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ABSTRACT

Evidence derived from existing health-care data, such as administrative claims and electronic health records,

can fill evidence gaps in medicine. However, many claim such data cannot be used to estimate causal treatment

effects because of the potential for observational study bias; for example, due to residual confounding. Other

concerns include P hacking and publication bias.

In response, the Observational Health Data Sciences and Informatics international collaborative launched the

Large-scale Evidence Generation and Evaluation across a Network of Databases (LEGEND) research initiative.

Its mission is to generate evidence on the effects of medical interventions using observational health-care data-

bases while addressing the aforementioned concerns by following a recently proposed paradigm. We define 10

principles of LEGEND that enshrine this new paradigm, prescribing the generation and dissemination of evi-

dence on many research questions at once; for example, comparing all treatments for a disease for many out-

comes, thus preventing publication bias. These questions are answered using a prespecified and systematic ap-

proach, avoiding P hacking. Best-practice statistical methods address measured confounding, and control

questions (research questions where the answer is known) quantify potential residual bias. Finally, the evidence

is generated in a network of databases to assess consistency by sharing open-source analytics code to enhance

transparency and reproducibility, but without sharing patient-level information.

Here we detail the LEGEND principles and provide a generic overview of a LEGEND study. Our companion pa-

per highlights an example study on the effects of hypertension treatments, and evaluates the internal and exter-

nal validity of the evidence we generate.
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INTRODUCTION

Real-world evidence derived from existing health-care data, such as

administrative claims and electronic health records (EHRs), can fill

evidence gaps in medicine. However, such observational research

for the purpose of causal inference is often criticized because of the

potential for bias.[1, 2] The main reason cited is confounding: obser-

vational studies are prone to detect spurious effects because treat-

ment is not assigned randomly, and 1 treatment group may

therefore fundamentally differ from another in ways that affect the

outcome risk. Even though observational studies often attempt to

correct for this, not all confounders may be known, measured, or

adjusted for correctly. Other concerns with observational research

include the issues of P hacking and publication bias. P hacking

occurs when a researcher performs multiple variations of the analy-

sis until the desired result is obtained, while publication bias occurs

when journals selectively publish “statistically significant” results or

authors only choose to submit studies with positive effects. Both P

hacking and publication bias can increase the false positive rate in

published research, due to the hidden multiple testing.[3]

To address these concerns, informaticists, statisticians, and clini-

cians from the Observational Health Data Sciences and Informatics

(OHDSI) international collaborative [4] launched the Large-Scale

Evidence Generation and Evaluation across a Network of Databases

(LEGEND) research initiative. LEGEND generates evidence on the

effects of medical interventions using observational health-care

data, while addressing the aforementioned concerns of observational

research by following a recently proposed paradigm for generating

evidence.[5] A key element of this new paradigm is that evidence

should be generated at scale. Rather than answering a single ques-

tion at a time, many research questions are better addressed in a sin-

gle study; for example, comparing all treatments for a disease for a

wide range of outcomes of interest. This shift to large-scale analyses

enhances the comprehensiveness of the evidence base, and dissemi-

nating all generated evidence without filtering prevents publication

bias and P hacking. Furthermore, applying a systematic approach to

answer these questions allows us to evaluate the performance of our

evidence generation process. Traditionally, each observational study

answers a single question using an ad hoc design with unknown op-

erating characteristics, making it unclear to what extent the results

of these studies can be trusted. In LEGEND we include control ques-

tions—questions where the answer is known—to measure operating

characteristics, and use this information to calibrate our confidence

intervals (CIs) and P values. Lastly, by performing this analysis in a

network of heterogeneous, observational, health-care databases, we

can observe whether findings in 1 database replicate in other data-

bases, thus enhancing the reproducibility of the findings.

This paper describes the guiding principles of LEGEND (see Ta-

ble 1) that enshrine this new paradigm, and provides an overview of

a typical LEGEND study. A companion paper [6] describes an ex-

ample study on the effects of hypertension treatments, and explores

the internal and external validity of the evidence we generate. Future

LEGEND studies will generate evidence for other disease areas.

MATERIALS AND METHODS

Guiding principles
Principles 1 and 2, together, prevent publication bias, and 3 and 4

address P hacking. Principles 5, 6, and 8 aim to minimize the impact

of biases associated with observational studies, first by using ad-

vanced methods to correct for observed confounding, and second by

using control questions to measure residual bias after these correc-

tions and to calibrate statistics accordingly. Principle 7 enhances the

transparency of results, Principle 9 addresses the generalizability of

pooled results by examining the heterogeneity of effect estimates

across databases, and Principle 10 addresses data security and pri-

vacy. By applying these principles, we therefore overcome the big-

gest concerns for observational research and enhance confidence in

the application of observational research for clinical decision-mak-

ing.

Overview of a LEGEND study
Figure 1 shows an overview of a typical LEGEND study.

We start by defining a large set of research questions (Principle

1), as well as a set of control questions where the answer is known

(Principle 6). We apply a systematic, causal effect estimation proce-

dure reflecting current best practices (Principles 5 and 8) to generate

estimates for all questions (Principle 4) in an international network

of health-care databases (Principle 9). Each site runs the analysis lo-

cally and only shares aggregated statistics (Principle 10). We use ef-

fect estimates for the control questions to estimate systematic error

distributions (for example, due to confounding, measurement error,

and selection bias) and subsequent empirical calibration. The full re-

sult set is made available in an online database, accessible through

various web applications (Principle 2). The protocol has been pre-

specified and made available online (Principle 3), alongside the

open-source code for executing the study (Principle 7).

Define a large set of research questions (Principle 1)
We predefine the set of treatments we wish to compare; for example,

all treatments for a particular indication (eg, all treatments for hy-

pertension). We define the set of treatment comparisons as all (or-

dered) pairs of treatments, and specify the set of health outcomes of

interest, which may include both efficacy and safety outcomes. Our

set of research questions is then defined by the combination of each

treatment pair with each outcome of interest.

For example, if for some indication we identify 10 different treat-

ments, we can construct 10 * (10 - 1) ¼ 90 treatment pairs. If we fur-

ther specify 20 outcomes of interest, we can define 90 * 20 ¼ 1800

research questions. Importantly, this set of research questions, as well

as the full study design, are specified before the analysis is executed

and are posted publicly, as described in the section on Transparency.

Empirically evaluate through the use of control

research questions (Principle 6)
To determine the potential for systematic bias in each treatment

comparison, a series of control questions is defined. Control ques-

tions are questions where the answer is known, and can be either

negative controls, where the true hazard ratio is assumed to be 1, or

positive controls, with a known effect size greater than 1.

Negative controls or “falsification hypotheses’’ have been pro-

posed as a diagnostics tool for observational studies.[9–11] When

comparing 2 treatments, we specify negative controls as selected

outcomes that are not believed to be caused or prevented by either

treatment. For example, neither amlodipine nor lisinopril are be-

lieved to cause or prevent ingrown nails. When comparing these 2

hypertension treatments, we therefore assume that the hazard ratio

for ingrown nails is equal to 1. Even though there is no causal rela-

tionship from either drug to ingrown nails, the relationship may

very well be confounded; for example, because ingrown nails tend

to occur more often in the elderly and 1 of the treatments is also
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preferentially prescribed in the elderly. We use the negative controls

to evaluate whether we indeed produce an estimate of no effect after

we implement our strategies for confounding control. To select neg-

ative controls, information from literature, product labels, and spon-

taneous reporting can automatically be extracted and synthesized to

produce a candidate list of outcomes with no known links with the

treatments of interest.[12] The candidate list can be rank ordered by

prevalence of the outcome and manually reviewed to determine

whether they are appropriate to be included. For every research

question, it may be necessary to identify new sets of negative con-

trols, although sometimes these may be reused where appropriate.

Positive controls are also employed to detect some types of bias

not captured by negative controls alone, such as bias towards the

null. Because unlike negative controls, we seldom know the true ef-

fect size of real positive controls, we employ synthetic positive con-

trols, constructed by adding simulated outcomes to real negative

controls.[8] These simulated outcomes are only inserted during ex-

posure to 1 of the treatments, thus artificially increasing the effect

size. To preserve observed confounding, the new outcomes are sam-

pled from predicted probabilities based on baseline patient charac-

teristics. Note that some types of bias, such as bias due to

unmeasured confounding and differential misclassification of out-

comes caused by the exposure, will not be captured by these positive

controls. From each negative control (with the true effect size of 1),

positive controls should be generated to simulate various effect sizes

(eg, effect sizes 1.5, 2, and 4).

Through our control questions, we evaluate whether our process

produces results in line with known effect sizes. Importantly, we es-

timate the CI coverage probability: the proportion of time that the

CI contains the true value of interest. For example, we expect a 95%

CI to cover the truth 95% of the time. In addition to this diagnostic,

we apply a calibration procedure described elsewhere [8] to restore

nominal coverage by adjusting the CIs. Typically, but not necessar-

ily, the calibrated CI is wider than the nominal CI, reflecting the

problems unaccounted for in the standard procedure (such as

unmeasured confounding, selection bias, and measurement error)

Table 1: Guiding principles of the Large-scale Evidence Generation and Evaluation across a Network of Databases (LEGEND) initiative.

1 LEGEND will generate evidence at a large scale.

Instead of answering a single question at a time (eg, the effect of 1 treatment on 1 outcome), LEGEND answers large sets of related questions at

once (eg, the effects of many treatments for a disease on many outcomes).

Aim: Avoids publication bias, achieves comprehensiveness of results, and allows for an evaluation of the overall coherence and consistency of the

generated evidence.

2 Dissemination of the evidence will not depend on the estimated effects.

All generated evidence is disseminated at once.

Aim: Avoids publication bias and enhances transparency.

3 LEGEND will generate evidence using a prespecified analysis design.

All analyses, including the research questions that will be answered, will be decided prior to analysis execution.

Aim: Avoids P hacking.

4 LEGEND will generate evidence by consistently applying a systematic process across all research questions.

This principle precludes modification of analyses to obtain a desired answer to any specific question. This does not imply a simple one-size-fits-all

process, rather that the logic for modifying an analysis for specific research questions should be explicated and applied systematically.

Aim: Avoids P hacking and allows for the evaluation of the operating characteristics of this process (Principle 6).

5 LEGEND will generate evidence using best practices.

LEGEND answers each question using current best practices, including advanced methods to address confounding, such as propensity scores.

Specifically, we will not employ suboptimal methods (in terms of bias) to achieve better computational efficiency.

Aim: Minimizes bias.

6 LEGEND will include empirical evaluation through the use of control questions.

Every LEGEND study includes control questions. Control questions are questions where the answer is known. These allow for measuring the op-

erating characteristics of our systematic process, including residual bias. We subsequently account for this observed residual bias in our P val-

ues, effect estimates, and confidence intervals using empirical calibration.[7,8]

Aim: Enhances transparency on the uncertainty due to residual bias.

7 LEGEND will generate evidence using open-source software that is freely available to all.

The analysis software is open to review and evaluation, and is available for replicating analyses down to the smallest detail.

Aim: Enhances transparency and allows replication.

8 LEGEND will not be used to evaluate new methods.

Even though the same infrastructure used in LEGEND may also be used to evaluate new causal inference methods, generating clinical evidence

should not be performed at the same time as method evaluation. This is a corollary of Principle 5, since a new method that still requires evalua-

tion cannot already be best practice. Also, generating evidence with unproven methods can hamper the interpretability of the clinical results.

Note that LEGEND does evaluate how well the methods it uses perform in the specific context of the questions and data used in a LEGEND

study (Principle 6).

Aim: Avoids bias and improves interpretability.

9 LEGEND will generate evidence across a network of multiple databases.

Multiple heterogeneous databases (different data capture processes, health-care systems, and populations) will be used to generate the evidence to

allow an assessment of the replicability of findings across sites.

Aim: Enhances generalizability and uncovers potential between-site heterogeneity.

10 LEGEND will maintain data confidentiality; patient-level data will not be shared between sites in the network.

Not sharing data will ensure patient privacy, and comply with local data governance rules.

Aim: Privacy.

Note: LEGEND: Large-scale Evidence Generation and Evaluation across a Network of Databases.
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but accounted for in the calibration. A similar process using only

negative controls is used to calibrate P values.[7]

Generate the evidence using best practices (Principles

4, 5, and 8)
For each of the research and control questions, we estimate a causal

effect size using best practices. For example, we currently employ a

new-user cohort design that emulates the randomized experiment

that would answer our question of interest,[13] and employ large-

scale propensity scores [14] to account for the fact that treatment as-

signment is not random. Deciding what constitutes “best practices”

requires rigorous empirical evaluations; for example, our recent

large-scale evaluation of causal effect methods.[15] These evalua-

tions, per Principle 8, fall outside the scope of LEGEND.

To evaluate sensitivity to design choices, it is possible to include

various alternative designs; for example, using propensity score

matching or stratification.

Generate the evidence for all questions across a

network of databases (Principles 9 and 10)
LEGEND is part of OHDSI, a multi-stakeholder, interdisciplinary

collaborative that is striving to bring out the value of observational

health data through large-scale analytics. Members of OHDSI have

volunteered to participate in LEGEND, agreeing to adhere to the

principles and the spirit of collaboration, and this group of collabo-

rators may grow over time. Some LEGEND participants have access

to observational data and agree to execute LEGEND studies on their

data after acquiring the necessary approvals based on local gover-

nance regulations. Each participating data site has translated their

data into the Observational Medical Outcomes Partnership Com-

mon Data Model (CDM) (https://github.com/OHDSI/CommonDa-

taModel). For each LEGEND study, a study R package is developed

and made available as open source (https://github.com/OHDSI/Leg-

end). These study packages implement the entire study, from data in

the CDM to the results stored in the results data model described be-

Figure 1 Overview of a LEGEND study. Admin. Claims: administrative claims; EHRs: electronic health records; LEGEND: Large-scale Evidence Generation and

Evaluation across a Network of Databases.
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low, including the estimated effect sizes as well as metadata and

study diagnostics. These results only include aggregate statistics; no

patient-level data are shared. The study packages rely heavily on

other open-source software previously developed in OHDSI; specifi-

cally, the OHDSI Methods Library (https://ohdsi.github.io/Method-

sLibrary/), a set of open-source R packages for performing

observational research based on the CDM.

Participating sites are invited to download and install the study

package and to execute it against their own data. Results are com-

municated to the study coordinating center and are synthesized.

Disseminate the generated evidence (Principle 2)
A LEGEND study is likely to produce a massive number of results,

including effect estimates for the many research and control ques-

tions, as well as diagnostics, such as covariate balance; additional in-

formation, such as population characteristics; and metadata. To

manage and communicate that information, we have defined the

data model shown in Figure 2 and have described it in detail in the

Supplementary Materials.

This data model contains 2 main domains: the first is the full

study specifications and the second is the study results. We have de-

veloped 2 web applications that connect to the database for explor-

ing the results: the LEGEND Basic Viewer, shown in Figure 3,

allows users to select a target-comparator-outcome combination

and lists all results from the various data sources for that triplet,

with drill-down views to understand study population characteris-

tics and diagnostics (http://data.ohdsi.org/LegendBasicViewer/). Ad-

ditionally, we have created LEGENDMed Central, which

represents the results as a (virtual) repository of scientific reports, 1

per target-comparator-outcome-database combination. Each report

is a PDF that is generated on the fly (http://data.ohdsi.org/Legend-

MedCentral/). We invite others to develop other applications that

promote the dissemination of results using the LEGEND results

database.

Transparency (Principles 3 and 7)
A key guiding principle of the LEGEND approach is transparency.

Prior to any analysis, the prespecified LEGEND study protocol and

full analytic code are made available in open-source format (https://

github.com/OHDSI/Legend).

DISCUSSION

LEGEND embodies a new approach to generating evidence from

health-care data that is designed to overcome weaknesses in the cur-

rent process of answering and publishing (or not) 1 question at a

time. Generating evidence for many research and control questions

using a systematic process enables us not only to evaluate that pro-

cess and the coherence and consistency of the evidence, but also to

avoid P hacking and publication bias.

The choice of methods used to estimate causal effects should re-

flect current best practices and is expected to evolve over time as

new methods are developed. Even the choice of study design is not

cast in stone; for example, depending on the research questions, in

Figure 2 Data model for storing the LEGEND results, showing the tables and fields per table. LEGEND: Large-scale Evidence Generation and Evaluation across a

Network of Databases.
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future LEGEND studies we may add self-controlled designs, such as

the Self-Controlled Case Series [16], in addition to the current new-

user cohort design.

In interpreting LEGEND evidence, researchers must account for

multiple hypothesis testing by correcting for however many hypoth-

eses they assess. Paradoxically, performing many analyses helps

avoid false positives due to multiple testing because no tests lie hid-

den, unlike in the current scientific literature, where publication bias

is pervasive.[5] Note that empirical calibration by itself does not ad-

dress multiple testing, but having well-calibrated CIs and P values is

essential for subsequent adjustments for multiple testing. LEGEND

results should always be assessed for quality prior to the consump-

tion of that evidence for medical decision-making. Importantly, the

LEGEND framework creates artifacts to assess the internal validity

of results, such as covariate balance to assess confounding control,

coverage statistics after empirical calibration to assess systematic er-

ror, and heterogeneity assessments to assess database consistency.

Our framework ensures that such an assessment using the GRADE

(Grading of Recommendations Assessment, Development, and Eval-

uation) guidelines[17] is possible. GRADE assessments cover:

1. The risk of bias, which we address using best-practice methods by

evaluating study diagnostics, such as covariate balance, and by

evaluating systematic error through the use of negative and posi-

tive controls.

2. Imprecision, as expressed in our (calibrated) CIs. By including

data from many databases, we typically achieve high precision.

3. Inconsistency, which we address through the use of multiple data-

bases and the inspection of between-database heterogeneity.

4. Indirectness, through making all possible comparisons.

5. Publication bias, through complete dissemination of study results

irrespective of the effect estimates.

“Just” generating large amounts of evidence does not guarantee

the translation of the evidence generated into better care at the bed-

side. Although any physician faced with a specific clinical question

can directly consult the evidence in the LEGEND results database,

the interpretation of that evidence, as discussed above, may prove

non-trivial. To bridge the gap between evidence and clinical prac-

tice, we suspect an intermediate step must be taken. A form this step

can take is papers focused on specific clinical implications, such as

our recent paper comparing first-line hypertension treatments at the

Figure 3 LEGEND basic viewer: a web-based application for exploring results of the LEGEND hypertension study. LEGEND: Large-scale Evidence Generation and

Evaluation across a Network of Databases.
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class level.[18] It is anticipated that the evidence generated by LEG-

END will eventually help to support changes to treatment guide-

lines, particularly in treatment comparisons for which evidence from

randomized trials is unavailable.

CONCLUSION

By following the LEGEND guiding principles that address study

bias, P hacking, and publication bias, LEGEND seeks to augment

existing knowledge by generating reliable evidence from existing

health-care data, answering many research questions simultaneously

using a transparent, reproducible, and systematic approach. Our

companion paper demonstrates that the application of LEGEND to

antihypertensive treatments produces quality evidence with high in-

ternal and external validity. Evidence generated by LEGEND can be

used to help inform medical decision-making where evidence is cur-

rently lacking.
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