤ ∥PTP∥+ 2∥1− P∥p∥T∥ = ∥PTP∥+ 2(τ(1− P ))1/p∥T∥.
(4.1)

This shows that |||T |||p ≤ 2 inf{∥PTP∥ + (τ(1 − P ))1/p∥T∥}, implying that the qM -toplogy

on (B(L2M))1 is stronger than the ||| · |||p-topology.

To show that Kp ⊂ qKM , let T be an operator in Kp. Then we can find a sequence of

uniformly bounded compact operators Kn ∈ K(L2M) such |||T −Kn|||p tends to 0. Since

T −Kn is still in B(L2M), Lemma 3.2.6 says we can find an, bn ∈ M and Sn ∈ B(L2M) such

that T −Kn = anSnbn and ∥an∥p∥Sn∥∥bn∥p tends to 0. Taking spectral projections of |an|

and |b∗n| we can find a sequence of projections pn with ∥pn∥p tending to 1 such that

∥pn(T −Kn)pn∥ = ∥pnanSnbnpn∥ → 0

Thus, Kp ⊂ qKM , which combined with the first part shows that Kp = qKM .
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It is useful to note that due to their “compact nature”, elements in the spaces qKM

cannot intertwine diffuse subalgebras of M . This fact will be used later to deduce that

an operator in B(L2M) that commutes with M modulo qKM and commutes with a diffuse

subalgebra of M , must in fact commute with all of M .

Lemma 4.1.6. Let B ⊂ eMe be a diffuse von Neumann subalgebra and σ : B → fMf be

a unital faithful ∗-homomorphism, for some non-zero projections e, f ∈ M . If K ∈ qKM

satisfies Kb = σ(b)K, ∀b ∈ B, then K = (1− f)K(1− e).

Proof. Note that fK(1−e) = 0 and (1−f)Ke = 0. By replacing K by K− (1−f)K(1−e),

we may also assume (1−f)K(1−e) = 0. So we have to prove that if K satisfies the condition

in the hypothesis and K = fKe, then K = 0.

Let u be a Haar unitary inB and x ∈ eM . Since unx tends weakly to 0 and ∥v(ξ)∥1 = ∥ξ∥1

for any unitary v ∈ fMf and ξ ∈ L1(fM), we get

0 = lim
n

∥K(ûnx)∥1 = lim
n

∥σ(un)(K(x̂))∥1 = ∥K(x̂)∥1,

where the first equality follows easily from the definition of qKM . This shows that K = fKe

satisfies K(êM) = 0, thus K = 0.

4.2 Derivations of M into qKM

Recall that ifM is a Banach algebra (always assumed unital) and B is a BanachM -bimodule,

then a derivation of M into B is a linear map δ : M → B satisfying the property δ(xy) =

xδ(y) + δ(x)y, for all x, y ∈ M .

It is immediate to check that if T ∈ B, then the map adT : M → B defined by adT (x) =

[T, x] := Tx− xT , x ∈ B, is a derivation. Such derivations are called inner.
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It is useful to note that if F ⊂ M is a set, then δ|F determines the values of δ on all the

algebra Alg(F ) generated by F .

Recall from [Rin72] that a derivation is automatically norm-continuous. Moreover, if

M is a von Neumann algebra and B is a dual normal M -bimodule, then any derivation

is automatically continuous from M with the ultra-weak topology to B with its σ(B,B∗)

topology.

Thus, if F = F ∗ ⊂ M is a set that generates M as a von Neumann algebra and M0 is

the norm closure of the ∗-algebra generated by F , then any derivation δ of M into a Banach

M -bimodule is uniquely determined on M0 by the values it takes on F , δ|F . If in addition B

is a dual normal Banach bimodule, then all of δ is uniquely determined by δ|F .

Let us first notice an automatic continuity (smoothness) result for derivations, with

respect to the qM -metric and the ||| · |||p norms.

Theorem 4.2.1. Let (M, τ) be a tracial von Neumann algebra, B a Banach M-bimodule

and δ : M → B a derivation. Then δ is automatically ∥ · ∥2-qM continuous on (M)1. More

precisely, if ε > 0, then given any x ∈ (M)1 with ∥x∥2 ≤ (ε/2)3/2, there exists p ∈ P(M)

such that τ(1− p) ≤ ε and ∥pδ(x)p∥ ≤ ε∥δ∥.

In particular, if B = qKM , then δ is automatically continuous from (M)1 with the ∥ · ∥2-

topology to qKM with the topology given by the qM -metric.

Proof. By [R72], δ is automatically norm continuous and without loss of generality we may

assume ∥δ∥ = 1. Let ε > 0. Let x ∈ (M)1 be so that ∥x∥2 ≤ (ε/2)3/2. Denote by e

the spectral projection of xx∗ corresponding to [0, ε2/4]. Then e satisfies ∥ex∥ ≤ ε/2 and

(1− e)xx∗ ≥ (ε/2)2(1− e). Thus we have:

(ε/2)3 ≥ ∥x∥22 = ∥ex∥22 + ∥(1− e)x∥22

≥ ∥(1− e)x∥22 = τ((1− e)xx∗) ≥ (ε/2)2τ(1− e).

This implies that τ(1 − e) ≤ ε/2. Similarly, if e′ denotes the spectral projection of x∗x
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corresponding to [0, ε2/4], we have τ(1 − e′) ≤ ε/2 and ∥xe′∥ ≤ ε/2. Thus, if we denote

p = e ∧ e′, then τ(1− p) ≤ ε and ∥pδ(x)p∥ = ∥δ(px)p− δ(p)xp∥ ≤ ε.

Lemma 4.2.2. Assume T ∈ B(L2M) is so that [T,M0] ⊂ qKM for some weakly dense

∗-subalgebra M0 ⊂ M . Then we have:

1◦ [T,M ] ⊂ qKM .

2◦ If, in addition, T = e is a projection and there exists a Haar unitary u ∈ M such that

[e, u] ∈ K(L2M) with eue having Fredholm index ̸= 0 in B(e(L2M)), then [T,M ] ⊂ qKM ,

and the derivation δe : M → qKM defined by δe(x) = [e, x], x ∈ M , is not inner, i.e., there

exists no K ∈ qKM such that δe = adK.

Proof. 1◦ By Theorem 4.2.1, the derivation δ = adT : M → B(L2M) is ∥·∥2−qM continuous.

Since M0 is ∥ · ∥2-dense in M , [T,M0] ⊂ qKM and qKM is qM -closed in B(L2M), it follows

that [T,M ] ⊂ qKM .

2◦ Let A = {u}′′. Since u is a Haar unitary, one can view the restriction of the action of

u on L2A as the bilateral shift on ℓ2Z. Denote u = v ⊕ w where v is the restriction of u to

L2A = ℓ2Z and w its restriction to L2M ⊖L2A. By [BDF06], there exist compact operators

K0, K1 ∈ K(L2M) such that (u+K0, e+K1) are unitary conjugate to (u, f), where f is the

orthogonal projection of L2M onto ℓ2Z+ ⊂ ℓ2Z = L2A.

Thus, if δe = adK for some K ∈ K(M,L1M), then δf = adf = ad(e + K1) = ad(K ′)

with K ′ = K + K1 ∈ K(M,L1M). This implies f − K ′ ∈ M ′ = M op, so there must exist

x0 ∈ M such that f(ŷ) = K ′(ŷ) + ˆyx0, for all y ∈ M . Since lim|n|→∞K ′(ûn) = 0 and

f(ûn) is equal to ûn for n > 0 and is equal to 0 for n < 0, this shows on the one hand

that 0 = limn→∞ ∥f( ˆu−n)∥2 = ∥u−nx0∥2 = ∥x0∥2, on the other hand 1 = limn→∞ ∥f(ûn)∥2 =

∥unx0∥2 = ∥x0∥2, a contradiction.

43



Theorem 4.2.3. For any separable diffuse finite von Neumann algebra M , there exists a

non inner derivations of M into qKM .

Proof. Since M is separable, we can fix a weakly dense sequence of xn in M . By [Arv77], the

closed ideal K(L2M) of B(L2M) has a quasicentral approximate unit. In particular, for any

ϵ > 0 and any operators T1, T1, . . . , Tk ∈ B(L2M), we can find an operator K ∈ K(L2M)+

from such a quasicentral approximate unit such that ∥K∥ ≤ 1 and ∥[K,Ti]∥ < ϵ for all

1 ≤ i ≤ k. Moreover, since such a quasicentral approximate unit weakly tends to the

identity, for any 0 < α < 1 such an operator K can be chosen to satisfy ⟨K1̂, 1̂⟩ > α. Thus,

we can find a sequence of operators Kn in K(L2M) with ∥Kn∥ ≤ 1 for all n ≥ 1 such that

∥[Kn, xk]∥ < 2−n for all 1 ≤ k ≤ n and ⟨Kn1̂, 1̂⟩ > 1/2 for all n ≥ 1.

Now fix a sequence of unitaries un in M that are weakly tending to 0. We claim there

exists a subsequence (uni
)∞i=1 such that

1.
∥∥∑n

i=1 Juni
JKiJu

∗
ni
J
∥∥ < 2 for all n ≥ 1;

2. |⟨Kiu
∗
nj
uni

1̂, u∗
nj
uni

1̂⟩| < 2−i−1 for all i ̸= j.

We construct such a subsequence inductively. First, let un1 = u1. Next, assume for some

k ≥ 1 we have found un1 , un2 , . . . , unk
such that the above condition 1 occurs for all 1 ≤ n ≤ k

and condition 2 occurs for all 1 ≤ i, j ≤ k with i ̸= j. Then notice that for any compact

operators T, S ∈ K(L2M) and any sequence of unitaries vn in M converging weakly to 0 we

have ∥T + vnSv
∗
n∥ → max{∥T∥, ∥S∥} as n tends to infinity. Since

∑k
i=1 Juni

JKiJu
∗
ni
J and

Kk+1 are compact operators of norm less than 2, it follows there is an N1 such that for all

n ≥ N1 ∥∥∥∥∥JunJKk+1Ju
∗
nJ +

k∑
i=1

Juni
JKiJu

∗
ni
J

∥∥∥∥∥ < 2.

Next, note that for each fixed 1 ≤ i ≤ k we have that ununi
Kk+1u

∗
ni
u∗
n converges weakly

to 0 as n tends to infinity. Thus, there is an N2 such that for all 1 ≤ i ≤ k and all n ≥ N2

|⟨Kk+1u
∗
ni
un1̂, u

∗
ni
un1̂⟩| = |⟨ununi

Kk+1u
∗
ni
un1̂, 1̂⟩| < 2−k−2.
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Similarly, for each fixed 1 ≤ i ≤ k we have that unKiu
∗
n converges weakly to 0 as n tends to

infinity. Hence, there is an N3 such that for all 1 ≤ i ≤ k and all n ≥ N3

|⟨Kiu
∗
nuni

1̂, u∗
nuni

1̂⟩| = |⟨(unKiu
∗
n)uni

1̂, uni
1̂⟩| < 2−i−1.

If we take nk+1 = max{N1, N2, N3}, then the terms un1 , un2 , . . . , unk+1
will satisfy the above

condition 1 for all 1 ≤ n ≤ k + 1 and condition 2 occurs for all 1 ≤ i, j ≤ k + 1 with i ̸= j.

By induction, it follows that the desired subsequence (uni
)∞i=1 exists.

Now we define an operator T by letting

T =
∞∑
i=1

Jun2i
JK2iJu

∗
n2i

J.

Note because of how we chose the unitaries uni
that T will indeed be a well-defined operator

in B(L2M) with ∥T∥ ≤ 2. Moreover, for any xj from our weakly dense sequence of M we

have

[T, xj] =
∞∑
i=1

[Jun2i
JK2iJu

∗
n2i

J, xj] =
∞∑
i=1

Jun2i
J [K2i, xj]Ju

∗
n2i

J.

Each summand Jun2i
J [K2i, xj]Ju

∗
n2i

J in this series is a compact operator and, because of

how we chose the operators Kn, for all i ≥ j/2 we have

∥Jun2i
J [K2i, xj]Ju

∗
n2i

J∥ = ∥[K2i, xj]∥ ≤ 2−2i.

Thus, this is a ∥ · ∥-norm convergent series of compact operators, and in turn [T, xj] is a

compact for each xj. By Lemma 4.2.2, adT is a derivation of M into qKM .

We claim, however, that adT is not inner. Otherwise, assume for sake of contradiction

there is an S ∈ qKM such that adS = adT . Take any sequence of unitaries vn in M that

weakly converge to 0. Then we note that since (T − S) commutes with M

⟨vnTv∗n1̂, 1̂⟩ = ⟨vn(T − S)v∗n1̂, 1̂⟩+ ⟨vnSv∗n1̂, 1̂⟩

= ⟨(T − S)1̂, 1̂⟩+ ⟨vnSv∗n1̂, 1̂⟩.
(4.2)
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Using lemma 3.3.2, ⟨vnSv∗n1̂, 1̂⟩ must converge to 0 as n tends to infinity. Thus, we observe

that ⟨vnTv∗n1̂, 1̂⟩ must converge as n tends to infinity.

It follows then that ⟨unj
Tu∗

nj
1̂, 1̂⟩ converges as j tends to infinity. However, for even

terms of this sequence, we notice that

|⟨un2j
Tu∗

n2j
1̂, 1̂⟩| =

∣∣∣∣∣
∞∑
i=1

⟨un2j
Jun2i

JK2iJu
∗
n2i

Ju∗
n2j

1̂, 1̂⟩

∣∣∣∣∣
=

∣∣∣∣∣
∞∑
i=1

⟨K2iu
∗
n2j

un2i
1̂, u∗

n2j
un2i

1̂⟩

∣∣∣∣∣
≥ |⟨K2j 1̂, 1̂⟩| −

∑
1≤i ̸=j

∣∣∣⟨K2iu
∗
n2j

un2i
1̂, u∗

n2j
un2i

1̂⟩
∣∣∣ .

Because of how we chose the operators Kn, we have |⟨K2j 1̂, 1̂⟩| > 1/2, whereas by construc-

tion
∣∣∣⟨K2iu

∗
n2j

un2i
1̂, u∗

n2j
un2i

1̂⟩
∣∣∣ < 2−2i−1 for all i ̸= j. We then get a lower bound

|⟨un2j
Tu∗

n2j
1̂, 1̂⟩| > 1/2−

∑
1≤i ̸=j

2−2i−1 ≥ 1/3.

Conversely, for any odd term of this sequence

|⟨un2j+1
Tu∗

n2j+1
1̂, 1̂⟩| =

∣∣∣∣∣
∞∑
i=1

⟨un2j+1
Jun2i

JK2iJu
∗
n2i

Ju∗
n2j+1

1̂, 1̂⟩

∣∣∣∣∣
=

∣∣∣∣∣
∞∑
i=1

⟨K2iu
∗
n2j+1

un2j
1̂, u∗

n2j+1
un2i

1̂⟩

∣∣∣∣∣
≤

∞∑
i=1

∣∣∣⟨K2iu
∗
n2j+1

un2i
1̂, u∗

n2j+1
un2i

1̂⟩
∣∣∣ .

(4.3)

Again, using that
∣∣∣⟨K2iu

∗
n2j+1

un2i
1̂, u∗

n2j+1
un2i

1̂⟩
∣∣∣ < 2−2i−1 we get a bound

|⟨un2j+1
Tu∗

n2j+1
1̂, 1̂⟩| <

∞∑
i=1

2−2i−1 = 1/6.

It follows then that the sequence ⟨unk
Tu∗

nk
1̂, 1̂⟩ does not converge. Hence, by contradiction,

adT must be a non inner derivation.
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Proposition 4.2.4. Let Γ be a countable group, set M = LΓ and let f ∈ ℓ∞Γ be so that

gf − f ∈ c0(Γ), ∀g ∈ Γ. Denote Tf ∈ B(L2M) the diagonal operator corresponding to f .

1◦ We have [Tf ,M ] ⊂ qKM , and thus δf := adTf defines a derivation of M into qKM .

2◦ If f ̸∈ C + c0(Γ), then the derivation δf is outer, i.e, there exists no K ∈ qKM such

that δf = adK.

Proof. 1◦ The condition gf − f ∈ c0(Γ), ∀g ∈ Γ, amounts to [M0, Tf ] ⊂ K(L2M) ⊂ qKM ,

where M0 = CΓ. Since M0 is a weakly dense ∗-subalgebra of M , by Lemma 4.2.2 it follows

that [M,Tf ] ⊂ qKM .

2◦ Assume there exists K ∈ qKM such that ad(K) = ad(Tf ) on M . We let E0 :

B(L2M) → ℓ∞Γ denote the conditional expectation to the diagonal operators given by

E0(T )(g) = ⟨T ûg, ûg⟩. Notice that E0 implements the canonical trace on both LΓ and RΓ.

By Lemma 3.2.7 if p ≥ 2, then we have ∥E0(T )∥ ≤ |||T |||p, and so from Theorem 4.1.5 it

follows that E0(K) ∈ c0(Γ).

Since K−Tf ∈ M ′ = M op, we then have E0(K)− f = E0(K−Tf ) ∈ C, contradicting the

fact that f ̸∈ C+ c0(Γ).

Corollary 4.2.5. If Γ is any infinite group, then there exists a non-inner derivation of

M = LΓ into qKM of the form δf = adTf where f ∈ ℓ∞Γ is given as in Proposition 4.2.4.

Proof. From an argument very similar to the one used in Theorem 4.2.3 it follows that there

always exist f ∈ ℓ∞Γ so that gf − f ∈ c0(Γ) for all g ∈ Γ, but such that f ̸∈ C+ c0(Γ). One

simply starts with an asymptotically Γ-invariant approximate identity in c(Γ) and proceeds

as in the proof of Theorem 4.2.3.

Lemma 4.2.6. Assume δ : M → qKM is implemented by T ∈ B(L2M). If Kn ∈ qKM

are so that ∥Kn∥ ≤ ∥T∥, ∀n, and limn qM([Kn, x], δ(x)) = 0 for all x in some weakly dense
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∗-subalgebra M0 of M , then this limit holds true for all x ∈ M .

Proof. Let y ∈ (M)1. We have to prove that given any ε > 0 there exists n0 such that for

any n ≥ n0 there exists p ∈ P(M) satisfying τ(1− p) ≤ ε and ∥p(δ(y)− [Kn, y])p∥ ≤ ε.

By Kaplanski’s theorem, we can take y0 ∈ (M0)1 with ∥y0 − y∥2 ≤ (ε/2)3/2/2. By

applying the hypothesis to this y0 ∈ M0, there exists n0 such that ∀n ≥ n0, ∃p0 ∈ P(M)

with τ(1 − p0) ≤ ε/2 and ∥p0(δ(y0) − [Kn, y0])p0∥ ≤ ε/3. On the other hand, by applying

Theorem 4.2.1 to x = y− y0 and the derivations δ, ad(Kn), we get a projection p1 ∈ M such

that τ(1 − p1) ≤ ε/2 and ∥p1δ(y − y0)p1∥ε/3, ∥p1[Kn, (y − y0)]p1∥ ≤ ε/3. Thus, if we let

p = p0 ∧ p1, then τ(1− p) ≤ ε and for each n ≥ n0 we have

∥p(δ(y)− [Kn, y])p∥

≤ ∥pδ(y − y0)p∥+ ∥p[Kn, (y − y0)]p∥+ ∥p(δ(y0)− [Kn, y0])p∥ ≤ ε.

Theorem 4.2.7. Let δ : M → qKM be a derivation implemented by T ∈ B(L2M). Then

there exists a net of finite-rank operators Kι with ∥Kι∥ ≤ ∥T∥ such that limι qM(δ(x), [Kι, x]) =

0 for all x ∈ M . Moreover, if L2M is separable, then the net can be taken a sequence.

Proof. Let F = {x1, x2, . . . , xn} be an arbitrary finite subset of M and ϵ > 0. Since δ is

a derivation into qKM , we can find a projection p ∈ M with τ(1 − p) < ϵ/2 such that

pδ(xi)p ∈ K(L2M) for 1 ≤ i ≤ n. Consider then the convex subset C ⊂ K(L2M)n consisting

of all n-tuples of the form

(pδ(x1)p− p[K, x1]p, pδ(x2)p− p[K, x2]p, . . . , pδ(xn)p− p[K, xn]p),

where K runs over all finite-rank operators in B(L2M) such that ∥K∥ ≤ ∥T∥.

The set C ⊂ K(L2M)n can be viewed as a subset of (K(L2M)n)∗∗ = B(L2M)n. Note

that, since δ = ad(T ), if we plug in T for K in the above n-tuple viewed as an element in
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B(L2M)n, then one gets (0, ..., 0). Note also that T is a wo-limit of finite-rank operators

with norm at most ∥T∥ and that this implies (0, ..., 0) = (pδ(x1)p − p[T, x1]p, pδ(x2)p −

p[T, x2]p, . . . , pδ(xn)p−p[T, xn]p) is in the σ(B(L2M)n,B∗
n(L

2M)n)-closure of C in B(L2M)n.

But since C ⊂ K(L2M)n is convex, its norm closure in K(L2M)n coincides with its closure

in the σ(K(L2M)n,B∗
n(L

2M)n) topology. Hence (0, 0, . . . , 0) is in the norm closure of C.

In particular, there exists a finite-rank operator K ∈ B(L2M) such that ∥K∥ ≤ ∥T∥ and

∥pδ(xi)p− p[K, xi]p∥ < ϵ/2 for all 1 ≤ i ≤ n. But then we see that

sup
1≤i≤n

qM(δ(xi), [K, xi]) ≤ sup
1≤i≤n

τ(1− p) + ∥p(δ(xi)− [K, xi])p∥ < ϵ.

This shows that for any set F ⊂ M we can find a finite-rank operator KF ∈ B(L2M)

such that ∥KF∥ ≤ ∥T∥ and qM(δ(xi)− [KF , xi]) < 1/|F |. This net (KF )F , indexed over all

finite subsets will then satisfy the condition.

The fact that this net can be taken to be a sequence when L2M is separable follows from

Lemma 4.2.6.

The next result shows if B0 ⊂ M is a weakly quasi-regular diffuse von Neumann sub-

algebra of M (in the sense of [GP17]), then the derivations of M into any of the bimodule

qKM , are uniqueley determined by their restriction to B0.

Proposition 4.2.8. Let M be a tracial von Neumann algebra with a diffuse weakly quasi-

regular von Neumann subalgebra B0 ⊂ M . If a derivation δ : M → qKM vanishes on B0,

then δ = 0 on all M .

Proof. Since δ is automatically ∥ · ∥2-qM -continuous, it follows that the space B̃ of elements

in M on which δ vanishes (which contains the diffuse algebra B0, by hypothesis) is a von

Neumann subalgebra of M . Let u be a unitary element in M such that B := u∗B̃u ∩ B̃

is diffuse and denote σ : B → M the isomorphism of B into B̃ given by σ(b) = ubu∗,
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b ∈ B. Since ub = σ(b)u, by applying δ it follows that δ(u)b = σ(b)δ(u), ∀b ∈ B. Thus,

K = δ(u) ∈ qKM satisfies the conditions in Lemma 4.1.6, implying that δ(u) = 0. Since

B0 ⊂ M is weakly quasi-regular, this shows that B̃ = M .

We end this section by mentioning some qM -approximation properties of derivations of

a tracial von Neumann algebra M into Banach M -bimodules endowed with the qM -metric.

Proposition 4.2.9. Let (M, τ) be a tracial von Neumann algebra, B a Banach M-bimodule

and δ : M → B a derivation.

1◦ Let M0 ⊂ M be a weakly dense C∗-subalgebra and B0 ⊂ B an M sub-bimodule (not

necessarily norm-closed). Assume pδ(M0)p ⊂ B0, for some projection p ∈ M . Then, for any

countable subset X ⊂ M and any ε0 > 0, there exists p0 ∈ P(pMp) such that τ(p − p0) ≤

ετ(p) and p0δ(x)p0 ∈ B0, ∀x ∈ X .

2◦ If B = qKM , then given any separable C∗-subalgebra M0 ⊂ M and any ε > 0, there

exists p0 ∈ P(M) such that τ(1− p0) ≤ ε and p0δ(x)p0 ∈ K(L2M), ∀x ∈ M0.

Proof. 1◦ Let X = {xn}n≥1 be an enumeration of X . By Pedersen’s Lusin-type Theorem,

for each n there exists pn ∈ P(M) and yn ∈ M0 such that xnpn = ynpn, pnxn = pnyn and

τ(pn) ≥ 1− τ(p)ε/2n+1, ∀n. Since δ(xnpn) = ynδ(pn) + δ(yn)pn, we have

pnδ(xn)pn = pnδ(xnpn)pn − pnxnδ(pn)pn

= pnynδ(pn)pn + pnδ(yn)pn − pnxnδ(pn)pn = pnδ(yn)pn ∈ B0.

Thus, if we let p0 = ∧n≥1pn ∧ p, then p0δ(x)p0 ∈ B0, ∀x ∈ X . Moreover, we have

τ(∧n≥1pn) ≥ (1 − Σn≥1τ(1 − pn)) = 1 − ετ(p) and thus τ(p0) ≥ (1 − ετ(p)) + τ(p) − 1 =

(1− ε)τ(p), implying that τ(p− p0) ≤ ετ(p).

2◦ This is trivial by Proposition 4.1.2.
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