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ABSTRACT

LOCAL BOUNDS FOR THE INDEPENDENT SET POLYNOMIAL AND THE

PROBABILISTIC METHOD

by

Konstantinos Zampetakis

The independent set polynomial plays a prominent role in combinatorics, sta-

tistical mechanics, and the probabilistic method. Specifically, in combinatorics the

independent set polynomial appears as the generating function of the independent sets

of a graph, in statistical mechanics as the partition function of the hard-core model,

while in probabilistic method, due to the seminal work of Shearer [1], it expresses the

full range of applicability of the celebrated Lovász Local Lemma (LLL).

The first three chapters of this thesis are concerned with the study the com-

putability and approximability of the independent set polynomial, with emphasis on

its applications in the probabilistic method.

In particular, in Chapter 1, we briefly review previous work, and present our

first results: (i) an exact computation procedure of the independent set polynomial

in linear time, for all arguments (ii) an improved version of the asymmetric LLL,

(iii) two novel local lemmata inspired from non-backtracking walks, which we use to

improve the rigorous bound of the “negative fugacity singularity of hard core model”

for the triangular lattice, a central problem in statistical physics of lattice gases.

In Chapter 2 we show a rigorous correspondence between walks and local lemmata,

which we use to develop a hierarchy of increasingly powerful, increasingly non-local

lemmata. To demonstrate the power of our hierarchy, we prove new rigorous lower

bounds for aforementioned negative fugacity singularity of the hard core model on

several lattices, matching their conjectured values up to three decimal digits.
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In Chapter 3 we prove that Shearer’s connection between the probabilistic method

and the independent set polynomial holds for arbitrary supermodular functions, not

just probability measures. This means that all LLL machinery can be employed to

bound from below an arbitrary supermodular function, based only on information

regarding its value at singleton sets and partial information regarding their interac-

tions. We show that our lemma readily implies both the “Quantum LLL” of Am-

bainis, Kempe, and Sattath [41], and the “Quantum Shearer” criterion of Sattath,

Morampudi, Laumann, and Moessner [43].

Finally, in Chapter 4 we turn on the Bethe approximation for partition functions

of general graphical models. While, a priori, there is no connection between the (ana-

lytically defined) Bethe approximation and the independent set polynomial, we use a

recent combinatorial characterization of the Bethe approximation by Vontobel [44] to

suggest precisely such a connection, by relating typical random k-lifts of graphs where

k → ∞, with the aforementioned tree of non-backtracking walks. In particular, we

revisit a recent result of Ruozzi showing that the Bethe partition function is a lower

bound for the true partition function, for every graphical model whose constituent

factors are log-supermodular. We give a significantly shorter proof of this result.

More importantly, we give a new much shorter proof of the celebrated four functions

theorem.
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Chapter 1

The Independent Set Polynomial

The independent set polynomial of a graph has one variable per vertex and one mo-

nomial per independent set, each monomial being the product of the corresponding

variables. When the variables take positive real values, the value of the polynomial

coincides with the partition function of the hard-core model on the graph, wherein

atoms of a gas are distributed upon the vertices so that each vertex accommodates

at most one atom, no two adjacent vertices are simultaneously occupied, and where

the positive real number associated with each vertex, called fugacity, expresses its

attractiveness. Estimating the partition function of the hard-core model for different

graphs and fugacities is a central problem of statistical mechanics. Somewhat sur-

prisingly, this estimation is also interesting when the variables take negative values,

due to a connection with probabilistic combinatorics and, in particular, the Lovász

Local Lemma. Going further, the Lee-Yang theory of phase transitions motivates

the estimation of the independent set polynomial for complex arguments, as the ab-

sence of zeros in regions of the complex plane implies the absence of phase transitions

(non-analyticities) for corresponding real arguments.

We start by revisiting known methods for bounding the independent set polynomial

and then by devising new ones. We develop two distinct approaches, corresponding

to two different ways of dealing with the exponentially large computation tree that

results when the fundamental recurrence obeyed by the independent set polynomial
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is unfolded. In the first, more combinatorial, approach we develop a map enjoying

crisp monotonicity properties from subgraphs of the input graph to truncations of

the graph’s tree of self-avoiding walks. This allows us to develop several new results,

including results about exact evaluation of the polynomial, a first local upper bound

for it, and several new local lower bounds. The second, more analytic, approach stays

closest to existing methods and treats the computation tree as a circuit. Efficiency

in computation is now achieved by showing that, under certain conditions, retaining

a logarithmic number of layers closest to the root suffices, as the rest of the circuit

has very little influence. This view allows us to recover some seminal results with

much simpler proofs and, crucially, without any appeal to notions and results from

statistical physics. We hope that this last fact will enable the development of new

results.
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1.1 Preliminaries and Notation

Let [n] denote the set {1, 2, . . . , n}. A (simple, undirected) graph G is a pair (V,E),

where V is a set whose elements are called vertices, and E is a set of paired vertices,

whose elements are called edges. The graph G′ = (V ′, E ′) is a subgraph of G, if

V ′ ⊆ V , and E ′ ⊆ E ∩ (V ′ × V ′). If E ′ = E ∩ (V ′ × V ′), i.e., G′ is formed by a

subset V ′ of V and all of the edges in E connecting pairs of V ′, then we say G′ is

the subgraph of G induced by V ′, and we write G⟨V ′⟩ := G′. An independent set of

a graph G is a subset S of V , such that G⟨S⟩ is devoid of edges, in other words, no

edge has both of its endpoints within S. We write Ind(G) to denote the set of all

independent sets of the graph G (note that ∅ ∈ Ind(G), as it vacuously satisfies the

definition above). Unless stated otherwise, from now on we assume that G is a graph

on [n], i.e., V = [n].

1.2 The Independent Set Polynomial

The independent set polynomial of a graph G, is nothing but the (multivariate)

generating function of the independent sets of G.

Definition 1. For variables x1, . . . , xn ∈ C, the (multivariate) independent set poly-

nomial of G is

Z(xxx;G) = Z([n]) :=
∑︂

I∈Ind(G)

∏︂
i∈I

xi . (1.1)

Remark 2. Unless stated otherwise, we will think of xxx as fixed and, thus, of Z as a

function on 2[n] (induced subgraphs of G). Also, we will often refer to the components

of the vector xxx as activities.

The complexity of computing and approximating the independent set polynomial

is an extensively studied subject, as there are meaningful instantiations of the polyno-

mial when the activities are positive reals, negative reals, and even complex numbers.
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1.2.1 Positive Reals: The Hard Core Model

In a plethora of natural computational problems in combinatorics, probability, and

statistical physics we are given as input a graph G that defines a set Ω = Ω(G)

of objects (configurations) of interest (matchings, spanning trees, etc.), A weight

function w : Ω → (0,+∞) assigns a positive weight to each element σ ∈ Ω, giving

rise to a probability distribution π(σ) = w(σ)/Z, where the normalizing factor Z :=∑︁
σ∈Ωw(σ) is called the partition function.

When Ω = Ind(G) and each I ∈ Ind(G) has weight w(I) =
∏︁

i∈I xi, for some

reals xxx ∈ (0,+∞)n, the distribution is known as the hard-core model of statistical

physics, and the independent set polynomial of G equals the partition function. Ob-

serve that in the univariate case where all vertex activities equal x > 0, i.e., xxx = x111,

as x→∞ the polynomial is increasingly dominated by the contribution of the largest

independent sets, which, due to the hardness of the maximum independent set prob-

lem, suggests that evaluating the polynomial for arbitrarily large values of x should

be intractable. A celebrated achievement in this area is the characterization of the

computational tractability of approximating the partition function. For a graph G,

let ∆ = ∆(G) ≥ 3 denote its maximum degree and let

xc = xc(∆) :=
(∆− 1)∆−1

(∆− 2)∆
↘ e

∆
. (1.2)

Theorem 3 ([2]). There exists an algorithm which given a graph G and (activities)

xxx ∈ (0, xc)
n, for any ε > 0, returns Y ∈ (1± ε)Z in time O(n/ε)log∆/(1−δ), for some

δ = δ(xxx,∆) < 1.

Theorem 3 is best possible in terms of maximum degree. Specifically, Sly and

Sun [3] proved that approximating the partition function is NP-hard even when xxx =

x111, and x > xc.

4



xc0 ∞NP-HARDFPTAS

Figure 1.1: Characterization of approximability of ZG for positive activities

1.2.2 Complex Numbers: Phase Transitions

The study of partition functions when the arguments of the corresponding polynomial

are complex numbers dates back to the 1952 work of Lee and Yang [4] who established

a connection between the location of zeros of the partition function on the complex

plane and the presence of phase transitions on the real axis. The high-level idea is

that since we identify phase transitions as discontinuities in the derivatives of free

energy, i.e., logZ, such a transition can only occur at a point of the complex plane

if there is at least one nearby zero of the partition function. Specifically, in the

follow-up paper [5], Lee and Yang instantiated this connection for the ferromagnetic

Ising model by proving that the zeros of the partition function always lie on the unit

circle in the complex plane, and using this fact to conclude that the ferromagnetic

Ising model can have at most one phase transition. The Lee-Yang approach has since

become a cornerstone of the study of phase transitions, and has been used extensively

in the statistical physics literature: see, e.g., [6–9] for specific examples, and Ruelle’s

book [10] for background. There have also been attempts to relate the Lee-Yang

program to the Riemann hypothesis [11].

Zeros of partition functions when the variables take complex values have also been

studied in a purely combinatorial setting without reference to the physical interpre-

tation: see, for example, Choe et al. [12]. Another important example is the work of

5



Chudnovsky and Seymour [13], who show that the zeros of the univariate independent

set polynomial of claw-free graphs lie on the real line. Also, Barvinok [14] initiated a

line of research leading to quasi -polynomial time approximation algorithms for sev-

eral types of partition functions and graph polynomials. This approach, known as

interpolation method, is based on Taylor approximations of the logZ allowing ap-

proximation in regions of the complex plane where Z is non-vanishing. Later, Patel

and Regts [15] showed that the interpolation method, in fact, yields polynomial time

approximation algorithms when restricted to bounded degree graphs. Finally, in a

seminal work, Scott and Sokal [16] proved that the independent set polynomial is

non-zero in the polydisk of ppp ∈ [0, 1)n, if and only if ZG(−λppp) > 0 for every λ ∈ [0, 1].

1.2.3 The Probabilistic Method and the Lovász Local Lemma

The Probabilistic Method [17] amounts to establishing the existence of mathematical

objects with a certain property of interest by demonstrating a probability distribu-

tion under which they have strictly positive probability. The power of the method

stems from the fact that underestimating the probability of the objects by any factor

(multiplicative approximation) suffices to establish existence. Typically, the property

of interest, P , is the intersection of the complements of several simpler properties,

each property expressing some particular “flaw”, so that P coincides with flawless-

ness. Thus, if we endow a universe of candidate objects Ω, where sets {Fi}ni=1 ⊆ Ω

correspond to different flaws, with a probability measure µ, we want to prove that

the avoidance probability, µ(
⋂︁

i∈[n] F i), is strictly positive.

Now, if we only know the marginals pi := µ(Fi), the best lower bound we can give

for the avoidance probability is 1 −∑︁i pi, as, for all we know, the flaws could be

disjoint. To improve upon the union bound, we need to constrain the flaw overlaps.

A natural (and extremely successful) way to express this is as a graph G on [n].

Concretely, let Γi(G) = Γi denote the neighborhood of vertex i in G and let Γ+
i =

Γi ∪ {i}. We say that G is a dependency graph for {Fi}ni=1 with respect to µ if for

6



every i ∈ [n] and every set {j1, j2, . . .} ⊆ [n] \ Γ+
i ,

µ(Fi | Fj1 ∩ Fj2 ∩ · · · ) = µ(Fi) = pi . (1.3)

Note that the presence of an edge in G does not prescribe any specific kind of de-

pendency between the corresponding events, only a lack of constraint thereof. Thus,

a complete dependency graph (clique) conveys no information at all about how the

n events overlap, while an empty dependency graph implies that the n events are

mutually independent.

Say that a measure µ on {F1, . . . , Fn} is compatible with ppp,G, if pi = µ(Fi), and

G is a dependency graph for µ. For a measure µ it is typically easy to compute

ppp = (p1, p2, . . . , pn) and a dependency graph G. As a result, it is natural to seek a

condition which given ppp,G determines if the avoidance probability is strictly positive

for every measure compatible with ppp,G, or not. This task was wonderfully tackled

by Shearer in [1], who showed that to minimize the avoidance probability, given ppp,G,

one should try to realize the (unique) measure µ∗ under which events adjacent in

G are disjoint. Explicitly, µ∗ is defined by demanding µ∗(∩i∈SFi) =
∏︁

i∈S pi, if S

is an independent set of G, and µ∗(∩i∈SFi) = 0, otherwise. It is not hard to see

that if Z(−ppp;S) < 0, for some S ⊆ [n] (or, equivalently, if Z(−λppp; [n]) < 0 for some

λ ∈ [0, 1]), then µ∗ can not be realized, and one can easily construct a probability

measure compatible with G,ppp, for which the avoidance probability is zero; otherwise,

inclusion-exclusion implies that µ∗(
⋂︁

i∈S F i) = Z(−ppp;S) ≥ 0 and, therefore, that

the avoidance probability is at least Z(−ppp; [n]), i.e., the value of the independent

set polynomial of G evaluated at −ppp. Unfortunately, performing this evaluation is

generally intractable, as it involves a summation over all independent sets of the

dependency graph G.

The Lovász Local Lemma is a sufficient condition for Z(−λppp) > 0 for all λ ∈ [0, 1],

along with a lower bound for Z(−ppp). Below is a general formulation (the so-called

asymmetric).

7



Theorem 4 (Lovász [18]). Let µ be a probability measure on set Ω and let G be a

dependency graph for {Fi}i∈[n] ⊆ Ω. If there exist r1, r2, . . . , rn ∈ [0, 1) such that for

every i ∈ [n],

pi ≤ ri
∏︂
j∈Γi

(1− rj) , (1.4)

then µ

(︄
n⋂︂

i=1

Fi

)︄
≥
∏︂
i∈[n]

(1− ri) > 0.

Remark 5. Theorem 4 holds (and is known as the “Lopsided LLL” of Erdős and

Spencer [19]) if condition (1.3) holds with “≤” instead of “=”. All our results also

hold in that setting but we stick to “=” for simplicity of presentation.

8



1.3 Our Results

1.3.1 An Improved General / Asymmetric LLL

We strictly improve the asymmetric LLL, as follows, and thus all its (several hundred)

applications.

Theorem 6. Theorem 4 holds if (1.4) is replaced by

pi ≤ ri
∏︂
j∈Γi

1− rj
1− rirj

. (1.5)

Even though Theorem 6 retains all the flexibility of the asymmetric LLL to adjust

to events with different degrees and probabilities, it is sharp enough to recover the

optimal bound in terms of the maximum degree ∆(G), attained as a limit by ∆-regular

trees as depth goes to infinity. Specifically, if every event has probability at most p

and is mutually independent of all but ∆ ≥ 2 other events, Theorem 6 recovers

the optimal condition p < (∆−1)(∆−1)

∆∆ originally proven by Shearer [1], whereas the

asymmetric LLL requires p < ∆∆

(∆+1)(∆+1) .

A fairly recent improvement of the asymmetric LLL is the so-called cluster expan-

sion LLL by Bissacot et al. [20], wherein the presence of edges in the neighborhood

of a vertex, i.e., the presence of triangles in G, relaxes the condition corresponding

to that vertex. In general, our Theorem 6 is incomparable with the cluster expansion

LLL, but the overall trend is that the former is better when the neighborhoods are

sparse, while the latter is better when they are dense.

In Section 1.3.4, we will see two significant improvements of Theorem 6. The

weaker of these is already exact on arbitrary trees (uniform trees being the worst

case for given ∆).

1.3.2 An Upper Bound for the Partition Function on the
Negative Reals

Recall that given a vector ppp ∈ [0, 1)n, the central problem is determining whether

ZG ̸= 0 on the polydisk of ppp, i.e., for every xxx ∈ Cn such that |xi| ≤ pi for all i ∈ [n].

9



Recall also that Scott and Sokal [16] showed that “the worst case” occurs when all

arguments are negative real, so that the independent set does not vanish anywhere

in the polydisk iff Z(−λppp) > 0 for every λ ∈ [0, 1]. Concomitantly, when this occurs,

the magnitude of ZG over the polydisk of ppp is minimized at −ppp.

Definition 7. Given a graph G, let

S(G) = {ppp ∈ [0, 1)n : ZG(−λppp) > 0, for all λ ∈ [0, 1]} .

Now, recall that by the work of Shearer [1], if G is a dependency graph and ppp ∈

S(G), then the avoidance probability of every measure compatible with ppp,G is at

least Z(−ppp) > 0, whereas if ppp ̸∈ S(G), there exists a measure compatible with ppp,G

for which the avoidance probability is zero. Finally, recall that the LLL is a local

sufficient condition for ppp ∈ S(G), providing a (positive) lower bound for Z(−ppp) (and,

thus, for |Z| on the polydisk of ppp). We show that if ppp ∈ S(G), then |ZG| can also be

bounded from above on the entire polydisk of ppp.

Definition 8. Given a permutation π of [n], let
←−
Γi =

←−
Γi(π) = Γi ∩ {j ∈ [n] : π(j) <

π(i)} and let
−→
Γi =

−→
Γi(π) = Γi ∩ {j ∈ [n] : π(j) > π(i)}.

Theorem 9 (Upper Bound). Given ppp,G and any permutation π of [n], define rrr =

rrr(π) by

pi = ri
∏︂

j∈
←−
Γi(π)

(1− rj) , for every i ∈ [n] . (1.6)

(Note that rrr is well-defined as r1 = p1, while ri is determined by pi, r1, . . . , ri−1 for

i > 1.)

If ppp ∈ S(G), then Z(−ppp;S) ≤∏︁j∈S(1− rj), for every S ⊆ [n].

Remark 10. If r′r′r′, rrr satisfy (1.4), (1.6), respectively, then r′i ≥ ri for every i ∈ [n].

1.3.3 Exact Computation for Chordal Graphs

Recall that a graph is chordal if all its induced cycles have length three. We prove

that the independent set polynomial of a chordal graph can be evaluated anywhere on

10



the complex plane in linear time. We conjecture that chordality is closely related to

the exact solvability of the hard-core model for certain highly transitive graphs, e.g.,

triangular lattice (hard hexagons model [21]), and that the hard-core model is not

the only statistical mechanics model for which chordality relates to exact solvability.

Fact 1. A graph G on [n] is chordal iff there exists a permutation π of [n] such

that
−→
Γi(π) is a clique for every i ∈ [n], in which case we say that π is a chordal

presentation of G.

Theorem 11. If π is a chordal presentation of G, then ZG(xxx) =
∏︂
i∈[n]

(1 + ri), where

xi = ri
∏︂

j∈
←−
Γi(π)

(1 + rj) , for every i ∈ [n] . (1.7)

(Note that rrr is well-defined as r1 = x1, while for i > 1, ri is given by xi, r1, . . . , ri−1.)

Corollary 12. The independent set polynomial of a chordal graph can be evaluated

anywhere on the complex plane in linear time. A perfect sample from the hard-core

distribution on a chordal graph can be obtained in polynomial time.

Proof. A chordal presentation of chordal graph G = (V,E) can be found in time

O(|V | + |E|). Computing each ri given r1, . . . , ri−1 requires O(|Γi|) steps. By evalu-

ating ZG(xxx, [n]) and ZG((x1, . . . , xn−1, 0), [n]) we can sample the correct distribution

for vertex n. Having done so, i.e., whether n is absent or present in our sample, we

proceed to sample an independent set from the chordal graph induced by [n − 1] or

[n] \ Γ+
i , respectively.

The previous best result on the independent set polynomial of chordal graphs

is due to Okamoto, Uno, and Uehara [22] who showed that it can be evaluated

exactly in linear time at xxx = 111, i.e., that the number of independent sets can be

counted. It is not clear that the approach of [22] can be extended to handle even the

case xxx = x111 for real x > 0, let alone the multivariate, or (especially) the negative

real case. A very recent related work by Heinrich and Müller [23] showed that the

11



independent set polynomial can be evaluated exactly for xxx ∈ Rn, when G is strongly

orderable. Stronly orderable graphs form a subclass of weakly chordal graphs that

contains chordal bipartite graphs. Finally, in terms of (arbitrarily good, randomized)

approximate evaluation of the independent set polynomial, Bezakova and Sun [24]

showed that a natural Markov chain for the hard core model with positive fugacities,

i.e., for the case xxx ∈ Rn, mixes in polynomial time on chordal graphs with separators

of bounded size.

1.3.4 Local Lemmata from Non-Backtracking Walks

We develop a framework that allows us to derive local lemmata from different sets

of walks on the graph G. Concretely, in each set the walks share the property that

the next vertex in each step avoids the previous q, for some q ≥ 0. In particular,

Theorems 4 , 13, and 14 correspond to taking Ti to be the (infinite) tree of walks

starting at i, that are arbitrary (q = 0), non-backtracking (q = 1), and non-2-

backtracking, respectively. These trees preserve the local structure of G while being

tractable, as they enjoy highly recursive structure (decreasingly so as q is increased).

A Local Lemma from Non-Backtracking Walks

Theorem 13. Given G = ([n], E) and ppp ∈ [0, 1)n, assume that for every i ∈ [n], and

every ordered pair (i, j) where {i, j} ∈ E, there exist ri, ri,j,∈ [0, 1), respectively, such

that

pi ≤ ri
∏︂
j∈Γi

(1− rj,i) (1.8)

pi ≤ ri,j
∏︂

k∈Γi\{j}

(1− rk,i) . (1.9)

Then, Z(−ppp) ≥∏︁i∈[n](1− ri).

Theorem 13 implies Theorem 6 and is implied by Theorem 14, below.

12



A Lower Bound from Non-2-Backtracking Walks

Theorem 14. Given G = ([n], E) and ppp ∈ [0, 1)n, assume that for every i ∈ [n], every

ordered pair (i, j) where {i, j} ∈ E, and every ordered triple (i, j, k) where {i, j, k}

induce a triangle in G, there exist ri, ri,j, ri,j,k ∈ [0, 1), respectively, such that

pi ≤ ri
∏︂
j∈Γi

(1− rj,i) (1.10)

pi ≤ ri,j
∏︂

k∈Γi\Γ+
j

(1− rk,i)
∏︂

k∈Γi∩Γj

(1− rk,i,j) (1.11)

pi ≤ ri,j,k
∏︂

ℓ∈Γi\Γ+
j

(1− rℓ,i)
∏︂

ℓ∈Γi∩Γj\{k}

(1− rℓ,i,j) . (1.12)

Then, Z(−ppp) ≥∏︁i∈[n](1− ri).
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1.3.5 Application: Shearer Region of the Triangular Lattice

As mentioned earlier, determining the set S(G) of activities for which the partition

function is non-vanishing in the corresponding polydisk is a central problem in sta-

tistical mechanics, motivated by the Lee-Yang [4] approach to studying phase transi-

tions. Since phase transitions can occur only in infinite-size systems, to study them

on locally-finite countable graph G∞ (typically a regular lattice), we consider an in-

creasing sequence of subgraphs (Gn)n≥1 converging to G∞ and study the limiting free

energy per vertex fG∞ = limn→∞ n
−1 logZGn(xxx). Nonanalyticities of fG∞ for real xxx,

arise from singularities of logZGn(xxx) for complex xxx that approach the real axis in the

limit n → ∞. But the singularities of logZGn(xxx) are precisely the zeros of ZGn(xxx),

hence the desire to determine S(G). Of particular interest is the so-called uniform

case ppp = p111, where all the activities are the same.

To benchmark our methods, we consider one of the very few exactly solved cases

of the hard-core model, namely the case where G∞ is the triangular lattice. This

is known as the “hard hegaxons” model, since its valid configurations amount to

placements of (centers of) hexagons in a triangular lattice so that no two hexagons

overlap, i.e., to selecting an independent set of the triangular lattice (serving as

the centers of the hexagons). For this model it is known that the critical value

pc =
5
√
5−11
2

= 0.09016...

Figure 1.2: The “hard hegaxons” model: its valid configurations amount to place-
ments of (centers of) hexagons in a triangular lattice so that no two hexagons overlap

Applying the asymmetric LLL, which only exploits that ∆(Gn) = 6, implies pc ≥
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66/77 = 0.0566. Our improved asymmetric LLL (Theorem 6), refining the dependence

on ∆, yields pc ≥ 55/66 = 0.0669. Kolipaka, Szegedy, and Xu [25], introduced a

family of sufficient conditions for the avoidance probability to be positive that range

between the asymmetric LLL and the exact result of Shearer [1]. To apply their so-

called “clique LLL” to the triangular lattice we color the triangular faces in a chess

board pattern and decompose it using the white triangles as the parts of the clique-

decomposition. Optimizing the resulting parameters yields pc ≥ 0.07407. Finally, the

cluster expansion LLL [20], exploiting the presence of 6 triangles in the neighborhood

of each vertex, yields pc ≥ 0.0776.

Applying Theorem 14 with ri = 0.81614, ri,j = 0.2, and ri,j,k = 0.2 yields pc ≥

0.08192.

1.3.6 Recovering Known Approximability Results with Sim-
pler Proofs

Recall that for positive real activities, Weitz [2] showed that the problem of evaluating

the independent set polynomial admits a FPTAS when all activities are in the interval

[0, xc), where xc ↘ e
∆

is defined in (1.2). Let

x∗c =
(∆− 1)(∆−1)

∆∆
↘ 1

e∆
.

For complex arguments, Patel and Regts [15], as well as, Harvey, Srivastava and

Vondrák [26] showed that there is an FPTAS for every G of maximum degree ∆

for activities inside the disk of modulus x∗ centered at the origin. Later, Peters

and Regts [27] extended the regime of approximability to a small strip surrounding

the interval [0, xc), using the polynomial interpolation approach of Barvinok [14],

confirming a conjecture of Scott and Sokal.

As we will see, for the independent set polynomial with (uniform) activities x111 a

key function is fx : C ↦→ C with fx(w) = x/(1+w)∆−1. In their paper [27], Peters and

Regts defined a cardioid region on the complex plane as: the locus of x (activities)

for which fx has at least one attractive fixed point. They asked whether this cardioid
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FPTAS
NP-hard

# P-hard

[Patel-Regts ’17]

[Harvey, Srivastava,

Vondrák ’18] [Weitz ’04]

[Peters, Regts ’19]
[Bezáková, et al. ’18] [Sly-Sun ’14]

−x∗c(∆) x∗c(∆) xc(∆) ℜ

ℑ

Figure 1.3: The locus of activities for which fx has at least one attractive fixed point
is the cardioid. The locus of activities for which ˆ︁fx has at least one attractive fixed
point is the egg-shaped region.

region corresponds precisely to the region where efficient approximability is possible.

In [28], Bezáková, Galanis, Goldberg, and Štefankovič showed that everywhere outside

the cardioid region lies intractability: approximating the independent set polynomial

is#P-hard, except on the real, positive axis where it is NP-hard.

We introduce analytic machinery that allows us to reproduce both the result of [2]

and of [15, 26]. A positive aspect of our machinery is that the resulting proofs are

significantly shorter, entirely self-contained, and elementary, i.e., do not appeal to no-

tions from statistical physics such as correlation decay, or (sophisticated) polynomial

interpolation.

An important feature of our machinery is that it operates in the log-domain, i.e.,

instead of the function fx mentioned above, we analyze ˆ︁fx = log ◦fx ◦ exp. Thus,

for the result in [15, 26], the disk of radius x∗c centered at the origin is transformed

to the half-plane comprised of complex numbers whose real part is bounded above
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by log x∗c . Similarly, the cardioid locus of activities for which ˆ︁fx has at least one

attractive fixed point becomes the egg-shaped region in Figure 1.3 that is nearly

convex (see the relevant inset around −xc.). We hope to exploit this near-convexity

to establish efficient approximability for the independent set polynomial inside (most

of) the egg-shaped region.
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1.4 Relating the Independent Set Polynomial to

Walk Trees

In this section we exploit the so called self-reducibility of the independent set poly-

nomial, being the starting point of both [1] and [16]. Simply put, one can show that

the ratios of Z, satisfy a simple recurrence, whose computation tree can be seen as a

tree of appropriately defined walks on G. However, the emerging computation tree is

in general exponential in the size of G, and hence no direct access to it is possible.

1.4.1 Main Recurrence and the Computation Tree

For i ∈ [n], and S ⊆ [n] \ {i}, given input xxx, we define

Z(xxx; i | S) := Z(xxx;S ∪ {i})
Z(xxx;S)

= Z(i | S) .

Trivially, Z = Z([n]) =
∏︁

i∈[n] Z(i | [i − 1]), since Z(i, ∅) = 1. To estimate Z(i | S)

observe that the contribution to Z(S ∪ {i}) of the sets including vertex i equals xi

times the contribution of the sets not including Γ+(i). Therefore,

Z(S ∪ {i}) = Z(S) + xiZ(S \ Γi) . (1.13)

With the above in mind, let {j1, . . . , jd} be an ordering of Γi ∩ S, and write Sℓ =

S \ {j1, . . . , jℓ}. Dividing (1.13) by Z(S) and writing the ratio Z(S \ Γi)/Z(S) in

telescopic form yields

Z(i | S) = 1+ xi
1

Z(S)

Z(S \ Γi)

= 1+ xi
1

d∏︂
ℓ=1

Z(S \ {j1, . . . , jℓ−1})
Z(S \ {j1, . . . , jℓ})

= 1+ xi

d∏︂
ℓ=1

1

Z(jℓ | Sℓ)
.

(1.14)

It is convenient to introdude the quantity ratioG(xxx; (i, S)) := Z(i | S)−1 = ratio(i, S)

and rewrite (1.14) as

ratio(i, S) = xi

d∏︂
ℓ=1

1

1 + ratio(jℓ, Sℓ)
. (1.15)
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Thus,

Z = Z([n]) =
∏︂
i∈[n]

Z(i | [i− 1]) =
∏︂
i∈[n]

(1 + ratio(i, [i− 1])) . (1.16)

To compute ratio(i, [i− 1]) for each i ∈ [n], we observe that since all sets on the right

hand side of (1.15) are strictly smaller than S, the recursion (1.15) for ratio(i, [i −

1]) unfolds to a computation tree of depth at most i − 1, with leaves of the form

ratio(j, ∅) = xj.

1.4.2 From Arbitrary Graphs to Trees

A walk on G starting at vertex i is a sequence of vertices (v0, v1, . . . , vℓ), such that

v0 = i and vk−1 is adjacent to vk for all k ∈ [ℓ].

Definition 15. A walk (v0, v1, . . .) is q-non-backtracking if vj /∈ {vj−1, vj−2, . . . , vj−q}.

A walk is self-avoiding if its vertices are distinct, i.e., it is (|V |−1)-non-backtracking.

A walk is descending if vk−1 > vk for all k ∈ [ℓ].

Definition 16. Given a walk w = (v0, v1, . . . , vℓ), let Fw(v0) = ∅, while for k ∈ [ℓ] let

Fw(vk) = Fw(vk−1) ∪ {u ∈ Γvk−1
: u ≥ vk−1} . (1.17)

If vk+1 ̸∈ Fw(vk) for every k ∈ [ℓ], we say that the walk w is leftward.

Remark 17. A descending walk is both leftward and self-avoiding.

Given a graph G, we write
←−
G i for the graph induced by [i].

Definition 18. Let W be a non-empty set of walks on G all starting at i, such that

w ∈ W implies w′ ∈ W for every prefix w′ of w. The tree corresponding to set W

has as its root the walk (i), while the children of each vertex (walk) are its extensions

by one step. The activity of each vertex (i, v1, . . . , vℓ) of the tree is xvℓ.

We use Li := Li(G) to denote the tree of leftward self-avoiding walks on
←−
G i starting

at i.
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Definition 19. If G is a rooted tree, we use ratioG(i) to denote the quantity ratioG(i, T (i)),

where T (i) is the set of vertices in the subtree rooted at i other than i.

1

32

4 5 6

6,[5]

5,[4] 3,{1,2,4}

4,[3] 3,[2]

2,{1}

1,∅

2,{1,4}

4,{1} 1,∅
2,{1,3}

3,{1} 1,∅
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Figure 1.4: A graph G, and its leftward self-avoiding tree rooted at vertex 6

The following theorem shows that the independent set polynomial of any graph

can be expressed as the independent set polynomial of some, possibly exponentially

larger, tree.

Theorem 20. For every graph G on [n], i ∈ [n], and walk w = (v0, v1, . . . , vℓ) in Li,

ratioLi(w) = ratioG (vℓ, [i− 1] \ Fw(vℓ)) . (1.18)

In particular, ratioLi ((i)) = ratioG (i, [i− 1]).

Proof. We proceed by induction on the size of the subtree rooted at w.

If w is a leaf in Li then, trivially, ratioLi (w) = zvℓ . Moreover, Fw(vℓ) ⊇ Γvℓ (other-

wise w could be extended), and thus, ratioG (vℓ, [i− 1] \ Fw(vℓ)) = ratioG(vℓ, ∅) = zvℓ .

If w is not a leaf in Li, assume the theorem holds for its descendants. Let

{j1, . . . , jd} = Γi \ Fw(vℓ), with j1 ≥ . . . ≥ jd, and write wt = (v0, v1, . . . , vℓ, jt),
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for t ∈ [ℓ]

ratioLi(w) =
∏︂
t∈[d]

1

1 + ratioLi(wt)
(1.19)

=
∏︂
t∈[d]

1

1 + ratioG (jt, [i− 1] \ Fwt (jt))
(1.20)

=
∏︂
t∈[d]

1

1 + ratioG (jt, ([i− 1] \ Fw (vℓ)) \ {j1, . . . , jt})
(1.21)

= ratioG (vℓ, [i− 1] \ Fw (vℓ)) . (1.22)

The following lemma establishes a strong monotonicity of ratios with respect to

the activity vector in the negative axis.

Lemma 21. Let i ∈ [n], S ⊆ [n]\{i}, and ppp ∈ [0, 1)n, be such that ratio (−ppp; (j, S ′)) >

−1 for every j ∈ S and every S ′ ⊆ S \ {j}. Let P = {(x1, . . . , xn) : 0 ≤ xi ≤ pi}.

The function f : xxx ↦→ ratio (−xxx; (i, S)) is smooth and strictly decreasing in P .

Proof. We use induction on the size of S. If S = ∅ then, ratio (−xxx; (i, ∅)) = −xi,

satisfying the claim trivially. Assume now that the lemma holds for every j ∈ S and

every proper subset of S not containing j. Let {j1, . . . , jd} be an ordering of Γi ∩ S,

and write Sℓ = S \ {j1, . . . , jℓ}; then (1.15) gives

ratio (−xxx; (i, S)) = −xi
d∏︂

ℓ=1

1

1 + ratio (−xxx; (jℓ, Sℓ))
. (1.23)

Since each set Sℓ that appears in (1.23) is a proper subset of S that does not

contain j, the inductive hypothesis implies that ratio (−xxx; (jℓ, Sℓ)) is decreasing in-

side P . Therefore, the assumed fact that ratio (−ppp; (jℓ, Sℓ)) > −1 implies that

ratio (−xxx; (jℓ, Sℓ)) > −1. Since the function 1/(1 + x) is smooth and decreasing

for x > −1, the claim follows by the smoothness and monotonicity of the d factors

in (1.23), afforded by the inductive hypothesis.
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Next, we provide a simple characterization of S(G) with respect to ratios of Li.

Theorem 22. ppp ∈ S(G) iff ratioLi(−ppp;w) > −1, for every i ∈ [n], w ∈ Li.

Proof. If ratioLi(−ppp;w) > −1, for every i ∈ [n] and w ∈ Li, then, by Lemma 21,

ratioLi(−λppp; (i)) ≥ ratioLi(−ppp; (i))) > −1, for all λ ∈ [0, 1]. Thus, using telescoping

and Theorem 20 to write the first equality, we conclude that ppp ∈ S(G) since for all

λ ∈ [0, 1],

Z(−λppp; [n]) =
∏︂
i∈[n]

(1 + ratioLi(−λppp; (i))) ≥
∏︂
i∈[n]

(1 + ratioLi(−ppp; (i))) > 0 .

For the converse, we show that if ratio (−ppp; (i, S)) ≤ −1, for some i ∈ [n], S ⊆

[n] \ {i}, then, there is λ∗ ∈ (0, 1] with Z(−λ∗ppp; [n]) = 0, implying ppp /∈ S(G) (this

is stronger than the contrapositive of what we need to prove as it does not require

the set S to amount to the vertices of a subtree). Indeed, let S be any minimal

set satisfying ratio (−ppp; (i, S)) ≤ −1; by renaming the vertices of G, we can assume

that this happens for S = [i− 1], i.e., that (a) ratio (−ppp; (i, [i− 1])) ≤ −1, while (b)

ratio (−ppp; (j, T )) > −1, for every j ∈ [i−1] and T ⊆ [i−1]\{j}. Per Lemma 21, fact

(b) implies that ratio (−λppp; (i, [i− 1])) is a smooth and strictly decreasing function

for λ ∈ [0, 1]. Hence, there exists λ∗ ∈ (0, 1] such that ratio (−λ∗ppp; (i, [i− 1])) = −1,

which per (1.16) yields Z(−λ∗ppp; [n]) = 0.
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Definition 23. If T is a tree rooted at vertex i and we delete zero or more vertices

of T other than i, then the remaining tree rooted at i is called a prefix of T .

H T

Figure 1.5: A prefix tree T obtained from the tree H after deleting its red edges

Corollary 24. Let Ti be a tree on [n] rooted at i and assume that ppp ∈ S(Ti). If T ′i is

any prefix of Ti, then ratioTi
(−ppp; i) ≤ ratioT ′

i
(−ppp; i).

Proof. Zeroing a vertex activity pj effectively deletes j. As ppp ∈ S(Ti), Lemma 21

applies.
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1.5 Proofs of the Main Results

Using the tools we established above, we are now ready to prove our main results.

1.5.1 Upper Bound

Let Di := Di(G) denote the tree of descending walks on G starting at i.

Theorem 25. Given a graph G on [n] and xxx ∈ Cn, for i = 1, 2, . . . , n let

ri = xi
∏︂
j∈
←−
Γ i

1

1 + rj
. (1.24)

Then, ratioDi
(xxx; (i)) = ri for every i ∈ [n].

Proof. We use induction on i. For i = 1, trivially, ratioD1 (xxx; (1)) = x1 = r1.

Assume now that (1.24) holds for all i < k. Clearly, the root walk (k) can only be

extended by taking a step to a neighbor smaller than k. If {j1, . . . , jd} is an ordering of

←−
Γk, then (1.15) yields (1.25), while the inductive hypothesis yields the second equality

in (1.27),

ratioDk
(xxx; (k)) = xk

d∏︂
ℓ=1

1

1 + ratioDk
(xxx; (jℓ,Dk \ {(k), (k, j1), . . . , (k, jℓ)}))

(1.25)

= xk

d∏︂
ℓ=1

1

1 + ratioDk
(xxx; (jℓ,Dℓ \ {(jℓ)}))

(1.26)

= xk

d∏︂
ℓ=1

1

1 + ratioDℓ
(xxx; (jℓ))

= xi
∏︂
j∈
←−
Γ i

1

1 + rj
= rk . (1.27)

Corollary 26. If ppp ∈ S(G), and rrr ∈ [0, 1)n satisfies ri
∏︁

j∈
←−
Γ i
(1 − rj) = pi for every

i ∈ [n], then Z(−ppp;S) ≤∏︁i∈S(1− ri).

Proof. Equation (1.16) yields (1.28) and (1.29) follows rom Theorem 20. Recalling

that a descending walk is both leftward and self-avoiding implies that Di is a prefix of

Li and, thus, Corollary 24, implies ratioDi
(−ppp; (i)) ≥ ratioLi (−ppp; (i)), yielding (1.30).

24



Finally, it is easy to see that our hypothesis is equivalent to −ri satisfying (1.24) for

xxx = −ppp so that claim 25, implies ratioDi
(−ppp; (i)) = −ri and, thus, (1.31). Putting

everything together we get

Z(−ppp;S) =
∏︂
i∈[n]

(1 + ratioG (−ppp; (i, [i− 1])) (1.28)

=
∏︂
i∈[n]

(1 + ratioLi (−ppp; (i)) (1.29)

≤
∏︂
i∈[n]

(1 + ratioDi
(−ppp; (i))) (1.30)

= (1− ri) . (1.31)
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1.5.2 Proof of Theorem 6 from Theorem 13

We first show how Theorem 13 readily implies Theorem 6.

Proof. Given {r′i}i∈[n], let ri = r′i and ri,j = r′i
1−r′j
1−r′ir′j

. We show that if (1.5) is

satisfied, then (1.8) and (1.9) are satisfied. Indeed,

ri
∏︂
j∈Γi

(1− rj,i) = r′i
∏︂
j∈Γi

(︃
1− r′j

1− r′i
1− r′jr′i

)︃
= r′i

∏︂
j∈Γi

(︃
1− r′j
1− r′jr′i

)︃
≥ pi ,

and

ri,j
∏︂

k∈Γi\{j}

(1− rk,i) = r′i
1− r′j
1− r′ir′j

∏︂
k∈Γi\{j}

(︃
1− r′k

1− r′i
1− r′kr′i

)︃
= r′i

∏︂
j∈Γi

(︃
1− r′j
1− r′jr′i

)︃
≥ pi.

1.5.3 Proof of Theorems 4, 13, 14

Theorems 4 , 13, and 14 can be derived in a unified framework using walk trees. This

is because, per Theorem 20 and Lemma 24, showing that ppp ∈ S(Ti) for an enlargement

Ti of Li, implies ppp ∈ S(G). Indeed, each of these theorems is the result of considering

the (infinite) tree of all walks starting at i, which additionally:

• In the case of Theorem 4, are non-0-backtracking, i.e., have no restriction.

• In the case of Theorem 13, are non-1-backtracking, i.e., non-backtracking.

• In the case of Theorem 14, are non-2-backtracking.

The value of considering these tress is that, being infinite, they have highly recursive

structure which can be characterized in terms of fixed-point equations. Specifically,

as q is increased and more and more restrictions are placed on the walks, the amount

of the graph’s local structure preserved is increased, but so is the complexity of the

recursive characterization (and, corresponding, fixed-point equations). In the interest

of compactness, instead of writing our proofs via this intuitive tree approach (which

motivated Theorems 13 and 14), we show how Theorem 14 yields Theorem 13 at the
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algebraic level and, similarly, for Theorem 13 yielding Theorem 6. For Theorem 14

itself, instead of the longer tree proof we give a shorter but rather less transparent

inductive proof.

1.5.4 Proof of Theorem 13 from Theorem 14

Proof. Given {r′i}i∈[n] ∈ [0, 1) and {r′i,j}{i,j}∈E ∈ [0, 1), let

ri = r′i, ri,j = r′i,j, and ri,j,k = r′i,j
r′j,kr

′
j,i − r′k,i + 1

r′i,jr
′
j,kr
′
k,i + 1

. (1.32)

We claim that if (1.8) and (1.9) are satisfied, then (1.10), (1.11), and (1.12), are

satisfied, implying

Z(−ppp) ≥
∏︂
i∈[n]

(1− ri) =
∏︂
i∈[n]

(1− r′i) .

Indeed, ri
∏︂
j∈Γi

(1− rj,i) = r′i
∏︂
j∈Γi

(︁
1− r′j,i

)︁
≥ pi.

Using that {r′i,j}{i,j}∈E ∈ [0, 1) we see that ri,j,k ≤ r′i,j, for all (i, j, k). Thus,

ri,j
∏︂

k∈Γi\Γ+
j

(1− rk,i)
∏︂

k∈Γi∩Γj

(1− rk,i,j)

≥ r′i,j
∏︂

k∈Γi\Γ+
j

(1− r′k,i)
∏︂

k∈Γi∩Γj

(1− r′k,i)

= r′i,j
∏︂

k∈Γi\{j}

(1− r′k,i)

≥ pi .

Similarly,

ri,j
∏︂

ℓ∈Γi\Γ+
j

(1− rℓ,i)
∏︂

ℓ∈Γi∩Γj\{k}

(1− rℓ,i,j)

≥ r′i,j
∏︂

ℓ∈Γi\Γ+
j

(1− r′ℓ,i)
∏︂

ℓ∈Γi∩Γj\{k}

(1− r′ℓ,i)

= r′i,j
∏︂

ℓ∈Γi\{j,k}

(1− r′ℓ,i)

≥ r′i,j
∏︂

ℓ∈Γi\{j}

(1− r′ℓ,i)

≥ pi .
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1.5.5 Proof of Theorem 14

Proof. We will show the following for every i ∈ [n] and S ⊆ [n] \ {i}, by induction

on |S|:

(a) ratio(−ppp; (i, S)) ≥ −ri,j,k, for every ordered triple (i, j, k) where {i, j, k} induce

a triangle in G and S ⊆ [n] \ {i, j, k}.

(b) ratio(−ppp; (i, S)) ≥ −ri,j, for every ordered pair (i, j) where {i, j} ∈ E and

S ⊆ [n] \ {i, j}.

(c) ratio(−ppp; (i, S)) ≥ −ri, for every i ∈ [n] and S ⊆ [n] \ {i}.

For S = ∅, ratio(i, S) = −pi ≥ max{−ri,j,k,−ri,j,−ri}, for all {i, j, k} ⊆ [n]. For

the inductive step, let S ⊆ [n] \ {i}, and assume (a), (b), (c) hold for all proper

subsets of S.

(a) Let {j1, . . . , jq} = S ∩Γi, and write Sℓ = S \ {j1, . . . , jℓ}, for ℓ ∈ [q]. Per (1.15)

ratio(i, S) = −pi
q∏︂

ℓ=1

1

1 + ratio(jℓ, Sℓ)
≥ −pi

q∏︂
ℓ=1

1

1− rjℓ
≥ pi

∏︂
j∈Γi

1

1− rj
≥ ri .

In the following, for (i, j) ∈ [n] × [n] where {i, j} ∈ E, and S ⊆ [n] \ {i, j}, let

{j1, . . . , jq} = S∩(Γi\Γj), {jq+1, . . . , jd} = S∩(Γi∩Γj), and write Sℓ = S\{j1, . . . , jℓ},

for ℓ ∈ [d].

(b) Let S ⊆ [n] \ {i, j}, and recall that (a), (b), (c) hold for all proper subsets of

S. Per (1.15),

ratio(i, S) = −pi
d∏︂

ℓ=1

1

1 + ratio(jℓ, Sℓ)
(1.33)

= −pi
q∏︂

ℓ=1

(︃
1

1 + ratio(jℓ, Sℓ)

)︃ d∏︂
ℓ=q+1

(︃
1

1 + ratio(jℓ, Sℓ)

)︃
(1.34)

≥ −pi
q∏︂

ℓ=1

(︃
1

1− rℓ,i

)︃ d∏︂
ℓ=q+1

(︃
1

1− rℓ,i,j

)︃
(1.35)

≥ −pi
∏︂

Γi\Γ+
j

(︃
1

1− rℓ,i

)︃ ∏︂
Γi∩Γj

(︃
1

1− rℓ,i,j

)︃
≥ ri,j . (1.36)
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(c) Let S ⊆ [n] \ {i, j, k}, and recall that (a), (b), (c) hold for all proper subsets of

S. Per (1.15),

ratio(i, S) = −pi
d∏︂

ℓ=1

1

1 + ratio(jℓ, Sℓ)
(1.37)

= −pi
q∏︂

ℓ=1

(︃
1

1 + ratio(jℓ, Sℓ)

)︃ d∏︂
ℓ=q+1

(︃
1

1 + ratio(jℓ, Sℓ)

)︃
(1.38)

≥ −pi
q∏︂

ℓ=1

(︃
1

1− rℓ,i

)︃ d∏︂
ℓ=q+1

(︃
1

1− rℓ,i,j

)︃
(1.39)

≥ −pi
∏︂

Γi\Γ+
j

(︃
1

1− rℓ,i

)︃ ∏︂
Γi∩Γj\{k}

(︃
1

1− rℓ,i,j

)︃
≥ ri,j,k . (1.40)
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1.5.6 Chordal Graphs

We claim that if G is chordally presented, then the set of leftward self-avoiding walks

coincides with the set of decreasing walks. Theorem 11 then follows from Theorem 25.

To prove the claim, as decreasing walks are leftward and self-avoiding, the following

(more than) suffices.

Theorem 27. G is chordally presented iff for every vertex i, every leftward self-

avoiding walk on
←−
G i starting at i is descending.

Proof. We prove the contrapositive statement of both directions. Let (i =:

v0, v1, . . . , vℓ) be a leftward self-avoiding walk on
←−
G i and let 2 ≤ k ≤ ℓ be the

minimum index such that vk−1 < vk. The minimality of k implies vk−1 < vk−2 and,

hence, that vk, vk−2 ∈
−→
Γ vk−1

. Leftwardness implies that vk /∈ Γvk−2
, i.e., that there is

no edge between vk−2 and vk, contradicting that G is chordally presented.

If G is not chordally presented, then there exist vertices a < b < c such that a is

connected to b and c, but b is not connected to c. Clearly, the walk (c, a, b) on
←−
G c is

leftward and self-avoiding but not descending.
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1.6 Taming the Computation Tree

In this section we devise analytical material for controlling the computation tree that

results by unfolding the fundamental recurrence by treating it as a circuit. Thus, the

the inputs to each gate come from its children in the tree, while its output travels

upwards to its parent.

1.6.1 Circuits, Contraction, and Truncation

For arbitrary D ⊆ Cn, write diam (D) := sup{∥www −www′∥∞ : www,www′ ∈ D}.

Definition 28. A function F is a δ-contraction on a set D if |F (www) − F (www′)| ≤

δ∥www −www′∥∞, for all www,www′ ∈ D.

Definition 29. Let D ⊆ C and let H be a set of functions, each f ∈ H mapping Dd

to D for some d = d(f). We say that each F ∈ H is a circuit of depth 1 on H, or

gate. For k ≥ 1, a function that results by replacing one or more inputs of a function

f ∈ H with the outputs of depth-k circuits is a circuit of depth k + 1 on H.

Lemma 30. Let C be a depth-k circuit on H and let www,www′ be inputs to C that

only differ in coordinates at depth k. If every gate in H is a δ-contraction, then

|C(www)− C(www′)| ≤ δk∥www −www′∥∞.

Proof. We use induction on k. For k = 1 the proposition is a tautology. As-

sume that our claim holds for some k ≥ 1, and let C be a depth-(k + 1) circuit

C(zzz) = F (C1(zzz1), . . . , Cd(zzzd)). Since C1, . . . , Cd are depth-k circuits whose inputs

differ only in coordinates at depth k,

|C(zzz)− C(zzz′)| = |F (C1(zzz1), . . . , Cd(zzzd))− F (C1(zzz
′
1), . . . , Cd(zzz

′
d))|

≤ δ ∥(C1(zzz1), . . . , Cd(zzzd))− (C1(zzz
′
1), . . . , Cd(zzz

′
d))∥∞

= δmax{|C1(zzz1)− C1(zzz
′
1)| , . . . , |Cd(zzzd)− Cd(zzz

′
d)|}

≤ δmax{δk ∥zzz1 − zzz′1∥∞ , . . . , δk ∥zzzd − zzz′d∥∞}

= δk+1∥zzz − zzz′∥∞ .
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Theorem 31. Assume that every gate in H is a δ-contraction for some δ < 1.

Given any circuit C on H and any ε > 0, let T be the truncation of C at depth

ℓ = ⌈log1/δ(diam(D)/ε)⌉. If www is any input to C and rrr is any input to T that agrees

with www in all coordinates at depth strictly less than k, then |C(www)− T (rrr)| < ε.

Proof. Trivially, there is an input rrr′ to T that only differs from rrr in coordinates at

depth k for which C(www) = T (rrr′). By Lemma 30, |T (rrr)− T (rrr′)| ≤ δℓ · ∥rrr − rrr′∥∞≤δℓ ·

diam(A).

1.6.2 Tools for Establishing Contraction

The following basic observations are useful for establishing contraction. Their proofs

are given in Appendix ??.

Bounded derivative implies contraction

Lemma 32. Let F : Cn ↦→ C. A holomorphic function F is a δ-contraction on set

D iff sup
www∈D
|∇F (www)|1 ≤ δ.

Proof.

From the mean-value theorem for multiple variables, for any pointswww,w′w′w′ ∈ S ⊆ F n

there exist c ∈ [0, 1] such that

F (www)− F (www′) = ∇F ((1− c)www + cwww′) · (www −www′) .

Hence if F is not δ-contractive on a pair www,w′w′w′, there exists w′′w′′w′′ in the segment con-

necting www and w′w′w′ with ∇F (w′′w′′w′′) ≥ δ. For the other direction, Hölder’s inequality gives

the first inequality below

∥F (www)− F (www′)∥ ≤ ∥∇F (www)∥1 · ∥www −www′∥∞ ≤ sup
www∈S
∥∇F (www)∥1 · ∥www −www′∥∞ ≤ δ · ∥www −www′∥∞ .
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Let f : A ⊆ C ↦→ C, and fix d ≥ 1. For ζ ∈ C and aaa ∈ Cd such that |aaa|1 ≤ 1, let

Fζ : A
d ↦→ C with

Fζ(www) = ζ + a1f(w1) + · · ·+ adf(wd) .

Lemma 33. sup
www∈Ad

|∇Fζ(www)|1 ≤ sup
w∈A
|f ′(w)|.

Proof. Linearity of derivative gives

sup
www∈Ad

|∇Fζ(www)|1 = sup
www∈Ad

d∑︂
k=1

⃓⃓⃓⃓
∂Fζ

∂wi

⃓⃓⃓⃓

= sup
www∈Ad

d∑︂
k=1

|ak| · |f ′(wi)|

=
d∑︂

k=1

|ak| · sup
w∈A
|f ′(w)|

≤ sup
w∈A
|f ′(w)| .

Contraction of the second iteration of a function that is decreasing and
concave

Let f : A ⊆ R ↦→ R, and fix d ≥ 1. For λ ∈ R, aaa ∈ Rd
≥0 with

∑︁d
i=1 ai ≤ 1, let

Fλ : Ad ↦→ R with

Fλ(www) = λ+ a1f(w1) + · · ·+ adf(wd) .

Write Fγ = {Fλ : λ < γ}.

Lemma 34. If f ′, f ′′ < 0 and F
(2)
γ is a δ-contraction on set D, then so is every

depth-2 circuit on Fγ.

Proof. If C2 is any depth-2 circuit on Fγ, then there exist γ0, γ1, . . . , γd < γ, such

that

C2(xxx) = γ0 +
d∑︂

i=1

aig

(︄
γi +

d∑︂
j=1

ajg(xij)

)︄
.
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Given xxx,xxx′ ∈ E, let

sss = (min{x11, x′11}, . . . ,min{xdd, x′dd}) ,

and

ttt = (max{x11, x′11}, . . . ,max{xdd, x′dd}) .

Since g′ < 0, we see that C2 is increasing in every coordinate, implying

⃓⃓
C2 (xxx)− C2 (xxx′)

⃓⃓
≤ C2 (ttt)− C2 (sss) .

Moreover, letting C2 (ttt) − C2 (sss) := H(γ1, . . . , γd) we see that, since g′′ < 0, for all

i ∈ [d],

∂H

∂γi
=

d∑︂
i=1

ai

[︄
g′

(︄
γi +

d∑︂
j=1

ajg(tij)

)︄
− g′

(︄
γi +

d∑︂
j=1

ajg(sij)

)︄]︄
≥ 0 .

Therefore,

⃓⃓
C2 (xxx)− C2 (xxx′)

⃓⃓
≤ C2 (ttt)− C2 (sss)

≤ F (2)
γ (ttt)− F (2)

γ (sss)

≤ δ∥ttt− sss∥∞

= δ∥xxx− xxx′∥∞ .
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1.6.3 Passing to the Log-domain and Hardcoding the Activ-
ities

Since our main tool, Theorem 31, gives a bound on the difference between circuit

outputs corresponding to different inputs (assuming contraction), in order to use it

for the computation tree of the independent set polynomial we need to switch to the

log-domain. Recall that ratio(xxx; (i, S)) := Z(i | S)−1. Since we will need to consider

iterates of our functions, to normalize the range of the function with the domain, we

define the quantity

des(xxx; (i, S)) := log [ratio(exp(xxx); (i, S))] = des(i, S) . (1.41)

Expressed in terms of des(i, S), the fundamental recurrence,

ratio(i, S) = xi

d∏︂
ℓ=1

(1 + ratio(jℓ, Sℓ))
−1 ,

is

des(i, S) = xi −
d∑︂

i=1

log (1 + exp (des(jℓ, Sℓ)) . (1.42)

Exactly as (1.15), the recursion (1.42) for each des(i, [i−1]), where i ∈ [n], unfolds

to a computation tree of depth at most i−1 with leaves of the form des(j, ∅) = xj, as

all sets on the right hand side of (1.42) are strictly smaller than S. Besides working in

the log-domain, i.e., with (1.42) instead of (1.15), it will also be convenient to hard-

code the argument xxx of the independent set polynomial by making its components

part of the specification of the different gates. Thus, different arguments cause the

specification of the gates to change, while the structure of the computation tree

(mandated by the graph G) stays the same. Specifically, let D = {(2k+1)πi : k ∈ Z}

and recall that exp(w) = −1 iff w ∈ D. For each i ∈ [n] we define fi : (C\D)|Γi| ↦→ C

with

fi(www) := xi −
∑︂
j∈Γi

log (1 + exp(wj)) . (1.43)

Letting H = {f1, . . . , fn}, we see that des(i, [i − 1]) can be realized as a depth-i

circuit on H, where every occurrence of an input xi as a leaf of the computation
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tree is realized via a gate fi having all its inputs set to −∞ (causing the sum in

the definition of fi to vanish and, thus, the output to equal xi). In other words, to

compute des(i, [i− 1]) we evaluate a circuit all whose inputs equal −∞.

1.6.4 Truncating the Tree

To additively approximate logZ(exp(xxx)) within ζ > 0, it suffices to approximate

log (1 + exp(des(i, [i− 1]))) for each i ∈ [n] within ζ/n. Observing that | log (1 + ex+η)−

log (1 + ex) | < η, it follows that it suffices to approximate each circuit computing

des(i, [i − 1]) within an additive error of ζ/n. If each gate of the circuit is a δ-

contraction, then by Theorem 31, this approximation can be achieved by truncating

each such circuit at depth ⌈log1/δ(diam(D) (n/ζ))⌉. If the maximum degree in G is

∆, then each truncated circuit will have O(n · diam(D)/ζ)(log∆)/(1−δ) gates.

1.7 Positive Real Activities

We will recover the celebrated, optimal result of Weitz [2], below, without appealing

to any (correlation decay) result from statistical physics, making the proof entirely

self-contained and significantly shorter than the original. The key idea in our proof is

that while the individual gates of the computation tree do not contract on the positive

reals, treating pairs of successive layers of gates as a single layer of macro-gates yields

contraction. In other words, we show that working with the second iterate of the

recursion suffices. Given an integer ∆ ≥ 3, let

ˆ︁xc(∆) = log(xc(∆)) = log

(︃
(∆− 1)∆−1

(∆− 2)∆

)︃
.

In the log-domain, the approximability result of Weitz [2], i.e., Theorem 3, becomes

the following.

Theorem 35 ([2]). There exists an algorithm which given a graph of maximum de-

gree ∆ and activities xxx ∈ (−∞, ˆ︁xc(∆))n, returns Y ∈ [logZ − ε, logZ + ε] in time

O(n/ε)log∆/(1−δ), for some δ = δ(xxx,∆) < 1.
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Let d = ∆− 1. Let f(w) = −d log (1 + exp(w)). For x ∈ C, let

Fx(www) := x+
d∑︂

i=1

1

d
f(wi) = x−

d∑︂
i=1

log (1 + exp(wi)) . (1.44)

Theorem 31 allows us to derive Theorem 35 immediately from the following analytical

fact.

Lemma 36. If x < ˆ︁xc, then F (2)
x is a contraction on R.

Proof of Theorem 35. Without loss of generality we can assume that the

computation tree (circuit) is regular, full, and has an even number of layers, since

if that’s not the case we can always add dummy “−∞” gates as needed to make it

so (with “−∞” inputs when such gates are added as leaves). The key point is to

then “redraw” the circuit, by grouping together as single gates the gates in pairs of

successive layers.

Since, clearly, f ′, f ′′ < 0, if x is such that F
(2)
x is a contraction, Lemma 34 implies

that any depth-2 circuit with gates from {Fµ : µ < x} is a contraction as well. Thus,

Lemma 36 and Theorem 31 yield the result.

To prove Lemma 36, we observe that the permutation symmetry of Fx with respect

to its arguments implies that F
(2)
x is a contraction on Rd iff f

(2)
x is a contraction on

R, where fx(w) = x− d log (1 + exp(w)). Thus, by Lemma 32, it suffices to establish

|f (2)′
x (w)| < 1 for all w ∈ R and x < ˆ︁xc. This is readily achieved by Lemmata 37, 38

below, whose proof appears in Appendix 35.

Lemma 37. f
(2)′
x (w) is strictly increasing in x.

Proof.

f (2)′
z (w) =

d2 exp(w) exp(z − d log(1 + exp(w)))

(1 + exp(w))(1 + exp(z − d log(1 + exp(w))))
.

Lemma 38. f
(2)′ˆ︁xc

(w) ≤ 1, for all w ∈ R.
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Proof. We start by establishing that for every x ∈ R, fx(w) has a unique fixed

point α := α(x) and that this fixed point α satisfies the equation x = α + d log(1 +

exp(α)). To see this we first observe that since fx is strictly decreasing, it has at

most one fixed point. At the same time, w − fx(w) is continuous and changes sign

in (−∞,+∞), implying that fx has at least one fixed point. Hence, fx has a unique

fixed point, call it α. Requiring α = fx(α) = x − d log (1 + exp(α)) is equivalent to

x = α + d log(1 + exp(α)).

Next we prove that |f ′x(α)| < 1 iff x < ˆ︁xc. To see this observe that |f ′x(α)| < 1 is

equivalent to d eα

1+eα
< 1, which is equivalent to eα < 1/(d− 1). Thus, at fixed point,

x = α+d log(1+exp(α)) < log

(︃
1

d− 1

)︃
+d log

(︃
1 +

1

d− 1

)︃
= log

(︃
dd

(d− 1)(d+1)

)︃
.

Finally, let h(w) := hx(w) = exp(x− d log(1 + ew)) > 0. The second derivative of

f
(2)
x is

d2ewh(w)(1 + h(w)− dew)
(1 + ew)2(1 + h(w))2

,

so that its sign is the sign of g(w) := gx(w) = 1+h(w)−dew. It is easy to check that g

is strictly decreasing and that g > 0 for w < α. Since g(α) = 0 for x = ˆ︁xc, we see that
f
(2)′ˆ︁xc

attains its global maximum at w = α. Since f ′ˆ︁xc
(α) = f ′ˆ︁xc

(log(1/(d− 1))) = −1,

we see that

f
(2)′ˆ︁xc

(α) = f ′ˆ︁xc
(fˆ︁xc(α))f

′ˆ︁xc
(α) = f ′ˆ︁xc

(α)f ′ˆ︁xc
(α) = (−1)2 = 1 .

Remark 39. We will actually prove that the condition in Lemma 36 is also necessary

for F
(2)
x to be a contraction. This is makes the origin of the approximability barrier

transparent and may lead to a simpler proof of the hardness result by Sly and Sun [3].

We leave this as further work.
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1.8 Complex Activities of Bounded Modulus

For ∆ ≥ 3, let

ˆ︁x∗(∆) = log(x∗(∆)) = log

(︃
(∆− 1)∆−1

∆∆

)︃
.

Patel and Regts [15] and Harvey, Srivastava and Vondrák [26] proved that the approx-

imability of the independent set polynomial can be extended to all complex numbers

of modulus at most x∗, which in the logarithmic domain corresponds to the complex

half-plane comprising numbers whose real part is less than ˆ︁x∗. In the following, ℜ(w)

denotes the real part of w ∈ C.

Theorem 40 ([15], [26]). For every ε > 0, there exists an efficient algorithm which

given a graph of maximum degree ∆ and activities xxx ∈ {x ∈ C : ℜ (x) < ˆ︁x∗(∆)}n,

returns Y ∈ [logZ − ε, logZ + ε].

Let d = ∆− 1. Recall the definition (1.44) of function Fx and for arbitrary θ > 0

define the set of gates

Hθ = {Fx(www) : ℜ (x) ≤ ˆ︁x∗(∆)− θ} .

We prove a significantly more general result than Theorem 40.

Theorem 41. The output of any circuit on Hθ can be additively ε-approximated by

truncating the circuit at depth proportional to log1/δ 1/ε, where δ = δ(θ) < 1.

Thus, Theorem 40 is the special case of Theorem 41 when the circuit on Hθ is

the one computing the independent set polynomial. We leave the exploration other

models for which Theorem 41 can be applied as future work. To prove Theorem 41 we

let A = {w ∈ C : ℜ(w) < − log(d+ 1))}, and establish that (a) Fx is a δ-contraction

on Ad for some δ < 1, and that (b) Fx(A
d) ⊆ A for all {x ∈ C : ℜ (x) < ˆ︁x∗(∆)}. We

now prove Theorem 41.

Proof. We study the functions (gates) in Hθ. Specifically, observe that

|f ′(w)| = d

⃓⃓⃓⃓
exp(w)

1 + exp(w)

⃓⃓⃓⃓
≤ d

|exp(w)|
1− |exp(w)| = d

exp(ℜ(w))
1− exp(ℜ(w)) ,
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so that |f ′(w)| < 1 whenever ℜ(w) < − log(d + 1). Letting A = {w ∈ F : ℜ(w) <

− log(d + 1))}, Lemma 33 implies |∇Fx(www)| < 1 for all x ∈ F and www ∈ Ad and,

therefore, by Lemma 32, for all such x,www there exists δ = δ(x,www) < 1 such that Fx

is a δ-contraction on Ad. We are thus left to identify a set (of activities) G = {x ∈

F : Fx(A
d) ⊆ A} so that we can apply Theorem 31. To determine such a set G we

observe that

Fx(A
d) ⊆ A ⇐⇒ sup

www∈Ad

ℜ (Fx(www)) < − log(d+ 1) (1.45)

and that

sup
www∈Ad

ℜ (Fx(www)) = ℜ (x)−
d∑︂

i=1

inf
wi∈A
ℜ (log (1 + exp(wi)))

= ℜ (x)−
d∑︂

i=1

inf
wi∈A

log (|1 + exp(wi)|)

= ℜ (x)− d log
(︃
1− inf

w∈A
| exp(w)|

)︃
= ℜ (x)− d log

(︃
1− inf

w∈A
exp(ℜ(w))

)︃
= ℜ (x)− d log

(︃
1− 1

d+ 1

)︃
.

Thus, we can take G to comprise the disk {x ∈ F : ℜ (x) < ˆ︁x∗(∆)}.
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1.9 Future Work

• As we will see later, our local lemma corresponding to non-1-backtracking walks,

is intimately related to the Bethe approximation (which we will also see later).

More generally, the hierarchy of local lemmata mentioned above, corresponds to

a hierarchy of Kikuchi approximations. Making this connection explicit will (i)

connect the LLL with variational inference, and (ii) extend notions such as the

Bethe/Kikuchi approximations to graphical models that take negative values.

• Passing to negative values suggests a vast generalization of the Probabilistic

Method. Specifically, observe that to prove that objects with certain properties

exist, the Probabilistic Method assigns to each candidate object a positive num-

ber (probability) and the goal is to prove that the sum of the numbers assigned

to the desired objects is positive. But another tack could have been to assign

each candidate an arbitrary number, i.e., positive or negative, and then prove

that the sum of the numbers assigned to the desired objects is non-zero.

• We believe that our approach to the independent set polynomial through walk-

trees establishes a new line of attack for exactly solvable models in statistical

mechanics. Our first target is to recover the exact results for the hard-hexagon

on the triangular lattice (which, while being a triangulation of the place, is not

a chordal graph).

• Recall that chordal graphs have no induced cycles of length greater than 3.

Call a graph q-cyclic if it has no induced cycles of length greater than q. The

methodology we have developed for chordal graphs, causing the number of dis-

tinct subproblems in the fundamental recurrence to collapse, appears to be

extendable to q-cyclic graphs, where the size of the collapsed set is exponential

in q.
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• Our “circuit” proof of Weitz’s theorem, is using only few properties of hard-core

model. We believe it can, perhaps be adapted to other models.

• As mentioned, we hope to exploit the near-convexity of the egg-shaped (in the

logarithmic domain) region in Figure 1.3 to establish the approximability of the

independent set polynomial within it.
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Chapter 2

A Hierarchy of Local Lemmata

In this chapter we provide a novel hierarchy of sufficient conditions for membership

in S(G) that interpolates smoothly between the LLL and a new exact criterion, ex-

pressed in terms of walks on the graph. The walks viewpoint unifies all known local

lemmas and yields new, stronger ones with minimal effort. For example, as soon as

we take into account the subgraph induced by each inclusive neighborhood Γi ∪ {i},

we get a local lemma that dominates every known local condition, e.g., the asym-

metric LLL [29], the cluster-expansion LLL [30], and the non-backtracking LLL [31].

More generally, our hierarchy makes it possible to account for arbitrary short cycles,

improving the pessimistic tree-like bound of the LLL.

To demonstrate the power of our hierarchy, we improve the lower bound for the

negative fugacity singularity of the hard-core model on several lattices, a central

problem of statistical physics [32–34]. Our bound of λc ≥ 0.1191 for Z2 improves upon

the previous best rigorous lower bound of 0.113 by Kolipaka, Szegedy, and Xu [25]

and matches the conjectured value 0.11933888188..., to three decimal digits. We

achieve a similar level of accuracy relative to the conjectured values for other lattices.

As we will see, each bound is derived by selecting an integer q and enumerating all

walks starting at the origin of the lattice that have length at most q and satisfy

some additional conditions. The results presented here come from relatively small

values of q, corresponding to computational effort in the order of minutes on a laptop
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computer.

Regarding algorithmic implications, we note that Kolipaka and Szegedy [35] al-

ready proved that if ppp ∈ S(G), then the resampling algorithm of Moser and Tardos [36]

will terminate in polynomial time. As a result, any algorithmic improvements must

lie outside the dependency graph setting. That said, by providing new tractable suf-

ficient conditions for membership in S(G) our work extends the range of problems

that can be provably made constructive.

2.1 Formal Statement of Results

Throughout, we will be referring to a graph G with vertex set [n] and edge set E.

Write Γi for the neighborhood of i in G. A walk on G is a sequence of vertices where

successive elements are adjacent in G. We denote the terminal (last) vertex of a walk

w by term(w). For a set of walks W and a walk w ∈ W , we define the continuations

of w as Cont(w) = {y : wy ∈ W}.

Self-Bounding Walks. A walk is self-bounding if in each step: (i) it proceeds from

the current vertex i to a non-forbidden vertex j ∈ Γi (initially no vertex is forbidden),

and (ii) declares i and all neighbors of i greater than j forbidden. The set of self-

bounding walks, SB(G), is, clearly, a subset of self-avoiding walks.

Walk Equivalence. Given a set of walks W, we declare w,w′ ∈ W equivalent (in

the context of W) if term(w) = term(w′) and Cont(w) = Cont(w′). We denote the

set of equivalence classes of a set of walks W by C(W). Since the function term is

constant within each equivalence class, we write term(c), for c ∈ C(W).

Causality. For classes c1, c2 ∈ C(W), we write c1 → c2 if there exist w ∈ c1 and

z ∈ [n] such that wz ∈ c2.

For example, if W is the set of all walks on G, then two walks are equivalent iff

they have the same last vertex. Thus, the equivalence classes are indexed by [n] and
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ci → cj iff j ∈ Γi. As another example, if W is the set of non-backtracking walks,

i.e., walks without contiguous (i, j, i) triplets, then two walks are equivalent iff they

either amount to the same single vertex, or they have the same last two vertices.

Thus, there is an equivalent class per vertex and edge orientation, while c(i,j) → cj

and c(i,j) → c(j,k), where k ̸= i.

Our fundamental technical result is the following alternative characterization of

Shearer’s region.

Theorem 42 (Alternative Criterion for Membership in S(G)). ppp ∈ S(G) if and only if

for each ci ∈ C(SB(G)) there exists 0 ≤ ri < 1, such that pterm(ci) = ri
∏︁

cj←ci
(1− rj),

for all ci ∈ C(SB(G)).

Since the number of self-bounding walks, |SB(G)|, can be exponential, the criterion

in Theorem 42 is, in general, intractable, like Shearer’s. (Chordal graphs being a

notable exception, as we discuss in Section 2.4). Unlike Shearer’s criterion, though,

our criterion in terms of self-bounding walks is extraordinarily amenable to relaxation:

just turn the equality to an inequality and take any superset of SB(G). We emphasize

that Theorem 43, below, is also a necessary and sufficient condition for membership

in Shearer’s region.

Theorem 43 (Main result). ppp ∈ S(G) if and only if there exists a set of walks

W ⊇ SB(G), and a real number 0 ≤ ri < 1 for each class ci ∈ C(W), such that for

every class ci ∈ C(W),

pterm(ci) ≤ ri
∏︂
cj←ci

(1− rj) . (2.1)

The power of Theorem 43 is that it allows arbitrary sets of walks W ⊃ SB(G) to

certify membership in S(G), thus defining an infinite hierarchy of sufficient conditions,

with the caseW = SB(G) at the top of the hierarchy. At the bottom of the hierarchy,

naturally, W is simply the set of all walks on G (an infinite set). Rather delightfully,

this bottom case amounts precisely to the asymmetric LLL.
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Corollary 44 ([29]). ppp ∈ S(G) if there exist {ri}i∈[n] such that pi ≤ ri
∏︁

j∈Γi
(1 − rj)

for all i ∈ [n].

Proof. If W is the set of all walks on G, then the equivalence classes are indexed

by [n] and ci → cj iff j ∈ Γi. Thus, (2.1) reads pi ≤ ri
∏︁

j∈Γi
(1− rj).

Between the top and the bottom of the hierarchy, we are completely free. For

example, if we takeW to be the set of non-backtracking walks, we readily recover the

local lemma of [31], a strict improvement of the asymmetric LLL. And by pursuing

the same spirit, we can take W to be the set of 2-non-backtracking walks, i.e., walks

that avoid the immediately previous vertex and the one before it, 3-non-backtracking

walks, etc., and get a hierarchy of increasingly sharper sufficient conditions. As we

discuss next, though, there is a much better alternative, yielding both far greater

flexibility and much sharper bounds.

46



2.2 A Focal Lemma and Infinite Graphs

The idea is to chose certain subsets of vertices S1, . . . , Sq and focus on them in the fol-

lowing sense: each set Si “accepts” a walk w iff every time w enters Si, the subwalk it

performs within Si until it re-exits belongs in SB(G[Si]). We takeW =W(S1, . . . , Sq)

to be the set of walks accepted by all filters. More formally:

Definition 45. Given a set of vertices S and a walk w, the S-restriction of w is

the multiset of maximal contiguous subsequences of w whose elements are all in S.

For example, if w = (2, 1, 2, 5, 3, 5, 2), then its {2, 5}–restriction is {(2), (2, 5), (5, 2)}.

Given a family S = {S1, . . . , Sq} of subsets of [n], a walk is S-self-bounding if for

every Si ∈ S, every element of the Si-restriction of w belongs in SB(G[Si]). For a

family of vertex subsets S, we denote the set of S-self-bounding walks by W(S).

Below are some examples of the flexibility and power of this viewpoint. We will

see more later.

(i) If S = {{1}, {2}, . . . , {n}}, thenW(S) is the set of all walks, yielding the asym-

metric LLL.

(ii) If S = {{i, j} : {i, j} ∈ E}, then W(S) is the set of non-backtracking walks,

yielding the LLL of [31].

(iii) If S = {[n]}, then W(S) = SB(G) and we recover the exact criterion of Theo-

rem 42.

Theorem 46 addresses the two immediate concerns one may have for the set W(S)

of S-self-bounding walks. Namely, whether it always contains SB(G) and whether it

has a finite number of equivalence classes.

2.2.1 Infinite Graphs

When all variables of the independent set polynomial, i.e., all vertices (sites) of the

graph (lattice), have the same value (fugacity), λ, the polynomial becomes univariate.
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For a graph G on [n], we are interested in

λc(G) = sup{λ : ZG(xxx) > 0 for all xxx ∈ Cn with |xi| ≤ λ} .

For countably infinite G, we take λc(G) as the infimum of λc(H) over finite induced

subgraphs H of G. As discussed in Section 2.3, this number, λc, known as “negative-

fugacity singularity of the hard-core lattice gas,” is a central object in statistical

physics.

Naturally, to compute λc for infinite graphs we need to impose some conditions, as

otherwise even the problem description is infinite. To start, we restrict to countably

infinite, locally-finite graphs. Next, to avoid enumerating their vertices, we require

that they are arc-labeled, i.e., that each edge carries a label ℓ for each direction, from

some alphabet Σ, so that the arcs leaving a vertex carry distinct labels. This way, any

walk on G can be specified by an initial vertex and a sequence in Σ∗. Finally, to be

able to define self-bounding walks, we require Σ to be totally ordered. Thus, a walk

is self-bounding if initially no vertices are forbidden and every time we move from a

vertex i to a non-forbidden vertex j ∈ Γi, we add i to the set of forbidden vertices

along with all k ∈ Γi with ℓ(i, k) > ℓ(i, j). (We could have defined self-bounding

walks in this manner also for finite graphs, but we did not want to introduce this

level of complexity unneccessarily.)

Our main result (Theorem 43) applies to infinite arc-labelled graphs, yielding that

λ ≤ λc(G) if and only if there exists a set of walks W ⊇ SB(G), and a real number

0 ≤ ri < 1 for each class ci ∈ C(W), such that ri
∏︁

cj←ci
(1 − rj) ≥ λ, for every

class ci ∈ C(W). But, of course, this condition is impossible to verify, since, without

further assumptions, C(W) is infinite and unstructured.

To generate tractable sets of walks we require symmetry from G(V,E). Re-

call that an automorphism is a bijection ϕ : V ↦→ V such that {u, v} ∈ E iff

{ϕ(u), ϕ(v)} ∈ E. An automorphism ϕ of an arc-labeled graph is label-preserving

iff ℓ(x, y) = ℓ(ϕ(x), ϕ(y)), for every arc (x, y). An infinite graph is quasi-transitive
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if its vertices can be partitioned into a finite number of equivalence classes, called

orbits, such that if u, v are in the same orbit, there is an automorphism mapping u

to v. A quasi-transitive graph is arc-label-quasi-transitive, if for all u, v in the same

orbit there is a label-preserving automorphism mapping u to v.

To get a sense for arc-label-quasi-transitivity, observe that as soon as ϕ(u) = v

has been specified, aligning the labels of the arcs leaving u with the labels of the

arcs leaving v, forces the image under ϕ of every neighbor of u. And as soon as this

image has been specified, by the same logic, the image of the second neighbors of u

is forced, etc. As a result, we see that in a quasi-transitive, arc-labeled graph, for

any two vertices u, v in the same orbit there can be at most one label-preserving

automorphism mapping u to v; yet, we require such an automorphism to exist for

every pair of vertices in the same orbit. This makes arc-label transitivity a very strict

requirement. Nevertheless, it is a requirement satisfied by many infinite graphs of

interest, including lattices. For example, it is easy to see that it is satisfied by Zd if

all parallel arcs with the same direction receive the same label.

Theorem 46. Let G(V,E) be any arc-label-quasi-transitive graph with orbits O1, . . . ,Ot.

For each i ∈ [t], select xi ∈ Oi and Sxi
= {S1, . . . , Sqi} arbitrarily, subject only to

xi ∈ Sj and |Sj| < ∞, for all j ∈ [qi]. For each v ∈ Oi, let Sv be the image of Sxi

under the unique automorphism mapping xi to v. Let S = ∪v∈V Sv.

• W(S) ⊇ SB(G) and C(W(S)) is finite.

• If for each ci ∈ C(W(S)) there exists 0 ≤ ri < 1, such that for every ci ∈

C(W(S)),

λ ≤ ri
∏︂
cj←ci

(1− rj) , (2.2)

then λc(G) ≥ λ.

In our application of Theorem 46 to Z2, Z3, the triangular, and the hexagonal

lattice, we label the arcs so that parallel arcs with the same direction receive the
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same label. For Z2, Z3, and the triangular lattice, which only have one orbit, we

take x to be the lattice origin. For the hexagonal lattice, which has two orbits, we

take x1 to be the origin of the lattice and x2 to be one of the vertices adjacent to the

origin. For Z2, Z3, and the hexagonal lattice, we take each Sx = Sx(q) to be such

that a walk starting at x is accepted iff its q-prefix is self-bounding, for some integer

q ∈ [13, 15], depending on the lattice. For the triangular lattice, we take Sx so that

only 2-non-backtracking walks are accepted.

2.3 Lower Bounds for Negative-Fugacity Singular-

ity of Hard-Core Lattice Gas

In statistical physics, λc is known as the “negative-fugacity singularity of the hard-

core lattice gas,” and has been extensively studied for many lattices. Its importance is

primarily motivated by the Lee-Yang [4] theory of phase transitions which implies that

for λ ∈ [0, λc) the hard-core model, i.e., the probability distribution on independent

sets where each independent set I has probability proportional to λ|I|, does not exhibit

any phase transition. Very recently, Regts [37] strengthened the Lee-Yang conclusion,

by showing that for λ ∈ [0, λc), the hard-core model exhibits decay of correlations

in the form of strong spatial mixing, a very helpful property for designing efficient

algorithms for approximating the independent set polynomial.

We apply our Theorem 46 to four important lattices: the square lattice (Z2), the

cubic lattice (Z3), the triangular lattice, and the hexagonal planar lattice. In each

case, we label the arcs so that parallel arcs with the same direction receive the same

label. For Z2, Z3, and the triangular lattice, which only have one orbit, we take x

to be the lattice origin. For the hexagonal lattice, which has two orbits, we take x1

to be the origin of the lattice and x2 to be one of the vertices adjacent to the origin.

For Z2, Z3, and the hexagonal lattice, we take each Sx = Sx(q) to be such that a

walk starting at x is accepted iff all of its subwalks of length q are self-bounding, for

some integer q ∈ {13, 14, 15}, the choice depending on the lattice. In each case, the
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corresponding set of walks has approximately a million elements.

As can be seen from Table 2.1, our method dominates all other known methods,

matching the numerical estimate derived using non-rigorous methods from statistical

physics to the third decimal digit. (Of the four lattices considered, the exact value of

λc is actually known for the triangular lattice, per the celebrated result of Baxter [21]

and equals 5
√
5−11
2

= 0.09016...) There are two further observations worth making.

The first is that for the triangular lattice, the bound delivered even by just the

non-backtracking lemma beats the bound offered by the cluster expansion LLL, even

though the triangular lattice is ideal for that LLL, as a significant number of triangles

occupies the neighborhood of every vertex. The second is that the bound given by

the non-backtracking LLL for the square lattice is equal to the bound given by the

asymmetric LLL for the hexagonal lattice, as the astute reader may have noticed.

This is not a coincidence. In the eyes of the non-backtracking LLL, each vertex of the

square lattice (other than the origin) has effective degree three, since no backtracking

is allowed. In the eyes of the asymmetric LLL, each vertex of the hexagonal lattice

has effective degree equal to its actual degree, i.e., three, as the corresponding set

of walks is completely unrestricted. Thus, in the eyes of the two methods, the two

lattices are indistinguishable.
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Asymmetric Cluster Non-back Decomposition Our Work Numerical

[29] [30] [31] [25] [33]

Square (Z2) 0.0819 0.0896 0.1054 0.1130 0.1191 0.1193

Cubic (Z3) 0.0566 0.0601 0.0669 0.0702 0.0741 0.0744

Triangular 0.0566 0.0776 0.0811 0.0811 0.0899 0.0902

Hexagonal 0.1054 0.1190 0.1481 0.1481 0.1542 0.1547

Table 2.1: Lower bounds for λc for different lattices and methods.

52



2.4 Related Work

2.4.1 Zero-Free Regions and Evaluation of the Independent
Set Polynomial

Sinclair, Srivastava, Štefankovič, and Ying [38] consider the hard core model on graphs

with a bounded connective constant, such as the lattices we consider here. Harvey,

Srivastava, and Vondrák [26] consider the problem of evaluating the independent set

polynomial inside S(G). Bezáková, Galanis, Goldberg, and Štefankovič [39] consider

the inapproximability of the independent set polynomial outside S(G). Finally, Vera,

Vigoda, and Yang [40] consider the independent set polynomial for Z2.

self-bounding walks, the technical foundation for our work, have been related before

to the independent set polynomial in the seminal work of Scott and Sokal [16] relating

the polynomial to the LLL. They also appear, in a somewhat disguised form, in the

seminal work of Weitz [2], on evaluating the hard-core model partition function. The

disguise amounts to the fact that in [2] the tree of self-bounding walks is presented as

a truncation of the tree of self-avoiding walks (SAW), enforced by imposing certain

boundary conditions on the vertices. We believe that working instead with our explicit

combinatorial representation, brings out the crucial monotonicity property of the tree

for negative real arguments.

The first ever strict improvement to the asymmetric LLL was given in [31], showing

that (under the exact same hypothesis) one can replace
∏︁

j∈Γi
(1− rj) with

∏︁
j∈Γi

(1−

rj)/(1−rirj). That was a corollary to the main result of [31], a local lemma requiring a

condition on both the vertices and the edges of G. While that local lemma was proven

by an ad hoc inductive argument, we show that it follows readily from Theorem 43

by taking W to be the set of non-backtracking walks.

The cluster expansion LLL of Bissacot, Fernández, Procacci, and Scoppola [20],

improves upon the asymmetric LLL, when the neighborhood of each vertex has one

or more triangles (for triangle-free graphs it is equivalent to the asymmetric LLL).
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Even for graphs such as the triangular lattice, though, taking as a filter Si = {i}∪Γi

for each vertex i ∈ [n], already gives better results.

2.4.2 The Decomposition Local Lemma of Kolipaka, Szegedy,
and Xu

To the best of our knowledge, the only work prior to ours that exploits features

of the dependency graph beyond vertex neighborhoods is the Decomposition Local

Lemma of Kolipaka, Szegedy, and Xu [25]. While [25] did not draw any connection

to walks, we can establish such a connection and show that for any given family of

sets S (and thus two conditions of similar complexity), our method always dominates

the Decomposition LLL of [25]. Specifically, for a given collection of sets S1, . . . , Sq,

a walk is “accepted” by [25] if it can be partitioned into subwalks each of which

lies entirely and is self-bounding within some set Si. While the two approaches are

identical when each edge of G belongs in exactly one filter, as soon as any edge is

included in multiple filters, our method acquires an advantage, as it is more selective

in the walks it accepts. Since in typical applications the filters correspond, roughly,

to depth-d vertex neighborhoods, the amount of filter overlap (and the corresponding

gap in performance) grows rapidly in d.

The bigger difference between the two approaches, though, is that while our method

enjoys monotonicity, i.e., enlarging filters and/or adding new ones, can only shrink

the set of accepted walks and, thus, improve the resulting lower bound, that is not

the case for the decomposition LLL of [25]. As a result, besides performing worse

for any given set of filters, designing a good decomposition (collection of sets) for the

decomposition LLL is far from obvious.

2.4.3 Benchmarking on Lattices

While for the asymmetric LLL, the cluster expansion LLL, and the non-backtracking

LLL, deriving the lower bound implied for λc on each lattice is straightforward, for
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the decomposition LLL of [25], more work is needed, as the bound depends on the

decomposition. Specifically, since [25] reports a lower bound only for the square

lattice, in order to make the comparison more comprehensive, we derived suitable

decompositions ourselves, as follows. For the cubic lattice imagine the unit cubes

of Z3 colored black and white in a 3D-chessboard pattern. Taking each set (filter)

in the decomposition to be the set of vertices of a white unit cube, so that every

edge is included in exactly one filter, gave 0.0695. A more complex decomposition,

yielded 0.0702. For the hexagonal lattice, the number we report corresponds to the

decomposition where each filter amounts to a single edge of the lattice, making the

method equivalent to the non-backtracking LLL. We did this because several natural

choices of larger filters only made things worse, manifesting the non-monotonicity

of the decomposition LLL. For example, taking the filters to be the hexagonal faces

gives only 0.067, much less than taking the filters to be individual edges which gives

0.1481.

2.5 Proof of Theorems 42 and 43

2.5.1 Proof of Basic Tools and Theorem 42

Let W be any finite set of walks on G, and let sss ∈ RW . For two walks w, z ∈ W , we

write {z} ← {w} to denote that z is a one-step continuation of w, i.e., that z = wv

for some v ∈ [n].

Given sss,W , we define the message vector mmm(sss,W) = mmm ∈ RW to be the unique

vector satisfying

mw = sw
∏︂

{z}←{w}

1

1−mz

. (2.3)

To see that mmm is unique, observe that the graph having one vertex per walk inW and

an edge between every w, z ∈ W such that {z} ← {w}, is a forest. Rooting each tree

of this forest by the vertex corresponding to the tree’s shortest walk, we can compute

the coefficients of mmm in a bottom-up fashion in each tree.
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Definition 47. We say that sss ∈ RW is valid for W if mmm(sss,W) ∈ [0, 1)W .

We next show that the set of valid messages is downward-closed with respect to sss

Lemma 48. If sss is valid for W and qqq ≤ sss, then mmm(qqq,W) ≤mmm(sss,W).

Proof. Recall that W is finite and let ℓ(w) = |Cont(w)| <∞. We will prove that

mw(qqq,W) ≤ mw(sss,W) by induction on ℓ(w). Trivially, if ℓ(w) = 0, then per (2.3),

mw(qqq,W) = qw ≤ sw = mw(sss,W).

Assume now that mz(qqq,W) ≤ mz(sss,W) for all z ∈ W with ℓ(z) < k, and let w ∈ W

with ℓ(w) = k. The two equalities in (2.4) follow from (2.3). For the inequality, qqq ≤ sss

yields qw ≤ sw, while the fact that sss is valid for W implies 1 − mz(qqq,W) > 0.

Combining the latter fact with the inductive hypothesis that mz(qqq,W) ≤ mz(sss,W)

the inequality follows, yielding

mw(qqq,W) = qw
∏︂

{z}←{w}

1

1−mz(qqq,W)
(2.4)

≤ sw
∏︂

{z}←{w}

1

1−mz(sss,W)
= mw(sss,W) . (2.5)

Recall that a walk is self-bounding if in each step: (i) it proceeds from the current

vertex i to a non-forbidden vertex j ∈ Γi (initially no vertex is forbidden), and (ii)

declares i and all neighbors of i greater than j forbidden. Recall that we denote the

set of self-bounding walks on a graph G by SB(G). For w ∈ SB(G), let Forb(w)

denote the set of forbidden vertices of w when the walk reaches term(w).

Definition 49. Given ppp ∈ Rn and a set of walksW, let p̃p̃p̃ ∈ RW , where p̃w := pterm(w),

for each w ∈ W.

Lemma 50. For every ppp ∈ Rn and walk w ∈ SB(G),

mw(p̃p̃p̃, SB(G)) = ratio (ppp; (term(w), ([n]− term(w)) \ Forb(w))) . (2.6)
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Proof. We will show that the rhs of (2.6) satisfies equation (2.3) for p̃p̃p̃,W .

The uniqueness of mmm, yields the result. Let w ∈ SB(G) be arbitrary, and let

j1 > · · · > jq be a descending ordering of Γterm(w) \ Forb(w). Applying recur-

rence (1.15) on ratio (ppp; (term(w), ([n]− term(w)) \ Forb(w))) gives the first equality

below. The second, and key, equality follows from the definition of Forb.

To see it, recall that transitioning from term(w) to jℓ, we declare term(w) and

all neighbors of term(w) greater than vj, i.e., {j1, . . . , jℓ}, forbidden, which explains

why we can rewrite Forb(w)∪ {term(w), j1, . . . , jℓ} as Forb(wjℓ)∪ {jℓ}. For the next

equality, observe that every vertex in Γterm(w) \ Forb(w), is by the definition of self-

bounding walks, a valid next step for w, which explains why the new indexing of the

product and the use of v instead of jℓ. The last equality is simply a rewriting of

1-step continuations in terms of the “←” notation, using term(z) instead of v.

ratio(term(w), ([n]− term(w)) \ Forb(w))

= pterm(w)

d∏︂
ℓ=1

1

1− ratio (jℓ, (([n]− term(w)) \ Forb(w))− {j1, . . . , jℓ})
(2.7)

= pterm(w)

d∏︂
ℓ=1

1

1− ratio (jℓ, [n] \ (Forb(wjℓ) ∪ {jℓ}))
(2.8)

= pterm(w)

∏︂
v:{wv}←{w}

1

1− ratio (v, [n] \ (Forb(wv) ∪ {v}) (2.9)

= p̃w
∏︂

{z}←{w}

1

1− ratio (term(z), ([n]− term(z)) \ Forb(z)) . (2.10)

Lemma 51. ppp ∈ [0, 1)n is good for G if and only if p̃p̃p̃ ∈ RSB(G) is valid for SB(G).

Proof.

(=⇒) We claim that if ppp is good for G, then ratio (ppp; (i, S)) ∈ [0, 1), for all i ∈ [n] and

S ⊆ [n] \ {i}. Per Lemma 50, this implies m (p̃p̃p̃; SB(G)) ∈ [0, 1)W , i.e., that ppp̃ is valid

for SB(G).
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For the sake of contradiction, let S = {j1, . . . , jq} be a minimal subset of [n], such

that ratio(i, S) /∈ [0, 1). Notice that it cannot be S = ∅, since ratio(i, ∅) = pi ∈ [0, 1),

and that the minimality of S and (1.15) imply that it must be ratio(i, S) ≥ 1. For

ℓ ∈ [q], write Sℓ = S − {j1, . . . , jℓ}, with S0 = S, and note that

Z(S ∪ {i}) = Z(S ∪ {i})
Z(S)

∏︂
ℓ∈[q]

Z(Sℓ−1)

Z(Sℓ)

= Z(i | S)
∏︂
ℓ∈[q]

Z(jℓ | Sℓ)

= (1− ratio(i, S))
∏︂
ℓ∈[q]

(1− ratio(jℓ, Sℓ)) .

Theorem ?? implies Z(S ∪ {i}) > 0 since ppp is good. The minimality of S implies∏︁
ℓ∈[q](1−ratio(jℓ, Sℓ)) > 0. Therefore, it must be (1−ratio(i, S)) > 0, a contradiction

to our initial assumption.

(⇐=) By Theorem ?? it suffices to prove that if ppp̃ is valid for SB(G), then Z(S) > 0

for every S ⊆ [n].

Let S = {j1, . . . , jq} ⊆ [n]. As before, for ℓ ∈ [q], write Sℓ = S − {j1, . . . , jℓ}, with

S0 = S. By telescoping,

Z(S) =
∏︂
ℓ∈[q]

Z(Sℓ−1)

Z(Sℓ)
=
∏︂
ℓ∈[q]

Z(jℓ | Sℓ) =
∏︂
ℓ∈[q]

(1− ratio(ppp; jℓ, Sℓ)) . (2.11)

Write Hℓ for the subgraph of G induced by {j1, . . . , jℓ} and (i) for the walk consisting

solely of vertex i. Lemma 50 implies ratio(ppp; jℓ, Sℓ)) = m(jℓ)(p̃p̃p̃, SB(Hℓ)). Moreover,

m(jℓ)(p̃p̃p̃, SB(Hℓ)) = m(jℓ)(p̃ℓp̃ℓp̃ℓ, SB(G)), where p̃ℓp̃ℓp̃ℓ is the mutation of p̃p̃p̃ that results by

setting to 0 all coordinates corresponding to walks outside SB(Hℓ). Since p̃p̃p̃ is valid

for SB(G), we see that 1 > m(jℓ)(p̃p̃p̃, SB(G)) ≥ m(jℓ)(p̃ℓp̃ℓp̃ℓ, SB(G)), the second inequality

due to Lemma 48. Therefore, every factor in the rhs of (2.11) is positive, concluding

the proof.

Lemma 52. For every finite set of walks W, and all w, y ∈ W, with w ∼ y, we have

mw(qqq,W) = my(qqq,W).
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Proof. The result follows from the observation that equation (2.3) depends only

on term(w), and Cont(w).

Combining now Lemma 51 and Lemma 52 for W = SB(G), gives Theorem 42.

2.5.2 Proof of Theorem 43

We first prove the following Theorem 43 for the special case where each inequality in

(2.1) holds as equality.

Proof of Theorem 43 with equalities.

(⇐=) We will construct sss ≥ p̃p̃p̃ valid for SB(G). Lemma 48 then implies that p̃p̃p̃ is valid

for SB(G) and Lemma 51 then implies that ppp is good for G, i.e., ppp ∈ S(G).

We start by noting that for every class ci ∈ C(W), and every w ∈ ci,

{C(z) : {z} ← {w}} = {cj : cj ← ci} .

This is because, by the definition of causality, {cj : cj ← ci} = ∪w∈ci{C(z) : {z} ←

{w}}, while by the definition of walk equivalence, {C(z) : {z} ← {w}} = {C(z) :

{z} ← {y}}, for any two equivalent w, y ∈ W . Thus, for every ci ∈ C(W), we can

select w ∈ ci arbitrarily and rewrite (2.2) as

pterm(w) = rC(w)

∏︂
{z}←{w}

(1− rC(z)) . (2.12)

For every w ∈ W , by rearranging factors in (2.12) we derive (2.13), while we define

sw via (2.14),

rC(w) = pterm(w)

∏︂
{z}←{w}
z /∈SB(G)

1

1− rC(z)
∏︂

{z}←{w}
z∈SB(G)

1

1− rC(z)
(2.13)

:= sw
∏︂

{z}←{w}
z∈SB(G)

1

1− rC(z)
. (2.14)

Since 0 ≤ ri < 1 for all ci ∈ C(W), the left product in (2.13) is at least 1, implying

sss ≥ p̃p̃p̃, as desired.
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If we now let rrr ∈ RSB(G) where rw = rC(w), we see that rrr,sss satisfy equation (2.3)

for SB(G). The uniqueness of the solution of (2.3), implies that rrr = mmm(sss, SB(G)).

Thus, the hypothesis that 0 ≤ ri < 1, for all ci ∈ C(W), implies that mmm(sss, SB(G)) ∈

[0, 1)SB(G), i.e., that sss is valid for SB(G).

(=⇒) By Lemma 51, if ppp is good for G, then p̃p̃p̃ is valid for SB(G). Note now that

for any finite set of walks W , if w, z are equivalent, then mw = mz, as equation (2.3)

depends only on term(w), and Cont(w). Thus, the projection of mmm(p̃p̃p̃, SB(G)) to

C(SB(G)) belongs in [0, 1)SB(G) and satisfies (2.2).

For the general case, we prove the following Lemma, asserting that whenever (2.1)

holds as inequality it also holds as equality. We use vvv ≥ uuu for two real vectors vvv and

uuu, to denote that vvv is coordinate-wise greater than uuu.

Lemma 53. Let q ≥ 1, ppp ∈ [0, 1)q, and let S1, . . . , Sq ⊆ [q]. Assume there exist a

yyy ∈ [0, 1)q such that yi
∏︁

j∈Si
(1 − yj) ≥ pi, then, there exists a yyy∗ ∈ [0, 1)q such that

y∗i
∏︁

j∈Si
(1− y∗j ) = pi.

Proof. For xxx ∈ Rq, and i ∈ [q], define gi(xxx) = pi/
∏︁

j∈Si
(1 − xj), and g : (R −

{1})q ↦→ Rq, with g(xxx) = (g1(xxx), . . . , gq(xxx)). Let xxx(1) = 000, and xxx(k+1) = g(xxx(k)), for

k ≥ 1. We and we claim that for every k, xxx(k+1) ≥ xxx(k), and that xxx(k) ≤ yyy, i.e., each

coordinate of xxx(k) consist an increasing and bounded sequence in [0, 1). Hence, xxx(k)

must converge to a limit 000 ≤ yyy∗ < 111, which must be a fixed point of g, i.e., g(yyy∗) = yyy∗,

yielding y∗i
∏︁

j∈Si
(1− y∗j ) = pi, as desired.

To prove xxx(k) is monotone and bounded we proceed by induction on k. Clearly,

xxx(1) = 000 ≤ ppp = xxx(2), and xxx(2) = ppp ≤ yyy. Now assume the result holds for all 2 ≤ k′ ≤ k,

we will show it for k + 1. Indeed, for any i ∈ [q], we have

x
(k+1)
i = gi

(︁
xxx(k)
)︁
=

pi∏︁
j∈Si

(︂
1− x(k)j

)︂ ≤ pi∏︁
j∈Si

(︂
1− x(k−1)j

)︂ = gi
(︁
xxx(k−1)

)︁
= x

(k)
i ≤ yi ,

where the two inequalities follow from the inductive hypotheses that xxx(k) ≥ xxx(k−1),

and that xxx(k−1) ≤ yyy ≤ 111.
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2.5.3 Proof of Theorem 46

Proof of Theorem 46.

• The fact thatW(S) ⊇ SB(G) is immediate from Definition 45. For the finiteness

of C(W(S)), we may assume that every filter of S covering u ∈ V belongs to

Su (as we can always achieve this by reorganizing filters into the sets Sv).

Consider now the following procedure for generating W(S). Start with A = V .

For a walk w ∈ A and v ∈ V , we add wv to A iff for every S ∈ Sv, the greatest

suffix of wv fully contained in S, belongs to is self-bounding. It is clear that

after k steps this process generates all walks of W(S) of size at most k.

Let δ = maxi∈[t]{
∑︁

S∈Sxi
|S|}; since each Sxi

is a finite family of finite filters,

δ <∞.

Since a self-bounding walk visit a vertex at most one, the greatest suffix of

wv fully contained in a filter S ∈ Sv, has length at most δ. Therefore, w is

equivalent with its δ-suffix.

Let now Wx(S) be the set of all walks in W(S) that end up in vertex x. Since

the number of walks in Wx(S) of length at most δ is bounded above by δδ,

C(Wx(S)) ≤ δδ. Finally, per the quasi-transitivity of G, we have C(K) =

t|C(Kx)| < tδδ.

• Since W(S) ⊇ SB(G), we have that W(S) ⊇ SB(H) for every finite sugraph

H,of G. Hence, per Theorem 43, equation (2.2) implies that λ111 is good for H.

The result follows from the definition of λc.
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2.6 Explaining Our Lattice Numbers

In practice, it is convenient to choose the filters Sxi
in a uniform manner, so that

W(S) has a simple description. One such choice is to fix an integer q (the larger the

better), and take as filters Sxi
= Sxi

(q) the set of all connected subgraphs of G of size

q that contain xi. Notice that these filters give rise to the set W(S) comprised by all

walks on G, whose q-prefix is self-bounding.

Since the continuations of a walk are completely determined by its q-prefix and the

orbit of its terminal vertex, two walks agreeing on the orbit of their terminal vertex,

and on their q-prefix are equivalent. We identify a class of walks with a pair (w, i),

where w is a word of length at most q on the label-alphabet of G, and i ∈ [t], such

that the walk performed on G that moves according to w and terminates on xi is

self-bounding. We call such a pair SB-realizable. Specializing Theorem 46 for the

above case gives

Corollary 54. Assume that for every SB-realizable pair (w, i) there exist number

0 ≤ rw,i < 1, such that

λ ≤ rw,i

∏︂
(z,j)←(w,i)

(1− rz,j) . (2.15)

Then, λ ≤ λc.

To derive the numbers presented in Table 2.1, we apply Corollary 54. In particular,

in all three lattices we consider, we label their arcs so that geometrically parallel arcs

pointing to the same direction receive the same label. For Z2, and Z3 we take

x = (0, 0), and x = (0, 0, 0), respectively, to be the origin of the lattice. Then, fixing

the integer q (the greatest value of q we were able to run in a reasonable time was 15),

we generate all self-bounding walks of length up to q keeping track of the causality

relationship between them in a list.

The situation is pretty similar for the hexagonal lattice, except from the fact that

label-preserving automorphisms partition the set of vertices in two orbits. Indeed,
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think of painting the vertices of the lattice black and white in a chessboard manner. It

is easy to observe that for any two vertices of the same color there is a label-preserving

translation mapping one to the other, while the labels of the outgoing arcs of any two

vertices of different color are disjoint, and thus, no label-preserving map can send

one to the other. To account for this, we distinguish one white vertex representative

x, say (0, 0), and one black vertex representative y, say (1, 0), and consider the set

of walks ending at x or y, that are q-prefix-self-bounding. Two walks would now be

equivalent if the color of their terminal vertex is the same and they have the same

q-prefix. To check wether an activity λ is valid for the above set of walks, we have to

check wether the (huge but) finite system (2.2) has a solution. Here we use the line of

thinking of Lemma 53: starting from all variables of (2.2) equal to zero, we iteratively

update the value of each variable to satisfy the equation it appears (outside of the

product). We either reach a (approximate) fixed point satisfying each equation, or

on the k-th iteration some ri becomes greater than 1, in which case we declare λ is

not valid . Doing binary search on the values λ we find quickly a good estimation of

the maximum valid λ.
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Chapter 3

Submodularity is All that Matters

We show that the independent set polynomial with negative arguments is useful in a

far more general setting than that of the Lovász Local Lemma and the Probabilistic

Method. Specifically, we prove that the independent set polynomial provides a lower

bound for general supermodular functions that are also “mostly” log-supermodular.

This is a very natural class of functions corresponding to the (shrinking/decreasing)

volume of sets as they are subjected to a sequence of “mostly symmetric” restrictions.

As a fist application we recover the (standard) Quantum Lovász Local Lemma effort-

lessly. The fact that we do so through the independent set polynomial, immediately

makes available all the improvements and specializations of the lemma that we have

derived, which are new in the quantum setting.

3.1 A generalization of Shearer’s result

Given a graph G on [n], Shearer [1] characterized the probability vectors ppp = ppp(G) ∈

[0, 1]n, such that under every measure defined on n events, where the i-th event

occurs with probability at most pi, and is independent from its non-neighbors in G,

the probability that none of the events occurs is strictly positive.

Theorem 55 (Shearer [1]). Let Ω be an arbitrary set and let F1, . . . , Fn be arbitrary

subsets of Ω. Let G be a graph on [n], and ppp ∈ [0, 1]n. The following statements are

equivalent:
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(i) µ
(︂⋂︁

i∈[n] F n

)︂
> 0, for every measure µ on Ω such that µ(Fi) = pi and G is a

dependency graph for {Fi}ni=1.

(ii) ZG(−ppp;S) > 0, for every S ⊆ [n].

Moreover, whenever (ii) holds, µ
(︁
∩i∈[n]F n

)︁
≥ ZG(−ppp) > 0.

In this section, we give a new, simple proof of Shearer’s classic result, demonstrating

that the only property of the function µ needed for the proof to go through is super-

modularity. In particular, µ does not need to be a probability measure. This simple

observation greatly broadens the scope of Theorem 55, giving as immediate corollaries

(i) the celebrated “Quantum LLL”, a geometric variant of the classic LLL [41], and

(ii) a tight, universal, lower bound on the partition function of arbitrary graphical

models under minimal assumptions. Moreover, the fact that this lower bound comes

from an evaluation of the independent set polynomial with negative real inputs makes

every local lower bound, such as the LLL and our improvements in Part I, applicable,

when a tractable (but lossy) lower bound is desirable.

3.1.1 Our Setting

Let f : {0, 1}n ↦→ R≥0 be a non-negative real function on the binary cube. We will

find it useful to also think of f as a function on the subsets of [n], by thinking of each

x ∈ {0, 1}n as the characteristic vector of a set S ∈ 2[n]. For i ∈ [n], and S ⊆ [n]\{i},

let

∆if(S) := f(S ∪ {i})− f(S), and f(i | S) := f(S ∪ {i})
f(S)

.

Thus, ∆if(S) is the marginal difference of adding i to S, while f(i | S) is the

marginal ratio of adding i to S. The former is also known as the discrete derivative

of f with respect to i at S, as it measures the additive change of f when moving along

the direction of i, and plays a fundamental role in the analysis of functions on the

Boolean cube. The latter also measures the change of f along the direction of i, but

in a multiplicative sense, and is far less studied in the literature. The closest, very
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well-studied but far coarser, notion is that of curvature, defined as f(S ∪ {i})/f({i})

and introduced in [42]. The following simple equation relates the two quantities:

f(i | S) = 1 +
∆if(S)

f(S)
. (3.1)

We say f is increasing if f(S) ≤ f(T ) for all S ⊆ T , and decreasing if the reverse

inequality holds. We call f modular if ∆if is independent of S, for all i ∈ [n]. Also,

f is supermodular if ∆if is increasing, and submodular if ∆if is decreasing. Finally,

f is log-modular, log-supermodular, and log-submodular, if for all i ∈ [n], the quantity

f(i | S) is constant, increasing, and decreasing with respect to S, respectively.

We will be interested in decreasing, supermodular functions, i.e., f whose decrease

per additional element in the input is a negative increasing function, thus capturing

the familiar notion of “diminishing returns,” just as in the more familiar setting of

increasing submodular, i.e., polymatroid, functions, which characterize matroids (since

f is decreasing, ∆if is negative and, thus, ∆if being increasing (supermodularity)

makes |∆if | decreasing (diminishing returns)). Since we will seek to bound f from

below, naturally, we need some control over its rate of decrease. This will come in

the form of lower bounds for some of its marginal ratios. Specifically, we require

that the marginal ratios information takes the form of a graph G on [n] and a vector

ppp ∈ [0, 1)n, such that for each i ∈ [n], and each set S ⊆ Φi, where Φi = [n] − Γi

comprising only non-neighbors of i in G,

f(i | S) ≥ 1− pi . (3.2)

In other words, the neighbors of i in G are the only “uncontrolled” dimensions for

dimension i: if S contains no neighbors of i, introducing i to form i∪S can cause f to

shrink by a factor of at most pi. When (3.2) holds, we say that f factorizes according

to G,ppp.

To see that our framework includes the probabilistic setting of Theorem 55, let µ

be a probability measure and G a dependency graph for {F1, . . . , Fn}, where µ(Fi) =
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pi for all i ∈ [n], and define f(S) := µ
(︁
∩i∈SFi

)︁
. Clearly, f is non-negative and

decreasing. To see that it is also supermodular, observe that for every i ∈ [n], and

S ⊆ T ⊆ [n] \ {i},

∆if(S) = µ

(︄
Fi ∩

⋂︂
j∈S

Fj

)︄
− µ

(︄⋂︂
j∈S

Fj

)︄
(3.3)

= −µ
(︄
Fi ∩

⋂︂
j∈S

Fj

)︄
(3.4)

≤ −µ
(︄
Fi ∩

⋂︂
j∈T

Fj

)︄
= ∆if(T ) . (3.5)

Finally, it is easy to check that G is a dependency graph of µ iff f(i | S) = 1− pi,

for all i ∈ [n], and S ⊆ Φi.

3.1.2 Our Result

Theorem 56. Let G be a graph on [n], and ppp ∈ [0, 1)n. The following statements are

equivalent:

(i) Every f : {0, 1}n ↦→ R≥0 that is supermodular and factorizes according to G,ppp

is strictly positive.

(ii) ZG(−ppp;S) > 0, for every S ⊆ [n].

Moreover, whenever (ii) holds, f(xxx) ≥ f(000) · ZG(−p1x1,−p2x2, . . . ,−pnxn).

Proof of Theorem 56.

To establish that (ii) implies (i) it suffices to prove that f(i | S) ≥ ZG (−ppp; (i | S)) =:

Z (i | S), for every i ∈ [n], and S ⊆ [n] \ {i}. We prove this by induction on |S|. As-

sume the claim holds for every i ∈ [n] and every proper subset of S. Let {j1, . . . , jd}

be an ordering of S \ Φi and write Sℓ = S \ {j1, . . . , jℓ}. Then, the first inequality

in (3.6) follows from the supermodularity of f , while the second follows from the fact
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that f factorizes according to G,ppp.

f(i | S) : = 1 +
∆if(S)

f(S)
(3.6)

≥ 1 +
∆if(S ∩ Φi)

f(S)
(3.7)

= 1 + (f (i | S ∩ Φi)− 1)
f(S ∩ Φi)

f(S)
(3.8)

≥ 1− pi
f(S ∩ Φi)

f(S)
. (3.9)

By telescoping, the r.h.s. of (3.6) equals the l.h.s. of (3.10) below, the inequality

in (3.10) follows from the inductive hypothesis, while the remaining two equalities

follow from the fundamental recurrence (1.15) for the independent set polynomial

and the definition of Z(i | S).

1−pi
d∏︂

ℓ=1

1

f(jℓ | Sℓ)
≥ 1−pi

d∏︂
ℓ=1

1

Z(jℓ | Sℓ)
= 1−pi

Z(−ppp;S ∩ Φi)

Z(−ppp;S) = Z(i | S) . (3.10)

To prove that (i) implies (ii) we prove the contrapositive, i.e., that if ZG(−ppp;S) ≤ 0

for some S ⊆ [n], then we can find f : {0, 1}n ↦→ R≥0 that is supermodular and

factorizes according to G,ppp, such that f([n]) = 0. To do this, let λ = min{θ :

∃S ⊆ [n] such that ZG(−θppp) ≤ 0} and take f = ZG(−λppp). Thus, f inherits factor-

ization according to G,ppp from ZG. To prove supermodularity we invoke the fact that

ZG is supermodular if ZG ≥ 0 and observe that, by the continuity of the independent

set polynomial, if ZG(−λppp;S) < 0 for some S ⊆ [n], then λ would not be minimal.

Finally, we observe that if (ii) holds, then we can use telescoping to bound f(xxx)

from below as

f(xxx) = f(000)
∏︂

i:xi=1

f(i | {j < i : xj = 1}) (3.11)

≤ f(000)
∏︂

i:xi=1

Z(i | {j < i : xj = 1}) = f(000)ZG(−p1x1, . . . ,−pnxn) . (3.12)
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3.1.3 Quantum Local Lemma

Let V be a vector space over some field. For a subspaceX ⊆ V , write R(X) := dim(X)
dim(V )

,

for the relative dimension of X with respect to V .

Definition 57. Say that X is mutually independent from the subspaces Y1, . . . , Ym,

if for all S ⊆ [m], R(X ∩j∈S Yj) = R(X)R(∩j∈SYj).

Definition 58. The graph G on [m] is a R-dependency graph for X1, . . . , Xm ⊆ V

if Xi is mutually independent from {Xj}j∈S, for any S ⊆ Φi.

Let X1, . . . , Xm be subspaces of V , and define f(∅) = 1, and f(S) = R (∩j∈SXj),

for S ⊆ [n] \ {i}. Then f is non-negative, decreasing, and supermodular. Indded,

clearly f is non-negative and decreasing.

To prove supermodularity, we need to show that ∆if(S) ≤ ∆if(T ), for every

i ∈ [n] and S ⊆ T ⊆ [n]−{i}. Write A :=
⋂︁

j∈S Xj, Ai := A∩Xi, and B :=
⋂︁

j∈T Xj.

Observe now that ∆if(S) = R (A ∩Xi) − R (A) = (dim (Ai) − dim (A))/ dim(V )

and ∆if(T ) = R (B ∩Xi)−R (B) = (dim (B ∩Xi)− dim (B))/ dim(V ). Since Ai, B

are subspaces of finite-dimensional vector space A, it follows that the dimension

of vector space Ai + B = {u + v : u ∈ Ai, v ∈ B} is trivially upper bounded

by dim(A) and equals dim(Ai) + dim(B) − dim(Ai ∩ B) (see, e.g., p.47 of [65]).

Thus, dim (Ai) − dim (A) ≤ dim (Ai)− dim (Ai +B) = dim (Ai ∩B)− dim (B) =

dim (Xi ∩B)− dim (B), implying ∆if(S) ≤ ∆if(T ), as required.

If additionally R(Xi) = 1 − pi for all i ∈ [n], and G is a R-dependency graph for

{X1, . . . , Xm}, then f is compatible with G,ppp. Indeed, for i ∈ [m], and S ⊆ Φi

f(i | S) =
R
(︂
Xi ∩

⋂︁
j∈S Xj

)︂
R
(︂⋂︁

j∈S Xj

)︂ =
R(Xi)R(∩j∈SXj)

R
(︂⋂︁

j∈S Xj

)︂ = R(Xi) = 1− pi . (3.13)

Applying Theorem 56 to f gives the following result of Sattath et al. [43]
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Theorem 59. Let X1, . . . , Xm be subspaces of V with R(Xi) = 1 − pi, and R-

dependency graph G. Then R
(︁
∩j∈[m]Xj

)︁
> 0 iff ZG(−ppp;S) > 0 for every S ⊆ [m].

Combining with Theorem 4 from Part I, we get the Quantum Local Lemma of

Ambainis et al. [41].

Theorem 60 (Quantum LLL). Let X1, . . . , Xm be subspaces of V with dependency

graph G, and R(Xi) = 1−pi. If there exist rrr ∈ [0, 1)m such that pi ≤ ri
∏︁

j∈Γi
(1−ri),

then, R(∩i∈[n]Xi) ≥
∏︁

i∈[n](1− ri).
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3.2 Future Work

• Devise an algorithmic version of Theorem 56 with potential applications in

submodular optimization.

• Given a function f : Dn ↦→ R≥0 where f(xxx) =
∏︁m

i=1 fi({x}i), form a graph G on

[m] were i, j are adjacent if {x}i ∩ {x}j ̸= ∅. Use Theorem 56 to derive lower

bounds for Z(f) =
∑︁

xxx∈Dn f(xxx) when G is sparse.

• Formulate and apply the new quantum LLL that result by incorporating the

results of Chapter ?? to the quantum settting.

• In a certain sense, the so-called quantum LLL is “not really quantum” but

rather geometric, as no quantum notions enter our Theorem 56, which readily

yields all known quantum LLLs. We would like to devise a truly quantum LLL,

by relaxing the supermodularity assumption our abstract framework.
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Chapter 4

Random Lifts and the Bethe
Approximation

We now turn on the Bethe approximation for partition functions of general graphi-

cal models. While, a priori, there is no connection between the (analytically defined)

Bethe approximation and the independent set polynomial, we use a recent combinato-

rial characterization of the Bethe approximation by Vontobel [44] to suggest precisely

such a connection, by relating typical random k-lifts of graphs where k → ∞, with

the aforementioned tree of non-backtracking walks. In particular, we revisit a recent

result of Ruozzi showing that the Bethe partition function is a lower bound for the

true partition function, for every graphical model whose constituent factors are log-

supermodular. We give a much shorter proof of this result. More importantly, we

give a new much shorter proof of the celebrated four functions theorem.

4.1 Random Lifts of Graphs

Imagine representing a graph G = (V,E) using |V | coins and |E| pieces of string, by

spreading the coins on a table and tying together each pair of coins that correspond

to an edge in E. To form a k-lift of G for some k ≥ 2, we take another (k − 1)|V |

coins and (k−1)|E| pieces of string, as follows. First, we place k−1 new coins below

each existing coin on the table, so that the graph G is lifted off-the table. Then, for

each tied pair of top-tier coins corresponding to some edge e = {u, v} ∈ E we: untie
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the two coins; pick a k-permutation πe; connect the i-th coin in the u-stack to the

π(i)-th coin in the v-stack. That is, each edge of G is now mapped to a k-matching.

Clearly, if all permutations chosen are identical, we simply have k copies of G. If, on

the other hand, the k-permutations are chosen uniformly and independently, we have

a (uniformly) random k-lift of G. (We give a formal definition shortly.)

Random lifts of graphs form a relatively new, reasonably well-studied area, where

the primary focus has been to establish different combinatorial properties of lifted

graphs, primarily expansion. What makes random lifts most interesting to us is the

following fact: lifting a graph does not introduce any new cycles, i.e., every cycle of

the lifted graph corresponds to a unique cycle of G; moreover, the length of each cycle

is typically increases by a factor of Θ(k). Thus, as k →∞, we expect that a typical

random k-lift is (nearly) devoid of cycles. It is not hard to see (and is widely known),

that the only tree that can (and does) serve as the limiting object for random k-lifts

of a graph G is the graph’s so-called universal cover, which is nothing but the tree of

non-1-backtraking walks on G that we met in Part I.

Another fact that makes random lifts fascinating is that they can be refined so as

to introduce the notion of a vantage point of a graph. Specifically, as seen from the

ceiling, a lift is identical to the underlying graph G. But as seen from the side of

the table, a far more complex picture emerges. Things get particularly interesting if

one limits the choice of permutations. Specifically, imagine that instead of allowing

all k! permutations between two stacks of coins, we chose some small number q ≥ 0

and only allowed permutations such that |i − π(i)| ≤ q, for every i ∈ [k] (treating

coins 1 and k as adjacent). Such lifts, known as spatially coupled random lifts, only

allow permutations where each piece of string tying two coins is near-parallel to the

ground (as q is fixed while k grows). As it turns out, even for q as small as 2 or 3, the

resulting lifts inherit most of the desirable properties of random lifts, while having

truly remarkable computational properties. These properties have so far been used

to achieve landmark results in coding theory [45, 46] and to establish lower bounds
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for random Constraint Satisfaction Problems [47, 48].

Our long-term goal is to introduce random lifts, and ideally spatially coupled ran-

dom lifts, to machine learning, via graphical models. Our starting step in this direc-

tion, has been to revisit the only application of random lifts to machine learning (that

we are aware of) and greatly simplify its proof. In doing so, we also greatly simplified

the proof of the celebrated four functions theorem of Ahlswede and Daykin [49].

4.2 Binary graphical models and the Bethe ap-

proximation

A graphical model, G, on n binary variables is a function that maps xxx = (x1, . . . , xn) ∈

{0, 1}n to
∏︁

α∈A ψα(xxx
α), whereA ⊆ 2[n] is arbitrary and where for each variable subset

α ∈ A the factor/function ψα maps {0, 1}|α| to R≥0. Graphical models are often

represented as bipartite graphs called “factor graphs”, with “variable” and “factor”

vertices, where for each α ∈ A the corresponding factor vertex is connected to the

vertices corresponding to the variables in α.

Computing the partition function, Z(G), of a graphical model, i.e., the sum of G(xxx)

over all xxx ∈ {0, 1}n, is a fundamental problem in combinatorics, physics, and machine

learning. Exact solutions may be obtained via variable elimination or the junction tree

method, but unless the tree-width of the factor graph of G is bounded, this can take

exponential time. As a result, several approximate methods have been developed. Of

particular note is the so called Bethe approximation, motivated by the work of Nobel

laureate Hans Bethe. For the purposes of our discussion there is no need to define the

Bethe approximation to the partition function, ZB(G), other than to the say that it

is the minimum of a (highly non-convex) function over 2|E| variables. (Indeed, these

variables are morally analogous to the 2|E| variables that appear in our Theorem 13.

See the book of Wainright and Jordan[50] for a detailed treatment of Bethe approxi-

mation). While the Bethe approximation is often computationally tractable and the

results can be quite accurate, in general it comes with no approximation guarantees,
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or even knowledge of whether ZB(G) is a lower or upper bound for Z(G). One of

very few rigorous results about the Bethe approximation, is due to Ruozzi [51] and

forms the only application we are aware of of random lifts to machine learning. Recall

that f : {0, 1}k ↦→ R≥0 is log-supermodular if f(xxx)f(yyy) ≤ f(xxx ∧ yyy)f(xxx ∨ yyy), for every

xxx,yyy ∈ {0, 1}k.

Theorem 61. If all factors of a binary graphical model G are log-supermodular, then

Z(G) ≥ ZB(G).

To prove Theorem 61, Ruozzi relied heavily on (i) a beautiful combinatorial charac-

terization of the Bethe partition function of arbitrary (non-negative) graphical mod-

els in terms of random lifts by Vontobel [44], which we discuss next, and (ii) the

2k-functions theorem of Rinott and Saks [52] and Aharoni and Keich [53], a general-

ization of the celebrated four functions theorem of Ahlswede and Daykin [49], which

we discuss in Section 4.1.

4.2.1 The Bethe partition function in term of random lifts

For A ∈ {0, 1}k×n and α ⊆ [n], write Aα for the matrix obtained by dropping the

columns of A outside α. For i ∈ [k], j ∈ [n] write Ai∗, A∗j for the i-th row and j-th

column of A, respectively. For an n-tuple of k-permutations σσσ = (σ1, . . . , σn) ∈ (Sk)
n,

write σσσA for the matrix obtained by permuting the elements of A∗j according to σj,

for each j ∈ [n].

Definition 62. For k ∈ N, the k-fold product of ψα is the function Ψα := Ψ
(k)
α

mapping A ∈ {0, 1}k×|α| to ∏︁i∈[k] ψα(Ai∗). For a graphical model G, if σσσ = {σσσα}α∈A
comprises an |α|-tuple of k-permutations for each α ∈ A, then the k-lift of G corre-

sponding to σσσ is the function Gσσσ mapping A ∈ {0, 1}k×n to
∏︁

α∈AΨα(σσσ
αAα).

Definition 63. We denote the set of all k-lifts of a graphical model G by Sk(G). We

say that G is lift-decreasing if Z(Gσσσ) is maximum when every k-permutation appearing

in σσσ is the identity (correspondingly for lift-increasing).
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While, in general, ZB(G) can be more or less than Z(G), Vontobel [44] proved the

following.

Theorem 64.

ZB(G) = lim sup
k→∞

(︄
Avg

Gσσσ∈Sk(G)
Z (Gσσσ)

)︄1/k

.

To prove Theorem 61, Ruozzi invoked Theorem 64, but did not have to actually

perform the associated averaging, as he showed the following very strong proposition.

Theorem 65. If all factors of a binary graphical model are log-supermodular, then

it is lift-decreasing.

4.3 The 2k-functions theorem and our contribu-

tion

As mentioned, besides exploiting Vontobel’s combinatorial characterization of the

Bethe partition function, the other main step in Ruozzi’s proof is establishing a

variation of the 2k-functions theorem [53], used to establish Theorem 65. To state

the 2k-functions theorem, we need to introduce the following notation.

Definition 66. For an arbitrary finite-valued function f on a finite domain D we

denote Z(f) =
∑︁

x∈D f(x).

Definition 67. For a 0-1 matrix A, let ↑A be the matrix obtained by independently

sorting each column of A so that the 1s are on top and
←−
A be the matrix obtained by

independently sorting each row of A so that the 1s are on the left.

It is worth pointing out that instantiating the 2k-functions theorem, below, for k =

2, yields the celebrated four functions theorem of Ahlswede and Daykin [49], which,

in turn, readily implies the famous FKG inequality [54], the Holley inequality [55],

and the Fishburn-Shepp [56, 57] inequality.

76



Theorem 68 (2k-functions). If f1, . . . , fk, g1, . . . , gk : {0, 1}n ↦→ R≥0, are such that

for all X ∈ {0, 1}k×n, ∏︂
i∈[k]

gi (Xi∗) ≤
∏︂
i∈[k]

fi ((↑X)i∗) , (4.1)

then
∏︁

i∈[k] Z(gi) ≤
∏︁

i∈[k] Z(fi).

Ruozzi proved the following variation of the 2k-functions theorem.

Theorem 69. Let f1, . . . , fk : {0, 1}n ↦→ R≥0 and g : {0, 1}k×n ↦→ R≥0, be such that

for all X ∈ {0, 1}k×n,

g (X) ≤
∏︂
i∈[k]

fi ((↑X)i∗) . (4.2)

If g is log-supermodular, then, Z(g) ≤∏︁i∈[k] Z(fi).

In other words, while the right hand side of (4.2) is the same as the right hand side

of (4.1), on the left hand side Ruozzi’s variant replaces the product of k functions on

{0, 1}n with a single log-supermodular function on {0, 1}kn.

4.3.1 Our Contribution

We make two contributions. The first is to dramatically shorten Ruozzi’s proof of

Theorem 65 given Theorem 69. To state the proof we need to introduce the following

notation.

Definition 70. A function g : {0, 1}k×n ↦→ R≥0 is a k-product, if g (X) =
∏︁

i∈[k] gi (Xi∗),

where g1, . . . , gk are arbitrary positive functions on {0, 1}n.

Definition 71. For a 0-1 matrix A, let ↑A be the matrix obtained by independently

sorting each column of A so that the 1s are on top and
←−
A be the matrix obtained by

independently sorting each row of A so that the 1s are on the left.

Proof of Theorem 65. Let Gk and Gσσσ, be the trivial and an arbitrary k-lift

of G, respectively. We apply Theorem 69 with f = Gk and g = Gσ. Specifically, Gk

is a k-product (corresponding to the trivial k-lift), Gσσσ is log-supermodular since it is
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the product of log-supermodular factors, and Gk,Gσσσ satisfy condition (4.2), as for all

A ∈ {0, 1}k×n,

Gσσσ(A) =
∏︂
α∈A

Ψα (σσσ
αAα) ≤

∏︂
α∈A

Ψα (↑(σσσαAα)) =
∏︂
α∈A

Ψα (↑(Aα)) =
∏︂
α∈A

Ψα ((↑A)α) = Gk(↑A) .

(4.3)

Our second contribution is to give a substantially simpler proof of both Ruozzi’s

variant of the four functions theorem and of the theorem itself by proving the follow-

ing, trivially implying Theorem 68 and Theorem 69.

Theorem 72. Let f1, . . . , fk : {0, 1}n ↦→ R≥0 be arbitrary and for X ∈ {0, 1}k×n write

f(X) :=
∏︁

i∈[k] fi (Xi∗). Let g : {0, 1}k×n ↦→ R≥0 be such that for every X ∈ {0, 1}k×n,

g (X) ≤ f(↑X) . (4.4)

If g is log-supermodular or a k-product, then Z(g) ≤ Z(f).

4.4 Proof of Theorem 72

Definition 73. If g(xxx) ≤ f (↑xxx) for every xxx ∈ {0, 1}k, we say that f dominates g.

We start by proving the following powerful lemma, which will form the base case

for our later induction.

Lemma 74. Let f, g : {0, 1}k ↦→ R≥0. If g is log-supermodular, f is log-submodular,

and f dominates g, then Z(g) ≤ Z(f).

Proof. For this proof only, it will be convenient to define the t-fold product of f

by organizing its t inputs in columns instead of rows, i.e., F = F (t) : {0, 1}k×t ↦→ R≥0,

where F (A) =
∏︁

i∈[t] f(A∗i). Let us say that g is (weakly) log-majorized by f and write

g ≺log f , if for every A ∈ {0, 1}k×t with distinct columns, there exists B ∈ {0, 1}k×t

with distinct columns, such that G(A) ≤ F (B). It is well-known (and easy to see)

that if g ≺log f , then Z(g) ≤ Z(f).
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To prove g ≺log f , fix any t ≥ 1. Let A ∈ {0, 1}k×t have distinct rows and let

π be any permutation of the rows of A in order of weight (number of ones). Write

B = π(A). Observe that ↑
(︂←−
A
)︂

= π
(︂←−
A
)︂

=
←−−
π(A) =

←−
B and that B has distinct

columns as it is the result of permuting rows of a matrix with distinct columns.

Therefore, g ≺log f , since

G (A) ≤ G
(︂←−
A
)︂
≤ F

(︂
↑
(︂←−
A
)︂)︂

= F
(︂←−
B
)︂
≤F (B) ,

where the second inequality follows from the fact that f dominates g, while the

first and last inequalities follow from the log-supermodularity of g and the log-

submodularity of f , respectively.

Armed with Lemma 74, we prove Theorem 72 by induction on n. Specifically, let

P (d) be the proposition that Theorem 72 holds for n = d. For n = 1, note that

hypothesis (4.4) states that f dominates g, and that f is log-modular, and therefore,

log-submodular. Similarly, g is log-supermodular under either of the two assumptions

for it. Hence, Lemma 74 applies, yielding Z(g) ≥ Z(f), i.e., P (1).

For n ≥ 2, let g, f be the the average of g, f over the n-th column, respectively.

Note that if g is log-supermodular, or k-product, then g being a marginal of g, remains

log-supermodular, or k-product, respectively. We will prove, using P (1), that g, f

satisfy (4.4), so that P (n − 1) implies Z(g) ≤ Z(f), i.e., P (n) (since Z(g) = Z(g)

and Z(f) = Z(f)).

To prove that g, f satisfy (4.4), fix any Y ∈ {0, 1}k×(n−1). For ttt ∈ {0, 1}k×1, write

Y ′ =
(︂
Y | ttt

)︂
∈ {0, 1}n×k, and define g∗ : {0, 1}k ↦→ R≥0, as g∗(ttt) = g (Y ′), andˆ︁f : {0, 1}k ↦→ R≥0 as ˆ︁f(ttt) = f (↑Y | ttt). The fact that g, f satisfy (4.4), implies that

g∗ is dominated by ˆ︁f , since g∗(ttt) = g (Y ′) ≤ f (↑Y ′) = ˆ︁f (↑ttti). Thus, invoking P (1)

for g∗ and ˆ︁f , we conclude that g, f satisfy (4.4), since g(Y ) = Z (g∗(ttt)) ≤ Z
(︂ ˆ︁f(ttt))︂ =

f (↑Y ) .
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