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Chronic mucocutaneous candidiasis (CMC) is defined as recurrent or
persistent infection of the skin, nails, and/or mucosae with com-
mensal Candida species. The first genetic etiology of isolated CMC—
autosomal recessive (AR) IL-17 receptor A (IL-17RA) deficiency—was
reported in 2011, in a single patient. We report here 21 patients
with complete AR IL-17RA deficiency, including this first patient.
Each patient is homozygous for 1 of 12 different IL-17RA alleles, 8
of which create a premature stop codon upstream from the trans-
membrane domain and have been predicted and/or shown to pre-
vent expression of the receptor on the surface of circulating
leukocytes and dermal fibroblasts. Three other mutant alleles create
a premature stop codon downstream from the transmembrane do-
main, one of which encodes a surface-expressed receptor. Finally,
the only known missense allele (p.D387N) also encodes a surface-
expressed receptor. All of the alleles tested abolish cellular re-
sponses to IL-17A and -17F homodimers and heterodimers in fibro-
blasts and to IL-17E/IL-25 in leukocytes. The patients are currently
aged from 2 to 35 y and originate from 12 unrelated kindreds. All
had their first CMC episode by 6 mo of age. Fourteen patients pre-
sented various forms of staphylococcal skin disease. Eight were also
prone to various bacterial infections of the respiratory tract. Human
IL-17RA is, thus, essential for mucocutaneous immunity to Candida
and Staphylococcus, but otherwise largely redundant. A diagnosis
of AR IL-17RA deficiency should be considered in children or
adults with CMC, cutaneous staphylococcal disease, or both, even
if IL-17RA is detected on the cell surface.

genetics | immunodeficiency | candidiasis

Chronic mucocutaneous candidiasis (CMC) is characterized
by chronic infections of the skin, nails, and oropharyngeal

and genital mucosae caused by Candida albicans. It affects patients
with various acquired T-cell immunodeficiencies, including HIV in-
fection, who typically suffer frommultiple infections. Inherited forms
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of CMC are less common and are often associated with other in-
fectious and noninfectious complications, particularly in patients
with profound T-cell deficits (1). Patients with autosomal dominant
(AD) hyper-IgE syndrome (HIES), caused by heterozygous domi-
nant negative mutations of STAT3, display fewer infections, and
patients with autosomal recessive (AR) autoimmune polyendocrine
syndrome type 1 (APS-1) are not prone to other infections (2, 3).
Finally, rare patients with inherited but idiopathic forms of CMC,
referred to as CMC disease (CMCD), have been described since the
late 1960s (4–8). These patients may display isolated CMC, but they
often also display cutaneous staphylococcal disease (nonetheless
referred to as CMCD) or other infectious and/or autoimmune
clinical manifestations (syndromic CMCD).
The genetic causes of CMCD described to date include AR IL-

17RA deficiency in a single patient (9), AD IL-17F deficiency in a
multiplex kindred (9), AR IL-17RC deficiency in three kindreds
(10), and AR ACT1 deficiency in a multiplex kindred (ACT1 is a
cytosolic adapter of IL-17 receptors) (11). IL-17RA and -17RC
belong to the IL-17 receptor family, which also includes the IL-
17RB, -17RD, and -17RE chains. These receptors form various
heterodimers, through which different IL-17 cytokines signal in an
ACT1-dependent manner (12). Finally, AD signal transducer
and activator of transcription 1 (STAT1) gain of function
(GOF) was reported in ∼350 patients with syndromic CMCD
(13–51) and found in approximately half of such patients in our
study cohort. In patients with STAT1 GOF mutations, CMC
results, at least partly, from impairment of the development
and/or survival of IL-17A/F–producing T cells, the underlying
mechanisms of which remain unknown (28, 52). Patients with
these mutations, who had long been known to be prone to thy-
roid autoimmunity, were recently found to display other infec-
tious and autoimmune phenotypes (16, 17, 23, 37, 51). Another
genetic etiology of syndromic CMCD has recently been described,
with AR retinoic acid-related orphan receptors γ (ROR-γ/γT)
deficiency in three kindreds with CMC and severe mycobacterial
disease (53).
AD HIES and AR APS-1 can, thus, also be seen as syndromic

forms of CMCD. Alternatively, STAT1 GOF and ROR-γ/γT de-
ficiency can be seen as distinct entities, separate from CMCD. In
either case, impaired IL-17A/F– or IL-17RA/RC–dependent im-
munity is the core mechanism accounting for CMC in patients
with any of these eight inherited disorders. Indeed, all patients
with inborn errors of IL-17F, -17RA, -17RC, or ACT1 display
CMC. These patients display dysfunctional IL-17F and -17A/F
(IL-17F mutations) or dysfunctional responses to IL-17A, -17A/F,
and -17F (mutations in IL-17RA, -17RC, and ACT1). In patients
with AD HIES (54–57), AD STAT1 GOF (13, 18, 21, 27–29, 32,
35, 36, 38, 39, 41, 42, 45, 46, 49), or AR ROR-γ/γT deficiency (53),
the development of IL-17A/F–producing T cells is impaired. Fi-
nally, patients with AR APS-1 have high titers of neutralizing
auto-Abs against IL-17A and -17F (58, 59).
The pathogenesis of staphylococcal disease in CMCD patients is

less clear. Staphylococcal skin disease is frequently observed in
patients with ACT1 and IL-17RA deficiencies, but has not been
reported in patients with IL-17F and -17RC deficiencies (9–11, 60).
This observation suggests that staphylococcal disease may be partly
due to an impairment of IL-17E/IL-25 responses, which normally
require IL-17RA and ACT1, but neither IL-17F nor IL-17RC.
However, too few patients have been described to draw firm con-
clusions. In particular, AR IL-17RA deficiency has been described
in a single patient with CMC and cutaneous staphylococcal disease
(9). We used a genome-wide approach based on whole-exome se-
quencing (WES) to identify 20 new patients, from 11 unrelated
kindreds, bearing homozygous IL17RA mutations. Functional
characterization of these variants showed them to be responsible
for complete AR IL-17RA deficiency. We also characterized
the associated clinical phenotype of the 21 patients, including
the patient reported in 2011, encompassing not only CMC and

staphylococcal skin infections, but also bacterial infections of the
respiratory tract.

Results
Clinical Reports. We investigated 21 patients with early onset, un-
explained CMC (Fig. 1A). The patients originated from Morocco
(kindred A), Turkey (kindreds B, C, D, E, K, and L), Japan
(kindred F), Saudi Arabia (kindreds G and J), Algeria (kindred
H), and Argentina (kindred I). The clinical features of patient 1
(P1) (kindred A), born to first cousins fromMorocco, have already
been reported (9). The 12 families were unrelated, and 11 were
known to be consanguineous. All patients displayed CMC before
the age of 6 mo, and 14 patients had also suffered from recurrent
staphylococcal skin infections by the same age. CMC affected the
skin (intertrigo), the scalp, mucosal sites (oral thrush; anogenital
candidiasis), or nails (Table 1). These episodes were effectively
managed or prevented with a combination of oral (fluconazole)
and topical (nystatin) antifungal treatments. Staphylococcal skin
infections were reported in 14 patients suffering from abscesses,
folliculitis, furunculosis, and crusted pustules on the face and
scalp, sometimes spreading to the shoulders and arms. In addition
to these skin infections, eight children also had other recurrent
infections, including otitis, sinusitis, bronchitis, and lobar pneu-
monia. Infections typically responded to antibiotics, but subse-
quently recurred. P2 and P4 were also treated for suspected
pulmonary tuberculosis and tuberculous meningitis, respectively,
without microbiological confirmation. None of the other clinical
manifestations previously reported in patients with GOF STAT1
mutations, such as autoimmune endocrinopathy, aneurysms, or
mucosal carcinomas, were detected (16, 17, 23, 37, 51). Detailed
phenotyping of lymphocyte subsets was performed for patients
from kindreds D, E, and H and revealed no abnormality (Fig. S1).

Mutations in IL17RA. WES was performed for all patients and led to
the detection of biallelic IL17RA mutations, which were confirmed
by Sanger sequencing (Fig. 1A). No nonsynonymous coding se-
quence mutations were identified in the other five genes implicated
in CMCD (IL17F, IL17RC, ACT1, STAT1, and RORC) or in any of
the genes known to underlie related primary immunodeficiencies,
including APS-1 and AD HIES. As shown in Fig. 1B, the only es-
sential splice variant, three nonsense and four frameshift variants
(and the corresponding premature stop codons), were located up-
stream from the segment encoding the transmembrane domain of
IL-17RA. By contrast, the p.Y384X nonsense, p.D387N missense,
and p.N440Rfs*50 frameshift variants affected the intracellular
SEFIR (SEF/IL-17R) domain of IL-17RA, which is required for
ACT1 recruitment, whereas the p.Y591Sfs*29 frameshift variant
was located in the SEFEX domain (SEFIR extension domain) (61,
62). The healthy parents and siblings tested were all heterozygous
for the mutant alleles or homozygous for the wild-type allele, con-
sistent with an ARmode of inheritance with full clinical penetrance.
None of the 12 mutant alleles were found in any of the various
public databases (Exome Aggregation Consortium, Human Gene
Mutation Database, Ensembl, National Heart, Lung, and Blood
Institute Grand Opportunity Exome Sequencing Project, and 1000
Genomes Project), our in-house WES database (>3,000 exomes),
or the Greater Middle Eastern Variome (63), further suggesting
that the mutant alleles were causal for CMCD. The p.D387N
missense mutation affected a residue conserved throughout evolu-
tion. As expected, combined annotation dependent depletion
(CADD) scores predicted all mutations to be deleterious and
were well above the mutation significance cutoff score for IL17RA
(Table 1) (64, 65). These data strongly suggested that the 21 pa-
tients suffered from AR IL-17RA deficiency.

Expression and Function of the Mutant IL17RA Alleles. IL-17RA ex-
pression was tested on the surface of primary or SV40-trans-
formed fibroblasts and/or lymphocyte subsets and monocytes from
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seven patients homozygous for six mutant IL17RA alleles (Fig. 2).
IL-17RA expression was abolished on fibroblasts (P1, P2, and P4)
(Fig. 2A) and peripheral blood mononuclear cells (PBMCs) [P1

(9), P3, and P13] (Fig. 2C), except for those from P5 (p.D387N),
for whom IL-17RA was barely and normally detectable in SV40 fi-
broblasts and monocytes, respectively (Fig. 2 A and C). In addition,

Fig. 1. The 12 kindreds with AR IL-17RA deficiency. (A) Pedigree of 12 families, with their genotypes. Kindred A has already been reported elsewhere (9). E? indicates
individuals whose genetic status could not be evaluated; m, mutation. (B) Schematic diagram of the IL-17RA protein, with its extracellular (EC), transmembrane (TM),
intracellular (IC), and SEFIR [SEF (similar expression to fibroblast growth factor genes) and IL-17R] domains and the positions affected by the mutations.
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Table 1. Clinical characteristics of the 21 patients with AR IL-17RA deficiency

Patient
(kindred)

Age at
diagnosis Genotype [CADD score] Sex

Consan-
guinity Origin Mucocutaneous features

Other clinical
features

P1 (9) (A) 1 mo c.850C > T p.Q284X [40] M Yes Morocco (living
in France)

Skin, nails and oral mucosal
candidiasis Skin pustules,
folliculitis

No

P2 (B) 18 mo c.256C > T p.Q86X [30] F Yes Turkey Genital and oral mucosal
candidiasis

Suspected
pulmonary
tuberculosis

P3 (C) 1 mo c.1302_1318dup
p.N440Rfs*50 [22]

F Yes Turkey (living
in France)

Scalp, genital and oral
mucosal candidiasis Skin
pustules, folliculitis

Eczema

P4 (C) 2 mo c.1302_1318dup
p.N440Rfs*50 [22]

M Yes Turkey (living
in France)

Genital and oral mucosal
candidiasis Skin pustules,
folliculitis

Eczema, suspected
tuberculous
meningitis, lobar
pneumonia

P5 (D) 9 y c.1159G > A p.D387N [33] M Yes Turkey Scalp and oral mucosal
candidiasis Skin pustules,
folliculitis, furunculosis,
seborrheic dermatitis

Sinusitis, lobar
pneumonia

P6 (D) 4 y c.1159G >A p.D387N [33] F Yes Turkey Scalp, genital and oral
mucosal candidiasis Skin
pustules, furunculosis,
seborrheic dermatitis

Conjunctivitis

P7 (E) 1.5 y c.166_169dup
p.C57Yfs*5 [34]

F Yes Turkey Skin, scalp, nails, genital
and oral mucosal
candidiasis Skin pustules,
folliculitis, furunculosis

Sinusitis

P8 (E) 1 y c.166_169dup
p.C57Yfs*5 [34]

M Yes Turkey Skin, scalp, nails and oral
mucosal candidiasis Skin
pustules, folliculitis,
furunculosis

Sinusitis,
conjunctivitis

P9 (F) 8 y c.196C > T p.R66X [14] F No Japan Oral mucosal candidiasis
Folliculitis

Eczema, bronchitis,
lobar pneumonia

P10 (F) 6 y c.196C > T p.R66X [14] M No Japan Skin, scalp and oral mucosal
candidiasis Folliculitis

Eczema, bronchitis,
lobar pneumonia

P11 (G) 25 y c.112_119del
p.H38Afs*15 [34]

M Yes Saudi Arabia Oral mucosal candidiasis No

P12 (G) 15 y c.112_119del
p.H38Afs*15 [34]

F Yes Saudi Arabia Oral mucosal candidiasis No

P13 (H) 1 mo c.163+1G > A [25] F Yes Algeria Skin and genital mucosal
candidiasis

No

P14 (I) 1 y c.1152C > A p.Y384X [38] M Yes Argentina Skin and oral mucosal
candidiasis Skin pustules,
folliculitis, furunculosis,
abscess

Sinusitis, otitis, lobar
pneumonia

P15 (J) 4 y c.268del p.L90Cfs*30 [23] F Yes Saudi Arabia Skin, genital and oral
mucosal candidiasis

No

P16 (J) 2 y c.268del p.L90Cfs*30 [23] M Yes Saudi Arabia Skin, scalp, nails, genital
and oral mucosal
candidiasis

No

P17 (J) 15 y c.268del p.L90Cfs*30 [23] M Yes Saudi Arabia Skin, scalp and oral mucosal
candidiasis Folliculitis,
furunculosis

No

P18 (J) 10 y c.268del p.L90Cfs*30 [23] M Yes Saudi Arabia Skin, scalp and oral mucosal
candidiasis Folliculitis,
furunculosis

No

P19 (K) 22 y c.1770_1771dup p.
Y591Sfs*29 [26.7]

M Yes Turkey Skin, scalp, nails and oral
mucosal candidiasis Skin
pustules

Otitis

P20 (L) 13 y c.769_773del p.
P257Rfs*16 [28]

F Yes Turkey Oral mucosal candidiasis
Skin abscess

No

P21 (L) 11 y c.769_773del p.
P257Rfs*16 [28]

F Yes Turkey Oral mucosal candidiasis No
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the p.Y591Sfs*29 allele (P19) was normally expressed in primary fi-
broblasts (Fig. 2B). The intracellular D387 residue is highly conserved
and located in the SEFIR domain, which engages in homotypic di-
merization with the SEFIR domain of ACT1 for IL-17RA signaling.
We therefore tested HEK293T cells overproducing the p.D387N
protein for interactions of this protein with ACT1, by immunopre-
cipitation and Western blotting; we found that the interaction of
these two proteins was severely impaired in these cells (Fig. S2). We
then investigated the function of p.D387N, together with several loss-
of-expression alleles, by stimulating patient fibroblasts with high doses
of recombinant IL-17A, -17F, and -17A/IL-17F heterodimers, with or
without the addition of TNF-α. We detected no induction of IL-6 and
GRO-α in any condition, whereas the induction of these two pro-
teins was observed in control cells (Fig. 3 and Fig. S3 A and B).
We measured the induction of mRNA for the antimicrobial
peptide BD2 (β-defensin 2) in patient fibroblasts stimulated
with IL-17A plus TNF-α. We found no up-regulation in cells
homozygous for p.D387N or p.Q284X, whereas such induction
was observed in control cells (Fig. S3C). We then tested the
response to IL-17E/IL-25 in the presence of IL-2 in PBMCs from
P5 and P6 (p.D387N). No induction of IL-5 was observed, in
contrast to the results obtained for control PBMCs (Fig. S4).
Finally, the transfection of fibroblasts from P1 and P5 with a
WT IL-17RA–encoding vector partially restored both surface
IL-17RA expression (Fig. S5) and the response to IL-17A plus
TNF-α (Fig. 4 and Fig. S6). Overall, these data indicate that
p.D387N is loss of function. All patients displayed complete
AR IL-17RA deficiency, with a lack of cellular responses to

IL-17A, -17F, and -17A/F in fibroblasts, as well as to IL-17E/
IL-25 in PBMCs.

Abnormally High Proportions of IL-17–Producing T Cells and a Normal
Response of Whole Blood to Candida and Staphylococcus. Given
the critical role of IL-17A/F–producing T cells in immunity to
Candida at barrier sites, we carried out an ex vivo assessment of
the proportions of IL-17A/F–producing memory CD4+ T cells in
patients. The patients tested (kindreds C, D, E, and H) had
significantly higher proportions of IL-17A– and IL-17F–pro-
ducing memory CD4+ T cells ex vivo than controls and healthy
relatives, after stimulation with phorbol 12-myristate 13-acetate
(PMA) and ionomycin, but similar or slightly higher proportions
of IL-22–producing memory CD4+ T cells (Fig. 5A). By contrast,
the mean values for IL-17A and -22 secretion levels in whole-
blood assays were slightly higher than those for controls and
healthy relatives, although this difference was not significant.
This difference probably resulted from the smaller numbers of
memory CD4+ T cells in patients than in adult controls and
healthy relatives (Fig. 5B and Fig. S1A). We also carried out
whole-blood assays to assess the response to different stimuli,
including zymosan, curdlan, lipopolysaccharide (LPS), vesicular
stomatitis virus (VSV), Bacille de Calmette et Guerin (bacillus
Calmette–Guérin), Staphylococcus aureus, and yeasts (C. albi-
cans, Saccharomyces cerevisiae, and Exophiala dermatitidis), by

Fig. 2. IL-17RA expression. (A and B) IL-17RA expression in SV40-immor-
talized (A) and primary (B) fibroblasts from healthy controls and patients.
(C) IL-17RA expression in T cells (CD3+), B cells (CD19+), natural killer cells
(CD3−CD56+), and monocytes (CD14+) from healthy controls and three
patients. Isotype control, dashed lines; IL-17RA–specific antibody, solid lines.

Fig. 3. Function of the mutant IL-17RA alleles. IL-6 and GRO-α fold induction
measured in the supernatants of SV40-immortalized fibroblasts from two
healthy controls and five patients, after 24 h of stimulation with IL-17A, -17F,
-17A/F (100 ng/mL), or TNF-α (20 ng/mL), as assessed by ELISA. Means of three
independent experiments are shown. Error bars represent the SD.
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measuring the secretion of IL-6, -17A, and IFN-γ. Similar re-
sponses were observed for controls, the patients, and their
healthy heterozygous relatives (Fig. S7). The results of these two
sets of experiments suggest that the reported infectious pheno-
type in patients cannot be assigned to a defect in the mounting
of a potent IL-17 inflammatory response or in the response to
S. aureus and C. albicans. Instead, they suggest that the suscep-
tibility to S. aureus and C. albicans reported in IL-17RA–deficient
patients results from a complete lack of response to at least IL-17A,
-17F, -17A/F, and -17E/IL-25.

Discussion
We report complete AR IL-17RA deficiency in 21 patients from
12 unrelated kindreds and 6 ethnic groups (9). All 12 alleles,
including the 2 alleles (p.D387N and p.Y591Sfs*29) encoding

surface-expressed receptors, are loss-of-function in terms of re-
sponses to IL-17A, -17F, and -17A/F in fibroblasts. In addition,
p.D387N is also loss-of-function for the response to IL-17E/IL-25
in PBMCs. Interestingly, the missense allele encodes a surface
receptor in monocytes only. The clinical and cellular phenotypes
of the two patients with this allele did not differ from those of
patients with loss-of-expression alleles. This finding suggests that
the p.D387N allele encodes a receptor that is present but not
functional on monocytes, due to impairment of the SEFIR-
mediated interaction with the adaptor ACT1. An alternative, but
less likely, hypothesis is that IL-17RA–dependent signaling in
monocytes may be redundant for mucocutaneous immunity to
Candida. The cell-surface expression of dysfunctional receptors is
the second genetic form of AR IL-17RA deficiency to be de-
scribed. The detection of surface IL-17RA should not, therefore,
exclude a diagnosis of IL-17RA deficiency, as previously shown for
other cytokine receptors, such as IFN-γR1 (66–69), IFN-γR2 (70,
71), IL-12Rβ1 (72, 73), and IL-10RA (74, 75). IL-17RA deficiency
has recently been reported in two siblings from Sri Lanka (60).
These siblings are homozygous for a large chromosomal deletion,
also encompassing CECR1 (encoding ADA2) and XKR3 (encod-
ing X Kell blood group-related 3). These two patients displayed

Fig. 4. Complementation of IL-17RA deficiency. IL-6 production, measured
by ELISA, in the supernatants of SV40-immortalized fibroblasts from a con-
trol, P1, and P5, after transfection with the empty pORF9mcs plasmid or the
pORF9-hIL17RA plasmid, after 24 h of stimulation with IL-17A (100 ng/mL)
alone or in combination with TNF-α (20 ng/mL) is shown. Means of three
technical replicates are shown. Error bars represent the SD. One experiment
representative of the three carried out is shown. NS, not stimulated.

Fig. 5. IL-17–producing T cells. (A) Percentages of memory CD4+ T cells
producing IL-17A, -22, -17F, and IFN-γ, as determined ex vivo by flow
cytometry, after 12 h of stimulation with PMA and ionomycin. Horizontal
lines indicate the mean value. (B) IL-17A and -22 production, measured by
ELISA, in the supernatants of whole blood after 24 h of stimulation with
PMA and ionomycin. Horizontal lines indicate the mean value. These two
experiments were conducted in parallel in 30 healthy controls, 8 healthy
relatives, and 7 patients from kindreds C, D, E, and H. *P < 0.05; **P < 0.005;
***P < 0.0005 (two-tailed Mann–Whitney test).
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CMC and staphylococcal skin infections, together with a chronic
inflammatory disease possibly related to ADA2 deficiency. Col-
lectively, these clinical observations suggest that AR IL-17RA
deficiency is the second most common known genetic etiology of
CMCD, after GOF STAT1, and the most common known etiol-
ogy of isolated, as opposed to syndromic, CMCD (51).
All of the IL17RA alleles tested were null, because the re-

sponses to IL-17A/IL-17F homodimers and heterodimers in the
patients’ fibroblasts (cells tested displaying the best induction of
IL-6 and GRO-α in controls)—and, by inference, probably in
PBMCs (9)—and responses to IL-17E/IL-25 in their PBMCs
were abolished. We predict that none of the cell types normally
expressing IL-17RA in healthy individuals (whether hemato-
poietic or nonhematopoietic) respond to IL-17RA–dependent
cytokines in patients. Nevertheless, the susceptibility to infection
of IL-17RA–deficient patients appeared to be restricted to cer-
tain mucocutaneous barrier sites. In addition to CMC and cu-
taneous staphylococcal infections, several patients presented
bacterial infections of the respiratory tract, which may not be
coincidental (76). In a mouse model of Klebsiella pneumoniae
infection, IL-17RA signaling has been shown to be critical for the
optimal production of chemokines and granulocyte colony-
stimulating factor in the lungs and for neutrophil recruitment
and survival (77). The skin and mucosal phenotype of the pa-
tients may be accounted for, at least in part, by human kerati-
nocytes and bronchial epithelial cells having a much greater
dependence than other cell types on the synergistic effect of IL-
17 cytokines (IL-17A and -17F in particular) and inflammatory
cytokines (such as TNF-α) for the production of chemokines
and antimicrobial peptides (78). It remains unclear how IL-17A,
-A/F, and -F cooperate with other cytokines, but multiple
ACT1-dependent mechanisms involving the promoter (as for
IL-6) and/or mRNA stabilization (e.g., the GRO-α mRNA) (79,
80) are probably involved, as suggested by the similar clini-
cal and functional impacts of human IL-17RA and ACT1 defi-
ciencies (9, 11).
CMC is the key clinical presentation of patients with AR IL-

17RA (refs. 9 and 60 and this work), AD IL-17F (9), AR ACT1
(11), or AR IL-17RC deficiency (10). Nevertheless, the hetero-
geneous phenotypes of these patients suggest a continuum of
severity, ranging from a relatively mild phenotype in patients
with IL-17F or -17RC deficiency to a more severe phenotype in
patients with ACT1 or IL-17RA deficiency. Patients with ACT1
or IL-17RA deficiency are also susceptible to staphylococcal skin
infections and bacterial respiratory infections, which tend to run
a more chronic course. It is too early to draw firm conclusions,
given the small number of patients identified. However, each of
these genetic defects may have a different impact on IL-17 im-
munity. For example, in addition to acting in concert with IL-
17RC for responses to IL-17A/F, IL-17RA acts with IL-17RB in
mice (81) and with IL-17RE in mice and humans (82, 83) in
responses to IL-17E/IL-25 and -17C, respectively. The function
of IL-17RD is poorly defined and its ligand is unknown, but
studies in mice have shown that ACT1 is essential for the signal
transduction mediated by the individual IL-17RA (84, 85), IL-
17RB (86), IL-17RC (87), and IL-17RE (88) subunits. Unlike
those of IL-17RC–deficient patients, PBMCs from ACT1-
deficient and IL-17RA–deficient patients do not respond to IL-
17E/IL-25 (10, 11). The role of human IL-17E/IL-25 is unknown,
in the absence of known patients bearing specific mutations, but
its mouse counterpart is known to promote “Th2”-mediated
responses (89, 90) and to be involved in immunity to parasitic
infections (91–93). We were unable to detect cellular responses
to IL-17B, -17D, and even -17C (83) in control fibroblasts, ker-
atinocytes, or leukocytes. This finding precluded the testing of
such responses in IL-17RA–deficient or other patients with
CMC. Human IL-17C may play a redundant role in protective
mucocutaneous immunity to Candida, because IL-17C– and IL-

17RE–deficient mice clear Candida infections normally (94).
The role of each human IL-17 cytokine in vivo will be de-
termined from the description of patients bearing mutations, as
reported for IL-17F (9). Overall, our data demonstrate that human
signaling via IL-17RA (in response to at least IL-17A, -17A/F,
-17F, and -17E/IL-25) is essential for mucocutaneous immunity to
C. albicans and Staphylococcus. They also suggest that IL-17RA–
dependent signaling is important for protective immunity to vari-
ous bacteria in the respiratory tract.

Materials and Methods
Massively Parallel Sequencing. Genomic DNA extracted from the peripheral
blood cells of each patient was sheared with a Covaris S2 Ultrasonicator. An
adaptor-ligated library was prepared with the Paired-End Sample Prep kit V1
(Illumina). Exome capturewas performedwith the SureSelect HumanAll Exon
kit (Agilent Technologies). Single-end sequencing was performed on an
Illumina Genome Analyzer IIx (Illumina), generating 72-base reads.

Molecular Genetics.GenomicDNAwas isolated fromwhole blood by a phenol/
chloroform extraction method. IL17RA gDNA was amplified with specific
primers (PCR amplification conditions and primer sequences are available in
Table S1). PCR products were analyzed by electrophoresis in 1% agarose
gels, sequenced with the Big Dye Terminator cycle sequencing kit (Applied
Biosystems), and analyzed on an ABI Prism 3700 (Applied Biosystems).

Cell Activation. For the ex vivo evaluation of IL-17A– and IL-22–producing T
cells by ELISA, we used 250 μL of whole blood diluted in RPMI (500 μL final
volume) to seed 48-well plates. We added 40 ng/mL PMA and 10−5 M ion-
omycin and incubated the plates for 24 h. The supernatants were then
collected for ELISA (R&D Systems). For the evaluation of the response to IL-
17E/IL-25, fresh PBMCs were cultured in the presence of 100 ng/mL thymic
stromal lymphopoietin (R&D Systems; 1398-TS-010/CF0) in X-VIVO 15 (Lonza)
plus 5% human AB serum (Lonza) for 24 h. PBMCs were collected, washed,
and resuspended at a density of 4 × 106 cells per well in 48-well plates, in a
final volume of 0.5 mL per well, in the presence of 10 ng/mL recombinant
human IL-2 (R&D Systems) and 10 ng/mL recombinant human IL-17E (R&D
Systems). After 3 d, IL-5 secretion was assessed by ELISA (DY205; R&D
Systems). SV40-transformed fibroblasts were plated in 48-well plates at a
density of 100,000 cells per well in 0.5 mL of DMEM/10% (vol/vol) FBS. They
were incubated for 24 h and then left unstimulated or stimulated for 24 h
with recombinant human IL-17A, -17F, and -17A/F (100 ng/mL), with or
without TNF-α (20 ng/mL) purchased from R&D Systems. The supernatants
were collected for ELISA for IL-6 (Sanquin) and GRO-α (R&D Systems), carried
out in accordance with the kit manufacturer’s instructions.

Flow Cytometry. For the ex vivo evaluation of IL-17A–, IL-17F–, IL-22– and IFN-
γ–producing T cells by flow cytometry, PBMCs were dispensed into 48-well
plates at a density of 3 × 106 cells per mL in RPMI/10% (vol/vol) FBS for 12 h
with 40 ng/mL PMA plus 10−5 M ionomycin, in the presence of a secretion
inhibitor (1 μl/mL GolgiPlug; BD Biosciences). The cells were washed and
surface-labeled with PE-Cy7 mouse anti-human CD3 (SK7; BD Biosciences),
CD4-APC-Vio770, human (M-T321; Miltenyi Biotec), Brilliant Violet 421 anti-
mouse CD197 (CCR7) (G043H7; BioLegend), PE-CF594 mouse anti-human
CD45RA (HI100; BD Biosciences), and LIVE/DEAD Fixable Aqua Dead Cell
(L34957; Thermo Fisher) in PBS/2% (vol/vol) FBS/2 mM EDTA for 20 min on
ice. Cells were then washed twice with PBS/2% (vol/vol) FBS/2 mM EDTA,
fixed by incubation with 100 μL of BD Cytofix for 30 min on ice, and washed
twice with BD Cytoperm (Cytofix/Cytoperm Plus, fixation/permeabilization
kit; BD Biosciences). Cells were then incubated for 1 h on ice with antibodies
purchased from Ebiosciences—anti-human IL-17A Alexa Fluor 488 (eBio64-
DEC17), anti-human IL-17F PE (SHLR17), anti-human/mouse IL-22 APC (IL22JOP),
and anti-human IFN gamma Alexa Fluor 700 (4S.B3) —washed twice with
Cytoperm, and analyzed with a FACS Gallios flow cytometer. For the eval-
uation of IL-17RA expression, SV40-transformed fibroblasts or PBMCs were
labeled simultaneously with LIVE/DEAD Fixable Aqua Dead Cell, Alexa Fluor
647-mouse IgG1 isotype control antibodies (MOPC-21; BioLegend) or Alexa
Fluor 647–anti-human IL-17AR (BG/hIL17AR; BioLegend). PBMCs were also
labeled with CD14-PE-Vio770, human (TÜK4), or CD3-VioBlue, human
(BW264/56), purchased from Miltenyi Biotec; APC-Cy7 mouse anti-human
CD19 (SJ25C1) and PE-CF594 mouse anti-human CD56 (B159) purchased
from BD Biosciences, and analyzed by flow cytometry in a FACS Gallios
flow cytometer.
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Cell Complementation. IL-17RA–deficient SV40-transformed fibroblasts were
transfected with either empty pORF9-msc vectors or with the pORF9-
hIL17RA vector encoding the wild-type human IL-17RA (Cayla-InvivoGen),
with the Lipofectamine LTX transfection kit (Invitrogen), according to the
manufacturer’s instructions. At 24 h later, cells were stimulated with IL-17A
(100 ng/mL), with or without TNF-α (20 ng/mL), for a further 24 h. The
supernatants were collected for the assessment of IL-6 and GRO-α levels by
ELISA, and the cells were collected for the evaluation of IL-17RA expression
by FACS analysis.

Full-Length RT-PCR for DEFB4A and Taqman Probe Detection. Total RNA was
extracted with the RNeasy minikit (Qiagen) and reverse-transcribed to
generate cDNA, with the High Capacity cDNA Reverse Transcription Kit
(4368813; Invitrogen). Taqman probes for DEFB4A (Hs00823638_m1; Invi-
trogen) were used to detect mRNA synthesis, with normalization on the
basis of GUS expression (Human GUSB Endogenous Control VIC/MGB Probe;
4326320E; Primer Limited; Invitrogen).

Healthy Controls. The healthy controls were volunteer blood donors of European
and Turkish origin.

Study Approval. The experiments described here were conducted in accordance
with local, national, and international regulations andwere approvedby the French
Ethics committee (CPP Ile-de-France 2, ID-RCB: 2010-A00636-33), French National
Agency for Medicines and Health Products Safety (B100712-40), and the French

Ministry of Research (IE-2010-547). Informed consentwas obtained from all patients
or their families, in the caseofminors, in accordancewithWorldMedicalAssociation
rules, the Helsinki Declaration, and European Union directives.
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