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ABSTRACT OF THE DISSERTATION

Adapting Static Analysis Tools to Meet User Expectations

by

Akshay Anand Utture
Doctor of Philosophy in Computer Science
University of California, Los Angeles, 2023
Professor Jens Palsberg, Chair

Traditionally, static analysis tools for catching program errors and security vulnerabilities
were designed as verification tools. Hence, soundness, the criteria of never missing an error,
was the primary goal. In practice, however, most users are significantly more concerned
about false-positives, analysis times, and repairability than unsoundness; they expect the
tools to have fewer than 20% false-positive warnings and take at most a few minutes to run.
Since most static analysis tools are optional to run, users give up on tools that don’t meet
their expectations. To meet these expectations, a few newer tools have been designed from
the ground up to prioritize these three criteria, but they require a redesign for every static
analysis; they cannot use existing, mature, soundness-focused tools. So the question is: can

we adapt existing soundness-focused static analysis tools to meet user expectations?

This thesis shows that the answer to this question is a yes, by introducing three new
tools, CGPruner, QueryMax, and RLFixer, to address the three criteria users care about
the most: false-positives, analysis time, and automated repair suggestions. The central idea
underlying each of these tools is identifying opportunities where a little soundness can be

traded off for large improvements in these three criteria. These three new tools are designed

1



as pre-processors and post-processors to a black-box static analysis, and hence are applicable
to many analyses. Our experiments show that they significantly improve the results of several

existing soundness-focused static analysis tools on the three critical user criteria.

11



The dissertation of Akshay Anand Utture is approved.
Harry Xu
Miryung Kim
Todd Millstein

Jens Palsberg, Committee Chair

University of California, Los Angeles

2023

v



To my mom and dad, who have supported me through everything.

To all my teachers, for everything they have taught me.



TABLE OF CONTENTS

(1__Introductionl. . . . . . . . . .. 1
[2° Static Analysis Background| . . . . . . ... .. ... ... ... 10
2.1 Basic Concepts| . . . . . . . . . . . . 10
[2.2  Applications of Static Analysis|. . . . . . . .. ... ... L. 12
2.3 Example . . . . .. 13
[2.4  Challenges and Limitations|. . . . . . . ... .. ... .. ... ... .. ... 18
[2.5 Other Program Verification Techniques| . . . . . . . ... .. ... ... ... 27

[3 CGPruner: Pruning False-Positives from Static Call Graphs| . . . . . . . 29
B.1  OVEerviewl. . . . . . . . . e 29
3.2 Example . . . . . .. 32
[3.3 Call-Graph Pruners|. . . . . . . .. . ... 35
.31 Overviewl . . . . . . . .. 35

3.3.2 Classifier Generatorl. . . . . . . . . .. . ... oL 39

3.3.3  Featureset] . . . .. . . . ... 40

[3.4 Implementation and Dataset| . . . . . . .. . ... ... ... ... 42
[3.0  Experimental Results| . . . . . ... ... ... o000 46
(3.0.1 Main Resultl . . . . .. ..o 47

[3.5.2  Distribution of Precision and Recall for individual programs| . . . . . 53

[3.5.3  Effect on Client Analyses|. . . . . . . . .. .. .. ... ... ..... 54

[3.5.4  Threats to Validity| . . . . . . . . . . . ... ... ... 56

vi



4 QueryMax: Application Code Analysis using Partial Libraries| . . . . . . 62
M1 OVEIrVIEW! . . . . . o v o e e 62
(4.2 Example . . . ... 66
(4.3 Approach| . . . . ... 70

M3.1  Overviewl . . . . . . . .. 70
1.3.2  External Source Analysis (ESA)[. . . ... ... ... ... ... ... 70
[4.3.3 QueryMax Algorithm|. . . . . . ... ... ... ... ... ... .. 72
[4.3.4  Applicability of QueryMax to Client Static Analyses| . . . . . . . .. 76
4.4  Implementation| . . . . . . . . ... 7
(4.5 Dataset Description| . . . . . . . .. ..o 80
4.6 Experimental Results . . . . . . . . ... ... . 82
o1 Cl: Main Resultl . . ... ..o o 82
[4.6.2 C2: Distribution of Recall and Speedup|. . . . . . .. ... ... ... 86
U633 Zero-Frror Benchmarkd . . . ... ... ... 0000000000 88
[4.6.4  Split-up of Analysis Time| . . . . . .. ... ... ... 89
[4.6.5 Analysis-time vs Number of Classes| . . . . . . .. ... ... ... .. 90
[4.6.6  Threats to Validity| . . . . . . . . . . .. ... 91
M7 Related Workl . . . . . . . .o 91

[> RLFixer: Automated Repairs for Resource Leak Warnings . . . . . . .. 95
DI OVEervIEW!. . . . . . o o o e e 95
.2 Examples . . . .. . 98

vii



[b.3 Approach| . . . . ... 102

[b.3.1  Warning Parser| . . . . . . . ... ... 102

H.3.2 Resource Alias Identificationl . . . . . . . . .. .. ... 102

[5.3.3  Resource Escape Analysis| . . . . ... ... ... ... ... ... 104

[5.3.4  Applying Repair Templates] . . . . .. ... ... .. ... ... ... 108

[>.4  Implementation| . . . . . . . . ... 115
B5 Dafasel]l . . . . ..o 116
[>.6  Experimental Results| . . . . . . .. ... ... ... 118
H.6.1 Fixable Ratel . . . .. . ... oo 118

h.6.2 Fix Correctness . . . . . . . . . . . 119

[5.6.3 Comparison with Footpatchl . . . . .. ... ... ... ... ... .. 121

(.64 Time overheadl . . . . .. .. . .. ... .. 122

[>.6.5  Threats to Validity] . . . . . . . . ... ... oo 124

b7 Related Workl . . . . . . . . . 124

6 Conclusion|. . . . . . . . . . 129
Referencesl. . . . . ... ... ... . . ... 130

viil



LIST OF FIGURES

[l.1 Pain points reported by users in Christakis and Bird’s developer study |[CB16al, |
| in decreasing order of importancel . . . . . . . . . ... 3
(1.2 Preprocessor workflow (QueryMax)| . . . . . . . .. ..o 0L 6
(1.3 Post-processor workflow (CGPruner and RLFizer)| . . . . . .. ... ... ... 6
2.1 Java program snippet with a potential SQL Injection vulnerability and null- |
| pointer error. We can catch these using static analysis tools.| . . . . . . . . . .. 14
[2.2  Data-flow graph of a null-pointer analysis for method foo in Fig. [2.1{] . . . . .. 15
[2.3 Data-flow graph of a static taint analysis for the code mn Fig. 2.1]] . . . . . . .. 17
[3.1 Overview of our technique| . . . . . . . . . . ... ..o 32
(3.2  Example call graph and call-graph prunerf . . . . . ... .. ... ... ... .. 33
(3.3  Call-graph Pruner| . . . . .. ... ... .0 o 37
3.4 Classifier Generator workflow] . . . . . . ... ... ... .. 38
3.5 Ourfeaturesetl . . . . . . . . . .. 42
[3.6 Hyper-parameters for Random-Forests| . . . . . . ... ... ... ... ..... 44
[3.7 Histogram of kdge-counts in the 100 Training Programs.| . . . . . . . . . . . .. 45
[3.8  Precision and recall for 41 test programs.|. . . . . . . .. .. ... ... 46
[3.9 Precision and recall atter call-graph pruning.|. . . . . . ... .. ... ... ... 46
[3.10 Main Result for the WALA, Doop and Petablox static analysis tools. The base- |
| line precision-recall values for the 3 tools, along with the precision-recall curve |
| obtained after applying a call-graph pruner (averaged over all test programs)| . . 48
[3.11 Probability cutoff plotted vs Precision, Recall and F-score curves for WALA| . . 51

1X



B12

Importance of each feature in the Random Forest Classifier in descending order.|

52

[3.13 Historgram of Percentage Improvement in Precision scores for individual programs.| 53
[3.14 Impact of improved call-graph precision on a monomorphic call-sites client| . . . 54
[3.15 Total warning counts and a manual classification ot a sample of 10 warnings for |
| the null-pointer analysis before and after applying a call-graph pruner|. . . . . . 55
(4.1  Overview of the QueryMax worktlow| . . . . . . . ... ... ... ... ..... 64
4.2 Schematic of a cast-check analysis on application-code] . . . . . . . . . ... .. 66
4.3 Number of casts covered, library methods analyzed, and Precision (relative to the |
| whole program analysis) for each of the competing tools| . . . . . ... .. ... 69
(4.4 Constraints for the External Source Analysis|. . . . . . . . ... ... ... ... 71
4.5 QueryMax algorithm| . . . . . . . . . .. ... 73
4.6 Analaysis Queries for difterent Client Analyses| . . . . . . . . . ... . ... ... 7
4.7 Statistics about the benchmark programs|. . . . . . .. ... ... ... 80
4.8 Statistics about the whole-program cast-check and null-pointer analysis on the |
I benchmark setl. . . . . . . . . 81
4.9 Recall and Speedup for the various techniques for the cast-check analysis . . . . 83
[4.10 Recall and Speedup for the various techniques for the null-pointer analysis| . . . 83
4.11 Speedup and Recall histograms for QueryMax (70% query coverage) on the cast- |
| check analysis| . . . . . . . . . 87
14.12 Speedup and Recall histograms for QueryMaz (70% query coverage) on the null- |
| pointer analysis| . . . . . . ..o 87
4.13 Speedup for the various analysis techniques for the Zero-error benchmarks| 88
[4.14 Split up of the time taken by each component for an analysis using QueryMax |
| with the query-coverage goal . . . . . . . . . . . ... oL 89




[4.15 Class-budget and analysis time relationship . . . . . ... ... ... ... ... 90
H.1  Overview of the RLFixer workflow] . . . . . .. .. ... ... ... ... .... 97
(5.2  Example of a resource leak fixed by RLFixer{ . . . . . ... ... ... ... ... 99
[>.3  Outputs for the five resource-leak detectors, when given the code snippet from |
D S T 5 100
5.4 Example of a resource leak that is inteasible tofix| . . . . . . . ... .. ... .. 101
[5.0 Resource Alias Identification: checking it the WrapperType object is a wrapper |
| for the Resourcelype object| . . . . . . . . . ... o oo 103
(5.6  Simplified grammar for the WALAIR) . . . ... ... ... ... ... ..... 105
[>.7 'T'he five escape mechanisms for a resource object| . . . . . . . ... . ... ... 106
5.8 Resource Escape Analysis (Name shortened to rea)| . . . . . . ... ... .. .. 107
[5.9  Decision-tree depicting how RLFixer decides which leaks are infeasible to fix, and |
| picks the correct repair template toapply| . . . . . . . ... ... 109
(5.10 RLFixer’s Repair Templates| . . . . . . . . . . . . . . ... ... .. ..... 112
[>.11 Warnings reported by the five resource-leak analyzers when applied to the NJR |
[dafasel] . . ... ... ... 117
[5.12 Statistics about the frequency of resource leaks in the NJR dataset| . . . . . .. 117
[5.13 Fixable-rate for RLFixer for each resource-leak detector, along with reasons for |
I the unfixed leaks) . . . . . . . . . o 119
[5.14 Percentage of correct fixes by RLFizer (i.e. fix-correctness) for the five resource- |
| leak detectors| . . . . . ..o 121
[>.15 Comparing the repair quality of RLFixer and the Footpatch baseline when fixing |
| the Infer warnings. We show the results separately for the NJR benchmarks and |
........................................ 122

x1



[>.16 Split up of the time taken per program by RLFixer and the resource-leak detectors|123

xii



LIST OF TABLES

xiil



ACKNOWLEDGMENTS

There are many people who have shaped my journey through the Ph.D. and supported me
through its challenges. I would like to properly acknowledge their contribution and support

here.

First and foremost is my advisor, Jens. The list of things he has taught me and the things
I am thankful for could probably fill a few pages, but I'll talk about just a few of them here.
Jens’ optimism kept me going through the many failures that one invariably goes through
during a Ph.D. After a bad paper review or a failed experiment, I would want to scrap the
research direction and throw it all away. But Jens’ encouragement gave me the faith to fix
the problems in our project instead of quitting, and to keep working on making my work
better everyday. His faith in my judgment, both technical and otherwise, has given me the
confidence that I can do independent research. In addition to all the technical lessons about
static analysis, he also taught me how to think of new research problems, how to design an
experimental evaluation, and how to position my research in the context of existing work.
But, I think the most important thing Jens taught me is to write and communicate about
my research effectively. When I look back at my paper drafts from my first year versus now,
I am amazed to see just how far I have come. Working with him, I have come to realize that
writing and presenting research well is just as important as its technical aspects. I am truly

grateful that I have such a great advisor.

I would also like to thank my other committee members Todd, Miryung, and Harry,
who’ve given me insightful feedback about my work and from whom I have learned a lot

through the courses I've taken with them.

My journey through the Ph.D. would have been rough without some great mentors:
Aishwarya, Saswat, Siva, Christian, and Parthe. Aishwarya listened to all my ideas, both
good and stupid, and spent a lot of time giving me detailed feedback on my work. And she

was there to encourage and support me whenever I lost faith in my own ideas and research.

Xiv



Saswat taught me a lot about formal verification, and programming languages in general.
He also mentored me through my Amazon internship. Saswat and Siva both helped me a
lot with career advice, and making major decisions through grad school. Christian helped
me a lot in my first year when I really needed the guidance. I knew that I could rely on
him when I didn’t understand some static analysis concept, or was stuck with a new Java
analysis tool. He was also a co-author on the call-graph pruning paper. Parthe took a lot of
interest in my work even though he works on machine learning, and he has always inspired

me to take more ambitious steps.

And I don’t think I would have made it to the Ph.D. in the first place if it wasn’t for my
undergraduate research advisors, Krishna Nandivada and Meghana Nasre. They both took
a chance with me even though I didn’t have much research experience then. I learned my
first lessons in research from them, and they also gave me the confidence that I had it in me
to become a researcher. In fact, it was Professor Meghana who finally convinced me to do
a Ph.D. I was worried about committing to such a narrow field for the rest of my life, and
she told me that the Ph.D. isn’t just about becoming an expert in a narrow domain. It is
about learning to tackle hard problems in a scientific way, and I would take that with me to

whatever field I moved to.

I had shorter interactions with Dana and Wontae, but they had an impact. Dana, my
writing class teacher, got me to consciously pay attention to many aspects of writing that I
had overlooked. Wontae mentored me through my Google internship, and taught me about

the interesting differences between building static analysis tools in academia and industry.

Grad school wouldn’t have been as fun without my friends and labmates, who I've also
had many interesting discussions with. From our research group there was Zeina, Shuyang,
Micky, and John. Zeina was there help me laugh off all my mistakes and failures. Shuyang
always took the initiative to organize our (research) reading groups, and she was also a
co-author on the call-graph pruning paper. Micky was always there to discuss interesting

ideas and keep up the optimism in our lab. Then there were other people in the department:

XV



Arjun, Vidushi, Pradeep, Amita, Ana, Poorva, Rathin, Neil, and Jefferey. And finally,
to some friends outside of the department: Kshitij, Vishal, Navjot, Aditya, Bijoy, Pratik,
Michael, Ha, and Sumit.

I would also like to acknowledge the ONR (Office of Naval Research) and NSF (National

Science Foundation) grants that supported my research.

Finally, I am dedicating this thesis to my mom (Alpana) and dad (Anand) for supporting
me through all my years of education, right up to now. They have encouraged me to give my
best at work, but also to balance work and play. Knowing that they always have my back
has allowed me to take the risks that I wouldn’t have been able to take by myself, including
undertaking the Ph.D. I am truly thankful for everything they have done.

Xvi



2016

2018

2018

2019-2021

2020

2022

VITA

Software Engineering Intern, Microsoft, Hyderabad

B.Tech. and M.Tech. (Dual Degree) in Computer Science and Engineering,

Indian Institute of Technology Madras

UCLA Graduate Dean’s Scholar Award
Teaching Assistant (Compiler Construction), UCLA
Ph.D. Software Engineering Intern, Google, Sunnyvale

Applied Scientist Intern (Automated Reasoning Group), Amazon, Boston

XVvil



PUBLICATIONS

Akshay Utture, Shuyang Liu, Christian Gram Kalhauge, and Jens Palsberg. “Striking
a Balance: Pruning False-Positives from Static Call Graphs.” In Proceedings of the 44th
International Conference on Software Engineering, ICSE 22, p. 20432055, New York, NY,
USA, 2022. Association for Computing Machinery.

Akshay Utture and Jens Palsberg. “Fast and Precise Application Code Analysis Using
a Partial Library.” In Proceedings of the 44th International Conference on Software Engi-

neering, ICSE 22, p. 934-945, New York, NY, USA, 2022. Association for Computing

Machinery.

Akshay Utture and Jens Palsberg. “From Leaks to Fixes: Automated Repairs for Resource
Leak Warnings”. In submission at FSE ’23.

xXviil



CHAPTER 1

Introduction

The growth in code-base sizes has accelerated rapidly over the last few decades. For ex-
ample, the Linux kernel has over 28 million lines of code [Lin23|, the Facebook website
has over a 100 million [DFL19|, and Google’s monolithic code repository has over 2 bil-
lion [PL16]. The frequency of code changes has grown just as rapidly. An empirical study
of open source developers reports that the average developer makes at least one commit per
day [KRS13|. Likewise, Google reports more than 20,000 commits a day to their monolithic
code-base [SSCIS§].

Maintaining code quality and correctness in this turbulent ocean of software is becoming
increasingly challenging. We need automated tool support to catch software errors that could
lead to crashes or expose security vulnerabilities. Over the years, automated code-quality
tools like static analysis tools, dynamic analysis tools, fuzzers, symbolic execution tools, and
model checkers have received increasing adoption, with static analysis being one of the most
popular categories. Static analysis tools can analyze code without running it and can catch
a variety of errors such as security vulnerabilities [TPF09a], memory-access errors [HJPOS|,
resource-leaks [KSS21al, and concurrency bugs [BGO18|. Some prominent examples of static
analysis’ popularity can be seen with the Coverity Scan tool, which has seen over 600,000
of its warnings fixed by various open-source projects [Synl7]|, and the Infer tool [CDD15],

which has seen over 100,000 of its warnings fixed by developers at Meta alone [DFL19].

So what are the primary design criteria for a static analysis tool? Traditionally, static

analysis tools for catching program errors were designed as verification tools. In other words,



the main goal was to give a mathematical proof that a program was free of a certain error
or security vulnerability. Hence, whenever some runtime behavior is infeasible to capture
statically (as is often the case |[Ric53|), these tools choose to over-approximate. An over-
approximation includes the effects of all possible executions, but it may also include the
effects of some impossible executions. This over-approximation criteria, known as soundness,
ensures that we never miss an error, but it could produce false-positive error warnings. Such
sound verification tools are important in understanding what kind of theoretical guarantees
we can give about programs. They are also very valuable in practice for safety-critical

software in space-shuttles and power-plants, where a single bug can be catastrophic.

A minority of developers working on safety-critical applications treat static analysis as
a verification tool and care deeply about soundness. But what about large static analysis
deployments, where users apply these tools in their daily programming tasks? Static analysis
teams at Google [SAE18a|, Meta [CDD15| and Coverity [BBC10a] find that, in practice, the
most important goal for a static analysis tool is for users to trust the static analysis tool and

like using it. In the words of Sadowski et. al [SAE18a] from Google,

For a static analysis project to succeed, developers must feel they benefit from and enjoy

using it.

This is especially true because, in practice, most static analysis tools are optional for
the user; the user could apply them in their development process, but they aren’t obligated
to. So if a user doesn’t like a static analysis tool, they simply won’t use it. Thus, user

expectations trump all other criteria.

User Expectations from Static Analysis tools
We want to build static analysis tools that users trust and like. But what does the average
static analysis user really care about in practice? And what are their expectations from static

analysis tools? To answer this question, Christakis and Bird conducted a developer survey
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Pain Points

Wrong checks are on by default
Bad warning messages

Too many false positives

Too slow

No suggested fixes

Difficult to fit into workflow

Bad visualization of warnings

No suppression of warnings

No ranking of warnings

Can’t selectively turn off analysis
Complex user interface

Can’t handle all language features
No support for custom rules
Misses too many issues

Not cross platform

Figure 1.1: Pain points reported by users in Christakis and Bird’s developer study [CB16al,
in decreasing order of importance

ICB16a] with hundreds of users of various static-analysis tools at Microsoft and compiled
a list of fifteen pain points they faced. Fig. lists these pain points in decreasing order
of importance. After the first two user-interface based issues, the top three pain points
were the false-positive rate, analysis time, and lack of suggested fixes. Missing errors (i.e.
soundness) appeared at position 14 on the list. To get a better sense of user-expectations on
the false-positive rates and analysis times, they asked users what the maximum threshold of
each they were willing to tolerate. Over 75% of users said that they would not tolerate more
than 20% false-positives or a couple of minutes of analysis time. And as far as repairability
is concerned, 54% of developers expected repair suggestions and were willing to sift through
as many as 10 repair suggestions. Other independent empirical studies on user-expectations
of static analysis tools [BBCI10al, JSM13c, [SAEIS8D| have arrived at very similar conclusions
as Christakis and Bird [CB16al]. Thus, in practice, a majority of developers have very high
expectations on the false-positive rate, analysis time and repairability, and soundness is a

low-priority issue.



Traditional soundness-focused static analysis tools put the very things that users care
about the most as secondary to soundness: the false-positive rate, analysis time and fix
suggestions. Simultaneously achieving soundness, zero false-positives, low analysis time and
fix suggestions is not possible, since there is an inherent trade-off between soundness and the
three user criteria. Tools that chase perfect soundness sacrifice the three user criteria. For
example, several soundness-focused static analysis tools take hours to run on their largest
benchmarks [LTM18al, BKL20a), I(GFF18a, SWE20L, [FWS19, [SZ20]. Other soundness-focused
tools report false-positive rates [ULK22, [KSS21b, BKL20b| beyond 50%. Such static analysis

tools fall short of user expectations and often get in the way.

To better understand why a soundness-focused static analysis gets in a user’s way, imag-
ine the following scenario. A software developer has several features to roll out, and tight
deadlines to meet. They could optionally use a static analysis tool to improve their develop-
ment process. Now imagine Tool A, a sound static analysis that takes two hours to run, has
over 50% false-positive warnings, and no repair suggestions. The developer gets frustrated
with first waiting so long for the analysis to complete, then with the time wasted in examin-
ing false-positive warnings, and finally the few true warnings have no hints for repairs. The
frustrated developer simply ignores the tool’s warnings, checks that their hand-written tests
pass, and then goes ahead to upload their code. In fact, the next time around, the developer
doesn’t even bother to run this optional static analysis tool; it was frustrating and a waste
of their time. Instead, imagine Tool B, an unsound static analysis that runs in a minute, has
almost entirely true warnings, and has fix suggestions for these as well. The developer uses
Tool B regularly, takes its warnings seriously, and fixes most of its warnings. In summary,
even though Tool A was sound and Tool B was not, Tool B results in more errors being fixed
because users actually like using it and as a consequence use it regularly. Thus, meeting
user-expectations on the false-positive rate, analysis speed and repairability ultimately leads

to better quality software in practice.



Tools that are tailored to User Expectations

Having observed these user-expectations in practice, some newer tools like Infer [CDD15],
Tricorder [SGJ15], and NullAway [BCS19| have been designed from the ground up to prior-
itize low false-positive rates and fast analysis times. The limitations of such an approach is
that we need to redesign every kind of analysis from the ground-up; we can’t use existing
soundness-focused analyses which are well understood and have several mature tools. For
example, there is currently no call-graph analysis that prioritizes low false-positive rates and
fast analysis times. At the same time, a soundness-focused call-graph analysis is a very well
studied topic with several existing, mature tools. It would be great if we can adapt existing
soundness-focused call-graph tools to meet user expectations. So the question we would like

to answer is:

Can we adapt existing soundness-focused tools to meet user-expectations on the criteria
that matter the most to them: the false-positive rate, analysis time, and automated repair

suggestions?

Our approach: Adapt existing soundness-focused tools to meet user expectations

This thesis introduces three new tools, CGPruner, QueryMazx, and RLFizer, to adapt
existing soundness-focused static analyses to meet the three criteria that users care about
the most: false-positives, analysis time, and automated repair suggestions, respectively. The
central idea underlying each of these tools is identifying opportunities where a little soundness

can be traded off for large improvements in one of these three criteria.

Figures and give an overview of how the three new tools function in a static
analysis pipeline. They are designed as pre-processors (QueryMaz) or post-processors (CG-
Pruner and RLFizer) to a black-box static analysis. This design makes them applicable
to many existing analysis tools. QueryMax pre-processes the input program to select a

partial-program, thereby reducing the input size for the existing static-analysis. The post-



Existing Static

—> Pre-processor —> Analysis Analysis
output
(Black-box)
P Trade-off soundness Partial
rogram for controlled
Analysis Time Program
Figure 1.2: Preprocessor workflow (QueryMaz)
Existing Static _ Pruned /
. Analysis
Analysis —» Post-processor —>» Enhanced
output
(Black-box) output

Trade off soundness for repairability

Program and fewer false-positives

Figure 1.3: Post-processor workflow (CGPruner and RLFizer)

processors, CGPruner and RLFizer, prune and enhance the output from existing static anal-

yses.

For each of these new tools, we would like their design to be driven by the following four

Desirable Properties:

1. Black-box: Treat the existing static analysis as a black-box.
2. Tunability: Trade-off between soundness and the three user criteria should be tunable.

3. Preservation: An improvement in one of the three user criteria shouldn’t come at

the cost of the other two.

4. Worthwhile trade-off: Reduction in false positive rate and analysis time should be

significant compared to the traded-off soundness.

The black-box property requires that our solution not be tied to any particular analysis
algorithm or tool implementation, and should be applicable to any tool for a given language;

this gives our solution generality across tools. Further generality can be achieved by being



applicable to different kinds of static analyses like null-pointer analysis, taint-analysis, cast-
check analysis, etc. Tunability is important because different analyses or use-cases require
different trade-offs between soundness and the three user criteria, and so a user should be
able to control this trade-off. Preservation of all three user criteria are important; hence,
optimizing for one shouldn’t deteriorate the others. Finally, the trade-off of soundness for
lower false-positives and analysis times should be worthwhile, since soundness is still an
important criteria. We discuss how these four properties apply to each tool in the later
chapters of the thesis. The handful of past research works that try to pre-process an analysis
to improve scalability [AL13| or post-process it to prune false-positives [RPMOS, [TGP14],

often fail to achieve most of these properties.

Given the problem setting and my approach to tackling this problem, I formulate the

following thesis statement, which I substantiate through the rest of the thesis.

Thesis Statement

Existing soundness-focused static analysis tools can be pre-processed or post-processed to
systematically trade off some soundness for significant improvements in criteria that users
care about the most: fewer false-positives, controlled analysis time, and automated repair

suggestions.

Organization of the thesis

The rest of the thesis is split into four chapters: the first gives some background on static
analysis tools, and the remaining three describe the three new tools, CGPruner [ULK22|,
QueryMax [UP22|, and RLFizer.



Chapter Background. In the next chapter, I will introduce the technical details of
how static analysis can be used to catch errors and security vulnerabilities, as well as some

of the challenges in the field.

Chapter (3] CGPruner: Pruning False-Positives from Static Call-graphs. In this
chapter, I introduce a new tool, CGPruner, to improve the false-positive rate in existing
static analysis tools. CGPruner (or call-graph pruner) achieves this by pruning the static call
graph that sits at the core of many static analyses. Specifically, static call-graph construction
proceeds as usual, after which a call-graph pruner removes many false-positive edges but few
true edges. The call-graph pruner is generated through an automatic, ahead-of-time learning
process on a training dataset of call-graphs. We added such a call-graph pruner to a software
tool for null-pointer analysis and found that its false-positive rate decreased from 73% to

23%.

Chapter 4] QueryMax: Fast and Precise Application Code Analysis using Partial
Libraries. This chapter introduces QueryMaz, a new tool to control analysis time for an
application code analysis without introducing more false-positives. QueryMax acts as a pre-
processor to an existing analysis tool to select a partial library that is most relevant to the
analysis queries in the application code. The selected partial library plus the application
is given as input to the existing static analysis tool, with the remaining library pointers
treated as the bottom element in the abstract domain. QueryMax catches, relative to a
whole-program analysis, 87% of its errors, with a 0% false-positive rate and a geometric

mean speedup of 10x.

Chapter |5| RLFixer: Automated Repairs for Resource Leak Warnings. In this
chapter, I discuss the design of RLFizer, a specialized repair tool that generates high-quality
fixes for resource leaks identified by any resource-leak static analysis. A major challenge

for the resource-leak repair problem is that it is at least as hard as compile-time object



deallocation, a well-known hard problem for compilers. RLFizer tackles this challenge using
a new analysis, called resource escape analysis, that separates out the decidable fixes and
generates correct repairs for them. RLFizer is demand-driven and hence only analyzes
statements relevant to the leak, thereby keeping overhead low. When applied to five popular
Java resource-leak detectors, RLFizer can generate repairs for a majority (66%) of their

warnings with a 14 second repair time and a fix-correctness of 95%.



CHAPTER 2

Static Analysis Background

In this chapter, I shall introduce some basic concepts about static analysis and give a broad
overview of the main challenges in the field. Readers who already understand static analysis

well can skip to the next chapter.

2.1 Basic Concepts

We start off this chapter by discussing some basic concepts about static analysis.

Over-approximation and under-approximation. A static analysis used in the context
of code-quality improvement typically aims to statically compute all information about a sin-
gle kind of error across the program. For example, a null-pointer analysis would compute all
pointers that could point to null and be dereferenced. However, Rice’s theorem |[Ric53| shows
that most non-trivial properties that static analysis tools reason about, such as null-pointer
information, are undecidable. Even in programs where it is decidable, computing perfectly
accurate information is often prohibitively computationally expensive. Hence, static anal-
ysis tools can resort to either over-approximating or under-approximating or both. An
over-approximation includes the effects of all possible executions and hence never misses an
error, but it may also include impossible executions, and this could produce false-positive
error warnings. An analysis that perfectly over-approximates is said to be sound. An under-
approximation only includes effects of executions that are actually possible, but it may miss

out on some of the possible executions, and hence could miss some errors (false-negatives).
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Precision and Recall. The over-approximation and under-approximation of a static anal-

ysis are quantified using precision and recall respectively.

Precision is the ratio of true-positive errors to the total number of errors output by the
static analysis. Precision can also be thought of as true-positive rate. Recall is the ratio
of true-positive errors output by the static analysis to the ground-truth errors. A perfectly

sound analysis has 100% recall.

| True-positive errors| | True-positive errors|

Recall =
|Total errors by analysis| |Ground-truth errors|

Precision =

Getting an accurate ground-truth is typically challenging. Researchers have used manual
programmer annotation, results from running the program, or the results of a reference
tool as approximations for the ground-truth. Each of these have their own advantages and
problems, and the best source of ground-truth may depend on the specific benchmark-set

and analysis.

Inter-procedural and Intra-procedural analyses. A static analysis is intraprocedural
if it analyzes a method in isolation. A static analysis is interprocedural if it models effects
and dependencies across method calls. A special case of an interprocedural analysis is a
whole-program analysis, which analyzes the whole program as one and captures all the
inter-procedural effects in the program. Researchers have shown that an interprocedural

analysis is often needed for accurate static analysis results on most real-world programs.

Data-flow and Control-flow. Control-flow is the order in which statements of an im-
perative program are executed. An intra-procedural Control-Flow Graph (CFG) represents
this control flow as a graph with the instructions as nodes and edges between instructions a

and b if b appears immediately after a in some execution. For example, for code of the form
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(80; if(a) S1; else S2;), there will be one edge from SO to the if statement, and two
outgoing edges from the if statement: one to S1 and the other to S2. An inter-procedural

control-flow graph needs to additionally depict the targets of method calls.

Data-flow represents the flow of data through the nodes of the control-flow graph. The
kind of data we are interested in depends on the analysis. For example, for a null-pointer
analysis on the program (x = null ; y = x), the data we are interested in is the null value

and it flows from x to y.

Both data-flow and control-flow are typically over-approximated in static analysis. Hence,
if control can flow in two directions depending on the input, the control-flow graph shows
that both are possible. Similarly, if two data values flow into a given node, we assume that

the node can potentially get both values.

Static Single Assignment. Static Single Assignment or SSA is a property of an IR
(Intermediate Representation) that it requires each variable to be assigned once. Static
analysis tools often transform code into SSA form before analyzing it because it simplifies
the analysis passes significantly. Source-code variables that have multiple assignments are
split into multiple variables in the SSA form, each with a single assignment. Instructions
in SSA also often have a single operation with operands being variables and constants (no

complex expressions).

2.2 Applications of Static Analysis

Here are some of the applications of static analysis:

1. Security: Security is the application that has gained the most interest recently. Static
analysis is especially useful here since security vulnerabilities will not show up during
unit testing. Some of the most common and severe security vulnerabilities such as

SQL-Injection, Cross-site scripting, etc. can be identified with a static taint anal-
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ysis [TPE09al. Some other kinds of vulnerabilities can be cast as static type-state

analysis [F'YDOS§| problems.

. Preventing program crashes: Errors such as null-pointer warnings, resource leaks,
buffer-overflows, etc. can cause a program to crash, and occasionally also cause security

vulnerabilities. Static analysis can identify and warn programmers of such errors at

compile time [BCS19, [KSS21a].

. Automated program repair: Static analysis results can enable automated repair
tools for certain kinds of errors such as null-pointer errors [LHO22, [XSY19|, memory

leaks [HLL20), (GXM15 LHO1S]|, and buffer overflows [SDH14]. The category of errors

here has a large overlap with the category of errors that a static analysis can catch.

. Program Optimization: A program could potentially be optimized based on the
results of a static analysis. For example, static analysis can help identify dead-code,
common sub-expressions, optimal register allocation, loop optimization opportunities,
etc. This application, however, is the oldest and most well-studied and hence will not

be explored in this thesis.

. Others: There are several other applications of static analysis such as program un-

derstanding, greybox fuzzing, etc. that we don’t discuss in detail here.

For this thesis, we focus our experiments on errors that can cause program crashes such

as null-pointer errors and cast-check errors, as well as automated program repair. However,

our techniques are not tied to a particular application; they benefit the other applications

as well.

2.3 Example

While most of the concepts in this discussion apply to other programming languages, we

specialize to Java static analysis for the rest of this chapter to keep our discussion concrete.
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1 class A {

2 void foo(int option) {

3 Scanner sc = new Scanner (System.in);

4 String userld = sc.nextLine ();

5) B x = null;

6 if (option = = 1){

7 x = new B();

8 }

9 else if (option = = 2) {

10 x = new C();

11 }

1