UC Irvine

SSOE Research Symposium Dean's Awards

Title

Developing a Better Guidewire for Breast Biopsy: BioGuideUCI

Permalink

https://escholarship.org/uc/item/9515m3hr

Authors

Metulev, Aleksandar Zhang, Xiaoxuan Luc, Joycelin <u>et al.</u>

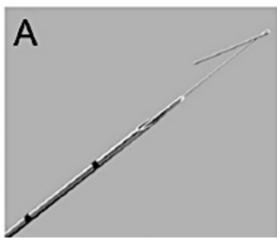
Publication Date

2014-03-15

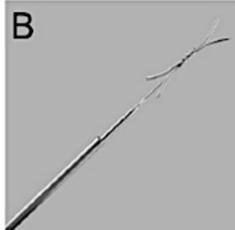
Peer reviewed

Developing a Better Guidewire for Breast Biopsy

GOAL


Objective: The development of a more stable and accurate guidewire for localization of nonpalpable breast lesions during biopsy

BACKGROUND

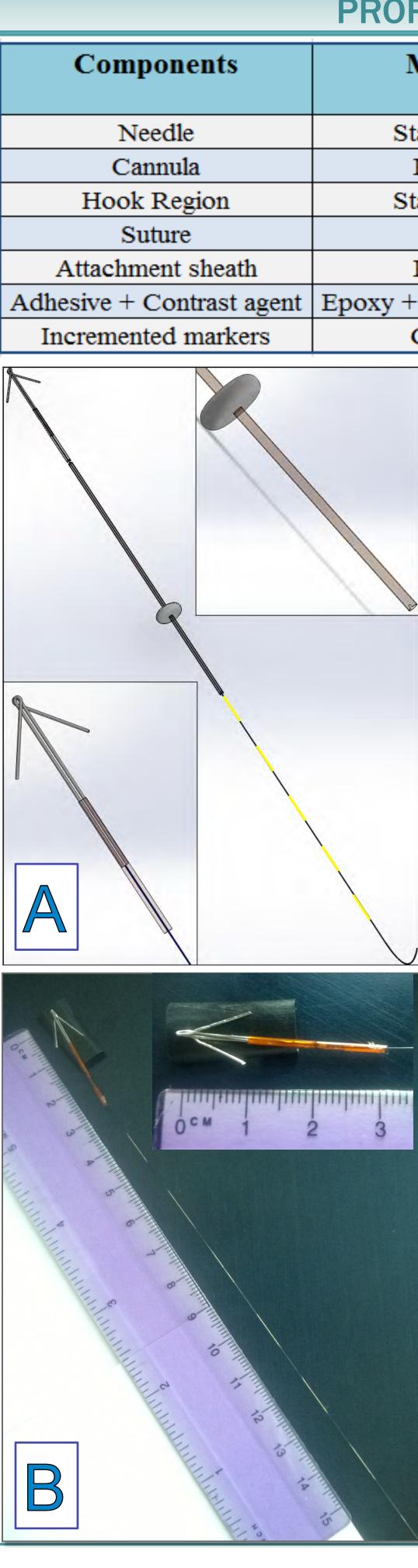

Breast cancer, the second leading cause of death in women ages 40-55, is defined by excessive cell proliferation in the milk ducts and lobules. There are an estimated 232,340 new cases in 2013. The key to successful treatment of breast cancer is an accurate diagnosis, which consists of a biopsy following the visualization of abnormalities in breast tissue with mammography. Safer, more accurate devices for lesion localization during biopsy will improve survival rates because current procedures often extract samples that lead to inaccurate results [1,2].

CURRENT LOCALIZATION DEVICES

Kopans Breast Lesion Localization Needle

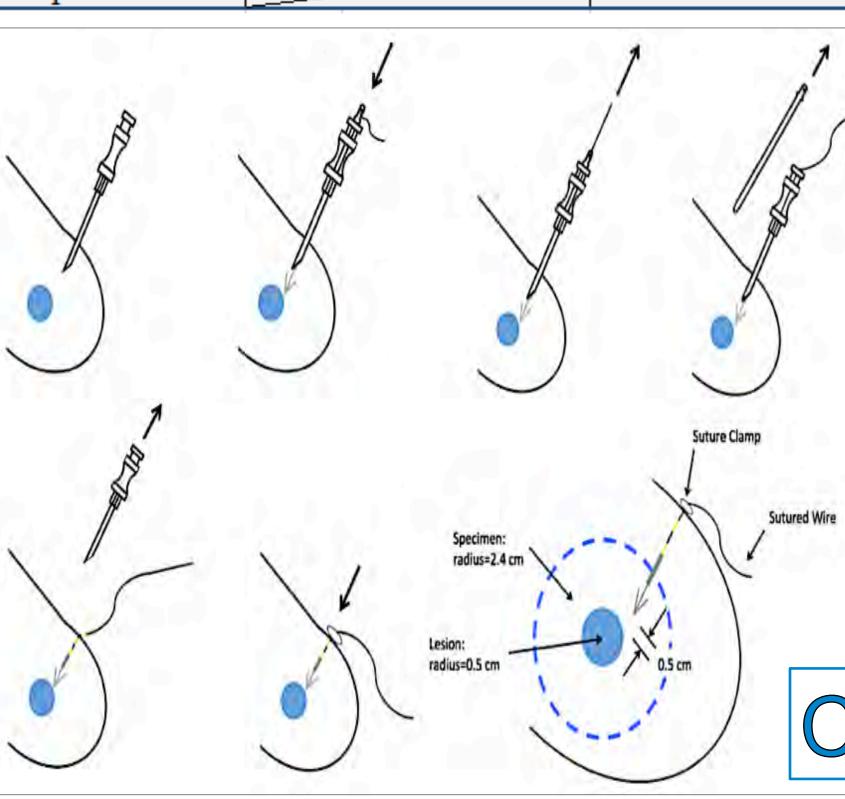
X-Reidy Breast Lesion Localization Needle

Localization Coil С


Breast Lesion

Limitations:

A functional guidewire will allow for a minimally invasive incision and a secure attachment to the tissue of interest. The designs shown above include a variety of options to address these requirements. However, they are all limited by the rigid structure of the insertion wire, which has been known to dislocate or even fracture during sample extraction.


TIMELINE

FALL	Contact Mentors Outline device requirements Develop initial prototype design
<u>WINTER</u>	Obtain materials Build prototypes and update design Apply to design competitions Develop validation tests
<u>SPRING</u>	Finalize prototype design Complete validation tests Showcase completed device

-BioGuideUCI Henry Samueli School of Engineering University of California, Irvine

PROPOSED DESIGN: S-WIRE					
onents	Materials	Diameters (in)		Length (cm)	
		ID	OD		
edle	Stainless steel	0.17	0.135	4.9	
nnula	Polyimide	0.05	0.0403	6	
Region	Stainless steel		0.0157	2.5 wire + 0.5 hoc	
ıture	Nylon			20	
ent sheath	Polyimide	0.05	0.0403	2	
Contrast agent	Epoxy + Titanium Dioxide				
ted markers	Gold paint			1cm bands	

A: Solidworks assembly of the S-Wire and cannula; double hook and attachment piece—lower left; epoxy stopper—upper right. B: S-Wire prototype; double hook and attachment piece—upper right. C: Schematic of localization procedure

Value Proposition:

Replacing a portion of the wire with a suture will lower the risk of overheating and material degradation. Hooks will not be at risk of melting from the electric current of the coagulator since most of the metal will stay in the target tissue until surgical removal. Both the hook and suture will feature 1 centimeter markers that are visible in a mammogram to increase precision.

Procedure:

(1) Initial mammogram (2) Insert needle into compressed breast by mammogram and ultrasound guidance (3) Use cannula to thread S-Wire through needle (4) Remove cannula from needle (5) Remove needle and clamp suture in place at the skin surface (6) Take a second mammogram to confirm hook location

(7) Relocate patient to surgery room for tissue extraction

BIOGUIDEUCI TEAM

Left to Right: Aleksandar, Xiaoxuan, Joycelin, Nazneen, Hana, Sharon

Name and Major	Responsibility	
Aleksandar Metulev ChemE/MSE	Materials & Finances	
Xiaoxuan Zhang BME	Research & Writing	
Joycelin Luc BME	Business Management	
Nazneen Pashutanizadeh BME	Group Leader & Organizer	
Hana Yamate-Morgan BME	Public Contact	
Sharon Kuruvilla BME	Design & Manufacture	
	* 	

ADVISORS

Mr. Richard Henson – Source Scientific **Dr. David Hsiang** – School of Medicine (Surgery)

Dr. Michelle Khine – *Biomedical Engineering*

Dr. Albert Yee – Chemical Engineering and Materials Science We would also like to thank the Undergraduate Research Opportunities Program for generously providing funding for our senior design project.

CONTACT INFO

Website: www.bioguideuci.com E-mail: team@bioguideuci.com **Phone:** (707) 501-8123

REFERENCES

[1] R. Siegel, D. Naishadham, and A. Jemal, "Cancer Statistics, 2013," vol. 63, no. 1, pp. 11–30, 2013. [2] J. a Tice, E. S. O'Meara, D. L. Weaver, C. Vachon, R. Ballard-Barbash, and K. Kerlikowske, "Benign breast disease, mammographic breast density, and the risk of breast cancer.," Journal of the National Cancer Institute, vol. 105, no. 14, pp. 1043–9, Jul. 2013.