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They are called computers, simply because computation is the only significant job that
has so far been given to them. The name has somewhat obscured the fact that they are
capable of much greater generality…To describe its potentialities, the computer needs a
new name. Perhaps as good a name as any is ‘information machine.’

Louis Ridenour, 1952

Science, as well as technology, will in the near and farther future increasingly turn from
problems of intensity, substance, and energy, to problems of structure, organization,
information, and control

John Von Neumann, 1949

Software translates languages on Web

Lotus Ireland, a subsidiary of International Business Machines Corp., said Wednesday
it had developed a new software product allowing people speaking different languages
to communicate across the Web. Lotus Translation Services for Sametime translates
Web chat and communications as typed in real time, and will go on sale in September.
The software employs Java technologies.

San Jose Mercury TechTicker, June/22/00
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I  Overview

The presence of information technology (IT) within the global environment has been extensively

studied, but its structure and impact has not been rigorously explained. In many ways, this failure to

explain IT stems from a basic lack of understanding the technology itself, both in terms of its historic

development and its basic production patterns. Such an explanation is important exactly because its

absence limits an analysis of global processes generally, and the discussion of “information societies

and economies” in particular. If information technologies are central in structuring new global trends,

then it is an empirical necessity to detail the social and economic impacts derived from such

technologies. Such impacts can not be understood, or at best only partially, if the basic

conceptualizations and processes underlying IT are not defined.

The purpose of this outline is to step back from more macro approaches and consider information

technology from first principles. The aim is to clarify and define both the informational and

technological aspects of IT, then link these into considerations of the potential impact on economic and

social development. The discussion is framed in four broad sections. First, current theorizations of

information technology are considered. This details the current weakness of analysis to outline if and

how IT is different from other forms of industrialization. The failure of such analysis stems from not

understanding IT as simultaneously a process, product and industry. Approaching IT from each of

these viewpoints helps clarify why “high-technology” and information technology sectors are distinct,

how informational and industrial patterns differ, and how such differences play out on regional and

local levels.

This is followed in the second section by a consideration of the historic development of IT as a

technology and industry from conceptualization to implementation. Such an analysis offers key

insights into how the conceptualization of an “information machine”, and the basic mathematical tools

to support such a development, preceded the actual physical development of computing machines by at

least a century. It also shows how the fulfillment of this conceptualization in reality is what structures

the current age as informational, rather than computational. Looking at IT historically, it possible to

trace the general informational concepts that frame IT, especially in terms of algorithmic structures, as

well as understand why both the technology and industry have come to be dominated by software as

the central sector and source of innovation within the industry.
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The third section seeks to expand on the increasing significance of software in IT as process, product

and industry. In many ways, understanding these aspects of software highlights the basic informational

aspects of IT. For computers to function, they need both information and tools to process that

information. The conceptual tools for this, in the form of binary structures and algorithmic logic, have

existed from the beginning of computing. Software currently is the primary form for applying these

conceptual tools to social and economic reality. Software is the means in which both knowledge and

the tools that process that knowledge are structured, transformed and transmitted. This implies that

software processes are a potentially central form, both within IT and society overall, of transforming

and structuring social knowledge into commercial products and authority. This opens up a

consideration of software, and software processes, as the ideal type of production process in an

information society.

The final section considers the nature of innovative IT regions through a comparison of hardware and

software focused development strategies. As software becomes more important in the global economy,

regions will attempt to transition from previous hardware strategies to new state-led software focused

initiatives. Given the distinct nature of software processes and industry structures, how new regions

establish and sustain IT development will be a crucial question of coming decades. A simplified matrix

of innovative regions offers a heuristic tool to evaluate what resources and capacities either IT sector

requires and generates. This opens up the possibility of separating the general global trends that shape

all regional IT developments from the distinct regional resources and capacities that promote sustained

innovative environments. In this way, the comparison helps clarify the opportunities and limitations of

software focused initiatives as quite distinct from hardware focused strategies.

II Theories of Information Technology: Understanding IT as Process,
Product and Industry

Information technology (IT) is an assumed, but frequently poorly or unexplained force within analysis

of the global environment. Much of this failure stems from a lack of clarification and definition of

what exactly is meant by IT. On a general level, analysis often fails to clarify what are the

informational and technological aspects of IT, and what overriding trends or structures link them

together. In other words, there is a failure to establish what the basic processes and technologies are

that define IT as a distinct and defined force in the global environment. This is visible in the confusion
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in terminology between “high technology” and information technology. Much of the literature seems

to assume that these are equivalent terms, rather than pausing to consider that they actual might define

separate processes, products or industries. This leads to a more specific failure to distinguish between

sectors within IT, such as hardware and software. If they are both IT industries, similar policies,

industry patterns, firm organizational structures, and production processes should characterize them

both. However, without a clear definition of what IT is in general, it becomes extremely difficult to

determine what connects and separates various IT sectors.

Yet, if information technologies are a central factor within the global environment, such definitions are

essential to elaborating on various divergent global social and economic trends. As Rosenberg states,

“this is because the specific characteristics of certain technologies have ramifications for economic

phenomena that cannot be understood without a close examination of these characteristics (p. vii).”

However, it is exactly these characteristics that are missing in much of the analysis of information

technologies. Moving inside the “black box” of IT, it is possible to consider the “micro foundations of

economic dynamics (Dosi 1984: 1)” that link technological processes with the macroeconomic and

social forces that define a globalized environment. Such an approach offers a more robust and detailed

analysis of well considered aspects of the global economy including innovation, networks, the role of

the state and new social inequalities, without either slipping into technological determinism or

dismissing the social implications of IT all together.

Current theorizations, failing to begin from this micro-foundational level, tend to analyze IT broadly

and from either industry, product or process perspectives. General theorizations of globalization

recognize the importance of technology, but tend to approach it through a consideration of specific

industry globalization patterns (Held et al 1999, Dicken 1998). These tend to focus on industries like

finance (Sassen 1996), integrated circuits (Dicken 1998, Henderson 1989), software (Mowery 1996) or

electronics (Ernst 1997). This analysis tends to use the globalization of IT industries as a proxy for the

impact of information technology in the global environment. Such analysis suffers from not

distinguishing between the internationalization of industries (which is not a new phenomenon) and the

distinct characteristics of IT products and processes that do structure global trends in a historically

unique manner. The analysis captures well the quantitative aspects of global industries (trade flows,

FDI, employment, firm location), but does not capture the qualitative aspects that really distinguish IT
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patterns. In other words, this analysis makes no connection to the unique IT processes and products

that influence the macro trends they analyze.

Another set of analysis tends to view IT as a series of products (or goods and services) that impact

upon social and economic relationships. Much of this analysis revolves around the impact of specific

information technologies, especially the Internet, on economies and societies (Cairncross 1997, Kelly

1998, Taylor et al 1997, Coyle 1998). A sub-category of such analysis can also be found in aspects of

the business press focusing on “new economy” trends and impacts (i.e. Red Herring, Wired, Business

2.0, FastCompany), as well as in considerations of the digital divide (Digital Economy 2000). Such

analysis assumes that IT has an impact by simply being produced, without either an empirical

understanding of the relative weight of IT in society nor an understanding of the processes that would

shape such an impact. This is not to imply that such analysis is wrong. Much of it captures quite well

the technological aspects of key information technologies, and elaborates on the potential impacts of

such products. However, the lack of quantifiable data linked to broader theories make it difficult to

evaluate how IT products are shaped by specific institutions (firms and states) and social forces

(education, income, norms, culture), as well as how widespread their impacts are or may be.

The final entry point to defining IT comes from process perspectives. Simply, the process analysis

considers the informational aspect of IT, and focuses on defining how societies and economies are

transformed by the application of information technologies. Within this, there are two broad

categories: macro analysis of how IT establishes a new conception of social and economic reality, and

more detailed meso-level considerations of how development processes are structured geographically

and organizational. In the conceptual case, there is an extensive literature that seeks to understand the

shift that is signaled by a move from a physical to an informational-based environment.  Such analysis

focuses on the nature of a “digital society” (Negroponte 1995), the role of knowledge as the central

resource (Drucker 1993), and the spatial and symbolic impacts of such developments (Lash and Urry

1994). This literature is complemented by the second category that analysis the institutional and

geographic structures that transmit and transform information on regional (Saxenian 1999) and global

(Gordon 1994b, Borrus 1993) levels through new organizational forms (Castells 1995, Amin 1994).

However, while analytically rich, each category fails to link the conceptual and meso-level changes to

changes in concrete behavior and practice. The literature analyzes how information technologies

impact upon the global environment generally, but does not offer robust analysis or predictions of how
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firms, governments and individuals structure micro-level responses to these general trends. This failure

to effectively link to more grounded analysis weakens the ability to explain the contradictory trends

that characterize IT processes in the global environment.

Overall, each of these entry points into the analysis of IT fails to be informed by the others. A more

accurate understanding of IT in the global environment requires a combination of industry, product and

process approaches. Broader industry trends would be greatly enriched by an understanding of the

technical characteristics of the products and services that structure the strategies and capacities of

specific industries. How such industries are structured on a firm, regional and global level clearly is

linked to the production processes that transform and commercialize such information. Historical

analysis of IT products and industries would open up understanding of longer term trends that structure

conceptions of IT, as well as help define specifically what IT is. Importantly, a combination of the

three literatures would help link information and technology to global and local practices. This in turn

would help clarify and define the impact, structure and location of IT sectors in the global

environment.

In other words, approaching IT from process, product and industry viewpoints creates a much richer

methodology for understanding the impact of IT on economic and social processes. Arguably, it is also

the only way to capture both the technical and social aspects of IT simultaneously  (Agre and Schuler

1997, Agre 1995b). It also offers a means for comparing the characteristics of IT and “information

societies” with other industrial transformations to determine what exactly is “new” in the new

economy (Cohen et al 2000). The next section begins a first step of such an analysis through a history

of the conceptual, technical and industry trends of IT.

III IT History

i Algorithmic Logics and IT

The simplest definition of IT is one word: algorithm. Simply defined, an algorithm is a procedural

description of how something should be accomplished. Bureaucracies are socially institutionalized

forms of this, as are the patterns that govern basic biological processes (Ridley 1999). What has

developed over that last three hundred years is the creation of tools to describe and replicate both these

naturally occurring and constructed patterns mathematically. The most widely applied example of this

is within the IT field today, both in hardware and software processes.
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Algorithms arose from the study of logic tracing back to Aristotle. The word itself is derived from the

surname of Ja’far Mohammad Ben Musa al-Khowarazmi, the ninth century Muslim mathematician

who wrote “The Science of Restoration and Reduction” that transformed algebra and brought Arabic

numerals to Europe (Leonard 2000). Algorithmic logic was revived as a defined and respectable field

of knowledge by Leibniz, the co-creator of the calculus, at the end of the 17
th

 century. Leibniz offered

a very simply but powerful idea: the entire universe can be described as comprised of god and

nothingness (Berlinski 2000). In other words, all of life follows a discrete binary system that can be

modeled, or coded, within a logical algebraic framework. As such, real-world processes could be

mapped using mathematical symbols, if the underlying algorithms could be identified. This opened the

theoretical possibility of modeling both the social processes of bureaucracies and the basic sequence of

DNA, among others, as mathematical abstractions.

Leibniz insight into algorithmic logic and binary systems are at the heart of IT as we have come to

conceive it (Berlinski 2000). IT is essentially defining a logical algebraic function that produces

consistent outcomes for specific processes then codifying them in either software or hardware formats

(Mitchell 1998). However, the actual application of this conceptualization into practical working

systems took almost three hundred years. The following history is a rough outline of how this occurred

through a mixed technical and industry viewpoint, both of which have influenced the form that

Leibniz’ conception has taken within information technology. The history begins first with the desire

for a “machine computer”, then the application of computing to information processing under business

machine manufacturers, the actual building of binary coded mainframe machines the 1960’s, and

finally the extension of such systems through the rise of personal computing and internets.

ii The Development of Machine Computers

The actual attempts to apply algorithmic logic to automate problem solving began in the industrial

revolution. The industrial logic of the time led to numerous attempts to create “smart machines”. As

complex and precise mathematical calculations increasingly came to be essential to a modern industrial

economy, machine calculation came to be seen as a rational solution. Information, like any other

industrial activity, needed to be processed in ever-greater quantities and efficiencies. At the time, the

mathematical computations for such key publications as the Nautical Almanac, showing tide charts,

were done by teams of human “computers”. The quantity and diversity of information needed to be
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processed, along with the high incidence of human error, created a general push for the creation of

mechanical computers (Campbell-Kelly and Aspry 1996).

The preeminent example of this is Charles Babbage’s attempt to develop the Difference Engine in

England in the 1830’s in order to mechanically produce solutions for tide-tables accurately and

efficiently. The conception, like the underlying mathematics, was clearly understood, with a defined

sequence of mathematical steps (an algorithm) that would produce the needed tables accurately and

consistently. However, the actual construction of the “Engine” (the name itself demonstrating the logic

of the era) proved almost beyond the technical capabilities of the time. A small working model was

produced, but it was unable to fulfill the table-making functions for which it had been funded to solve.

Importantly, Babbage also conceived, though never completed, the concept of an “Analytical Engine”.

The Difference Engine was inherently limited by its dedicated mechanical design to solving one

specific mathematical problem. The Analytical Engine was conceived as a programmable machine that

could perform multiple mathematical functions rather than merely pre-defined calculations

(Moschovitis et al 1999). Conceptually, this was the first attempt to build what would now be

recognized as a computer. It would be another hundred years before a fully functioning programmable

calculator as envisioned by Babbage would be built.

The increasing demand for information processing came to dominate the development of mechanical

computing, overriding Babbage’s general idea of a multi-purpose calculating machine. Business

equipment applications and manufacturers came to dominate the search for mechanical means to

process and tabulate information. Herman Hollerith developed a mechanical system for processing

census data that was implemented in the US in 1890. The system tabulated the census data in six

weeks, as compared to seven years for the previous census
1
. Hollerith went on to form the Tabulating

Machine Company which became the foundations of IBM. The computing industry would continue to

be dominated by business equipment firms developing machines to handle specific information

processing needs, as opposed to generating or manipulating general information, until the advent of the

Second World War (Campbell-Kelly and Aspry 1996).

1 The basic machines built by Hollerith still work 110 years later. A working edition is on display at the Computer History
Museum at Moffett Field (www. computerhistory.org). It is also interesting to note that other tabulating machines from this
time, particular voting machines, are still in use to this day, even as the companies that made them have gone out of
business (Wall Street Journal, November 9th, 2000).
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The search into a mechanical means to manipulate and generate information did continue

simultaneously, but was limited to extremely complex problems involving a few key users concerned

with large industrial projects or government-related programs. Still facing the limits of human

computers in a complex industrial world, mechanical computing increasingly focused on analog

machines. Processes that were too complex to mathematically define, or be handled by existing

mechanical computation, could be modeled through mechanical analogues of the process itself. These

were machines that could create mechanical analogies of complex systems, such as dams, electrical

networks or tides, that could then be replicated and scaled efficiently (Campbell-Kelly and Aspry

1996). Though analog computing was inherently limited by the need to construct a new model for each

process, it did serve the specific needs of large-scale users. Such computing reached its peak impact

between the two World Wars, with increasingly large and dedicated models helping analyze

increasingly complex engineering and scientific problems.

A key development in analog computing occurred in 1931. Vannevar Bush of MIT was able to develop

a “differential analyzer” that could perform a whole series of engineering and science problems based

on differential equations. While diverse in application, the machine was not a real computer in the

sense of performing and generating calculations. It was still an analog machine, modeling natural

processes rather than manipulating numbers themselves, even if it could model multiple analog

machines (Edwards 1996). As such the application of the machine outside of predefined engineering or

science problems or to problems that could not be physically modeled (astronomy, physics, weather,

code breaking) was impossible
2
.

Only at the very end of WWII would the binary logic of Leibniz, Babbage’s general purpose

computing machine concept, Bush’s practical model of a multi-purpose machine, the experience of

business machine firms in robust information processing equipment, and the need to generate pure

mathematical information come together to form the modern computer architecture. Even then, it

would be another two decades before the use of computers would be integrated with the business

equipment industry to find a widespread base for the use of computing power, and another four

decades before computers were spread to the population as a whole.

2 One of the little now stories of World War II, hidden due to national security concerns, was the continued and important
role of human computers, in particular women, in the code breaking and other high-level mathematical computing needs.
See Campbell-Kelly and William Aspray 1996, Edwards 1996.
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iii Modern Computing

In August of 1944, Hathaway Aiken and a team at Harvard completed the Mark I, the first fully

programmable computer to come into being. The five-ton machine worked through the inputting of

operational codes on lengths of paper tape, and was designed to produce ballistics computations and

code breaking for the US Navy. The design by Aiken was implemented by IBM and essentially

consisted of a row of electro-mechanical punch-card machines. Being both programmable and

automatic in performing general mathematical calculations, it was in many ways the fulfillment of

Babbage’s original design for the Analytical Engine.

Importantly, the development of the Harvard Mark I represents a convergence of technologies, ideas

and institutions that would dominate many of the basic features of information technology for the next

thirty years. On the technical side, the Mark I represented the first use of digital architectures and data,

though decimal and not binary. In other words, information was transformed into discrete

mathematical symbols that became both an input and output of the computing process for the first

time. It also marked the full engagement of IBM into the field of computing, creating a blending of

computing and business machines for the first time. The practical skills developed by IBM engineers in

designing information-processing equipment for industrial uses blended extremely well with the

experimental and theoretical environment of leading research universities. This convergence was

further stimulated by the interests and very substantial economic support of the US military that

viewed computing as a means to an end in support of initially World War II and the then the Cold War

(Edwards 1996).

The final technical architecture for the computer as currently defined was formulated at the Moore

School of Electrical Engineering at the University of Pennsylvania in 1944 and 1945. Operating under

the auspices of the National Defense Research Council (NDRC), a team led by John Mauchly and

Wallace Eckert had been commissioned to develop a computer to calculate ballistic tables for the US

Navy. Completed in 1944, ENIAC was the world’s first electronic computer, comprised of 18,000

vacuum tubes, 10,000 capacitors, 6,000 switches, and 1,500 relays. Because it performed calculations

at 5,000 operations per second, faster than programs could be paper fed, it had to be programmed via

hardwiring that called for physically wiring the machine to determine the circuitry of the programming

logic.
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The Moore school’s second version, EDVAC, combined advances in electronics with the

programmable flexibility of the Mark I to finally overcome many of the basic challenges facing

computing. Spurred on by John Von Neumann, a member of the Institute for Advanced Study at

Princeton and a consultant to the Manhattan Project, the EDVAC sought to solve the problems of

limited memory (limiting the ability to store programs), too many vacuum tubes (creating tremendous

heat, instability and high-energy consumption), manual and wired programming (making running new

programs time consuming and tedious), and the use of decimal numbers (limiting the amount of

information that could be processed and stored). Though never completed, the EDVAC design outlined

by Von Neuman, Eckert and Mauchly defined the base architecture that all computers have to this day:

stored-programs, binary logic of programs and computation, basic input and output units, a control unit

and an arithmetic unit (Edwards 1996, Campbell-Kelly and Aspry 1996)
3
. This structure provided the

road map from which all computers would develop in the following decades. The government would

continue to sponsor widespread research and development of computer technology, but the early

EDVAC pioneers also began the first real efforts to commercialize digital, electronic, programmable

computer technology after the end of the war.

iv The Development of the Computer Industry

Throughout the 1950’s and 1960’s the computer industry developed within the broad framework of

implementing the vision of the EDVAC in reality and expanding the efficiency and robustness of the

components themselves. Once again the commercial market came to be dominated by the demand for

large scale mainframe data-processing machines, as related to solving business or information

processing related problems. While the invention of the stored-program computer created a potential

split of hardware and software, the development of the industry focused on complete hardware and

software solutions developed for specific end-users. In other words, while the basic innovations of the

EDVAC design created the potential for a multi-purpose computer as exists today, the industry

standard of packaged hardware/software solutions created machines that were far more similar to their

dedicated analog predecessors than to the flexible machines in existence currently. The vast majority

of software was custom built for specific main frame systems, almost exclusively by the producers of

the hardware themselves, focusing on specific information processing needs. The use of electronic

3 Basic computer architecture is still referred to as Von Neuman architecture, though it is generally agreed that Eckert and
Mauchly were integral to the design.
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circuits gave amazing speed, but a flexible, multi-purpose “information machine” was still much more

theory than reality.

During these decades, computing development was like a building a new cathedral each time new

technology emerged or systems were modified as a user’s needs changed (Raymond 1998). Complete

systems of hardware and machine specific software would be developed to address each end users

demands. Computing was for only large-scale established projects with deep budgets. End-users were

locked into both hardware and software that were not transferable to other systems or uses even within

the same family of computers. Naturally government, in particular the military, and large corporations

were the central users of computing power (Edwards 1996, Guice 1997). Of the business-computing

companies, IBM dominated the private market for combined solutions of hardware and software

through the 1960’s, with a roughly 70% market share. It is important to note that IBM, though

dominant in the market, did not have a clear lead in computing technology over other mainframe

companies. IBM provided trust and stability for firms buying its computer systems, with greater

resources to bear on marketing and maintenance, but no real sustained advantage in the technology

itself (Campbell-Kelly and Aspry 1996). Even more important, innovations in the industry tended to

come from private, as opposed to government or university, supported research.

v From Vacuum Tube to Microprocessor

The most significant events outside of the development of computing as a business machine revolved

around the transformation of the basic architecture and structure of computer processing. All

computers from the ENIAC forward suffered from the size, heat and energy constraints imposed by

vacuum tubes for computation, that is the creation of the basic circuits that could manipulate binary

language.  In 1946, William Shockley, John Bardeen and Walter Brattain of Bell Labs created the first

transistor, a solid state semiconductor that acted as a reliable and efficient amplifying and switching

circuit. By 1958, IBM was producing transistor based business machines. In 1959, Robert Noyce of

Fairchild Semiconductor and Jack Kilby of Texas Instruments independently create the first integrated

circuit (IC) (Moschovitis et al 1999, Braun and Macdonald 1982). The IC is a seminal moment in

computing history, because it allows the integration of multiple transistors on a single piece of silicon.

A single silicon chip was able to contain a room full of computing power on a single chip. In other
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words, the basic hardwired programming structures that had taken up a room in the early ENIAC could

now be fit in a desktop calculator.

The ability to miniaturize computing opened the door to wide-scale application of computing power

outside of the traditional government and private sector applications. Even more important, Moore’s

Law – named after Gordon Moore, one of the founders of Intel – states that computing power, that is

the number of transistors able to be placed on a single semiconductor, follows a linear trend which

doubles every two years (Moschovitis et al 1999). This means that both miniaturization and computing

power have had constant and predictable development trajectories over the last thirty years, with

projects previously unfeasible because of size or cost concerns becoming possible within a short time

frame.

The ultimate development in this process was the creation of the microprocessor in 1971 by Intel. The

microprocessor combined all the elements for computation on one single chip. Rather than have

multiple chips each dedicated to a “hard coded” process, the microprocessor enabled one chip to serve

multiple functions (Braun and Macdonald 1982). As but one example of the implications of this

transformation in size and computing power, calculators moved from a low-volume high-end business

product composed of dozens of chips (many customized) to a mass market educational and home

product composed of one single IC (Campbell-Kelly and Aspry 1996). After 150 years, the

development of the IC finally brought Babbage’s basic conception of a multipurpose programmable

machine computer to society for the first time.

vi The Development of the ÒInformation MachineÓ

The technology transformation provided by the IC pushed the creation of a multi-purpose information

machine that could process, manipulate and most importantly create information in multiple formats.

This trend would progress rapidly with the widespread development of personal computers and the

increasing dominance of software as a distinct driver of technological change within the computing

industry. Again, IBM played a key role in this development. Like many dominant firms throughout IT

history, IBM’s corporate strategic decisions have shaped the development of the computer industry

even more than its technological advances.  IBM was at the center of two such strategic decisions

during the 1960’s (Campbell-Kelly and Aspry 1996).
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First, the introduction in 1964 of the IBM System/360was the first computer that enabled software

programs written for one computer to be used with all other computers within the system family. For

the first time, software was scalable as an organization’s computer needs expanded, with software

becoming transferable to higher levels of computing power. Changing hardware no longer entailed the

creation of entirely new software products or the complete transformation of existing systems. This

dramatically reduced the cost and maintenance of software development, and let software developers

begin to focus on the expansion and reuse of existing software programs for the first time, even if still

limited to a specific hardware architecture.

More importantly it opened the possibility of separating hardware and software purchase decisions, if

hardware and software development ever became unbundled. This is exactly what happened, and

signaled IBM’s second industry changing strategic decision. In 1969/1970 IBM decided to unbundle

its software and hardware sales, opening the market for independent software producers to compete to

supply the nearly 70% of the market IBM controlled.
4
 The combination of these two events led to the

development of a software industry focused on providing previously bundled services and products,

especially the initial development of a packaged software sector.

The simultaneous miniaturization of ICs and the formation of an independent software sector

converged to fundamentally reorganize the computer industry in 1977 with the release of the Apple II,

the world’s first true personal computer. The basic form of the PC, as it came to be structured in the

Apple II and the industry overall, was created at Xerox PARC in the early 1970’s, then slowly brought

to market throughout the next decade (Moschovitis et al 1999). The graphical user interface (GUI), the

“mouse”, wysiwig visualization (what you see is what you get), and the Ethernet were all developed

within the Palo Alto lab, but later commercialized by other companies throughout Silicon Valley. The

pattern established by the introduction of the PC became characteristic of the industry overall. Entire

new industries would develop virtually overnight, spurred by innovation in private or university labs,

that were commercialized by new firms that quickly challenged existing dominant players and business

models (Campbell-Kelly and Aspry 1996).

4 There are competing versions of why IBM chose to unbundle software and hardware. The two most predominate
explanations focus on pending anti-trust action by the Federal government and the internal cost of developing full hardware
and software systems. Given the cost of developing System 360, a project that almost bankrupt IBM, the second seems
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 The PC also signaled the emergence of software as a key industry driver (Hoch et al 2000, Steinmuller

1996). The market for software, and prepackaged solutions in particular, has slowly come to shape the

development of the computer industry overall
5
. From the introduction of the personal computer in the

mid-1970’s forward, the market for packaged software has increasingly expanded. Even if hardware

came with proprietary software operating systems, such as the Apple OS, IBM’s OS/2 or MS-DOS,

independent software vendors provided additional programs to add functionality to these systems.

Increasingly through the early 1980’s, these packaged software products became essential determinants

of hardware acceptance in the market. Programs such as Microsoft Word, VisiCalc, Lotus 123, and

PageMaker established whole new industries and led to the promotion of the specific hardware systems

they ran on
6
.

By the early 1990’s, the commodification of computing power and memory beyond basic user needs

led to software being determinate in the range of uses and possibility of computing overall. The trend

has continued with recent surveys indicating that PC owners have on average over 137 software titles

on their home PCs (WSJ, 10-Aug-00). The computer has truly become an “information machine”, able

to perform multiple functions of processing and generating information.

Additionally, while customized software solutions are still prevalent for large systems, the expansion

of packaged software has slowly continued to expand throughout the industry. By the early 1990’s, the

expansion of computing in general, and the internet in particular, gave rise to packaged software

solutions based in Enterprise Resource Planning, databases and internet communications for large

scale, as opposed to individual, users for the first time. Many of these programs took the shape of

packaged systems that were sold broadly but that could be customized to individual user needs. The

full direction of the industry since IBM’s initial decision to unbundle software and hardware is

demonstrated by the transformation of business machine or computer makers into predominantly

software companies. Firms like Oracle, Sun Microsystems and IBM are fully or in large part business

more plausible. IBM, and other companies, considered hardware to be the driving force of the computer industry. Arguably,
this has been an accurate understanding of the computer industry overall until the mid-1990s.
5 Ironically, in many ways Apple’s business model was a replication of the hardware/software integration model that IBM
had abandoned in the 1960’s on a PC scale. And even Apple’s success was based on its proprietary software operating
system and unique software applications and not unique hardware offerings or manufacturing ability.
6 The best example of this is the strong belief that both VisiCalc and PageMaker, and to a lesser degree Microsoft Word,
were crucial to establishing the early dominance of Apple. In some markets, publishing for example, this early dominance
has never been lost.
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software companies (Hoch et al 2000:27). The recent rise of firms specializing in B2B Internet

commerce software solutions are merely inheritors of this overall trend.

The essential aspect of the rise of an independent software industry was the movement away from

fixed, preprogrammed solutions of either systems or ICs. The flexibility and versatility that software

enabled became the key aspect of all computer based systems. As ICs have been embedded in an ever-

wider range of products, this trend has continuously moved into the most miniature of products, with

everything from wristwatches to cell phones containing basic software code in place of hardwired IC

solutions. Software has increasingly come to dominate the direction of computer technology, and

essentially signifies the transformation of the computer industry to what is now called information

technology. The other significant computing technology trend from the 1960’s, the internet, has only

further expanded on this basic pattern of embedded computing power, given flexibility and dynamism

by software, to create ever greater abilities to process and generate information in multiple forms.

vii Information Technology Fully Formed: The ÒInternetÓ

In the late 1960’s, prior to the development of a versatile and affordable “information machine” in the

form of the PC, computing systems were complex, dedicated, customized and expensive. Leading

research institutes throughout the United States all had proprietary systems focused on specific

computational problems. The inability to share information or to inexpensively recreate such systems

pushed the Defense Advanced Research Project Agency (DARPA) to fund research into creating a

system to link the computing centers and allow researchers to share information (Guice 1997). The

project became to be known as the ARPAnet, a dedicated communications systems linking key

research institutes throughout the US. Built by a combined team of DARPA officials and Bolt,

Beranek and Newman (BBN) of Cambridge, Massachusetts, the original ARPAnet when online in

December 1969 connecting UCLA, UCSB, SRI International and the University of Utah (Hafner and

Lyon 1996).

The basic architecture was simple in design, but complex in reality. Because each computer system

had its own unique software and hardware systems, a generalized interface needed to be designed to

allow each system to connect to the network. The solution was a dedicated system of Interface

Message Processors (IMPs or the equivalent of today’s servers) that had the dedicated role of handling
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connections and managing information flows within the network. In essence, the net was a dedicated

communications loop (like a ring road around a city) with each computing center having a dedicated

link (on ramp). This basic architecture continues to structure all network designs no matter how large

or small. The other basic but crucial design choice included designing the network as a packet-

switching architecture (Hafner and Lyon 1996). The basic concept being to break down information

into pieces (or packets) that can be individually transmitted across the network. To continue the

metaphor above, packets are like cars on the ring road, individuals broken up into multiple units, rather

than consolidated into one vehicle and route such as on a train.

The network faced two crucial problems that packet switching solved. First, without packets,

transmission between two points on the network would have to be on dedicated lines. In this way, if

UCLA and UCSB were using the network any other users would be locked out until finished. This is

much the same as when two people are using a telephone. Even if no information is being transmitted,

the circuit is dedicated to that specific connection. This was contradictory to the very notion of creating

a flexible, inexpensive and efficient means of connecting multiple systems. Packets allowed for

multiple users to transmit information simultaneously, with packets from different users flowing

through the network to be reassembled at their destination. “Dead” or empty spaces in transmission

from one system could be filled by packets from another, creating a constant flow of information in the

network.

The second problem focused on the reliability of the network. Loss of data or the cancellation of

connections presented a huge problem for a network seeking reliability and robustness. The solution,

again made possible by the concept of packets, was the “store and forward” concept. The IMPs would

receive packets of information, store them, then forward them only when the connection was open and

previous packets in the same sequence had been received correctly. This enabled the network to be

incredibly flexible and robust. Each individual packet could be routed on the most efficient path to its

destination, and if packets could not be delivered, they would be held until the receiving system was

ready.

This basic structure, and its initial success, established the overall framework in which all networks

have been developed. The lessons and innovations in this basic design have merged with the software

and PC trends outlined above to move networking to an ever-greater number of users and applications.
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Two of the most significant breakthroughs for the expansion of networking were the creation of

Ethernet and the TCP/IC protocol (Moschovitis et al 1999), both algorithms for managing information

flows within and between networks. The Ethernet was invented by Bob Metcalfe at Xerox PARC in

1973. The revolutionary aspect of Ethernet, much like the ARPAnet and ALOHAnet that it modeled,

was the ability to create local area networks (LAN) where multiple users could simultaneously access

resources from different locations. Ethernet signified the end of time-share computing as a model for

organizing computer resources, and assured that the nodes in the ARPAnet could be extended via

intranets to multiple users at each University. In other words, individuals could for the first time access

a network of computing power, both locally (via the Ethernet) and nationally (via a specific node's

connection to the ARPAnet).

The second revolutionary transformation was the concept of connecting networks themselves, that is

creating internets that connected individual networks into workable wholes. The basic features of

transmission control protocol (TCP) were outlined by Vint Cerf and Bob Kahn in 1974. TCP simply

was the creation of the architecture and language crucial to building a “network of networks”. The

basic function of TCP is that it establishes a common language at “gateways” between networks

through which information can be exchanged and forwarded to their ultimate destination. In 1974, the

power of TCP was demonstrated by the successful sending of a message between the three technically

distinct packet-radio network, satellite network and the ARPAnet. The successful completion of the

transmission outlined the feasibility of internetworks, and was made even more robust with the

addition of an internet protocol (the IP in TCP/IP) in 1978 to handle the routing of messages over

multiple networks. This opened for the first time the possibility of any user to access the computing

power of any network in the world.

These basic developments created the environment in which, as PCs became ever more present,

individuals increasingly began to share information and communicate with ever-wider audiences of

users. By the end of the 1980’s, the vast majority of scientists and researchers, as well as many

corporate users in the US and around the world were active users of both intra- and inter- nets.

ARPAnet spawned numerous other networks for either specific military or science use, as well as the

creation of private commercial networks (Guice 1997, Hafner and Lyon 1996). Contrary to the original

intention of the network, the main push behind the interest in the internet was the use of email

programs, and not the exchange of research or sharing of computer resources. The transformation of
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the internet into a generalized global and mass phenomenon occurred with the creation of HTTP and

the Internet “browser” in the early 1990’s.

Up until the creation of hypertext and internet addressing, sharing information through the networks

was complicated by the lack of a common language for information exchange. The variety of computer

systems, while having a common language in TCP in which to exchange information or commands,

prevented the actual reading of information by the receiving computer if some incompatibility existed

between the two systems. Just as what happens when someone sends a WordPerfect document to a

computer that only has Microsoft Word. In early 1991, Tim Berners-Lee and a group of CERN

programmers created three essential tools to overcome these limitations: Hypertext Transfer Protocol

(HTTP) that allows for a common platform for the exchange of digital information between computer

systems, Hypertext Markup Language (HTML) as the basic programming language for creating

documents for HTTP exchange, and the Universal Resource Locator (URL) that allowed for universal

internet addresses to be assigned to specific information locations. They called their system the World

Wide Web (Moschovitis et al 1999). This established the framework in which an individual could

connect to any computer network in the world and communicate in an identical programming language

that would allow for the exchange of information.

The architecture existed for an expanded use of the internet, but the actual opening up of the network

depended on creating a more accessible interface for individual computer users different than the

command driven text model that dominated computing at the time. The creation of the Mosaic browser

software interface, by Marc Andreessen and Eric Bina at the University of Illinois in 1993, gave

networks and internets a GUI interface similar to what people had come to expect in their PCs.  This

was the final piece of the puzzle that caused the hyper-expansion of the “Internet” as it exists today.

Finally, 24 years after the launch of the ARPAnet, individuals had the ability to connect to a network

of computers, create and exchange text and graphical information, all through a simple graphical

interface. And just like the early networks, email (in addition to religion and sex) helped propel the

network from a relatively closed network of scientists and researchers into a mass phenomenon and

industry in its own right.
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viii Post-PC Era

The completion of the pieces of the “net” puzzle cemented the final end of computing as it has been

structured to the present. From a longer historical point of view, the basic pattern of ever decreasing

computer size with increasing connectivity and ease of use has been a constant in the industry's

development from Babbage’s time to the present. However, computers, that is the basic box through

which we manipulate information, are no longer stand-alone machines. Like the original goal behind

the ARPAnet, the network is now the computer. This is not to argue that PCs will quickly fade from

existence, but rather to recognize that both the long term and short term trends keep moving

technology away from stand-alone computing towards information handling and manipulation within a

networked environment.

This movement has followed the embedding of ICs in ever-greater quantities and an every wider

number of products. Wireless computer based networking is already a reality, but wireless appliance

driven connectivity is just unfolding. The increasing blurring of computation and the natural sciences

presents the possibility of universal connectivity of both biological and created systems. There is

extensive research trying to embed binary code on DNA, creating biological computational structures.

This has been paralleled by attempts to use basic atomic structures as binary circuits (Wired, August

2000). Both of these are based in an increasing move towards nanotechnology, that is cell or atomic

level creation of “information machines.” These moves signify the increasing blurring of once distinct

disciplines and definitions of IT. TCP/IP, from its very first test, has been designed to connect multiple

and differential networks. Over the past decade, TCP/IP has been slowly extended to ever more

devices, ranging from cell phones to kitchen appliances (Nijhawan 2000). The new bio-computing

models will come with such connectivity built in. This means that IT will increasingly be embedded

networked computing, with an ever-greater range and complexity of access and connection linking

natural and built environments.

ix Software is IT: The Bricklayers of the Networked Society

The basic patterns outlined in the historic development of information technology still structure the

industry today. Beginning with the insight into binary systems and algorithmic logic, which combined

with the desire to have machines perform tasks too complex or too critical for humans, IT has

developed into a basic medium for the production, manipulation and dissemination of information in
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all forms. This is paralleled by a tremendous push to digitalize human knowledge, that is place it in

binary and algorithmic form, in order to adapt it to this basic IT structure. The desire for flexibility that

has characterized the development of IT from the beginning is most easily achieved through software

tools and methods. The evolution of IT to the embedded networked computing structure developing

now is based on the layering of level upon level of algorithms and digital information, some hardwired

and some soft. What is essential to signal, however, is that the process of both building algorithms and

digitalizing information is increasingly coming to be dominated by software rather than hardware

structures
7
. This is clearly seen in the history above, but it is perhaps little understood because of the

relative recent development of software as a stand-alone industry, product and process. Not only are

computers increasingly dependent on software, but the Internet itself — with algorithms embedded in

software form for TCP/IP, web browsers, network routing and management, Java scripts, databases

and commerce to name only a few — is a reflection of the dominance of software as the central

method for digitalizing algorithms.

Summarizing the trends that have shaped the development of IT over the last 300 years, IT can be

defined as:

� The expansion of binary logic and architectures to dominate all IT forms, giving rise to the

mathematical based digital mediums of information exchange.

� The slow transformation of information from analog to digital and algorithmic forms.

� The increasing dominance of algorithms to structure all aspects of information technology, from

hardware to software to biology to media. The history of IT, especially for the last sixty years has

been the layering of algorithm upon algorithm to create complex interconnected information

networks and machines.

� A constant miniaturization of processing power into smaller and smaller components.

� The increasing dominance of software over hardware as the optimal solution for understanding,

developing and implementing information technology.

� The pervasive interconnectedness of all IT systems, increasingly wireless and embedded in both

organic and inorganic models.

� The public dissemination of intellectual property linked to the implementation of this overall

architecture.

It seems extremely probably that these basic patterns will structure the development of IT into the

future. The widespread existence of algorithms in social and natural processes creates a huge catalog of

patterns that form a natural bridge between IT and society. This bridge is increasingly being crossed,

7 Hardware, like software, is structured around algorithmic codes that determine the basic circuitry of an IC. In this way,
hardware and software both follow the basic structures of binary, algorithmic logic. The real choice is between whether
such patterns are “hardwired”, with linked tradeoffs between flexibility, reliability, adaptability and cost. Software
increasingly exceeds hardware in each of these areas.
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and the lines being blurred, between what is beyond the reach of IT to understand, and thus transform

and manipulate (Kurzweil 1999). This means that software, and the logics embedded within them, will

continue to dominate IT into the future. In essence, if one aspect of the global environment is

connectivity through IT, then software are the bricks and programmers the bricklayers of the

networked society. As such, understanding how social processes are defined and transformed into

digital logics, that is how the architecture of IT is defined and built, becomes essential to understanding

the structures and impacts of IT in the economy and society.

IV Software as Process, Product and Industry: Domain Knowledge,
Embedded Information and Softwareism

If software is the brick and software programmers the bricklayers than software code is the raw

material of information technology. Code is the basic language in which processes are translated into

the binary code that can be processed by computers. The structure of creating software code follows a

very basic pattern. Any process, such as typing words on a page or the interaction of two computers

over the internet, is defined in high-level language, that is on a macro-level of the basic operational

procedures and outcomes. This is then detailed in a low-level design, a design that outlines the specific

structure of the process. This design is then translated into the actual code by a programmer. At either

the low-level design or coding phase the actual process is placed into an algorithmic form, that is the

logical mathematical sequence of events that will produce a desired outcome. Below is one of the most

common examples of code at this level, the initial header from an HTML document, that is the basic

code interpreted by a web browser to specify how text and images should appear on the computer.

<html>

        <head>

                <meta http-equiv="content-type" content="text/html;charset=iso-8859-1">

                <meta name="generator" content="Adobe GoLive 4">

                <title>Center for Global, International &amp; Regional Studies</title>

                <script language="JavaScript" name="pop_up_once">

This code is then compiled, meaning translated from one of any number of programming languages

that humans understand into “machine code” or the binary form composed of zeros and ones (e.g.

0010100011) that computers can understand. At this point, this is software and no longer code. It is an

actual program that can be replicated and distributed as a complete product. It is entirely possible, in
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fact almost guaranteed, that the software will not produce the desired results as specified in the initial

high-level design. Typing “A” may produce “a” or even worse “Z”, computers may be able to connect

but unable to transfer data (Stephenson 1999). Such problems are commonly referred to as bugs, and

the last stage of software development is removing these problems before the product is finally

released. Bugs, however, can stem from a number of problems along the whole development process,

from basic flaws in the high-level design, mis-specifications in the low-level design, faulty algorithms,

or simply mis-coding or even just mis-typing (Kohanski 1998). As such “debugging” can be a time

consuming and demanding process that is a combination of luck, skill, experience and sheer effort.

Once debugged, however, the software is then recompiled and finally complete.

What is important to clarify is that the algorithmic logic and the software development process

structure how information becomes digitalized (Negroponte 1995, Mitchell 1998). The coding of

algorithms, whether in a fixed form as in hardware or flexible as in software, is an essential feature of

IT. Software, because of its flexibility and role in structuring the layers of protocols that shape the

Internet, is increasingly the chosen form for the application of coded knowledge. In the case of

algorithmic logic, software is essentially embodied social knowledge. Algorithms and thus software

can only model those processes that are well enough understood to be translated into a logical

sequence of procedures and outcomes. The greater the translation from analog to digital procedures,

the greater the knowledge embedded in software and information technology. In this way, it has been

argued that software is not a product to be produced, but a process of storing knowledge. Software –

like DNA, the human brain, hardware and books – is just the most recent medium for knowledge

storage (Armour, 2000).

However, the unique feature of software, as compared to these other mediums of knowledge is its

persistency, update speed, deliberate flexibility, and applicability to action (Armour, 2000). Software

has each of these qualities that are either absent or less dynamic in the case of the other mediums.

More importantly, and perhaps the greatest strength of software, is its ability to emulate each of these

other mediums of knowledge. For example, software can emulate the best features of books, and is

increasingly replacing hardware, especially at the IC level, in many cases
8
. It is this basic structure that

gives software its unique role in IT. It is also one of its central limitations. Software can only emulate

8
The case of Transmeta, which has created a software structured IC designed specifically for mobile application, is an ideal

example of this (Wired, July 2000).
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what is understood in algorithmic form. The increasing demands made of software as the processes

that it must model increase in complexity limit both its reliability and application.

The other central limit of software, and thus information technology, is the very process of software

development itself. The process of software development outlined above is entirely accurate. However

the essential feature that is not conveyed is that this development process strongly resists

rationalization. The natural process of developing software, precisely because it embodies unique

processes and knowledge, tends to be arbitrary and crafted, rather than defined and manufactured

(Raymond 1999, Stephenson 1999, Kohanski 1998). If two processes are identical than the exact same

software program will suffice for both. However, the slightest difference in structure or desired

outcome can have a dramatic impact on both the software design and the algorithm linked to it. Even

more essential is that there may actually be more than one algorithm for producing a desired outcome.

In some cases there are defined answers to questions of efficiency and structure, but in others it is

extremely difficult to rank the differences in logical approaches. And what determines these

differences in logical approach to begin with? Do culture or social structure matter, and in what way

and to what degree?

Even more challenging is that many of the processes being emulated, such as DNA or ecosystems, are

beyond the ability of humans to fully understand, ironically, even with the help of computerized

information machines. This lack of basic understanding is complicated by the structure of software

design that in itself creates errors and mistakes. As such, software is at the center of IT, which

increasingly is the essential medium for most forms of information flow and manipulation, from

natural to social to economic structures. However, software is also inherently a social product – it is

limited and defined by both the social models that determine its algorithms as well as the inherently

craft-structure of the software development process itself (Agre and Schuler 1997).

Overall, software processes and architectures will increasingly influence the development and

organization of many of the basic social structures being constructed within an information dominated

society as they become codified into digital forms. In this way, “code is law” (Williams 1998), that is

the fundamental pattern that structures spatial and temporal, and thus social and economic,

interactions. The basic development structure, combined with the congealed knowledge inherent in
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software, distinctly influence the development of the IT industry, and IT is increasingly influencing

industry globalization patterns, debates over intellectual property, proprietary versus open-source

development models, basic public safety issues, and regional development strategies (Lessig 1999).

Understanding software as both embodied social knowledge (Agre and Schuler 1997) and as a

fundamental production process within society, directly helps frame an understanding of what the

social and economic implications of IT may be. Such an understanding requires considering software

as a process, product and industry.

i Defining Software Development

a Software Development Processes

Software has a fundamentally different development process than that of high-technology hardware

processes in particular or industrial manufacturing processes in general. Software is essentially a pure

digital product. Operating under different production economies than manufacturing, the entire

software production process, and virtually all the value added, occurs prior to any final production,

assembly or packaging. The value-added comes directly from developing the algorithms that model

real processes, and not as commonly thought translating these algorithms into code. There are,

theoretically, no overriding geographic or economic constraints (transportation, capital or natural

resources) on its production or location.

Metaphorically it is helpful, if limited, to think through software development processes in terms of an

academic model. Universities agglomerate highly trained professionals around specific “product” areas

producing unique works that are often highly personalized even though they are constructed within

broad disciplinary parameters. Individual “products” are designed, created and evaluated by the same

set of individuals throughout the process. The vast majority of the value-added is located in this

development process, with minor value-added contained in publishing and distribution. This

development process theoretically can take place in any geographic location. However, communication

between producers is easier within a specific geographic location, usually within the same institution.

The physical closeness also produces an environment of “innovation” or “discovery”, where ideas are

quickly critiqued, shared and blended together. Furthermore, increasing the number of producers

increases the need for communication and often lengthens the development time considerably,

especially as the spatial separation between producers increases.  The final product is distributed on the

academic “market”, where it is often harshly evaluated for having fundamental flaws that should have
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been corrected through better design or writing or pre-shipment evaluation. This often instigates a

revised version of the initial product that incorporates new features while repairing old flaws.

However in academia and software alike, any problem or area of focus is subject to myriad forms of

analysis and interpretation depending on an individual academic’s training, perceptions, beliefs,

environment and incentives, even if the general conclusions reached are similar across divisions.

Evaluation of work product and individual performance is extremely complex mixing both quantitative

and qualitative metrics, and generalized criterion are difficult to determine. Quantity, quality, style and

logic are open to constant interpretation and emphasis depending on the nature of the problem

considered. Experience and individual performance over time is often far more important than training

or environment in determining quality work. At the same time, though quality clearly differs between

academics and universities, the general cost of training an academic or creating a university is roughly

equivalent. Automation and rationalization of the process are fundamentally impossible given the

complexities of the problems considered and the variation in performance of the producers. In times of

increasing demand, production is essentially increased through the expansion of the system extensively

by creating new universities and academics. If local markets are unable to provide the needed labor

force at the expected quality, international markets and networks are tapped to increase supply.

This analysis, while stylized, characterizes the general nature of software development well.  Software,

like academics, is a labor intensive, highly skilled interpretive field where credentials only partial

signal quality work and future capability. Software is often difficult to develop, especially as the ideas

being modeled increase in complexity. The difficulties increase as both the number of producers and

distance increases (Brooks 1995). Because of this, software is often incomplete, unsatisfactory or filled

with flaws. Many software projects, up to 80% are never even completed (Hoch et al 2000), but remain

half finished, never moving beyond abstract design. Even completed projects are inherently structured

by the domain knowledge and biases of their chief designers. This unique development process in turn

structures the geographic and organizational forms that both the software industry and academia take.

 Overall, this means that software is characterized by two key factors: the demand for skilled labor and

communication at all levels of the production process. First, programming, referring generally to the

broad process of designing, coding and testing software programs, is a labor-intensive process

requiring specialized skills. Labor must be specifically trained in languages (i.e. HTML, Java, C++,
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Perl) and concepts of software development (i.e. software architectures, mathematical structures).

Given these unique prerequisites, other engineering skills can not be easily transferred to software

production in time of increasing demand. While it is possible to use the term software engineering,

which I will use to refer to the overall multistage process of software development, it is not

engineering in the classical sense. Programmers do use rules of syntax and semantics, but like all

languages these vary over time and space. There are no universal physical laws to define all software

development. This also means that it is difficult to quantify software processes and products (and thus

people) against a universal standard of quality and efficiency. Software, invariably, is a very human

centered, almost artistic, process. It is best described as a craft, and Gilb (1996) uses the term

“softcrafters” to describe what software professionals do. Like other forms of knowledge work that

exist within dynamic environments, the best software development is a skilled process that invariably

requires contingent decision making and tacit knowledge that is by definition unquantifiable. This is

even more extreme in the case of software exactly because the models being created are from diverse

fields that often model social, not natural, processes.

Second, the basic complexity of software design leads to a high demand for communication at all

levels of the development process. The need for communication is broader than merely having

adequate telecommunications infrastructure. The mapping of real world processes into algorithmic

patterns that contain all possible contingencies is fundamentally structured by the assumptions that

each designer, programmer and end-user bring to a software product. This means that communication

between end-users and programmers must be both highly detailed and interactive at all levels of the

production process. The need for communication also increases with the complexity of the system

being modeled, as more and more contingencies are built into the system.

As complex systems are broken up into manageable production units with greater numbers of

programmers, the lines of communication between each individual unit and programmer increases

exponentially (Brooks1974). This is one of the fundamental contradictions of software development.

Larger, more complex software products require corresponding increases in the amount of direct labor

needed for their production. Yet, the increasing number of individuals involved in a project (and the

increasing number of unique assumptions brought by them) actually decreases the efficiency of

software production as the lines of communication increase. These complexities are solved through

constant interaction between designers, programmers and end-users. It should be obvious that software
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development is at its most coherent when each of these elements is combined within a single person.

As software products increase in size and complexity, from individual to team to firm, the

communications transaction costs increase exponentially.

These two aspects, the need for high quality labor and constant interaction, are consistent throughout

the software production process: from initial design to coding to testing to integration. This has

resulted in geographically and organizationally centralized software production, as firms have sought

to capture both interaction and knowledge within organizations. Software production has tended to

locate in regions with large pools of qualified labor, or have tended to agglomerate large quantities of

skilled labor that then has induced new software firms to locate in that region (Hoch et al 2000). Firms

have also tended to keep the entire production process in-house, due to both the proprietary nature of

software development and the need for constant interaction over the production life cycle (Cusumano

and Selby 1995). To better understand the spatial and organizational structures within the software

industry, as well as the constraints on its globalization through a more rationalized division of labor, it

is important to analyze the history of attempts to rationalize the software development process.

b Software Rationalization Considered

As outlined above, software development is composed, simplistically, of the following stages: high

level design, low level design, code, unit test, system test, beta test (most recently), and final

deployment (Jalote 1997). Classic software development processes entailed the involvement of the

same set of programmers at each one of these stages for small projects. As projects grew in size and

complexity, project leaders would meet with the end-user and design the overall system and then create

detailed design specifications. Coding, that is implementation of the specifications, was handed off to

teams of programmers that were responsibly for coding and even creating the detailed algorithms,

testing the individual units and merging the units for system test. Debugging, and even testing, was a

constant process done internally by the programmers themselves. The process was manageable, but not

rationalized or systemized. No quantifiable data on time, cost, quality or productivity were available,

and as such the process was not repeatable or improveable (Gibbs 1994).  Software production has

been and continues to be notorious for cost overruns, time to market delays and severe quality

problems. All problems related to the craft nature of the production process.
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The structural problems of the development process intensified as software was scaled up to meet

increasingly complex demands. Problem areas could not be identified and transferred to new projects

or other aspects of an existing one. Best practices were locked away in programmers’ minds, and as

such locked into specific departments or projects in firms and not disseminated to the industry at large.

Delays in project completion, tremendous cost overruns (orders of magnitude greater than original

budgets), poor quality software and seemingly low productivity (though based only on anecdotal

evidence) created intense pressures within the industry as it expanded. By the late 1960’s both private

and public sector entities began to discuss what became known as the “software crisis”. The existing

methods of software production were no longer considered adequate to meet the needs of future

systems as they grew in complexity and size. In 1968, the NATO Scientific Council convened a

meeting of leading software professionals and industry leaders in order to formulate a plan of action to

address the crisis (Gibbs 1994). The experts arrived at no agreement on a course of action, but they did

create the concept of software engineering as the ultimate goal of any process rationalization.

It is telling that thirty years later, people are still debating the continuing software crisis, and that

software engineering is at best a course, but never a degree program, at universities throughout the

world. Software development continues to be a “labor-intensive, intellectually complex, and costly

activity in which good management and communication count for much more than technology”

(Fenton et al 1994:6). Software is still expensive to develop, usually late and often unreliable and

subject to constant change and rework.  By the mid-1980’s, software was considered to be 80% of the

cost of new computer systems (OECD 1998a). Seventy-five percent of that cost was not development

but maintenance (that is the debugging, upgrades and integration with other software products) of the

software after installation (Jalote 1997:3).

Software development has continually resisted the creation of a repeatable, quantifiable and

improvable process. A series of “magic bullets” have been presented over the years that have promised

to radically alter the nature of the production process. None have succeeded (Brooks1987). Structured

design and programming have been attempted. Process models like the Waterfall (Pressman:1997),

Spiral (Boehm:1997), Software Life-Cycle (Davis 1997), personal process model (Ferguson et

al:1997) and open source (Raymond:1998) have been implemented. New programming languages such

as C++ that are based in object oriented programming have been used to maximize software reuse and

maintenance. Software metrics have been created that attempt to quantify and map the software
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process based on TQM principles (Grady:1994). Cost and quality models such as COCOMO

(Legg:1997) and the Capability Maturity Model (Herbsleb et al:1997) have been developed. No perfect

or even adequate solution to the basic concerns of increasing product complexity, low quality and

weak productivity growth has been found.
9

The most successful software development models over the last thirty years have essentially dealt with

the demands on software production through an emphasis on extensive rather intensive growth (Brooks

1995, Cusumano and Selby 1995, Raymond 1999), that is through large increases in the number of

software professionals rather than dramatic increases in process productivity through rationalization.

Both the structure of the industry and the increasing demand for software labor reflect this process.

Firms throughout the economy have outsourced the full software development process in order to

capture expertise and scale that were impossible to provide at the needed cost and quality levels

internally. This has given rise to software service firms and packaged software products that have

sought to maximize scarce skills and products by providing re-usable solutions across sectors of the

economy. Such trends have failed to match the increase in demand for software, and merely shifted the

need for labor to a different sector of the software industry.

This has also not fundamentally changed the need for constant communication at all levels of the

software process, especially as the scale and complexity of software products have increased. The open

source movement – chiefly around the Linux OS, Apache and SendMail programs but expanding to

other systems – relies on distributed networks of programmers who write and debug code based on ties

of community and ideology and not financial compensation (Raymond 1999).
10

 Software development

has also moved to the standard practice of beta-testing, the shipping of trial versions of software to

groups of users, usually at no cost, prior to final product shipment. One of Microsoft’s chief strengths,

9
 A short example of the weakness of rationalization attempts is instructive. The capability maturity model is a five stage

program designed to assess an organization’s software development process. Few organizations have gone through the

expensive and time-consuming process (a process that often takes months and an organization’s full attention and

resources) of evaluation and ranking. Fewer still have attained the highest level, level five (“optimized”). However, it is

important to note that level three in the rankings (“defined”) is equivalent to ISO 9000 standards, which many firms have

actually accomplished. Models such as the CMM have consistently failed both because they fail to understand the nature of

competition under current conditions and are theoretically, not practically or experimentally, derived. Perhaps more

importantly, the individual and diverse nature of software development makes such standardized solutions at worst widely

inapplicable throughout the industry, or at best only partially successful for a limited number of firms producing specific

products (i.e. military contractors producing complex, mission-critical systems), where cost is not a concern.
10 The open source movement provides an interesting organizational counterpoint to the geographic and firm
agglomerations that have characterized the for-profit sector of the industry. It is clearly one, if not the only development,
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and one that compensates for the firm’s weaknesses in the software development process, is its

extensive network of beta-testers. Windows 95 was shipped to 400,000 beta-testers prior to final

release. Such testing has been known to detect  25% of all bugs in a system (Cusumano and Selby:309-

313). However, as stated above, such extensive solutions generally only increase the complexity of the

development process with no relative increases in productivity or quality given the increases in

complexity and size of software products. Even the most celebrated success stories, specifically

Microsoft and the open-source movement, rely on large amounts of unpaid labor to overcome the

fundamental inefficiencies and bottlenecks of the software process itself. As such, calculating the true

costs and productivity of software development is a much more complex task than traditional

economic analysis would imply.

Overall, there have been incremental improvements in software products and processes over the last

thirty years. However, it is important to understand that these improvements have in large measure

been extensive, that is labor intensive based, rather than through productivity increases derived from

process rationalization. Furthermore, even these improvements have failed to keep pace with the

complexity and size of the software programs demanded by users. A demand that has been exacerbated

by the increasing embedding of IT in an ever greater aspects of society, entailing the expansion of

software into entirely new areas of domain-knowledge. Improvements in process quality, productivity

and management have failed to match the increasing demand, size and complexity for both customized

and packaged software. At the same time, the full utilization of the existing software labor pool within

regions and nations, most importantly the United States, has pushed a spatial and organizational

reorganization of the industry as it searches for new sources of labor (Hoch et al 2000).

ii The Impact of Software and Software Practice in an Information Society

To understand the impact of software and software development models, it is essential to demonstrate

the role of software within the global environment. There are three ways to measure the impact of

software: the size of the global market and industry, dependence on software driven systems, and the

creation of unique practices that would be impossible without software dominated IT (Hoch et al

2000).

that could alter the direction and structure of the industry in the near future. However, open-source software still does not
solve the fundamental problem of an extensive based development process that limits a quantifiable, rational process.



34

a The Size of the Global Market

Software is representative of new products within the information economy that are difficult to classify

using measurement tools derived from a national based industrial economy. The existence of large

custom projects, in-house software development, differences in national accounts and definitions of

software, confusion in defining software as a service or product, the development of software outside

the formal IT industry, and global software labor processes have all made accurately describing the

industry development difficult.
11

  However, a rough consensus of the global industry and market can

be drawn as follows:

• In 1998, the global market for software products and services was approximately 470 billion

dollars.

• Of this total, customized software was 41.5%, prepackaged software was 36.2%, integrated

system design was 12.3%, and 10% was software services.

• Since 1985, sales have been growing at 15.9% CAGR.

• The global market is expected to exceed 1.7 trillion dollars by 2008.

• The US share of the global market and production is approximately 50%.

• In 1998, world direct software employment was estimated at 2 million.

• World direct software employment is forecast to grow to approximately 3.6 million by 2008.

• In the United States, direct software employment was 806,900 people in 1998.

• United States direct employment is forecast to grow to 1.3 million by 2008.

• In the United States, 72% of software workers are employed outside the formal software sector.

• By 1995, software packages and services had exceeded the value of hardware within the IT

market.

(National Software Alliance 1998, Business Software Alliance 1999, OECD 1998a)

The US will continue to form the center of global software production and sales well into the next

decade. Customized software products and services, while decreasing from a 100% share of the market

in the early 1960’s, will continue to be important with a decreasing trend. Important sectors will most

likely focus on customized services rather than software products. In other words, maintenance, repair

and customization of legacy and packaged systems will form the majority of work in this sector, as the

Y2K experience showed and as legacy systems are transferred to web compatible architectures.

Standardized solutions to general problems of network connectivity, content provision/interaction and

organizational productivity will increasingly come to focus on standardized software solutions that can

be customized to meet end-user needs.

11 The best example of this is software shipped internationally via the internet or on CD-ROM. The first transaction, if
captured at all by national accounting, is usually considered a local service and usually not taxed. The second is considered
a manufactured product with tax usually paid on the CD-ROM itself, but not the value of the software. Anecdotal examples
of the confusion brought by using industrial methods to measure a digital economy abound.
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In terms of the impact of software in the global economy, the most significant trend is the number of

software workers outside of the formally defined software sector. This indirect employment indicates

both the importance of software within the economy in general and the inability of traditional market

numbers to accurately reflect the true ubiquity of software development processes in all sectors of the

economy. In the United States, and not included in the direct employment totals from above, are over

two million individuals employed in software production and services outside of the software industry

(BSA 1999). This places global direct and indirect software employment at approximately 7 million in

1998, growing to an estimated 12.8 million by 2008.

b Software Dependent Systems

Software is increasingly replacing hardware in many mechanical and computer systems, either directly

or as firmware, that is reprogrammable ICs. The flexibility that software offers in terms of upgrading

or changing systems increasingly places software in individual systems like airplanes, automobiles,

factories, basic appliances and consumer goods, as well as complex systems like telecommunications,

financial markets, energy generation and transmission, supply logistics and national defense. The

failings of software systems have almost reached the point of urban myth, but in fact are very real. The

intense concern generated by Y2K, the Euro conversion process, the “I Love You” virus, as well as

notable software failures at new airports in Hong Kong, Kuala Lumpur and Denver have shown the

increasing embeddedness of software, and the dependence on these systems, in all aspects of society

(Ullman 1999).

A useful example of this, and one that highlights the increasing influence of software on hardware

processes, is the distinction to be made between designing (as an electrical engineer would do) and

programming (as a software engineer would do) (Gibilisco 1997). Classically, integrated circuit

engineers would design electronic circuits based on sound principles of engineering and physics.

Increasingly, however, IC design uses software and specific programming languages to code and

simulate IC designs and test them virtually (SCIP:1999).  This basic pattern of software based design

and testing is increasingly common in most industrial sectors with the extension of CAD and CAM

systems, including consumer products, automobiles, and mineral exploration. Transmeta has taken this

a step further, creating a standard IC that operates within a software shell that interacts with the overall

computer environment. This means that not only design, but also the actual operation of the IC is
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software based and dependent (San Jose Mercury News, August 8
th

, 2000). This gives Crusoe, the

Transmeta chip, the versatility and flexibility of software combined with the speed and robustness of

hardwired code (Wired, July 2000).

c Unique Software Based Practices

Clearly, there is a growing dependence on computer systems in general, and software in particular.

This is at the heart of the history that spurred IT development. However, software is increasingly at the

heart of scientific, commercial and media processes that would be impossible to replicate without

software enhanced tools. The recent mapping of the human genome is also an excellent example. The

success of Celera in completing the DNA outline prior to the government led Human Genome Project

rests on the proprietary algorithms, in the form of software run on a series of supercomputers,

developed by the firm to determine the exact sequencing of the identified individual gene segments

(Ridley 1999). Another example is the effort of the US government to promote a ban on nuclear testing

based in large part on the ability to replicate such explosions in computer generated environments.

Perhaps the simplest and most direct example of software based system is the Internet itself, which

increasingly shapes commercial (B2B processes), social (geographically distributed communities) and

media (virtual worlds) processes that would be impossible to replicate without software. As outlined

above, the very architecture of the Internet as a medium that can merge multiple technologies and tasks

would cease to exist without software.

Overall then, measured by the impact on the global economy, dependent systems and increasingly

unique practices, software is a central factor in the global environment. It also means that the inherent

limits in its development process, that is the coding of human knowledge into algorithmic forms, also

will increasingly shape social and economic processes. A programmer could design a program that is

algorithmically sound (based on the parameters the designer chooses) but which would fail when

applied in a real world situation. The Y2K bug is a classic example of this, where assumptions of the

direction and pace of technology change became embedded in the architecture of the system. Software

designs require the mapping of complex and evolving systems based on a programmer’s understanding

and assumptions about those processes. No formal and invariable laws (like the laws of physics in

engineering) exist.
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As markets merge within information technologies, the lines between software and other industries

will most likely become more blurred. The constant expansion of embedded systems, tied to the push

for ubiquitous computing and connectivity, will challenge our ability to understand the importance of

software in the economy, as such processes will be come ever more hidden. However, while the actual

economic impact may become more hidden within other sectors of the economy, software

development processes and the problems stemming from its limitations will become increasingly more

prevalent.

iii Softwareism (!?): A Working Hypothesis on the Impact of Software in the Global
Environment

With the centrality of software in the global environment, it is important to analyze the potential

impact of software in structuring organizational and institutional policies and practices. Such an

analysis needs to consider both how software products structure social practices (through the

knowledge they embody) and how software development processes frame economic activity (in terms

of how knowledge is transformed into products). In the first instance, how social practices and

knowledge are codified into software becomes a central issue for understanding social and economic

policies. Software, or IT generally, is not only an architecture that facilitates global flows (Castells

1994), but actually structures how such flows occur. Assumptions about social processes are inherently

built into the algorithms that comprise software. As software increases in importance in society, such

assumptions increasingly impact upon how social relations are structured. This in turn suggests that

software increasingly may shape the strategic and organizational choices of governments, firms and

civil society, whether conscious or not (Lessig 1999, Williams 1998).

Returning to the example of human genome project above, it is enlightening to elaborate on the chosen

business model of Celera. Rather than patenting the individual gene discoveries, as was possible,

Celera chose to distribute these results freely via the Internet (Wired, August 2000). Widespread access

to the genes was thought to promote the use of Celera’s real comparative advantage, the proprietary

algorithms for analyzing gene sequences and the accompanying database that contains such sequences.

In other words, Celera is not a biological research lab, but a company that converts biological

knowledge into binary forms that can be manipulated and analyzed. Its expertise lies in its ability to do

such analysis more rapidly and cost effectively then anyone in the world.
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At each stage of this brief outline, the impact of IT in structuring the definition, distribution and access

to knowledge is apparent. Celera through proprietary algorithms define what gene sequences are

relevant. Current understanding of the humane genome consider up to 90% of the genetic code as

“junk”, that is meaningless information (Ridley 1999). Such assumptions, true or false, are built into

the software that determines which sequences are relevant. The distribution of the information on the

Internet structures access to the information itself, both in terms of access itself and the quality of that

access. And what Celera specializes in, its competitive advantage, is not the mechanics of research, but

in the definition of how such research should be structured and then coding such research in a

proprietary software product. Examples such as this raise issues concerning not only the direction of

information technology (as articulated by Bill Joy and Lovins, Wired, August 2000), but also how IT

frames how scientific and social questions and answers are structured. Looking at software in this

manner opens up considerations of software products as embodying norms and regulations (Lessig

1999) that regulate social interactions.

Looking at software from this first aspect leads into considerations of the second important facet of

software as a production process. Because software is increasingly a central method for producing,

storing, transforming and distributing knowledge, how such processes occur frames how social

knowledge becomes embodied in actual products. In other words, software practices define how

information is produced and translated into power and profit on the “shop floor” (or cubicle) level.

From the discussion of software development processes above, it should be clear that regulating

software production is a very different proposition than regulating industrial production. Because

software comprises a very tacit, unqantified process, regulating both the inputs and outputs of that

process are extremely challenging.  In many ways, software production has an artistic and “free

speech” quality that makes regulation almost non-sensical. How can two algorithms be compared, and

what is a quality software product? Answers to such questions are inherently limited by the software

development process. Algorithms work on assumptions of how processes occur, and algorithms are

created through very distinct processes that are socially structured.

As suggested above, the software industry, whether consciously or not, recognizes this essential

characteristic of software. The organizational patterns of firms and the structuring of software

production reflects an understanding of the social basis of innovation and production. In other words,
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the vertically integrated, product centered firm — linked first to global networks of immigration and

then to distinct regional centers of software development globally — make organizational and strategic

sense when viewed through how software is produced. The increasing application of software solutions

to new areas of the economy and society imply that both the production processes and organizational

structures that support them will increasingly have a broad impact in the global economy. Focusing on

the software industry as the leading example of these new production structures should also not

confuse the fact that such processes, based in part on the increasing importance of software in general,

are becoming more dominant in the IT industry overall.

The dominance of software production processes and organizational logics helps explain or elaborate

on many key concepts within theories of globalization and the information society.  At the most simple

level, analyzing software practices help explain how processes are both global (a global market for

software products and labor) and extremely regional (a need for local knowledge and interaction)

simultaneously, and how such relationships are structured through global networks and flows. In other

words, understanding software production processes may help link micro-level (shop floor) processes

to broader organizational and institutional trends in the global environment.

In this way, understanding software processes and products implies an understanding of the

informational aspect of IT specifically and the “information economy” generally. While this may seem

overreaching, it is an essential consideration if many of the theories of globalization, the networked

economy, flexible specialization and regionalism considered above are to be evaluated in a concrete

and predictive manner. The extensive literature that considers Fordism and Taylorism indicative of

essential social relationships, production processes and organizational structures in the twentieth

century (Doray 1988, Giordano 1992, Waring 1991) establishes a pattern for linking “shop-floor” and

larger macroeconomic and social trends. Debates on the transformation of this structure, linked

specifically to “Japanese-style” production systems (Jurgens et al 1993, Sheldrake 1996, Womack et al

1991), suggest that such micro-level changes are occurring and impacting upon broader industry and

social patterns.  As such, if the impact of software is as widespread and the production process as

unique as suggested above, then it is possible that “softwareism” may define the dominant mode for

organizing and producing social and economic goods in an information society.
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Similar arguments have already been made for IT, particularly the semiconductor industry. In arguing

for an analysis of IT as a  “new mode of industrialisation”, Henderson considers that “semiconductors

are not only the heart of microelectronics and information industries generally, but that semiconductor

companies themselves constitute a production and organizational form that is a paradigm example for

the global option in practice (1989:4)”. Angel (1994) continues this line of reasoning by stating that

semiconductor firms are optimized for innovation, which in turn shapes the organizational and

geographic structure of the industry. This “structuring for innovation” is embedded in the linking of

flexibility and innovation on the factory floor, shaping formal and informal learning and information

exchange.

However, while interesting analytically and methodologically, such analysis is far more similar to the

considerations of industrial practices under Fordism or Taylorism than IT. There is no real clarification

of what comprises innovation, knowledge or information, and how such practices structure an

“informational mode of development” (Castells 1989). Equivalency to the software industry example

outlined above would require that semiconductor case studies focus on the globalization and

organization of semiconductor design and prototyping alone. This would provide a clear example of

knowledge or information production practices, as well as defining the importance of such processes

(in terms of value added or productivity) for the industry overall. Such an analysis would help clarify if

a “new mode of industrialisation” or simply a modification of existing industrial manufacturing forms

was occurring, and what the social and economic consequences stemming from such changes might be.

If an information logic is dominant in the global environment, a preliminary hypothesis is that looking

at semiconductors or other industries in this manner would reveal similar patterns to software

development processes and organizational forms. As such, “softwareism” can be defined as:

� A process that is organized around the definition, generation, manipulation and transmission of

information into socially and economically applicable forms.

� Because it is socially structured and often determined, the production of such congealed knowledge

will often take the form of craft-like (or creative or research-like) production systems where tacit

(as opposed to explicit knowledge) is essential,  human resources  are the central resource, peer or

market review processes dominate, the division of labor is weakly defined and production

processes are non-rationalized.

� Increasingly value-added will be greater in the design or mapping the algorithmic aspects of a

process, that is in the ability to define and model a process than in its actual implementation,

manufacture or replication.

� Flexible networked organizational forms that are able to efficiently and rapidly manage the flows

of information (both its creation and applications) and manage “information or knowledge
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workers”, and implement the new tools for its manipulation and dissemination will take

precedence.

� These organizations will locate in regional environments that produce knowledge and the cultures

that stimulate its transformation into congealed marketable forms.

� Regions globally networked through flows of individuals will tend to predominate, individuals

being the key social institution for transmitting tacit knowledge as well as providing the highest

value added within the global environment.

� Labor markets will increasingly be globally defined, though product markets will be fragmented.

� Importantly, the social nature of domain knowledge, that is the place and context specific

understanding of processes that underlies the logic of software, insure that regions and culture will

play a significant role in the development of IT.

Methodologically, these general components of “softwareism” are the patterns that form an ideal type

against which comparisons and insights to other industries can be made. This, as in the case of

Fordism, Taylorism or semiconductors, would not mean that all nations, regions or organizations

would follow this exact model, but that they would share the common characteristics outlined above or

exist within environments where such a framework is operational.  A simple heuristic model would

suggest that such an environment would be global with strong regional agglomerations formed by a

need for skilled workers and domain knowledge. It would contain globally distributed mechanisms for

congealing social knowledge, as both a resource and an end product. It would include flexible and

dynamic processes linked to the very tacit nature of its production process. And importantly, it would

consist of new organizations and institutions to support such an environment that would create new

forms of social interaction and social conflict.

Much of the analysis of globalization and the information society (Castells 1997, Gordon 1994b, Held

et al 1999, Amin 1994, Drucker 1993) has already established macro patterns similar to this heuristic

model for the nature of innovation and knowledge, patterns of global flows, network organizational

forms, and new social trends. As such “softwareism” may serve as a clarification of why information is

valuable, and how it is structured and valorized in the global economy on a micro-level. It also opens a

way to consider how a basic process like the commercialization (or transformation into authority) of

information creates strong similarities in production and organizational patterns across industries like

software, biogenetics, film, music, academia, media, design, architecture and finance. As such, it may

open up a way to understand broad organizational and institutional trends as well as the blending of

certain industries and institutions.  Most importantly, it may present a method for grounding broader

theorizations in detailed empirical work and case studies that can lead to a clearer definition of the
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forces at play in the global environment, including better government policies and firm strategies to

navigate within such a structure.

V IT and Development: Considering State-led Regional Hardware and
Software Strategies

As software has increased in importance within the economy, governments have begun to consider

policies and strategies for fostering software industries. Contrasting such initiatives with previous

hardware strategies helps elaborate on a number of the issues considered above. On one level, by

contrasting two sectors within IT, it is possible to clarify how different the two sectors are, and with

what implications for development strategies and social structures. On another level, it offers a very

exploratory consideration of broader shifts in the global environment. New development strategies

focused on software may actually signal a recognition by states that there is shift in the global

environment from an industrial to an informational-based economy. In either case, it is important to

consider how states structure strategies and respond to challenges derived from IT industries,

specifically to help frame future research questions and programs. As such, analyzing regional IT

strategies offers a means to compare and contrast regional initiatives individually as well as pull out

broader commonalties that reflect more global trends.

Government action is an essential factor in linking regions to broader national and global networks

(Ngai-Lim in Amin and Hausner 1997). IT development initiatives have increasingly come to be the

domain of local-regions within the global economy (Scott 1996, Storper and Harrison 1990, Barnes

and Gertler 1999, Malecki and Oinas 1999). National development policies, whether focused on

economic development agendas or defense concerns, have often provided the basic resources and

markets that have structured regional development projects. Tax incentives, public infrastructure

projects, educational investments, government purchases, R&D funding and legal guarantees have all

formed a basic package that multiple national governments have employed to promote regional

development. However, these national initiatives have been complemented by regional development

strategies formulated by local governments and firms. These strategies have often taken the shape of

regional development agencies that have taken advantage of national policy openings to provide

focused, centralized and responsive local initiatives promoting development (Lubeck and Eischen
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1998).  Over the last three decades, the IT industry has increasingly become a central focus of these

regional initiatives.

Most recently, regional-states are increasingly focusing on transitioning from IT hardware focused

development strategies as software increases in importance in the global economy (Hoch et al 2000,

Britcher 1999, Egan 1996). While many of the same economic and social forces that have structured

hardware based development strategies over the last few decades apply to software, a software

development strategy signals a shift to new strategies of competition for regions in the global

economy. Like hardware initiatives, software strategies are by definition specifically created to

integrate and operate within global networks of production, immigration, innovation and competition

(Karolak 1998). However, these networks are structured by the limits defined by software processes.

Unlike hardware, where innovation is separate from production or limited to rational and quantifiable

processes, software initiatives must capture within regional centers the tacit processes and resources

for innovation directly. Within the software industry, this innovation is increasingly structured around

the codification of specific domain knowledge through software processes. As more information

becomes digitalized and more processes become software dependent or influenced, development

initiatives will need to focus on innovation around products and services that combine world-class

software skills with linkages to other industries and domains of knowledge.

Such innovation may be captured in the form of large national firms, but it is much more likely

captured in regions of innovation sustained by a skilled-labor force that may or may not be citizens of

that country. Software in this way is about the incubation of ideas and skills, rather than the capturing

of defined and pre-determined resources. The major economic and organizational benefits to the nation

or region derive from having a “milieu of innovation,” that is a network of innovative firms and

individuals, within an information driven economy, not from generating national firms or large-scale

employment (Gordon 1994b).  In this way, the software development model will succeed or fail based

on investments not in infrastructure per se, but in creating an extensive human network that can sustain

a regional culture of innovation (Scott 1996, Saxenian 1994, Storper and Harrison 1990).

Yet, the ability of states to create and direct such innovative knowledge driven development remains

only partially understood. Software, much more than hardware, exemplifies the need for “learning by

doing, using and interacting (Borrus 1993)”. The tacit nature of software technology inherently limits
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what can be bought or transferred through infrastructure investment in the form of FDI. In other words,

software requires much more interaction in its development, use and application because the

development process is so undefined and human capital based. The creation of this interaction, on both

a global and local level, is central to creating even the most minimally successful software milieu of

innovation (Malecki 1997, Malecki and Oinas 1999).

The general characteristics of software focused strategies are further confused by the extensive

literature analyzing high-technology development initiatives. Much analysis of IT development

initiatives suffers from either mis-stating or not defining exactly what IT is (Evans 1995, Ernst and

O’Connor 1992). Such analysis often places production of basic computer components or assembly as

equivalent to advanced semiconductor manufacturing or software development. This obscures the

policies needed to both initiate and sustain various IT sectors, particularly when they are as different as

hardware and software. Other analysis focuses on the production of specific sectors, but fails to

distinguish between various production patterns that exist within these specific value-chains, especially

the trade-offs between developing regional design or manufacturing capabilities (Ernst 1997, Flamm

1998, Forester 1987, Angel 1994). While there are general patterns that tie IT together, chiefly the

coded information structure of both hardware and software processes, neither analysis defines these

general patterns or elaborates exactly how IT macro-trends link to specific regional industry

development.

The comfort level, and arguably the success, of analysis of hardware focused initiatives is the

similarity with previous industrial processes. In other words, there may be greater general similarities

in the social, economic and policy implications between manufacturing steel and fabricating

semiconductors than there is between producing hard disk drives and a software services industry. This

means that analysis that purports to be of about high-technology development is generally just a subset

of theories of industrialization, updated to focus on one of the most dynamic sectors of the global

economy (as in Henderson 1989, Angel 1994, Dosi et al 1998). Within such analysis the failure to

understand IT is not an issue, because the factors that have supported hardware strategies have not

been about creating innovative regions. Such past failings are increasingly difficult for both

governments and analysts to obscure as software and software practices become increasingly important

within the global environment.
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This means that focusing regional development initiatives from hardware to software may not be

merely an industrial choice, but one of type of development, where success is about creating an

environment where multiple types of new knowledge sectors can be developed, and traditional

industries can be revitalized. A short thought experiment helps highlight this difference. Consider a

regional strategy focused on developing a rice cooker for export in the current global environment. A

traditional industrial focused strategy would focus on labor-cost, export markets, access to capital and

access to raw materials in order to generate employment and export earnings. However, an

informational strategy would focus on linking such development to a broader synergistic innovative

environment. This would mean that the design of the rice cooker would involve the use of CAD and

CAM tools, possible locally developed. Producing the highest value added products would entail

incorporating IC and software features as well as perhaps embedding basic Internet connectivity. This

would require knowledge of multiple markets and local standards. Even the basic production process

of the rice cooker itself, to avoid pure labor-cost competition, would most likely entail Just-In-Time

supply logistics and Total Quality Management (including work teams). These basic features of

information management would entail the use of regional, and most likely, international

telecommunications, especially the Internet. Even more possible is the use of the Internet as a central

sales channel, perhaps even involving “build to order” processes or B2B management linked to global

markets.

While stylized, this example helps us understand the overall patterns that restructure development

strategies in an informational setting, even if focused on “traditional” industrialization. Software

strategies differ most significantly in a focus on process as well as product and a concern with tacit as

well as explicit knowledge. This shift in focus has a direct impact on governmental policy and the

overall organizational structure of both firms and industries. It thus becomes essential to define and

clarify the characteristics of successful IT strategies, as well as the specific nature of hardware and

software strategies within them.

i Features of Innovative Regions: Developing a Matrix of Comparison

Theories of the informational economy and society are well outlined (Amin 1994, Webster 1995,

Castells 1996a, Dicken 1998, Held et al 1999).  Elaborating from these general theories, it is possible

to develop a matrix of the basic features “innovative regions” or “technopoles” have that support
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successful development initiatives in general (Castells and Hall 1995, De Vol 1999 and 2000, Mytelka

1999).  Such a matrix allows for an understanding of which factors need to be in place to support IT

regional development, as well as the features that can be carried over from previous successful

development strategies.

In general, IT focused development strategies should focus on three simultaneous goals:

reindustrialization as linked to a constant transforming of comparative advantage, regional

development to insure equitable and broad growth, and the building of synergy to create new economic

opportunities and vitality (Castells and Hall 1995).  In practice these goals evolve within the categories

of public policy, comparative location benchmarking, and social infrastructure development. In terms

of each of these, the state is the central catalyst. “State and local governments, public policies, and the

interaction between private and public sectors are crucial for the genesis, expansion, and the

fortification phases of high-tech development (De Vol 2000:3).” As such, governments should:

• Establish a clear and consistent development strategy and long-term vision, including internal and

external promotion, and benchmark and evaluation procedures.

• Create public/private partnerships around this vision.

• Establish central policy and regulation to avoid competing spheres of influence.

• Foster the development of research, including universities, private labs and incubators and insure

mechanisms for commercialization of this research.

• Foster the development of financial resources, especially venture funds and local angel networks.

• Foster the development of human resources, including entrepreneurial programs, life-long learning

and migration.

• Capture national and international resources to fund and promote local objectives.

• Participate in national and international networks to promote local objectives.

• Develop synergistic policies focused on long-term aims and the sources of innovation, including

linked industries (i.e. component and application firms), the creation of local and global niche

markets, targeted FDI or branch-plant investments, and the production of unintended “spill-over”

effects.

In terms of a simple matrix in which to evaluate the factors that support information regions and

strategies, the above can be distilled to five factors whose “genesis, expansion and fortification” are

central to the fostering of a high-technology region:

1. research centers,

2. investments (i.e. tax rebates) to jump-start development,

3. human-capital development,

4. venture capital for commercialization of research,

5. a culture and social environment that promotes development.



47

In terms of evaluating hardware and software strategies, the relative importance of specific factors of

the matrix will clearly vary, or be absent altogether depending on regional history, resources and

capacities. However, the absence or presence of specific factors that promote IT regions are exactly

what needs to be analyzed in order to evaluate how such regions are constructed, transformed and

sustained over time. Such a comparison allows for an understanding of the similarities or differences

that structure hardware or software strategies specifically. It also helps contrast industrial and

informational focused development as a generalized phenomenon, while holding the industrial sector

constant.

ii High-Technology Hardware Focused Development Strategies

The extensive literature of successful state-guided high-technology hardware manufacturing (Deyo

1987, Henderson 1989, Borrus 1996, Naughton 1997, Ernst 1997, Lubeck and Eischen 1998, Rasiah

and Best 2000) provides an excellent counterpoint to begin an analysis of software focused

development initiatives. The extensive analysis and real world success of hardware focused strategies

presents a kind of academic and policy path dependence that is essential to understand in order to

adequately evaluate software strategies. Any state seeking to initiate or extend development under

information technologies natural looks to the successful strategies of Taiwan, Korea, Singapore, China

and Malaysia, amongst others, as models of successful development. The extensive analysis of these

development initiatives has created a standard formulation of the role of the state in initiating and

promoting development (World Bank 1993 and 1998).

On a first general pass, both hardware and software development initiatives do contain all of the

elements that have come to define expanding global production: national economic liberalization

focused on FDI and export promotion, global high-technology firms seeking low-cost and high-quality

labor, regional tax and investment incentives, high-technology focused export processing zones, the

spatial and organizational disaggregation of production processes globally, and a networking of high

and low value-added regions within the global economy.  Yet, hardware production networks have a

number of differences that structure the role of the state and economic development quite distinctly
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from software. These differences are highlighted within the internal nature of hardware production, the

supporting state and industrial environment and the geographic distribution of production.
12

IT hardware sectors, no matter how technologically advanced, are fundamentally manufacturing

focused. The internal processes that regulate the production of an integrated circuit is more complex,

but not fundamentally different from the production of other industrial products like hard disk drives or

steel or cars. Processes are rationalized, that is quantifiable and predictable, with a detailed and distinct

understanding of each production phase from design to full-scale manufacturing (Sturgeon 1997b).

This creates the potential for geographically or organizationally disaggregated production processes.

Efficiency and costs are controlled through extensive rules and process management, including total

quality control and just in time logistics. In this way, production deadlines and quotas can be

efficiently met and controlled. There is a separation between management and worker, where the

overall production process is obscured for labor. While workers may participate in problem solving or

team related work, such activities are limited to that part of the production process under their control

(Womack et al 1991).  This creates a hierarchical organizational model of centralized control.
13

Traditional considerations of economies of scale, scarcity, supply management, long term return on

investment, and barriers to entry structure the industry overall.

Because of this rationalized, hierarchical and traditional economic structure, state policy and the

overall environment in which development takes shape are much closer to previous forms of

industrialization (Amsden 1989, Johnson 1982, Gerschenkron 1962, Applebaum and Henderson 1992,

Haggard 1990). This means that policies and expertise that guided the development of other industrial

sectors can be more easily applied to high-technology hardware manufacturing. Tax incentives, large

scale investments in plants and infrastructure, the production and control of semi-skilled industrial

workforces, and management of macro-economic variables dominate state-policy in the promotion of

hardware industries, whether local or foreign investment driven. Policy is structured around capturing

12 It is important to note that these are general observations that clearly can be challenged by individual case examples.

However, the goal is to contrast high-technology hardware production with software, not to understand how hardware itself

is changing, which is outside the scope of this analysis. As has been noted, software is increasingly coming to structure all

production processes in both hard and soft industries, and as such may fundamental blur, but not invalidate, the dichotomy

set up here.
13 This may contradict conventional analysis of both IT industries and the global economy (Held et al 1999, Dicken 1998,

but it is entirely possible that decentralized external networks relationships may link organizations that are internally

centralized. Additionally, many hardware products are produced through a combination of design and manufacturing,

which may entail a combination of decentralized tacit processes (for research and design) and rational, defined, controlled

practices (for manufacturing).
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large scale manufacturing investments. In other words, states seek to permanently restructure the flow

of global trade through specific and long-term hardware manufacturing investments. This focus

produces an environment structured around employment generation, basic widespread educational

skills, and local value added.

The combination of rationalized processes and state policies designed to capture production produces

the distinct variable network geometry of hardware production (Borrus 1996, Dicken 1998, Held et al

1999). In other words, the rationalization of the hardware production process allows for a geographic

separation of production into disaggregated production networks. Furthermore, because hardware

processes are so well defined and elaborated, phases of production can be matched to specific regional

resource matrices, including labor quality, state-policy and investment horizons. This means that

regions do capture long term hardware investments, but these investments may be specifically targeted

to the initial resource base of the region. Therefore depending on the firm and state policy, these

investments may only reflect certain value added activities and limit the transference of complete or

higher value added activities to the region over time.

This overall structure has shaped the globalization of high-technology hardware production.

Outsourcing, both locally and globally, has been a key competitive strategy for firms in many sectors

of hardware manufacturing (Sturgeon 1997a). International labor cost differentials combined with

relatively high skill and quality levels have created a beneficial combination for many sectors.  U.S.

firms have remained competitive internationally by using these disaggregated production networks in

order to move competition towards innovation and standards setting based on products rather than

process (Borrus and Zysman 1997). The general trend has been for the separation of product and

process innovation across regions within global production networks, leading to regional specialization

around design or production. Much of this separation has been predicated on the clear rationalization

of production — that is a systematic, disciplined, quantifiable understanding of production processes.

In terms of the basic matrix of innovative regions outlined above, there is a question of whether even

the most successful hardware focused strategies outlined above have developed the infrastructure that

would support innovative regions, whether hardware or software focused. First, local, independent

research centers have not been a central concern of these hardware initiatives. Technology has either

occurred within firm directed research labs or transferred through investments in equipment and
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network access. While there is some chance for knowledge to be transferred through local

employment, the distinct rationalization of the production process has separated out product and

process innovation. As product innovation has increasingly come to be a key center of value-added this

limits the ability of local regions to capture innovative capacity. Furthermore, technology or innovative

capacity that is transferred is general “locked-in” in terms of application only within the specific

hardware industry that it comes from. This is especially true if the knowledge is separated in process or

product categories. This means that creation of independent firms or research will be structured by the

same barriers to entry, namely large scale investment, that structures hardware production in general.

Second, clearly successful investment strategies have been formulated and can be applied to non-

hardware focused firms. However, the software sector is not a capital intensive industry. Physical

investments are minimal, meaning that such strategies will be much more directed at profit incentives

than investment support. Third, the investment that is needed involves not the firms directly, but the

overall environment in which firms will locate. Central are investments in telecommunications,

especially satellite uplinks and human resources. In regions with successful hardware strategies, the

national telecommunication networks are generally quite good, with increasing emphasis on fiber optic

and satellite networks. It is in terms of human capital that there are weaknesses. Hardware focused

strategies have focused on establishing basic minimal educational standards for the population as a

whole. Specialized higher education has tended to produce non-scientific or engineering talent, linked

to administrative work. A software strategy, or innovative region in general, requires that the quality of

skilled labor be at a minimal global level and at a quantity that will sustain investments for the near

term. Such quality and quantity take time to develop, creating the paradox that investments of this type

should actually take place years before they will be needed. In regions with successful hardware

strategies, the immediate opportunities for students limits the effectiveness of such initiatives. In

regions just developing, the opportunity cost of such a strategy may be prohibitive.

Fourth, the creation of local venture capital funds, especially private, has been extremely limited. The

scale of investment needed, the time horizon required for hardware investment ROI, limits on the

commercialization of local research, and tight government control of capital has limited the creation of

knowledgeable and robust venture funds. Lastly, perhaps the strongest and weakest legacy of hardware

focused strategies lies within the creation of an environment of innovative development. Clearly, the

most successful regions have developed an excellent environment to manage and promote
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development. On the other hand, linked to the issues above, they have been far less successful in

developing an ecology of innovation or an innovative milieu that can be self-sustaining. This brings

into question the ability of regions to formulate an adequate strategy and vision, given past institutional

and policy frameworks that are maximized to promote successful industrialization.

Operating on the assumption that software was structured equivalently to hardware industries, states

and theorists have encouraged software focused development using the same set of policy tools and

objectives. However, on deeper inspection the basic structure of hardware production and its

geographic distribution raise questions about the ability of governments to institute software focused

strategies along similar patterns. On a basic level, many of the key resources needed to develop

innovative “information regions” are not present.  In turn, the capacity of states to promote and manage

software-focused development comes into question.

iii High-Technology Software Focused Development Strategies

As stated above, software strategies should seek to capture within regional centers the sources that

drive innovation globally. In this way, software strategies distort and challenge previous

understandings of national and regional development under globalization. Competitive advantage in

software is created almost entirely through highly trained and innovative human capital. Extensive case

studies have been conducted on the development of the software industry on national and regional

level including Japan (Cusumano 1991), India (Heeks 1999), the US (Langlois & Mowery 1996),

Bangalore (Parthasarathy 1999, Malecki and Oinas 1999), Ireland (O’Riain 1999), Hyderabad (Eischen

2000) and Singapore (Yeung 1999). Yet none of these studies has explicitly considered the unique

production characteristics of software as detailed earlier. Importantly, these studies lack a clear

analysis of the unique development processes, resources and geographic organization of the software

industry that may profoundly shape and impact development possibilities (Hoch et al 2000, Brooks

1987, Raymond 1998). More importantly, no general pattern of software based development strategies,

as separate and distinct from hardware, has been formulated. Significantly, this means that no

comparative understanding exists of how national and regional software strategies have differed, and

how these differences have structured the success or failure of these initiatives over time.
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Internally, as detailed above, software development has a unique production process that requires large

numbers of highly trained professionals working in close geographic proximity. Production of

software, beyond the design and prototyping phase, is basically replication of one master copy. In this

way, software development does not have a clear split between product and process innovation as in

the case of hardware. Even where design and development are divided, the constant need for

clarification between the two levels pushes for close physical proximity between software designers

and developers. The process usually involves the creation of teams operating within the same location,

or the actual combination of designer and developer within the same person. This means that once

established, regional software sites capture the entire development process and the overall skills of

software production.

Software also models rationalized, but increasingly complex social processes like financial transactions

or the logistics of hardware production networks, that require extensive knowledge of the product

domain itself. Much of this knowledge, and thus the knowledge of software development, is tacit and

untransferable. Even within the general patterns that link together manufacturing broadly, software

designed for manufacturing integrated circuits can not be easily transferred to the production of

keyboards, and may not even be able to be transferred between two IC manufacturers. The lack of

rationalization and the implicit nature of domain knowledge make it difficult to speak of software

“manufacturing” or software “factories” (Cusumano 1991).

Organizationally, the blurring of design and production and the intense need for domain-knowledge

makes the out-sourcing of lower value-added parts of the production process a very different

proposition when compared with hardware production. Firms are most commonly organized along

fully integrated product lines, keeping the full development process in-house, creating not only

regional agglomerations of software development but firm domination of specific products within the

software market. Where spatial disaggregation does occur, it is along product and not process lines.

Firms, such as Microsoft or IBM, may have multiple sites of software development, but each will be

responsible for the full development process of a specific product (i.e. operating systems, productivity

software, e-commerce applications).

The overall impact of software investment then differs directly with hardware. Any region that

develops a software industry or attracts a software firm essentially captures the entire production
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process. Meaning that designing even the most basic software product enables individuals to

understand the process for developing software in general. The technological level of the product being

developed does matter. If local software developers can participate in leading-edge innovation, they

will have captured the full capacity to replicate this process on their own. However, the need for

domain knowledge gives local programmers an advantage in creating products that may not be the

leading but bleeding edge, that is where technical skill and domain knowledge blend together to

develop innovative products.

Given the nature of software development, finding and retaining software professionals is the essential

constraint facing software firms. As previously stated, the demand for software services has

consistently outstripped the supply of labor or any development process improvements. In response to

the limits on software rationalization, software development and the industry as a whole have come to

focus on an extensive growth strategy, where new projects and demand have been met by a constantly

expanding labor pool of skilled software professionals (Cusumano and Selby 1995, Hoch et al 2000,

Karolak 1998). This consistent need for extensive growth, for a constant input of large amounts of

skilled labor, has been one of the central aspects shaping the regional and global development patterns

of the industry overtime. As such, software globalization, in contrast to hardware, has been structured

by the search for factors of production, rather than their lower cost. This has created an industry that

thinks in terms of a global labor market, and views regional investments as essential aspects of tapping

into human resources and local domain knowledge.

 Software firms have been inserted into and created broader national and global networks of labor and

immigration consistently over the last twenty years. Innovation and information have been managed

through the development of social networks that have linked vertically integrated, geographically

specific firms with new regional sources of software professionals (Saxenian 1999) on a global basis.

Through a constant expansion to include new individuals and regions, these social networks have

provided software firms the strategic benefits of networks within the limits of software production

(Bhaskar 2000). The limits of this labor-based globalization combined with the need for domain

knowledge creates spaces in which states, on regional or national levels, can capture new investments

as software firms invest globally in regional software centers. Firms have retraced the paths of these

global labor flows, locating investments in regions that have traditional been sources of high-
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technology talent. They have also tapped into the social capital of their employees in making location

decisions and successful launching new development sites.

For states seeking to develop a software focused strategy, the understanding of software processes and

globalization create an entirely new framework for policy than previous hardware focused strategies

(Heeks 1999, Eischen 2000). In terms of the matrix of innovative regions above, each of the five

factors is essential to creating an environment that will support a software focused development

strategy. The nature of software, especially the innovation around codifying new domain knowledge,

requires that regions develop these factors in order to sustain a software focused development strategy.

First, regions with already established research centers are more likely to develop successful

initiatives. These research centers do not necessarily have to be IT focused, but, in the case of military

research or biotechnology or finance, can contribute to the production of skilled labor and an

environment of innovation. They are also crucial to providing the domain knowledge and mechanisms

for application of technologies to local needs even if conducted within foreign firms.

Second, basic investments in quality of life measures, telecommunications and strategic partnerships

can be undertaken. If these already exist, then incentives can be extended to firms in the form of tax

breaks. Traditional considerations of economies of scale, scarcity, supply management, long term

return on investment horizons, and barriers to entry either do not exist or function in the same way for

software firms.  Long term tax breaks or holidays are not linked to large-scale capital investments, but

limited to profits and rents. Most likely, such policies will entail a transfer of funds to investing firms,

rather than a lessening of revenue to the state.  However, software firms, and firms operating within

software process environments, are far more concerned with access to quality labor.

As such, the third factor of human-capital development is crucial. Building large-scale technology

parks with high-speed data links will not attract investment if a large pool of software professionals is

not readily available. As stated above, both quality and quantity are essential. Quality can be improved

through international partnerships with leading universities and firms to create joint degree or

certification programs. This can also be extended to joint-research efforts. The quantity of labor is

much more difficult. Regions with a legacy of producing large quantities of underutilized engineers

will have a distinct advantage. This opens up the possibility for regions with distorted educational
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systems in relatively undeveloped regions to aggressively market themselves as sites of software

development.

Fourth, the unique advantage posed by the stages of software globalization, first through global labor

networks and second as locating in the home regions of the labor pools, opens up possibilities of

developing local venture capital networks. Many émigrés will lead their firm’s investments, bringing

both knowledge and needed capital. Others will want to develop ties back home that will focus on new

angel investments. These networks create natural mechanisms for developing local angel and VC

networks especially within regions with strong social ties.

Lastly, regions with strong social capital are much better positioned to be successful in building a

regional development strategy. The question of creating a culture of innovation, as above in the case of

hardware, is linked in many ways to the first four factors. However, regions with local culture of risk

taking, competition and entrepreneurship will be able to mobilize resources to embed the development

process with local dynamism (Lubeck and Eischen 1998).

Overall software presents unique opportunities to regions in contrast to hardware production.

Economies of scale and scarcity do not apply in an equivalent fashion in software production, meaning

that no clearly defined minimum efficient scale or that specific fixed resources, outside of skilled-

labor, are required for production. Production, once established, does transfer the entire production

process to the region. From the simplest HTML document to the most complicated financial product,

the software development process is essentially the same. The low barriers to entry in the industry,

outside of marketing and sales, allow for the easy development of local firms. This, however, is

contingent on the ability of a region to retain skilled labor and develop entrepreneurs. Investments by

states in higher education are difficult to recoup if individuals are able to migrate to higher wage and

quality of life regions, working for the same firms. This means that states must create environments

where entrepreneurs want to live, and invest in infrastructure that will enable them to market and sell

their products globally.

Long-term competitiveness in software is centered on the creation of dynamic comparative advantage.

Any successful strategy must focus on the development of new sources of labor and innovation to

constantly adjust to new opportunities and challenges in the global market. In this way, software is
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about creating an innovative milieu that is institutionally supported by new research, high-skilled labor

and mechanisms for commercializing these resources. Software development involves the specification

and mathematical mapping of unique processes. This means that software must continually be adapted

to new environments, be they geographic, social, cultural or organizational. This process of adaptation

means that software development processes will continue to expand to regions around the globe as IT

is brought to focus on an ever more diverse and complex problems. This creates a situation of both

opportunity and challenge for state-led development initiatives. On one hand it insures the opportunity

for the creation of local software industries, if only to capture local domain knowledge to both translate

existing software and respond to local needs. This process is reinforced by the agglomeration and skill

transfer characteristic of software development. On the other, it creates a series of challenges based on

the unique organizational structure and development process of software. These will create new

regulatory and social challenges for governments quite distinct from even the most successful

hardware focused strategies.

The challenge is creating the initial environment in which such global processes can take root, and then

sustaining such processes over time. Initiatives centered on such projects have been and are extremely

difficult to develop (Castells and Hall 1995). Drawing on the existing cases and analysis (Malecki and

Oinas 1999, Barnes and Gertler 1999, Storper and Harrision 1990, Scott 1996, De Vol 2000, Castells

and Hall 1994), a preliminary summary of aspects of hardware and software regions is given in the

following table.



57

Contrasting Aspects of Hardware and Software Focused IT Environments

Aspect Hardware Software
Research Basic, semi-essential Problem specific, probably market

focused, essential
Investment State, Banks, Bond Markets, FDI Angel, VC, Capital markets,

Alliance, FDI
Institutions for
Application of Technology

National Research Institutes,
Military

VC’s, Incubators, Start-up firms

Quality of Life Highly important, but focused on
general social standards

Highly important, but selectively
focused on digerati and individuals

Business Culture Bureaucratic, Rule-based,
Developmentalist

Innovative, Risk oriented, Profit
focused, Applied

Training General and fixed in duration Specific and continuous on new
technologies

Telecommunications Basic phone service, State owned
media, limited cable

Fiber optic/cable service, privatized
media, satellite uplinks

Education General literacy, some elite
training for administrative and
management purposes

Specialized and elite training in IT
fields, university and above
focused

Role of State Developmentalist Facilitator/Protector

Foreign Investment EOI focused with FDI essential Research focused with both FDI
and alliances key

Capital Flows and
Markets

Restricted and national Open and linked

Information Flows Restricted and controlled Open and linked
Industry Structure Hub and Spoke, Monopolistic

(via resources), Hierarchical
Networked, Monopolistic (via
standards or market share), Flat

Firm Structure Bureaucratic, Hierarchical, Mass
production focused

Flexible, Networked, Horizontal,
Craft-knowledge forming focused

Constraints on Technology
Development

Patents, physical limitations Creativity, Social and regional
linkages, Human movement

Constraints on Technology
Application

Lack of investment capital, Slow
adoption, Different comparative
advantage, Low FDI

Lack of commercialization
channels, Lack of venture capital

Immigration Brain drain Knowledge transfer, Network
building

Role of Culture National emphasized Essential as product
Role of Regions Downplayed to national aims Essential for localized

implementation and tailoring of
policies
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iv Building a Software Region: Opportunities and Limitations

Creating a software focused development strategy means moving toward an understanding of the basic

processes, products and industry characteristics of software. It is also a move to framing development

questions in terms of the basic organizational, social and development logics accompanying

information centered economic growth. The overall strategy must understand that software entails

domain knowledge (the in-depth understanding of field specific processes and outcomes) embodied in

skilled individuals within an environment that can translate this knowledge into actual marketable

products. This means that the strategy must insure the attraction of people and investment that

understand both the organizational and technical aspects of developing such products. And perhaps

most importantly, it means developing a self-sustaining pattern of growth based on the creation of new

knowledge and people through research and education. Simply, the strategy must move to create an

ecology of innovation. Such strategies may directly contradict previous hardware strategies, common

sense or short term goals. They may also have serious social consequences that contradict previous

development strategies and aims. The ability of governments to generate policies that evenly distribute

the gains from software focused strategies, while maintaining the organizational and social structures

that provide those gains, will be one of the greatest challenges of new regional initiatives.

What this means in terms of the overall social structure and economic development of a region, remain

to been seen. The overall social transformations linked to the general process of industrialization – the

rise of a middle-class, urbanization, consumerism, increased gender equity, expanded literacy, social

movements – that have accompanied high-technology hardware industrialization  (World Bank 1993,

Amsden 1989, Lubeck and Eischen 1998) has yet to be established as the default pattern for software

focused strategies. Overall then, different forms of investment and policy, both in building and

maintaining a software industry, are required from states that focus on developing a software industry.

In contrast to previous hardware centered strategies, there is no clear trend or method that has

demonstrated the capacities and policies states should develop to manage these opportunities and

challenges (Digital Economy 2000, Lessig 1999). The formation of new software development centers

globally has replicated the labor and firm agglomeration patterns that have characterized the industry's

development in places like Silicon Valley (Parthasarathy 1999). The most established of these regional

centers of software development – chiefly in Ireland, Israel and India – have come to replicate the

social and economic tensions present in more advanced IT economies and regions (Castells 1994, Held
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et al 1999, Dicken 1998),
14

 starting from a significantly lower level of development and with much

lower levels mechanisms for social protection (Eischen 2000).

a Potential Consequences of Software-Focused Development

One of the central ironies of a software centered development strategy is that policies and institutions

that are weaknesses under national or industrial conceptions of development – chiefly skewed

educational systems, poor infrastructure and regional factionalism – can become strengths under a

software based development model. Regions can build on national development legacies while

targeting specific investments in infrastructure, telecommunications and education that institutionalize

and expand on some of the legacy’s most distortive aspects. Under these conditions, there is serious

potential for a permanent digital divide (where access to technology, education and incomes are highly

correlated), not between nations or regions, but between social classes, cities or even neighborhoods,

as inequalities are institutionalized under a software focused strategy.

Strong and socially consensual policies are needed to embed such developments in the broader society

rather than merely set up a parallel social and economic reality. If such policies do not exist, the risk is

that the general spread of telecommunications, electricity and educational services will remain

relatively stagnant, while new institutions and targeted investments link small sections of the society to

the global economy.  While many of these problems exist for hardware focused strategies as well, the

traditional benefits of industrialization and FDI, specifically employment and export promotion, are

fundamentally different for software. This challenges states to develop innovative policies, with very

few successful models to follow. Even the most successful information technology regions, like

Silicon Valley, face completely new social tensions and inequalities (Benner 2000).

These are not temporary problems, but general patterns that will continue to occur within the global

economy. Software is increasingly an essential feature of the global economy. Governments will, and

should, focus on software as an essential sector to incubate locally (Parthasarathy 1999), and new

centers of software development will arise from relative obscurity. Regions can initiate software based

development and address social inequalities simultaneously by focusing on the long-term innovative

capacity of the region. However, long term innovative capacity in software is not captured in physical

14 It is important to note that social and economic patterns surrounding software regions are appear to exist in other regions
as well, including Los Angeles (Film), San Francisco (Biotechnology and E-Commerce), Austin (Computers and ICs), New
York (Finance), Bombay (Film), Hong Kong (Finance, Ecommerce, Film).
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resources, but in human capital that must be constantly recreated and revitalized through education in

an industry with extremely short innovation cycles. The opportunity around software, and industries

following software production patterns, is that local knowledge is needed. And once begun, the nature

of software production will most likely produce agglomerations of skilled professionals able to capture

the full production process. These two factors open the possibility for applying global skills to local

needs addressing both innovation and social inequality simultaneously.

The key aspect is that regions should recognize that they are really developing a mastery of

information or innovative processes, and not software itself. In other words, focusing on synergy and

developing the basic structures that promote an “ecology of innovation” will produce economic and

social development far outside of just software. Software is and will remain increasingly at the center

of IT. However, it is the blending of software with other industries and domain knowledges that

produces the real dynamism in the software industry. Understanding this opens up the real possibilities

for regional development strategies. Existing industries and research centers, from media and film to

agriculture and education, can become an integral part of a successful strategy, expanding the impact

of the development process and insuring its sustainability over time. All of this combined will establish

the embedding of local knowledge into broader national and global processes, while insuring that the

most negative social and economic divisions are ameliorated.

VI  In Conclusion: Developing Models, Methods and Research
Programs to Understand IT and Development

The three quotes that began this analysis offer entry points into considering IT and its impact on issues

of social and economic development. Ridenour describes the process of how computers are capable of

being, and as detailed above, have become “information machines”. The key technological

development of the last thirty years is exactly the creation of information technology as a general

phenomenon with ever greater distribution and connectivity. The key aspect is not, as is usually

focused upon, technology, but rather information. This means that the increasingly connected and

digitalized world we inhabit is structured by the flow of information, and how that information, as

socially determined, is congealed into new forms of profit and power.
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Von Neuman, speaking over fifty years ago of science and technology, helps to explain the basic

patterns of economic and social development as issues of structure, organization, information and

control under these informational flows. An information economy restructures social relationships in

order to maximize the generation, manipulation, dissemination and commercialization of information.

This results in new organizational and institutional imperatives, and as highlighted by the demands of

creating an IT industry, that offers both new opportunities and challenges to regions. A distinct pattern

of production, as outlined in the case of software development processes, models the way in which

knowledge and information are produced and valorized into power and profits in the global

environment.

The final quote describes this entire process, in essence what the information economy is, in three short

sentences. An Irish subsidiary of IBM has developed a web based real-time translation program based

on Java. The knowledge to create such a program resides in the programmers who created it, that is in

Ireland, even though they work for a global firm. The product is entirely software based and only

functions on the Internet, where it is instantly available globally. The program enables real time

communication, regardless of location or language. What these languages are, how well they are

translated and how they structure communication is a function of the domain knowledge and

assumptions of the programmers as structured in the program code. The ability to regulate the product

is inherent in the coding of the program and priorities of IBM, and not any government or social

process.

This field has attempted to define and clarify IT in order to understand how simple stories, like the

case of IBM, hide very complex issues that are at the heart of multiple trends in the global

environment. Such clarifications and definitions are essential, because much of the analysis currently

available either fails to capture the complexity of these simple stories or to link them to broader

theorizations of globalization or the “information society”. The main critique of existing theories is

that they fail to understand either the technological or informational aspects of IT, either historically or

in practice. This leads, for an example, to a complete lack of understanding of the importance of

software as a significant industry within IT on a simple level, and as perhaps the central way to define

and understand IT on a higher level. Many of these failing stem from not approaching software or IT

sectors through a methodology that simultaneously considers process, product and industry
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dimensions. The ambitious aspect of this field is that it has tried to both critique existing theories, and

offer analysis that avoids the same failings.

At the very least, software is an essential sector within the IT industry. Because of the demand of its

unique production process, the software industry will continue to expand globally, and in the process

create new regional software centers. How states and firms respond to this opportunity will be an

essential issue for economic and social development in the coming decades. On a higher level of

abstraction, the increasing presence of software in industries and institutions outside of IT requires a

careful consideration of the software practices and structures that increasingly impact upon social and

economic interactions generally. In this sense, understanding software may be a basis for clarifying the

broader production processes, organizations and institutions that help structure new global trends. This

opens the possibility for considering software as the ideal type of process, product and industry within

the global environment. As such, a detailed analysis of software may be a way to ground theorizations

of globalization and the “information society” in concrete practices and micro-level events.

Such a stepwise approach has already been conducted for multiple industries within the global

environment, specifically hardware industries like semiconductors. A future research agenda should

focus on creating an equivalent analysis for software in order to test hypotheses and theories of the

“information society” in an empirically rich and concrete manner. It would also include recasting these

earlier studies in terms of a basic methodology of process, product and industry, in order to define

exactly what is the informational aspect of these sectors. This would, just as in the case of software,

help ground theoretical considerations in detailed empirical case studies. Through such an approach,

the general patterns that govern global economic and social trends could be uncovered. As such, this

would allow analysis of IT industries and processes to be informed by similar non-technical industries

in fashion, film, media and biotechnology to name just a few. Such comparisons would help elaborate

on basic theorizations of innovation, information, organizational forms, management and development.

Perhaps most importantly, it would provide a direct link into policy and analysis through a

consideration of basic processes and skills that overlap divergent industries, and thus would help

elaborate on how broader economic and social development might be encouraged. This would be

especially true in the case of developing economies, where IT may or may not be an appropriate

development focus.
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The central failure of social science, particularly sociology, has been the failure to recognize the central

role of domain knowledge within information technology. The informational aspect of IT does not

signal only communication, but the embodying of social practices and interactions in technology itself.

Information technology is the process of converting social knowledges and practices into digital form,

so that it can be manipulated, disseminated and controlled within a coded binary architecture. This

process of translation is really a process of transformation. Norms and values are implicitly included in

the algorithms that shape the coding of the social processes represented by particular domain

knowledges. In this way, IT increasingly shapes the rules and procedures under which social processes

take place. Code is thus a new form of law, one that is flexible, but also inherently social.

Kranzberg states that “technology is neither good, nor bad nor neutral (1985)”, meaning that society

determines the application and impact of technology in all cases. However, the case of IT, and

software in particularly, is different. Software is the way in which knowledge or information is given

form in a digital world, as such it embodies social knowledge. This means that prior to its application

by society, software is already structuring the forms that social interactions can take. Combined with

Metcalfe’s Law
15

, this implies that once software patterns of interaction become dominant– such as the

protocols that shape Internet communication or define how computers structure information – the

social interpretation or regulation of these technologies is already limited.

This reality underlies many of the fundamental social and economic debates occurring in multiple

regions and nations. On the surface debates on privacy, biotechnology or online music seem like

simple debates around intellectual property or other rules of law, but they are really debates about the

fundamental architecture of a coded, binary, information society. Distributed computing models like

Napster open up the possibility for a purely global, decentralized, peer to peer system of

communication. Open source models of software development push for code, the laws that structure

the IT architecture, to be made open and accountable to social scrutiny prior to their embeddedness in a

technical architecture. Understanding IT in this way is crucial to developing accurate theories, analysis

and policies of the current social and economic environment. And because the environment is global, a

general understanding of IT goes very far in helping to explain the institutional and organizational

trends, tensions, flows and linkages that structure economic and social interactions on multiple scales.

15 Metcalfe’s Law states that the "value" or "power" of a network increases in proportion to roughly the square (for large
numbers) of the number of nodes on the network, or more precisely N2 - N.
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