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ABSTRACT OF THE DISSERTATION

Scalable Methods for Survival Analysis using Massive Observational Data

by

Jianxiao Yang

Doctor of Philosophy in Computational Medicine

University of California, Los Angeles, 2023

Professor Marc A. Suchard, Chair

The emerging observational health data, such as electronic health records and administrative claims,

provide a rich resource for learning about treatment effects and risks. However, computational chal-

lenges arise when fitting statistical models to such large-scale and high-dimensional data. In this

dissertation, I employ parallel computing techniques to address the computational bottlenecks as-

sociated widely used statistical models in observational studies. First, I present a novel parallel

scan algorithm to scale up the Cox proportional hazards model and the Fine-Gray model. This ad-

vancement significantly accelerates the execution of large-scale comparative effectiveness and safety

studies involving millions of patients and thousands of patient characteristics by an order of magni-

tude. Second, I apply an efficient parallel segmented-scan algorithm to accelerate the computational

intensive parts shared by the stratified Cox model, the Cox model with time-varying covariates,

and the Cox model with time-varying coefficients. This innovation enables efficient large-scale

and high-dimensional Cox modeling with stratification or time-varying effect, delivering an order

of magnitude speedup over traditional central processing unit-based methods. Third, I introduce a

memory-efficient approach for fitting pooled logistic regression models with massive sample-size

data. This approach offers a valuable tool, allowing for pooled logistic regression analysis on mas-

sive sample sizes, even when computational resources are limited. I have implemented all of the

above work in the open-source R package Cyclops.
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CHAPTER 1

Introduction

Observational health studies have thrived in the last few decades as digital health technology ad-

vances. Although observational health data are collected for non-research purpose, they provide

rich information for understanding the healthcare process. For instance, electronic health records

(EHRs) are collected for patient care during routine medical practice and contain rich information

about patient conditions necessary for medical practice. Administrative claims, such as those filled

through public and private health insurers, capture diverse patient populations from communities

historically excluded from clinical trials (Schneeweiss and Avorn, 2005).

Despite the obvious non-random collection of observational healthcare data, analytics using them

often possess many advantages compared to randomized controlled trials (RCTs). Observational

data lower barriers for conducting health data analytic since there is no need to spend time on cohort

recruitment and data collection. Observational health data more realistically depict the clinical land-

scape owing to their massive scale. Thus they are more suitable for detecting rare clinical events and

measuring real-world treatment effectiveness (Flay et al., 2005).

Computational challenges, however, arise when using observational data. The massive scales

of the databases that hold EHRs and claims data offer more power for statistical analyses but are

more computationally demanding. Typical EHRs and claims contain millions of individuals with

thousands of demographic and clinical covariates. Statistical models used in health analytic become

computationally expensive and often stall with such large sample sizes and high dimension. Specifi-

cally, typical log-likelihood computation for semi-parametric models in survival analysis (such as the

Cox proportional hazards model (Cox, 1972) for right-censored data and the Fine-Gray proportional

1



subdistribution hazards model (Fine and Gray, 1999) for competing risk data) traditionally scale in

terms of O(N2) operations, which quickly becomes computationally infeasible as the sample size

grows. Incorporating time-varying effects further necessitates a larger dataset since we introduce

multiple time points for each individual. This, in turn, implies the need to store and process a signif-

icantly larger amount of data. Such models, including the Cox model with time-varying covariates,

Cox model with time-varying coefficients, and pooled logistic models, introduce additional com-

putational complexity in terms of data manipulation, likelihood estimation, and survival function

calculations.

In this dissertation, I present three efficient statistical computing approaches, including state-of-

the-art parallel computing techniques on graphics processing unit (GPUs), to tackle several compu-

tational challenges in observational heath data analysis. I focus on widely used statistical models for

exploring time-to-event data and longitudinal data. I harness cutting-edge computing devices and

novel parallel algorithms to accelerate these statistical models when applied to large-scale data. Ad-

ditionally, I develop appropriate data manipulation techniques to optimize memory usage for these

models.

Chapter 2 reviews the basics of counter-factual based causal inference in the context of observa-

tional study. Chapters 3, 4 and 5 each represent independent projects and can be read as standalone

studies.

In Chapter 3, I present a novel parallel algorithm to address the computational bottlenecks of

massive sample-size survival analysis. This chapter introduces time- and memory- efficient single-

pass parallel scan algorithms for Cox proportional hazards models and forward-backward parallel

scan algorithms for Fine-Gray models for analysis with and without a competing risk. Simulation

and real-word experiments in this chapter demonstrate that GPUs accelerate the computation of fit-

ting these complex models in large databases by orders of magnitude as compared to traditional

multi-core CPU parallelism. This implementation opens up the possibility of conducting efficient

large-scale observational studies involving millions of patients and thousands of patient characteris-

tics.
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In Chapter 4, I propose an efficient parallel segmented-scan algorithm to enhance the scalabil-

ity of three important variants of the Cox model: the stratified Cox model, the Cox model with

time-varying covariates, and the Cox model with time-varying coefficients. This chapter introduces

how to convert the computationally demanding parts of the stratified Cox model into segmented

operations. Furthermore, I apply an efficient parallel segmented-scan algorithm to alleviate the

data communication challenges inherent in naive segmented computation. This chapter also de-

tails the transformation of the Cox model with time-varying covariates into a stratified version and

illustrates how to convert a time-varying coefficient into a set of time-varying covariates. These

transformations allow these models to benefit from the aforementioned algorithmic enhancements. I

demonstrate that this GPU implementation significantly accelerates the computation of fitting these

complex models on large-scale and high-dimensional simulated and real-world data by an order-of

magnitude compared to a similarly optimized CPU implementation.

In Chapter 5, I present a memory-efficient approach for fitting pooled logistic regression models

with massive sample-size data. This chapter outlines the necessary data manipulation and likelihood

derivation required to fit a pooled logistic regression without redundantly including the baseline data

for every time point. This implementation enables the execution of large-scale observation studies

using pooled logistic regression model even with limited computing resources.

Finally, Chapter 6 explores future directions and potential applications related to the models

discussed in the previous chapters. I outline a framework to evaluate whether including a competing

risk under the Fine-Gray model for comparative effectiveness estimation reduces systematic error as

compared to the usual Cox model in the large-scale setting.
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CHAPTER 2

Background: Comparative Effectiveness and Safety Study using

Large-scale Observational Data

2.1 Causal inference based on counter-factuals

In clinical and epidemiological studies, we often seek to make inferences about the efficacy or risk

of one treatment compared to a placebo or another treatment regarding a specific outcome. In prac-

tice, we can only observe the patient’s outcome given the received treatment, but not the potential

outcome given the counter-factual treatment (Little and Rubin, 2000). Randomized control trials

(RCTs) can provide this type of inference within the potential outcome framework, as randomiza-

tion ensures that patients in different treatment groups are interchangeable (Hernán and Robins,

2006). Hence, RCTs serve as the gold standard for effectiveness studies while also providing in-

formation about the risk of adverse events during the initial exposure period. However, even large

RCTs contain a limited number of patients compared to the prescribed population after the product

is approved, and they may be underpowered for rare events and long-term effect estimation (Ryan

et al., 2013). While the availability of electronic health records and claims offers new opportunities

to study medication efficacy and risk in large populations, these observational data lack the ran-

domization required for making inferences under the counterfactual framework. Therefore, in this

dissertation, I employ the new-user cohort design and propensity score-based cohort balancing to

achieve a form of randomization when working with observational data.

4



Figure 2.1: The new-user cohort design.

Subject 1
TargetCovariate capture

Outcome

Time

Subject 2
TargetCovariate capture

Subject 3
ComparatorCovariate capture

Subject 4
ComparatorCovariate capture

2.2 New-user cohort design

The new-user cohort design is a vital method employed in observational health studies to assess the

effectiveness and safety of medication. It attempts to emulate a RCT (Hernán and Robins, 2016)

with two groups that are prospectively followed from the initiation of treatment using observational

data. Figure 2.1 illustrates this cohort design. The target cohort comprises new users of the target

treatment over a specified time period, while the comparator cohort contains the new-users of another

treatment. Both cohorts contain only those patients who have at least one diagnosis record for the

target treatment indication. The endpoints are either the time when the outcome occurs or the end

of the observation time in the database. We typically restrict the inclusion criteria to patients with a

washout period before the initial exposure to mitigate the influence of previous usage (Ray, 2003).

The above definition closely resembles the way in which data are collected in RCTs, except for the

treatment is not assigned by randomization. To address the issue of non-randomization when using

observational data, we also capture baseline covariates, including demographics, medical conditions,

drug usage, etc., before the treatment initiation, for propensity score estimation and adjustment.
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2.3 Propensity score estimation and adjustment

The propensity score (PS) is a fundamental statistical tool used to address the issue of non-randomization

in observational studies. It is defined as the probability that a patient is assigned to one treatment

over the other based on observed baseline characteristics. Therefore, propensity scores are often es-

timated through logistic regression, where the binary outcome is the treatment assignment, and the

covariates include baseline patient characteristics captured before treatment initiation. In the context

of high-dimensional observational data, we usually construct an ℓ1-regularized logistic regression

model using all available baseline covariates to achieve cohorts balance (Tian et al., 2018).

After estimating the propensity scores for each patient in both cohorts, we can use various PS-

based methods to reduce bias due to non-randomization by balancing covariates between treatment

groups. One such method is propensity score matching (Rosenbaum and Rubin, 1983), which forms

matched sets of patients in the target and comparator cohorts with similar propensity score values.

Subsequently, we only compare patients within the same matched set in the outcome model, resulting

in a stratified outcome model. Stratification based on propensity scores (Rosenbaum and Rubin,

1984) involves grouping patients into different strata, often around five, based on their propensity

scores. This method, again, requires a stratified outcome model to compare patients within the same

strata. Inverse probability of treatment weighting (IPTW) (Rosenbaum and Rubin, 1983) assigns a

sample weight to each patient based on their propensity score. This weight represents the proportion

of patients with the same baseline characteristics in the population. Consequently, the outcome

model becomes weighted.
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CHAPTER 3

Massive Parallelization of Massive Sample-Size Survival

Analysis

3.1 Introduction

Increasing accessibility of large-scale observational health data provides rich opportunities to study

comparative effectiveness and safety of medical products, but also poses unprecedented challenges.

Typical administrative claims and electronic health record (EHR) databases now follow tens to hun-

dreds of millions of individuals (Hripcsak et al., 2016) with tens of thousands of possible health

conditions, drugs and procedures occurring over decades of patient lives (Suchard et al., 2013). The

massive scales of these databases offer more power for statistical analyses to learn about the effects

of these products on health outcomes but also bring taxing computational burden.

The increasing complexity of common statistical models further exacerbated this big-data prob-

lem. For instance, the Cox proportional hazards model and the Fine-Gray model are widely applied

in comparative effectiveness and safety studies. The computational complexity of likelihood evalu-

ation for the Cox model and the Fine-Gray model naively grows quadratically with sample size. In

addition, some form of regularization (Madigan et al., 2010) is often needed to achieve parsimonious

model selection when entertaining hundreds to thousands of patient characteristics. This regulariza-

tion typically requires computationally intensive cross-validation to select the optimal regularization

parameter(s), further straining limited computational resources.

One can distribute computationally intensive work to the cloud or dedicated clusters that house

multiple central processing units (CPUs) across separate compute nodes that are linked together
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loosely through an Ethernet or InfiniBand network (Holbrook et al., 2021). However, for prob-

lems that require communication between nodes, communication latency may become a severe bot-

tleneck. Since fitting survival models generally requires iterative algorithms, the communication

latency costs often overpower the gains from the parallelized work within each iteration. To min-

imized communications between CPUs, we often follow coarse-scale parallelism, where programs

are split into small number of large tasks (Barney et al., 2010). However, this may result in load

imbalance and only achieve “embarrassingly parallel” benefits (Suchard et al., 2010). Furthermore,

CPU clusters and the cloud can be costly and arcane for many clinical researchers.

Multi-core CPU parallelization is another choice for distributing intensive computational works,

as modern CPU chip usually consists of 2 to 18 or more cores that can run independently. One

limitation of this architecture is that all cores share a single “memory bandwidth”, the amount of

data that can be written to or read from memory in a given period of time (Holbrook et al., 2021).

This approach also suffers from the limited number of cores. Thus, multi-core CPU parallelization

is often only useful for modest-scale problems.

In contrast, graphics processing units (GPUs) offer a relatively inexpensive and efficient ap-

proach for speeding up fine-scale parallel computation. In fine-scale parallelism, we decompose

programs into a large number of small tasks to facilitate load balancing and achieve much higher

level of parallelism than coarse grain approaches (Barney et al., 2010). The GPU is an ideal device

for fine-scale parallelism because (1) it consists of hundreds to thousands of compute cores and (2)

the shared memory architecture of a GPU’s coupled thread block allows for threads to communicate

and share data among each other at a very high speed. Finally, GPUs are often conveniently available

on standard laptops and desktop computers and can be externally connected to a personal computer.

Accelerating statistical computing via GPUs is an emerging discipline. As examples, Zhou et al.

(2010) attain 100-fold speedups with GPUs in high-dimensional optimization. Suchard et al. (2013)

demonstrate that GPU parallelization achieves one to two orders of magnitude improvement over

CPUs for a Bayesian self-controlled case series model. Beam et al. (2016) accelerate Hamiltonian

Monte Carlo using GPUs by efficient evaluation of their probability kernel and its gradient. Terenin
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et al. (2019) demonstrate that Gibbs sampling can run orders of magnitude faster than on a CPU.

Holbrook et al. (2021) apply GPU computing to a Bayesian multidimensional scaling model and

deliver more than 100-fold speedups over serial calculations. Ko et al. (2022) explore the GPU

parallelization for proximal gradient descent on modest-sized ℓ1 regularized dense Cox regression

using PyTorch. In this paper, we leverage GPU parallelization to the Cox model and the Fine-Gray

model through innovative algorithmic mapping that play to the GPU’s strengths for accelerating

observational studies utilizing massive healthcare data. Specifically, we identify the computational

bottleneck of the Cox model and the Fine-Gray model and take advantage of the cutting-edge GPU-

accelerated library CUB (Merrill and Garland, 2016) that navigate this bottleneck. We further im-

plement our GPU advances in the easy-to-use R package Cyclops (Suchard et al., 2013). Our imple-

mentation supports a sparse data format, considering that observational healthcare data are generally

sparse; the vast majority of patient characteristics are encoded as the presence or absence of some

clinical condition, drug exposure, medical procedure or laboratory measurement above or below a

cutoff point within given time-frames. We finally demonstrate that our GPU implementation accel-

erates the computation of fitting these complex models by order-of-magnitude compared to a similar

CPU implementation on multiple GPUs and CPUs with different technical specifications.

3.2 Methods

3.2.1 Cox proportional hazards model

We first establish notation under a typical survival analysis setting. Suppose there are N observed in-

dividuals available in a study. For individual i = 1, . . . ,N, let Yi = min(Ti,Ci) represent their survival

time, where Ti and Ci are the time-to-event time and right-censoring time, respectively. Let δi be

the indicator variable such that δi = 1 if we observe the event occurrence of individual i and δi = 0

if the individual i is censored. Let xi be a P-dimensional vector of time-independent covariates for

individual i. The survival data then consist of triplets {Yi,δi,xi}n
i=1.

The cumulative distribution function of survival times gives the probability that the event of
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interest has occurred by time t, i.e. F(t|x) = Pr(T ≤ t|x). The survival function gives the probability

that the event has not occurred by time t, i.e. S(t) = Pr(T > t). Then we define the hazard function

of time-to-event time as:

h(t) = lim
∆t→∞

Pr(t ≤ T < t +∆t|T ≥ t)
∆t

=
f (t)
S(t)

, (3.1)

where f (t) = d
dt F(t) is the density function of random variable T .

Let βββ = (β1,β2, . . . ,βP)
⊤ be a P-dimensional vector of unknown, underlying model parame-

ters. Assuming survival times y1,y2, . . . ,yN are independent and identically distributed from density

f (y|βββ ) and βββ parameterized the survival function S(y|βββ ), Cox (1972) proposes a semi-parametric

hazard function as the product of an unspecified baseline hazard function h0(yi|βββ ) and an exponen-

tial link function of covariates:

h(yi|βββ ) = h0(yi)exp
(

x⊤i βββ
)
. (3.2)

Parameter estimation of the Cox proportional hazards model follows from the log-partial likeli-

hood

lpartial(βββ ) =
N

∑
i=1

δi

{
x⊤i βββ − log

[
∑

r∈R1(Yi)

exp
(

x⊤r βββ
)]}

, (3.3)

where R1(Yi) = {r : yr ≥ Yi} denotes the set of subjects who are “at risk” for event at time Yi. Then

one often estimates βββ by its maximum log-partial likelihood estimator β̂ββ mple = arg maxβ{lpartial(βββ )}.

This log-partial likelihood has a complicated form due to the repeated calculation of the risk sets,

and thus brings a high computation burden. In practice, we need to keep track of the sum of many

terms for each subject that usually requires O(N2) number of operations and will explode quickly as

N increases (Kawaguchi et al., 2021). This computational burden prevents traditional model fitting

as there can be millions of observations available in observational health databases.
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3.2.2 Fine-Gray model

The Fine-Gray model (Fine and Gray, 1999) generalizes the Cox proportional hazards model for

competing risks time-to-event data that consist of more than one type of event. Unlike the standard

survival analysis setting such as under the Cox model where individuals are only susceptible to one

type of event during follow-up, competing risks arise when individuals can experience more than one

type of event and the occurrence of one type of event will either prevent the occurrence or change

the underlying risk of the others (Noordzij et al., 2013). For individual i, competing risks data inherit

the definition of event time Ti, possible right censoring time Ci, event indicator δi, and covariates xi

from the standard survival data setting, and additionally include an event type variable εi. Without

loss of generality, we assume there are two types of events, where εi = 1 indicates that Ti refers to

the time of primary event and εi = 2 indicates the competing risk event.

The cumulative incidence function (CIF) for competing risks data describes the probability of

failing from the event of interest before the other possible (competing) event. Under the above

setting when ε = 1 indicating the event of interest, the CIF and hazards function are defined as:

F1(t|x) = Pr(T ≤ t,ε = 1|x), and (3.4)

h1(t|x) = lim
∆t→∞

Pr{t ≤ T < t +∆t,ε = 1|{T ≥ t}∪ ({T < t}∩{ε ̸= 1}),x}
∆t

=− d
dt

log{1−F1(t|x)}.

(3.5)

To model the covariate effects on F1(t|x), Fine and Gray (1999) propose the proportional sub-

distribution hazards function:

h1(yi|βββ ) = h10(yi)exp(x⊤i βββ ), (3.6)

where h10(yi|βββ ) is an unspecified baseline subdistribution hazard, and βββ is a P-dimensional vector

of model parameters.

Parameter estimation of the Fine-Gray subdistribution proportional hazards model follows from
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the log-pseudo likelihood

lpseudo(βββ ) =
N

∑
i=1

I(δiεi = 1)

{
x⊤i βββ − log

[
∑

r∈R(Yi)

ŵr(Yi)exp
(

x⊤r βββ
)]}

, (3.7)

where R(Yi) = {r : (yr ≥ Yi) or (yr < Yi and εr ̸= 1)} denotes the risk set at time Yi, and ŵr(t) is a

time-dependent weight based on an inverse probability of censoring weighting (IPCW) technique

(Robins and Rotnitzky, 1992). Assuming two event types exist, the risk set R(Yi) contains two

disjoint set: R1(Yi) = {r : yr ≥ Yi} and R2(Yi) = {r : yr < Yi ∩ εr = 2}, where R1(Yi) is the regular

risk set that includes the observations that have an observed time equalling or after Yi and R2(Yi)

includes the observations that have observed the competing event before time Yi. Here we follow the

design of weighted score functions for incomplete data with right censoring in Fine and Gray (1999)

for unbiased estimation from the complete-data partial likelihood. The time-dependent weights are

defined as ŵr(t) = I(Cr ≥ min(Tr, t))Ĝ(t)/Ĝ(min(Yr, t)), where Ĝ(t) is the Kaplan-Meier estimate

of G(t) and G(t) = Pr(C > t) is the survival function of censoring variable C. Combined, one can

estimate βββ by its maximum log-partial likelihood estimator β̂ββ mple = arg maxβ{lpseudo(βββ )}.

3.2.3 Statistical regularization

Observational healthcare datasets often include a large number of patient characteristics. For exam-

ple, administrative claims usually contain information on all drug prescriptions, medical procedures

and diagnosis codes for patients, and EHRs generally further contain demographics, medical history

notes, laboratory results, and other health status indications (Madigan et al., 2014). A statistical reg-

ularization approach is typical in such high-dimensional data analysis to avoid overfitting. We can

conveniently add a penalty π(βββ ) for βββ to the log-partial likelihood of Cox model or the log-pseudo

likelihood of Fine-Gray model and estimate βββ through these joint penalized likelihoods to achieve

regularization.

For ℓ1 regularization that shrinks many components of βββ to be zero, we define a separable penalty
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for each dimension β j in βββ through

π(βββ ) = ∑
j

π(β j|γ j) =−∑
j

γ j|β j|, (3.8)

where the tuning parameters γ j control the degree of regularization for each dimension. Similarly,

one may employ an ℓ2 penalty on the dimensions of βββ , such that:

π(βββ ) = ∑
j

π(β j|τ j) =−∑
j

β 2
j

2τ j
. (3.9)

Usually one assumes γ j = γ ∀ j and τ j = τ ∀ j, and we choose γ or τ through cross-validation.

Note that statistical inference in the context of regularization remains a challenge. Various stan-

dard errors estimators based on the non-parametric bootstrap have been proposed (Casella et al.,

2010; Chatterjee and Lahiri, 2011), but an approach that is both computationally efficient and statis-

tically valid still remains out of reach. Since we are focusing on computational bottleneck in this pa-

per, we decide to follow the standard practice of regularization in large-scale and high-dimensional

observational health studies (Mueller-Using et al., 2016; Shortreed and Ertefaie, 2017; Bramante

et al., 2021) despite the limitations of regularization.

3.2.4 Maximum likelihood estimation using cyclic coordinate descent

Following Genkin et al. (2007) and Mittal et al. (2014), we exploit a cyclic coordinate descent (CCD)

algorithm to reduce the high-dimensional penalized likelihood optimization down to a large set of

simple one-dimensional optimizations (Wu et al., 2008). This method cycles through each covariate

and updates it using a Newton step while holding all other covariates as constants. The advantage of

CCD is it only requires the calculation of scalar gradients and Hessians and avoids the inversion of

large Hessian matrices in high-dimensional regression.

Specifically, for each one-dimensional optimization problem, we pick the β (new)
j by maximizing

g(β j) = l(β j)+π(β j) while holding all other β j’s unchanged. The second-order Taylor approxima-
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tion of the penalized log likelihood at current β j is:

g(z)≈ g(β j)+g′(β j)(z−β j)+
1
2

g′′(β j)(z−β j)
2. (3.10)

Then the new estimate β (new)
j falls out

β (new)
j = β j +∆β j = β j −

g′(β j)

g′′(β j)
. (3.11)

We employ a trust region approach similar to Genkin et al. (2007) to restrict the the step size so

that the quadratic remains a reasonable approximation to the objective and improve convergence. In

particular, we update β j during iteration k by

∆β (k)
j =−

g′(β (k)
j )

g′′(β (k)
j )

, and (3.12)

β (k+1)
j = β (k)

j + sgn(∆β (k)
j )min{|∆β (k)

j |,∆(k)
j }, (3.13)

where we update the trust region half-width as ∆(k+1)
j = max{2|∆β (k)

j |,∆(k)
j /2}, starting with ∆(0)

j =

1.

Note that both the negated log likelihood of the Cox model and the Fine-Gray model are convex

in βββ , as well as the ℓ1 and ℓ2 penalty terms. Although the ℓ1-norm is nondifferentiable at origin,

we can follow the approach of Wu et al. (2008) to compute the directional derivatives along each

forward and backward coordinate direction for our objective function. In particular, we compute

the directional derivatives in both directions by plugging in sgn(β j) = +1 and sgn(β j) = −1 when

β (k)
j = 0, and only update β j in a direction when the directional derivative is negative, otherwise

we keep β (k+1)
j = 0. Since the objective function is convex, it is impossible for both directional

derivatives to be negative, but either direction with a negative directional derivative will result in

a successful update. Although we lack of rigorous proof of convergence when employing a trust

region, as the induced step sizes fail to meet the strict convergence conditions for this optimization
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problem (Xu and Yin, 2017), we have not observed this issue in our work.

3.2.5 Massive parallelization on GPUs

Parallelization through clusters and multi-core CPUs exhibits a number of drawbacks that makes

these devices ill-suited for massive survival analysis, as discussed in the Introduction. As such, this

paper exploits massive parallelization on GPUs through new fine-scale algorithm decomposition for

speeding up large-scale computations. Here we begin with an overview on GPU computing and

summarize its main strengths and weaknesses.

The modern GPU contains an array of multithreaded streaming multiprocessors (SMs), where

hundreds to thousands of work threads execute simultaneously (Nickolls et al., 2008). Many threads

group together as a thread block, in which threads communicate through shared memory and co-

operate through barrier synchronization. Thread blocks are further grouped into kernel grids. The

programmer specifies the number of threads per block and number of blocks forming the grid. In

our code, we program this ensemble via CUDA, a parallel computing platform that allows general-

purpose computing on GPUs (GPGPU) using a familiar C-like syntax.

Understanding the memory hierarchy of GPUs is important for achieving optimal performance

for parallel programs. Each thread has its own set of processor registers and local memory for

thread-private variables, which provide the fastest memory access. Each thread block has a limited

shared memory pool that is only visible to the threads within this block. All threads also have

access to a large high-bandwidth, but off-chip (global) memory embedded on the GPU card. Shared

memory provide high-speed access, while accessing global memory is hundreds of times slower

(Micikevicius, 2009).

In our implementation, GPUs handle only the most computationally intensive tasks. When such

a task is scheduled, relevant data are first copied from host CPU memory to the global memory on

the GPU device. Then the GPU kernel is launched, which loads data to on-chip memory for defined

operations and writes results to global memory. Finally, results are copied from the device back to
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the host.

This parallel programming model has several limitations that we should keep in mind. First, we

should minimize data transfer between the host and device because the transfer is extremely slow.

Second, accessing global memory on the GPU is also relatively slow, so we want to minimize the

reads from global memory and the writes to global memory. When we do read or write from global

memory, we want sequential threads to access sequential addresses in memory. In this manner, the

GPU “coalesces” multiple memory requests into a smaller number of 128-byte transactions, and we

want to over-subscribe each GPU core with multiple threads, so that the cores remain active through

thread-context-switching and the latency in memory access can be hidden. Third, launching a kernel

also has overhead on the order of microseconds, so it is preferred to combine a series of kernels

into a larger “fused” one. Finally, contemporary GPUs issue single instructions to a “warp" of 32

threads simultaneously, such that all threads within a warp must execute the same instruction each

clock cycle. When threads within a warp follow different data-dependent conditional branches, their

execution becomes temporally serialized; this can cause a performance penalty. To avoid this issue,

one attempts to minimize the number of diverging branches within a warp.

3.2.6 Tree-based parallel algorithms: reduction and scan

Here we review two useful building blocks for massively parallel algorithms: reduction and scan.

Reductions convert an array of elements into a single result. For example, if the reduction operator

is addition, then the reduction takes an array [a0,a1, . . . ,an−1] and returns a single value ∑n−1
i=0 ai.

Reductions are useful for implementing log-likelihood calculations, since independent samples con-

tribute additively to the model log-likelihood. Taking an array [a0,a1, . . . ,an−1], the scan operation

returns the array [a0,a0+a1, . . . ,∑n−1
i=0 ai]. If we start from the beginning of the input array as above,

the resulting array is called a prefix sum. While the resulting array is called a suffix sum if we start

from the end and proceed towards the beginning. Scans are useful in accumulating statistics about

individuals in the risk set in survival analysis. Implementing a sequential version of a reduction or

scan both require ~n additions on an array of length n.
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The parallel versions of reduction and scan use a tree-based approach shown in Figure 3.1. Note

that effective parallelization of these types of binary tree traversals requires low latency sharing of

partial sums across threads with appropriate synchronization, both aspects in which the large number

of threads concurrently executing on the GPU greatly outperform multi-core CPU threads.

To obtain a parallel, work-efficient, and communication-avoiding prefix scan, we invoke the CUB

library (Merrill and Garland, 2016). The efficiency of their prefix-scan approaches a simple copy

operation, as their prefix-scan requires the optimal ~2n data movements: n reads and n writes to the

global memory. The scan is constructed on two levels of organization: (1) a global device-wide scan

and (2) a set of local block-wide scans within each thread block. The local block-wide scan utilize

a reduce-then-scan strategy that can be visually resembled as an “hourglass” shape comprising an

up-sweep and a down-sweep as shown in Figure 3.1c. In the up-sweep phase, we traverse the tree

from leaves to root for computing the partial sums. Then the running prefixes are aggregated in the

block-wide down-sweep traversing back up the tree from root using the partial sums computed in

the up-sweep phase. The global scan implementation within CUB applies a single-pass chained-scan

approach to achieve just ~2n global data movements. The global scan further propose a decoupled

look-back strategy by assigning each thread block a status flag indicating one of the three status:

(1) aggregate (partial sum) of the block is available; (2) prefix of the block is available; and (3)

no information about the block is available for other processor. Then each block will perform the

computation conditional on its predecessor’s status flag. We refer readers to Merrill and Garland

(2016) for more details on this algorithm. In this paper, we extend these parallel algorithms for Cox

models and Fine-Gray models based on the implementation of reduction and scan from the CUB

library.

3.2.7 GPU massive parallelization for parameter estimation

CCD is an inherently serial algorithm in which each iteration is based on the result of the last iter-

ation. As we mentioned earlier, even within an iteration t, CCD cycles through each covariate j for

j = 1,2, . . . ,P one by one and the computation work for the next covariate cannot begin until the
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current update finishes. This serial algorithm however can still benefit greatly from parallelization by

exploiting fine-grain problem decomposition within each iteration. Within each iterate’s covariate

update, careful benchmarks reveal that over 95% of the runtime lies in computing the log-likelihood

gradient g′(β j) and Hessian g′′(β j).

To understand the computational work, let δ= (δ1, . . . ,δN)
⊤ be an N-dimensional column vector

and M be an N ×N loading matrix with entries

Mi j =





1 for j ∈ R1(Yi)

0 otherwise.
(3.14)

Recall that the risk set R1(Yi) contains all observations that have an observed event time equalling or

after Yi. Thus if we arrange the observations by their observed time Yi in decreasing order, matrix M

is clearly a lower triangular, binary matrix, and matrix-vector multiplication M[exp(Xβββ )] becomes

a prefix sum over the elements in exp(Xβββ ), where we define exponentiation (exp) as element-wise

operation. For example, given Yi > Yi′ , the set R(Yi) consists of all the observations from R(Yi′) and

the set {t : Yt ∈ [Yi′,Yi]}, then ∑r∈R(Yi) exp
(
x⊤r βββ

)
= ∑r∈R(Yi′) exp

(
x⊤r βββ

)
+∑r∈{t:Yt∈[Yi′ ,Yi]} exp

(
x⊤r βββ

)
.

Making these substitutions in Equation 3.3, we arrive at

Lpseudo(βββ ) = δ⊤Xβββ −δ⊤ log{Spre[exp(Xβββ )]}, (3.15)

where we define forming the logarithm (log) as element-wise operation, and Spre[ν] as the prefix sum

of arbitrary vector ν. Then the unidimensional gradient and Hessians under the Cox proportional

hazards model falls out as

g′(β j) = δ⊤X j −δ⊤G and (3.16)

g′′(β j) =−δ⊤ (H−G×G) , (3.17)
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where

G =
Spre[exp(Xβββ )×X j]

Spre[exp(Xβββ )]
and (3.18)

H =
Spre[exp(Xβββ )×X j ×X j]

Spre[exp(Xβββ )]
(3.19)

and vector X j is the j-th column of X. Note that we define here multiplication (×) and division (/)

as element-wise operations as well.

While matrix-vector multiplication involving M takes O(N2) operations, identifying the cumu-

lative structure reduces the time complexity to linear by calculating prefix sum Spre[ν] in series, and

parallelization further reduces the time complexity to O(log2 N) due to parallel scan’s tree-based

structure (Harris et al., 2007). Finally, the vector-vector multiplication involving δ⊤ can be cal-

culated as an element-wise multiplication in parallel in constant time and a reduction through a

binary-tree in O(log2 N).

Under the Fine-Gray model, let W = (w1, . . . ,wN)
⊤ be an N-dimensional column vector of pre-

computed censoring weights described in previous section, and N as an N ×N loading matrix with

entries

Ni j =





1 for j ∈ R2(Yi)

0 otherwise.
(3.20)

Recall that R2(Yi) = {r : Yr < Yi ∩ εr = 2} and R1(Yi) and R2(Yi) are disjointed, so N is an upper

triangular, binary matrix and N[exp(Xβββ )×W] is a suffix sum if we arrange the observations by

their observed time Yi in decreasing order. Then making the following substitutions in Equation 3.16

and 3.17 yields the unidimensional gradient and Hessians under the Fine-Gray model

G =
Spre[exp(Xβββ )×X j]+Ssuf[exp(Xβββ )×X j ×W]

Spre[exp(Xβββ )]+Ssuf[exp(Xβββ )×W]
and (3.21)

H =
Spre[exp(Xβββ )×X j ×X j]+Ssuf[exp(Xβββ )×X j ×X j ×W]

Spre[exp(Xβββ )]+Ssuf[exp(Xβββ )×W]
, (3.22)

19



where we define Ssuf[ν] as suffix sum of vector ν.

It is worth noting that the risk set under the competing risk setting consists of two disjoint sets due

to multiple types of event, thus a single pass scan furnishes neither the numerator nor denominator.

Instead, the numerator and denominator of Equation 3.21 and 3.22 can be computed through a

forward (prefix) scan Spre[ν] plus a backward (suffix) scan Ssuf[ν] together (Kawaguchi et al., 2021).

In summary, we can decompose the calculation of the gradient and Hessian for β j in the follow-

ing four sequential steps:

(1) Read in non-zero xi j for i = 1,2, . . . ,N and update [Xβββ ]i as

[Xβββ ](new)
i = [Xβββ ]i + xi j∆β j.

Then perform three element-wise embarrassingly parallel transformations that read from the

new estimate of [Xβββ ], and output [exp(Xβββ )], [exp(Xβββ )×X j] and [exp(Xβββ )×X j×X j]. Here

we should keep in mind that X is generally sparse such that many elements xi j are zeros, and

exponentiation is an expensive operation in floating-point.

(2) Scans:

(a) Under the Cox model, we perform three forward scans that take the three output vectors

of (1) as input, and return Spre[exp(Xβββ )], Spre[exp(Xβββ )×X j] and Spre[exp(Xβββ )×X j ×
X j].

(b) Under the Fine-Gray model, we perform three forward scans and three backward scans

that take the three output vectors of (1) as input, and return Spre[exp(Xβββ )], Spre[exp(Xβββ )×
X j], Spre[exp(Xβββ )×X j×X j], Ssuf[exp(Xβββ )×W], Ssuf[exp(Xβββ )×X j×W] and Ssuf[exp(Xβββ )×
X j ×X j ×W].

(3) An element-wise transformation that takes the output vectors of (2) as well as the indicator

vector δ as input, and outputs two new vectors δ×G and δ× (H−G×G).

(4) Two reductions that take the output vectors of (3) as input, and output two double summations
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δ⊤G and g′′(β j) = δ⊤ (H−G×G). Note that the first term δ⊤X j in gradient g′(β j) can be

precomputed and the value does not change during CCD.

Although parallel computing of the above numerical operations is much faster than serial eval-

uation, one crucial limitation is that a memory transaction involving reading or writing from global

memory may take up to two orders of magnitude more time than a regular numerical operation ap-

plied to the value sitting in the limited number of on-chip registers within a GPU (or CPU for that

matter) (Holbrook et al., 2021). In order to minimize memory transactions, we fuse several of our

operations together for both our serial and parallel implementations. First, we fuse the multiple

scans in step (2) together as a tuple-scan, which takes a tuple of three vectors as input, and outputs a

tuple of three (or six) vectors. Note that in Fine-Gray model, we perform the forward tuple-scan and

the backward tuple-scan on the same tuple of three vectors, but read the input in two opposite direc-

tions simultaneously. Similarly, we can fuse the multiple reductions in step (4) as a tuple-reduction.

Since the element-wise transformations in step (3) take O(1) time with GPU parallelization, step (3)

and step (4) can be regarded as a transformation-reduction. Finally, since both scan and reduction

parallelization share the same binary-tree structure, we further fuse steps (2) - (4) together into a

single kernel. Through fusion, for example, the output tuple from the scans never need to be written

to global memory, nor read back for the later transformation-reductions. The fused kernel saves

2/3 of the reads and writes than executing three separated kernels. It is also worth noting that the

computational work of the gradient and Hessian evaluation share a similar structure and even some

component such as G, such that we have fused the computation of gradient and Hessian together to

circumvent unnecessary kernel overhead and facilitate data reuse of these intermediate terms.

To exploit the sparsity of the design matrix X , we parallelize the transformation in step (1) using

a sparse CUDA kernel, which only reads in and processes the non-zero entries while keeping other

entries as zeros all the time during CCD updates. This sparse kernel saves data movement as well

as reduces memory bandwidth requirements significantly when X is sparse, which is common in

real-world scenarios.

Figure 3.2 illustrates our fused kernel for evaluating the log-likelihood gradient and Hessian on
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the GPU. In this kernel, we spawn S = B× IPT ×G threads, where B is the number of concurrent

threads forming a thread block, IPT is the number of work-items (elements of input) evaluated

per thread, and G = ⌈ N
B×IPT ⌉ denotes the number of thread blocks. Both of the block size B and

the thread grain size IPT are constrained by the hardware and are tunable constants. In practice,

we follow the parameter settings in CUB with B = 128 and IPT = 15 for the fused kernel. For

the sparse kernel we wrote, we choose B = 256 and IPT = 1. In the figure, each box in dashed

line represent a thread block and recall that all threads within a block can access a shared memory

that is a low-latency and on-chip (Nickolls et al., 2008) and is useful for performing the efficient

scan in step (2) and reduction in step (4). The threads in parallel first read the values of tuple

{exp
(
x⊤i βββ

)
,xi j exp

(
x⊤i βββ

)
,x2

i j exp
(
x⊤i βββ

)
} for the current covariate column j from global memory

and then conduct the single-pass adaptive look-back tuple-scan (Merrill and Garland, 2016) utilizing

a reduce-then-scan strategy. Next, the threads read in the values of δ and perform the transformation

with the on-chip cumulative sums and δ . The threads then perform a binary-tree tuple-reduction

using shared memory, and one thread from each block writes its partial aggregates to global memory.

Finally, a single-block reduction kernel sums over the G partial aggregates and writes the gradient

g′(β j) and Hessian g′′(β j) back to global memory.

When CCD processes the j-th covariate, we only need to update β j and corresponding vector

Xβββ if ∆β j ̸= 0. Recall that the computation of ∆β j requires g′(β j) and g′′(β j) when regularization

applies. Since both gradient g′(β j) and Hessian g′′(β j) are computed on the GPU, we avoid P data

transfers between GPU and CPU in one CCD cycle by using a GPU kernel to check if ∆β j ̸= 0 and

then update β j and Xβββ if needed. Figure 3.3 details the workflow to implement CCD using GPU

parallelization.

It is worth noting that thread-divergent branches in a CUDA kernel can substantially impact

performance as execution gets temporally serialized. However, this is not an issue in our implemen-

tation because such branch divergence penalties only occur when threads within the same warp, but

not across warps, need to execute alternative instructions. The branches in scan and reduction kernel

in CUB are mainly due to slightly different instructions for the first processing tile and the last pro-
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cessing tile. Thus the divergence occurs across warps and does not have an impact on performance

penalty.

3.2.8 Multi-stream cross-validation

We use k-fold cross-validation to search for the optimum tuning parameters γ or τ that controls the

strength of regularization. We search for different values for the tuning parameter. For each value,

the procedures are as follows:

(1) Randomly split data into k partitions.

(2) For each of the k partitions, we fit survival models via CCD on the remaining k−1 partitions

and compute the predictive log-likelihood of this partition using the estimated β̂ββ .

(3) Average out-of-sample likelihood across all k folds.

(4) Repeat Step (1) - Step (3) r times to reduce spurious effects from random data partitioning.

Finally, we select the tuning parameter with the smallest average out-of-sample likelihood as the

desired optimal value.

We further improve the efficiency of cross-validation using multi-stream GPU and multi-threaded

CPU approaches. Here, a stream denotes a sequence of operations (kernels) that execute in issue-

order on a GPU (Rennich, 2011). Instead of the fitting k partitioned models serially in a single

(default) stream, we fit the k models across s streams in parallel, where 1 < s ≤ k and each GPU

stream is scheduled by an independent CPU thread. Likewise, for the multi-threaded CPU approach,

s CPU threads evaluate the k models in parallel.

3.2.9 Comparison with an alternative massive parallelization of Cox models

In Ko et al. (2022), the authors presented sample PyTorch code for parallelizing proximal gradient

descent on modest-sized ℓ1 regularized dense Cox regression. Here we provide a qualitative compar-

ison of our method with this alternative approach, focusing on the per-cycle cost of cyclic coordinate
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descent and proximal gradient descent.

A single iteration of proximal gradient descent on ℓ1−regularized Cox regression requires the

following steps:

(1) A matrix-vector multiplication Xβββ .

(2) An element-wise transformation exp(·) on the output vector of (1).

(3) A scan on the output vector of (2).

(4) Two matrix-vector multiplications of Pδδδ and XT[δδδ −Pδδδ ], where the matrix P=(πi j) is defined

as πi j = I(yi ≥ y j)exp(xT
i β )/∑i:yi≥y j exp(xT

i β ).

Without considering the specific parallel library, the above steps contain O(NP) +O(N) +

O(N)+O(N2) operations, respectively. Meanwhile, one sweep of coordinate descent implemented

in Cyclops requires no more than O(NP) operations (the worst case is that the data is dense), as

each of the four steps outlined in Section 3.2.7 only at most requires O(N) operations. Additionally,

step (4) in the proximal gradient descent approach described earlier can also be reduced to O(N) by

utilizing the same trick discussed in Section 3.2.7.

It is important to note that the number of iterations required to achieve an equivalent termination

criterion is highly dependent on the data and is beyond the scope of our manuscript.

We would also like to emphasize that one of the main feature of our implementation is that it

supports and benefits from a sparse data format when available, as discussed in Section 3.2.7.

3.3 Results

We examine the performance of GPU vs CPU computing for fitting our massive sample-size survival

models. To accomplish this, we conduct a series of synthetic experiments to investigate the relative

compute-time of our parallelization across different sample sizes. We then reproduce a real-world

study using our GPU implementation under a Cox model and extend the study to the competing risks

setting. If not specified, we use a system equipped with a 10 core 3.3 GHz Intel(R) Xeon(R) W-2155
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CPU and an NVIDIA Quadro GV100 with 5120 CUDA cores and 32GB RAM that can achieve up

to 7.4 Tflops double-precision point performance.

3.3.1 Kernel fusion

Kernel fusion is one of the main strategy we apply for achieving optimal performance. Taking the

Cox model as an example, we compare three different implementations for steps (2) - (4) in Section

3.2.7:

(a) Separated kernels

(i) Three separated scans using cub::DeviceScan::InclusiveSum,

(ii) One transformation operation using thrust::transform, and

(iii) Two separated reductions using cub::DeviceReduce::Sum.

(b) Partially-fused kernels

(i) A tuple-scan using cub::DeviceScan::InclusiveScan, and

(ii) A transformed tuple-reduction using cub::TransformInputIterator and cub::Devi-

ceReduce::Reduce.

(c) Single fused kernel

We simulate the input vectors with N = 100,000 to 1,000,000 from Uniform(1,2). Figure 3.4

shows the speedup of the fused kernel and the partially-fused kernels over the separated kernels. The

partially-fused kernels are 8− 31 times faster than the separated kernels. The single fused kernel

further generates up to a 42-fold speedup compared with the separated kernels. Table 3.1 shows the

runtimes (in milliseconds) in details when N = 100,000. Interestingly, we find performing a tuple-

scan on three vectors is almost three times faster than performing three separated scans (0.0036 ms

v.s. 0.0098 ms), demonstrating the values of fusion.
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Figure 3.4: Speedup of the fused kernel and the partially-fused kernels over separated kernels for
steps (2) - (4) in Section 3.2.7. The sample sizes range between N = 105 to 106. Solid line shows
the speedup of the fused kernel over separated kernels, and dashed line shows the speedup of the
partially-fused kernel over separated kernels.

Separated Partially-fused Fused
Task kernels kernels kernel

Three scans 0.0098 0.0036 }
0.0052Transformation 0.0415 }

0.0035Two reductions 0.0066
Total time 0.0579 0.0071 0.0052

Table 3.1: Runtimes (in milliseconds) of the separated kernels, the partially fused kernels, and the
fused kernel for steps (2) - (4) in Section 3.2.7 when N = 100,000.

3.3.2 Synthetic experiments

We simulate indicator data X with N = 100,000 to 1,000,000 samples and P = 1000 covariates with

sparsity of 95%, where we randomly choose 5% of the entries uniformly to be 1s. We then draw

β j ∼ N(0,1)×Bernoulli(0.80) ∀ j and

Ti ∼ Exponential
(

x⊤i βββ
)
∀ i,
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where the Bernoulli(0.80) specifies that, on average, 80% of the β j are set to 0 to induce sparsity,

and Ti represent the time-to-event time for individual i. For generating competing risk times, we first

draw:

β1 j ∼ N(0,1)×Bernoulli(0.80) and set β2 j =−β1 j ∀ j,

where βββ 1 is the regression parameter of primary event and βββ 2 is the regression parameter of com-

peting event (Kawaguchi et al., 2021). Then we follow the design of Fine and Gray (Fine and Gray,

1999), where the cumulative incidence function (CIF) of primary event is a unit exponential mixture

with mass 1− p at ∞ when xi = 0:

Pr(T1i ≤ t1|xi) = 1− [1− p{1− exp(−t1)}]exp(x⊤i βββ 1) ,

and draw survival time of competing event T2i using an exponential distribution with rate exp(x⊤i βββ 2).

We set p = 0.5 in practice.
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Figure 3.5: Runtimes (in seconds) and speedup of the GPU implementation relative to the CPU
implementation for Cox and Fine-Gray models with a fixed ℓ1 penalty using a single GPU stream
or CPU thread. The sample sizes range between N = 105 to 106 with a sparsity of 95%. Solid
lines show the total model fitting time, and dashed lines show the time for computing gradients
and Hessians. The gap between the GPU’s solid and dashed lines in the figures identify mostly
computation that we did not port to the GPU, as data transfer between host and device during CCD
updates accounts for less than 10% of this overhead and ∼ 1% of the total model fitting time.
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We fit these simulants under a fixed ℓ1 penalty with γ =
√

2 on a single CPU core and the default

CUDA stream. To provide a comprehensive comparison for the performance gains, we conduct the

experiments on two systems with different technical specifications. System 1 is equipped with a

3.3 GHz Intel(R) Xeon(R) W-2155 CPU (launch date 2017) and an NVIDIA Quadro GV100 (2018)

with 5120 CUDA cores and 32GB RAM that can achieve up to 7.4 Tflops double-precision point

performance. System 2 is equipped with a 2.2 GHz Intel(R) Xeon(R) Silver 4214 CPU (2019) and

an NVIDIA A100 (2020) with 6912 CUDA cores and 80GB RAM that can achieve up to 9.7 Tflops

double-precision point performance. Figure 3.5 presents runtimes comparisons across computing

devices with a fixed number of covariates (P = 1000) with 95% sparsity and varying sample size N.

We report both the total model fitting time and the time for computing gradients and Hessians, where

the latter is our target of parallelization. On system 1 which is equipped with a powerful CPU, we see

that the GPU parallelization delivers up to a 42-fold speedup for both Cox and Fine-Gray models in

terms of computing gradient and Hessians. Despite additional data transfer and device initialization,

GPU parallelization is still 35 × faster for this Cox model and 39 × faster for this Fine-Gray model

relatively to our CPU implementation with one million samples. On system 2 which is equipped

with a more powerful GPU, we see that the GPU parallelization achieves up to a 52-fold speedup

for this Cox model and a 70-fold speedup for this Fine-Gray model. The data transfer between host

and device during CCD updates only accounts for ∼ 1% of the total model fitting time. We can

see a rapid increase of runtimes on the CPU with increasing sample size, while the GPU approach

continues to yield relatively shorter runtimes across varying sample sizes, as the devices is still not

fully occupied.

3.3.3 Multi-stream cross-validated experiments

We further use these synthetic experiments to explore the performance of our approach using multi-

threaded CPU and multi-stream GPU computing by simultaneously searching for an optimal strength

of regularization. Here, we use 10-fold cross-validation with 10 repetitions per fold, resulting in

100 cross-validation replicates to estimate an optimal γ under ℓ1 regularization. On the GPU, we
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distribute the 100 replicates to s CUDA streams driven by s CPU threads. We also allow each of the

CPU threads to process the 100 replicates directly on the CPU to demonstrate the performance of

corresponding multi-threaded CPU parallelization. Figure 3.6 shows the runtimes of ℓ1 regularized

Cox regression on varying number s of threads or streams. Generally, our parallelization achieves

more speedup through multi-stream GPU computing than through multi-core CPU threads alone.

For example, the runtime of fitting a Cox model on 1,000,000 samples reduces from nearly 9 hours

across 8 CPU threads to 14 minutes across 8 CUDA streams. We also observe that the curves

flatten out as number of CUDA streams and CPU threads increases, and this pattern is particularly

obvious in the experiments on smaller sample sizes and on the CPU. This pattern suggests that there

is both less computation to parallelize with relatively small sample sizes and that multi-core CPU

parallelization remains limited by the smaller memory bandwidth available to the CPU.

3.3.4 Cardiovascular effectiveness of antihypertensive drug classes

The large-scale evidence generation and evaluation across a network of databases for hypertension

(LEGEND-HTN) study (Suchard et al., 2019) provided real-world evidence on the comparative

effectiveness and safety of five first-line antihypertensive drug classes using a retrospective, com-

parative new-user cohort design. Specifically, LEGEND-HTN studied the relative risk of 55 health

outcomes of interest , including three major cardiovascular events (acute myocardial infarction, hos-

pitalization for heart failure, and stroke), six secondary effectiveness outcomes, and 46 safety out-

comes. Within each of nine observational health data sources, LEGEND-HTN employed propensity

score matching or stratification for confounding adjustment and Cox proportional hazards modeling

for hazard ratio (HR) estimation between new-users of each of the different drug classes. Interest-

ingly, LEGEND-HTN identified that new-users of thiazide or thiazide-like diuretics (THZs) have a

lower risk as compared to new-users of angiotensin-converting enzyme inhibitors (ACEIs) in terms

of several effectiveness and safety outcomes, even though ACEIs are the most commonly initiated

monotherapy across databases.

Here we examine patients initiating ACEIs and THZs, where the outcome is hospitalization for
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Before matching After matching
THZ ACEi Standardised

difference
THZ ACEi Standardised

difference
Age group (years)
10-14 0.1% 0.1% −0.02 0.1% 0.1% −0.01
15-19 0.4% 0.6% −0.02 0.5% 0.5% 0
20-24 1.5% 1.0% 0.04 1.4% 1.2% 0.02
25-29 3.3% 2.1% 0.07 3.0% 2.8% 0.01
30-34 5.5% 3.8% 0.08 5.1% 4.9% 0.01
35-39 7.7% 6.0% 0.07 7.3% 7.2% 0
40-44 10.1% 8.5% 0.05 9.8% 9.9% 0
45-49 12.2% 11.4% 0.03 12.1% 12.1% 0
50-54 13.8% 14.0% −0.01 13.9% 13.8% 0
55-59 13.0% 14.5% −0.05 13.3% 13.5% −0.01
60-64 10.6% 12.5% −0.06 11.0% 10.9% 0
65-69 8.1% 9.6% −0.05 8.4% 8.5% 0
70-74 5.5% 6.6% −0.05 5.7% 5.9% −0.01
75-79 4.5% 4.9% −0.02 4.6% 4.7% 0
80-84 3.1% 3.5% −0.02 3.2% 3.4% −0.01
85-89 0.7% 0.8% 0.02 0.7% 0.6% 0.01
Gender
Female 63.3% 44.2% 0.39 60.9% 61.6% −0.02
Medical history (general)
Chronic obstructive
lung disease

3.1% 3.6% −0.03 3.1% 3.3% −0.02

Diabetes 7.3% 24.2% −0.48 7.8% 8.2% −0.02
Hyperlipidemia 30.8% 42.4% −0.24 32.3% 32.0% 0.01
Obesity 16.3% 13.8% 0.07 15.4% 15.4% 0
Osteoarthritis 11.5% 11.2% 0.01 11.5% 11.9% −0.01
Medical history (cardiovascular disease)
Cerebrovascular disease 1.5% 2.2% −0.06 1.5% 1.6% −0.01
Coronary arteriosclerosis 2.0% 3.8% −0.11 2.0% 2.1% 0
Heart disease 8.0% 10.7% −0.09 8.0% 8.2% −0.01
Medication use
Anti-inflammatory and
antirheumatic products

47.8% 45.6% 0.04 46.9% 47.6% −0.01

Antithrombotic agents 17.0% 24.4% −0.18 17.4% 17.7% −0.01
Beta blocker 14.1% 20.5% −0.17 14.5% 14.5% 0

Table 3.2: Baseline hypertensive patient characteristics for new-user of THZ and ACEi in the Optum
EHR database. We conduct a propensity score matching with the matching ratio of 1 : 1. Less
standardised difference of population proportions after matching indicate improved balance between
two new-user cohorts in terms of confounders. THZ = thiazide or thiazide-like diuretics. ACEi =
angiotensin-converting enzyme inhibitors.
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heart failure from the Optum® de-identified Electronic Health Record dataset (Optum EHR). Op-

tum EHR represents data from 85 million individuals that are commercially or Medicare insured in

the United States. The data contain medical claims, pharmacy claims, laboratory tests, vital signs,

body measurements, and information derived from clinical notes. A total of 1,014,618 patients

are included in our study, 75.8% of whom initiated an ACEI and 24.2% of whom initiated a THZ.

We consider the main treatment covariate (ACEI or THZ exposure), in addition to 9,811 baseline

patient characteristic covariates. Table 3.2 presents a small selection of major patient baseline char-

acteristics. From all baseline characteristics, we build a propensity score model and match ACEI

and THZ new-users in a 1 : 1 ratio. A total of 434,866 patients were kept for further analysis af-

ter propensity score matching. We find ACEI new-users are more likely to be male, have diabetes,

hyperlipidemia or heart disease comparing with patients initiating a THZ before propensity score

matching. The THZ and ACEi cohorts are well-balanced on all 9,811 baseline patient characteris-

tics after matching, identified through low standardized difference of population proportions. The

average sparsity of patient characteristic covariates is 97.11%, which means 2.89% of the entries are

non-zero, occupying about 2.96GB RAM in sparse matrix format. We first fit a Cox proportional

hazards model to estimate the HR between THZ and ACEi initiation for the risk of hospitalization

for heart failure. We also fit a Fine-Gray model in which we consider acute myocardial infarction as

a competing risk of hospitalization for heart failure, given myocardial infarction substantially ele-

vates the future risk of heart failure. We include all patient characteristics as additional covariates in

the Cox and Fine-Gray models with ℓ1 regularization on all variables except the treatment variable to

achieve a limited form of adjustment for possible residual confounding, and again employ a 10-fold

10-replicate cross-validation to search for optimal tuning parameters. The analyses require almost

two days to fit the regularized Cox model and more than three days to fit the regularized Fine-Gray

model using eight CPU cores, while only taking 3.87 hours and 8.57 hours for the regularized Cox

model and the regularized Fine-Gray model with our GPU implementation. Figure 3.7 reports the

runtimes for regularized Cox and Fine-Gray models on varying numbers of CUDA streams versus

the corresponding multi-core CPU parallelization.
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Through massive parallelization, we find that initializing with a THZ shows better effectiveness

than initializing with an ACEI in terms of hospitalization for heart failure risk under both the Cox

model (HR 0.83, 95% bootstrapped percentile interval [BPI] 0.72−0.94) and the Fine-Gray model

(HR 0.83, 95% BPI 0.71−0.95), where we provide the BPIs as crude measures of sampling variabil-

ity given the challenges in constructing nominal confidence intervals for regularized models (Casella

et al., 2010; Chatterjee and Lahiri, 2011). There are 215 and 134 out of 9,811 baseline covariates

with non-zero effect sizes in the Cox and Fine-Gray models, respectively; these covariates include

age, gender, hyperlipidemia, diabetes, osteoarthritis, and heart disease. While our estimates remain

in line with the LEGEND-HTN study, they are reassuring in two ways. First, massive parallelization

has enabled us to provide additional adjustment for possible residual confounding due to unobserved

imbalance after propensity score matching without overfitting through cross-validation. Second, a

consistent estimate after controlling for an obvious competing risk reduces concern over bias from

informative censoring. Neither including thousands of baseline covariates nor handling a compet-

ing risk at this scale were possible in the original LEGEND-HTN study due to their erroneous time

requirements; both are now feasible.

3.4 Discussion

This paper presents a time- and memory-efficient GPU implementation of regularized Cox and Fine-

Gray regression models for analyzing large-scale time-to-event data with competing risks. We ef-

ficiently implement it in the open-source R package Cyclops (Suchard et al., 2013). In simulation

studies, our GPU implementation is 35− 70 times faster than the equivalent CPU implementation

with up to 1 million samples. In our real-world example with ∼ 400,000 hypertension patients and

∼ 9,000 covariates, massive parallelization reduces the total runtimes of both regularized Cox re-

gression and regularized Fine-Gray regression with cross-validation from a few days on multi-core

CPUs to few hours on a GPU.

The observed speed-up is a combination of algorithmic advances as well as hardware optimiza-
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tion. First, we observe that the cumulative structure of the risk set can be computed by a single-pass

parallel scan algorithm, which can be very efficiently computed in parallel using a tree-based ap-

proach. This enables us to develop a work efficient and communication-avoiding tuple-scan algo-

rithm in accumulating statistics about individuals in the risk set, dramatically speeding up likelihood,

gradient, and Hessian evaluations. In particular, this tree-based scan algorithm takes great advantage

of the high-speed shared memory of thread block on GPUs. Furthermore, as CCD is an inherently

serial algorithm, we fuse multiple serial steps (1) transformations, (2) scans and (3) reductions to-

gether into a single vectorizable kernel. This fusion is possible because transformation is relatively

lightweight operation, and scan and reduction algorithm share the same binary-tree structure. This

kernel fusion reduces expensive memory transactions and kernel overheads which usually prevent

the serial algorithm from benefiting by parallel computing. We also exploit the sparsity of the design

matrix X through a sparse CUDA kernel to further save data movements. Finally, we only off-load

the most computationally intensive routines to the GPU without rewriting the whole codebase.

There are numerous opportunities for improvement. For instance, our multi-stream implemen-

tation for k-fold cross validation has not achieved full concurrency for > 1 replicates, especially for

relatively small sample size (∼ 100,000) due to the low GPU utilization. The other potential problem

is that we have to replicate the design matrix on each CUDA stream, which increases the memory

bandwidth requirement. To overcome these limitations, one may use a single larger kernel to per-

form many repetitions of k-fold cross-validation on a single stream. By increasing the computational

work in a single kernel, we can over-subscribe GPU threads to achieve a higher utilization and im-

prove data reuse, but of course this creates the danger of exhausting register memory. In addition,

we plan to add inference on parameter estimates via bootstrapping by synchronizing the computa-

tion of sub-samples. Both bootstrapping and cross-validation require independent computations on

different sub-samples, which may benefit from parallel computing.

Finally, GPU hardware and libraries are rapidly maturing, and statisticians stand to benefit from

GPU parallelization. We conclude this work with a few tips for educational purposes. First, sim-

ple building blocks such as scans and reductions are ubiquitous in statistical inference. One can
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easily apply cutting-edge parallel implementations of these building blocks to gain instant speed-

up. Second, kernel fusions should be employed whenever possible for serial algorithms to reduce

expensive memory transactions and kernel overheads. Finally, when optimize an existing program,

one should consider off-loading the most computationally intensive routines to the GPU in stages,

before rewriting the whole codebase.
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Figure 3.1: Tree-based parallel implementation of reduction and scan. Each grey box (column)
represents a thread. Each thread runs a series of steps, and some steps must wait for results from
other threads. Subfigures (a) and (b) show the naive binary tree-based approach for reduction and
scan, respectively. Subfigure (c) presents a work-efficient scan algorithm using reduce-then-scan
strategy, which includes an up-sweep phase for accumulating the partial sums and a down-sweep
phase for aggregating the prefix sums. The tree-based approach for reduction and scan generally
requires much data communication between threads but this remains low latency in shared memory,
and thus is suitable for GPU parallelization.
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1.1 Cox proportional hazards model11

�
exp

�
x01bbb

�
,x1 j exp

�
x01bbb

�
,x2

1 j exp
�
x01bbb

� 
(1.1)

�
exp

�
x02bbb

�
,x2 j exp

�
x02bbb

�
,x2

2 j exp
�
x02bbb

� 
(1.2)

�
exp

�
x03bbb

�
,x3 j exp

�
x03bbb

�
,x2

3 j exp
�
x03bbb

� 
(1.3)

(1.4)

We first establish notation under a typical survival analysis setting. Suppose there are n observed individ-12

uals available in a study. For individual i = 1, ...,N, let Yi = min(Ti,Ci) represent their survival time, where Ti13

and Ci are the time-to-event time and right-censoring time, respectively. Let di be the indicator variable such14
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1

Figure 3.2: Fused kernel for evaluating the gradient and Hessian for β j. We fused the single-pass
scan with decoupling look-back (represented by the “hourglass”), the element-wise transformation
(represented by the rectangle), and the reduction (represented by the upside down triangle) together
in a fused kernel. Specifically, each of G blocks (showed as a box in dashed line) reads a batch
of triplets from global memory, performs a single-pass adaptive tuple-scan and a transformation-
reduction to compute local partial sum of gradients and Hessians in shared memory, then efficiently
adds the pair of partial sums in a binary-tree tuple-reduction within a single block and writes the
resulting pair of gradient and Hessian to global memory.
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Figure 3.3: The workflow of implementing CCD using GPU parallelization: for each j = 1, . . . ,P, a
sparse kernel reads in the entries of [Xβββ ] for which xi j ̸= 0 and writes the updated tuple of vectors
to the global memory of the GPU, then a fused kernel performs a tuple-scan and a transformation-
reduction to compute the gradient and Hessian of the log-likelihood with respect to β j. Finally a
conditional kernel computes ∆β j and updates β j and Xβββ if ∆β j ̸= 0. Blue arrows represent data
transactions to or from global memory. No data transfer between the GPU and CPU is needed until
CCD finishes a complete cycle.
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Figure 3.6: Runtimes for ℓ1 regularized Cox and Fine-Gray models with 10-fold 10-replicate cross-
validation using multi-core CPU and multi-stream GPU computing. The sample sizes range between
N = 105 to 106 with a sparsity of 95%.
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Figure 3.7: Runtimes (in hours) for ℓ1 regularized Cox and Fine-Gray models using multi-stream
GPU and multi-core CPU computing. The data contain 434,866 new-users of THZs and ACEIs,
each with 9,811 baseline patient characteristics covariates. We add a ℓ1 penalty on all baseline
covariates and use a 10-fold 10-replicate cross-validation to search for optimum tuning parameters.
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CHAPTER 4

Efficient GPU-Accelerated Fitting of Stratified and

Time-Varying Extended Cox Models

4.1 Introduction

The Cox proportional hazards model (Cox, 1972) reigns as the most popular semi-parametric ap-

proach in survival analysis, providing valuable insights into the relationships between covariates

and the hazard function. Numerous extensions of the Cox model, such as stratification, time-varying

covariates, and time-varying coefficients, have been developed to accommodate the dynamic na-

ture of real-world research problems. The stratified Cox model (Therneau et al., 2000) can handle

covariates that do not satisfy the proportional hazards (PH) assumption by stratifying the data on

them. Additionally, Crowley and Hu (1977) introduces a method to handle time-varying covariates

in the Cox model, enabling the analysis of covariate changes over time. Similarly, Zucker and Karr

(1990) extends the model to incorporate time-varying coefficients, facilitating the examination of

how covariates’ effects evolve over time.

While these contributions have significantly improved the versatility of the Cox model, they

often encounter challenges in handling the ever-expanding size of modern observational datasets,

particularly electronic health record (EHR) and administrative claims sources. EHR and claims

datasets now encompass up to hundreds of millions of individuals, involving hundreds of thousands

of patient characteristics, diseases, medications, and procedures occurring over decades of patient

lives (Hripcsak et al., 2016, 2021). The Cox model itself exhibits quadratic growth with sample

size in its naïve implementation, further exacerbating the computational burden. Moreover, the
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various extensions of the Cox model introduce additional complexities, making the model fitting

process even more challenging. Therefore, statistical computing challenges arise both from the

large-scale data and the intricacies of the extended Cox models. Addressing these challenges calls

for the utilization of advanced computing techniques to scale up survival analysis using these semi-

parametric models.

Research studies on these extensions of the Cox model mainly focus on proposing the novel esti-

mation approaches and remain limited to small to moderate-sized data (Tian et al., 2005; Thackham

and Ma, 2020; He et al., 2022). The utilization of graphics processing units (GPUs) and fine-grained

parallelism to accelerate statistical computations is a relatively new and emerging area within the

field of medical statistics. For instance, Suchard et al. (2013) showcase that massive parallelization

through GPUs yields one to two orders of magnitude improvement over traditional central processing

unit (CPU) parallelization when applied to a computationally demanding self-controlled case series

models. Ko et al. (2022) investigate GPU parallelization for proximal gradient descent on modest

sized ℓ1 regularized dense Cox regression using off-the-self software, such as PyTorch. These stud-

ies highlight the significant performance gains that leveraging GPUs achieves in complex statistical

computations. Recently, we have proposed a time- and memory-efficient GPU implementation of

regularized Cox and Fine-Gray regression models for analyzing large-scale, time-to-event data with

and without competing risks (Yang et al., 2023).

In this manuscript, we leverage massive parallelization to enhance the scalability of the seem-

ingly less parallelizable stratified Cox model, the Cox model with time-varying covariates, and the

Cox model with time-varying coefficients. Specifically, we demonstrate that the Cox model with

time-varying coefficients can be transformed into the Cox model with time-varying covariates when

utilizing discrete time-to-event data. To accomplish this, we reveal that the Cox model with time-

varying covariates shares a similar partial likelihood structure as the stratified Cox model. Con-

sequently, all three extensions of the Cox model we investigate encounter the same computational

bottleneck due to segmented scan, particularly in cases with high stratification or frequent changes

in time-varying effects. Recognizing that segmented operations are not immediately obviously par-
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allelizable, we address this issue by transforming the computational bottleneck into un-segmented

operations (Sengupta et al., 2008). While even un-segmented scans, with their apparent serial out-

put dependence, may not intuitively appear readily parallelizable, we leverage a single-pass parallel

scan algorithm implemented in the cutting-edge GPU accelerated library CUB (Merrill, 2015). We

implement our work in the easy-to-use R package Cyclops. Our GPU implementation significantly

accelerates the computation of fitting these complex models on large-scale and high-dimensional

simulated and real-world data by an order of magnitude compared to a similarly optimized CPU im-

plementation, reducing the fitting time for the analyses containing one million patients from nearly

one day to just one to two hours.

4.2 Methods

4.2.1 The stratified Cox proportional hazards model

The stratified Cox model provides a straightforward approach to handle a covariate that does not

satisfy the proportional hazards (PH) assumption. For example, we can stratify the observations into

different strata based on their disease stage when the disease stage does not meet the PH assumption,

so that only the observations within each stratum share the same baseline hazard function. Let

Tki denote the time-to-event time and Cki be the right-censoring time for individual i in stratum k,

i = 1, ...,nk, and k = 1, ...,K. Here nk is the sample size of stratum k, and K is the number of strata in

the stratified Cox model. Then the total sample size is N = ∑K
k=1 nk. For an individual, the observed

time is given by Yki = min(Tki,Cki), and δki indicates whether the individual fails or is censored at

Yki by the value 1 versus 0. Let xki be a P-dimensional covariate vector for this individual. For this

stratified Cox model with K strata, the hazard for an individual from stratum k is

hk(t|x) = h0k(t)exp
(

x⊤βββ
)
, (4.1)
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where h0k(t) is an unspecified baseline hazard function for stratum k, and βββ = (β1,β2, . . . ,βP)
⊤ is a

set of unknown, underlying model parameters that we wish to estimate. Note that unlike the classic

Cox model that assumes the same baseline hazard function h0(t) for all individuals, a stratified Cox

model allows a distinct baseline hazard function for each stratum but a common or shared set of

model parameters βββ .

The partial likelihood of the stratified Cox model falls out as the product of the partial likelihood

contributions from all strata:

lpartial(βββ ) =
K

∏
k=1

nk

∏
i=1

[
exp
(
x⊤kiβββ

)

∑r∈Rk(Yki) exp
(
x⊤krβββ

)
]δki

, (4.2)

where Rk(Yki) = {r : Ykr ≥ Yki} consists of the set of subjects who remain “at risk” for an event at

time Yki in stratum k.

When dealing with high-dimensional data, researchers may add an ℓ1-penalty into all or a large

subset of the model parameters π(βββ ) = ∑ j π(β j|γ j) = −∑ j γ j|β j| to the log-partial likelihood and

achieve regularization through estimating the joint penalized likelihood (Genkin et al., 2007; Mittal

et al., 2014). In practice, one generally assumes γ j = γ ∀ j and chooses γ through cross-validation

(Mittal et al., 2014).

4.2.2 The Cox model with time-varying covariates

In traditional Cox regression analysis, we usually only measure the covariates at baseline once.

However, certain covariates may change during the follow-up period, such as repeated measurements

in medical research. The Cox model is able to encompass time-varying covariates using a hazard

function

h(t|x(t)) = h0(t)exp
(

x(t)⊤βββ
)
. (4.3)
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The partial likelihood is similar in form to the classic Cox model:

Lpartial(βββ ) =
N

∏
i=1

[
exp
(
xi(Yi)

⊤βββ
)

∑r∈R(Yi) exp
(
xr(Yi)⊤βββ

)
]δi

. (4.4)

In practice, measurements of time are often discrete (Tutz et al., 2016), thus we consider the

common case where xi(t) can be seen as a piecewise-constant function on K time intervals for

individual i = 1,2, . . . ,N (Ngwa et al., 2016) such that

xi(t) =





x1i for t ∈ [t0, t1)

x2i for t ∈ [t1, t2)

. . .

xKi for t ∈ [tK−1, tK)

(4.5)

for some constants 0 = t0 < t1 < t2 < · · · < tK = max(Y1,Y2, . . . ,YN). Correspondingly, we can

transform the time-fixed data, including the survival time and event indicator, into the discrete time

intervals mentioned above. This type of data is also referred to as discrete time-to-event data (Tutz

et al., 2016). Let set Sk = {i : Yi ∈ [tk−1, tk)} for k = 1,2, . . . ,K. Then the partial likelihood becomes

Lpartial(βββ ) =
K

∏
k=1

∏
i∈Sk

[
exp
(
x⊤kiβββ

)

∑r∈R(Yi) exp
(
x⊤krβββ

)
]δi

(4.6)

=
K

∏
k=1

N

∏
i=1

[
exp
(
x⊤kiβββ

)

∑r∈R(Y (aug)
ki ) exp

(
x⊤krβββ

)
]δ (aug)

ki

, (4.7)

where augmented variables Y (aug)

ki = min(Yi, tk) and δ (aug)

ki indicates whether the individual i fails or is

censored at time Y (aug)

ki .

Although observations in different time intervals still share the same baseline hazard function,

the partial likelihood follows the same structure as the stratified Cox model. Now we are able to

fit a Cox model with time-varying covariates as a Cox model stratified on K time intervals with
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the augmented design matrix X(aug) =
[
x11 x12 · · · x1N x21 · · · xKN

]
∈R(K×N)×P, augmented

observed time Y(aug) ∈ R(K×N), and augmented event indicator δ(aug) ∈ R(K×N).

4.2.3 The Cox model with time-varying coefficients

Time-varying coefficient arises in survival analysis when a covariate’s effect on the outcome is not

constant over the follow-up time. For instance, we usually assume that the COVID vaccine efficacy

varies before and after 14 days of vaccination. The proportional hazards assumption of the Cox

model does not hold in this situation, as the hazard ratio comparing two specifications of a time-

varying coefficient is no longer independent of time.

The extension of a Cox model with time-varying coefficients has a hazard function

h(t|x) = h0(t)exp
(

x⊤βββ (t)
)
, (4.8)

where βββ (t) = (β1(t),β2(t), . . . ,βP(t))⊤. The partial likelihood is as follows:

Lpartial(βββ ) =
N

∏
i=1

[
exp
(
x⊤i βββ (Yi)

)

∑r∈R(Yi) exp
(
x⊤r βββ (Yi)

)
]δi

. (4.9)

Often one can specify β j(t) as a simple step function (Zhang et al., 2018). Without loss of generality,

suppose x1 has a time-varying effect on the outcome before and after time ts, then βββ (t) contains

entries

β j(t) =





β11 for j = 1, t < ts

β12 for j = 1, t ≥ ts

β j for j = 2,3, . . . ,P.

(4.10)
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Then some simple calculation shows that

x⊤i βββ (t) =





xi1β11 +∑P
j=2 xi jβ j for t < ts

xi1β12 +∑P
j=2 xi jβ j for t ≥ ts

= x
⊤
i (t)βββ

(aug), (4.11)

where

xi(t) =




(xi1,0,xi2, . . . ,xiP)

⊤
for t < ts

(0,xi1,xi2, . . . ,xiP)
⊤

for t ≥ ts
and βββ (aug) = (β11,β12,β2, . . . ,βP)

⊤. (4.12)

In this way, we can model a time-varying coefficient as a set of time-varying covariates and further

turn a Cox model with time-varying covariates to a Cox model that stratified on time intervals.

4.2.4 Maximum partial likelihood estimation using cyclic coordinate descent

To maximize Lpartial(βββ ) with or without a regularization penalty with respect to βββ , we consider a

cyclic coordinate descent (CCD) algorithm which cycles through each covariate β j and updates it by

a Newton approach while holding all other covariates as contants (Genkin et al., 2007; Mittal et al.,

2014). Specifically, when we cycle through the j-th covariate at l-th iteration, we can rewrite the

partial log likelihood using a second-order Taylor approximation:

g(β j)≈ g(β (l−1)
j )+g′(β (l−1)

j )(β j −β (l−1)
j )+

1
2

g′′(β (l−1)
j )(β j −β (l−1)

j )2, (4.13)

where g′(β (l−1)
j ) and g′′(β (l−1)

j ) represent the one-dimensional objective gradient and Hessian with

respect to β j evaluated at previous iteration, respectively. To minimize the objective, the new esti-

mate at l-th iteration falls out as:

β (l)
j = β (l−1)

j +∆β (l)
j = β (l−1)

j −
g′(β (l−1)

j )

g′′(β (l−1)
j )

. (4.14)
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This CCD approach avoids the inversion of large Hassian matrices in the high-dimensional set-

ting and only requires the scalar gradients and Hessians. This opens up opportunities for fine-grain

parallelization (discussed in the next section). When the objective function is simply the negative

log partial likelihood of stratified Cox model, the gradient and Hessian fall out as

g′(β j) =−
K

∑
k=1

nk

∑
i=1

xki jδki +
K

∑
k=1

nk

∑
i=1

δki
∑r∈Rk(Yki) xkr j exp

(
x′krβββ

)

∑r∈Rk(Yki) exp
(
x′krβββ

) (4.15)

and

g′′(β j) =
K

∑
k=1

nk

∑
i=1

δki
∑r∈Rk(Yki) x2

kr j exp
(
x′krβββ

)

∑r∈Rk(Yki) exp
(
x′krβββ

) −
K

∑
k=1

nk

∑
i=1

δki

(
∑r∈Rk(Yki) xkr j exp

(
x′krβββ

)

∑r∈Rk(Yki) exp
(
x′krβββ

)
)2

. (4.16)

Note that the repeated evaluations in the numerator and denominator of Equations (4.15) and (4.16)

constitute the computational bottleneck. We can conveniently add the penalty π(βββ ) for βββ into the

objective function when the regularization is needed.

With the step size ∆β (l)
j = − g′(β (l−1)

j )

g′′(β (l−1)
j )

derived from Newton’s method, we further improve the

convergence by restricting the step size through a trust region approach (Genkin et al., 2007). Specif-

ically, we initialize a trust region half-width ∆(0)
j = 1 and update it as ∆(l)

j =max{2|∆β (l−1)
j |,∆(l−1)

j /2}.

Subsequently, we constrain the step size when updating the parameter at iteration l as follows:

β (l+1)
j = β (l)

j + sgn
(

∆β (l)
j

)
min{|∆β (l)

j |,∆(l)
j }. (4.17)

When not considering the penalty π(βββ ), the objective function is clearly convex and differen-

tiable everywhere in βββ . However, the ℓ1 penalty is convex but nondifferentiable at origin. Therefore,

we compute the directional derivatives (Wu et al., 2008) in both directions by settting sgn
(

∆β (l)
j

)
=

+1 and sgn
(

∆β (l)
j

)
= −1 at origin. If both directional derivatives are non-negative, we skip the

update for this iteration. If either directional derivative is negative, we update β j in that direction to

minimize the objective. Since the objective is convex, it is impossible for both directional derivatives

to be negative. While we do not provide a rigorous proof of convergence, the trust region method
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was demonstrated effectiveness in our simulations and real-world experiments.

4.2.5 GPU-accelerated statistical computing strategies

There are two distinct strategies in parallel computing: coarse-grained parallelism and fine-grained

parallelism. The former divides the problem into a small number of large tasks due to limitations

in data communication between cores. This strategy is typically used in parallel computing on

clusters and multi-core CPUs (Suchard et al., 2010). In contrast, fine-grained parallelism breaks

down computational workloads into a large number of tiny tasks that run in almost lockstep. This

strategy requires significant data communication between cores and is well-suited for GPUs since

they have shared memory (Holbrook et al., 2021).

While conventionally used for graphic rendering, GPUs are growing in popularity in recent years

for their potential to accelerate various scientific and engineering applications. In this section, we

briefly review the basics of parallel computing on GPUs and discuss strategies for accelerating sta-

tistical computing using fine-grained parallelism.

Understanding the hierarchical structure of threads and memory of GPUs is crucial for achieving

high performance in GPU programming. Each thread can access its own set of processor registers

and local memory for thread-private variables. Collections of up to 512 threads on current hardware

group together as a thread block that has a limited shared memory only accessible to the threads

within this block, enabling efficient data communication within the same block. A grid is a col-

lection of blocks that execute the same kernel function. GPUs also sport large, but off-chip global

memory accessible by all executing threads, regardless of if they live in the same or different blocks.

Accessing consecutive addresses in this global memory by threads in the same block leads to co-

alesced transactions, delivering much higher memory high-bandwidth than for most CPUs. It is

important to note that the register memory, local memory of a thread, and shared memory of a block

are high-speed on-chip memory, while accessing global memory is relatively slower. Therefore,

minimizing the number of global memory transactions can greatly improve the performance of GPU
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programs.

GPU parallel computing works by executing kernels that are functions that run in parallel across

a set of parallel threads, following a single instruction, multiple thread (SIMT) architecture. To

maximize the utilization of hardware resources, contemporary GPUs employ warp and lockstep

execution (NVIDIA, 2023). A warp is a group of 32 parallel threads that execute the same instruction

simultaneously. If threads within a warp diverge due to data-dependent branches, the warp executes

each branch path serially, and the threads converge back to the same path after all branch paths

complete. Thus, minimizing the number of diverging branches within a warp is crucial for achieving

high performance. Although a branch penalty exists when the branch divergence occurs within a

warp, modern GPUs are significantly more efficient at branching code than prior parallel processors

with the single-instruction, multiple-data (SIMD) architecture.

In this paper, we adopt a widely used heterogeneous computing model (NVIDIA, 2023) between

the CPU and GPU for accelerating computation. Specifically, we begin by offloading the most

computationally demanding parts of the program to the GPU, while allowing the rest of the program

to run on the CPU. Note that this requires moving data between the host (CPU) and device (GPU)

memory, which can be slow due to limited bandwidth between devices, thus we aim to minimize

these data movements. Once we partition the program across the host and device appropriately,

the powerful computing capabilities of the GPU can make up for the expensive data movement by

performing intensive calculations much faster than the CPU.

The computationally demanding portions in our case can benefit significantly more from fine-

grained parallelism on GPUs than from traditional coarse-grained parallelism on CPUs. In tradi-

tional coarse-grained parallelism on CPUs, we divide the computational work into a limited number

of batches (depending on the number of available CPU cores), with each core handling the compu-

tations for a batch of samples. In contrast, we can achieve much higher degree of parallelization

on GPUs by breaking down the computation into numerous small, parallelizable tasks that require

extensive inter-task communication.
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4.2.6 Efficient parallel segmented-scan on GPUs

Here we introduce the crucial building blocks for massive sample size Cox regression analysis with

and without stratification on GPUs: the scan and segmented scan.

A scan procedure takes an input array a = [a0,a1, . . . ,an−1] and an associated binary operator

⊕, and produces an output array b where bi = a0 ⊕ ·· ·⊕ ai. Implementing a scan serially is triv-

ial and requires O(n) operations. While the output array displays obvious serial dependence in its

values, this procedure remains parallelizable when communication costs between threads is low.

The naïve parallel scan algorithm is based on a balanced, binary tree of operations. This algo-

rithm reduces the computational complexity to the height of the tree O(log2 n), assuming parallel

operations execute in O(1) at the same level on the tree. This naïve algorithm, however, performs

∑log2 n
d=1 (n−2d−1) =O(n log2 n) binary operations in total, even more than the sequential scan, though

in parallel. Therefore, the naïve algorithm is not work-efficient, as it may require additional compu-

tational resources.

A work-efficient scan algorithm arises from a reduce-then-scan strategy that who operations

visually resemble an “hourglass” shape consisting of an up-sweep phase and a down-sweep phase.

In the up-sweep phase, we traverse the tree from leaves to root for computing a set of partial sums. In

the down-sweep phase, we traverse back up the tree from the root to aggregate the scan output using

the partial sums computed in the up-sweep phase. Overall the two phases perform 3(n−1) =O(n)

operations and is work-efficient for large arrays.

A segmented scan procedure takes an additional segment descriptor with the same dimension of

the input array that encodes how the input array is divided into segments. For example, a segmented

scan of the + operator over an array of integers a = [3,1,7,0,4,1,6,3] with the segment head flags

f = [1,0,1,0,0,1,0,0], which divide the input array into three subarrays, produces an output array

b = [3,4,7,7,11,1,7,10]. Suppose the input array is divided into K segments according to the given

segment descriptor, a naïve parallel implementation can easily perform K separate scan procedures.

This implementation, however, can be very inefficient when K is relatively large due to the overhead
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of launching and monitoring for the completion of K separate kernels, each of which may contain

only a small amount of work. More importantly, the shorter data access patterns depending on how

the input array is divided can interfere with coalescing global memory transactions.

Alternatively, we can avoid the additional overhead and suboptimal data access patterns by trans-

forming a segmented scan into a single regular scan (Schwartz, 1980; Blelloch, 1990; Sengupta et al.,

2008). The idea is that given the input array a, segment head flags f , and associated binary operator

⊕, one combines f and a together as a new input array of flag-value pairs ( fi,ai) and constructs a

new binary operator ⊕s based on ⊕ and f , such that

( fi,ai)⊕s ( f j,a j) := ( fi | f j, if f j = 1 then a j else ai ⊕a j). (4.18)

Hence, the algorithm’s efficiency is independent of how the input array is segmented or the total

number of segments. Figure 4.1 illustrates this efficient segmented scan algorithm, employing the

reduce-then-scan strategy.

4.2.7 GPU massive parallelization for parameter estimation

In this section, we aim to show how to accelerate the computational work in 4.2.4 using the parallel

building block presented in 4.2.6.

We first analyze the time complexity of our CCD algorithm presented in 4.2.4. In one cycle of

CCD iteration, we update β j for j = 1, . . . ,P using Newton’s updates (4.14), each of which in turn

requires evaluating the univariate gradient (4.15) and Hessian (4.16). The first term in gradient (4.15)

requires O(K) +O(∑K
k=1 nk = N) operations. Naïve computation of the second term in gradient

(4.15) and both terms of Hessian (4.16) require O(K)+O(∑K
k=1 n2

k) due to the additional inner sums

in both numerator and denominator.

We can tackle fortunately all inner sums involving Rk(Yki) as scan, if we arrange the observations

within a stratum k by their observed time Yki in decreasing order. Recall that the risk set Rk(Yki) =

{r : Ykr ≥ Yki} contains the individuals in stratum k who have an observed time equaling or after Yki,
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(1, 3) (0, 1) (1, 7) (0, 0) (0, 4) (1, 1) (0, 6) (0, 3)

(1, 3) (1, 4) (1, 7) (1, 7) (0, 4) (1, 1) (0, 6) (0, 9)

(1, 3) (1, 4) (1, 7) (1, 7) (0, 4) (1, 1) (0, 6) (1, 10)

(1, 3) (1, 4) (1, 7) (1, 7) (0, 4) (1, 1) (0, 6) (1, 10)

(1, 3) (1, 4) (1, 7) (1, 7) (0, 4) (1, 1) (0, 6) (1, 10)

(1, 3) (1, 4) (1, 7) (1, 7) (1, 11) (1, 1) (1, 7) (1, 10)

Figure 4.1: An efficient parallel segmented scan algorithm based on binary tree. The efficiency
of this algorithm is independent of how the input array is partitioned into segments or the number
of segments. Each data point consists of a flag-value pair ( fi,ai), where fi is a binary indicator
indicating whether the i-th element serves as the head of a segment, and ai represents the value
intended for scan. The binary operator applied to these pairs is defined as ( fi,ai)⊕s ( f j,a j) :=
( fi | f j, if f j = 1 then a j else ai ⊕a j), where ⊕ := + in this example. Each vertical grey box rep-
resents an individual thread. Every thread executes a sequence of steps, some of which necessitate
awaiting outcomes from other threads. The algorithm utilizes a reduce-then-scan strategy, which can
be vitalized as an “hourglass” shape comprising an up-sweep phase and a down-sweep phase. The
binary tree-based parallel algorithm requires a considerable amount of inter-thread data communi-
cation, but this latency remains low in shared memory, making it suitable for GPU parallelization.

i.e. Rk(Yki)∈ Rk(Yki′)∀Yki >Yki′ . Define S[ν] as scan on a arbitrary vector ν. Taking the denominator

of the second term of gradient as an example, we can write the terms within stratum k as

{
∑

r∈Rk(Yki)

exp
(
x′krβββ

)
}nk

i=1

= S
[{

exp
(
x′kiβββ

)}nk
i=1

]
, (4.19)

each with only cost O(nk) operations. In this way, we can reformulate the second term of gradient

as 2K scans and reduce the time complexity from O(K)+O(∑K
k=1 n2

k) to O(K)+O(∑K
k=1 nk). Sim-

ilarly, the time complexity of Hessian can be reduced to O(K)+O(∑K
k=1 nk). However, this can still
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be inefficient when encountering highly-stratified data, due to the factor K in the time complexity.

To this end, we further combine the data across strata xk ∈R(nk×P) together as X=
[
x1 · · · xK

]
∈

RN×P, and turn K scans to a single K-segmented scan. Define head flag vectors fk = { fki}nk
i=1 such

that

fki =





1 for i = 1 and

0 for i = 2, . . . ,nk,

(4.20)

for all k and Sseg[ν] as segmented scan on the vector ν with the head flag f=( f11, . . . , f1n1, f21, . . . , fKnK).

Then we can write the denominator of the second term in the gradient across all K strata simply as

Sseg

[{
exp
(
x′sβββ
)}N

s=1

]
, (4.21)

where s = ∑k−1
k′=1 nk′ + i for i = 1, . . . ,nk and k = 1, . . . ,K. Further, define exponentiation (exp),

multiplication (×) and division (/) as element-wise operations on vectors. The univariate gradient

(4.15) and Hessian (4.16) falls out as:

g′(β j) = −δ⊤X j +δ⊤
Sseg[N1]

Sseg[D]
and (4.22)

g′′(β j) = δ⊤
Sseg[N2]

Sseg[D]
−δ⊤

(
Sseg[N1]

Sseg[D]
× Sseg[N1]

Sseg[D]

)
, (4.23)

where

D = exp(Xβββ ) , (4.24)

N1 = X j × exp(Xβββ ) and (4.25)

N2 = X j ×X j × exp(Xβββ ) . (4.26)

Note that the vectors X j, Xβββ , f, D, N1, and N2 in the above equations are all of the same dimension

(N ×1). Furthermore, we can avoid the costly matrix-vector multiplication Xβββ in CCD by updating
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[Xβββ ]s as shown below:

[Xβββ ](new)
s = [Xβββ ](old)

s + xs j∆β j, (4.27)

for s= 1,2, . . . ,N. Regarding the vector-vector inner-products, such as δ⊤X j, we efficiently compute

these through a parallelized reduction (i.e., sum) as ∑N
s=1 δsxs j. Note that X is generally sparse where

most of xs j are zeros, resulting in relatively small computations for the above processes. Now we

have successfully reduced the time complexity of the univariate gradient (4.15) and Hessian (4.16)

to O(N), and the time complexity of one cycle of our CCD algorithm to O(NP) under the stratified

Cox model, regardless of the number of strata or the data distribution among them.

To parallelize the evaluation of the gradient (4.15) and Hessian (4.16) on a GPU, we generate

S = B× IPT ×G threads. Here, B represents the number of concurrent threads forming a thread

block, IPT is the number of input items per thread, and G = ⌈ N
B×IPT ⌉ indicates the number of thread

blocks. The block size B and thread grain size IPT are constrained by hardware and are tunable

constants. In our implementation, we choose B = 128 and IPT = 15 for the binary-tree based kernel

following the parameter settings in CUB, and B = 256 and IPT = 1 for other kernels we have

developed to compute Equations (4.24) through (4.27). Within each thread block, B threads can

communicate through shared memory and execute computations in parallel. For instance, the threads

first read the nonzero entries of X j and Xβββ (old), and then update Xβββ (new), D, N1, and N2 concurrently

using Equations (4.27), (4.24), (4.25) and (4.26), respectively. Subsequently, the threads read the

values of D, N1, N2, and the head flag f, and perform an efficient segmented scan operation (as

detailed in 4.2.6) using the resources of shared memory. Finally, the threads execute the element-

wise transformations and binary reductions as shown in Equations (4.22) and (4.23), completing the

evaluation of the gradient and Hessian for β j within a single iteration of the CCD process.
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4.3 Results

We assess the computational efficiency of our GPU implementation versus a similar CPU imple-

mentation in fitting the extensions of Cox model to large-scale sample sizes comparable to those

we often see in EHR and claims data sources. To accomplish this, we conduct a series of synthetic

experiments fitting stratified Cox models across various numbers of strata and sample sizes. We then

replicate a real-world study to evaluate the efficacy of antihypertensive drug classes using a stratified

Cox model based on matching subjects through their propensity scores. Finally, we investigate the

time-varying effect of a safety outcome associated with the above drug classes employing a Cox

model with time-varying coefficients. Our computational setup comprises a system equipped with

a 10-core, 3.3 GHz Intel(R) Xeon(R) W-2155 CPU, and an NVIDIA Quadro GV100 boasting 5120

CUDA cores and 32GB RAM, capable of achieving up to 7.4 Tflops double-precision floating-point

performance.

4.3.1 Synthetic experiments

In this section, we illustrate the computational performance of our GPU implementation compared

to the corresponding CPU implementation on stratified Cox model in the highly optimized R package

Cyclops (Suchard et al., 2013; Mittal et al., 2014). We simulate a binary design matrix X under two

sample sizes and two dimensions. We randomly set 5% of the entries uniformly to be 1s to mimic

the sparse pattern in the observational healthcare data. For each sample size, we stratify the data

into various number of strata. We generate the P-dimensional βββ from a standard normal distribution

with mean zero and unit variance, where we set 80% of the entries to 0 to induce model parameter

sparsity as well, that is

β j ∼ N(0,1)×Bernoulli(0.80) ∀ j.
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Figure 4.2: Runtimes per iteration (in seconds) and speedup of the GPU implementation relative to
the CPU implementation for stratified Cox models with a fixed ℓ1 penalty. We conduct experiments
using two sample sizes: N = 105 and N = 106, and two dimensions: P = 1,000 and P = 2,000,
both with a sparsity of 95%. For each sample size, we fit stratified Cox models with various number
of strata. In addition, we include our previous work on the unstratified Cox model for comparison
purposes.
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We fit these simulants using a stratified Cox model under a fixed ℓ1 penalty with γ =
√

2, as

further executing the cross-validation does alter the relative performance of the different implemen-

tations here. Figure 4.2 presents the runtime per iteration and the speedup of GPU paralllelization

relative to a similar CPU implementation. We also include the performance of GPU parallelization

of an unstratified ℓ1 Cox model (Yang et al., 2023) for comparison purposes, as shown in the left-

most point in all figures. We observe that the GPU paralllelization delivers up to a 13-fold speedup

and a 43-fold speedup with 100,000 samples and one million samples, respectively. To put it into

an absolute scale, we reduce the total fitting time of a stratified Cox model with one million samples

and 50,000 strata from 17 minutes to 23 seconds. We also observe a rapid increase of runtimes

on the CPU with the most highly stratified data, while the GPU approach consistent performs well

across slightly and highly stratified data. At K =N/2, speculative instruction execution, namely poor

branch prediction of where strata start, takes it toll on CPU performance. The relevant performance

improvements align with the computational complexity analysis discussed in 4.2.7.

4.3.2 Cardiovascular effectiveness of antihypertensive drug classes

In this section, we explore the relative effectiveness of two major hypertension drug classes to

demonstrate the advantages of massive parallelization within a real-world example. While most

treatment recommendations derive from randomized clinical trials that offer limited comparisons

between a few agents, large-scale observational studies can provide valuable insights for estimat-

ing the relative risk of important cardiovascular and safety outcomes associated with different drug

classes. We primarily focus on two major hypertension drug classes, angiotensin-converting enzyme

inhibitors (ACEIs) and thiazide or thiazide-like diuretics (THZs), and one important cardiovascular

outcome, hospitalization for heart failure. We follow a comparative new-user cohort design, as out-

lined in the Large-scale Evidence Generation and Evaluation across a Network of Databases for

Hypertension (LEGEND-HTN) study (Suchard et al., 2019).

For our experiments here, we use patient health records on antihypertensive drug classes from

the Optum® de-identified Electronic Health Record dataset (Optum EHR). This dataset encompasses
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information from 85 million individuals in the United States who are commercially or Medicare

insured. We extract a subsample of 946,911 patients diagnosed with hypertension. Among these

individuals, 77% initiate treatment with an ACEI, while the remaining 23% initiate treatment with

a THZ. We consider the relative effectiveness of THZ and ACEI in preventing hospitalization for

heart failure as main treatment covariate. Additionally, we include 9,976 baseline patient character-

istic covariates, encompassing clinical condition, drug exposure, and medical procedure. The patient

characteristic covariates exhibit an average sparsity of 97%, indicating that only 3% of the entries

contain non-zero values. We construct a propensity score model incorporating all baseline covariates

(Tian et al., 2018) and stratify the individuals into varying number of equally-sized strata based on

their propensity score estimates. Specifically, we consider three commonly used strata configura-

tions: S = 5,10, and 20. Finally, we apply the stratified Cox proportional hazards model to estimate

the hazard ratio (HR) between THZ and ACEI initiation with respect to the risk of hospitalization

for heart failure. We include all patient characteristics and treatment covariates in the stratified Cox

model with ℓ1 regularization on all covariates except the treatment covariate, and employ a 10-fold

cross-validation to search for optimal tuning parameters. Considering that statistical inference under

ℓ1 regularization remains challenging, we calculate 95% bootstrapped percentile intervals (BPIs)

from bootstrap samples. Table 4.1 reports the runtimes (in hours) for both our GPU parallelization

and a similar CPU implementation and the HRs estimates with their BPIs. Our GPU parallelization

delivers an 11-fold speedup across varying numbers of strata.

4.3.3 Time-varying effect of safety outcome of antihypertensive drug classes

In this section, we investigate the time-varying effect of a safety outcome of ACEIs: cough (Dicpini-

gaitis, 2006). We utilize a similar comparative new-user cohort design and the same dataset as in the

previous section to conduct this analysis. Rather than stratifying individuals using propensity scores,

we employ a 1:1 matching strategy for THZ and ACEI new-users. After propensity score matching,

we retain a total of 407,828 patients who developed cough with 9,666 baseline covariates for further

analysis. The Kaplan-Meier plots in Figure 4.3 show the survival of patients with cough over time.
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Runtime (hr)
Strata GPU CPU HR (95% [BPI])

5 1.41 16.2 0.83 (0.72, 0.93)
10 1.38 15.8 0.81 (0.73, 0.90)
20 1.57 18.0 0.82 (0.73, 0.93)

Table 4.1: Computation times (in hours) for fitting the stratified Cox model for the optimum value
of ℓ1 regularization parameter (found through 10-fold cross-validation) across GPU and CPU im-
plementations and the HR estimates and their 95% BPIs comparing the relative risk of hospitaliza-
tion for heart failure risk between new-users of thiazide or thiazide-like duretics and angiotensin-
converting enzyme inhibitors. The data contains 946,911 individuals with 9,977 covariates. We
stratify the individuals into varying number of equally-sized strata based on propensity score esti-
mates.

We can see that the relative risks of THZ and ACEI exposure on cough are different within 10 days

of initiating treatment and after 10 days. Therefore, we treat the treatment covariate as two time-

varying covariates accordingly. To assess the time-varying effects, we transform the Cox model with

a time-varying coefficient to a stratified Cox model with two strata using the method explained in

4.2.3 and 4.2.2. The stratified Cox model for cough contains 812,432 observations and 9,668 covari-

ates after appropriate data wrangling. We apply an ℓ1 penalty on all covariates except the treatment

covariates (within 10 days of initiating treatment and after 10 days). We then performed a 10-fold

cross-validation to identify the optimal tuning parameters. Our GPU parallelization significantly

reduces the analysis time from 21.6 hours to 1.86 hours.

Through massive parallelization, we find that initializing with a THZ has less risk of developing

cough than initializing with an ACEI after 10 days (HR 0.67, 95% BPI 0.65− 0.69), while both

medications exhibit similar risks within 10 days (HR 0.98, 95% BPI 0.87− 1.13). Note that the

HRs correspond to the exponentiated β coefficients. The difference between two coefficients is 0.38

with a 95% BPIs ranging from 0.30 to 0.48, reinforcing that the relative risks of developing cough

differ within and after 10 days of initialization. Previously, dealing with time-varying coefficients

on this scale posed challenges in the original LEGEND-HTN study due to computational time bur-

dens. However, with the implementation of our GPU parallelization, this complex analysis has now

become feasible.
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4.4 Discussion

This article presents an efficient GPU implementation of stratified Cox and the time-varying Cox

models for analyzing large-scale time-to-event data investigating time-varying effects, building upon

our prior work on standard Cox models (Yang et al., 2023). We implement this efficient method in

the open-source R package Cyclops (Suchard et al., 2013). In simulation studies, the GPU imple-

mentation for the stratified Cox model shows a speedup of 43 times compared to the equivalent CPU

implementation, even with up to 1 million samples. In our real-world examples examining the time-

varying risk of developing cough, massive parallelization significantly reduces the total runtimes

from nearly a day to less than 2 hours.

The main idea of this article is to simplify a complex model into a more concise one and enhance

its implementation efficiency through the innovative use of massive parallelization. In particular,

we demonstrate that a Cox model with time-varying coefficients can be transformed into a Cox

model with time-varying covariates when using discrete time-to-event data. Moreover, we identify

that the Cox model with time-varying covariates shares the similar partial likelihood structure as

the stratified Cox model. Finally, we apply an efficient segmented scan algorithm to address the

same computational bottleneck of the three extended models due to the similar partial likelihood

structure. This algorithm significantly accelerates likelihood, gradient, and Hessian evaluations,

thereby improving the overall efficiency of our approach.

There is potential for improvement in our approach. First, both transformations detailed in 4.2.3

and 4.2.2 require augmenting the original design matrix due to repeating the time-independent co-

variates over time or creating additional time-varying covariates to estimate the time-varying effect

in multiple time intervals. While data augmentation can be memory-inefficient, it is possible to save

memory by developing mappings on the original data, as both data augmentation techniques involve

duplications of the original data. Additionally, the cyclic coordinate descent algorithm we use in

the case with ℓ1 regularization may lack of rigorous theoretical proof of convergence. Although it is

possible that the results to be oscillate around the global minimum, we have not observed this issue
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in our experiments.

Nonetheless, this work provides valuable tools for massively sized Cox models with stratification

and time-varying effects. In recent years, the growing interest in leveraging large-scale observational

healthcare data sources has driven the demand for such models. For instance, Shoaibi et al. (2021)

explored the comparative effectiveness of famotidine in hospitalized COVID-19 patients using data

from the COVID-19 Premier Hospital Database, which encompasses approximately 700 hospitals

throughout the United States. Similarly, Kim et al. (2020) studied the comparative safety and effec-

tiveness of two popular anti-osteoporosis medications on 324,049 patients across three electronic

medical records and six claims databases. The ability to rapidly perform analyses using such large

models has opened doors to comprehensive sensitivity assessments regarding stratification designs.

Moreover, this work initiates large-scale comparative effectiveness and safety studies with time-

varying effects, addressing the limitation of tools for the time-varying Cox models.
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Figure 4.3: Kaplan Meier plots showing survival of patients with cough over time. The red line
represents THZ exposure, while the blue line represents ACEI exposure. The upper plot displays all
the data included in the analysis, while the lower plot focuses on data within 30 days of exposure.
We can see that the risks of developing cough within the first 10 days are similar in both groups,
while ACEI carries a higher risk compared to THZ after 10 days.
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CHAPTER 5

Memory-Efficient Massive Sample-Size Pooled Logistic

Regression

5.1 Introduction

Time-to-event data and longitudinal data are commonly used in epidemiology and medical studies.

The former follows subjects for a period and records the time until an event of interest happens,

such as the occurrence of a specific disease or a particular disease stage. The latter involves tracking

the same measurements repeatedly over time, such as laboratory results. Many statistical methods

have been proposed to analysis time-to-event data and longitudinal data. The Kaplan-Meier survival

estimator is the most commonly used non-parametric method (Kaplan and Meier, 1958). While

it is straightforward to calculate and easy to understand, it cannot estimate survival adjusted for

covariates. The Cox proportional hazards model is commonly used for analyzing time-to-event data

and can also handle time-dependent covariates in its extended form (Cox, 1972; Crowley and Hu,

1977). While it is especially useful for estimating the hazard ratio, it suffers from limitations in

estimating the baseline hazard and direct hazard. More importantly, the proportional hazard model

is generally not collapsible, which means the marginal model when omitting one covariate will not

have the same regression coefficients for the remaining covariates (Martinussen and Vansteelandt,

2013).

The pooled logistic regression model, on the other hand, is a fully parametric approach that

provides the estimates of baseline hazard and direct hazard, while also exhibiting collapsibility (Guo

and Geng, 1995). This approach simply fits a logistic regression using pooled data of repeated
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observations from time-to-event data and longitudinal data. Taking a binary outcome indicating the

occurance of event of interest in each time interval, pooled logistic regression is able to estimate the

hazard of the event of interest during each time interval. Furthermore, it allows for adjustments of

time-varying covariates collected from longitudinal data.

5.2 Methods

5.2.1 Pooled logistic regression

The pooled logistic regression using the pooling of repeated cbservations (PRO) method was devel-

oped to analyze repetitive observations gathered from the Framingham Study cohort (D’Agostino

et al., 1990). The PRO approach treats relatively short time intervals as miniature follow-up studies,

combining observations across all intervals to explore the short-term progression of the disease. For

instance, let’s consider monitoring n0 patients at risk for a disease over K time intervals. During the

k-th interval, we observe dk events and a loss of d′k patients for k = 1,2, . . . ,K. We can represent

the number of at-risk patients at the start of the k-th interval as nk, where nk = nk−1 −dk−1 −d′
k−1.

The PRO approach combines at-risk subjects at the start of every interval, resulting in a total of

∑K−1
k=0 nk subjects. Finally, we apply logistic regression using a pooled sample comprising ∑K−1

k=0 nk

observations and ∑K
k=1 dk events.

The basic assumption for this approach is that the number of events dk follows a binomial distri-

bution given nk:

dk|nk ∼ Binomial(nk,h(tk)) and is independent for all k, (5.1)

where h(tk) represents the discrete hazard rate (Efron, 1988). The discrete hazard rate is defined

as the conditional probability of observing an event during the k-th time interval, given that the

individual has remained event-free until the start of the k-th interval. This enables us to estimate the
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discrete hazard rate using logistic regression:

log
(

h(tk|x(tk−1))

1−h(tk|x(tk−1))

)
= β0(tk)+x(tk)⊤βββ , (5.2)

where x(tk) represents a collection of longitudinal measured covariates.

5.2.2 Relation of pooled logistic regression to time-dependent Cox regression

The study by D’Agostino et al. (1990) has demonstrated that, under appropriate assumptions, the

pooled logistic model and the Cox model with time-dependent covariates are asymptotically equiv-

alent.

In the pooled logistic regression, we can solve the discrete hazard rate from Equation 5.2 as

follows:

h(tk|x(tk)) =
1

1+ exp{−
[
β0(tk)+x(tk)⊤βββ plr

]
} . (5.3)

Let’s denote G(x(tk)) = exp{−
[
β0(tk)+x(tk)⊤βββ plr

]
} for simplicity. When G(x(tk)) is small, we can

approximate h(tk) through Taylor expansion:

h(tk|x(tk)) =
1

1+G(x(tk))
= 1−G(x(tk))+G(x(tk))2 −G(x(tk))3 · · ·

= 1−G(x(tk))+o(G(x(tk)))

≈ 1−G(x(tk)). (5.4)

Note that the requirement of small values of G(x(tk)) can be guaranteed by assuming the probability

of event occurrence in short intervals is small.

Likewise, we can approximate the hazard function under the Cox model with time-dependent

covariates in a very similar way. In the continuous survival model, we can express the relationship
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between the survival function and hazard function as:

logS(t) =−
∫ t

0
h(u)du. (5.5)

For the Cox regression, the hazard function is defined as:

logh(t|x(t)) = h0(t)exp[x(t)⊤βββ cox], (5.6)

where h0(t) is unspecified baseline hazard. Then the hazard function become

h(tk|x(tk)) =
S (tk|x(tk))

S (tk−1|x(tk−1))
= exp

{
−
∫ tk

tk−1

h0(u)exp[x(tk)⊤βββ cox]du

}
. (5.7)

Let H(x(tk)) =
∫ tk

tk−1
h0(u)exp[x(tk)⊤βββ cox]du for the sake of simplicity, we can further approximate

the hazard function by its Taylor expansion:

h(tk|x(tk)) = exp(−H(x(tk)))

= 1−H(x(tk))+
H(x(tk))2

2!
− H(x(tk))3

3!
· · ·

= 1−H(x(tk))+o(H(x(tk)))

≈ 1−H(x(tk)) (5.8)

when the value of H(x(tk)) is small. Similarly, this requirement can be justified by assuming that

the probability of an event occurring in a short interval is small.

Thus, the pooled logistic model and the Cox model with time-dependent covariates become

asymptotically equivalent when the time intervals are short and the probability of an event within

each interval is small. Both approximations involve two components: the baseline hazard and the

effect of explanatory variables. The key difference between the two models is the way they treat

baseline hazard. In the pooled logistic regression, we are able to directly quantify the baseline

hazard by estimating the intercept term β0, while the Cox model leaves the baseline hazard h0(t)
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unspecified.

5.2.3 Estimating both fixed effect and time-varying effect using discrete time-to-event data

We consider a specific scenario in which we only measure the covariates once but assume that these

covariates have time-varying effects on the outcome. For patient i, let Yi denote the survival time and

δi be the event indicator for i = 1,2, . . . ,N. The baseline covariate is denoted as zi j for individual

i = 1,2, . . . ,N and j = 1,2, . . . ,P. While we may collect continuous time-to-event data, adapting a

pooled logistic regression calls for its discretization into time intervals.. We consider K time intervals

divided by time points tk for k = 0,1,2, . . . ,K, where 0 = t0 < t1 < t2 < · · · < tK = max(Yi). Let’s

assume there are known time-varying effects f0(t) on the intercept and f j(t) on baseline covariates

for j = 1,2, . . . ,P. In practice, f j(t) can take various forms, such as linear time, squared time, cubed

time, etc. Consequently, we formulate the pooled logistic regression as follows:

log
(

hi(tk)
1−hi(tk)

)
= β0 + γ0 f0(tk)+

P

∑
j=1

β jzi j +
P

∑
j=1

γ jzi j f j(tk) (5.9)

for i= 1,2, . . . ,N and tk ≤Yi. The parameters to be estimated include θθθ = [β0,β1, . . . ,βP,γ0,γ1, . . . ,γP]
⊤,

where the β s represent the fixed effect of baseline covariates on the outcome, and the γs represent

the time-varying effect.

5.2.4 Data wrangling for efficient pooled logistic regression

Fitting the pooled logistic regression as illustrated by Equation 5.9 necessitates to augment the orig-

inal design martix Z from RN×(1+P) to Z(aug) ∈ RN′×2(1+P), where N′ = ∑N
i=1 Ki and Ki is the largest
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integer such that tKi ≤ Yi:

Z(aug) =




1 z11 . . . z1P g(t1) f1(t1)z11 . . . fP(t1)z1P
...

...
...

...
...

...

1 z11 . . . z1P g(tK1) f1(tK1)z11 . . . fP(tK1)z1P

1 z21 . . . z2P g(t1) f1(t1)z21 . . . fP(t1)z2P
...

...
...

...
...

...

1 z21 . . . z2P g(tK2) f1(tK2)z21 . . . fP(tK2)z2P

1 z31 . . . z3P g(t1) f1(t1)z31 . . . fP(t1)z3P
...

... . . . ...
...

... . . . ...

1 zN1 . . . zNP g(tKN ) f1(tKN )zN1 . . . fP(tKN )zNP




.

The reason for requiring a wider design matrix is that we are estimating both fixed effects and time-

varying effects for intercept and all baseline covariates. The operation of doubling the design matrix

is not the main issue, the real challenge arises from pooling observations over time repeatedly. This

can lead to N′ being significantly larger than N, with the extreme scenario being N′ = NK.

The full log-likelihood of the pooled logistic regression is derived as follows:

l(θθθ) =
N

∑
i=1

Ki

∑
k=1

{
δi loghi(tk)+(1−δi) log(1−hi(tk))

}

=
N

∑
i=1

Ki

∑
k=1

{
Yi log

(
hi(tk)

1−hi(tk)

)
+ log(1−hi(tk))

}

=
N′

∑
s=1

{
Ys [Z(aug)θθθ ]s − log

{
1+ exp([Z(aug)θθθ ]s)

}}
. (5.10)

In practice, we can avoid constructing the large augmented design matrix Z(aug) when estimating

the log-likelihood, as the values of baseline covariates remain constant over time. Given that we are

working with discrete time-to-event data, we can list all possible values of time-varying effects at

K specified time points in K vectors: fk = [ f0(tk), f1(tk), . . . , fP(tk)] for k = 1,2, . . . ,K. Then, the
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entries of Z(aug)θθθ can be derived as follows:

Z(aug)θθθ =




z⊤1 βββ +
(
z⊤1 ⊙ f1

)
γγγ

...

z⊤1 βββ +
(
z⊤1 ⊙ fK1

)
γγγ

z⊤2 βββ +
(
z⊤2 ⊙ f1

)
γγγ

...

z⊤2 βββ +
(
z⊤2 ⊙ fK2

)
γγγ

z⊤3 βββ +
(
z⊤3 ⊙ f1

)
γγγ

...

z⊤Nβββ +
(
z⊤N ⊙ fKN

)
γγγ




, (5.11)

where ⊙ represents the element-wise vector-vector multiplication.

We utilize the cyclic coordinate descent (CCD) algorithm to iterate through each covariates

and employ a Newton approach to update the covariate while holding all other covariates contants

(Genkin et al., 2007; Mittal et al., 2014). Specifically, we iteratively update the entries of Z(aug)θθθ

using CCD, as shown below:

[Zθθθ ](new)
s =




[Zθθθ ](old)

s + zs j∆β j for fixed effects j = 0,1, . . . ,P

[Zθθθ ](old)
s + zs j f j(tk)∆γ j for time-varying effects j = 0,1, . . . ,P

, (5.12)

where s = ∑i−1
i′=1 Ki′ + k for k = 1, . . . ,Ki and i = 1, . . . ,N.

Through this data wrangling, we have successfully saved memory by reducing the design matrix

from Z(aug) ∈ RN′×2(1+P) back to RN×(1+P), resulting in a 2N′
N -fold memory reduction.
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5.3 Results

In this section, we investigate the risk of developing cough of two antihypertensive drug classes:

angiotensin-converting enzyme inhibitor (ACEI) and thiazide or thiazide-like diuretic (THZ). We

extract data from the Optum® de-identified Electronic Health Record dataset. Our analysis includes

a total of N = 407,828 hypertension patients who initiated ACEis or THZs treatment with 9,666

baseline covariates. Observation time span from 1 to 3,631 days, with a median duration of 89 days.

We discretize time-to-event data into 5-day intervals, 10-day intervals, and 20-day intervals, resulting

in a pooled dataset with N′ = 12,229,077 rows, N′ = 6,168,188 rows, and N′ = 3,233,896 rows,

respectively. Through efficient data wrangling, we avoid constructing an extensive design matrix in

RN′×P, resulting in a remarkable 8-fold to 30-fold reduction in memory usage.

We include all baseline characteristics and treatment covariates in the pooled logistic model with

ℓ1 regularization on all covariates except the treatment covariate and intercept. We employ a 10-

fold cross-validation to search for optimal tuning parameters. Table 5.1 reports the hazard ratio

(HR) estimates with their 95% bootstrapped percentile intervals (BPIs) across different settings of

discretizing time-to-event data.

Interval days N′ HR (95% [BPI])
5 12,229,077 0.68 (0.41, 0.74)

10 6,168,188 0.68 (0.62, 0.96)
20 3,233,896 0.68 (0.63, 0,96)

Table 5.1: The data contains 407,828 individuals with 9,667 covariates (including treatment). We
discretize time-to-event data into 5-day intervals, 10-day intervals, and 20-day intervals.

5.4 Discussion and Future work

This chapter outlines a memory-efficient approach for fitting pooled logistic regression models using

discrete time-to-event data. The methodology has been implemented in the open-source R package

Cyclops. This work presents a valuable tool that enables the pooled logistic regression analysis on
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massive sample sizes even with limited computing resources.

There are several potential improvements to consider. Firstly, while the current work is capable

of exploring the time-varying effects on baseline covariates, it lacks the inclusion of time-varying

covariates collected longitudinally. We could extend the current work to incorporate time-varying

covariates through more intricate data wrangling, although there might not be as much opportu-

nity for memory saving in handling time-varying covariates due to their non-constant nature over

time. Second, the current work primarily focuses on enhancing memory efficiency. Parallelization

could assist in improving time efficiency when fitting massive sample-sized pooled logistic regres-

sion models. Specifically, the computation of Z(aug)θθθ could be accelerated using intricate operations

including segmented-reduction.
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CHAPTER 6

Discussion and Future directions

This dissertation presents three efficient statistical computing advances for conducting large-scale

observational analyses. In Chapter 3, I developed a time- and memory-efficient GPU implementation

to fit massive sample-sized Cox proportional hazards models and Fine-Gray subdistribution hazard

models, achieving one to two orders of magnitude speedup. Chapter 4 extended the work from

the previous chapter to incorporate stratified Cox models, Cox models with time-varying covariates,

and Cox models with time-varying coefficients, using an efficient parallel segmented scan algorithm.

Chapter 5 was inspired by the need for doubly-robust casual inference in large-scale observation data

and delivers a memory-efficient approach for fitting massive sample-sized pooled logistic regression.

Taken together, these advances empower the observational healthcare researcher with many more

analysis choices than previously tractable at scale.

There is room to further improve the computational efficiency of PS-adjusted outcome modeling

at scale in the future. Firstly, while we usually employ an iterative optimization approach in fitting

outcome models, this dissertation focuses on improving computational efficiency within a single

iteration. To further enhance scalability, one may explore iterative optimization approaches other

than the cyclic coordinate descent (CCD) method to improve convergence. Given that the CCD

approach used in this dissertation lacks a convergence proof in the context of ℓ1 regularization,

one may explore other iterative optimization approaches that exhibit faster convergence to reduce

computational demands.

Secondly, while this dissertation emphasizes on parallelization within a single outcome model,

there is potential to extend parallelization to a distributed framework. Observational data are often

72



stored in different location, and privacy concerns may hamper the data sharing across machines.

Therefore, it is worthwhile to explore a communication-efficient distributed method for large-scale

and high-dimensional Cox model. Such an endeavor has the potential to foster collaborative research

and enhance the scalability of PS-adjusted outcome modeling on a broader scale.

Finally, such a growth of analysis choices begs the emerging question: which model or models

should one use for a specific research study tied to a set of observational data sources to provide the

most reliable evidence?

I conclude this dissertation by laying possible future research to help answer this conundrum.

In comparative effectiveness estimation, one aims to estimate the effect of one exposure (the target

treatment) on the risk of an outcome, compared to another exposure (the comparator treatment)

(Schuemie et al., 2020). Existing observational health care data, such as administrative claims and

electronic health records, enabled numerous large-scale comparative effectiveness studies (Chan You

et al., 2021; Kim et al., 2020). However, various sources of systematic error threaten the reliability of

estimation results in such observational study, including study design, selection bias, confounding,

model misspecification, and measurement error.

An issue in study design is the neglect of competing risks. Competing risks arise in time-to-event

data when subjects are also at risk of another type of event that precludes the event of primary inter-

est. For example, many comparative safety studies model the adverse event of certain medication as

the primary outcome, so death due to non-medication cause is a natural competing risk. Such com-

peting risk information is often available in observational data, but the standard Cox proportional

hazards model used in comparative effectiveness study ignores competing events. In contrast, the

Fine-Gray subdistribution hazard model takes the competing risk events into consideration.

There exists a large body of prior work comparing the Cox model to the Fine-Gray model for

relative risk estimation (Ranstam and Robertsson, 2017; Noordzij et al., 2013; Lau et al., 2009; Hsu

et al., 2017; Feinstein et al., 2012; Feakins et al., 2018) when competing risk information is available.

Most of this work lives in the setting of randomized trials in which systematic error is minimized,

was developed for a specific use-case or lacks real-world evidence verification. Moreover, while one
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can assume that the true relative risk of negative controls is 1, the true relative risk of the real-world

positive controls (whose true relative risk are not equal to one) are often unknown.

Using the tools I developed in Chapter 3, one can now explore whether including a competing

risk under the Fine-Gray model for comparative effectiveness estimation reduces systematic error as

compared to the usual Cox model in the large-scale setting.

Consider evaluating the Cox and Fine-Gray models in comparative effect estimation using co-

hort study of new-users. Each control can be defined as a quintuplet containing target, comparator,

outcome, competing outcome, and effect size. One can take death as competing outcome for all neg-

ative and positive controls. We can also define competing outcome for a specific primary outcome,

for instance, considering acute myocardial infarction as a competing outcome for the hospitalization

of heart failure. For negative controls, neither the target treatment nor the comparator treatment is

believed to cause the corresponding outcome, thus the true hazard ratio of the target treatment ver-

sus the comparator treatment on the outcome is 1 (Lipsitch et al., 2010; Schuemie et al., 2014). For

example, let y denote the outcome counts, the footnote t denote the target treatment, and c denote

the comparator treatment, then one has

yti(t) = yci(t),∀i ∈ {1, ...,N(t)}, (6.1)

where N(t) is the number of subjects at risk at the beginning of an interval. Therefore the true hazard

ratio become

h = E
(

lim
∆t→0

∑i yti([t, t +∆t])/Nt(t)
∑i yci([t, t +∆t])/Nc(t)

)
= 1. (6.2)

One can create synthetic positive controls to address the limitations associated with real-world

positive controls (Schuemie et al., 2018). One can construct synthetic positive controls based on

negative controls by intentionally injecting simulated additional outcomes in the target treatment

cohort until it achieved the desired hazard ratio. For example, if one wants to generate three positive
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controls with target hazard ratios of h = 1.5, h = 2, and h = 4 starting from a negative control with

hazard ratio of h = 1, one artificially increases the number of outcomes yti in the target cohort until

the desired h was achieved.

For each combination of method, database, and control, one then generates a hazard ratio as an

effect size estimate and a 95% confidence interval to quantify the uncertainty associated with the

estimate. One then computes a set of metrics based on these estimates to evaluate the performance

of regression and classification for both negative and positive controls.

• Mean squared error (MSE): MSE between the log of hazard ratio point-estimate and the log

of the true hazard ratio.

• Coverage: How often the true hazard ratio is within the 95% confidence interval.

• Mean precision: Mean precision is computed as 1/(standard error)2. A higher precision is

desired as it indicates a narrower confidence interval.

• Area under the Receiver Operating Characteristic Curve (AUC): AUC checks the ability to

discriminate between positive controls and negative controls based on the point estimate of

hazard ratio.

• Type 1 error and type 2 error: Type 1 error measures how often the null was rejected (at

α = 0.05) for negative controls, while the type 2 error measures how often the null was not

rejected (at α = 0.05) for positive controls.

• Non-estimable: The proportion of the controls that the method was not able to produce an

estimate, since in some cases one cohort observed zero outcomes or there were no objects left

after propensity score matching.

Confounding adjustment is necessary to achieve cohort balance in a new-user cohort study design

using observational data. The propensity score (PS) estimates the probability that a subject was

assigned to a specific treatment (target treatment). Various confounding adjustment strategies based

on PS can be used in evaluation setting. All evaluations capture a large set of baseline patient
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covariates in the year prior to exposure for PS estimation, and PS values are computed using large-

scale regularized logistic regression (Suchard et al., 2013).

One can consider four variants of PS adjustment (Austin, 2011):

• 1-on-1 matching.

• Variable ratio matching (Rassen et al., 2012).

• Stratification.

• Inverse probability of treatment weighting (IPTW) with trimming (Brookhart et al., 2013; Xu

et al., 2010).

One can also consider two variations of the survival outcome model:

• An outcome model (Cox or Fine-gray regression) with treatment as the only covariate.

• A full outcome model including all covariates that are also included in the PS with regulariza-

tion on all variables except the treatment variable to achieve double robustness (Funk et al.,

2011).

After executing the above design variants to both Cox and Fine-Gray models, we can evaluate the

experiment’s performance metrics to identify the superior model and design choice across diverse

scenarios. For example, we can assess model choices for estimating medication effectiveness in

the context of competing risks by reviewing the experiment results for heart failure with stroke or

acute myocardial infarction as competing events. Similarly, we can investigate design choices for

analyzing rare and acute safety outcomes by examining the experiments related to acute pancreatitis.
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