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Abstract

Precision health relies on the ability to assess disease risk at an individual level, detect early 

preclinical conditions and initiate preventive strategies. Recent technological advances in omics 

and wearable monitoring enable deep molecular and physiological profiling and may provide 

important tools for precision health. We explored the ability of deep longitudinal profiling to make 

health-related discoveries, identify clinically relevant molecular pathways, and impact behavior in 

a prospective longitudinal cohort (n = 109) enriched for risk of type 2 diabetes mellitus (DM). The 

cohort underwent integrative Personalized Omics Profiling (iPOP) from samples collected 

quarterly for up to 8 years (median 2.8 years) using clinical measures and emerging technologies 

including genome, immunome, transcriptome, proteome, metabolome, microbiome, and wearable 

monitoring. We discovered over 67 clinically actionable health discoveries and identified multiple 

molecular pathways associated with metabolic, cardiovascular and oncologic pathophysiology. We 

developed prediction models for insulin resistance using omics measurements illustrating their 

potential to replace burdensome tests. Finally, study participation lead the majority of participants 

to implement diet and exercise changes. Altogether, we conclude that deep longitudinal profiling 

can lead to actionable health discoveries and provide relevant information for precision health.

Introduction

Precision health and medicine are entering a new era where wearable sensors, omics 

technologies, and computational methods have the potential to improve health and lead to 

mechanistic discoveries1,2. Emerging technologies such as longitudinal multi-omics 

profiling combined with clinical measures can comprehensively assess health and identify 

deviations from healthy baselines which may improve disease risk prediction and early 
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detection. Connecting longitudinal multi-omics profiling with clinical assessment is also 

important in developing a new taxonomy of disease based on molecular measures1.

Despite this promise, few studies have leveraged emerging technologies and longitudinal 

profiling to manage health and identify disease markers. Previous efforts included our study 

of a single individual in which longitudinal multi-omics profiling over 14 months captured 

the individual’s transition to diabetes on a deep molecular level3. A recent study of 108 

individuals followed for 9 months using various omic technologies revealed several health-

related findings4. A cross-sectional study used genome sequencing, metabolomics and 

advanced imaging to identify individuals at risk for age-related chronic disease5. These 

studies either had limited sample size, lacked meaningful longitudinal profiling, or 

performed only limited analysis of health information. We have also demonstrated utility in 

using wearable devices to detect infections2 and identify early glucose dysregulation6 and 

population-based studies are underway to potentially to detect arrhythmias7.

In this study, we longitudinally profiled 109 participants at risk for DM (Fig. 1), performing 

quarterly clinical laboratory tests and multi-omics assessments. In addition, individuals 

underwent exercise testing, enhanced cardiovascular imaging and physiological testing, 

wearable sensor monitoring, and completed various surveys.

The study objectives were threefold. We first evaluated the usefulness of emerging 

technologies in combination with standard and enhanced clinical tests to detect diseases 

early. We then characterized multi-omics associations with clinical pathophysiologies 

including glucose and insulin dysregulation, inflammation, and cardiovascular risk; 

evaluated the ability of multi-omics measures to predict insulin resistance and response to 

glucose load. Lastly, we examined how participation affected health habits.

Results

Summary of Research Design & Cohort

A 109-person cohort enriched for individuals at risk for DM (Table 1, Extended Data Fig. 

1a) underwent quarterly longitudinal profiling for up to eight years (median 2.8 years) using 

standard and enhanced clinical measures and emerging assays. (Fig. 1). Emerging tests 

included molecular profiling of the genome, gene expression (transcriptome), proteins 

(proteome), immune proteins (immunome), small molecules (metabolome) and gut microbes 

(microbiome), and wearable monitoring including continuous glucose monitoring (CGM)6. 

Our study was designed to capture transitions from normoglycemic to preDM and from 

preDM to DM. Thus, in addition to standard measures such as fasting plasma glucose (FPG, 

reflects steady state glucose metabolism8) and glycated hemoglobin (HbA1C, reflects 3 

month average glucose), enhanced measures included the oral glucose tolerance test (OGTT, 

reflects response to glucose load9) with insulin secretion assessment (beta-cell function) and 

the modified insulin suppression test (SSPG, a measure of peripheral insulin resistance). We 

also performed enhanced cardiovascular profiling including vascular ultrasound, 

echocardiography, cardiopulmonary exercise testing and cardiovascular disease protein 

markers. Technical details are provided in the methods and our integrated Human 

Microbiome Project (iHMP) paper by Zhou et al. (submitted). The full details of clinical 

Rose et al. Page 3

Nat Med. Author manuscript; available in PMC 2019 November 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



laboratory measures, immune proteins and cardiovascular biomarkers are provided in Table 

S0. The study was approved by the Stanford University Institutional Review Board (IRB 

23602) and all participants consented.

The mean age of iPOP participants at initial enrollment was 53.4 ± 9.2 years old. 

Demographic, baseline health, and family history characteristics are shown in Table S1. 

Genetic ancestry analysis (n = 72) using the 1000 Genomes data10 shows that individuals 

mapped to expected ancestral populations (Extended Data Fig. 1b).

Over the study course, we found over 67 major clinically actionable health discoveries 

spanning metabolism, cardiovascular disease, oncology and hematology, and infectious 

disease (Table S2). We demonstrate ways in which longitudinal multi-omics measures can 

be used to advance precision medicine, including by illuminating biological pathways 

underlying standard measures, predicting burdensome physiological measurements, and 

enabling exploration of mechanisms of disease onset.

Metabolic Health Profiling

At entry, participants reported their DM status. Of the 86 participants (78.9%) who did not 

report preDM or DM, one had a diagnosis of DM in their health record, one had a DM-range 

HbA1C and 43 individuals (39.4%) had labs in the preDM range at entry (Fig. 2a). During 

the study, eight more individuals converted to DM as assessed by a clinical diagnosis of DM 

(n = 4), starting a diabetic medication after a diabetic range laboratory result (n = 3), and/or 

if they had labs in the diabetic range (n = 6) at more than one time point. Five additional 

participants developed laboratory abnormalities in the diabetic range at one time point, and 

12 developed abnormalities in the prediabetic range. In addition, 2 participants had diabetic 

range CGM measurements (> 200 mg/dL) who were normoglycemic on FPG, HbA1C and 

OGTT (Table S3) indicating that these individuals have glucose dysregulation that is most 

easily assessed using CGM.

Value of exome sequencing—Exome sequencing11 provided relevant information for 

diabetes management. Most notable was the discovery of a hepatic nuclear factor 1A 

mutation, pathogenic for Maturity-Onset Diabetes of the Young (MODY), in a participant 

with DM. This discovery has implications for medications12 and the individual decided to 

have the children tested. Excluding a MODY mutation was valuable to a second participant. 

Other discoveries are listed in Table S2.

Enhanced metabolic profiling—DM is a complex disease with various underlying 

pathophysiologies including insulin resistance, pancreatic beta-cell dysfunction and 

abnormal gluconeogenesis13, which can have differential effects on standard measures. Over 

the study course, 22 participants had at least one test result in the diabetic range (Fig. 2b) but 

few (n = 2) had concordance of all three measures. When performed simultaneously, FPG-

HbA1C and FPG-OGTT were in agreement 65.2% and 52.6% of the time, respectively 

(Extended Data Fig. 2a,b), highlighting that DM status varies depending on the assessment 

method. Most participants also underwent insulin sensitivity assessment (n = 69); 55% were 

resistant (SSPG ≥ 150 mg/dl). In addition, insulin secretion during OGTT was assessed in 

61 participants using the C-peptide deconvolution method14 and the glucose disposition 
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index (DI) was calculated15. Based on OGTT measurements, participants were categorized 

in three groups: normoglycemic, impaired fasting glucose only (IFG only) and impaired 

glucose tolerance (IGT). We observed large inter-individual variability in insulin levels, 

insulin resistance and DI between groups (Fig. 2c). Participants with IGT had higher insulin 

levels 120 min post-OGTT test, higher SSPG (more insulin resistant) and a lower DI. 

Cluster analysis of the longitudinal pattern of insulin secretion rates during OGTTs 

demonstrated four insulin secretion groups: early, intermediate, late and very late (Fig. 2d). 

Each cluster was heterogeneous in terms of OGTT status, DI, insulin resistance status and 

maximum insulin level and demonstrated no consistent pattern of molecular enrichment, 

indicating high heterogeneity in glucose dysregulation.

We also searched for multi-omics molecular associations with the disposition index across 

the cohort and found 109 significant molecules (FDR < 0.1) (Table S4). HbA1C (FDR = 

2.0E-03) and FPG (FDR = 4.9E-02) were negatively associated with DI as expected from 

previous reports showing increased FPG and HbA1C with beta-cell dysfunction16,17. We 

found that DI was strongly negatively associated with leptin (FDR=1.6E-07) and GM-CSF 

(FDR=7.2E-07) which are known regulators of energy homeostasis and inflammation 

signaling18,19. GM-CSF (p = 1.5E-07) and leptin (p = 3.3E-07) were also the two analytes 

that were most strongly positively associated with body mass index in our cohort and were 

positively associated with hsCRP illustrating their connection to inflammation and obesity. 

In the DI correlation network, leptin and GM-CSF were correlated with various lipid classes 

including an inverse correlation with androgenic steroids, and a positive correlation with 

sphingolipids and sphingosines, free fatty acids and glycerophospholipids highlighting their 

importance in lipid metabolism20 (Fig. 2e, Table S5).

Longitudinal course & mechanistic insights—A study strength is its dense 

longitudinal sampling approximately every 3 months. Based on individual longitudinal 

HbA1C trajectories, participants were classified into 6 categories (Extended Data Fig. 2c). 

Notably it was common for participants’ HbA1C to alternate between normal-preDM (n = 

21) and preDM-DM range (n = 8). No one stayed exclusively within the DM range due to 

good diabetes control with lifestyle and medications. Consistent transitions from normal to 

preDM (n = 5) and from preDM to normal HbA1C (n = 10) were less common.

Close evaluation of individual trajectories of participants with new diabetes (n = 9) revealed 

additional insights. Individual trajectory analysis revealed that participants followed multiple 

pathways to diabetes (Fig. 3a-c, Extended Data Fig. 3, Table S3). Some participants’ (n = 2) 

first abnormality was DM-range OGTT (Fig 3a, Extended Data Fig. 3a), others (n = 3) had 

elevated FPG (Fig. 3b, Extended Data Fig. 3b,c), the remainder (n = 4) had a DM-range 

HbA1C (Extended Data Fig. 3d,e) or abnormalities in multiple measures (Fig. 3c, Extended 

Data Fig. 3f). Interestingly, diabetic range labs followed viral infections3 in one participant 

(Fig. 3c). Also, one participant with a single DM lab improved their SSPG with diet and 

exercise (Extended Data Fig. 3g) and never had a second DM range lab during the study.

Progression to DM was associated with weight gain and decreased gut microbiome diversity 

(Shannon) in 2 of 8 participants (Fig. 3a,b, Extended Data Fig. 4a,b). In both cases, the 

phylum Bacteroidetes proportion was increased at the time point of lowest diversity to the 
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detriment of beneficial bacteria such as the genus faecalibacterium (Extended Data Fig. 

4c,d,e). Using linear mixed models to account for repeated measures, we evaluated the 

relationship between microbiome diversity and SSPG, FPG and HbA1C and found an 

inverse relationship with diversity that was strongest with SSPG (p = 1.5E-04) (Table S6). 

We then performed longitudinal mixed model analysis to understand changes in diversity 

over time (Table S7). SSPG accounted for 28% of the between-person Shannon variance 

highlighting the importance of insulin resistance in microbiome diversity. The majority of 

Shannon variance was intra-individual (76.8%) and adding the Bacteroidetes phylum 

proportion to the model including its interaction with time accounted for 41% of the 

remaining within-person variance, consistent with the relationship observed in the individual 

profiles between Bacteroidetes proportion and diversity.

Longitudinal evaluation of all data related to glucose and insulin regulation provided insights 

into mechanism. For instance, the person in Fig. 3c had a normal SSPG despite a diabetic 

range OGTT, FPG and HbA1c. Although elevated OGTT is commonly thought to result 

from increased peripheral resistance or decreased insulin production, this participant had 

elevated insulin production with a delayed response trajectory, possibly reflecting delayed 

insulin release (Table S3). Other mechanistic insights are provided in Table S3. In 

conclusion, participants developed diabetes through different pathways and our detailed 

characterization provides potential hypotheses regarding individual underlying mechanism 

of glucose dysregulation which is a goal of precision medicine.

Multi-omic dimensions of glucose metabolism & inflammation—We examined 

the underlying relationships between glucose (FPG, HbA1C) and inflammation (hsCRP) 

levels and multi-omics measurements at healthy time points (healthy-baseline models) and 

with relative changes for all time points (dynamic models) using linear mixed models. The 

two analyses are complementary since the healthy-baseline models highlight the stable 

relationships between measures and dynamic models highlight common associations with 

change.

As expected, the healthy-baseline analysis demonstrated that HbA1C and FPG strongly 

associated with each other and the ‘glucose homeostasis’ pathway (Fig. 3d, Extended Data 

Fig. 5, Tables S8-13). Although the two measures had many common associations, 

particularly with metabolites including lipids (free fatty acids and total triglyceride level 

(TGL)) and amino acids as previously reported21, many analytes were exclusively associated 

with FPG or HbA1C highlighting the differential underlying biology captured by both 

measures. While HbA1C associated with unsaturated fatty acid (FDR = 8.2E-04) and 

glycerophospholipid metabolism (FDR = 2.88E-03), FPG associated with amino acid (FDR 

= 7.4E-04) and bile acid metabolism (FDR = 4.6E-03).

The dynamic model analysis revealed more commonalities between changes in glucose 

measures and inflammation (Fig. 3d,e, Extended Data Fig. 5, Tables S14-19). As expected, 

hsCRP positively associated with inflammatory proteins including MIG (FDR = 1.4E-24) 

and IP10 (FDR = 3.9E-22) as well as immune pathways including ‘complement activation’ 

(FDR = 8.7E-16), ‘innate immune system’ (FDR = 8.3E-14) and ‘oxidative damage’ (FDR = 

3.0E-06). Interestingly, both HbA1C and hsCRP positively associated with total white blood 
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cells, monocytes and neutrophils consistent with previous findings22. In addition, hepatocyte 

growth factor (HGF) associated with HbA1C and hsCRP, consistent with its role in glucose 

metabolism and modulation of inflammatory response23. We also observed that FPG and 

HbA1C both associated with ‘leukotriene biosynthesis’ which contributes to inflammation 

and leads to insulin resistance24. HbA1C also associated with additional pathways related to 

lipid metabolism including ‘plasma lipoprotein assembly’ and ‘chylomicron assembly’ 

which further demonstrates the connection between inflammation, lipid metabolism and 

metabolic regulation of glucose.

Multi-omics prediction of SSPG & OGTT—The modified insulin suppression test is a 

clinically important direct measure of peripheral insulin resistance but is expensive, labor-

intensive, and requires six hours. The two-hour OGTT is a sensitive test for diabetes and is 

less expensive, but still inconvenient. Thus, we evaluated how well multi-omics 

measurements could predict the results of these tests. Using a Bayesian network algorithm, 

we first identified highly predictive features followed by ridge regression modeling using 

these features25,26. The SSPG prediction model using all omes achieved a cross-validated R2 

of 0.87 (final model mean square error (MSE) 0.16) compared to an R2 of 0.59 (MSE 0.55) 

using clinical data only (Fig. 3f, Table S20). We also compared predictive models using 

clinical data plus each single ome and found that the transcriptome (R2 0.88, MSE 0.15), 

metabolome (R2 0.80, MSE 0.31) and microbiome models (R2 0.78, MSE 0.26) had the best 

predictive accuracy for SSPG. Similarly, the multi-omic prediction model for OGTT (R2 

0.71, MSE 0.24) was superior to the clinical data only model (R2 0.42, MSE 0.71) (Fig. 3f, 

Table S21). The transcriptome had the best predictive accuracy of the single ome models (R2 

0.62, MSE 0.30). Molecules that were found to be consistent across multiple SSPG models 

included the TGL/HDL (high-density lipoprotein) ratio, the protein IL-1RAP; the lipid 

Hexosylceramide (HCER)(24:0), the MAP3K19 transcript and a Ruminococcaceae family 

microbe. The relationship between insulin resistance and TGL/HDL ratio has already been 

described27 and other measures are emerging28-30. There was little overlap between SSPG 

and OGTT predictors supporting that these measures reflect different underlying biology. 

The increased predictive performance with multi-omics measurements compared to clinical 

labs alone illustrates the benefit of multi-omics data.

Other metabolic disorders—Other clinical abnormalities were observed in sodium, 

potassium and liver enzymes (ALT) as well as microalbuminuria and macroalbuminuria 

(Table S2). People with preDM and DM are at higher risk for liver steatosis and 

albuminuria. Using the American Gastroenterological Association (AGA) Guidelines 31 for 

health normal references (males: 25–33 IU/L; females: 19–25 IU/L) revealed that the 

majority of participants (83%) had at least one elevated healthy visit ALT and 41% had 

elevations at all healthy time points. Given the AGA recommendations for ultrasound 

screening31, our findings suggest that screening for nonalcoholic fatty liver disease is 

indicated in the majority of our population.

One participant was a significant outlier in gene expression related to toxicity pathways 

including oxidative stress and hepatic abnormality pathways (Extended Data Fig. 6a, Zhou 

et al., submitted). The participant had mild elevation in ALT accompanied by increases in 
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bile acids and glutamyl dipeptides (Extended Data Fig. 6b), and was later diagnosed with 

mild hepatic steatosis. However, many participants had mild ALT elevations and at least five 

had hepatic steatosis, thus these clinical findings are not sufficient to explain the RNA-seq 

outlier status. Although multiple omics and other measures point to aberrant hepatic 

function, clinical manifestations were unclear and this individual will be tracked for hepatic 

abnormalities.

Cardiovascular Health Profiling

Atherosclerotic cardiovascular disease (ASCVD) is a major cause of mortality and 

morbidity associated with insulin resistance and DM32. We assessed the American Heart 

Association ASCVD risk score, estimating 10-year risk of heart disease or stroke on all 

participants33 at study entry. We also followed longitudinal trajectories of dyslipidemia and 

systemic hypertension. Enhanced cardiovascular profiling was performed on 43 participants 

and included i) vascular ultrasound and echocardiography to assess for subclinical 

atherosclerosis, arterial stiffness or early stage adverse ventricular remodeling or dysfunction 

and ii) emerging biomarkers assessment to interrogate oxidative stress, inflammation, 

immune regulation, myocardial injury and myocardial stress pathways34-36.

Cardiovascular risk profiles—At study entry, 24 patients (22.6%) had an ASCVD risk 

score ≥ 7.5%, a threshold often used to guide primary prevention33 (Fig. 4a). Total 

cholesterol and blood pressure measurements indicate that self-report underestimated the 

prevalence of dyslipidemia (Fig. 4b) and 18 participants learned they had Stage II 

hypertension during the study.

Clinical discoveries through enhanced clinical phenotyping—Wearable and 

cardiovascular imaging led to important clinical discoveries. Wearable heart rate monitoring 

identified two participants with nocturnal supraventricular tachycardia, leading to the 

diagnosis of obstructive sleep apnea in one and atrial fibrillation secondary to sleep apnea in 

the other. In the subgroup of participants who had enhanced cardiovascular imaging studies, 

we discovered two major health findings: one cardiac finding associated with a pathogenic 

mutation in the RPM20 gene, and one non-cardiac finding (Table S2). Fitness assessment 

using percent predicted oxygen consumption (maximal oxygen consumption relative to a 

healthy person of the same age and weight) identified three participants with values below 

70% suggestive of a reduction in exercise capacity which has been associated with poorer 

health outcomes37 (Extended Data Fig. 7a). Subclinical atherosclerosis was found in six 

participants leading to a recommendation to increase statin dose (Extended Data Fig. 7b). 

Overall, there were 15 important clinical findings through these enhanced tests (Table S2).

Cardiovascular events, pharmacogenomic & transcriptomic findings—Five 

participants had cardiovascular events during the course of the study including stroke (n = 

3), unstable angina (n = 1) and stress-induced cardiomyopathy (n = 1). All had elevated 

hsCRP levels prior to their event. Two participants with incident strokes had 

pharmacogenomic variants that could partially explain suboptimal response to the chosen 

therapy. One participant on aspirin for stroke prevention had a COMT (catechol-o-

methyltransferase) Val/Val genotype (rs4680) which has a 85% increased risk of 
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cardiovascular events in female aspirin users compared to placebo controls38. The other 

participant with incident stroke was an intermediate clopidogrel metabolizer phenotype 

(CYP2C19*2 (rs4244285)/CYP2C19*17 (rs12248650) and had a second stroke while on 

clopidogrel. Intermediate metabolizers of clopidogrel were common in our study (31/88 

(35%)) and 4/88 (4.5%) were poor metabolizers. Additional pharmacogenomic variants 

related to the common cardiovascular medications statins and coumadin were found in 26 

and 30 participants, respectively (Table S22).

We also analyzed 14 of 32 genes associated with stroke and stroke types39 which were 

robustly detected in our RNA-seq dataset. Outlier analysis revealed that two of the five 

participants with cardiovascular events had the highest composite Z-scores at clinically 

relevant time points including post-stent placement (Z-score = 33.2, FDR = 6.9E-06), mid-

infection (Z-score = 40.4, FDR = 3.2E-09) for one participant and transition to diabetes (Z-

score = 30.1 and 24.1) for the other (Extended Data Fig. 7d,e). Thus, expression levels of 

genes related to stroke were outliers and associated with significant health issues.

Multi-omics analysis of ASCVD risk—We evaluated multi-omics measures associated 

with adjusted ASCVD risk score using Spearman correlation (Table S23), and constructed a 

correlation network. This analysis revealed relationships between clinical and omics 

measures such as monocytes bridging cytokines and complement proteins, and triglyceride 

and cholesterol measures linking to apolipoproteins (Fig. 4c, Table S24). Among immune 

proteins, the interferon-gamma pathway (MIG, IP10, interleukin (IL)-2, vascular endothelial 

growth factor alpha and HGF) were strongly associated with the ASCVD risk score. The 

interferon-gamma pathway has been recently found to play a key role in atherosclerosis 

based on population based studies40-44. IL-2 has been shown to be associated with 

atherosclerosis through its role in T-cell mediated inflammation44. HGF is involved in the 

survival of endothelial cells and is emerging as a risk factor of outcome41,42. Our network 

also highlighted several molecules that are emerging in cardiovascular disease including 

complement and free fatty acids as well as γ-glutamyl-ε-lysine (reported in diabetic 

nephropathy), hypoxanthine, methylxanthine (associated with coffee consumption) and bile 

acids45-47.

In participants who underwent cardiovascular imaging, we also performed a correlation 

network analysis that shows how ASCVD risk, enhanced imaging and selected circulating 

protein markers associate together (Extended Data Fig. 7c, Table S1). ASCVD score was 

closely related to HGF, which itself was closely related to inflammatory cytokines IL-1B 

and IL-18, part of the inflammasome complex. Exercise capacity as assessed with peak VO2 

was closely associated with GDF-15, a transforming growth factor which is associated with 

cardiovascular mortality risk48 and leptin, a hormone that regulates appetite49. These 

findings demonstrate an interaction between inflammation and ASCVD risk and suggest 

new opportunities for personalized risk stratification, beyond those currently available.

Oncological, Hematological & Immune Profiling

Exome sequencing also led to several important oncological, hematological and immune-

related clinical discoveries. Eight participants learned they had clinically actionable genetic 

Rose et al. Page 9

Nat Med. Author manuscript; available in PMC 2019 November 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



variants associated with increased oncologic risk, such as APC, SDHB, BRCA1, MUTYH, 

CHEK2 and hematologic risk (PROS1) (Table S2). In one case, follow-up screening led to 

discovery of an early-stage papillary thyroid cancer, and the participant was able to elect 

thyroid preserving surgery due to early detection.

B-cell lymphoma discovery & longitudinal outlier analysis—Abdominal 

ultrasound imaging revealed splenomegaly and large para-aortic lymph nodes in one 

participant (Fig. 5a); immediate clinical work-up (Fig. 5b,c, Table S3) led to diagnosis of B-

cell lymphoma. Longitudinal omics outlier analysis revealed a striking increase (> 5-fold) in 

the cytokine MIG that started over a year prior to diagnosis and returned to baseline after 

treatment (Fig. 5d). Its early elevation suggests possible utility as an early biomarker, 

consistent with other studies50-52. Although likely important in a number of cancers53, our 

data demonstrates MIG’s utility as a longitudinal marker of disease. A notable decrease in 

histidine-rich glycoprotein was also evident at diagnosis (Table S25), consistent with its 

previously reported role in inhibiting tumor growth and metastasis54,55.

The functional association network using proteins which were in the 95th percentile at the 

time of diagnosis relative to all the healthy visits in the study illustrates the central role of 

MIG in orchestrating other cytokines, namely ENA78, IL17A and VCAM1 (Fig. 5e). 

Pathways involved in inflammation/immune response as well as cell proliferation and 

migration were enriched at time of diagnosis (Table S26). The participant’s gut microbiome 

Shannon diversity also changed with time (p = 0.0041), primarily declining in the two years 

prior to diagnosis, with a nadir at diagnosis (Fig. 5f) and increasing with treatment. Outlier 

microbes (95 percentile) at time of diagnosis included low proportions of the genera 

Clostridium IV, Lachnospiraceae incertae sedis, unclassified Clostridiales and 

Ruminococcaceae and elevated proportions of the class Gammaproteobacteria (Table S25). 

Similar to our findings in participants with low diversity prior to DM diagnosis, at the point 

of lowest diversity, the phylum Bacteroides predominated (84%). Altogether, we 

demonstrate that longitudinal molecular outlier analysis can identify deviations in key 

molecules associated with disease to reveal potential biomarkers and give insights into 

underlying biological mechanisms associated with the disease.

Hematologic, immune & infection profiling—Comprehensive clinical labs identified 

many important health-related findings. Thirty participants had hemoglobin or hematocrit in 

the anemic range, including 28 participants without prior known anemia (Hemoglobin: 

Males <13.5 g/dL, Females <11.7 g/dL). In participants with anemia, mean corpuscular 

volume (MCV) was low (< 82 f/L) in 26.7% (n = 8) suggesting microcytic anemia, 10% (n = 

3) had an elevated MCV (> 98 f/L) with normal mean corpuscular hemoglobin concentration 

and the remainder had normocytic anemia. Importantly, one of these participants was 

discovered to have alpha thalassemia trait after referral to their physician for anemia 

evaluation.

Immunological profiling with IgM, identified one participant with a significantly elevated 

IgM (Fig. 5g) which led to a clinical diagnosis of monoclonal gammopathy of undetermined 

significance (MGUS). Nine participants were noted to have persistently low IgM (2 or more 

IgM < 30 mg/dL). Four participants had subsequent clinical evaluation of IgA and IgG 
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which led to identification of IgG monoclonal gammopathy and subsequent diagnosis of 

smoldering myeloma in one participant. The discovery of MGUS and smoldering myeloma 

precancers has important implications in elevated risk and screening for cancer56,57.

During the study, wearable monitoring detected temperature and heart rate abnormalities 

related to inflammatory disturbances as measured by hsCRP (n = 4). In one of the 

participants, these findings resulted in diagnosis of Lyme disease2. Thus, important health 

information related to hematologic, immune and infection systems were revealed by a 

variety of different approaches.

Effect of iPOP Participation on Participants

The deep phenotyping profiling had an effect on the majority of the participants by (a) 

encouraging appropriate risk-based screening including genetic counseling, (b) facilitating 

clinically meaningful diagnosis, (c) potentially informing therapeutic choices (mechanistic 

or pharmacogenomic information), and (d) increasing awareness leading to diet and physical 

activity modifications. Overall, we found over 67 major clinically actionable health 

discoveries spanning various area including metabolic, cardiovascular, heme/oncological and 

infectious using standard clinical, enhanced, and emerging technologies (Fig. 6a, Table S2).

Fifty-eight participants were surveyed mid to late study about the effect of participating in 

the study including changes on food and exercise habits, health findings, and their sharing of 

results with their personal doctors, family and others. Eighty-two percent reported some 

change in diet and/or exercise habits (Fig. 6b). In addition, almost half reported changing 

other health behaviors as a result of the study, including improving sleep, reducing stress, 

adding fiber and supplements to their diet, more careful self-examinations, recording food 

intake, attending a fitness camp and general lifestyle changes (Table S27). Fig. 6c shows the 

amount of change in diet and exercise. Participants also reported that their wearable device 

kept them accountable for exercising and more mindful to take walking breaks. Others 

reported using wearables to monitor sleep.

The majority of participants had discussed study results with their family (71%) and 

physicians (68%). Physician discussions led to follow-up testing in 29% of the cases. 

Additional testing included having children tested for gene mutation, colonoscopy, 

additional eye exams, cardiac calcium scan, PET scan to evaluate lymphoma, repeating 

study tests (echocardiogram, pulmonary function tests) in the clinical setting, extra screening 

for macular degeneration risk, and additional tests for diabetes-related studies (SSPG and the 

Quantitative Sudomotor Axon Reflex Test). Participants were also asked about the effect of 

SSPG testing and CGM monitoring (Table S28). Eight participants who used a CGM 

monitor reported that it helped them make different dietary and meal frequency choices to 

reduce their blood sugar spikes. SSPG results motivated at least 2 participants to change 

their activity and diet and were reassuring to others. Therefore, overall, a myriad of positive 

behavior modifications and follow-up tests resulted from study participation.
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Discussion

Our study found that combining untargeted multi-omics and physiological longitudinal 

profiling with targeted profiling of metabolic and cardiovascular risk led to actionable health 

discoveries and meaningful physiological insights building on our previous work3. Our 

targeted profiling approach enabled us to connect longitudinal profiling of glucose 

metabolism with multi-omics profiling facilitating the precision medicine goal of defining 

diseases based on molecular mechanisms and pathophysiology1. The untargeted longitudinal 

big data approach led to a number of discoveries in other areas such as cardiology, oncology, 

hematology and infectious disease, indicating that broad profiling is valuable for disease 

detection in many different areas. We capitalized on the depth of longitudinal profiling to 

identify deregulated molecules and pathways associated with the transition from health to 

disease.

The study informed more than half the participants of their preDM and DM status, 

dyslipidemia, and hypertension, which led many to institute diet and physical activity 

lifestyle changes. Our enhanced clinical assays including OGTT, beta-cell function 

assessment, insulin resistance and CGM in combination with standard clinical tests (FPG 

and HbA1C) improved characterization of preDM and DM status. Importantly, the in-depth 

physiological profiling identified individual mechanisms of glucose dysregulation which has 

important implications for implementation of personalized treatments. Our findings are 

consistent with the recent study which found that treatments based on the current 

classification are not well tailored to mechanistic subtypes58 and proposed 5 subtypes of 

adult onset DM. Deeper molecular understanding of progression to DM and its 

characteristics in the individual may help tailor therapy to its underlying pathophysiology 

and will likely identify additional subtypes and also inform stratification of CVD risk59. The 

superiority of using multi-omics data for SSPG prediction compared to standard measures 

illustrates the value of multi-omics data to help provide a molecular taxonomy of disease1, 

as well as replace expensive burdensome tests for insulin resistance with a simple blood test. 

Microbiome measures were also a good predictor of SSPG when combined with clinical 

measures and SSPG inversely correlated with Shannon diversity further demonstrating the 

intricate relationship between gut microbes and insulin resistance consistent with our multi-

omics study of weight gain60.

Although the majority of our exome sequencing findings were in the oncologic realm, 

several important metabolic exome findings were found including a MODY mutation with 

implications for medication management, a RBM20 mutation related to dilated 

cardiomyopathy and numerous pharmacogenomic variants that have important health 

implications61. Furthermore, two participants experienced vascular events, unaware of 

relevant pharmacogenomics information which could have suggested alternative treatments. 

Thus, we expect complex genetic risk assessment such as the information learned in this 

study to be incorporated into risk management and tailored treatment of disease62.

Imaging plays a central part in precision health initiatives allowing the early detection of 

oncological and systemic disease63. In our study, imaging helped detect dilated 

cardiomyopathy (in the RBM20 patient), early-stage atherosclerotic disease and a case of 
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asymptomatic lymphoma. Wearable sensors are emerging as a transformative technology for 

precision health and medicine and heart rate monitoring led to the diagnosis of atrial 

fibrillation, sleep apnea and detection of Lyme disease in participants. Large population-

based initiatives such as “myHeart counts” are evaluating the potential of wearable heart 

sensors to detect subclinical atrial fibrillation7 and electrocardiographic monitoring is now 

available in consumer wearable devices64. Our findings also suggest a role for CGM in 

diabetes prevention by identifying unrecognized glucose dysregulation6, and enabling 

individual to optimize diet based on personalized glycemic responses.

Our multi-omics analysis also provided important insights into ASCVD risk, highlighting 

the importance of systemic inflammation. Although our study was not powered for outcome 

analysis, all 5 participants with incident cardiovascular events had subclinical inflammation. 

Furthermore, correlation network analysis highlighted the role of monocytes, HGF, IL-2, 

MCP-3 and interferon-gamma cytokines including MIG and IP10 and other molecules in 

cardiovascular health. These analytes are involved in inflammation and are emerging in the 

context of ASCVD40-42,44,65.

Untargeted longitudinal outlier analysis of the period leading up to the diagnosis of 

lymphoma illustrates the importance of longitudinal multi-omics analysis for biomarker and 

pathway discoveries. We identified potential critical biomarkers (e.g. MIG) and changes in 

the microbiome up to 1 year prior to diagnosis demonstrating the power of monitoring 

molecules longitudinally to detect deviations from the healthy baseline. Outlier biomarkers 

at time of diagnosis illustrated deregulated pathways related to inflammation, cell 

proliferation and cell migration that shed light on underlying dysregulated biological 

mechanisms associated with the disease. Further work will be needed to streamline the 

investigation of untargeted discoveries within precision medicine research. Given the need 

for early biomarkers for cancer detection, longitudinal multi-omics analyses represent an 

important tool for meeting this need. In addition to individual molecule monitoring, omics 

profiles provide the opportunity to detect outliers relative to a matched-healthy population. 

Clinical outlier analysis identified one participant with MGUS where early diagnosis with 

follow-up can increase survival time in individuals who progress to an associated 

malignancy56. While some omics outlier profiles could be clearly connected to an 

underlying health condition, the case of the participant with significant RNA-seq outliers 

illustrates the challenges of interpreting the clinical relevance of outlier analysis results with 

emerging measures. While precision medicine approaches have the potential for unnecessary 

anxiety and overtesting, we did not observe this in our population.

In the rapidly evolving field of precision medicine, this study should be assessed in the 

context of methodological considerations. Our cohort comprised highly educated volunteers, 

and therefore likely had a self-selection bias. Although this may affect the generalizability of 

our findings for behavioral changes, it is less likely to affect the underlying biological 

associations of multi-omics with glucose measures. A study strength is its ethnic diversity, 

which is greater than other longitudinal multi-omics studies4,5. We demonstrate the 

feasibility of a longitudinal precision health and medicine approach that builds on sound 

molecular and physiological phenotyping. We show that in-depth physiological and multi-

omics characterizations is likely to further refine risk stratification. The intensive 
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longitudinal study design demonstrates how a small longitudinal cohort can yield important 

health and discovery findings. In the future, it will be possible to design personalized testing 

programs based on individual disease risk and longitudinal marker trajectories as well as 

evaluate the cost-value of these approaches for individuals and health care systems.

Data Availability

Raw omics data (transcriptome, immunome, proteome, metabolome, microbiome) included 

in this study are hosted on the NIH Human Microbiome 2 project site (https://

portal.hmpdacc.org/) under the T2D project along with clinical laboratory data through 

2016. Data from participants who have not consented to make their data public are available 

on dbGAP (accession phs001719.v1.p1). Additional data unique to this manuscript has been 

provided in supplemental data files.

Online Methods

Participant Consent and Accrual

Participants were recruited from the Stanford University surrounding community with the 

goal of enriching the cohort with individuals at risk for Type 2 diabetes and thus included 

individuals who expressed interest in other studies related to diabetes. Participants were 

enrolled as part of Stanford’s iPOP (Integrated Personal Omics Profiling) research study 

(IRB 23602), which entails longitudinal multi-omics profiling of a cohort of adult volunteers 

enriched for pre-diabetes. There was no payment required to participate in the study and 

participants were not paid for their time. This study is part of the NIH integrated Human 

Microbiome Project (iHMP).

Design, Setting and Participants

The iPOP study is a longitudinal prospective cohort study68 containing 109 individuals 

(Extended Data Figure S1a). Inclusion criteria were ages 25 to 75, body mass index (BMI) 

between 25 and 40 kg/m2 and 2-hour oral glucose tolerance test in the normal or prediabetic 

range (< 200 mg/dl). Exclusions included active eating disorder, hypertriglyceridemia > 400 

mg/dL, uncontrolled hypertension, heavy alcohol use, pregnancy/lactation, prior bariatric 

surgery, and active psychiatric disease. After meeting initial recruitment goals, we expanded 

our inclusion criteria to include people with diabetes and people with normal BMI into the 

study. Participant demographics are summarized in Table 1 with detailed data provided in 

Tables D1, D2 and D3. Of note our cohort is slightly different than the main iHMP paper 

(Zhou et al., submitted). We excluded one participant who had no clinical history or follow-

up information available and included 4 participants with clinical discoveries who entered 

the study after 2016 and thus had no omics data available.

The cohort was recruited over a number of years with the first participant starting in 2010. 

The study design has been described in detail previously68. Briefly, participants were asked 

to donate samples (i.e. fasted blood and stool) quarterly when healthy and more frequently 

when sick (viral infection), after immunization and various other events such as after taking 

antibiotics and going through colonoscopy. Samples collected through December 2016 were 

used for multi-omics analysis and corresponds to a median participation duration of 2.8 
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years. Standard and enhanced clinical lab data and participant surveys were available 

through June 2018. Most analysis were performed using healthy time points only. It is 

detailed in the text if all time points were used.

Measurements

All blood samples were collected after an overnight fast and were used to perform standard 

and enhanced clinical tests as well as emerging assays (Fig. 1). Standard tests included: 

FPG, HbA1C, fasted insulin, basic lipid panel, complete metabolic panel, CBC with 

differential and others (Table S1). In addition, participants were asked to complete various 

surveys in relation to demographics and current and past medical history, medications, 

smoking history, and family history, anthropometry, diet and physical activity as well as 

stress. Enhanced tests included: OGTT, SSPG, beta-cell function assessment, hsCRP, IgM, 

cardiovascular imaging (echocardiography, vascular ultrasound), cardiopulmonary exercise, 

CVD markers and wearable devices (physiology and activity monitor, continuous glucose 

monitoring (CGM)). In addition, multi-level molecular profiling were performed (emerging 

tests) including genome, gene expression (transcriptome), immune proteins (immunome), 

proteins (proteome), small molecules (metabolome), and gut microbes (microbiome). 

Clinical laboratory measures, immune proteins and cardiovascular biomarkers are detailed in 

Table S1. Participant surveys included the International Physical Activity Questionnaire, 

Stress and Adversity Inventory, and Perceived Stress Scale-1069-71.

Modified Insulin Suppression Test

Sixty-nine participants underwent the modified insulin suppression test72 to determine 

steady-state plasma glucose (SSPG) levels. The test was performed after an overnight fast 

and consists of 180-minute infusion of octreotide (0.27μg/m2/min), insulin (0.25 μg/m2/

min), and glucose (240 μg/m2/min) with blood draws at minutes 150, 160, 170, and 180. 

The oximetric method was used to determine blood glucose and steady-state plasma glucose 

(SSPG) was determined by taking the mean of the four measurements. Reasons for not 

participating in this test included medical contraindications (n = 9), refusal (n = 5) and 

dropped out of study (n = 11) and not yet performed (n = 15).

Multi-omics Measures

Detailed methods regarding sample preparation, data acquisition and data preprocessing are 

available in the main NIH integrated Human Microbiome Project study by Zhou et al 

(submitted). We briefly summarize these methods here.

Genomics—Whole Exome Sequencing (n = 88) was performed by an accredited facility 

and variant calling was performed using an in-house pipeline (HugeSeq)73. Exomes were 

assessed for pathogenic variants according to the American College of Medical Genetics 

Guidelines11,74. The Online Mendelian Inheritance in Man (OMIM) database was used. 

Further details on processing and variant calling are provided in Rego et al.11

Peripheral Blood Mononuclear Cell (PBMC) RNA Sequencing—RNA sequencing 

from bulk PBMCs was performed using the TruSeq Stranded total RNA LT/HT Sample Prep 

Kit (Illumina) and sequenced on Illumina HiSeq 2000 instrument. The ‘TopHat’ package75 

Rose et al. Page 15

Nat Med. Author manuscript; available in PMC 2019 November 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(v. 2.0.11) in R (v. 3.4) was used to align the reads to personal genomes, followed by 

‘HTseq’ (v. 0.6.1) and ‘DESEQ2’76 (v. 3.5) for transcript assembly and RNA expression 

quantification.

Plasma SWATH-Mass Spectroscopy Proteomics—A NanoLC 425 System (SCIEX) 

was used to separate tryptic peptides of plasma samples. MS analyses were performed with 

randomized samples using SWATH Acquisition on a TripleTOF 6600 System equipped with 

a DuoSpray Source and 25 μm I.D. electrode (SCIEX). A final data matrix was produced 

with 1% FDR at peptide level and 10% FDR at protein level. Protein abundances were 

computed as the sum of the three most abundant peptides (top3 method). To address batch 

effects, subtraction of the principal components showing a major batch bias was performed 

using Perseus (v. 1.4.2.40).

Immune Protein Measurements—The 62 plex-Luminex antibody-conjugated bead 

capture assay (Affymetrix) was used to characterize blood levels of immune proteins. The 

assay was performed by the Stanford Human Immune Monitoring Center. The protocol is 

available at:http://iti.stanford.edu/content/dam/sm/iti/documents/himc/protocols/

LuminexMultiplexAnalysisprotocol030213.doc (accessed May 1, 2018).

Plasma Liquid Chromatography-Mass Spectrometry (LC-MS) Metabolomics—
Untargeted plasma metabolomics was performed using a broad spectrum LC-MS platform77. 

This analytical platform has been optimized to maximize metabolome coverage and involves 

complementary reverse-phase liquid chromatography (RPLC) and hydrophilic interaction 

liquid chromatography (HILIC) separations. Data were acquired on a Q Exactive plus mass 

spectrometer (Thermo Scientific) for HILIC and a Thermo Q Exactive mass spectrometer 

(Thermo Scientific) for RPLC. Both instruments were equipped with a HESI-II probe and 

operated in full MS scan mode. MS/MS data were acquired at various collision energies on 

pooled samples. LC-MS data were processed using Progenesis QI (Nonlinear Dynamics) 

and metabolic features were annotated by matching retention time and fragmentation spectra 

to authentic standards or to public repositories. Some metabolites elute in multiple peaks and 

are indicated with a number in parenthesis following the metabolite name ordered by elution 

time.

Plasma Lipidomics—Lipids were extracted and analyzed as previously described78. 

Briefly, we used a mixture of MTBE, methanol and water to extract lipids from 40 μl of 

plasma following biphasic separation. Lipids were then analyzed with the Lipidyzer 

platform consisting in a DMS device (SelexION Technology, SCIEX) and a QTRAP 5500 

(SCIEX). Lipids were quantified using a mixture of 58 labeled internal standards provided 

with the platform. Lipodomics data is provided in Table D4.

16S Microbiome Sequencing—DNA was extracted from stool in line with the Human 

Microbiome Project’s (HMP) Core Sampling Protocol A (hmpdacc.org). Targeted rRNA 

gene amplification of the V1 through V3 hypervariable regions of the 16S rRNA gene was 

performed using primers 27F and 534R (27F:5’-AGAGTTTGATCCTGGCTCAG-3’ and 

534R: 5’- ATTACCGCGGCTGCTGG-3’), and subsequently sequenced using 2×300 bp 

paired-end sequencing (Illumina MiSeq). Illumina’s software handles initial processing of 
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all the raw sequencing data. A standard of one mismatch in primer and zero mismatch in 

barcode was applied to assign read pairs to the appropriate sample within a pool of samples. 

Barcodes and primers were removed prior to analysis. Amplicon sequences were clustered 

and Operational Taxonomic Units (OTU) picked by Usearch against GreenGenes database 

(May 2013 version) and final taxonomic assignment were performed using RDP-classifier.

ASCVD Circulating Markers

Millipore immunoassays human cardiovascular disease panels 1 to 4 (HCVD1MAG-67K, 

HCVD2MAG-67K, HCVD3MAG-67K, HCVD4MAG-67K) were used to characterize 

blood ASCVD circulating markers. The assays were performed by the Stanford Human 

Immune Monitoring Center.

Wearable Physiology and Activity Monitoring

Participants wore a Basis watch during the first part of the study and a Fitbit Charge 2 during 

the latter part of the study. We developed a special algorithm, “Change of Heart” to detect 

abnormalities in heart rate relative to a person’s baseline which was shown to provide an 

early warning signal of clinical abnormalities and disease which is described in detail in Li 

et al2.

Continuous Glucose Monitoring

Continuous glucose monitoring (CGM) was performed with the Dexcom G4 CGM system. 

Participants wore the monitors for 2–4 weeks with interstitial glucose concentrations 

recorded every 5 minutes. They were also given glucose meters (AccCheck Nano 

SmartView) to measure finger prick blood glucose concentrations twice a day for the 

purpose of calibration.

Echocardiography

Baseline rest echocardiography was performed using commercially available echo systems 

(iE33; Philips Medical Imaging, Eindhoven, the Netherlands). Post-stress images were 

acquired immediately post-exercise, as per international consensus. Digitized 

echocardiographic studies were analyzed by the Stanford Cardiovascular Institute Biomarker 

and Phenotypic Core Laboratory on Xcelera workstations in accordance with published 

guidelines of the American Society of Echocardiography79. Regarding specific 

echocardiographic variables, left ventricular ejection fraction (LVEF) was calculated by 

manual contouring of apical imaging80. Left ventricular global longitudinal strain (LV GLS) 

was calculated from triplane apical imaging on manual tracings of the mid wall with the 

formula for LaGrangian Strain % = 100 x (L1 - L0)/L0), as previously described81. With 

tissue Doppler imaging, we used peak myocardial early diastolic velocity at the lateral mitral 

annulus and the assessment of trans mitral to tissue Doppler imaging early diastolic velocity 

ratio (E/e’)82,83.

Vascular Ultrasound

Screening for subclinical atherosclerosis was performed using vascular ultrasound of the 

carotid and femoral artery using a 9.0 MHz Philips linear array probe and iE33 xMATRIX 
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echocardiography System manufactured by Philips (Andover, MA, USA). Vascular stiffness 

was assessed using central pulse wave velocity (PWV).

Cardiopulmonary Exercise Testing

Symptom-limited cardiopulmonary exercise (CPX) ventilatory expired gas analysis was 

completed with an individualized RAMP treadmill protocol84. Participants were encouraged 

to exercise to maximal exercise capacity. In addition, we monitored the respiratory exchange 

ratio (RER) during exercise and considered an RER ratio < 1.05 as representing sub-optimal 

or limitations associated with fatigue. Ventilatory efficiency (VE), oxygen consumption 

(VO2), volume of carbon dioxide production (VCO2) and other CPX variables were acquired 

breath by breath and averaged over 10 second intervals using CareFusion Oxygen Pro (San 

Diego, California) or CosMEd Quark (Rome, Italy) metabolic system. VE and VCO2 

responses throughout exercise were used to calculate the VE/VCO2 slope via least squares 

linear regression (y = mx + b, m = slope)85. Percent predicted maximal oxygen consumption 

was derived using the Fitness Registry and the Importance of Exercise: a National Database 

(FRIEND) registry equation, derived from a large cohort of healthy US individuals who 

completed cardiopulmonary exercise testing86.

iPOP Participant Surveys

Participants completed a survey on how the study had impacted their eating and exercise 

habits, what they learned about their health during the study, whether they discussed findings 

with their doctor, any follow-up testing, and other people they shared data with. This survey 

was initially administered anonymously but we then switched to surveys identified by 

participant ID. The quantitative results reported in Fig. 6 are from all participants who filled 

out an identifying survey (using last filled out survey where there were more than one). We 

used participant comments from anonymous and identified surveys in Table S27. At each 

quarterly visit, participants were asked about changes to health and medication. Participants 

were also asked by the study dietician how iPOP participation and CGM monitoring 

impacted their health behaviors (Table S28).

Calculation of Insulin Secretion Rate and Disposition Index

We used the ISEC program87 to calculate the insulin secretion rate (ISR) from deconvolution 

of c-peptide measurements from plasma sampled at various time points during the OGTT (at 

minutes 0, 30 and 120). The deconvolution method uses population-based kinetic 

parameters14 for c-peptide clearance to estimate insulin secretion rates at other timepoints. 

ISR was reported in pmol/kg/min at every 15-minute time interval between 0 and 120 

minutes. The disposition index (DI) was calculated as the ISR at 30 minutes (ISR30) times 

the Matsuda index, which was calculated as in Cersosimo et al13. DI was reported as 

(pmol/kg/min)/(mg/dL*μU/mL).

Cluster Analysis and Association of Disposition Index with Multi-omics Measures

Insulin secretion rates were row standardized across the 9 timepoints from an OGTT sample 

and then clustered via the k-means clustering algorithm in R (v. 3.5) (function ‘kmeans’), 

with k = 4. Simple linear models were used to associate the disposition index with each 
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multi-omics analyte. Values for multi-omics analytes were from the time point closest to the 

OGTT date. Adjustment of p-values for multiple testing was performed using the 

Benjamini-Hochberg method, with an adjusted p-value of < 0.10 used to identify analytes 

significantly associated with the disposition index.

ASCVD and Adjusted ASCVD Risk Score Calculation

The ASCVD Pooled Cohort Risk Equations were implemented according to the instructions 

in the 2013 ACC/AHA Guideline on the Assessment of Cardiovascular Risk33, using SAS 

9.4 statistical software. The baseline time point was used for all participants except those 

that turned 40 during the study. In these cases, the first time point after age 40 was chosen. 

Participants under the age of 40 (n = 7) for the entire duration of the study were assigned the 

age of 40 for the purposes of ASCVD risk score calculation. To calculate the optimal risk for 

someone of a particular, age, sex and race, we used total cholesterol of 170, HDL of 50, and 

systolic blood pressure of 110 with no blood pressure medications, diabetes, or smoking. 

Adjusted ASCVD risk score was calculated by subtracting the optimal ASCVD risk score 

for a person of the same age, gender and race, from the participant’s ASCVD risk score.

Association of Multi-omic Analytes and Adjusted ASCVD Risk Score

First, a median value was calculated for each analyte in each participant using healthy time 

points. A minimum of three healthy visits per participant was required. Spearman 

correlations were then calculated between adjusted ASCVD risk score and the median value 

of each multi-omics analyte. Associations were considered significant for analytes with q-

value < 0.2. FDR correction was performed using the ‘qvalue’ package (v. 1.36.0) in R (v. 

3.0.1).

Correlation Network Analysis

Spearman correlations among molecules significantly associated with disposition index and 

adjusted ASCVD risk score were calculated using the rcorr function in the ‘Hmisc’ package 

(v. 3.15–0) in R (v. 3.0.1) and p-values were corrected for multiple hypothesis using 

Bonferroni. Correlation networks were plotted using the R package ‘igraph’ (v. 0.7.1) and 

the layout used was Fruchterman-Reingold. Edges represent correlations with Bonferroni-

corrected p-value < 0.05 and 0.10 for the disposition index and ASCVD risk score, 

respectively.

Linear Mixed Models (healthy-baseline and dynamic models)

SAS 9.4 Proc Mixed was used to perform linear mixed model analysis using the full 

maximum likelihood method of estimation and the between-within method for estimating 

degrees of freedom. We used a random intercept model with an unstructured covariance 

matrix for all analytes. Since linear time explained only a small amount of within person 

variation in FPG (1.2%) and HbA1C (5.0%) at healthy timepoints, we did not include time 

in our models. The outcome measures (FPG, HbA1C and hsCRP) were log-transformed in 

all models and the analytes were standardized to a mean of zero and standard deviation of 

one. All models were controlled for sex and age at consent. The healthy-baseline models 

used data from healthy quarterly visits. The dynamic analysis used the ratio to the first 
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available time point for each outcome measure and analytes and used all time points in the 

study. P-values were corrected for multiple hypothesis testing using the Benjamini-Hochberg 

procedure. Significant analytes have BH FDR < 0.2.

Data Reporting

In reporting results we considered consistency between models and results, validation 

through literature review of emerging molecules and relevance to disease state or risk 

condition. We also considered whether differing results varied because of sensitivity and 

variability of measures, the difference between evaluating absolute baseline values versus 

relative change, and the potential for biological saturation.

Multi-omics Outlier Analysis

Z-scores (mean of zero and standard deviation of one) were calculated after log2-

transformation for all measures in all participants and outliers were defined as absolute Z-

score > 95th percentile. Associated P-values were calculated assuming a normal distribution. 

P-values were corrected for multiple hypothesis using the Benjamini-Hochberg procedure.

Stroke Genes Outlier Analysis

Z-scores were calculated as described above for 14 of 32 genes recently identified as being 

associated with stroke and stroke types39. The 14 genes that we detected in our RNA-seq 

dataset were as follows: CASZ1, CDK6, FURIN, ICA1L, LDLR, LRCH1, PRPF8, SH2B3, 

SH3PXD2A, SLC22A7, SLC44A2, SMARCA4, ZCCHC14, ZFHX3. A composite Z-score 

was calculated by summing the individual gene Z-scores.

Pathway Enrichment Analysis

The web tool IMPaLA version 11 (build April 2018) (Integrated Molecular Pathway-Level 

Analysis) (http://impala.molgen.mpg.de) was used for the joint pathway analysis of proteins 

(from SWATH-MS) and metabolites (from LC-MS) abundances. Uniprot and HMDB 

accession numbers were used for proteins and metabolites, respectively. Pathway 

significance for proteins and metabolites separately was calculated using a hypergeometric 

test; the whole space of proteins and metabolites described in the pathways were used as a 

background. Joint p-values combining protein and metabolite pathways are calculated using 

Fisher’s method. Multiple comparisons are controlled for using the Benjamini-Hochberg 

procedure88.

Exercise Sub-study Analysis

ASCVD risk scores were calculated using cholesterol labs closest to the exercise study date 

using the same method as that used for the baseline ASCVD risk scores. Correlation analysis 

was done with ‘corrplot’ package in R (v. 3.3.2). The network was plotted using Cytoscape 

3.4.089, where edges represent correlations with statistically significant Spearman’s values 

(FDR < 0.2). False discovery rate correction was performed using the ‘qvalue’ package (v. 

1.36.0) in R. The distance between nodes represents the strength of the pull between a node 

and its connected neighbors. The larger the value, the closer the distance between the two 
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nodes. The system was iterated until dynamic equilibrium using the prefuse force directed 

layout90.

Microbiome Diversity: Univariate Models

Shannon diversity was calculated with SAS 9.4 using a code adapted from Montagna91. SAS 

9.4 Proc Mixed using restricted maximum likelihood estimation the between-within degrees 

of freedom method was used to model the association of HbA1c, FPG and SSPG and 

Shannon diversity H’ index. Preliminary analyses were done in proc gam and suggested an 

‘inverse u’ distribution for all 3 measures in relationship to the Shannon diversity index. 

HbA1C and FPG were modeled using a repeated measures model with spatial power 

covariance structure. Shannon was entered into the model as a quadratic predictor of HbA1C 

and FPG. SSPG was modeled slightly differently because SSPG was only measured once in 

participants thus models with the predictor SSPG included Shannon diversity in the random 

statement. In addition, Shannon diversity as a quadratic term did not improve model fit and 

was not significant in any SSPG models so we present only the models with Shannon as a 

linear predictor (Table 6).

Microbiome Diversity: Multivariate Model

For our multivariate model (SAS 9.4 Proc Mixed), the full maximum likelihood method of 

estimation was used to enable comparison between models. The degree of freedom method 

was the between-within method. We used an unstructured covariance matrix for the models 

presented. In addition to the models presented in Table S7, we also evaluated the effect of 

adding of baseline BMI, consent age, or metformin use to the model. None of these 

covariates added significantly to the model and thus were left out of subsequent models. In 

addition, we evaluated whether use of the Firmicutes/Bacteroidetes ratio in place of the 

phylum Bacteroidetes proportion would improve the model. However the ratio accounted for 

substantially less within person variation in Shannon diversity (10.4%) thus we kept the 

proportion of the phylum Bacteroidetes in the final model.

Modeling Individual Shannon Diversity Trajectories

We modeled the change in Shannon diversity over time for individual participants using a 

general additive model (SAS proc gam) which separates the linear and non-linear 

components of the trajectory. The F test of the model using time as a predictor of Shannon 

diversity was compared to the null model and was calculated according to SAS usage note 

32927:http://support.sas.com/kb/32/927.html (accessed March 2018).

SSPG and OGTT prediction models

Reprocessing of microbiome data—For the prediction models, the microbiome 16S 

reads were reprocessed using QIIME 292 (https://qiime2.org) and the DADA293 denoising 

plugin. The resulting read depth was 18,885 ± 11,852 (mean ± SD) following paired-end 

joining, removal of chimeric reads, and removal of samples with <7000 read depth. 

Taxonomic assignment was carried out using a naïve Bayes classifier trained on the above 

primers with the 99% 13_8 Greengenes OTU data set as reference sequences94. DADA2 

facilitates cross-study comparison by providing DNA sequences of features thus making it 
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more appropriate for prediction models which will eventually need further external 

validation95.

Feature selection—Features from multi-omics (clinical labs, transcriptome, immunome, 

proteome, metabolome, lipidome and microbiome) were standardized to zero mean with unit 

variance. Clinical laboratory (including SSPG), immunome and metabolomics data was log 

transformed prior to standardization. The variance stabilizing transformation had been used 

for RNA-seq data. The sample IDs used for each SSPG and OGTT model are provided in 

Data Tables D5-D24. We then used the ‘MXM’ R package26 (v. 0.9.7) with the Max-Min 

Parents and Child algorithm (MMPC)25 option to identify features that are parents or 

children of SSPG in a Bayesian network constructed from all the available data. The features 

selected by the algorithm are hypothesized to be direct causes or effects of SSPG in the data, 

as each feature selected are SSPG dependent when conditioned on every possible subset of 

the other features. These features provide novel information about SSPG, and thus are most 

useful for prediction. There were 41 participants with SSPG values and all multi-omics data. 

Feature selection was performed using leave-one-out cross validation, where 41 training sets 

were constructed and each training set excludes the data from a different patient. We ran the 

MMPC algorithm on each training set. Features that were identified by the MMPC algorithm 

in ≥ 20% of training sets were used as features in the model. For the OGTT predictive 

model, there was no lipidomics data available.

Ridge Regression—Ridge Regression was performed using R (v. 3.4.1). For each -ome, 

we use the sample at the closest time point that is equal or prior to the time point of the 

patient’s SSPG/OGTT measurement. We performed leave one out cross validation to 

maximize available training data. For each training set, we optimize the hyperparameter by 

performing a grid search and selecting the model that minimizes test error. The predicted 

SSPG/OGTT value is the value from the cross validation iteration in which that SSPG/

OGTT data point and its associated features are excluded from the training set. We use these 

predicted values to calculate mean square error and R2 values. The value of the 

hyperparameter used was the average of the hyperparameters which minimized test error 

during cross validation.

Ethnicity PCA Plot

Ethnicity information for 72 individuals in the study was broadly classified into the five 

1000 Genomes Project (1000GP) Consortium super-population definitions, which are 

namely African (AFR), East Asian (EAS), European (EUR), South Asian (SAS) and 

admixed American (AMR). Individuals who self-identify as Indians from South Asia were 

categorized as SAS (n = 7), Hispanics and Latinos as AMR (n = 3), East Asians as EAS (n = 

8), Caucasians as EUR (n = 50) and African Americans (n = 4) as AFR. The ethnicity 

information from the 2,504 samples, definitions of the populations and super-populations, 

and genetic information of the 1000GP were obtained from ftp://ftp.1000genomes.ebi.ac.uk/

vol1/ftp/release/20130502/ (downloaded in April 2017).

The following filters were first implemented for each individual genome for the study: (a) 

we removed indels, leaving only the SNVs, (b) we removed SNVs without the “PASS” tag, 
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(c) we kept SNVs with a minimum read depth of 1, and (d) we removed SNVs with missing 

genotypes. We then intersected the genetic loci from 72 individuals and the samples from the 

1000GP, to obtain 6,653 SNVs common to both datasets. In order to reduce the chance of 

linkage disequilibrium and dependency between SNVs due to close proximity, we further 

thin the SNV set by taking every third SNV. Finally, we have a combined set of 2,576 

samples and 2,318 SNVs that we use for PCA. We used the smartpca tool in the PLINK2 

suite to generate the PCA96.

Extended Data
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Extended Data Fig 1. Integrated personalized omics profiling cohort flow chart and genetic 
ancestry.
(a) The flow chart demonstrates recruitment and enrollment of the iPOP cohort. (b) 

Principal components analysis (PCA) plot showing the ancestries of 72 participants. The 

reference includes 2,504 samples from the 1000 Genomes Project10. Each filled circle is a 

1000GP sample, colored by the super-population of ancestral origin, namely African (AFR; 

red), admixed American (AMR; purple), East Asian (EAS; green), European (EUR; cyan) 

and South Asian (SAS; orange). Each black symbol is an individual from the study, which 

we categorized by self-reported ethnicity consistent with the 1000GP super-population 
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definitions, namely AFR (black filled circle), AMR (black filled triangle), EAS (black filled 

square), EUR (black plus sign) and SAS (a checked box). We see that the individuals in our 

study have self-reported ancestries generally clustering within the super-population 

reference panel from the 1000GP.
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Extended Data Fig 2. Comparison of diabetic metrics in categorizing individuals when 
performed at the same time and HbA1C trajectories.
(a) Overlap of Fasting Plasma Glucose (FPG) and Hemoglobin A1C (HbA1C) categories 

when simultaneously measured. FPG impaired: 100 mg/dL ≤ FPG < 126 mg/dL; diabetic 

range: FPG ≥ 126 mg/dL; HbA1C impaired: 5.7% ≤ HbA1C < 6.5%; diabetic range: 

HbA1C ≥ 6.5%. (b) Overlap of FPG and 2-Hour Oral Glucose Tolerance Test (OGTT) when 

simultaneously measured. FPG ranges as above. OGTT impaired: 140 mg/dL ≤ OGTT < 

200 mg/dL; diabetic range ≥ 200 mg/dL. (c) Longitudinal patterns of changes in 

Hemoglobin A1C (HbA1C) over time. Six different patterns could be characterized 
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including: 1- participants who remained in the normal range the entire study (Group 1, n = 

51), 2- participants who progressed from normal to prediabetic (Group 2, n = 5), 3- 

participants who went from prediabetic to normal (Group 3, n = 10), 4- participants whose 

HbA1C went back and forth from normal to prediabetic (Group 4, n = 21), 5- participants 

whose HbA1C labs were predominantly in the prediabetic range (Group 5, n = 14), and 6- 

participants whose HbA1C crossed into the diabetic range (Group 6, n = 8). The red lines 

represent the overall penalized b-spline of participants’ data in each category.
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Extended Data Fig 3. Additional individual longitudinal trajectories for diabetic measures.
Diabetic-range metrics are indicated in red. (a) Diabetic range OGTT, (b,c) Diabetic range 

FPG, (d) undiagnosed DM at study entry (HbA1C), (e) Initial abnormality HbA1C. Note 

this person had two HbA1C measurements on the same day at two different laboratories and 

was started on medication based on the higher measurement, (f) Bouncer with diabetic range 

HbA1C and OGTT, and (g) SSPG decrease with lifestyle change.
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Extended Data Fig 4. Longitudinal microbiome trajectories in diabetes.
Longitudinal weight, gut microbial Shannon diversity and phylum proportion changes in 

participants (a) ZNDMXI3 and (b) ZNED4XZ. (c) Longitudinal changes in genus 

proportion (ZNDMXI3). Microbiome outliers (95th percentile) at the latest microbiome 

sample time point in participants (d) ZNDMXI3 and (e) ZNED4XZ. Microbial abundance is 

scaled by row with low (blue) and high (red) abundance.
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Extended Data Fig 5. Multi-omics of glucose metabolism and inflammation.
(a) Proteins and metabolites associated with HbA1C, FPG, and hsCRP using healthy-

baseline and dynamic linear mixed models. Healthy-baseline models (HbA1C n = 101, 

samples 560; FPG n = 101, samples 563; hsCRP n = 98, samples 518) account for repeated 

measures at healthy time points. Dynamic models are similar models except that analytes are 

normalized across individuals to the first measurement and all time points in the study are 

used (HbA1C n = 94, samples = 836; FPG n = 94, samples = 843; hsCRP n = 92, samples 

777). Individual analyte p-values were determined using a two-sided t-test. Multiple testing 

correction was performed and molecules were considered significant when BH FDR < 0.2. 
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Model estimates were normalized in each condition so the maximum value equal 1 and the 

minimal value equal −1. (b) Integrative pathway analysis using IMPaLa (http://

impala.molgen.mpg.de) of proteins and metabolites associated with HbA1C (n = 101, 

samples 560), FPG (n = 101, samples 563), and hsCRP (n = 98, samples 518) as determined 

by the healthy-baseline models (BH FDR < 0.2 at molecule level which matched to known 

pathways. Significance of pathways for proteins and metabolites separately is determined by 

the hypergeometric test (one-sided) followed by Fisher’s combined probability test (one-

sided) to determine combined pathway significance (BH FDR < 0.05; n’s of proteins and 

metabolites for each pathway are provided in Tables S9, S11, S13).
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Extended Data Fig 6. Outlier Analysis of RNA-seq data.
(a) Number of outlier RNA molecules (95th percentile) in each participant. Outlier analysis 

was performed on Z-scores calculated on the median expression level of each gene at 

healthy visits in individuals with at least 3 healthy visits (n = 63). The box is defined as 25th 

and 75th quartile. The upper whisker extends to 1.5 times the interquartile range from the 

box and the lower whisker to the lowest data point. The horizontal bar in the box is the 

median value. (b) Selected clinical lab and metabolite trajectories (7 measurement time 

points) for participant ZJTKAE3 showing a concomitant increase of bile acids and glutamyl 

dipeptides with ALT (alanine aminotransferase) and AST (aspartate aminotransferase).
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Extended Data Fig 7. Multidimensional cardiac risk assessment.
(a) Distribution of ASCVD risk scores (n = 35, 36 measurements) and cardiovascular 

imaging and physiology measures that have been established as cardiovascular risk markers. 

(Abbreviations: RWT-relative wall thickness, LV GLS-left ventricular global longitudinal 

strain, E/e’ - ratio of mitral peak velocity of early filling (E) to early diastolic mitral annular 

velocity (e'), PWV-pulse wave velocity). Please note that thresholds for PWV are age-

related. Box plots were derived to display quartiles (Q1, median, Q3) with the upper whisker 

being Q3 plus 1.5*(interquartile range) and the lower whisker extending to Q1 minus 

1.5*(interquartile range) or the lowest data point. (b) Ultrasound of carotid plaque (6 
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participants of 36 had an ultrasound finding of carotid plaque) and relative distribution of 

ASCVD risk score, HbA1C and LV GLS in function of presence or absence of carotid 

plaque (Student’s t-test (two-sided) was used to evaluate differences between groups; n = 35, 

36 measurements). Error bars represent one standard deviation from the mean (upper edge of 

box). (c) Correlation network of selected metrics collected during cardiovascular assessment 

which associated (Spearman correlation (two-sided) with ASCVD risk score (q-value < 0.2); 

n = 35 participants with 36 measurements. (d) Composite Z-score of ZOBX723 (unstable 

angina with stent placement) and ZNED4XZ (mild stroke with full recovery and transition 

to diabetes). For ZOBX723, day 829 occurred 3 weeks post stent placement. Day 679 was a 

mid-infection time point. For ZNED4XZ, day 699 was the time point prior to the 

participant’s transition to diabetes and day 846 was the first diabetic time point. The stroke 

occurred on day 307 for this individual. Gray dots represent Z-scores of other participants 

(n=101 with 859 samples). (e) Violin plot showing the same data as (d) (n = 101 with 859 

samples). The box plot shows the 1st (lower edge of box), median (middle line) and 3rd 

(upper edge of box) quartiles. The upper whisker is the 3rd quartile + 1.5*(interquartile 

range) and the lower whisker is the lowest data point.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Study design and data collection.
Overview of the in-depth longitudinal phenotyping used to determine health risk and status. 

Data types were categorized as: Standard (Blue), Enhanced (Purple) and Emerging (Red) 

tests. PBMCs: peripheral blood mononuclear cells; HbA1C: glycated hemoglobin; OGTT: 

oral glucose tolerance test; SSPG: steady-state plasma glucose; CBC: complete blood count; 

hsCRP: high sensitivity C-reactive protein; CVD: cardiovascular disease.
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Figure 2. Clinical and enhanced phenotyping of glucose metabolism, insulin production and 
resistance.
(a) Transitions in diabetes mellitus (DM) status (n = 109). 1st column: Self-reported DM 

status; 2nd column: DM status determined by self-report; medical records and study entry 

diabetes-related laboratory measures: FPG, HbA1C and OGTT; prediabetic range (100 

mg/dL ≤ FPG < 126 mg/dL or 5.7% ≤ HbA1C < 6.5% or 140 mg/dL ≤ OGTT < 200 mg/

dL); diabetic range (FPG ≥ 126 mg/dL or HbA1C ≥ 6.5% or OGTT (2-hour) ≥ 200 mg/dL); 

3rd column: DM history and status determined by the initial report and diabetes-related 

laboratory measures over the course of the study. For FPG to be considered impaired or 

Rose et al. Page 41

Nat Med. Author manuscript; available in PMC 2019 November 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



diabetic, two values in these ranges were required over the course of the study, whereas for 

HbA1C and OGTT only one value was required. (b) Overlap of diabetic range labs by 

participants over the course of the study. Diabetic ranges are as in panel (a). (c) Violin plots 

showing insulin levels during OGTT at 0, 30 and 120 minutes, SSPG (steady-state plasma 

glucose, n = 43 participants) and glucose disposition index (n = 89 samples from 61 

participants) by glycemic status determined by OGTT including normoglycemic, impaired 

fasting glucose only (IFG only: FPG ≥ 100 mg/dL), and impaired glucose tolerance (IGT: 

OGTT ≥ 140 mg/dL). SSPG was measured using the modified insulin suppression test. The 

disposition index was calculated as the insulin secretion rate at 30 minutes times the 

Matsuda index (pmol/kg/min). A two-sided Wilcoxon t-test was used for differential 

analysis. The violin plots illustrate kernel probability density (i.e. the width represents the 

proportion of the data) and the horizontal bar depicts the median of the distribution. (d) 

Heatmap showing insulin secretion rates which were row-standardized and clustered using 

k-mean clustering (n = 89 samples from 61 participants). Observations within clusters were 

ordered by OGTT status. OGTT status, disposition index (DI), SSPG and insulin secretion 

rate max (ISR) are indicated on the left side of the heatmap. (e) Correlation network of 

multi-omics measures associated with the glucose disposition index (n = 89 samples from 61 

participants; Benjamin-Hochberg FDR < 0.1). Correlations were calculated using Spearman 

correlation and considered significant if Bonferroni FDR < 0.05. Only networks containing a 

minimum of three molecules were plotted.
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Figure 3. Longitudinal individual phenotyping and multi-omics of glucose metabolism and 
inflammation.
Longitudinal diabetic measures demonstrating different patterns of DM onset and 

progression with (a) initial abnormality response to glucose load (OGTT), (b) initial 

abnormality in fasting glucose metabolism (FPG) and (c) initial improvement followed by 

progression. Diabetic-range metrics are indicated in red. (d) Clinical markers and immune 

proteins associated with HbA1C, FPG, and hsCRP using healthy-baseline and dynamic 

models. Healthy-baseline models are linear mixed models that take into account repetitive 

measures across participants (HbA1C n = 101, samples 560; FPG n = 101, samples 563; 
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hsCRP n = 98, samples 518). Dynamic models are similar models except that analytes are 

normalized across individuals to the first measurement and all time points in the study are 

used (HbA1C n = 94, samples = 836; FPG n = 94, samples = 843; hsCRP n = 92, samples 

777). Each analyte was modeled separately and the two sided t-test was used to determine p-

value for each analyte effect. Multiple testing correction was performed and molecules were 

considered significant when Benjamin-Hochberg (BH) FDR < 0.2. Model estimates were 

normalized in each condition so the maximum value equal 1 and the minimal value equal 

−1. (e) Integrative pathway analysis using IMPaLa66 of proteins and metabolites associated 

with HbA1C (n = 94, samples = 836), FPG (n = 94, samples = 843), and hsCRP (n = 92, 

samples 777) as determined by the dynamic models (BH FDR < 0.2 at molecule level). 

Significance of pathways was determined by the hypergeometric test (one-sided) followed 

by Fisher’s combined probability test (one-sided) to determine combined pathway 

significance (BH FDR < 0.05). The n’s of proteins and metabolites for each pathway are 

provided in Tables S15, S17 and S19. (f) Molecules selected in steady-state plasma glucose 

(SSPG) and oral glucose tolerance test (OGTT) prediction models and associated 

coefficients. For SSPG prediction, lipidomics data were used in addition to the multi-omics 

measures. MSE: mean square error.

Rose et al. Page 44

Nat Med. Author manuscript; available in PMC 2019 November 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Clinical longitudinal cardiovascular health profiling and multi-omics correlation 
network of adjusted ASCVD risk.
(a) Distribution of ASCVD risk scores and adjusted ASCVD risk scores (n = 108). The box 

plot shows the 1st (lower edge of box), median (middle line) and 3rd (upper edge of box) 

quartiles. The upper whisker is the 3rd quartile + 1.5*(interquartile range) and the lower 

wisker is the lowest data point. (b) Self-reported cholesterol status versus measured total 

cholesterol profiles at study entry and over the course of the study (n = 108). (c) Multi-omics 

correlation network of molecules associated with adjusted ASCVD risk score (n = 77 

participants) using Spearman correlation and multiple testing correction of q-value < 0.2. 
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Correlations between molecules were then calculated using Spearman correlation and 

considered significant if Bonferroni corrected p-value < 0.1. Only molecules belonging to 

the main network were plotted.
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Figure 5. Oncologic discoveries.
(a) Abdominal ultrasound image where a mildly enlarged spleen measuring approximately 

13 cm in craniocaudal dimension can be seen. (b) Positron emission tomography (PET) 

imaging where a large retroperitoneal mass with high fluorodeoxyglucose (FDG) and 

intensely focal hypermetabolism occupying the majority of the spleen can be seen. (c) 

Lactate Dehydrogenase (LDH) levels at time of index imaging and after starting 

chemotherapy. (d) Levels of MIG (CXCL9) demonstrating an increase starting a year prior 

to diagnosis that peaks at time of diagnosis and goes back to baseline after treatment (n=11 

samples). Benjamin-Hochberg (BH) p-value (two-sided) was calculated on MIG Z-scores 
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assuming a normal distribution across all healthy visits in the cohort (n = 601 samples). (e) 

Functional association network of outlier proteins (95th percentile) at time of diagnostic. 

This analysis was performed using the web-tool STRING67 (https://version-10-5.string-

db.org/). Edges correspond to known, predicted or other interactions. (f) Shannon diversity 

of the gut microbiome decreasing months prior to diagnosis, reaching a minimum value at 

time of diagnostic and returning to baseline after treatment (n = 11 samples). Trajectory was 

then modeled using a general additive model which separates the linear (β = −0.197, p = 

0.002 (2-sided t-test)) and non-linear (df = 3, p = 0.0112 (one-sided Chi-sq)) components. 

An F-test (one-sided) was used to compare the model including time to the null model. (g) 

IgM (Immunoglobulin M) level distribution in the cohort (n = 109, samples 1,111). 

Benjamin-Hochberg (BH) p-value (two-sided) was calculated on IgM Z-scores assuming a 

normal distribution across all visits in the cohort. Outlier visits are from a participant that 

was diagnosed with monoclonal gammopathy of undetermined significance (MGUS). The 

box plot shows the 1st (lower edge of box), median (middle line) and 3rd (upper edge of 

box) quartiles. The upper whisker is the 3rd quartile + 1.5*(interquartile range) and the 

lower wisker is the lowest data point. The diamond is the mean.
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Figure 6. Summary of major clinically actionable health discoveries and participant health 
behavior change.
(a) Summary of clinically relevant health discoveries. 67 discoveries were considered major 

and the 55 PreDM results were not included in this count. (b) Diet and physical activity 

modifications. (c) Amount of change made in diet and exercise (5-point scale was used with 

1 being no change and 5 being significant change). MODY: Maturity onset diabetes of the 

young; DM: diabetes mellitus; PreDM: prediabetes mellitus; afib: atrial fibrillation; SVT: 

supraventricular tachycardia; CV: cardiovascular; MGUS: monoclonal gammopathy of 

undetermined significance.
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