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Abstract

Organic agriculture has grown tremendously over the past two decades. The large-

scale production emerging with consolidation could undermine the positive perception of

organic food. Pesticide use and cropland consolidation have become two rising concerns

regarding the development of organic agriculture. More evidence is needed to quantify

the benefit of pesticide use in organic agriculture relative to its use in conventional agri-

culture and to evaluate how it is affected by the growth of organic agriculture and by the

consolidation of an increasing share of organic acres into large farms. My dissertation

research considers the environmental impacts of pesticide use, in both conventional and

organic crop production, the consolidation process, and the interaction between farm size

and pesticide use. My dissertation includes three essays.

In essay 1, I examine the environmental impacts of pesticide use in fields treated

with conventional and organic pesticide programs using the California Pesticide Use Re-

port (PUR) database. The PUR database provides a detailed record of all commercial

pesticide use in California since 1990. I find that pesticides used in organic production

had smaller negative environmental impacts on surface water, groundwater, soil, air, and

xi



pollinators compared to pesticides used in conventional production, which has a higher

yield per acre and a lower pest-management cost.

However, the difference in the environmental impacts of pesticide use between the

two production systems has declined in multiple dimensions. The environmental benefit

from adopting organic production systems may be less than is commonly perceived. Two

additional regression results find implications of total farm acreage and experience for en-

vironmental impacts of pesticide programs. Farms with more acreage are associated with

the use of pesticides that have larger environmental impacts. More experienced farmers

are associated with the use of pesticides that have greater impacts on surface water and

groundwater, and less impact on soil, air, and pollinators. The environmental impacts of

pesticide use in conventional agriculture remained stable in the study period regardless of

changes in regulations and the use of active ingredients such as methyl bromide.

The change in pesticide use in organic agriculture is partially driven by the con-

solidation process. In essay 2, I identify individual organic fields in the PUR database,

which allows me to document the occurrence of cropland consolidation, and assess the

effect of consolidation on pesticide use in organic agriculture. Organic agriculture is in-

creasingly characterized by the consolidation of production into the hands of larger oper-

ations. I leverage the PUR database to identify the organic field, and compare the impacts

of organic and conventional pesticide programs and several dimensions of environmental

quality.

Further analysis of the data reveals that pesticide use patterns are significantly cor-

related with the consolidation of organic cropland from 1995 to 2017. Although the num-
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ber of organic farms increased, the acreage share of large farms increased, which is a clear

sign of consolidation. Farms with larger organic acreage, holding other variables constant,

applied sulfur and fixed copper pesticides more frequently than those with smaller acreage.

As a result, they had greater impacts on surface water and smaller impacts on soil and air

because those ingredients are more toxic to fish and algae, less toxic to earthworms, and

have lower Volatile Organic Compound (VOC) emissions than other ingredients used in

organic fields. The change in crop composition is another factor contributing to the change

in the environmental impacts because the relationship between consolidation and pesticide

use varies across crops. The results of this essay show how the environmental impacts of

organic agriculture could continue to change as the sector grows.

The consolidation of acreage and value of production into a smaller number of

larger operations has characterized U.S. agriculture for decades. Consolidation interacts

with specialization, which is measured by a decline in the number of commodities pro-

duced per farm. In essay 3, I adapt and extend the endogenous growth model introduced

in Lucas (2009) to explain changes in the size distribution of farms over time. Farmers

have knowledge regarding the production of each crop, and this knowledge grows through

learning from others. Increased knowledge increases the profitability of producing a spe-

cific crop. Knowledge regarding other crops also helps, to various degrees. As specialized

knowledge accumulates, the opportunity cost of producing crops that farmers know less

about increases, which reduces the number of crops produced by each farmer. The farm

size distribution is an equilibrium outcome. As such, it effectively is a transformation

of the underlying distribution of knowledge. Simulation results demonstrate how model

parameters including learning rate, budget share, and elasticity of substitution alter the

xiii



distribution of farm size and specialization.
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Introduction

Modern agriculture faces environmental concerns about the use of pesticides. Or-

ganic agriculture is an alternative production method that limits the use of synthetic pes-

ticides and fertilizers. The literature has documented that organic crop production does

has a lower environmental impact per unit of land than conventional agriculture (Reganold

and Wachter, 2016, Muller et al., 2017,Tuomisto et al., 2012).

However, previous studies often concentrate on a small geographic or crop variety

scoop. In essay 1, I use the California Pesticide Use Report (PUR) database to examine

the environmental impacts in conventional and organic crop production at a full scale. It

includes all pesticide use in commercial production. I examine the period 1995 to 2015

and find that pesticides used in organic production had smaller negative environmental

impacts on surface water, groundwater, soil, air, and pollinators than pesticides used in

conventional production. Over time, this difference has declined. I also investigate how

farm size and farming experience are correlated with pesticide use. I find that farmers

with more acreage use pesticides that have larger environmental impacts. Specifically,

more experienced farmers use pesticides that have greater impact on surface water and

1



groundwater, and less impact on soil, air, and pollinators.

The environmental impacts of pesticide use in organic agriculture increased over

my study period, which is an interesting observations that requires further investigation.

In essay 2, I focus on organic crop production and try to quantify the change in pesticide

use. I find that the pesticide portfolio has changed dramatically for organic crop growers,

as illustrated by the decline in sulfur use and the increase in spinosad use. Pesticide use

is correlated with farm size. The consolidation of organic cropland is another trend doc-

umented in essay 2. Historically, consolidation in agriculture as a whole has manifested

as an decrease in the number of farms while the total cropland remains stable (MacDon-

ald et al., 2018). In the organic sector, in contrast, both the number of farms and acreage

have grown significantly for the last two decades. Nonetheless, consolidation has occurred

because the share of large farms in total acreage had increased. In 2015, 56% of organic

cropland was operated by growers with at least 500 acres of organic cropland, up from

15% in 1995. At the other end of the spectrum, growers with 10-50 acres accounted for

18% of organic cropland in 1995, which dropped to 8% in 2015. The average organic farm

size increased from 46 acres in 1995 to 103 acres in 2015. The median organic farm size

increased from 15 to 17 from 1995 to 2015.

Farms with larger organic acreage, holding other variables constant, applied sulfur

and fixed copper pesticides more frequently than those with smaller acreage. As a result,

they had greater impacts on surface water and smaller impacts on soil and air because

those ingredients are more toxic to fish and algae, and less toxic to earthworms and have

lower Volatile Organic Compound (VOC) emissions than other ingredients used in organic

2



fields. The composition of organic crop has changed in California with the acreage share of

vegetables increasing from 30% in 1995 to 50% in 2015. However, pesticide use patterns

and the correlation with farm size do not differ between vegetables and other crops.

The consolidation of cropland has not been limited to the organic sector. MacDon-

ald et al. (2018) documented that the consolidation of acreage and value of production

into a smaller number of larger operations has characterized U.S. agriculture for decades.

In essay 3, I adapt and extent the endogenous growth model introduced in Lucas (2009)

to explain changes in the size distribution of farms and specialization over time. In the

theoretical model, farmers have knowledge regarding the production of each crop, and

this knowledge grows only through learning from other farmers. Increased knowledge

increases the profitability and knowledge can be apply across crops to various degrees.

In my modeling framework, the opportunity cost of producing crops that farm-

ers know less about increases as specialized knowledge accumulates, which reduces the

number of crops produced by each farmer. The evolution of the farm size distribution in

equilibrium and simulation results are presented to demonstrate how model parameters

including learning rate, budget share, and elasticity of substitution alter the distribution of

farm size and specialization.
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Essay 1

The Environmental Impacts of Pesticide

Use in California’s Conventional and

Organic Agriculture

1.1 Introduction

The food system has faced concerns about its use of pesticides since even before

Rachel Carson published Silent Spring (Carson, 1962). Today, concerns about environ-

mental impacts from pesticide applications continue to grow (Tang et al., 2018; Chen et

al., 2018). In this context, organic agriculture is proposed as an alternative farming sys-

tem as it prohibits the use of most synthetic substances (Reganold and Wachter, 2016,

Muller et al., 2017). With strict modeling assumptions, Muller et al. (2017) presents sim-

4



ulation results that support organic agriculture as an alternative production system capable

of providing food for the world population by 2050. Consumers’ perception that organic

agriculture is more environmentally friendly has facilitated its growth (Batte et al., 2007).

According to the Organic Trade Association, U.S. organic food commodity sales reached

$39 billion in 2015 in real terms, up from $4 billion in 1997, the base year. The share of

organic food sales in total food commodity sales increased from less than 1% to 5% during

the same time period (OTA, 2016).

In 2002, the National Organic Program (NOP) was launched. It established na-

tional standards for organic certification and took enforcement actions if there were vi-

olations of the standards. Organic growers are prohibited from using certain production

practices that have significant negative environmental impacts. However, the regulation

of organic agriculture is process-based, not outcome-based, and the regulatory agency

does not monitor or enforce standards on environmental outcomes such as biodiversity

and soil fertility (Seufert et al., 2017). Another source of concern comes from the way

organic farming practices may change as the sector grows. As pointed out by Läpple and

Van Rensburg (2011), late adopters of organic agriculture are more likely to be profit-

driven and care less about the environment than early adopters. And, the prices of organic

products remained at least 20% higher than their conventional counterparts in 2010 (Carl-

son, 2016), which could encourage additional entry. Therefore, unintended consequences

might emerge and organic agriculture could be less environmentally friendly than com-

monly perceived.

There is some evidence of this in the scientific literature. Organic agriculture has

5



been reported to have higher nitrogen leaching and larger nitrous oxide emissions per

unit of output than conventional agriculture (Tuomisto et al., 2012). Certain pesticide

active ingredients (AIs) used in organic agriculture have been found to be more toxic than

conventional AIs in laboratory environments and field experiments (Biondi et al., 2012;

Bahlai et al., 2010). For example, Racke (2007) reviewed the discovery and development

of spinosad, a natural substance used to control a wide variety of pests, and observed

that spinosad was approved based on its low mammalian toxicity. However, Biondi et

al. (2012) found that spinosad is more harmful to natural predators than pesticides used

commonly in conventional agriculture. As the case of spinosad demonstrates, pesticide

use in organic agriculture could impose more environmental impact than conventional

agriculture in one or more dimensions. Therefore more evidence is needed to evaluate the

environmental impact of organic farming practices and its determinants.

In this essay, I provide novel evidence regarding the impact of pesticide use in

organic and conventional agriculture on different dimensions of environmental quality,

and quantify the difference between the environmental impacts of pesticide use in the

two production systems in California. In addition, I examine the relationships between

farmers’ pesticide-use decisions and their experience and farm size.

California is the leading state for organic agriculture in the U.S., accounting for

12% of certified organic cropland and 51% of certified organic crop value nationally in

2016 (NASS USDA, 2017). The number of certified operations and cropland acreage in

California doubled between 2002 and 2016. State organic crop sales increased almost

tenfold at the farm level, in real terms, during the same time period (Klonsky and Richter,

6



2005a; Klonsky and Richter, 2011a; Klonsky and Healy, 2013a; Wei et al., 2020a).

This essay uses field-level pesticide application records and a fixed-effects model

to analyze changes in the environmental impacts of pesticide use for both organic and

conventional fields over 21 years. The database covers all registered agricultural pesticide

applications in California, and contains over 48 million pesticide application records for

over 64,000 growers and 781,000 fields from 1995 to 2015. In total, data from more

than 55,000 organic fields and 11,000 growers who operated organic fields are analyzed

in this essay. The Pesticide Use Risk Evaluation (PURE) model is used to assess the

environmental impacts of pesticide use (Zhan & Zhang, 2012).

The results show that the environmental impact of pesticide use per acre is lower

in organic fields across all of the environmental dimensions for which PURE indexes are

defined: surface water, groundwater, soil, air, and pollinators. The difference in the impact

on air is the smallest because natural pesticides are not systematically different from syn-

thetic pesticides in terms of volatile organic compound (VOC) emissions. The estimated

impacts on all five environmental dimensions are positively correlated with farm acreage.

The measure of farmer experience is positively correlated with estimated impacts per acre

on surface water and groundwater, and negatively correlated with estimated impacts on

soil, air, and pollinators but the difference associated with variation experience are smaller

than the estimated effect of whether the field is organic or not by orders of magnitude.

Environmental impacts and the difference between organic and conventional production

vary by crop. Four major California crops, lettuce, strawberries, processing tomatoes, and

wine grapes, are examined in detail.
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The benefit from organic agriculture is partially paid by consumers through a price

premium for organic products (Gil et al., 2000; Krystallis and Chryssohoidis, 2005; Batte

et al., 2007; Janssen and Hamm, 2012). Whether organic production is the most cost-

effective way to reduce the environmental impacts of agriculture is not the focus of this

essay. However, readers can gain some insight into the performance of organic agriculture

by comparing the cost of alternative tools and their effects on environmental quality.

The contribution of this essay is threefold. First, it links the environmental impacts

of organic crop production directly to pesticide applications. To the best of my knowledge,

no other studies have examined this relationship. Previous literature provided abundant

evidence on the environmental impact of organic agriculture as a system but failed to

quantify the impact of specific farming practices (Gomiero et al., 2011; Hartmann et al.,

2015; Pimentel et al., 2005; Tuomisto et al., 2012). Here, AIs and their contributions

to environmental impacts are identified individually, which enhances the understanding

of the differences in pesticide use between organic and conventional agriculture and how

they vary across crops.

Second, this essay uses the PURE model to assess the environmental impacts of

pesticide use (Zhan & Zhang, 2012). Compared to the risk quotient approach, which

is another common method in the literature (Nelson and Bullock, 2003; Kovach et al.,

1992), the PURE model provides a more salient measure of environmental impacts by in-

corporating additional environmental information, such as the distance from the pesticide

application to the nearest surface water. The PURE model calculates risk indices for five

environmental dimensions: surface water, groundwater, soil, air, and pollinators.
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Third, by using the Pesticide Use Report (PUR) database, this essay’s findings are

based on the population of pesticide application data. Prior works include meta-analyses

that cover numerous field experiments (Pimentel et al., 2005) and commercial operations

(Tuomisto et al., 2012) examined for a crop or a small geographic area over a limited

period of time. California’s agriculture is characterized by many crops and diverse climate

and soil conditions. The comprehensive coverage of the PUR database eliminates any

sample selection issue.

The rest of the essay is organized as follows: section 2 introduces the PUR database

and PURE model and presents summary statistics of historical pesticide use, section 3 pro-

vides the identification strategy to tackle grower heterogeneity, section 4 presents industry-

level and crop-specific estimation results, and section 5 concludes.

1.2 Data and Descriptive Statistics

The Pesticide Use Reports (PUR) database, created and maintained by the Cali-

fornia Department of Pesticide Regulation, is the largest and most complete database on

pesticide and herbicide use in the world. Growers in California have reported information

about every pesticide application since 1990. In this essay, pesticide uses prior to 1995

are not evaluated due to data quality issues identified previously (Wilhoit et al., 2001; Wei

et al., 2020b). More than 3 million applications are reported annually. Reports include

information on time, location, grower id, crop, pesticide product, AIs, quantity of product

applied, treated acreage and other information, for every agricultural pesticide application.

A "field" is defined as a combination of grower_id and site_location_id, which is a value
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assigned to each parcel by its grower.

To obtain the USDA organic certification, growers must meet requirements on sev-

eral aspects of production: pesticide use, fertilizer use, and seed treatment. The require-

ment on pesticide use is burdensome because pesticides approved in organic agriculture

are expensive and have less efficacy. Pesticide and fertilizer AIs used in organic agricul-

ture undergo a sunset review by the National Organic Standards Board (NOSB) every five

years and the main criterion is whether the ingredient is synthetic or not. In general, it is

not reasonable for growers to use those pesticides exclusively but not apply for the organic

certification, given higher price and lower efficacy of those pesticides. Therefore, growers

who comply with the NOP’s requirement on pesticide use can be viewed as equivalent to

certified organic growers for the data sorting purpose. In Wei et al. (2020b), authors lo-

cated individual organic fields using this approach. Namely, any field without a prohibited

pesticide applied for the past three years is considered organic. Their paper compared or-

ganic crop acreage from PUR to other data sources and showed that pesticide use records

alone can be used to identify organic crop production.

Environmental conditions for each field and toxicity values for each chemical are

used to calculate the value of the PURE index developed by Zhan and Zhang (2012). The

PURE index has been used in previous studies to represent environmental impacts of pes-

ticide use (Lybbert et al., 2016a; Wang et al., 2016; Fermaud et al., 2016). The PURE

index indexes environmental impacts of pesticide use in five dimensions: surface water,

groundwater, soil, air, and pollinators. For each dimension, the PURE index is calculated

on a per acre basis and it varies from 0 to 100, where 0 indicates trivial impact and 100 rep-
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resents the maximum impact. Excluding air, the PURE index is the ratio of the predicted

environmental concentration (PEC) to toxicity to the end organisms. The PEC estimates

the effect of the pesticide application on the concentration level for chemicals in the en-

vironmental sample. The toxicity values cover both acute measures, such as LD50, and

long-term measures, such as No Observed Effect Concentration and acceptable daily in-

take for humans. End organisms are fish, algae, and water fleas for surface water, humans

for groundwater, earthworms for soil, and honeybees for pollinators. The PURE index

for air is calculated based on potential VOC emissions, which is a common measure of

airborne pollutants emitted from agriculture production (CEPA, 2019). The emission of

VOCs is defined as the percentage of mass loss of the pesticide sample when heated. Un-

like toxicity, VOC emissions do not have a strong link to whether the AIs are synthetic or

natural. For example, the herbicide Roundup®, which contains glyphosate, has zero VOC

emissions because there is no evaporation or sublimation. Meanwhile, sulfur products,

which are widely used in organic agriculture, also have zero VOC emissions. The PURE

index only captures impact from active ingredients in pesticides. Inert ingredients, which

are not covered in this essay, are also found to have negative impacts on the environment

(Krogh et al., 2003; Cox and Surgan, 2006) and on pollinators in particular (Durant et al.,

2020).

1.2.1 Pesticides Used in Conventional and Organic Agriculture

Conventional and organic growers adopt different pest management practices. As

specified by the NOP, organic growers shall use pesticides only when biological, cultural,

and mechanical/physical practices are insufficient. Chemical options remain essential for
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organic pest management programs. Currently over 7,500 pesticide products are allowed

for use in organic crop and livestock production, processing, and handling.

In Figure 1.1, the acreage treated with different types of pesticides is shown on

the left y-axis for both conventional and organic fields. Treated acreage is divided evenly

among types for AIs that belong to multiple pesticide types, such as sulfur, which is both a

fungicide and an insecticide. The average number of pesticide applications per acre, which

is defined as the total treated acreage divided by the total planted acreage, is plotted against

the right y-axis in both panels. This is a common measure of pesticide uses that controls

for differences in application rate among pesticide products (Kniss, 2017). If multiple AIs

are used in a single application, the treated acreage is counted separately for each AI.

Planted acreage remained stable for conventional agriculture over the study period,

so changes in the average number of applications per acre were due to changes in treated

acreage. Organic planted acreage grew dramatically, but treated acreage increased even

more. The number of applications per organic acre rose from 2 to 7. Figure 1.1 provides a

highly aggregated view of pesticide use as different pesticide products with different AIs

and application rates are used in conventional and organic fields.

Examining the Figure 1.1 , insecticide is the most used pesticide type, accounting

for 36% and 44% of total treated acreage in conventional and organic agriculture respec-

tively in 2015. Herbicide is the second most used type of pesticide in conventional fields.

In contrast, organic growers’ use of herbicides is limited. Fungicide is another major pesti-

cide type, and sulfur is the most used fungicide AI in both conventional and organic fields.

Sulfur is an important plant nutrient, fungicide, and acaricide in agriculture. The pesticide
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Figure 1.1: Treated Acreage by Major Pesticide Types and the Number of Applications
per Field (A: Conventional and B: Organic): 1995 - 2015
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group "others" primarily includes plant growth regulators and pheromones.

Disaggregating insecticide use provides more detailed insight into the nature of the

difference between conventional and organic production. Figure 1.2 plots the insecticide-

treated acreage by physiological functions affected (IRAC, 2020). Only three groups of in-

secticides are available to organic growers, while six are available to conventional growers.

In conventional agriculture, 67% of treated acreage in 2015 was treated with insecticides

that targeted nerves or muscles, which include organophosphates, pyrethroids, and neon-

icotinoids. For organic growers, two AIs, spinosad and pyrethrins, are available to target

those physiological functions. The "unknown" category, which is mostly sulfur, accounted

for a significant portion of treated acreage in organic agriculture. Insecticides that target

the midgut, which includes Bacillus thuringiensis (Bt) and several granulosis viruses, are

widely applied in organic fields. Conventional growers rarely use them due to the high

cost. In 2015, acreage treated with midgut targeted insecticides was 1% of total treated

acreage in conventional agriculture and 24% in organic agriculture. A detailed discussion

of insecticide and fungicide use by mode of action in conventional and organic production

is in the appendix.

1.2.2 PURE Indices for Conventional and Organic Agriculture

Insecticides and fungicides in the two pest management programs have different

modes of action and pose different levels of environmental impact. Simply comparing

treated acreage or the amount of pesticide products used does not identify the differences

in environmental impacts. In this context, the PURE index serves as a consistent measure
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Figure 1.2: Treated Acreage of Insecticides by Physiological Targets (A: Conventional
and B: Organic): 1995 - 2015
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across farming systems.

Figure 1.3: PURE Index Weighted by Acres per Field (A: Conventional and B: Organic):
1995 - 2015

Figure 1.3 plots PURE indices for conventional and organic fields by year. Index

values for air and soil are significantly higher than those for the other environmental di-

mensions in both farming systems, which means that pesticide use in general has greater

impacts on air and soil quality than groundwater, pollinators, and surface water. Risk in-

dices of conventional fields (figure 1.3A) are relatively stable from 1995 to 2015, with no

obvious overall changes for air or soil, despite the many changes that have occurred during

this 20-year period in regulations and grower portfolios. While PURE indices decreased

16% for surface water, 26% for pollinators, and 7% for groundwater over the same time
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period, these three were much less impacted by pesticides in 1995, the beginning of the

study period. Despite the numerous regulatory actions designed to reduce environmental

impacts over this 20-year period, such as the methyl bromide phase-out, large-scale sub-

stitution of pyrethroids for organophosphates, and regulations to reduce VOC emissions

from nonfumigant products, the overall environmental impacts of conventional pesticide

use show only limited reductions when aggregated across all crops.

PURE indices for organic fields (figure 1.3B) are similar to conventional fields in

that the air and soil have significantly higher index vales than the others. However, the

aggregate risk indices in all five dimensions are much lower in organic fields. Compared

to conventional agriculture, organic agriculture has dramatically lower PURE indices for

surface water (90%), groundwater (99%), air (51%), soil (70%), and pollinators (99%).

The reduction for air varies greatly across major California crops. Large reductions in

the PURE index for air are observed for table grapes (64%), wine grapes (63%), and

processing tomatoes (63%), while others had relatively small ones such as leaf lettuce

(19%) and almonds (28%). The reduction in the PURE index for soil varies across crops

as well, ranging from leaf lettuce (86%) to carrots (33%). For surface water, groundwater,

and pollinators, the differences between the PURE index in organic and conventional fields

are similar across crops. A noticeable spike in PURE indices appeared in 1998 for organic

agriculture caused by a single application of copper sulfate with an application rate of

150 lb/acre, which is ten times larger than the average application rate and clearly a data

abnormality.

The PURE index is a measure of environmental impacts on the per acre basis.
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One could use the yield difference between conventional and organic agriculture to adjust

values in Figure 1.3 and transfer them to a measure of impacts per unit of output. Organic

agriculture is found to have 10%-20% lower yields than conventional agriculture (Stanhill,

1990; De Ponti et al., 2012; Seufert et al., 2012; Reganold and Wachter, 2016). If we use

the 15% yield loss as an average to adjust the results for all crops, organic agriculture

reduced the PURE index for surface water (88%), groundwater (99%), air (42%), soil

(65%), and pollinators (99%). The impact of organic practices on pesticide use is crop-

specific. This aggregate result is derived based on current crop mix in California.

Each crop is susceptible to a different spectrum of pests, which are managed by

a distinct pesticide portfolio as part of a broader pest management program. Comparing

PURE indices for individual crops shows the benefit from pesticide use in organic agri-

culture varies significantly. Based on value, production region, and the acreage share of

organic production, four crops are selected to illustrate this point: lettuce, strawberries,

wine grapes, and processing tomatoes. Lettuce, strawberries, and wine grapes are the

three highest-valued organic crops in California, with organic sales values of $241, $231,

and $114 million in 2016 respectively (NASS USDA, 2017). Production of strawberries

and lettuce is concentrated in the Central Coast region. Processing tomatoes are an im-

portant crop in the Central Valley. Wine grape production occurs in a number of regions

across the state. In 2015, the acreage shares of organic production are 8% (lettuce), 9%

(strawberries), 4% (processing tomatoes), and 2% (wine grapes) for the selected crops.
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Table 1.1: Field-Year Summary Statistics for Selected Crops

Variable

Conventional Organic

All Lettuce Strawberries Wine Processing All Lettuce Strawberries Wine Processing
Crops Grapes Tomatoes Crops Grapes Tomatoes

Farm 45.3 14.1 29.1 54.4 81.4 18.4 8.9 16.1 30.4 68.9
acreage (acre)
PUR 8.9 7.8 6.9 9.1∗ 9.7 7.2 5.6 5.4 10.1 8.1
Experience (year)
PURE 19.2 16.9 49.3 14.0 14.9 1.9 0.1 0.0 0.9 0.5
surface water
PURE 47.2 44.8 32.0 51.5 55.4 0.0 0.0 0.0 0.0 0.1
groundwater
PURE 82.3 86.9 92.9 86.3 92.5 21.6 9.8 5.1 25.7 24.6
soil
PURE 81.9 74.1 89.7 77.5 91.4 48.8 45.3 71.9 35.4 36.3
air
PURE 36.7 59.2 57.2 19.4 34.9 0.1 0.0 0.1 0.3 0.0
pollinators
N 3,396,625 332,620 34,757 210,058 73,464 114,952 17,851 1,888 7,741 1,998

Note: ∗ The conventional mean is less than the organic mean at the 1% level.
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For my analysis, the unit of observation is a field-year, defined as a field with one

or more pesticide applications in a given calendar year. In total, more than 3 million

field-year observations are included in the PUR database from 1995 to 2015. Table 1.1

provides field-year summary statistics for key variables by crop. Overall, 3% of them

applied only pesticides approved in organic agriculture. For all crops, conventional farms

are significantly larger in size and have higher PURE indices. The average farm size in

PUR is smaller than the average number in the USDA Census (USDA NASS, 2017). One

potential explanation is that one farm could have fields in different counties and apply for

multiple pesticide application permits within in each county, which classifies it as multiple

"farms" in the PUR.

For all crops, lettuce, strawberries, and processing tomatoes, growers who oper-

ate conventional farms have significantly more experience, measured by years they are

observed in the PUR. For wine grapes, conventional growers have less experience than or-

ganic growers. Ideally, farming experience is measured directly or researchers use age as a

proxy. However, the PUR database does not contain any demographic information, which

limited my ability to measure experience. The PUR experience is smaller than the farm-

ing experience reported in the Census, which has many reasons. (USDA NASS, 2017).

First, the PUR database I use started in 1995. Any farming experience before 1995 is not

recorded. The Census is conducted every 5 years. Farms that entered and exited within the

5 year gap are included in the PUR database but not the Census, which reduce the average

experience.

Conventional strawberries have significantly greater impact on surface water and
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less impact on groundwater, measured by the PURE indices, comparing to other conven-

tional crops. Organic strawberries, on the other hand, had a higher PURE index for air

and a lower PURE index for soil than other organic crops. Pesticides used in conventional

production of wine grapes have less impact on pollinators than pesticides used in other

conventional crops.

1.3 Empirical Framework

To identify the effect of organic agriculture on pesticide uses and associated envi-

ronmental impacts, I must address the issues of selection bias at both the grower and the

field levels. Compared to growers who utilize conventional practices, growers who adopt

organic ones may have different underlying characteristics, such as attitudes toward en-

vironmental issues, which can also affect their pesticide use decisions directly. If grower

characteristics are time-invariant, an unbiased estimation could be achieved by including

a grower fixed effect in the regression. There is also time-variant heterogeneity that is

associated with individual growers, due to factors such as farm size and experience, that

simultaneously influences the adoption of organic production and pesticide use decisions.

The identification concern here is that growers with more farming experience or larger

farms, including both conventional and organic acreage, are more likely to operate organic

fields and use less pesticides (Bravo-Monroy et al., 2016; Genius et al., 2006). Therefore it

is not reasonable to compare environmental impacts of pesticide use for growers without

considering these characteristics. For each grower, annual total acreage and experience

serve as measures of time-variant heterogeneity. Acreage and experience may alter the
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environmental impact of growers’ pesticide programs. As shown in Table 1.1, there is a

significant difference for these two variables between conventional and organic growers.

There could be field-level heterogeneity as well, due to pest or disease pressure,

that undermines my identification strategy. Fields with less pest or disease pressure need

less pesticides and are more likely to be converted into organic production at the same

time. Including field fixed effects in the estimation is one approach to address these is-

sues. Organic fields tend to be concentrated spatially to avoid pesticide drift from nearby

conventional fields (Parker and Munroe, 2007a; Tolhurst et al., 2017). Spatial relation-

ships are not considered here because the PUR database does not have information on the

distance between fields. The effect of organic status on environmental impacts of pesticide

use can be estimated by the following regression:

yit =β0 + β1Organicit + β2Organicit × Yeart + β3Yeart + β4Acreageg[i]t + β5PUR_Expg[i]t

+ λg[i] + σi + θt + φc[i] + eit
(1.1)

The dependent variable yit is the PURE index for one of the five environmen-

tal dimensions in field i in year t. Grower g[i] who grows crop c[i] on field i in year t

adopts either organic or conventional pest management practices, which is denoted by the

binary variable Organicit (the notation follows Perry and Moschini (2020)). The variable

Acreageg[i]t represents the total farm acreage, organic plus conventional, measured in 1,000

acres, for grower g[i] who operated field i in year t. PUR_Expg[i]t measures the number of
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years grower g[i] was observed in PUR. The time value Yeart ranges from 1 to 21, which

matches year 1995 to 2015. The grower fixed effect λg[i] represents time-invariant grower

heterogeneity. σi is the field fixed effect, which covers the time-invariant field heterogene-

ity. The fixed effect θt captures year to year variations. Pest management practices vary

across crops, which alter the environmental impact of pesticide uses. The crop fixed effect

φc[i] captures such variation.

Pesticide use in conventional and organic agriculture varies across crops as shown

previously. Therefore, equation 1 is estimated for a subset of crops including, lettuce,

strawberries, processing tomatoes, and wine grapes, to examine determinants of these dif-

ferences. For lettuce, in particular, the environmental impacts from pesticide use do not

have a linear time trend for the entire time period because the pesticide portfolio for con-

ventional growers changed dramatically. After 2005, organophosphorus insecticides were

gradually replaced by pyrethroid and neonicotinoid insecticides, which are less toxic in

general. To capture this trend more precisely, a dummy variable that splits the study pe-

riod in half is included to interact with the organic status variable in equation 1. The

regression equation for lettuce is as follows:

yit =β0 + β1Organicit + β2Organicit × 06_15t + β3Organicit × Yeart + β4Yeart

+ β5Acreageg[i]t + β6PUR_Expg[i]t + λg[i] + σi + θt + φc[i] + eit

(1.2)

where 06_15t is a dummy variable, which equals 1 for observations in years 2006 to 2015.

The coefficient of Organicit × 06_15t captures the change of the difference between two
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systems in the second half of the study period. It is expected to be positive because con-

ventional growers switched to less toxic pesticides, which reduce the difference between

the environmental impacts of conventional and organic pesticide use.

In the fixed effect model, the identification of β1 requires the observation of a sig-

nificant number of fields before and after the adoption of organic practices in the PUR

database. Although certified organic cropland was only 5% of total cropland in Califor-

nia (NASS USDA, 2017), in the PUR database there are more than 53,000 fields using

only pesticides approved for organic agriculture, which are operated by more than 10,000

growers. The coefficient of interest, β1, is identified by comparing fields under conven-

tional and organic management without regard for what their organic status may have been

in the past or will be in the future.

By including field and grower fixed effects would introduce more noise than signal

and amplify any potential measurement error. Comparing fields with similar attributes

could serve as an alternative to address field heterogeneity. Therefore, I also propose to use

a sub-sample containing only fields where both conventional and organic practices were

observed for the same crop. The direction of the transition between systems should not

matter, though transition from organic to conventional is rarely observed. The regression

equation is as follows:
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yit =β0 + β1Organicit + β2Organicit × Yeart + β3Yeart + β4Acreageg[i]t + β5PUR_Expg[i]t

+ λg[i] + θt + φc[i] + eit
(1.3)

The hypothesis is that the intercept in equation 3 is smaller than that in equation

1 because fields that are continuously operated under the conventional method are not

included and more pesticides are typically applied to them. However, fields that stay

in organic production are also excluded, so the difference between two systems is not

necessarily smaller in this sub-sample than the full sample estimation.

For the same reason, the model is established for another sub-sample containing

growers who operated both conventional and organic fields as an alternative to including

grower fixed effects. The estimated intercept for this sub-sample is expected to be smaller

than that for the the full sample because growers who did not engage in organic production

and their fields are excluded. The regression equation is as follows:

yit =β0 + β1Organicit + β2Organicit × Yeart + β3Yeart + β4Acreageg[i]t + β5PUR_Expg[i]t

+ σi + θt + φc[i] + eit
(1.4)

The evolution of the organic industry is another interesting direction to explore.

In particular, does organic agriculture become less environmentally friendly when more
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profit-driven growers enter, as suggested in Läpple and Van Rensburg (2011)? This ques-

tion is partially answered by including the interaction term Organicit × Yeart. The hy-

pothesis is that the coefficient is positive because more profit-driven growers, with less

concern for the environment, entered over time and chose pesticide portfolios with greater

environmental impacts. Other unobserved changes, such as the growth of pest population

due to weather shocks or the development of pesticide resistance, could lead to an increase

in pesticide use in organic fields. But, much of those variations are captured by the time

fix effects and the year trend.

1.4 Results

The results from the full sample and sub-sample fixed effect model are reported

first, followed by the results for four selected crops.

1.4.1 Results for Full Sample and Sub-Sample Estimation

Observations within the three-year transitional period are considered as conven-

tional fields. This underestimates the environmental impacts of conventional pesticide use

and therefore the benefit from organic agriculture. Excluding those observation does not

alter the results since they only account for 1% of the fields.

The results from the full sample estimation are reported in Table 1.2. Each column

shows the impact of pesticide use on different environmental dimensions measured by

PURE indices. For example in column 1, the intercept represents the impact on surface

water when other variables are set to zero, which is 17.51. The impact is decreasing by
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0.62 each year, shown by the coefficient of t. If the grower adopted organic practices,

the impact on surface water would reduce by 15.04 but increase by 0.37 every year as

indicated by the coefficient of Organic and Organic × t. Farm acreage and experience

are related to the environmental impact as well.

Table 1.2: Effect of Organic Pesticide Use on PURE Index Values: All Crops
Variable Surface water Groundwater Soil Air Pollinators
Organic -15.04*** -36.06*** -53.59*** -42.51*** -29.60***

(0.25) (0.31) (0.45) (0.43) (0.27)
Organic× Year 0.37*** 0.81*** 1.07*** 1.37*** 0.65***

(0.02) (0.02) (0.03) (0.03) (0.02)
Year -0.62*** -0.53*** 0.12** 0.12** -0.07

(0.03) (0.05) (0.04) (0.04) (0.04)
Acreage 0.10*** 0.41*** 0.18*** 0.15*** 0.09***

(0.02) (0.02) (0.01) (0.02) (0.02)
PUR_Exp 0.19*** 0.16** -0.28*** -0.44*** -0.28***

(0.03) (0.05) (0.04) (0.04) (0.04)
β0 17.51*** 38.84*** 89.19*** 79.92*** 38.74***

(1.51) (1.38) (1.48) (1.44) (1.26)
N 3,195,150 3,195,150 3,195,150 3,195,150 3,195,150
R2 0.59 0.48 0.57 0.47 0.52

Robust standard errors are reported in parentheses. ***p<0.01; **p<0.05; *p<0.1.
Grower, field, year, and crop fixed effects are included in all models.

For all five PURE dimensions, pesticides used in organic agriculture reduced en-

vironmental impact. The reduction, captures by the variable Organic, is significant at the

1% level for five environmental dimensions. Relative to the intercept, organic practices

reduced environmental impacts for surface water by 86%, for groundwater by 93%, for

soil by 60%, for air by 53%, and for pollinators by 76% on a per acre basis holding other

variables fixed. The relatively small impact on air is linked to the facts that natural AIs

do not have less VOC emissions in general. Regulations regarding high VOC-emitting
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pesticide AIs also contribute to this result partially because they do no affect two systems

evenly. In 2015, the sale and use of 48 pesticide products were restricted due to their VOC

emissions, which accounted for 5% of treated acreage in conventional agriculture and 1%

of treated acreage in organic agriculture. Although reductions in PURE index values do

not translate directly into dollar values or health outcomes, results from Table 1.2 suggest

that pesticide use in organic fields substantially reduced environmental impacts.

The coefficient for Organic × t represents the change of the difference between

two farming systems over time and is positive for all environmental dimensions, which

supports the hypothesis that, comparing with conventional agriculture, the environmental

impacts associated with pesticide use in organic agriculture have grown over time. Air has

the largest coefficient among the five environmental dimensions, which is consistent with

previous figures that environmental impacts increased the most for air across all crops.

The variable t is the common time trend for all conventional fields and t is negative for

surface water and groundwater, which means the environmental impacts from pesticide

use decreased in conventional agriculture on those dimensions. The environmental impact

on soil and air increased. The combination of variables t and Organic × t shows the

time trend for organic fields alone, which is upward sloping for groundwater, soil, air, and

pollinators, and downward sloping for surface water.

Two variables Acreage and Exp, capture time-invariant grower heterogeneity. Al-

though the variable Organic dominates the overall effect, coefficients for both Acreage and

Exp influence the environmental impact associated with crop production. For the same

grower-crop combination, a larger farm size is associated with pesticide application pro-
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grams that pose more negative impacts for all five environmental dimensions. Meanwhile,

more experience is correlated with the environmental impacts on soil, air, and pollinators.

The PURE indices for surface water and groundwater are positively correlated with expe-

rience. This is partially due to the fact that experienced farmers use less organophosphate

insecticide per acre, which are more toxic to earthworms and honeybees than alternative

AIs.
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Table 1.3: Effect of Organic Pesticide Use on PURE Index Values: Sub-Sample Estimation without the Field Fixed Effect

Variable
Surface water Groundwater Soil Air Pollinators

Coef. z-test Coef. z-test Coef. z-test Coef. z-test Coef. z-test
Organic -16.94*** -5.16 -37.77*** -3.72 -55.51*** -2.95 -42.77*** -0.41 -32.05*** -6.18

(-0.27) (-0.34) (-0.47) (-0.46) -(0.29)
Organic× Year 0.50*** 4.60 0.84*** 0.83 1.16*** 1.80 1.47*** 2.36 0.73*** 2.83

(-0.02) (-0.03) (-0.04) (-0.03) (-0.02)
Year -0.60*** 0.23 -0.62*** -0.74 0.18 0.47 -0.20 -2.73 0.31*** 4.25

(-0.08) (-0.11) (-0.12) (-0.11) (-0.08)
Acreage -0.24*** -4.67 -0.05 -4.99 0.15 -0.37 0.27*** 1.46 -0.04 -1.58

(-0.07) (-0.09) (-0.08) (-0.08) (-0.08)
PUR_Exp 0.05 -1.64 0.15 -0.08 -0.26* 0.15 -0.23* 1.79 -0.63*** -3.55

(-0.08) (-0.11) (-0.13) (-0.11) (-0.09)
β0 10.33*** -2.86 29.94*** -3.88 73.27*** -5.91 78.34*** -0.61 27.55*** -5.43

(-2.01) (-1.83) (-2.25) (-2.15) (-1.63)
N 194,763 194,763 194,763 194,763 194,763
R2 0.40 0.38 0.50 0.41 0.45

Robust standard errors are reported in parentheses. ***p<0.01; **p<0.05; *p<0.1. Year and crop fixed effects are included in all
models. z test is conducted for each coefficient to show the difference between the full sample and sub-sample results.
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Table 1.4: Effect of Organic Pesticide Use on PURE Index Values: Sub-Sample Estimation without the Grower Fixed Effect

Variable
Surface water Groundwater Soil Air Pollinators

Coef. z-test Coef. z-test Coef. z-test Coef. z-test Coef. z-test
Organic -15.25*** -0.57 -36.49*** -0.93 -54.40*** -1.22 -43.96*** -2.28 -30.48*** -2.22

(-0.27) (-0.34) (-0.49) (-0.47) (-0.29)
Organic× Year 0.39*** 0.71 0.83*** 0.71 1.14*** 1.40 1.51*** 3.30 0.72*** 2.47

(-0.02) (-0.02) (-0.04) (-0.03) (-0.02)
Year -0.91*** -3.81 -0.67*** -1.25 0.30** 1.67 0.23* 1.12 0.29*** 4.02

(-0.07) (-0.10) (-0.10) (-0.09) (-0.08)
Acreage 0.07*** -1.06 0.41*** 0.00 0.18*** 0.00 0.12*** -1.06 0.14*** 1.77

(-0.02) (-0.03) (-0.02) (-0.02) (-0.02)
PUR_Exp 0.48*** 3.81 0.29** 1.16 -0.50*** -2.04 -0.66*** -2.23 -0.65*** -4.14

(-0.07) (-0.10) (-0.10) (-0.09) (-0.08)
β0 16.41*** -0.47 32.50*** -2.94 84.81*** -1.84 79.36*** -0.24 38.46*** -0.14

(-1.82) (-1.66) (-1.86) (-1.83) (-1.51)
N 2,007,597 2,007,597 2,007,597 2,007,597 2,007,597
R2 0.59 0.52 0.61 0.55 0.56

Robust standard errors are reported in parentheses. ***p<0.01; **p<0.05; *p<0.1. Year and crop fixed effects are included in all
models. z test is conducted for each coefficient to show the difference between the full sample and sub-sample results.
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The sub-sample estimation yields similar results (Table 1.3 and Table 1.4). Namely,

(1) in conventional agriculture, the environmental impacts on surface water and ground-

water associated with pesticide use decreased over time, (2) pesticides used in organic

agriculture significantly reduced the environmental impacts measured by the PURE index,

(3) the difference between conventional and organic pesticide use decreased.The intercept

is smaller than the coefficient of Organic occasionally because the crop and time fixed ef-

fects are oftentimes positive and significant and the impacts on those dimensions in organic

fields are small.

For the sub-sample with fields that have transitioned between production systems,

total farm acreage is no longer significantly associated with impacts on groundwater, soil,

and pollinators and the environmental impact on surface water is negatively correlated

with farm acreage. The main reason for this seemingly dramatic difference, comparing

to the full sample estimation, is that there are more wine grape vineyards and fewer al-

mond orchards and alfalfa fields in the sub-sample. Although the organic price premium

is limited for wine grapes, the organic farming practices are associated with high quality

of grapes, which encourage growers to adopt organic production (Iordachescu et al., 2010;

Rojas-Méndez et al., 2015; Ogbeide, 2015). The price premium is significant for almond

and alfalfa (Brodt et al., 2009; Evers III, 2011). However, organic almonds suffer from

an average 20% of yield loss, which hinders the transition (Holtz et al.). For alfalfa, the

price depends on the organic status as well as quality, which is hard to control for organic

growers due to weed and pest pressures (Brodt et al., 2009).

The z-test results in Table 1.3 and Table 1.4 show that the coefficients of Organic
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are similar to or larger, in absolute value, than those in the full sample estimation, which

implies that the difference between two production systems are larger in the sub-sample

than full sample.

1.4.2 Results for Selected Crops

Differences in environmental impacts between organic and conventional produc-

tion vary across crops. The full-sample regression is estimated for selected crops individ-

ually, except for lettuce where an additional time dummy is added to split the sample in

half, to highlight important patterns of pesticide use in conventional and organic produc-

tion. The specifications without grower or field fixed effects provide similar results and

therefore results are not presented here for individual crops.

The PURE index values are plotted for conventional and organic lettuce fields in

Figure 1.4. The risk index from pesticides used in conventional lettuce fields decreased

since growers have gradually transitioned from organophosphates to pyrethroid and neoni-

cotinoid insecticides over the past twenty years and organophosphate insecticides are more

toxic than their pyrethroid and neonicotinoid alternatives (PPDB, 2020).

Prior to 2005, diazinon (an organophosphate) was the most used insecticide in

conventional lettuce production while the usage of lambda-cyhalothrin (a pyrethroid), was

limited in lettuce. However, by 2015, lambda-cyhalothrin was the most used insecticide

in conventional lettuce fields while fewer than 30 acres of lettuce were treated with diazi-

non. Consistent with these changes, in Table 1.5, the coefficients for Organic× 06_15 are

significant and positive showing that the difference in the environmental impacts from pes-
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Figure 1.4: PURE Index for Lettuce Fields Weighted by Acres per Field (A: Conventional
and B: Organic): 1995 - 2015
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Table 1.5: Effect of Organic Pesticide Use on PURE Index Values: Lettuce
Variable Surface water Groundwater Soil Air Pollinators
Organic -19.31*** -49.20*** -67.41*** -39.60*** -64.40***

(1.07) (1.52) (2.02) (2.30) (1.53)
Organic× 06_15 1.10** 1.41* 8.82*** 7.47*** 6.98***

(0.38) (0.59) (1.15) (1.54) (0.61)
Organic× Year 0.80*** 1.91*** 0.40* 0.63** 1.82***

(0.08) (0.11) (0.17) (0.21) (0.11)
Year 0.93 -0.53 -2.28* -2.38 -1.34

(0.85) (1.24) (0.92) (1.30) (1.02)
Acreage 0.66*** 0.81*** 0.51*** 0.81*** 1.10***

(0.05) (0.06) (0.04) (0.04) (0.05)
PUR_Exp -1.92* -1.42 1.56 1.12 -0.28

(0.85) (1.24) (0.92) (1.30) (1.02)
β0 18.61*** 59.16*** 95.21*** 87.56*** 66.93***

(2.49) (3.62) (2.67) (3.77) (2.97)
N 270,688 270,688 270,688 270,688 270,688
R2 0.54 0.57 0.61 0.57 0.58

Robust standard errors are reported in parentheses. ***p<0.01; **p<0.05; *p<0.1.
Grower, field, year, and crop fixed effects are included in all models.

ticides use between conventional and organic lettuce production decreased in the second

half of the study period.

In Table 1.6, differences in environmental impacts between conventional and or-

ganic strawberries are largely driven by the environmental impacts of pre-plant soil fumi-

gation, which is used by conventional but not organic strawberry growers. Soil fumigation

is a common practice for managing pathogens, nematodes, and weeds in conventional

strawberry fields. While soil fumigants are most commonly regulated because of their

negative effects on human health via the impact on air quality and ozone layer, most soil

fumigants are also highly toxic to earthworms (PPDB, 2020). Accordingly, the PURE
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Table 1.6: Effect of Organic Pesticide Use on PURE Index Values: Strawberries
Variable Surface water Groundwater Soil Air Pollinators
Organic -49.52*** -15.51*** -77.08*** -52.59*** -52.50***

(4.51) (4.12) (4.85) (5.66) (4.02)
Organic× Year 0.86** -1.11*** 1.19*** 1.27** 0.86**

(0.31) (0.30) (0.34) (0.40) (0.28)
Year -1.58** -1.38** -1.40*** -0.32 -1.09**

(0.53) (0.51) (0.32) (0.32) (0.36)
Acreage -0.55 -1.92 -0.95 -0.76 -1.30

(1.01) (1.00) (0.57) (0.81) (0.93)
PUR_Exp 0.81 2.82*** 0.93** -0.09 0.12

(0.55) (0.53) (0.33) (0.32) (0.38)
β0 62.44*** 39.70*** 101.14*** 95.53*** 70.52***

(2.26) (2.26) (1.23) (1.31) (1.56)
N 28,071 28,071 28,071 28,071 28,071
R2 0.57 0.55 0.68 0.51 0.59

Robust standard errors are reported in parentheses. ***p<0.01; **p<0.05; *p<0.1.
Grower, field, year, and crop fixed effects are included in all models.

index for soil is large. Consequently organic strawberry production achieves a 78% reduc-

tion in the environmental impact on soil. Conventional strawberry production also poses

higher impacts on surface water because several AIs are highly toxic to fish and aquatic in-

vertebrates (PPDB, 2020), including abamectin for controlling spider mites (Dybas, 1989),

malathion for whiteflies (Bi & Toscano, 2007), and pyraclostrobin for gray mold (Mercier

et al., 2010). As a result, the coefficient of Organic for surface water is larger than aver-

age. The difference in the PURE index for air is smaller because azadirachtin and clarified

neem oil, two primary AIs contributing to VOC emissions in the nonattainment area of

Ventura (CDPR, 2020, Rosemary, 2008), a major strawberry producing county, together

accounted for 18% of treated acreage for organic strawberries.

In column 2 for groundwater, the coefficient for Organic × t is negative, the op-
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posite of the other environmental dimensions. The difference between conventional and

organic production is expanding because pesticides used in conventional strawberry fields

is having greater impact on groundwater over time due to the regulation on methyl bro-

mide, a soil fumigant. Based on its ozone depletion effects, the use of methyl bromide was

phased out in the U.S. and strawberry growers increased their usage of alternative fumi-

gants, such as 1,3-D and chloropicrin (Ajwa et al., 2003, Fennimore et al., 2003). Those

two alternatives are less likely to be retained by soil and therefore have greater impact on

groundwater than methyl bromide (PPDB, 2020).

Table 1.7: Effect of Organic Pesticide Use on PURE Index Values: Processing Tomatoes
Variable Surface water Groundwater Soil Air Pollinators
Organic -10.65*** -43.97*** -73.94*** -88.65*** -12.92***

(2.04) (2.80) (3.54) (3.44) (1.84)
Organic× Year -0.41** -0.25 0.03 2.38*** -1.02***

(0.15) (0.20) (0.30) (0.27) (0.13)
Year 4.93** 6.50** 0.63 -0.66 -2.68

(1.75) (2.43) (1.70) (1.87) (2.16)
Acreage 0.57*** 1.34*** 0.54*** 0.67*** -0.12

(0.09) (0.13) (0.09) (0.09) (0.13)
PUR_Exp -4.31* -5.72* -0.46 0.85 4.12

(1.75) (2.43) (1.70) (1.87) (2.16)
β0 1.42 39.11*** 89.55*** 88.21*** 31.70***

(1.79) (2.60) (1.74) (1.96) (2.27)
N 55,106 55,106 55,106 55,106 55,106
R2 0.70 0.59 0.51 0.42 0.48

Robust standard errors are reported in parentheses. ***p<0.01; **p<0.05; *p<0.1.
Grower, field, year, and crop fixed effects are included in all models.

Comparing the results in Table 1.7 with other tables in this section, organic pro-

cessing tomato production reduces the environmental impact on air by a larger percentage

than all organic production on average. The key difference between processing tomatoes
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and other crops is that processing tomatoes are more threatened by diseases than by insects

or nematodes (Flint, Klonsky, et al., 1985). The two most common diseases are powdery

mildew and bacterial speck, which are treated with sulfur and copper hydroxide respec-

tively in organic production (Zalom, 2007). In 2015, the acreage treated with these two AIs

accounted for 42% of total acreage treated for organic processing tomatoes. In compari-

son, the share of sulfur-and copper hydroxide-treated acreage is below 10% for production

of lettuce and strawberries and 25% for all organic crops. These two AIs have lower VOC

emissions than other AIs used in organic production such as pyrethrins, azadirachtin, and

clarified neem oil, which together accounted for nearly 30% of treated acreage for organic

lettuce and strawberries, 18% for organic processing tomatoes, and 18% for all crops.

However, the impact is increasing as indicated by the positive coefficient for the variable

Organic× Year.

Wine grape production occurs in many regions in California, and pest and disease

pressures vary across production regions due to different climate and soil conditions. In

the North Coast production region, which includes Napa and Sonoma counties among

others, powdery mildew is a common disease because the fungus prefers a cooler tem-

peratures, ideally around 21◦C, to grow (Yarwood et al., 1954). Measured by treated

acreage, 9 out of the 10 most used AIs are fungicides targeting powdery mildew in this

area. In the San Joaquin Valley, in contrast, powdery mildew is rarely seen because of

high temperatures. Due in part to the large number of frost-free days per growing sea-

son, insects are the primary concern (Ross, 2009). For wine grapes, the most used AIs

beside sulfur are abamectin targeting spider mites, imidacloprid targeting vine mealybugs,

and methoxyfenozide targeting lepidoptera (Varela et al., 2015). These insecticide AIs are

38



Table 1.8: Effect of Organic Pesticide Use on PURE Index Values: Wine Grapes
Region Variable Surface water Groundwater Soil Air Pollinators
State Organic -4.98*** -28.43*** -42.68*** -31.70*** -4.51***

(0.45) (0.88) (1.23) (1.22) (0.41)
Organic× Year 0.08** 0.69*** 1.30*** 1.36*** -0.20***

(0.03) (0.06) (0.09) (0.08) (0.03)
Year -0.32*** -0.17 0.25 -0.67*** -0.32***

(0.08) (0.15) (0.13) (0.14) (0.09)
Acreage -0.64*** -0.47*** -1.02*** -1.07*** -1.01***

(0.04) (0.06) (0.06) (0.07) (0.06)
PUR_Exp 0.24** 0.01 0.27* 0.63*** 0.93***

(0.09) (0.16) (0.14) (0.14) (0.10)
β0 17.01*** 54.29*** 81.65*** 83.48*** 15.84***

(0.41) (0.69) (0.53) (0.53) (0.40)
N 206,627 206,627 206,627 206,627 206,627
R2 0.50 0.52 0.53 0.52 0.44

Napa and Organic -3.86*** -24.54*** -41.67*** -29.63*** -5.48***
Sonoma (0.65) (1.20) (1.71) (1.70) (0.49)
Counties Organic× t -0.03 0.62*** 1.47*** 1.74*** 0.14***

(0.04) (0.08) (0.12) (0.11) (0.03)
t -0.70*** 0.01 0.59** 0.01 0.24

(0.14) (0.23) (0.18) (0.19) (0.13)
Acreage -1.98** 4.33*** 0.90* 5.01*** 0.15

(0.69) (0.84) (0.45) (0.56) (0.60)
Exp 0.74*** -0.11 -0.04 -0.37 -0.05

(0.15) (0.24) (0.20) (0.20) (0.14)
β0 20.41*** 49.86*** 78.22*** 78.03*** 7.13***

(0.75) (1.10) (0.79) (0.78) (0.58)
N 68,819 68,819 68,819 68,819 68,819
R2 0.47 0.53 0.55 0.50 0.37

San Joaquin Organic -3.81*** -35.09*** -46.16*** -38.59*** -7.81***
Valley1 (1.08) (2.45) (3.53) (3.16) (1.27)

Organic× t 0.04 0.33 0.58* 0.25 -0.48***
(0.08) (0.18) (0.26) (0.24) (0.09)

t -0.55** -1.36* 0.31 -0.99* -0.08
(0.21) (0.57) (0.44) (0.47) (0.38)

Acreage -0.34* 0.45 0.29* 0.24 0.55
(0.16) (0.28) (0.14) (0.17) (0.29)

Exp 0.35 0.94 -0.05 1.01* 1.07**
(0.22) (0.57) (0.44) (0.47) (0.39)

β0 14.58*** 65.16*** 86.10*** 85.41*** 16.81***
(0.58) (1.31) (0.88) (0.95) (0.88)

N 62,202 62,202 62,202 62,202 62,202
R2 0.57 0.44 0.43 0.48 0.39

Robust standard errors are reported in parentheses. ***p<0.01; **p<0.05; *p<0.1. Grower, field, year, and
crop fixed effects are included in all models. 1 The San Joaquin Valley includes Fresno, Kern, Kings,
Madera, Merced, San Joaquin, Stanisalus, and Tulare counties.39



more toxic for humans, earthworms, and honeybees and have larger VOC emissions than

the fungicides used for powdery mildew (PPDB, 2020), so the estimated intercept in Table

1.8 is larger in the San Joaquin Valley than in Napa and Sonoma counties and the state as

a whole for groundwater, soil air, and pollinators. Powdery mildews in grapes are often

treated with sulfur (Jepsen et al., 2007). In 2015, table, wine, and raisin grapes accounted

for 77% of acreage treated with sulfur among all crops. To control powdery mildew, or-

ganic growers also rely on bio-ingredients such as Bacillus pumilus and Bacillus subtilis,

which have larger VOC emissions than sulfur and mineral oils. Thus, organic wine grapes

growers in Napa and Sonoma counties only achieve a 38% reduction in the PURE index

for air while the reduction in the San Joaquin Valley is 45%.

1.5 Conclusion

Using a consistent index, this essay quantifies the environmental impacts of pes-

ticide use in conventional and organic fields and how they have changed over time. In-

formation from this analysis could benefit organic crop production worldwide because

California is an important production region with a diverse set of crops and environmental

conditions. Previous studies rarely focused on the use of specific AIs or the change in the

structure of pesticide use when evaluating the environmental impact of organic agriculture.

To the best of my knowledge, the PUR database has never been used to compare pesticide

use for conventional and organic production.

The U.S. organic agriculture sector has grown significantly over the past two decades,

after the launch of the NOP in 2002. Organic farming has the potential to continue to ex-
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pand in the future. Pesticides are essential for both conventional and organic crop produc-

tion. However, pesticide use is not static. The pesticide portfolio changed dramatically for

both farming systems in the study period. Based on field-level pesticide application infor-

mation, this essay shows that the environmental impact of pesticide use on air increased in

organic fields due to the adoption of new chemicals and the reduction in the use of sulfur,

which has zero VOC emissions.

Pesticides used in organic agriculture had lower environmental impacts per acre on

surface water, groundwater, soil, air, and pollinators depending on the pesticide portfolios

for conventional and organic growers. However, the difference between two systems is

decreasing over time for all five dimensions. Notably, they had almost the same level of

VOC emissions in 2015. In both production systems, increases in growers’ total acreage

were associated with increases in the environmental impacts of pesticide use in all dimen-

sions. Increases in grower experience were associated with increases in the environmental

impacts of pesticide use to surface water and groundwater, and decreases in the impacts on

soil, air, and pollinators. The magnitude of effects of these two variables is smaller than

the effect of the organic status of the field.

Pesticide use in organic agriculture has evolved to have greater environmental im-

pacts over time. This is consistent with findings in Läpple and Van Rensburg (2011),

who showed that late adopters, those who adopted organic farming after the launch of

government supporting program, are more likely to be profit-driven and less likely to be

environmentally concerned than early adopters.

New policy instruments could alter the current situation. When reviewing pesticide
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and fertilizer AIs used in organic agriculture, the NOSB could focus on environmental

criteria such as VOC emissions, which has not been considered previously. Such policy

instruments could partially offset the negative environmental impacts of pesticide used in

organic fields.

Whether organic farming is the most cost-effective way to reduce the environmen-

tal impacts of agriculture remains unclear because the changes in PURE index values does

not directly translate to a one-dimensional environmental or food safety benefit that is

comparable across commodities or farming methods. An alternative approach to reducing

environmental impacts is to regulate pesticide use directly, which could have a significant

cost. For example, the ban of methyl bromide was estimated to result in an annual revenue

loss of $234 million (Carpenter et al., 2000) and a 10% revenue loss for the strawberry

industry in California (Carter et al., 2005). However, as the result shows, the PURE air

index for strawberry did not decrease in conventional production after the ban. In addi-

tion, the groundwater index value increased because alternatives to methyl bromide have

a greater impact on groundwater.

A limitation of this essay is the lack of data regarding grower characteristics. In

previous studies, demographic variables, such as gender and education, were shown to

be determinants of the adoption of organic farming (Läpple and Van Rensburg, 2011,

Mzoughi, 2011, Burton et al., 1999). Here, these characteristics are addressed by using

time-invariant grower fixed effects. More information regarding the determinants of pes-

ticide use decisions might be revealed if those characteristics data were available. Future

research could focus on impacts on human health rather then the environment and cal-
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culate the monetary value of reduced mortality and morbidity of converting to organic

production. And, estimating the value of improved environmental quality associated with

organic agriculture, identified in this essay, is another research direction.

While pesticide use remains important for both farming systems, another caveat is

that this essay does not investigate the environmental impacts of non-chemical pest man-

agement practices, such as biological, cultural, and mechanical/physical controls. How-

ever, if one were to pursue that direction by collecting data on non-chemical practices, the

analysis would necessarily be done on a relatively small scale, unlike the comprehensive

data used here.
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Essay 2

Cropland Consolidation and the

Environmental Impacts of Pesticide Use

in California’s Organic Agriculture

2.1 Introduction

Organic agriculture has been proposed as an essential part of sustainable food sys-

tems (Muller et al., 2017). In 2016, over 5 million acres of land were certified organic in

the United States, which generated over $7.5 billion worth of agricultural products. Cali-

fornia is the leading state as a producer of organic crops in the United States, accounting

for 12% of organic cropland and 51% of crop sales value in 2016 (NASS USDA, 2017).

According to Willer and Lernoud (2019), the United States is the largest market for organic
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products and accounted for 43% of global organic retail sales in 2017.

Organic land use data for California have been collected for a limited number of

years by two government agencies, the United States Department of Agriculture (USDA)

and the California Department of Food and Agriculture (CDFA) (NASS USDA, 2010;

NASS USDA, 2016b; NASS USDA, 2016a; NASS USDA, 2017; Klonsky and Richter,

2005b; klonsky0005statistical; Klonsky and Richter, 2011b; Klonsky and Healy, 2013b;

Wei et al., 2020a). Farm-level acreage and location information are not publicly available

from either source. Detailed crop acreage data would facilitate further investigation of key

topics such as the spatial distribution of organic fields, which previously could be studied

only at a very small geographic scale using other data sources (Parker & Munroe, 2007b).

In this context, California’s unique Pesticide Use Report (PUR) database serves as

an alternative source of very detailed and long-term data, which allows the identification of

individual organic fields based on their historical pesticide use records. The PUR database

contains information on all commercial agricultural pesticide use in California since 1990,

including information on the chemicals used, crops and acreages for millions of individual

applications.

Pesticide use patterns for organic fields and their environmental impacts have not

been studied previously. Existing studies often evaluate the environmental performance

of organic agriculture as a system, rather than focusing on specific farming practices

(Gomiero et al., 2011, Hartmann et al., 2015, Pimentel et al., 2005, Tuomisto et al., 2012).

To the best of my knowledge, no study has quantitatively described pesticide use in or-

ganic agriculture or assessed its environmental impacts for ecosystems on a large scale
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across numerous crops and over a long time period (all crop production in California for

twenty-two years). The pesticide products used in organic agriculture are generally less

toxic, but their reduced efficacy could drive higher application rates, which makes the

overall environmental impact of organic agriculture less obvious. In fact, certain pes-

ticides used in organic agriculture have been found to be more toxic than conventional

pesticides targeting the same pest (Biondi et al., 2012, Bahlai et al., 2010). In Läpple

and Van Rensburg (2011), the authors found that farmers who entered organic production

after the supporting policy was launched are more likely to be profit-driven and less envi-

ronmentally concerned than farmers who began organic production before any supporting

policy was in place. Therefore, studying pesticide use in organic agriculture and how it

changes can expand the understanding of organic agriculture and its future.

The consolidation into larger operations is another important issue for organic agri-

culture because it could undermine the perception of organic agriculture as environmen-

tally friendly. Although both the number of organic farms and total organic acreage has

increased, consolidation still exists if large farms grow faster than small farms. Consumers

used to associate organic agriculture with small farms and diverse crop production (Adams

& Salois, 2010). Meanwhile, the consolidation process had been clearly documented for

the organic food processing sector (Howard, 2009) and U.S. agriculture in general (Mac-

Donald et al., 2018). Farm size, measured in acreage, was found to be positively correlated

with pesticide use for staple crop productions in the previous literature for conventional

agriculture (Wu et al., 2018). If this relationship also applies to organic agriculture, then

cropland consolidation could have a negative impact on the environment, which means

that organic agriculture could become less environmentally friendly than it used to be as
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the consolidation proceed. I find that the farm size is positively associated with use of

sulfur and fixed copper pesticides in the organic crop production.

Organic agriculture in California has a diverse crop portfolio, which affects farm

size and pesticide use simultaneously. Certain crops are produced in a large scale, mea-

sured in acreage, and require intensive pesticide use. How changes in the crop mix interact

with the consolidation process is another issue investigated in this essay.

The objective of this essay is threefold: to identify organic fields in the PUR

database using historical pesticide use records; to characterize the patterns and trends

of production and pesticide use for those identified organic fields collectively by crop,

crop acreage, year, farm size, and other attributes; to assess the environmental impacts of

pesticide use in organic agriculture and the consolidation of organic cropland.

2.2 Data and Methods

In this section, we develop the method to identify organic fields and assess pes-

ticide use in organic agriculture using the PUR database. Organic crop acreages iden-

tified from the PUR database are compared with data from other sources to validate of

my method. The Pesticide Use Risk Evaluation (PURE) index is used to evaluate the

environmental impacts of pesticide usage. The impact of cropland consolidation on the

pesticide use patterns and the environmental impacts of organic agriculture are quantified

using regression methods.
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2.2.1 The Pesticide Use Report (PUR) Database

The main dataset used in this essay is the PUR database, which contains detailed

information on location, timing, amount and name of product applied, application meth-

ods, acreage treated, and crop treated. Since 1990, all agricultural pesticide use informa-

tion in California has been collected by the County Agricultural Commissioners (CAC),

who in turn, report it to the California Department of Pesticide Regulation (CDPR), which

publishes the PUR database annually. The PUR database is the largest and most com-

plete dataset on pesticide use in the world and it contains more than 3 million application

records for agricultural use each year. Numerous studies in environmental science, plant

pathology, and agricultural economics have been conducted based on the PUR database

(Reynolds et al., 2005; Larsen et al., 2017; Davidson, 2004; Lybbert et al., 2016b).

Non-chemical pest management practices, such as biological, cultural, and me-

chanical/physical controls, are not recorded in the PUR database. As a result, this essay

focuses only on the potential impacts posed by pesticide usage in organic agriculture. The

PUR database from 1995 to 2017 were used in this essay for two reasons. First, this time

frame provides coverage before and after the launch of the National Organic Program

(NOP) in 2001, which allows us to determine any effects of that policy change. Secondly,

while the PUR database are available from 1990 onward, the data quality is known to be

more variable in the early years (Wilhoit et al., 2001).

Pesticide use information in the PUR database is available at the field level. In

this essay, a "field" is defined using two variables in the PUR database, "GROWER_ID"

and "SITE_LOCATION_ID". "GROWER_ID" is a number assigned to a grower or oper-
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ator by CAC on their pesticide permit, and it remains constant for the same grower over

time. Operators within a farm could apply for the pesticide permit separately, which cre-

ate difficulties for me to identify operations. However, it is costly to comply with all the

requirements and therefore it does not happen often. "SITE_LOCATION_ID" is a code

assigned by CAC on the pesticide permit which indicates a particular location (field) where

an application may occur. For a given field, this code may change from year to year, as

it was assigned by growers, which creates some uncertainties in identifying organic fields

across years. This uncertainty is accounted for in the analyses, as described below.

For each agricultural pesticide application, the PUR database specifies the location

of application in the variable "COMTRS", which stands for the county, meridian, town-

ship, range, and section as defined by the Public Lands Survey mapping system (PLSS).

This information allows us to locate which section does the field belong and aggregate

pesticide usage at the 1x1 mile PLSS section-level, which is the finest spatial scale re-

ported in the PUR database. This detailed section-level analysis of the spatial distribution

of organic fields in California and, how it has changed over time, is only possible using

my method for identifying organic production fields in the PUR database.

In the PUR database, acreage information is recorded as both treated acreage and

planted acreage. The former represents the acres physically treated in a pesticide appli-

cation while the latter remains constant for the field within a year. However, researchers

have demonstrated that planted acreage in the PUR database is not consistently reliable for

annual crops (Steggall et al., 2018). So, in this essay, we use the maximum treated acreage

in a given year as the acreage for each field for annual crops. This approach assumes that
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the entire field is treated with pesticide at least once per year. If this assumption is invalid,

then the planted acreage will be undercounted. As presented below, the validity of this

approach is supported by the consistency of state-scale crop acreages that are generated

from the PUR database with those from other data sources.

One caveat of the PUR database for organic production is that since 2000, pesti-

cide products deemed as having "minimum impacts" are no longer required to be regis-

tered with CDPR, which exempts them from the pesticide use reporting requirement. A

detailed list of these pesticide ingredients can be found in the California Code of Regula-

tions section 6147 (CDPR, 2000). Most ingredients exempted from registration are natural

or naturally-derived products (e.g., garlic oil), which could presumably be used in organic

agriculture and have impacts on the surrounding environment. However, these exempted

ingredients are not widely applied, based on their minimal amounts of usage in the PUR

database prior to 2000 when they were still required to be reported. Therefore, this issue

is not likely to invalidate the results, especially because the number of fields where only

such ingredients were applied before 2000 is small.

For convenience, some chemically-related individual active ingredients (AIs) were

grouped together, such as combining the many different strains of Bacillus thuringiensis,

which target different insects and are each treated as a distinct AI in the PUR database, into

a single "microbial" group. A detailed list of microbials is available in the appendix. The

group of "Copper, fixed" includes the summation of copper, copper oxychloride, copper

octanoate, copper oxide, and copper hydroxide; and the two forms of copper sulfate (basic

copper sulfate and copper sulfate pentahydrate).
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2.2.2 Identifying Organic Fields from the PUR Database

Organic growers are required to comply with a set of crop management standards,

regarding seeds and planting stock practices, soil fertility and crop nutrient management,

pest, weed, and disease management, and crop rotation among others (NOP, 2001). The

most relevant requirement for this essay is that there is a 36-month transition period be-

tween the last application of any prohibited substance under organic regulations and of-

ficially recognized organic production. The field identification method relies on this re-

quirement. First, we constructed a list of allowed and prohibited substances based on

various sources (as described in the Appendix). Second, we checked each field in the

PUR database, to see which AIs were applied over the previous three years. If there were

no applications of any prohibited ingredients, then the field was considered organic as of

that year. Organic growers who do not use any chemical tools at all to manage pests and

weeds are missing from the PUR database entirely, and therefore not identified in this es-

say. However, based on acreage comparisons between the PUR database and other data

sources, those growers appear to operate a very limited number of acres.

A field could comply with the pest, weed, and disease management standards of

the NOP while violating other standards (such as applying synthetic fertilizers) and still

not qualify for organic production. Because the PUR database only contains pesticide

use information, my method cannot distinguish such fields from actual certified organic

fields. On the other hand, growers could follow organic farming practices but choose not

to certify their fields for various reasons. However, as mentioned above, the amounts of

acreage in these categories must not be very substantial because the PUR-derived organic
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crop acreages agree with those from CAC compiled sources, suggesting that my method

is valid.

One caveat of this method is the consistency of field information in the PUR

database from year to year. As mentioned previously, the "SITE_LOCATION_ID" on

pesticide permits, a number chosen by growers or assigned by county, indicate a physical

field location, but the id number may change from year to year. When that ID does change,

a new "field" appears in the PUR database for which we do not have information on its his-

torical (i.e., over the previous three years) pesticide applications. In this situation, we as-

sume for annual crops that the land was fallow before a new "SITE_LOCATION_ID" was

assigned. This assumption could cause us to overestimate the total organic acreage some-

what, by including fields with a new "SITE_LOCATION_ID" which may have had pro-

hibited substance applications in the past three years. Pasture and rangeland have unique

pest management practices and enormous acreage, but they are not covered in this essay as

they do not suit my primary purpose of evaluating the environmental impacts of pesticide

use in organic crop fields.

2.2.3 Other Data Sources for Organic Acreage

To test the validity of my method for identifying organic fields, we compared or-

ganic acreages derived from the PUR database with those available in other data sources,

primarily from CDFA and USDA. The acreage data in each source were collected using

different approaches and therefore it is common to observe differences.

CDFA organic registration data: The California Organic Products Act requires
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an annual registration of all organic producers, handlers, and processors, regardless of

their annual sales. Producers report acreage and total sales, expected or actual, for each

crop they grow organically. Data for 1998 to 2016 have been summarized to the state-crop

level in previous studies (Klonsky and Richter, 2005b; klonsky0005statistical; Klonsky

and Richter, 2011b; Klonsky and Healy, 2013b; Wei et al., 2020a).

USDA certification and organic survey data: The USDA’s Economic Research

Service (ERS) collected acreage data for seven crops at the state level from USDA-accredited

state and private organic certifiers between 2000 and 2011 (ERS, 2011). However, the data

only cover seven crops/crop groups and certified organic growers (growers with less than

$ 5,000 annual organic sales are exempted from certification). Meanwhile, USDA’s Na-

tional Agricultural Statistics Service (NASS) conducted five organic surveys between 1995

and 2017, which gathered organic crop acreage at the state level. However, responses to

those surveys were voluntary and the average response rate for California was 69% (NASS

USDA, 2010, NASS USDA, 2016b, NASS USDA, 2016a NASS USDA, 2017). Therefore,

we used the NASS survey data only when the USDA ERS data series were not available

to construct the crop acreage data series.

California Strawberry Commission (CSC) survey data. For strawberries, the

CSC collects organic data through its annual survey (CSC, 2021). The CSC data provide

other information in addition to acreage and total sales, such as strawberry varieties and

harvest timing. The response rate for this survey is unknown, which limits the understand-

ing of its data quality.

All three of these data sources were aggregated by crop (for the limited number
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of crops they include) or county, and individual field-level data are not available publicly.

This limitation underscores the value of the PUR database and my method for providing

unique information regarding organic crop production in California over space and time.

2.2.4 Assessing the Environmental Impacts of Pesticide Use

For pesticide applications on the identified organic fields in the PUR database, the

PURE index was used to assess the potential environmental impacts for five environmental

dimensions: surface water, groundwater, soil, air, and pollinator (Zhan & Zhang, 2012).

The PURE index is calculated for five different environmental dimensions: surface water,

groundwater, soil, air, and pollinators. For dimensions other than air, index values are

calculated based on predicted environmental concentrations and standard toxicity values

for relevant organisms. The algorithm used to calculate the predicted environmental con-

centrations includes the site-specific environmental conditions (e.g., soil properties and

meteorological conditions), which is a major advantage over other indices for assessing

the environmental impacts of pesticide use, such as the Environmental Impact Quotient

(Kovach et al., 1992). The predicted environmental concentrations have been proven to

align with monitoring data in a previous study (Zhan & Zhang, 2012). The index value

for air is calculated using the predicted volatile organic compound (VOC) emissions of

each pesticide product. Individual index values are normalized to range from 0 (negligible

impact) to 100 (highest impact).

The PURE index values are calculated for each AI in each pesticide application

for each field. These disaggregated index values are then summed at the field level to
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provide a general index value assessment for each field. To evaluate the overall impact for

each crop, an acreage-weighted average across all relevant fields can be determined. This

aggregation can be taken one step further, across all AIs, to show the potential impact for

all pesticide use using the same aggregation process for organic and conventional fields.

2.2.5 Consolidation of Organic Cropland and the Pesticide Use

The consolidation of cropland into larger operations has been a persistent phe-

nomenon in conventional agriculture since the 1930s (Gardner, 2009, Hart et al., 2003,

MacDonald et al., 2018). Changes in farm size, at least measured in acreage, may cre-

ate environmental concerns due to the differing production practices in larger and smaller

operations. In this essay, consolidation is measured by the changes in the percentages

of organic cropland operated by growers in each size class, similar to MacDonald et al.

(2018). Acreage is endogenous and driven by several factors that also affect organic choice

and pesticide use. Therefore, the relationship found in this essay is far from causality.

The correlation between farm acreage and pesticide use is identified using the fol-

lowing regression model with the grower, year, and crop fixed effects:

yijt = β0 + β1Acreageg[i]t + β2Expg[i]t + λg[i] + θt[i] + φc[i] + eit (2.1)

where yijt is the total pesticide used, the number of applications, and the applica-

tion rate of AI/AI group j in field i at year t. The variable of focus is Acreageg[i]t, which

represents the total organic acreage, measured in units of 1,000 acres, operated by grower
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g who manages field i at year t. The years of farming observed in the PUR database for

grower g is Expg[i]t. There are three fixed effects in this model: grower fixed effect λg[i],

year fixed effect θt[i], and crop fixed effect φc[i]. The application rate is defined as:

App_rateijt =
Total_AI_Usedijt

Total_Acreage_Treatedijt
(2.2)

where Total_AI_Usedijt is the pounds used of AI/AI group j at field i in year t and

Total_Acreage_Treatedijt is the sum of treated acreage of each AI/AI group j for field

i at year t.

The effects of farm acreage on the environmental impacts is identified using the

following regression model:

yit = β0 + β1Acreageg[i]t + β2Expg[i]t + λg[i] + θt[i] + φc[i] + eit (2.3)

where yit is one of the PURE index values in field i at year t.

Including the fixed effects and the farming experience variable help to mitigate the

bias caused by the existence of unobserved factors (and therefore omitted variables) that

influence the outcomes of interest. For example, growers with more farming experience

may be more likely to operate larger farms and use less pesticide on a per acre basis at

the same time. If the experience variable is omitted from the regression, the estimation

of β1 will be biased by capturing the effects that are not within my research interest. The

grower, crop, and year fixed effects serve the same purpose of helping to mitigate the
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omitted variables bias. Equation 1 and 2 are used in the aggregate analysis as well as

crop-specific studies.

2.3 Results and Discussion

This section presents data on the organic fields identified from the PUR database

along with acreage summary for the top organic crops. The comparisons of organic

acreages reported in different data sources are made to examine the validity of my ap-

proach. The pesticide use patterns are summarized for organic crop production and its

environmental impacts are assessed using the PURE index. Finally, the trend of crop-

land consolidation is presented and the effect of consolidation on pesticide use and the

environmental impacts are quantified.

2.3.1 Organic Fields Identified in the PUR Database

Figure 2.1 maps organic fields identified from the PUR database for all crops.

Each pixel represents a section with any organic acreage. They are color-coded based

on the number of organic acres in that section. Organic fields were more widespread in

2017 (Figure 2B) than in 1995 (Figure 2A). The number of sections with organic cropland

increased from 1,451 to 3,008. Also, there was a pronounced shift toward more organic

acreage within sections. By definition, each section contains 640 acres of cropland at a

maximum. In 1995, only 5% of sections had more than 100 acres of organic cropland,

which increased to 18% in 2017. In particular, substantial growth was observed in Mon-

terey, Fresno, and Imperial counties (outlined in red). Monterey County has the most or-
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ganic acreage and the greatest number of sections with organic fields, increasing from 54

sections in 1995 to 202 sections in 2017. The top five organic crops in Monterey (leaf let-

tuce, spinach, broccoli, strawberry, and celery) accounted for 73% of total organic acreage

in 2017. As the leading county, Monterey had 47% of the state’s organic lettuce and 61%

of California’s organic strawberry acreage in 2017. Details on total organic acreage, aver-

age farm size, and number of organic farms for each county are available in the appendix.

Figure 2.1: Spatial Distribution and Acreage of Organic Fields Identified Using the PUR
Database (A: 1995 and B: 2017)

2.3.2 Organic Crop Acreage in the PUR Database

Table 2.1 shows organic acreage for the top 10 crops (ranked by organic acreage

in 2015) during the 23-year period from 1995 to 2017 and the total crop acreage for both

conventional and organic production in 2015 . Eight of the ten crops are fruits and vegeta-

bles. The remaining two are rice and almonds. Overall, the total organic acreage of these

crops grew from 52,223 acres in 1995 to 176,657 acres in 2015—an increase of more than
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threefold. The first two columns show that organic acreage remained relatively stable in

the five years before the NOP was established in 2001. Acreages of most of these crops

grew dramatically in the subsequent years.

Table 2.1: Organic Acreage for Top 10 Crops in the PUR Databse: 1995-2015

Crop
Organic acreage by year

Total Organic
acreage1 share

1995 2000 2005 2010 2015 2015 2015
Carrots 1,773 3,352 3,842 8,697 22,492 63,000 36%
Grapes, wine 12,212 13,048 18,368 18,301 18,092 560,000 3%
Lettuce, leaf 384 2,633 8,609 9,579 15,368 38,500 40%
Grapes, 9,798 9,492 15,233 17,866 15,345 112,000 14%
table & raisin
Tomatoes, 5,639 4,645 6,324 6,835 11,400 296,000 4%
processing
Spinach 61 708 2,336 4,580 11,016 26,700 41%
Rice 1,420 4,852 4,958 6,818 10,457 421,000 2%
Almonds 1552 2,072 2,170 5,352 8,769 890,000 1%
Broccoli 375 1,754 2,528 2,988 7,563 115,000 7%
Tomatoes, fresh 419 1,724 435 1,388 5,080 28,600 18%
Other crops 34,034 42,916 45,523 50,232 79,500
Total 67,667 87,196 110,326 132,636 205,082

1Total acreage includes all acreage defined as either organic or conventional.

Total acreage can be less informative than the acreage share of organic production

if one tries to infer the importance of organic production for various crops. The shares of

organic acreage relative to total acreage, listed in the last column of Table 2.1, show a wide

variation across crops. For wine grapes, processing tomatoes, rice, and almonds organic

acreage accounted for less than 5% of total crop acreage, which aligns with the average

value of 3.4% of cropland in California that is certified organic (NASS USDA, 2016a).

Meanwhile, fresh fruits and vegetables have a much higher share of organic acreage. For
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carrots, leaf lettuce, and spinach, 36%, 40%, and 41% of acreage respectively was devoted

to organic production (Table 2.1). Among crops not shown in Table 2.1, kale, blackberries,

and blueberries also have large organic shares, where organic production accounted for

55%, 36%, and 25% of their total acreage, respectively, in 2015. This phenomenon can

be explained by the economic motivations for organic growers. More acreage will be

cultivated as organic if the price premium for organic products is substantial compared to

the increase in costs, and fresh produce, such as salad mixes, has a higher organic price

premium than other products (Carlson & Jaenicke, 2016).

2.3.3 Organic Acreage Comparisons

Measures of State-specific total organic acreage from different data sources are

compared for all seven crops/crop groups available in the USDA organic certification and

survey data (ERS, 2011) plus strawberries from the CSC survey data (CSC, 2021). Among

these eight crops/crop groups, four of them are annual and the others are perennial crops.

Their organic acreage is plotted in Figure 2.2 and Figure 2.3 below.

As mentioned previously, then data sources have different reporting requirements

and discrepancies can be caused by a variety of reasons that apply to all crops. In the

CDFA registration data, new organic growers report their expected acreage for the next

year. If growers decide not to engage in that expected organic production, their registration

records remain in the system, which could produce an inaccurate inflation in acreage data,

especially for crops that went through a rapid growth of organic production. Growers with

less than $5,000 annual organic sales are required to register their production with CDFA
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Source: PUR Database, CDFA Registration, USDA Organic Survey

Figure 2.2: Organic Acreage from Different Data Sources for Selected Crops (A: Carrots,
B: Lettuce, C: Strawberries, and D: Tomatoes): 1995 - 2015
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but do not have to apply for organic certification. So their acreage might not be counted in

USDA data. Both USDA and CDFA data relies on a set of well-defined organic standards

and restrictive regulations, which did not exist before 2001.

For perennial crops, new registrations with CDFA or new certifications with USDA

must include the documentation of orchards before they are fully established (i.e., before

pesticides would be used). Therefore, we observe new orchards and vineyards in the

USDA and CDFA data before they enter the PUR database. If growers adopt the organic

pest management program but do not market their products as organic, their acreage is

only covered in the PUR database, not the others.

Source: PUR Database, CDFA Registration, USDA Organic Survey

Figure 2.3: Organic Acreage from Different Data Sources Selected Crops (A: Apples, B:
Citrus, C: Grapes, and D: Tree Nuts): 1995 - 2015
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Meanwhile, discrepancies in acreage are caused by crop specific reasons. For let-

tuce (Figure 2.2B), USDA has consistently reported higher acreage values since 2004. In

2016, the lettuce acreage from the USDA organic survey is more than double the acreage

from the CDFA registration data (NASS USDA, 2017). One reason could be potential

double or multiple cropping of lettuce in one calendar year. When growers harvested let-

tuce multiple times from the same field, USDA reported the sum of acres for each harvest

while CDFA asked for the size of the field. My method accounts for this phenomenon by

counting days between the first and last pesticide applications. Normally, both leaf and

head lettuce require at most 130 days from planting to harvest in California (Smith et al.,

2011, Turini et al., 2011). So if two pesticide applications occur more than 130 days apart

for the same field, we assume that the lettuce was harvested twice and the acreage would

be doubled. After this adjustment, the PUR database still falls short of the acreage docu-

mented in the USDA dataset but is in-between the other two sources since 2003. Before

2003, CDFA had more acreage than the other data series because the crop category "let-

tuce, salad mix", which contains arugula, red/green mustard, and other crops (which are

listed separately in the PUR database and the USDA data), used to be reported as lettuce.

For strawberries (Figure 2.2C), the CSC data always show somewhat less acreage

because their data are derived from surveys (rather than required reporting) and the sur-

vey response rate is not reported. For apples (Figure 2.3A), the organic acreage is small

compared other perennial crops, which amplifies the potential measurement errors.

All types of grapes (table, wine, and raisins), are combined in Figure 2.3C. The

PUR database reported more organic acreage consistently. Abraben et al. (2017) showed
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that organic labeling generates a meaningful price premium only for low-quality wine,

while the price of high-quality wine is actually reduced by consumers’ perception of the

organic label. This marketing issue creates an incentive for growers to intentionally avoid

certifying their organic production in higher-end wine grape production. Therefore, we

observe more grape acreage following the organic farming practices than certifying as

organic.

For tree nuts (almond, chestnut, pecan, pistachio, and walnut), the PUR database

reported less organic acreage than the USDA and CDFA sources with a narrowing gap in

recent years (Figure 2.3D). Tree nut acreage has gone through a tremendous growth phase

in California during the past two decades, with almond acreage increasing from 595,000 in

2000 to 1,110,000 in 2015, the period when Figure 1D indicates that the PUR database is

missing large portions of organic acreage (CDFA, 2000, CDFA, 2015). Normally pesticide

applications are not required for the first two years in a nut orchard (Duncan et al., 2019,

Brar et al., 2015, Grant et al., 2017), which makes the PUR database less reliable for

capturing new organic tree nut acreage.

While organic fields without any pesticide applications in a given year are missing

from the PUR database, this appears to be only a minor limitation because organic acreage

from the PUR database is not consistently smaller than that from the other two sources

for all crops. This minor limitation is compensated by the major advantages of the PUR

database, i.e., its fine spatial scale and comprehensiveness in terms of all crops, years and

counties being included.
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2.3.4 Pesticides Used in California’s Organic Fields

Due to the availability of information on the specific pesticides used, we are able to

determine pesticide use patterns in organic agriculture in California. As discussed earlier,

the lists from the Organic Materials Review Institute (OMRI) and the Washington State

Department of Agriculture (WSDA) yielded 1,027 pesticide products and 216 AIs regis-

tered for use in organic production in California. Combined with entries from the National

List, we are able to construct a list of 496 prohibited and 271 allowed AI substances for

organic agriculture.

From 1995 to 2015, a total of 1,428 distinct DPR-registered products were iden-

tified as allowed for use in organic agriculture. This list includes 550 insecticides, 454

fungicides, 35 herbicides, and 563 other minor pesticide types, which collectively repre-

sent a total of 272 different manufacturers.

The top 15 AI/AI groups, ranked by acres treated in 2015, and their historical use

from 1995 to 2015 are listed in Table 2.2. This Table reports “Acreage treated”, which

is different from actual field area, because a single plot of land is counted multiple times

when pesticides within the same AI/AI group were applied multiple times on the same

field.

Sulfur has been recognized as a soft chemical and it is the most widely-applied

single AI in organic fields. Sulfur is an important plant nutrient, fungicide, and acaricide in

organic agriculture (Paulsen, 2005). In 1995, organic growers treated 272,676 acres of land

with pesticides and about 50% of them (137,266 acres) were treated with sulfur products.
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Table 2.2: Top 15 Active Ingredient or Ingredient Groups Applied in Organic Fields

AI (group)
Acreage treated

1995 2000 2005 2010 2015
Microbials 14,890 35,160 84,819 173,246 351,671
Sulfur 137,266 157,300 248,312 276,767 327,563
Copper, fixed 30,515 31,990 56,186 72,070 163,640
Spinosad 0 5,665 39,856 66,550 154,598
Azadirachtin 456 11,580 22,467 30,949 109,546
Pyrethrins 83 263 18,586 34,882 105,775
Mineral oil 522 816 3,674 21,016 55,142
Neem oil, clarified 0 5,283 20,457 24,918 47,378
Reynoutria sachalinensis 0 0 0 16,025 43,548
Gibberellins 4,890 5,906 11,643 16,430 23,897
Potash soap 1,905 4,913 758 4,818 19,889
Copper sulfate 10,093 12,176 8,452 12,397 19,159
Potassium bicarbonate 0 2,321 12,301 11,490 14,498
Hydrogen peroxide 0 0 7 3,430 14,171
Neem oil 0 0 0 0 13,119
Total 272,676 344,156 561,923 817,593 1,545,877

However, in 2015, sulfur was no longer the most widely-applied AI based on acreage

treated, and it only accounted for 21% of acreage treated for all crops (327,563 out of

1,545,877). The changes in sulfur use were mainly driven by grape production. Powdery

mildews in grapes and pome fruits are often treated with sulfur in California (Jepsen et al.,

2007). Together organic table, raisin, and wine grape growers treated 109,736 acres with

sulfur products in 1995 and 226,317 acres in 2015, which accounted for 80% and 69% of

total acres treated with sulfur, respectively.

In addition, during the study period the application rate of sulfur in organic grape

fields decreased from over 15 lb/acre in 1995 to less than 9 lb/acre in 2015. One poten-

tial explanation is that growers may have reduced their sulfur application rate to avoid
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outbreaks of spider mites. Sulfur products are known to decimate predatory mites, as re-

ported in field studies for hop yards and vineyards, which can lead to secondary spider

mite outbreaks (Zhang et al., 2013, Prischmann et al., 2005, Gent et al., 2009). In addi-

tion, sulfur applications control powdery mildew, a food source for predatory mites, and

can therefore lead to increases in the spider mite population (Asalf et al., 2012, Poncet

et al., 2008). The rising usage of azadirachtin, clarified neem oil, and neem oil supports

this theory, as all three of these AIs are recommended in the IPM guidelines to control

spider mite in organic grape fields (Varela et al., 2019).

Two other AIs worth mentioning, spinosad and Reynoutria sachalinensis, show

how the progress of technology has shaped the pesticide portfolio for organic growers.

Spinosad was registered for use as a broad-spectrum insecticide by the US Environmental

Protection Agency (EPA) in 1997, and was first used in cotton to manage pyrethroid-

resistant caterpillars (Bret et al., 1997). It is also recommended for looper and leafminer

treatments, and it was quickly adopted by organic growers, becoming the third most heav-

ily used AI in organic fields in 2015. Reynoutria sachalinensis was first registered by

EPA as a fungicide for greenhouse and non-food crop treatments in 2000. This ingredient,

under the product name Regalia®, was first registered with OMRI for use in organic pro-

duction in 2009, after which it became widely used by organic growers to manage powdery

mildew. Changes in the pesticide portfolio will have consequences in the environmental

performance of organic agriculture, especially as the sector grows.
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Figure 2.4: PURE Index Values for Organic Agriculture: 1995 - 2015

2.3.5 PURE Index Values

The PURE index values for organic fields are plotted in Figure 2.4. The noticeable

increase in soil and air index values occurring in 1998 is due to a single application of

copper sulfate in a rice field with an application rate of 150 lb/acre 1, which is ten times

larger than the average application rate, so it is clearly a data anomaly.

The PURE index for air increased steadily from 1995 to 2015, at an average an-

nual growth rate of 4%. Several factors probably contributed, related to overall application

rates and the changes in the organic AI portfolio over the years. The PURE index for air is

calculated by multiplying the AI application rate by its VOC emission potential, which is

1The average application rate is 12 lb/acre in 1997 and 13 lb/acre in 1999.
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a physicochemical property related to its tendency to evaporate or sublimate into the sur-

rounding air. During the study period, the average application rate across all pesticides for

organic growers decreased from 9.1 lb/acre in 1995 to 2.9 lb/acre in 2015 in contrast to the

increase in the value of the PURE air index. However, the pesticide portfolio changed sig-

nificantly as organic growers diversified their pesticide AI options and relied less on sulfur

products over time. Because dusting sulfur products have zero VOC emission, the increas-

ing applications of virtually any other AIs would have contributed to a steady increase, as

observed in the PURE index value for air.

However, the results in Figure 2.4 should be interpreted with caution. The PURE

index values are calculated based on site-specific information, such as the pesticide appli-

cation rate, soil characteristics, and distances to groundwater and surface water. Therefore,

aggregated results may not apply to individual fields. For example, in fields with sandy

soil, instead of remaining in the soil, pesticides are more likely to move to groundwater

due to irrigation or rainfall, which would reduce the PURE index value for the soil and

increase the index value for groundwater. Growers can achieve a better understanding of

their own usage/impact considerations by combining aggregate results with site-specific

information.

2.3.6 Consolidation of Organic Cropland

Management of organic cropland has shifted toward larger farm operations during

the study period. The acreage share of each size class remained relatively stable until 2001

when NOP introduced a national standard for organic crop production and established the
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foundation of the organic price premium nation-wide by protecting the integrity of the

“organic” distinction (Figure 2.5). However, in later years the share of organic acreage

operated by farms in larger acreage classes rose. For example, in 2015, 56% of organic

cropland was operated by growers with at least 500 acres of organic cropland, up from

15% in 1995. At the other end of the spectrum, growers with 10-50 acres accounted for

18% of organic cropland in 1995, which dropped to 8% in 2015.

Figure 2.5: Shifts in Organic Cropland Percentages among Acreage Size Classes: 1995 -
2015

As mentioned previously, the observation that organic farms are getting larger

could be driven by the change in crop mix instead of the consolidation process. To ex-

amine that, we plot the acreage share of each crop category in Figure 2.6. The acreage

share of vegetables increased tremendously, from 30% in 1995 to 50% in 2015, while the
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acreage of grapes and field crops fell. Given that vegetables, such as lettuce and spinach,

are produced at a smaller acreage scale than field crops, such as rice, the consolidation

process in organic agriculture is profound as shown in the PUR database.

Figure 2.6: Shifts in Organic Cropland Percentages among Crop Categories: 1995 - 2015

Median crop acreage per grower is another common measure of farm size (Mac-

Donald et al., 2018). By definition, half of growers operate less cropland than the median

acreage value, while the other half operate more. Therefore, the median is a more mean-

ingful statistic than the average because it not as sensitive to changes at the extremes.

Acreages are not comparable across crops as the revenue per acre varies greatly. However,

for any given crop, the change of median acreage over time reveals cropland shifts. Table

2.3 shows the median crop acreage per grower for the top 10 organic crops in 2015.
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Table 2.3: Median Crop Acreage Per Grower for the Top 10 Organic Crops: 1995-2015

Crop
Year

1995 2000 2005 2010 2015
Carrot 38 69 80 50 33
Grape, wine 10 10 12 12 10
Lettuce, leaf 9 17 30 31 49
Grape, table & raisin 18 20 30 33 30
Tomato, processing 83 78 168 100 77
Spinach 4 10 23 49 38
Rice 149 78 84 113 93
Almond 28 40 37 62 43
Broccoli 6 20 21 24 18
Tomato, fresh 2 9 3 2 4
All crops 15 17 16 16 17

Although larger farms continued to add cropland during the study period overall,

such consolidation is not a universal pattern for all crops. Table 2.3 shows that by 2015,

three out of ten crops actually had a decrease in median acreage per grower compared to

1995. Spinach growers had the most growth in median acreage, from 4 to 38 acres. Leaf

lettuce production also consolidated with the median farm size increasing by 40 acres. The

last row of Table 2.3 reports the median of total organic acreage per farm.

For crops with a lower organic price premium, growers lack the incentive to ex-

pand production. Therefore, it is not surprising to see that median acreage decreased for

the processed and staple crops in Table 2.3, particularly wine grape, rice, and process-

ing tomato. Carrot has gone through the most significant growth of total organic acreage

over the past two decades (Table 2.1). However, as small farms have continued to join in

the production of organic carrot, the consolidation process (proportionally) seems to have

lagged behind other crops.
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2.3.7 Correlation between Consolidation and Pesticide Usage in Or-

ganic Fields

The effect of organic cropland consolidation on pesticide use is identified based on

equation 1. Table 2.4 shows estimates for the number of pesticide applications and the use

of three major AIs/AI groups.
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Table 2.4: Correlation between Organic Acreage and Total Lbs of AI used, Number of Applications, and Application Rates of the Three
Top AI/AI Groups in Organic Crop Production

Variable
Microbials Sulfur Copper, fixed

Total AI App App_rate Total AI App App_rate Total AI App App_rate
Acreage 0.01 -0.17*** 0.02*** 1.69*** 0.13*** 0.29*** 0.14*** 0.14*** 0.20

(0.07) (0.04) (0.01) (0.24) (0.04) (0.07) (0.04) (0.04) (0.24)
Exp 0.03*** 0.01 0.00 -0.06 -0.01 -0.02 -0.01 -0.01 0.15

(0.01) (0.03) (0.00) (0.08) (0.01) (0.01) (0.02) (0.01) (0.20)
β0 1.36 2.63*** 0.18*** 25.78*** 3.96*** 110.88 3.77*** 2.55*** 2.30***

(0.89) (0.31) (0.04) (3.48) (0.13) (74.24) (1.01) (0.22) (0.60)
N 51,206 51,206 51,206 28,322 28,322 28,322 24,217 24,217 24,217
R2 0.24 0.32 0.28 0.65 0.61 0.50 0.42 0.40 0.13

Robust standard errors are reported in parentheses. ***p<0.01; **p<0.05; *p<0.1. Year, crop, and grower fixed effect are included in all models.
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Microbials are the most widely used pesticide category in organic agriculture (Ta-

ble 2.2). The number of applications per field and the application rate are significantly

correlated with organic acreage. Growers with more organic acreage applied microbials

less frequently but used more products per acre in each application. Overall, the use of

microbials did not vary across growers in different organic acreage size classes. The use

of spinosad, azadirachtin, and pyrethrins is similar to that of microbials. Farms’ organic

acreage has a significant impact on the number of applications and application rate but in

different directions, so the combined effect is not significant. For sulfur and fixed copper,

the application rate is not correlated with my variable of interest. However, an increase in

the organic acreage leads to an increase in the number of applications for those two AI/AI

groups. Therefore, more sulfur and fixed copper products are used on farms with more

organic acreage.

Sulfur serves as a protectant fungicide for powdery mildew. Fixed coppers are of-

ten used to treat plant diseases caused by the genus Xanthomonas such as bacterial leaf

spot and leaf blight. Therefore, both of these AI/AI groups must be applied preventatively

and regularly to be effective (Schwartz and Otto, 1998, Hanna et al., 1997). The observa-

tion that growers with more organic acreage used sulfur and fixed copper more frequently

is one of the theoretical predictions in Zilberman et al. (1991) where growers use pesti-

cides as a tool to mitigate uncertainty in production. Changes in sulfur and fixed copper

use have environmental consequences because sulfur and fixed copper products are less

toxic to earthworms and are more toxic to aquatic organisms than spinosad and pyrethrins.

Using the PURE index values as the dependent variable in equation 1, we can identify the

impact on the environment.
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Table 2.5: Correlation between Organic Acreage and the PURE Index Value
Variable Surface water Groundwater Soil Air Pollinator
Acreage 0.17*** 0.00** -1.51*** -1.85*** 0.01**

(0.02) (0.00) (0.21) (0.20) (0.00)
Exp -0.07 -0.00 -0.66*** -1.46*** 0.01

(0.04) (0.00) (0.11) (0.11) (0.01)
β0 3.34*** -0.01 24.11*** 48.96*** 0.30***

(0.39) (0.04) (0.96) (0.92) (0.07)
N 127,735 127,735 127,735 127,735 127,735
R2 0.47 0.67 0.53 0.53 0.45

Robust standard errors are reported in parentheses. ***p<0.01; **p<0.05; *p<0.1. Year,
crop, and grower fixed effect are included in all models.

The result of an increase in acreage on PURE index values is shown in Table 2.5.

For surface water, the average index value is 4.35 and growers with more organic acreage

have a greater impact. The major AIs/AI groups listed in Table 2.4 have varying toxicities

to aquatic organisms. The toxicity is commonly measured by the half maximal effective

concentration (EC50), which is the dissolved concentration (mg/L) needed for a response

halfway between the baseline and maximum lethality. A larger EC50 is associated with

a less toxic chemical. For algae, the EC50 values are much larger for spinosad (6.1) and

pyrethrins (320) than copper hydroxide (0.01), which is the most heavily applied AI in

the fixed copper group (PPDB, 2020). The EC50 toxicity value of sulfur is 0.06 and it is

known to be an artifact due to the fact that sulfur is almost completely insoluble in water.

So the impact of sulfur use on surface water is minimal.

The PURE soil index value is estimated based specifically on the toxicity for earth-

worms, which is measured by the dose that is lethal to 50% of the test population (LC50).

Similar to theEC50, the four AIs/AI groups impacted by the organic acreage per farm have

76



different levels of toxicity. Sulfur and Copper hydroxide are less toxic to earthworms, with

LC50 values of 2,000 and 677, respectively; spinosad and pyrethrins are moderately toxic

to earthworm, with LC50 values of 458 and 24, respectively (PPDB, 2020). So larger

operations have less impact on soil by using sulfur and copper products more frequently.

The PURE index value for air is determined by the level of VOC emissions. Sul-

fur products have zero VOC emissions as they do not sublimate or evaporate at ambient

temperatures. The use of sulfur products reduces VOC emissions, which in turn leads to

a decrease in the PURE air index value. For groundwater, the average index value is al-

most zero and there is not enough variation across fields to identify a significant impact

of the acreage or experience variables. The impact on organic acreage on pollinators is

significant but with a smaller magnitude for a similar reason.

Table 2.6: Correlation between Organic Acreage and Total Lbs of AI Used, Number of
Applications, and Application Rates of the Three Top AI/AI Groups in Organic Vegetable
Production

Variable
Total microbials Total sulfur Total copper, fixed

Coef. z-test Coef. z-test Coef. z-test
Acreage 0.00 0.10 1.47*** 0.56 0.08** 1.20

(0.07) (0.31) (0.03)
Exp 0.02 0.71 -0.05 -0.05 -0.15*** 3.13

0.01 (0.19) (0.04)
β0 0.90*** 0.49 18.44 0.63 5.11*** -0.85

(0.29) (11.08) (1.22)
N 38,133 7,720 11,034
R2 0.18 0.60 0.34

Robust standard errors are reported in parentheses. ***p<0.01; **p<0.05; *p<0.1. Year, crop, and grower
fixed effect are included in all models.

As shown in the previous section, the crop composition has changed for organic

agriculture in the past two decades. In particular, The acreage share of vegetables in-

creased. Therefore, the same regression is estimated again to test whether more sulfur and
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copper pesticides were used in vegetable fields as the farm acreage increased. The results

in Table 2.6 show that farm acreage is positively correlated with sulfur and copper pesti-

cides usage, which is not different from the general pattern. In the sub-sample of vegetable

fields, the coefficients of acreage are also not different from the those in the full sample.

Therefore, the rise in the acreage share of vegetable production does not contribute to the

change in pesticide use.

2.4 Conclusion

This essay identified organic fields from the PUR database using historical pesti-

cide use records, analyzed pesticide use and associated environmental impacts in organic

crop production, established the consolidation of organic cropland, and quantified the ef-

fect of acreage expansion on pesticide use and its environmental impacts.

Our approach provides the basis for future studies to use the PUR database for

the analysis of many different aspects of organic agriculture in California. From a spatial

perspective, organic fields in California have expanded into new production regions over

the past two decades, and the growth of organic acreage for fresh fruits and vegetables has

been profound. For example, organic acreage for kale exceeded conventional acreage in

2015.

Organic growers’ pesticide portfolio has changed dramatically during the study pe-

riod. New AIs, such as spinosad and azadirachtin, were quickly adopted once approved

for organic use and the shares of usage for sulfur and fixed copper, which were widely
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applied in earlier years, fell accordingly. This essay applied the PURE index, based on

pesticide use, to assess the environmental impacts of organic crop production. We showed

that organic agriculture has greater impacts on air and soil than on surface water, ground-

water, and pollinators. There have been upward trends in the index values, particularly for

the air and soil, which indicates that the changes which have occurred in the portfolio have

negative environmental consequences, and previous assessments might have been too op-

timistic in generalizing the environmental performance of organic agriculture as the sector

has grown dramatically.

Using the PUR database, we found that large farm operations increased their share

of total organic acreage, especially after the launch of the NOP in 2001. The NOP was

designed to convey a reliable signal to consumers that distinguishes organic produce from

conventional. Consumers are willing to pay more for organic products, so producers have

more incentive to expand their organic production. However, not all crops have followed

the consolidation trend. The number of organic farms increased as well as the organic

acreage. The consolidation happens when the number of farms increased slower than the

acreage.

The process of cropland consolidation resulted in shifts in the pesticide portfo-

lio, which can alter the environmental impact of organic agriculture. Namely, growers

with larger organic farm size applied more sulfur and fixed copper and less spinosad and

pyrethrins per acre. These four major AIs/AI groups have different ecotoxicological prop-

erties. Compared to spinosad and pyrethrins, sulfur and copper hydroxide are less toxic

to earthworms and copper hydroxide is more toxic to aquatic organisms. Therefore, the
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pesticide practices of larger organic operations have greater impacts on surface water and

less on soil. The impact on air, measured by VOC emissions, was smaller for larger oper-

ations because the sulfur products they use heavily have zero VOC emissions. Changes in

the crop composition are observed in organic agriculture in California. The acreage share

of vegetables increased while the share of grapes and field crops decreased. However, the

shift in crop mix does not alter the result that the consolidation affects pesticide use and

environmental impacts because this pattern does not change significantly across crops.

Primarily due to the lack of field-level data, previous studies focused less on the

variation within the organic agriculture sector. Instead, the average performance across

numerous organic growers was compared with other farming systems to illustrate the ben-

efit from organic farming practices. The recent trend of cropland consolidation into larger

operations has raised the question of how large organic farms behave differently from

small ones, and what impacts those differences might have. The results partially answer

this question in terms of pesticide use and show that as organic cropland has increased,

growers have changed their pesticide portfolios and associated environmental impacts. As

observed in conventional agriculture (MacDonald et al., 2018), the consolidation of crop-

land is almost inevitable. Therefore, new policy tools might be necessary to address the

usage of pesticides in organic agriculture. The change in farm size could also alter prac-

tices other than pest management, such as fertilizer use. Future studies are needed to de-

liver a comprehensive analysis on the effect of consolidation on the overall environmental

performance of organic agriculture.
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Essay 3

A Conceptual Framework of the Farm

Size Distribution and Specialization in

U.S. Agriculture

3.1 Introduction

Why do farms differ in size? Why are farms becoming more specialized? The con-

solidation of acreage and production has long characterized U.S agriculture (MacDonald

et al., 2018). Meanwhile the number of very small farms has continued to grow over the

last thirty years, in part because the definition of a farm has not been adjusted for infla-
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tion.1 Another trend documented by MacDonald et al. (2018) is that as production shifts

to large farms, specialization also occurs. In 1996, 37% of the value of corn production

came from farms that grew fewer than 3 commodities.2 This share increased to 57% by

2015. Similar patterns exist for other field crops as well as livestock. For example, 31%

of the value of hog production occurred on farms without any crop harvested in 2015, up

from 14% in 1996.

Farm size and specialization interact. On one hand, more specialized farms need

less acreage to take advantage of economies of scale. On the other hand, large farms can

purchase specialized equipment or acquire specialized knowledge, which decreases the

cost of producing a small number of crops. In this essay, I will focus only on crop farms

and argue that changes in either size or specialization can be explained by changes in the

distribution of crop-based knowledge across farmers, which I will call the knowledge dis-

tribution from now on. Recent trends in size and specialization can be explained by a

model with heterogeneous farm operators whose knowledge evolves over time.3 Farm op-

erators learn from others, and expand acreage of one crop, ceteris paribus, as their knowl-

edge increases for that crop. The knowledge they learn is specialized to a certain crop

production process and it cannot be perfectly transferred to produce other crops. As farm-

ers’ specialized knowledge accumulates, the opportunity cost of planting crops that they

1In the U.S., a farm is defined as "any place that sells, or normally could sell, at least $1,000 of agricul-
tural commodities".

2There are 21 crop commodity categories in the Agricultural Resource Management Survey.
3In the model, I assume all farms have a single operator. Although the 2017 Census shows that about

54% of farms have more than one operator and different operators may have different expertise, as long as
production decisions are made based on the knowledge of all operators, farms with multiple operators can
be modeled as farms managed by a single operator with a knowledge that is a composite of the knowledge
of all operators.
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know less about increases, which results in specialization in a few crops for which they

have the largest knowledge stock when everything else is equal.

In this essay, I present a multi-good model to study changes in farm size and spe-

cialization. For crop farms, size can be measured by acreage, quantity of output, value

added, or revenue and in many other ways (Sumner, 2014). Although revenue is a widely

used measurement when a farm grows multiple crops, it is affected by other factors be-

side production decisions. Demand shocks and inflation could alter farm "size" without

farmers changing their practices. The same reasoning applies to quantity produced. Some

inputs, such as weather, are not determined by farmers, which makes quantities an inaccu-

rate measure of farmers’ decisions. The value of production per acre varies across crops

due to differences in cost and revenue across crops. When measuring size by total acreage,

farms that grow different crops are not directly comparable. Albeit imperfect, acreage is

the measurement of farm size in this essay.

In the model, acreage increases directly as knowledge accumulates. Farm operators

have crop-based knowledge, which may increase after meeting and learning from other

farmers. Knowledge and land are inputs in production, which makes land demand for

each crop a function of knowledge. The more knowledge farmers have about one crop,

the more acreage they will allocate to that crop. Total land supply is fixed but the acreage

of a specific crop varies based on the evolution of knowledge. To simplify the model, the

demand for goods is assumed to be exogenous. Equilibrium prices clear all commodity

markets and the land market, thus determining the farm size for each producer given his

knowledge level. In other words, the farm size distribution is a transformation of the
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underlying knowledge distribution, similar to the intuition in Lucas Jr (1978). Because the

total land supply is fixed, the growth of farm size is accomplished by farmers exiting the

crop sector. Although knowledge does not depreciate over time by assumption, knowledge

evolves for everyone, which means individuals need to keep learning in order to maintain

their current acreage.

This approach of modeling the evolution of knowledge is based on Lucas (2009)

where agents have opportunities to increase their knowledge by learning from others.

Learning comes from imitation. Agents meet randomly with others and copy their knowl-

edge if it is better. The meeting process is modeled as taking draws from the knowl-

edge distribution. The meeting and learning process are costless for agents, which means

whether agents learn or not in each period is not correlated with their production.4 There-

fore agents who currently have no production can still increase their knowledge and start

producing in the future. This implication of Lucas (2009) is consistent with observations

of U.S. agriculture that show people enter the agricultural sector. The Census of Agricul-

ture collects information about how long the principal operator has operated any farm. In

2017, beginning farmers, who are defined as principal operators with no more than ten

years of experience on any farm, operated 25% of total farms which accounted for 16% of

total farmland and 15% of total agricultural sales (USDA NASS, 2017).

The evidence of learning from other farmers is well documented in the economic

literature. Foster and Rosenzweig (1995) first separated learning by doing and learning

4One might be concerned about the assumption that learning is free. Lucas and Moll (2014) showed
that the equilibrium outcomes are not sensitive to the cost of learning. In their paper, agents allocate time
between production and meeting which makes learning costly.
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from others in agriculture. They found that farmers with experienced neighbors earn

higher profits. Using data on farmers’ communication network, Conley and Udry (2010)

showed the significance of social learning in the diffusion of agricultural technology. Other

studies have covered the role of learning in specific farming decisions in the U.S. (e.g.,

Alexander (2002); Kroma (2006); Schneider et al. (2009); Goodhue et al. (2010)).

Learning as modeled here only covers learning between farmers, which does not

necessarily require farmers to meet in person. As long as the knowledge acquired by one

farmer is generated by another farmer, the process can be modeled as meeting and learning

between farmers. To extend this point, both public and private agencies have facilitated

information diffusion among farmers in different ways. If the information they shared,

both online and in print, is based on findings in a farmer’s fields, learning from this piece

of information can be viewed as learning from that farmer. Examination of the knowledge

generated from other sources, such as extension agents or industry dealers, is left for future

work.

Previous endogenous growth analyses focused on a one-good economy in which

a composite good is produced and consumed (Melitz, 2003; Luttmer, 2007; Sampson,

2015). Therefore they cannot explain the trend of specialization observed in agriculture.

This essay contributes to the endogenous growth literature by modeling the evolution of

industry-based knowledge when there are multiple industries (crops). In agriculture, much

production and marketing knowledge is crop-based. Some crop-based knowledge, such as

the management of pests, can be applied to a large group of crops. Other knowledge,

such as the timing of harvest, refers to a single crop or a small number of crops. Special-
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ized knowledge required in farming can be very similar for plants with similar agronomic

characteristics. Later in the essay, I model the evolution of crop-based knowledge and its

application to other crops explicitly. New ideas generated from growing one crop benefit

farm operators in producing other crops as well. The more crops have in common, the

more benefit farmers obtain from applying knowledge across crops.

If knowledge evolves independently across crops, producers are less likely to mas-

ter the production of a large number of crops. For example, if learning about almond

production is independent of learning about strawberry production, the probability that

a farmer is knowledgeable about both is small. So, learning will lead to specialization.

Specialization can also be manifested as focusing on a subset of crops that are similar

in agronomic characteristics because farmers can apply knowledge across these crops.

Following the same reasoning, this model has implications for the number of farms. As-

suming there is a minimum acreage required for each crop to establish production, farmers

will exit production if their optimal land demand is smaller than the crop-specific thresh-

old. A faster learning process results in a larger variation in productivity because farmers

have a larger probability to increase their knowledge. If we consider the number of farms

that produce a specific crop, a larger variation in productivity means that there are more

farms exited from production due to lack of knowledge. If the demand of a crop is fixed

or increases more slowly than the evolution of knowledge, more farms will exit and the

number of farms will decrease.

The model and implications are presented in section 2. Numerical simulations

illustrating the effect of demand- and supply-side factors on the equilibrium path of farm
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structure are included in section 3 and section 4 concludes.

3.2 Model

Consider a closed economy including an initial set of I farm operators and J crops.

Time is discrete, infinite and indexed by t. Farm operators are endowed with stocks of

knowledge and land, both of which may change over time. Knowledge is crop-based and

land is homogeneous with a fixed total supply. Land cannot be purchased but the land

rental market is perfect.

3.2.1 Demand

The demand system is characterized by an exogenous expenditure on agricultural

commodities Yt, the elasticity of substitution ρ > 0, and the budget share aj > 0 for each

crop j. The demand function for crop j at time t is

Q̄d
jt =

ajp
−ρ
jt∑J

k=1 akp
1−ρ
kt

Yt (3.1)

where Q̄d
jt is the quantity demanded and pjt is the equilibrium price for crop j at time t. I

also assume the budget share of all crops sums to one:
∑J

j=1 aj = 1. The expenditure Yt is

assumed to grow at a fixed rate. The annual growth rate of U.S. food expenditure has been

between 1% to 3% since 1997, so a fixed growth rate is appropriate (Okrent et al., 2018).

The demand function is formed such that it can be rationalized by an utility function with

a constant elasticity of substitution equal to ρ.
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This setting deviates from the endogenous growth literature by assuming a pre-

determined total expenditure. However, it is convenience to use an exogenous demand

system to study the evolution of farm size and specialization in the U.S.

3.2.2 Production

Farmer i has land Lei and crop-based knowledge θij0 ≥ 0 at time 0 for each crop

j, which is independent across j. Following the notation in Lucas (2009), the distribu-

tion of knowledge θijt is represented by the cumulative density function Gj(x, t). All the

knowledge associated with crop j exists at t = 0 and there is no other source of knowledge

besides Gj(x, t), which is

Gj(x, t) = Pr{θijt ≤ x}.

Knowledge θijt and land Lijt produce crop j with no uncertainty. The production

function q(·) with Lijt and θijt as inputs is

q(θijt, Lijt) = f(Lijt)θijt

where f(·) is a function with f ′ > 0 and f ′′ < 0. The production function in this

model has land as its only input.

Knowledge is applicable across crops to an extent that varies based on crop pairs.

This connection is defined as the knowledge substitution matrix S which measures the

fraction of production knowledge that is common across pairs of crops. Within this matrix,
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element sjk,∈ [0, 1], is the multiplier if farm operators use knowledge θikt to produce crop

j. Land is homogeneous and equally productive for all crops. So, knowledge is the only

factor influencing productivity. The output of crop j from using Lijt and θikt is as follows:

q(θikt, Lijt) = f(Lijt)θiktsjk.

Assume matrix S is symmetric with diagonal elements equal to 1, then the quantity

produced Qijt can be expressed as the maximum of output using all knowledge stock.

Formally,

Qijt = f(Lijt)×
[

max
k=1...J

{θiktskj}
]

= f(Lijt)(θ
∗
ijt)

(3.2)

where θ∗ijt = maxk=1...J{θiktskj}, which represents the maximum knowledge available for

farmer i to produce crop j. Because each θijt follows the distribution with cumulative den-

sity function Gj(x, t), the distribution of θ∗ijt can be derived from the assumption that θijt

is distributed independently across j. The cumulative density function for the distribution

of θ∗ijt is

G∗j(x, t) = Pr{θ∗ijt ≤ x}

= ΠJ
k=1Gk(

x

skj
, t).

(3.3)
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By normalizing land rent to 1 and denoting relative price at time t as pjt for crop j,

we can define the profit function for farmer i as π(Lijt, θijt) =
∑J

j=1(pjtQijt−Lijt) +Lei .

Note that profits from each crop are additively separable, so any benefit from vertical

integration is not considered in this essay.5 Because land is the only input, the comple-

mentarity in terms of production cost across crops is also assumed away. With a known

price sequence {pjt}∞t=0, the producer’s problem can be solved in each period and the so-

lution provides the sequence of optimal land demand vector {L∗ijt}∞t=0. Each L∗ijt satisfies

the condition that f ′(L∗ijt) = 1
pjtθ∗ijt

.

3.2.3 Entry and Exit

The model enables farmers to enter and exit from the production of each crop.

A minimum amount of land Lminj is required to establish the production of j, similar

to Luttmer (2007) where any existing firm has to maintain a certain number of labor.6

The minimum knowledge required to operate Lminj is θminjt = 1
pjtf ′(Lminj )

. Price pjt is

an equilibrium outcome which reflects the knowledge of all farmers for all crops at time

t. Farmers do not have any constraint other than the knowledge requirement to produce

multiple crops. Therefore farmer i will (and must) enter if θ∗ijt > θminjt . There is no fixed

cost for entering and entry could happen in any t. After entry, farmer i decides to exit at

time t if θ∗ijt ≤ θminjt .

Even though an individual’s knowledge does not depreciate, farmer i still could

exit if θminjt grows faster than θ∗ijt. Recall that pjt is the crop price divided by the land rent.

5Specifically, livestock production and further processing are not included in this essay
6An alternative approach is to follow Jovanovic (1982) and set a positive profit threshold below which

farmers will exit.
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So the growth of θminjt comes from the decline in pjt which is caused by crop prices falling

and land rent rising over time. Exit is possible for every farmer because learning in each

period is independent across farmers. If farmer i does not learn anything about any crop

at time t, he will have the same knowledge level at time t + 1, which is θ∗ijt = θ∗ijt+1.

The equilibrium price of crop j will fall because other farmers increase their knowledge

level, which makes θminjt+1 > θminjt . If θ∗ijt+1 < θminjt+1, farmer i will not produce crop j.

If he continues to produce crop j at time t + 1, it is still possible for him to not learn

anything and θminjt+1 will rise again. If farmer i does not learn anything for multiple time

periods, eventually he will exit from producing crop j. But whether a farmer learns or

not is independent across time, which makes exiting less likely for farmers with higher

knowledge θ∗ijt.

The implication that θminjt will fall is consistent with Lucas Jr (1978), who showed

that the cut-off above which individuals will become entrepreneurs will always increase

as the wage increases. Unlike Luttmer (2007), exit is not irreversible. Farmers continue to

learn after exit from producing crop j and may re-enter if they gain enough knowledge to

meet the minimum threshold θminjt .

For each crop j, a proportion of farmers have θ∗ijt ≤ θminjt such that it is not optimal

for them to produce crop j even at the minimum scale. I will denote this proportion as βj ∈

[0, 1]. If knowledge evolves independently across crops, the proportion of farmers who

decide not to produce anything is
∏

j βj . For a finite number of crops, the proportion of

farms that have positive production of at least one crop converges to a constant 1−
∏

j βj .
7

7An extension from this essay is adding a non-agricultural sector to study how farming responds to
knowledge evolution outside agriculture.
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3.2.4 Evolution of Knowledge

The evolution of knowledge is modeled the same way as in Alvarez et al. (2008).

Farmers have opportunities to meet with other farmers and increase their knowledge, mod-

eled as a deterministic process with arrival rate αj for crop j, which I will call the learning

rate from now on. This approach is considered deterministic because farmers will meet

with others for certain. The interpretation of αj is that in an time interval (t, t + ∆), each

farmer will meet with αj∆ other farmers which is modeled as taking αj∆ draws from the

knowledge distribution. Although it is certain they will meet others, it is still uncertain

whether they will learn, which requires meeting with farmers who have a higher level of

knowledge.8 For example, if farmer i meets with farmer i′ at time t to discuss crop j

and θijt > θi′jt, farmer i does not learn from i′ and her knowledge θijt remains the same

after the meeting. An implication of this learning mechanism is that learning slows with

knowledge stock. Farmers with higher knowledge level are less likely to learn.

Because farmers only learn from people who know more than they do, for a specific

crop, the probability of farmer i holding the same knowledge of crop j after meetings

equals to the probability of meeting with αj∆ people who all know less than θijt, which

is Gj(θijt, t)
αj∆. This learning rule results in the following law of motion for knowledge

distribution across farmers, Gj(x, t):

Gj(x, t+ h) = Gj(x, t)×Gj(θijt, t)
αj∆.

8An alternative way of modeling mentioned in Alvarez et al. (2008) is that meeting with others is not
certain. Both approaches provide uncertainty at the individual level and a closed form solution at the ag-
gregate level. Here I choose the deterministic approach to simplify formulas for knowledge evolution and
application across crops.
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The evolution path of knowledge is determined by the initial distribution Gj(x, 0).

ln(Gj(x, t)) = ln(Gj(x, 0))eαjt (3.4)

Notice that ∂2Gj(x,t)

∂t2
> 0 for t > 1

αj
ln(− 1

ln(Gj(x,0))
). Because Gj(x, t) represents

the proportion of the population with knowledge less than x, the knowledge distribution

continues to move rightward at a decreasing rate. This model implication aligns with the

empirical findings in Alston et al. (2009), which showed that both global land and labor

productivity grew at a slower pace from 1990 to 2005 than from 1961 to 1990.

I assume the initial distribution of θij0 follows a Fréchet distribution with a min-

imum of zero, which is commonly used to model a productivity distribution (e.g., Jones,

2005 and Lucas, 2009), in order to stay in the same distribution family at each time t. The

support of the Fréchet distribution is from zero to positive infinity, ensuring that there is

not a maximum level of knowledge θ̄ where Gj(θ̄, t) = 1. This is equivalent to saying

that every farmer has the opportunity to learn at any time. From equation 3.4 we can see

that if the initial distribution is defined as θij0
d∼ Fréchet(µ, σ), then at time t the knowl-

edge distribution for crop j is θijt
d∼ Fréchet(µ, e

αjt

µ σ). Combined with equation 3.3, the

distribution of θ∗ijt is also a Fréchet distribution with parameters µ and
(∑

k e
αktsµkj

) 1
µ σ.

If learning is modeled as a random process, the distribution of θ∗ijt will not have a closed

form solution in equilibrium. The two parameters µ and σ are the shape and scale of the

Fréchet distribution. Figure 3.1 plots the Fréchet distribution with parameters (µ, σ) equal

to (1, 1), (1, 2), (2, 1), and (2, 2). An increase in either µ or σ moves the peak of the distri-

bution to the right. A larger σ makes the distribution flatter, while a larger µ is associated
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with a more concentrated distribution.

Figure 3.1: Fréchet Distribution with Different Values of µ and σ

3.2.5 Equilibrium

A competitive equilibrium across all crops characterized by the initial distribution

Gj(x, 0) for each crop j includes a sequence of crop prices {pjt}∞t=0, land demand for

each crop {L∗ijt}∞t=0, and consumption {c∗ijt}∞t=0. To solve for the competitive equilibrium

prices, the quantity supplied must equal the quantity demanded for all crops and land. I

will have J crop clearing conditions and J equilibrium prices along with the land market

clearing condition, L̄dt = L̄st . With J + 1 equations at each t, we can solve for J unknown

prices. The supply function is an integral over the knowledge distribution G∗j(x, t):

Q̄s
jt = I Pr(θ∗ijt > θminjt )

∫ ∞
θminjt

f(L∗ijt)g
∗
j (x, t) dx
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where Q̄s
jt is the quantity supplied and g∗j (x, t) is the probability density function

of G∗j(x, t). The land market clearing condition is more straightforward with L̄ being the

total land supply:

L̄ =
I∑
i=1

J∑
j=1

L∗ijt =
I∑
i=1

Lei .

The equilibrium defined above yields predictions regarding land demand and di-

versification. To simplify the result, I assume f(Lijt) = Lλijt with λ ∈ (0, 1). The optimal

land demand can be solved as L∗ijt =
(
pjtθ

∗
ijtλ
) 1

1−λ . The supply function under this as-

sumption is the following:

Q̄s
jt = (pjtλ)

λ
1−λ

I∑
i=1

(
θ∗ijt

1
1−λ1{θ∗ijt > θminjt }

)
= (pjtλ)

λ
1−λhjt(µ, σ,α, S, t, L

min
j , p∗jt)

where α = (α1, α2, ..., αJ) is the vector of learning rates. Because θ∗ijt follows a Fréchet

distribution, hjt(·) can be written as an incomplete gamma function and the condition

1
1−λ < µ is sufficient for hjt(·) to exist. The function hjt(·) measures the average knowl-

edge level for existing producers for crop j at time t. Price is negatively correlated with

hjt(·) because of self-selection. Farmers with lower knowledge levels will exit when the

price decreases, which makes the remaining producers more knowledgeable on average

than previously. The ratio of two equilibrium quantities can be expressed based on the
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supply and demand functions, which gives the relation between two equilibrium prices:

p∗jt
p∗kt

=

[
ajhkt(µ, σ,α, S, t, L

min
k , p∗kt)

akhjt(µ, σ,α, S, t, Lminj , p∗jt)

] 1−λ
λ+ρ−λρ

. (3.5)

The land market clearing condition also contains equilibrium prices:

L̄ = λ
1

1−λ

J∑
j=1

p∗jt
1

1−λhjt(µ, σ,α, S, t, L
min
j , p∗jt). (3.6)

After substituting p∗jt for p∗kt using equation 3.5, equation 3.6 can be rewritten as:

p∗jt =
1

λ
L̄1−λ

(
aj

hjt(·)

) 1−λ
λ+ρ−λρ

(
J∑
k=1

a
1

λ+ρ−λρ
k hkt(·)

λ+ρ−λρ−1
λ+ρ−λρ

)λ−1

(3.7)

As mentioned earlier, hjt(·) is a function containing price pjt; there is no closed-

form solution for equilibrium prices. Prices will be solved numerically in the simulation

section. Using equation 3.7, I can express land in each crop j and farm size for farmer i as

a function of hjt(·). Farm size L∗it is defined as the total acreage per farm.

L∗ijt = L̄

(
aj

hjt(·)

) 1
λ+ρ−λρ

(
J∑
k=1

a
1

λ+ρ−λρ
k hkt(·)

λ+ρ−λρ−1
λ+ρ−λρ

)−1

θ∗ijt
1

1−λ (3.8)

L∗it = L̄

(
J∑
k=1

a
1

λ+ρ−λρ
k hkt(·)

λ+ρ−λρ−1
λ+ρ−λρ

)−1 J∑
j=1

[(
aj

hjt(·)

) 1
λ+ρ−λρ

θ∗ijt
1

1−λ

]
(3.9)

Using equation 3.8, I define the specialization level as the acreage share of the biggest

96



crop.

special_landit =
maxj{L∗ijt}

L∗it

If we denote the number of farms at time t by Nt, I can write Nt as the proportion of

farmers that produce at least one crop. The number of farms that produce crop j, denoted

Njt, is expressed in the same way.

Nt = I · ΠJ
k=1[1− Pr(L∗ikt > Lmink )]

Njt = I · [1− Pr(L∗ijt > Lminj )]

3.3 Simulation

Both demand-side and supply-side factors influence the evolution of farm size and

specialization. In each, I simplify one side of the market to focus on the workings of the

other. In this section, two examples are presented. In the supply-side example, the growth

of industry j is determined by the learning rate αj and the knowledge substitution matrix

S, which measures how well farmers can apply knowledge between crops. Therefore, the

example includes two pairs of crops to show how αj and sj matter in the example when the

budget shares are assumed to be the same for all crops. In the demand-side example, the

budget share parameter aj and the elasticity of substitution parameter ρ govern the growth

of industry j. Simulation results will provide support for arguments in the theoretical

section.
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3.3.1 A Supply-Side Example

By setting aj = aj′ ∀j, j′ ∈ {1, ..., J}, every crop has the same budget share and

gross revenue. The expression for equilibrium price p∗jt can be simplified accordingly:

p∗jt =
1

λ
L̄1−λhjt(·)

λ−1
λ+ρ−λρ

(
J∑
k=1

hkt(·)
λ+ρ−λρ−1
λ+ρ−λρ

)λ−1

. (3.10)

The supply-side example is simulated using equation 3.10. Parameter values are

listed in Table 3.1. The difference in learning rates across crops is that α2 = α4 > α1 =

α3. The differences between crop pair (1,2) and (3,4) show how learning rate affects farm

size and specialization. The interpretation of α1 = 1 is that, in each period, each farmer

meets with one other farmer to discuss crop 1, as is also the case for crop 3. For crops 2 and

4, the learning rate is larger and each farmer meets with two other farmers in each period.

The matrix S defines how knowledge can be applied across crops. s12 = s21 = 0.8

meaning that knowledge between crops 1 and 2 has 80% in common and farmers can

use knowledge of crop 1 to produce crop 2 (and vice versa) and remain 80% productive.

Knowledge between crops 3 and 4 only have 60% in common. Because crops 1 and 3

have the same learning rate, the comparison between them shows how applying knowledge

across crops affects farm size and specialization. Same reasoning applies to crops 2 and 4.

The minimum acreage of production is 0.2 for each crop.

The theory predicts that knowledge of crop 2 and 4 evolves faster than knowledge

of crop 1 and 3. At the aggregate level, a higher knowledge rate results in a larger stock of

knowledge, which leads to more production and smaller acreage for crop 2 and 4 because
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Table 3.1: Parameters for the Supply-Side Example
Parameter Definition Value

a Budget share (0.25,0.25,0.25,0.25)
α Learning rate (1,2,1,2)

S Knowledge substitution matrix


1 0.8 0 0

0.8 1 0 0
0 0 1 0.6
0 0 0.6 1



the budget shares are the same for all crops. At the individual level, each farmer also

produces outputs using less acreage for crops 2 and 4 than crops 1 and 3. For crop pairs

that have the same learning rate, the distribution of θ∗i1t and θ∗i2t will evolve faster than θ∗i3t

and θ∗i4t respectively because farmers can cross-apply knowledge between crop 1 and 2

with less friction. Therefore the model predicts that crop 1 and 2 will have more output

and less acreage than crop 3 and 4.

Figure 3.2: Distribution of Knowledge across Farmers for Crop 1 and 2 at t = 0 and
t = 10

At t = 0, all crops has the same knowledge distribution, θij0
d∼ Fréchet(20, 0.2).

Figure 3.2 shows that by t = 10, the knowledge distribution of crop 2 has evolved faster
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than crop 1. Both of them start from the same initial distribution plotted by the solid line

on the left. By meeting with one extra farmer in each period, the difference between two

distribution is significant after ten periods. A similar difference exists between crop 3 and

4.

Farmers could apply knowledge across crops 1 and 2 and still keep 80% of the

knowledge. The difference between distribution of θ∗i1t and θ∗i2t (left panel of Figure 3.3)

becomes much smaller than the difference between θ∗i3t and θ∗i4t (right panel of Figure 3.3).

More knowledge is lost when farmers apply knowledge across crops 3 and 4, which makes

the difference between θ∗i3t and θ∗i4t larger. Because knowledge of crop 2 evolves faster than

knowledge of crop 1, farmers rarely use θi1t to produce crop 2. So the distribution of θi2t

in Figure 3.2 and θ∗i2t in Figure 3.3 are similar.

Figure 3.3: Distribution of Maximum Knowledge Available across Farmers at t = 10 for
Each Crop

Figure 3.4 plots the distribution of crop acreage per farm of the four crops across

farms at t = 10. More knowledge means less acreage is needed to produce the same quan-

tity of product. Land demand for crops 2 and 4 is smaller than crop 1 and 3 respectively.
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The gap in acreage distribution between crop 3 and 4 is larger than the gap between crop

1 and 2, consistent with the model implication that the acreage distribution reflects the

knowledge distribution. If we plot the distribution of different farm size measures, such as

crop revenue per farm or crop profit per farm, a similar pattern remains: the gap between

crop 3 and 4 is larger than the gap between crop 1 and 2.

Figure 3.4: Distribution of Crop Acreage across Farmers at t = 10

Farmers compete for land in this model which makes the relative knowledge level

matter when comparing the farm size distribution over time. At any time period, if a

farmer has the same level of knowledge for crop 1 and 2, less profit is made from crop 2

because the knowledge of crop 2 evolves faster than that of crop 1, which means there are

more farmers with a higher knowledge level of crop 2. Therefore, the acreage distribution

shifts to the left for crop 2 more than crop 1 in the simulation (Figure 3.5). If we trace

the evolution of crop acreage over time, crops 2 and 4 will have larger changes than crops

1 and 3, which is clear in Figure 3.5. So, more knowledge of a crop means less land is

utilized for it.

The upper panel of Figure 3.5 shows the acreage distribution for crop 1 and 2 over
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Figure 3.5: Distribution of Crop Acreage across Farmers at t = 0, t = 5, and t = 10

time. The lower panel plots the same distribution for crops 3 and 4. If we compare crops

1 and 3 to crops 2 and 4, the evolution pattern is similar to the evolution of knowledge

showed in Figure 3.3. Crops 3 and 4 have a larger difference in the knowledge distribution

than crops 1 and 2. Only 60% of knowledge remains when farmers apply knowledge

across crops 3 and 4, which makes the gap between crops 3 and 4 larger.

By aggregating acreage from all crops, we obtain the distribution of farm size (left

panel of Figure 3.6). The peak of the farm acreage distribution moves slight to the left

and lower. The increase at the left tail of the acreage distribution is around the value 0.8,

which is the acreage if a farmer grows all four crops at the minimum acreage. So the

simulation models shows that there are more small farms operating at the minimal scale.
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Figure 3.6: Distribution of Farm Acreage across Farmers for All Farmers and for Farmers
with Acreage More than 1.4 at t = 0, t = 5, and t = 10

The right panel of Figure 3.6 enlarges the righthand side of acreage distribution to large

farms with acreage more than 1.4, which shows that more large farms appear as the right

tail of acreage distribution becomes longer over time.

Figure 3.7: Number of Farmers and Median of Acreage for Each Crop and Total

Because the total land supply is fixed, more large farms means either other farms

are getting smaller or the number of farms decreases or both. In Figure 3.7, the number

of farms for each crop (on the left panel) has similar trends as the median land for each

crop (on the right panel). The number of farms, plotted in the thick solid line in the left
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panel of Figure 3.7 remains constant because no farm has exited all crop production in

the simulation. The median total acreage decreases as shown by the thick solid line in the

right panel.

Figure 3.8: Number of Farmers Producing Two and Three Crops for Each Crop and Total

Regarding specialization, Figure 3.8 shows the number of farmers who grow two or

three crops for each crop and total. On the left part, the thin solid line shows the number of

farmers who grow only two crops and also grow crop 1. There is no farmer who specialized

in only one crop after ten periods in this example. So an increase in the number of farmers

who grow two or three crops means a decrease in the number of farmers who grow all four

crops, which is evidence of specialization. As shown in the model section, the number

of farmers who grow two crops are much smaller than the number of farmers who grow

three crops because the knowledge evolves independently across crops. The total number

of farms that grow two or three crops is plotted in thick solid line in Figure 3.8.

Notice that growers who produce only two or three crops are more likely to produce

crops 1 and 3. The intuition behind this finding is that the knowledge distribution of crops

2 and 4 evolves faster, which results in an increase in the minimum level of knowledge
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required. So, farmers are less likely to meet the minimum threshold to produce crops 2

and 4.

Figure 3.9: Acreage Share of the Top 10% Farmers by Acreage and Crop Over Time

Regarding consolidation, the model predicts that crops with higher learning rates

have more consolidated production, which can be measured by the acreage share of the

top producers. In Figure 3.9, the acreage share of the top 10% of farms are plotted for

each crop. The top producers of crops 2 and 4 are expanding their acreage while the land

operated by top producers of crop 3 is shrinking. This is caused by a flatter knowledge

distribution for crops 2 and 4, as was shown in Figure 3.3. The knowledge distribution

for crop 3 is highly concentrated, which means the difference in knowledge level across

farmers is small.

To conclude the supply-side example, different learning rates create differences in

farm size. Applying knowledge across crops can alter such differences. When budget share

is the same for all crops, a higher learning rate leads to less acreage and more output. The

evolution of knowledge also causes exit, which is measured by the decrease in the number

of farms for each crop. Specialization is inevitable, and negatively correlated with learning
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rates.

3.3.2 A Demand-Side Example

To evaluate how the budget share and elasticity of substitution affect the farm size

distribution and specialization, I eliminate the heterogeneity between crop pairs on the

supply side. To do this, I simulate 2 crops in the demand-side example and let the learning

rate α1 = α2. Knowledge cannot be applied across crops in this example, which makes

the knowledge distribution identical for the two crops in each time period t.

The equilibrium prices defined in equation 3.7 can be simplified into equation 3.11.

The parameter values are listed in Table 3.2.

p∗jt =
1

λ
L̄1−λht(·)λ−1a

1−λ
λ+ρ−λρ
j

(
J∑
k=1

ak(·)
1

λ+ρ−λρ

)λ−1

(3.11)

Table 3.2: Parameters for the Demand-Side Example
Parameter Definition Value

a Budget share (0.7,0.3)
α Learning rate (1,1)

S Knowledge substitution matrix
(

1 0
0 1

)
By assuming crop 1 has a larger budget share than crop 2, more quantity is de-

manded of crop 1 than crop 2. This attracts farmers who have lower knowledge levels of

crop 1 to enter the market. The model predicts that the acreage distribution of crop 1 will

be to the left of the acreage distribution of crop 2. The simulation result comparing indus-

try size distribution for difference share parameters is in Figure 3.10. Each panel shows
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acreage distributions under different value of ρ. The value of ρ represents whether crops

are substitutes or complements. When crops are most substitutable, the acreage distribu-

tion becomes highly concentrated, which is shown in the right part of Figure 3.10. The

acreage distribution of crop 2 is on the right side of crop 1 because it has a smaller budget

share. Only knowledgeable farmers could survive in an industry with lower demand and

price.

Figure 3.10: Distribution of Acreage across Farmers for ρ = 1 and ρ = 2 at t = 0

Figure 3.11: Distribution of Acreage Share across Farmers for ρ = 1 and ρ = 2 at t = 0
and t = 10 for Crop 1

When looking at the land allocation between crop 1 and 2, a large ρ is associated
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with more specialization, which is mainly caused by farmers shifting acreage from the

crop with a larger budget share to the crop with a smaller budget share. When crops are

not substitutable, farmers’ land demands depend on their knowledge of both crops as well

as equilibrium prices. For farmers who have the same stock of knowledge regarding two

crops, the acreage of crop 1 is larger than that of crop 2 because the price of crop 1 is

higher. When goods become more substitutable, those farmers could devote more land to

crop 2 because the price of crop 1 drops. Figure 3.11 illustrates this implication for crop

1 in the simulation results. In the left panel of Figure 3.11, most growers allocate about

half of their acreage to crop 1 when ρ is 1. As ρ increases to 2, a large share of growers

no longer produce crop 1 at the initial time period. On the right panel of Figure 3.11, the

probability mass in the middle decreases, which means more farmers are specialized in

producing only one crop at t = 10. Even when ρ = 2, the number farms produced only

crop 1 is still larger than the number of farms specialized in crop 2 at t = 10. This is

consistent with the model prediction that farmers specialized in crops with large budget

shares.

To conclude the demand-side example, the budget share is negatively related to the

crop acreage per farm and farmers will specialize in producing crops with larger budget

shares. Specialization is positively related to the elasticity of substitution. When crops

are perfect substitutes, we essentially revert to the one-commodity model and farmers will

only produce one crop in each time period.
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3.4 Conclusion

The total number of farms in the U.S. has remained steady at around two million

over the last thirty years. However, the number of very small and very large farms has

increased. Another trend in farming is specialization. As mentioned in MacDonald et al.

(2018), the average number of commodities produced on individual farms has decreased

over time.

In this essay, I introduced a partial equilibrium model with heterogeneous farmers

to explain changes in farm size and specialization. This model focuses on the distribution

of crop-based knowledge, and attributes farmers’ decisions to the evolution of knowledge.

Knowledge can be applied across crops to varying degrees, which plays an important role

in this model. Farmers learn from others through imitation, which changes the distribution

of knowledge and, ultimately, the farm size distribution.

Two simulation examples are provided to understand the impact of model parame-

ters individually and collectively. The results show that parameters including the learning

rate, budget share, and the elasticity of substitution determine the land demand for each

crop. A higher learning rate leads to less acreage and more output. Knowledge substitution

across crops mitigates difference created by the difference in learning rate. A lager budge

share is associated with more farmers, smaller farm size, and a larger share of acreage

within a farm. Specialization is positively correlated to the elasticity of substitution. Fu-

ture work could extend the current theoretical model to an open economy or incorporate

knowledge evolution in the non-ag sector.
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Conclusion

In this dissertation, I explored topics regarding the farm size distribution and spe-

cialization in the context of conventional and organic agriculture in California. I compared

the environmental impacts of pesticide use in the two production systems and quantified

the connection between farm size and pesticide use in organic production.

In essay 1, I found that pesticides used in organic agriculture had lower environ-

mental impacts per acre on surface water, groundwater, soil, air, and pollinator comparing

to conventional production, measured by the PURE index. The difference between the

two pesticide programs was decreasing over time mainly due to the increasing in pesticide

use in organic agriculture, consistent with findings in Läpple and Van Rensburg (2011).

I found that farm size and farmer experience were correlated with the environmental im-

pacts of pesticide use. Increases in farm size were associated with increases in the envi-

ronmental impacts of pesticide use in all dimensions. Increases in farmer experience were

associated with increases in the environmental impacts of pesticide use to surface water

and groundwater, and decreases in the impacts on soil, air, and pollinators.
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In essay 2, I investigated pesticide use in organic agriculture. The pesticide port-

folio changed for organic growers over the past two decades. Sulfur use became less im-

portant and grower started to use new AIs such as spinosad and azadirachtin. The number

of organic farm and organic acreage have both increased. However, the organic acreage of

large farms increased disproportionately over time, signaling consolidation. The crop mix

has also changed with vegetables increasing their share of organic acreage. The consolida-

tion process has consequences for pesticide use as farms with more organic acreage used

sulfur and fixed copper pesticides more frequently, holding other variables constant. Sul-

fur has zero impact on air, as measured by VOC emissions, and copper hydroxide is more

toxic to aquatic organisms comparing to other AIs used in organic agriculture. Therefore,

the change in the farm size distribution has implications for the environmental impacts of

organic agriculture.

Essay 3 presents a theoretical model to explain the change in farm size distribution

and specialization in the U.S. agriculture. The model features the evolution of the distri-

bution of crop-specific knowledge through a learning by doing mechanism. The model

implies that land will become more concentrated in a smaller number of farms as long as

the knowledge evolves faster for operators of those farms. Farmers will choose to produce

a subset of crops as they accumulated crop-specific knowledge.
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Appendix A

Insecticides and Fungicides Used in

Conventional and Organic Agriculture

One way to demonstrate the difference in insecticide and fungicide use between

conventional and organic agriculture is to group AIs based on their Mode of Action (MoA).

There are 31 MoA groups for insecticides classified by the Insecticide Resistance Action

Committee (IRAC) (IRAC, 2020) and 78 MoA groups for fungicides classified by the

Fungicide Resistance Action Committee (FRAC) (FRAC, 2020).

In Figure A.1, 18 MoA groups with fewer than 1 million acres treated in 2015 are

combined into the category "other". The most used insecticide group in 2015 is IRAC_3,

which includes pyrethroids and pyrethrins. The group IRAC_1, organophosphates and

carbamates, was widely used in conventional fields but has been largely replaced by other
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Figure A.1: Share of Insecticide Treated Acreage in Conventional Agriculture by MoAs:
1995 - 2015

131



AIs because organophosphates are associated with negative health outcomes and have been

regulated (Eskenazi et al., 1999, Lerro et al., 2015). Conventional growers have adopted

AIs from different IRAC groups. For example, the diamides, the broad-spectrum insecti-

cides in IRAC_28, were quickly adopted after 2008 when chlorantraniliprole and fluben-

diamide, the two major AIs in the group, were registered with EPA .
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Figure A.2: Share of Insecticide Treated Acreage in Organic Agriculture by MoAs: 1995
- 2015

Organic growers have limited insecticide choices as shown in Figure A.4. AIs

with unknown MoA, such as sulfur and azadirachtin, were widely used in organic fields.

Other common AIs include spinosad in group FRAC_5, acillus thuringiensis (Bt.) in group
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FRAC_11 and pyrethrins in group FRAC_3.

For fungicides, the situation is similar. A variety of MoAs are available for conven-

tional growers as shown in Figure A.3. For organic growers, copper and sulfur, in group

FRAC_M01 and FRAC_M21 respectively, accounted for more than half of the treated

acreage for fungicides in 2015.
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Figure A.3: Share of Fungicides Treated Acreage in Conventional Agriculture by MoAs:
1995 - 2015
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Figure A.4: Share of Fungicide Treated Acreage in Organic Agriculture by MoAs: 1995 -
2015
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Appendix B

Active Ingredients in the Microbial

Group

Table B.1: Name and Chemical Code for Active Ingredients in the Microbial Group

Active ingredient name chemical code

bacillus thuringiensis (berliner) 86

encapsulated delta endotoxin of bacillus thuringiensis var. kurstaki i 2337

pseudomonas fluorescens, strain a506 2842

encapsulated delta endotoxin of bacillus thuringiensis var. san diego 3005

bacillus thuringiensis (berliner), subsp. aizawai, gc-91 protein 3843

gliocladium virens gl-21 (spores) 3854

bacillus thuringiensis (berliner), subsp. aizawai, serotype h-7 3856
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bacillus thuringiensis (berliner), subsp. israelensis, serotype h-14 3857

bacillus thuringiensis (berliner), subsp. kurstaki, serotype 3a,3b 3858

bacillus thuringiensis (berliner), subsp. kurstaki, strain eg 2348 3859

bacillus thuringiensis (berliner), subsp. kurstaki, strain eg2371 3860

bacillus thuringiensis (berliner), subsp. kurstaki, strain sa-11 3862

streptomyces griseoviridis strain k61 3937

paecilomyces fumosoroseus apopka strain 97 3964

bacillus thuringiensis, var. kurstaki delta endotoxins cry 1a(c) and c 3965

myrothecium verrucaria, dried fermentation solids & solubles, strain a 3966

bacillus thuringiensis (berliner), subsp. kurstaki strain sa-12 3970

trichoderma harzianum rifai strain krl-ag2 3977

bacillus thuringiensis subspecies kurstaki, genetically engineered str 3988

beauveria bassiana strain gha 3993

bacillus thuringiensis, subsp. kurstaki, strain hd-1 4023

bacillus thuringiensis subspecies kurstaki strain bmp 123 4024

bacillus thuringiensis, subsp. aizawai, strain sd-1372, lepidopteran a 5226

bacillus thuringiensis var. kurstaki, genetically engineered strain eg 5325

qst 713 strain of dried bacillus subtilis 5447

coniothyrium minitans strain con/m/91-08 5753

bacillus pumilus, strain qst 2808 5770

bacillus thuringiensis, subsp. kurstaki, strain abts-351, fermentation 5829

bacillus thuringiensis, subsp. israelensis, strain am 65-52 5841

purpureocillium lilaciunum strain 251 5861
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bacillus thuringiensis, subsp. aizawai, strain abts-1857 5879

aspergillus flavus strain af36 5887

streptomyces lydicus wyec 108 5891

bacillus subtilis var. amyloliquefaciens strain fzb24 5934

pantoea agglomerans strain e325, nrrl b-21856 5945

ulocladium oudemansii (u3 strain) 5980

chromobacterium subtsugae strain praa4-1 6024

aureobasidium pullulans strain dsm 14940 6026

aureobasidium pullulans strain dsm 14941 6027

burkholderia sp strain a396 cells and fermentation media 6064

bacillus amyloliquefaciens strain d747 6082

trichoderma virens strain g-41 6084
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Appendix C

Allowed and Prohibited Ingredients

In general, synthetic substances are prohibited and nonsynthetic substances are al-

lowed in organic agriculture with a few exceptions. The National List of Allowed and

Prohibited Substances (National List) specifies 15 categories of synthetic substances that

can be used in crop production because they do not contribute to the contamination of

crop, soil, or water. Growers are allowed to use them when non-chemical approaches,

such as crop rotation or introduction of predators, are not sufficient. Ten categories of nat-

ural substances are prohibited in organic crop production due to various reasons including

adverse health effects. In addition, substances can be added or removed from the National

List through individual petitions. We manually checked ingredients in the PUR database

against the National List and petitions to categorized them into as either "allowed" or

"prohibited" ingredients.
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Two pesticide product lists developed by the Organic Materials Review Institute

(OMRI) and the Washington State Department of Agriculture (WSDA) are also included

in the list of allowed and prohibited ingredients. OMRI is a non-profit organization that re-

views and certifies products for use in organic agriculture in the United States and Canada.

Pesticide and fertilizer manufacturers submit applications and associated fees to OMRI

for reviews of their products, which are added to the list if they comply with OMRI’s

organic regulations. Products certified by OMRI can use the OMRI seal on their packag-

ing/labeling and are required to renew their information every year. Currently the OMRI

list contains more than 7,500 products that are allowed for use in organic crop and live-

stock production, processing, and handling. The WSDA list is constructed in the same way

with a slightly lower application fee. We cross-referenced product names in the OMRI and

WSDA lists with the PUR database product lists to obtain the AI (AI) information in those

products. Such ingredients were then categorized as allowed for use in organic production.

Products registered with OMRI or WSDA require an annual renewal and the his-

torical versions of the lists were not available for all years. We are able to locate lists from

OMRI for years 2000, 2002-2008, 2012-2016, 2019-2020 and WSDA for years 2017 and

2019-2020, and subjected each of them to this product-matching method. To fill in some

of the remaining gaps in the incomplete historical record, pesticide product labels bearing

the logos for either the “OMRI Listed For Organic Use,” the USDA NOP “For Organic

Production” or “WSDA certified” were also added to the list when found.

Because the OMRI- and WSDA-certified products are listed based on voluntary

applications, there could be products that are allowed for use in organic production but
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missing from one or both of the lists. For example, pesticide product AdoxTM BCD-

25, which contains sodium chlorite, a synthetic substance allowed in organic handling, is

registered in WSDA’s list but not OMRI’s list. This supports my method which considers

ingredients, rather than strictly registered pesticide products, to identify organic fields.

Even with information from the National List and the OMRI and WSDA product

lists, some ingredients recorded in the PUR database cannot be easily categorized as al-

lowed or prohibited. For example, petroleum-based oils are allowed to use as insecticides

in organic agriculture but are not allowed for weed control. Therefore, we cannot cate-

gorize its usage as the PUR database did not provide the information about the growers’

purpose. However, those ingredients, represent less than 1% of the pesticide applications

in organic fields, so they are considered as prohibited ingredients in my analysis as a con-

servative measure.

140



Appendix D

Inert Ingredients in Organic Fields

In addition to the pesticide active ingredients (AIs), NOP also includes regulations

on inert ingredients. NOP Guidance No. 5008 states that:

Parties reviewing pesticide product ingredients for compliance with the NOP

are advised to use EPA’s August 2004 list, minus the revoked inert ingredients,

to verify that inert ingredients are listed as List No. 4A or 4B.

However, the PUR database does not report inert ingredients and they are not nor-

mally listed on the label. For adjuvant products, all ingredients are considered as inerts

and have not been recorded in the PUR database since 2004. The allowed and prohib-

ited AI lists are constructed using the "CHEM_CODE" variable in the PUR database,

which makes the strictly AI-based variable incapable of incorporating inert ingredient in-

formation. Each "CHEM_CODE" is a unique number assigned to each AI chemical by
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California Department of Pesticide Regulation. Products that contain prohibited inert in-

gredients will be considered as allowed in the AI-based calculation, which overstates or-

ganic acreage. However, this is only a minor issue because the product-level OMRI and

WSDA certifications are based on the full list of ingredients, including inert ingredients,

when products are registered. So my method indirectly addresses this caveat by using the

OMRI and WSDA product lists in addition to the allowed/prohibited AI lists.
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Appendix E

Organic Fields Identified from the PUR

Database by Counties
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Table E.1: Organic Acreage, Average Farm Size, and Number of Organic Farms by County: 1995, 2005, and 2015

County
Total organic acreage Average farm size Number of organic farms

1995 2005 2015 1995 2005 2015 1995 2005 2015

Alameda 67 53 39 22 18 16 3 5 19

Amador 948 516 51 49 62 11 34 13 7

Butte 1,891 2,740 4,849 300 235 334 39 75 110

Calaveras 9 57 36 9 17 7 1 4 9

Colusa 1,475 874 1,491 167 135 328 20 16 28

Contra Costa 282 273 416 31 52 98 38 30 42

El Dorado 19 93 121 4 3 4 5 33 62

Fresno 10,060 16,867 22,424 97 168 197 247 576 713

Glenn 1,108 1,425 1,089 100 46 105 22 110 50

Humboldt 27 62 15 3 8 2 9 12 15

Imperial 5,316 5,203 27,829 362 327 2,322 92 162 1,167

Kern 6,812 11,213 34,495 701 3,621 10,652 168 339 835

Kings 590 2,027 5,844 98 342 535 16 70 115

Lake 92 560 520 18 31 40 5 32 46
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Lassen 0 0 77 0 0 77 0 0 1

Los Angeles 2 50 12 1 8 2 4 10 6

Madera 2,713 4,470 6,577 116 112 573 57 97 120

Marin 13 117 116 4 49 97 3 28 25

Mendocino 2,285 3,444 3,310 66 163 121 94 141 155

Merced 2,199 2,829 3,496 124 242 311 61 86 75

Modoc 0 70 246 0 70 61 0 1 4

Monterey 3,160 12,103 27,173 99 581 1,953 115 1,328 4,738

Napa 1,675 2,784 4,375 47 70 90 118 186 355

Nevada 46 67 71 4 9 9 17 13 40

Orange 196 109 109 25 15 19 35 27 59

Placer 41 1,408 2,192 6 450 353 8 32 82

Riverside 578 3,633 6,309 22 820 888 52 166 289

Sacramento 883 165 454 69 17 82 33 17 17

San Benito 645 2,579 4,645 30 752 516 48 513 722

San Bernardino 170 492 5 20 173 1 18 10 5

San Diego 125 686 1,731 3 21 96 51 79 172

San Joaquin 3,863 3,223 1,372 58 75 99 118 127 100

San Luis Obispo 3,736 2,511 6,084 66 92 825 123 149 225
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San Mateo 5 23 48 2 8 9 3 8 20

Santa Barbara 1,039 2,859 4,941 56 73 168 181 311 408

Santa Clara 216 562 770 13 67 62 35 88 140

Santa Cruz 397 1,094 2,056 24 170 397 46 168 304

Shasta 332 297 16 47 45 2 10 21 12

Siskiyou 92 157 687 31 31 248 3 10 21

Solano 995 1,027 983 37 98 54 38 25 48

Sonoma 1,185 1,340 4,563 29 62 114 133 216 366

Stanislaus 1,530 2,998 958 64 82 88 47 112 70

Sutter 1,454 2,479 3,842 113 188 342 48 51 58

Tehama 358 1,444 342 31 35 16 22 83 33

Trinity 0 12 1 0 4 1 0 3 1

Tulare 3,752 9,004 7,229 71 105 407 154 380 396

Tuolumne 10 9 47 10 3 18 1 4 5

Ventura 1,765 941 4,880 213 241 228 104 67 411

Yolo 3,255 2,843 5,659 107 143 429 71 81 149

Yuba 250 519 489 40 72 131 10 42 50

Note: Counties without any organic acreage in 2015 are excluded.
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