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Abstract: 

LBL-22407 

Linear response theory is employed to analyse the rate of energy 
dissipation in a binary one-body potential well whose two parts are con­
nected by a small "window" and are in slow relative motion. It is shown 
that suitable randomization assumptions lead to the "completed wall­
and-window formula" , including the contribution from the change in the 
mass asymmetry. The developed general formal framework provides a 
well-founded basis for systematic calculation of corrections in cases that 
are less than ideal, such as are encountered in quasi-fission reactions. 

*This work was supported in part by the Director, Office of Energy Research, Division of 
Nuclear Physics of the Office of High Energy and Nuclear Physics of the U.S. Department 
of Energy under Contract No. DE-AC03-76SF00098. 
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1 Introduction 

As was first recognized by Hill and Wheeler, [1] the long nucleonic mean free path 
has profound consequences for the character of large-scale nuclear dynamics. The 
first comprehensive study of this "new dynamics", often referred to as one-body 
nuclear dynamics (since the motion of the nucleons is governed by the changing 
one-body mean field), was carried out about ten years ago within the framework of 
classical kinetic theory. [2] It led to two remarkably simple formulas for the rate of 
energy dissipation: the wall formula pertaining to a slowly deforming mononucleus, 
and the window formula pertaining to a dinucleus whose two parts are in slow 
relative motion. The wall and window dissipation formulas have been employed 
extensively, with a considerable degree of success, to low-energy nuclear dynamical 
processes as occuring in fusion, fission, and damped reactions. It is our aim, in 
this paper, to clarify the conditions for the validity of the standard window formula 
and to develop a formal framework for systematic improvement in cases where the 
conditions are less than ideal. 

Such developments are particularly relevant for the study of quasi-fission reac­
tions, which were discovered only relatively recently and have provided new testing 
ground for theories of nuclear dynamics (see, for example, ref. [3]). These re­
actions are believed to proceed through shapes which are somewhat intermediate 
between mononuclei and dinuclei: they are rather compact and yet they possess 
a well-defined (and slowly evolving) mass asymmetry. As a consequence of this 
more complicated geometry, quasi-fission reactions are harder to treat theoretically 
and calculations have, so far, employed simple ad hoc interpolations between the 
wall and window formulas.[4] This situation is far from satisfactory. In order to 
make progress in our understanding of these processes, it is necessary to develop 
the one-body dissipation theory to encompass also such transitional shapes. It is 
also towards this goal that the present study is oriented. 

2 Characterization of the problem 

The validity of the simple wall formula has been studied in a variety of more refined 
formal frameworks. Most relevant for the present study is the work by Koonin and 
Randrup based on linear response theory.[5] In that work it was shown that the 
one-body energy dissipation rate can be expressed as 

. . 10 
A A • ak 

Q = lim (Hd dt'Uo(t') - Uo(t)t] HI aH ) . 
t-+-oo t 0 

(1) 

The instantaneous one-body field is described by the Hamiltonian Ho and (;0 is 
the associated evolution operator. The slow distortion of the nucleus is described by 
the time-dependent perturbation HI(t). The above expression can be interpreted 
as follows. At t = 0 the nucleons have the phase-space distribution fo(Ho), which is 
assumed to depend only on the energy Ho(r,p). (Note that the factor afo/aHo in 
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(1) ensures that only nucleons near the Fermi surface contribute.) Each phase-space 
point (r, p) is traced back in time from t = 0 to t -+ -00; the brackets indicate the 
corresponding phase-space integral over (r, p). The first term follows the trajectory 
(R, P) of an individual nucleon as it bounces around in the unperturbed field Ha, 
receiving impulses HI(R, P) along the way due to the perturbation HI' The second 
term is a correction which is instrumental in ensuring convergence when regularities 
are present in the shape or its rate of distortion. The expression (1) is identical to 
equation (4.19a) of ref. [5], except for an inversion of the time direction. 

If the perturbation consists of inducing local movements of the surface elements 
in a leptodermous cavity, the impulses HI are received as the nucleon is reflected 
from the wall. The dissipation rate then has the form of a double surface integral, 

(2) 

where u(a) and u(b) are the (normal) velocities of the surface at the points a and 
b. The dissipation kernel ,(a, b) is non-local, i. e. depends on points far apart on 
the surface. However, if the nuclear shape and its rate of distortion are sufficiently 
irregular, only the last reflection at t ~ 0 contributes to the time integral in (1) and, 
consequently, only the local part of , contributes, ,(a, b) ~ pv 82

( a - b), and the 
standard wall formula emerges, Qwall = pv J d2au(a)2. In ref. [5] the important role 
of regularities was illustrated for the especially simple cases of slab. geometry and 
nearly spherical shapes. The regularities conspire to induce correlations between 
impulses received at subsequent wall reflections, in such a manner as to diminish or, 
for the smallest multipolarities, completely cancel the local contribution stemming 
from the first reflection. (In particular, if the nucleus is subjected to an overall uni­
form translation or rotation, the cancellation is complete and there is no associated 
energy dissipation.) 

The work reported in ref. [5] can be seen as providing a "proof" of the simple wall 
formula, by establishing a formal tool for studying the conditions of its validity and 
incorporating corrections arising from regularities. The present paper reports an 
analogous application of (1) to a dinuclear geometry, in which the system consists of 
two distinct parts, in relative motion, joined by a small "window." This will provide 
a similar "proof" of the window formula and clarify the conditions for its validity, 
particularly the role played by the character of the nucleonic motions. Moreover, the 
work brings us in a good position to confront the transitional shapes characteristic 
of quasi-fission reactions, since we have now a general treatment which gives the 
proper description in the mononuclear and dinuclear extremes. 

The type of system considered is illustrated in fig. 1. The dinuclear potential well 
has two distinct parts, A and B, joined by a small planar window whose normal 
direction is chosen as the z-axis. The two parts are subjected to small uniform 
translations, U A and U B , but are otherwise not changing in time. This yields the 
simplest situation for which window friction should arise. Any intrinsic distortions 
of A or B are expected to contribute separate dissipation terms of the mononuclear 
type discussed above (and approximately given by the wall formula). 
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In the usual derivation of window friction [2] the nucleons in part A are assumed 
to have a velocity distribution which is shifted by the amount U = U A - U B relative 
to those in part B. More precisely, these velocity distributions are assumed for 
those particles which are about to cross the window. This corresponds closely to 
how the distributions would actually develop, provided the two parts are irregular 
and the window is small. In the linear-response treatment there is only one velocity 
distribution, namely the one associated with the unperturbed potential Ho, which 
in the present case is the dinuclear potential displayed in fig. 1 without any relative 
motion. The effect of the relativedinuclear motion is manifested in the impulses 
impacted to the particles when they interact with the nuclear boundary, as explained 
below eq. (1). The analogue of having displaced velocity distributions is then that 
the unperturbed trajectories be suitably random. 

As will become clear from the developments later on, the standard window 
formula can be derived under suitable idealizations regarding the character of the 
nucleonic motions in the binary container. These are summarized below. To specify 
position near the window, it is convenient to employ cylindrical coordinates, so that 
the window plane corresponds to z = 0 and a location on the window is specified 
by the transverse position p. 

I. Leptodermous window. It is assumed that the opening between 
the two parts of the system is leptodermous, i. e. the environment felt 
by a particle at the window is as in the bulk parts of the system, 
H(r = (p, z = 0), p) = p2/2/1 + Vo, except possibly for a relatively 
thin region near the window boundary. Thus the window is assumed 
to be "fully open", without any potential barrier between the two bulk 
parts. This requirement is stronger than the usualleptodermous condi­
tion which only refers to the two main parts of the system. 

II. Ergodicity. The particles within a phase-space element dRdP 
originally located at the window will in the course of time eventually 
cover the corresponding energy shell uniformly. (Note that this require­
ment does not imply that such relaxation is achieved between two suc­
cessive window crossings.) 

III. Randomization of direction. When an average is performed over 
the element's initial position on the window, p (which is equivalent to 
considering a thin phase-space slice covering the window uniformly), 
then the particles appear to be randomized when they return to cross 
the window. This requirement implies that particles that have crossed 
the window at some random position have, at any subsequent crossings, 
a momentum direction which is randomly distributed over the unit hemi­
sphere. 
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IV. Randomization of residence time. When an average is performed 
over the element's initial position on the window, as in III above, then 
the time between two successive window crossings, the particle's resi­
dence time, is a random variable distributed according to a standard 
exponential-decay law. (Contrary to this, for any localized phase-space 
element dRdP, as considered in II above, such behavior is expected 
only if the window is small compared with the overall surface area of 
the binary container.) 

3 Derivation of the window formula 

The time-dependent perturbation describing the relative dinuclear motion of the 
system shown in fig. 1 is 

. aHo 
HI = -u(r)· ar = u(r)· i> , 

where the local surface velocity is given by 

u( r) = { V A for rEA 
VB for rEB 

(3) 

(4) 

In actual applications of eq. (1), it is convenient [5] to invert the time integration, 
and the first term of eq. (1) then reads 

. r ~ . afo 
(-Hllo dt'Uo(t')HlaHo) (5) 

= - J dr J (:~3 [lot dt' HI(R(r, Pi t'), (P(r, Pi t')i t')] HI(r, Pi t = 0) :::0 . 
Here (R, P) denotes the phase space coordinates at time t' for the trajectory orig­
inating at the point (r, p), at the time t = O. With the expression (3) for Hl, the 
time integrand is discontinuous each time the trajectory starting in (r, p) crosses 
the window. As illustrated in fig. 2, the values of (R, Pi t) at the time of win­
dow crossings are denoted by (Pi' Pii ti), i = 1,2, .... For a trajectory starting in 
A, rEA, the time integral in (5) then becomes 

lot dt' u(R(r, Pi t')) . per, Pi t') 

VA '. (PI - p) + VB· (P2 - PI) + VA· (P3 - P 2) +... (6) 
N 

-VA· P + (VA - VB)· L( -It+1Pn + u(R(r, Pi t))· per, Pi t) . 
n=l 

A similar result holds for rEB. The number of window crossings, N, depends on 
the initial phase-phase position (r,p) and the elapsed time t. For t --+ 00, the term 
u(R(r, Pi t)) . P will cancel when integrated over a small part of phase space, since 
values of P and - P will be equally probable due to the assumption II of ergodic 
motion. Also, the term -VA· P will cancel when integrated over p, since Ho is even 
in P and iiI depends only on r. 
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3.1 Substitution of integration variables 

A key step in the derivation is the substitution of each phase space element drdp 
by one around the first window crossing dR1dP1. Let t" denote the time it takes a 
particle to propagate from (r,p) to (Rt, Pd. The time dt" spent within the phase­
space element at (Rt, PI) is determined by its extension dz along the z-axis through 
the relation f-ldz = -Pl' idt", where f-l is the nucleon mass. (The z-axis points from 
B to A, as shown on fig. 1.) Employing t" as an integration variable, we obtain 

d PI . Z " 
rdp = -dpl--dt dP1 , 

f-l 
(7) 

where dpI is the two-dimensional interval on the window. The integral over PI 
yields the window area CTwindow. For each (Rt, PI), the upper limit to of the t" 
integration is found by following the trajectory backwards from (Rt, PI)' until the 
previous window crossing is reached. It is natural to call that window crossing 
number zero and denote the corresponding momentum by Po, as shown in the 
example in fig. 2. When the integral over t" is performed, each window phase space 
element substitutes a part of phase space forming a tube around the trajectory 
propagating backwards in time from (RI, PI)' For ergodic motion, all trajectories 
will eventually cross the window (see idealization II), so the entire phase space is 
covered (uniformly) by such tubes. After carrying out the substitution (7), the 
phase space integral with restriction to rEA reads 

where the subscript on the momentum integral indicates that it extends over the 
negative hemisphere only, PI . i < O. 

Until now, only the requirement of ergodic motion has been invoked, and the 
expression (8) is not less complex than the starting point (5). The virtues of the 
changes made are the simple properties of the sum over momenta ( -1 )n+l P n, when 
expressed in the new variables PI' PI, t". The first term is just PI itself, and re­
quirements III and IV imply that the higher terms in the sum depend only on t - t", 
after the integration over the window location PI has been performed. 

3.2 Contribution from the first window crossing 

First the term for n = 1 of expression (8) is evaluated. For this term, the integral· 
over t" is straightforward, since the dependence on t" is restricted to p(t"). Inserting 
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the values p(t" = 0) = -PI and p(t" = to) = -Po, one obtains 

. r A • afo 
(-HI J

o 
dt'Uo(t')H1 aHo }rEA,n=1 (9) 

, ( [00 p 2 dfoe;:) ap p 2) 
= (VA - VB)' O"window Jo dP (211-)3 dP aHo p P 

271' PI (1\ . z)( -Po + PI) . VA . 

Here the bar denotes the average over momentum directions PI, under the condition 
PI . Z < O. With the integral over the window position PI carried out, Po is 
uncorrelated with PI, see idealization III. If one orders the values of PI' PI according 
to intervals of to, the average of Po within such an interval is given by the flux­
weighted average, ~z. Inserting this, the directional averages are readily calculated 

PI (PI . z)P1 

P1(P1 . z)Po 

-~(xx + yy + 2zz) , 

2 A A 

-zz. 
9 

(10) 

Here, the signs follow from the condition P1·z < O. The integral over the momentum 
magnitude P gives the result 

[00 dP~ dfo(~) ap P p2 = -4 [00 dP~ fO(p2) 
Jo (271')3 dP aHo p Jo (271')3 2p 

1 J dP p 2 
pv 

= -; (271')3 P fo( 2p) = --;- . (11) 

Here pv is the product of the nuclear mass density and the mean nucleon speed in the 
nuclear interior, the standard one-body dissipation strength coefficient. Inserting 
these results into expression (9), and combining with the corresponding expression 
for rEB, the contribution from the first window crossing can be written 

. [t A • afo 
(-HI J

o 
dt'Uo(t')H1 aHo )n=l 

(VA - VB)' ~PVO"window(XX + yy + 2zz)· (VA - VB) (12) 

+ (VA - VB)' ~PVO"windowZZ' (VA - VB) . 

Here, the first term is the standard window formula.[2] The second term will to a 
large extent be cancelled by terms stemming from the subsequent window crossings, 
as discussed below. 

3.3 Contribution from subsequent window crossings 

For rEA, the z-component of each term in the sum ( -1 )n+1 P n is negative, since the 
alternating sign compensates for the alternating direction of passage of the window. 
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For a leptodermous window (see idealization I), the magnitude of the momentum 
Pn = IPnl is the same for all window crossings, Po = PI = ... = P. For given window 
location PI and momentum direction 1\), the sum depends on the time elapsed since 
the first window crossing, t - t". For sufficiently large times the ergodic limit can be 
invoked and the average time between successive window crossings, the residence 
times tA and tB, can readily be calculated as the inverse of the mean currents 
through the window. For example, 

r~ p ( ) -1 O"window27r JO - cos 8d - cos 8 P 1 
t A = 4;n

A 
= O"window 4J.L n

A 
' (13) 

where nA is the volume of part A. Therefore, for large times, the rate of change of 
the sum in eq. (8) is given simply by 

d (~(_)n+lp ) = -~ZP 2 
d(t - t") ~ n 3 tA + tB 

(14) 

The solution to this differential equation is conveniently written as 

t(-t+lPn=-~3ZP 2 [t-t"-.6.tA(PllP l )] , 
n=2 tA + tB 

(15) 

where the integration constant is the time shift .6.tA and depends on PI' Pl. For 
large times, when the above result holds, the time integral in (8) can be carried out 
by partial integration, 

(16) 

The remaining integral of p(t") will cancel when integrated over Pll PI , since it can 
be changed back into a phase space integral over r, p, which is odd in the momentum. 
In performing the integral over PI' PI, one needs the orientation averages 

z(l\ . z)l\ = -z(l\ . z)l?o = ~zz . (17) 

When these are inserted, the total contribution to (8) from all the crossings subse­
quent to the first one can be expressed as 

(18) 
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where ~tA is the average time shift, and the average value tA of to has been inserted. 
The second term of (19) will partly cancel the second part of the contribution 

(12) from the first crossing. The first term of (19) diverges for large t, and should be 
cancelled by the second term of the expression (1), which corrects for the inclusion 
?f non-dissipative contributions to the phase space integral (2) when the imposed 
surface velocities change the total volume. 

3.4 Correction for volume change 

For ergodic motion, and for a leptodermous potential, the second term of equation 
(1) is different from zero when the motion of the potential boundaries changes the 
volume of the system.[5] Indeed, by explicit evaluation one obtains 

. ~ . ajo 10 (n)2 
(H1UO(t)Hl aHo t) = gE nt, (19) 

where n is the rate of change of the volume n = nA + nB , and E is the total energy 
content of all particles. For the motion shown on fig. 1, the rate of change of the 
volume is equal to 

n = O"window(VA - VB)· i , 

and this can be inserted into the expression (19): 
• 2 

10 E (n) __ ~ -PF 2. [(VA - VB) . iF 
9 n t - 9Pv 2J-l O"wmdow nt, 

(20) 

(21) 

where PF is the Fermi momentum. This verifies explicitly the can~ellation of the 
term proportional to t in the phase space integral (19), when combined with the 
equivalent term from rEB, and the average residence times (see (13)) are inserted. 

3.5 The time shifts 

We now turn to the determination of the average time shifts ~tA and ~tB. For 
that we consider the average number of crossings, N"A(t - til), that particles first 
entering A at the time til have experienced by the time t (not counting their first 
crossing at time til). An analogous definition holds for N"B(t - til). These quantities 
are simply related to the sum appearing in eq. (8): 

E(-lt+1Pn = -~iP N"A(t - til) for rEA, 
n=2 3 

(22) 

and equivalently for rEB. It is now elementary to show that the two functions 
N"A(t) and N"B(t) obey the coupled integral equations 

N"A(t) = lot dt2WB(t 2 ) [1 + N"B(t - t2 )] , 

N"B(t) = lot dt 2WA(t 2 ) [1 + N"A(t - t2 )] (23) 
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where we have employed the residence-time distribution functions WA(t) and WB(t). 
The quantity WA(t) gives the probability that a particle after entering part A 
(through some random point on the window) will leave again after a specified length 
of time, t, and analogously for WB(t). It follows form the idealization IV that these 
distributions are given by 

(24) 

Therefore, the integral equations (23) can readily be solved, 

(25) 

and equivalently for NB . By comparison with the large-time solution (15), and 
recalling the relationship (22), we then find 

A - tA tB - tA A - tB tB - tA 
utA - - utB = -----

- 2 tA + tB ' 2 tA +tB 
(26) 

It should be noted that there is, of course, an inevitable time delay before a 
particle that has just entered A can leave A again, since it must first cross the bulk 
of A twice, at the least. This time delay is of the order of twice the transit time 
and falls in the category of microscopic time scales .. As such it is assumed to be 
negligible in comparison with the above calculated time shifts (26) which arise from 
the nonuniformity in crossing times caused by the uneven size of the two containers 
and are of macroscopic size. 

4 Discussion 

The analyses in the preceding section allow us to write down the final result for the 
energy dissipation rate, 

(27) 

Here, the first term is the standard window formula for the energy dissipation 
rate.[2] This term arises from the orientation average of 1\(Pl . z)P1 , and is thus • associated with the first window crossing only. Since the particles do not receive 
impulses at the window, the window dissipation stems from correlated impulses in 
trajectories that are first reflected a number of times in one part of the dinucleus, 
then cross the window, and are subsequently reflected a number of times in the 
other part. Preliminary estimates for nearly spherical nuclei indicate that a good 
convergence of the window formula is obtained after rather few reflections in both 

• 
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parts. Thus, the time required for obtaining the window formula (in the original 
time intergral formulation (1)) is expected to be of the order of a few times the 
microscopic transit time. 

The second term of Q in the expression (27) arises because the average amounts 
of time tA and tB spent within the two parts of the system are not equal when the 
partition is asymmetric. This term can be associated with the rate of change in the 
relative mass asymmetry parameter 

(28) 

implied by the motion depicted on fig. 1. Assuming that the change in volume is 
equally distributed on the two parts, i.e. d(f2A - f2B )/dt = 0, the second term of 
expression (27) can be rewritten in terms of the time derivative of a as 

Q. _ ~ pv ( . r'I)2 
asym - a~G . 

90'window 
(29) 

In the case of the motion considered here, the change in the mass asymmetry arises 
from the radial motion. The more realistic and general case of volume conserving 
motion of the nuclear surface, and with arbitrary changes of the mass asymmetry, 
has been considered in [6], giving as the result the so-called completed wall and 
window form·ula. It is noteworthy that the dissipative resistance against changes 
in the mass asymmetry evaluated in [6] has exactly the form (29) when expressed 
in terms of the variable a. Thus we conclude that the present derivation of the 
expression (27) for the dissipation provides a proof based upon linear response 
theory of the completed wall and window formula for the special kind of motion 
shown in fig. 1. 

The long mean free path dynamics of nuclei provides a unique dissipation mech­
anism, depending significantly on the symmetries of the motion. We have here 
elucidated the formal conditions under which the simple (completed) window is 
expected to be valid. In many situations of practical interest these conditions are 
only partially met, and in quasi-fission systems they are violated to a large degree. 
Indeed, the transition between the wall and window dissipation has posed a key 
problem in macroscopic nuclear dynamics for the last ten years and so far only ad 
hoc interpolations between the two dissipation formulas have been ,employed. The 
derivation of the wall formula in ref. [5], together with the present derivation of 
the window formula, establish linear response theory as a reliable starting point for 
investigating this question and the formalism developed here may provide a useful 
basis for systematic refinement of the treatment. 

This work was supported in part by the Director, Office of Energy Research, 
Division of Nuclear Physics of the Office of High Energy and Nuclear Physics of the 
U.S. Department of Energy under Contract No. DE-AC03-76SF00098. 
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Figure captions 

Figure 1. The dinuclear cavity. In the dinucleus, the individual nucleons move 
in a leptodermous potential that has two distinct parts, A and B. The two parts 
are joined by a small planar "window" whose normal is chosen as the z-axis. The 
two dinuclear parts are endowed with the uniform translational velocities V A and 
VB. 

Figure 2. The window crossings. A nucleon initially located at the position 
rand having the momentum phas the momentum PI when it first crosses the win­
dow, P 2 at its next crossing, and so forth. Backwards propagation of the path yields 
the momentum at the most recent window crossing, Po. The contributing parti­
cles originate near the nuclear surface since only there is the effect of the imposed 
translation felt. 
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