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ABSTRACT OF THE DISSERTATION

Adapting Static Analysis Tools to Meet User Expectations

by

Akshay Anand Utture

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2023

Professor Jens Palsberg, Chair

Traditionally, static analysis tools for catching program errors and security vulnerabilities

were designed as verification tools. Hence, soundness, the criteria of never missing an error,

was the primary goal. In practice, however, most users are significantly more concerned

about false-positives, analysis times, and repairability than unsoundness; they expect the

tools to have fewer than 20% false-positive warnings and take at most a few minutes to run.

Since most static analysis tools are optional to run, users give up on tools that don’t meet

their expectations. To meet these expectations, a few newer tools have been designed from

the ground up to prioritize these three criteria, but they require a redesign for every static

analysis; they cannot use existing, mature, soundness-focused tools. So the question is: can

we adapt existing soundness-focused static analysis tools to meet user expectations?

This thesis shows that the answer to this question is a yes, by introducing three new

tools, CGPruner, QueryMax, and RLFixer, to address the three criteria users care about

the most: false-positives, analysis time, and automated repair suggestions. The central idea

underlying each of these tools is identifying opportunities where a little soundness can be

traded off for large improvements in these three criteria. These three new tools are designed

ii



as pre-processors and post-processors to a black-box static analysis, and hence are applicable

to many analyses. Our experiments show that they significantly improve the results of several

existing soundness-focused static analysis tools on the three critical user criteria.
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CHAPTER 1

Introduction

The growth in code-base sizes has accelerated rapidly over the last few decades. For ex-

ample, the Linux kernel has over 28 million lines of code [Lin23], the Facebook website

has over a 100 million [DFL19], and Google’s monolithic code repository has over 2 bil-

lion [PL16]. The frequency of code changes has grown just as rapidly. An empirical study

of open source developers reports that the average developer makes at least one commit per

day [KRS13]. Likewise, Google reports more than 20,000 commits a day to their monolithic

code-base [SSC18].

Maintaining code quality and correctness in this turbulent ocean of software is becoming

increasingly challenging. We need automated tool support to catch software errors that could

lead to crashes or expose security vulnerabilities. Over the years, automated code-quality

tools like static analysis tools, dynamic analysis tools, fuzzers, symbolic execution tools, and

model checkers have received increasing adoption, with static analysis being one of the most

popular categories. Static analysis tools can analyze code without running it and can catch

a variety of errors such as security vulnerabilities [TPF09a], memory-access errors [HJP08],

resource-leaks [KSS21a], and concurrency bugs [BGO18]. Some prominent examples of static

analysis’ popularity can be seen with the Coverity Scan tool, which has seen over 600,000

of its warnings fixed by various open-source projects [Syn17], and the Infer tool [CDD15],

which has seen over 100,000 of its warnings fixed by developers at Meta alone [DFL19].

So what are the primary design criteria for a static analysis tool? Traditionally, static

analysis tools for catching program errors were designed as verification tools. In other words,

1



the main goal was to give a mathematical proof that a program was free of a certain error

or security vulnerability. Hence, whenever some runtime behavior is infeasible to capture

statically (as is often the case [Ric53]), these tools choose to over-approximate. An over-

approximation includes the effects of all possible executions, but it may also include the

effects of some impossible executions. This over-approximation criteria, known as soundness,

ensures that we never miss an error, but it could produce false-positive error warnings. Such

sound verification tools are important in understanding what kind of theoretical guarantees

we can give about programs. They are also very valuable in practice for safety-critical

software in space-shuttles and power-plants, where a single bug can be catastrophic.

A minority of developers working on safety-critical applications treat static analysis as

a verification tool and care deeply about soundness. But what about large static analysis

deployments, where users apply these tools in their daily programming tasks? Static analysis

teams at Google [SAE18a], Meta [CDD15] and Coverity [BBC10a] find that, in practice, the

most important goal for a static analysis tool is for users to trust the static analysis tool and

like using it. In the words of Sadowski et. al [SAE18a] from Google,

For a static analysis project to succeed, developers must feel they benefit from and enjoy

using it.

This is especially true because, in practice, most static analysis tools are optional for

the user; the user could apply them in their development process, but they aren’t obligated

to. So if a user doesn’t like a static analysis tool, they simply won’t use it. Thus, user

expectations trump all other criteria.

User Expectations from Static Analysis tools

We want to build static analysis tools that users trust and like. But what does the average

static analysis user really care about in practice? And what are their expectations from static

analysis tools? To answer this question, Christakis and Bird conducted a developer survey

2



Pain Points
Wrong checks are on by default
Bad warning messages
Too many false positives
Too slow
No suggested fixes
Difficult to fit into workflow
Bad visualization of warnings
No suppression of warnings
No ranking of warnings
Can’t selectively turn off analysis
Complex user interface
Can’t handle all language features
No support for custom rules
Misses too many issues
Not cross platform

Figure 1.1: Pain points reported by users in Christakis and Bird’s developer study [CB16a],
in decreasing order of importance

[CB16a] with hundreds of users of various static-analysis tools at Microsoft and compiled

a list of fifteen pain points they faced. Fig. 1.1 lists these pain points in decreasing order

of importance. After the first two user-interface based issues, the top three pain points

were the false-positive rate, analysis time, and lack of suggested fixes. Missing errors (i.e.

soundness) appeared at position 14 on the list. To get a better sense of user-expectations on

the false-positive rates and analysis times, they asked users what the maximum threshold of

each they were willing to tolerate. Over 75% of users said that they would not tolerate more

than 20% false-positives or a couple of minutes of analysis time. And as far as repairability

is concerned, 54% of developers expected repair suggestions and were willing to sift through

as many as 10 repair suggestions. Other independent empirical studies on user-expectations

of static analysis tools [BBC10a, JSM13c, SAE18b] have arrived at very similar conclusions

as Christakis and Bird [CB16a]. Thus, in practice, a majority of developers have very high

expectations on the false-positive rate, analysis time and repairability, and soundness is a

low-priority issue.
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Traditional soundness-focused static analysis tools put the very things that users care

about the most as secondary to soundness: the false-positive rate, analysis time and fix

suggestions. Simultaneously achieving soundness, zero false-positives, low analysis time and

fix suggestions is not possible, since there is an inherent trade-off between soundness and the

three user criteria. Tools that chase perfect soundness sacrifice the three user criteria. For

example, several soundness-focused static analysis tools take hours to run on their largest

benchmarks [LTM18a, BKL20a, GFF18a, SWF20, FWS19, SZ20]. Other soundness-focused

tools report false-positive rates [ULK22, KSS21b, BKL20b] beyond 50%. Such static analysis

tools fall short of user expectations and often get in the way.

To better understand why a soundness-focused static analysis gets in a user’s way, imag-

ine the following scenario. A software developer has several features to roll out, and tight

deadlines to meet. They could optionally use a static analysis tool to improve their develop-

ment process. Now imagine Tool A, a sound static analysis that takes two hours to run, has

over 50% false-positive warnings, and no repair suggestions. The developer gets frustrated

with first waiting so long for the analysis to complete, then with the time wasted in examin-

ing false-positive warnings, and finally the few true warnings have no hints for repairs. The

frustrated developer simply ignores the tool’s warnings, checks that their hand-written tests

pass, and then goes ahead to upload their code. In fact, the next time around, the developer

doesn’t even bother to run this optional static analysis tool; it was frustrating and a waste

of their time. Instead, imagine Tool B, an unsound static analysis that runs in a minute, has

almost entirely true warnings, and has fix suggestions for these as well. The developer uses

Tool B regularly, takes its warnings seriously, and fixes most of its warnings. In summary,

even though Tool A was sound and Tool B was not, Tool B results in more errors being fixed

because users actually like using it and as a consequence use it regularly. Thus, meeting

user-expectations on the false-positive rate, analysis speed and repairability ultimately leads

to better quality software in practice.
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Tools that are tailored to User Expectations

Having observed these user-expectations in practice, some newer tools like Infer [CDD15],

Tricorder [SGJ15], and NullAway [BCS19] have been designed from the ground up to prior-

itize low false-positive rates and fast analysis times. The limitations of such an approach is

that we need to redesign every kind of analysis from the ground-up; we can’t use existing

soundness-focused analyses which are well understood and have several mature tools. For

example, there is currently no call-graph analysis that prioritizes low false-positive rates and

fast analysis times. At the same time, a soundness-focused call-graph analysis is a very well

studied topic with several existing, mature tools. It would be great if we can adapt existing

soundness-focused call-graph tools to meet user expectations. So the question we would like

to answer is:

Can we adapt existing soundness-focused tools to meet user-expectations on the criteria

that matter the most to them: the false-positive rate, analysis time, and automated repair

suggestions?

Our approach: Adapt existing soundness-focused tools to meet user expectations

This thesis introduces three new tools, CGPruner, QueryMax, and RLFixer, to adapt

existing soundness-focused static analyses to meet the three criteria that users care about

the most: false-positives, analysis time, and automated repair suggestions, respectively. The

central idea underlying each of these tools is identifying opportunities where a little soundness

can be traded off for large improvements in one of these three criteria.

Figures 1.2 and 1.3 give an overview of how the three new tools function in a static

analysis pipeline. They are designed as pre-processors (QueryMax ) or post-processors (CG-

Pruner and RLFixer) to a black-box static analysis. This design makes them applicable

to many existing analysis tools. QueryMax pre-processes the input program to select a

partial-program, thereby reducing the input size for the existing static-analysis. The post-
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Figure 1.2: Preprocessor workflow (QueryMax )
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Figure 1.3: Post-processor workflow (CGPruner and RLFixer)

processors,CGPruner and RLFixer, prune and enhance the output from existing static anal-

yses.

For each of these new tools, we would like their design to be driven by the following four

Desirable Properties :

1. Black-box: Treat the existing static analysis as a black-box.

2. Tunability: Trade-off between soundness and the three user criteria should be tunable.

3. Preservation: An improvement in one of the three user criteria shouldn’t come at

the cost of the other two.

4. Worthwhile trade-off: Reduction in false positive rate and analysis time should be

significant compared to the traded-off soundness.

The black-box property requires that our solution not be tied to any particular analysis

algorithm or tool implementation, and should be applicable to any tool for a given language;

this gives our solution generality across tools. Further generality can be achieved by being
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applicable to different kinds of static analyses like null-pointer analysis, taint-analysis, cast-

check analysis, etc. Tunability is important because different analyses or use-cases require

different trade-offs between soundness and the three user criteria, and so a user should be

able to control this trade-off. Preservation of all three user criteria are important; hence,

optimizing for one shouldn’t deteriorate the others. Finally, the trade-off of soundness for

lower false-positives and analysis times should be worthwhile, since soundness is still an

important criteria. We discuss how these four properties apply to each tool in the later

chapters of the thesis. The handful of past research works that try to pre-process an analysis

to improve scalability [AL13] or post-process it to prune false-positives [RPM08, TGP14],

often fail to achieve most of these properties.

Given the problem setting and my approach to tackling this problem, I formulate the

following thesis statement, which I substantiate through the rest of the thesis.

Thesis Statement

Existing soundness-focused static analysis tools can be pre-processed or post-processed to

systematically trade off some soundness for significant improvements in criteria that users

care about the most: fewer false-positives, controlled analysis time, and automated repair

suggestions.

Organization of the thesis

The rest of the thesis is split into four chapters: the first gives some background on static

analysis tools, and the remaining three describe the three new tools, CGPruner [ULK22],

QueryMax [UP22], and RLFixer.
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Chapter 2] Background. In the next chapter, I will introduce the technical details of

how static analysis can be used to catch errors and security vulnerabilities, as well as some

of the challenges in the field.

Chapter 3] CGPruner: Pruning False-Positives from Static Call-graphs. In this

chapter, I introduce a new tool, CGPruner, to improve the false-positive rate in existing

static analysis tools. CGPruner (or call-graph pruner) achieves this by pruning the static call

graph that sits at the core of many static analyses. Specifically, static call-graph construction

proceeds as usual, after which a call-graph pruner removes many false-positive edges but few

true edges. The call-graph pruner is generated through an automatic, ahead-of-time learning

process on a training dataset of call-graphs. We added such a call-graph pruner to a software

tool for null-pointer analysis and found that its false-positive rate decreased from 73% to

23%.

Chapter 4] QueryMax: Fast and Precise Application Code Analysis using Partial

Libraries. This chapter introduces QueryMax, a new tool to control analysis time for an

application code analysis without introducing more false-positives. QueryMax acts as a pre-

processor to an existing analysis tool to select a partial library that is most relevant to the

analysis queries in the application code. The selected partial library plus the application

is given as input to the existing static analysis tool, with the remaining library pointers

treated as the bottom element in the abstract domain. QueryMax catches, relative to a

whole-program analysis, 87% of its errors, with a 0% false-positive rate and a geometric

mean speedup of 10x.

Chapter 5] RLFixer: Automated Repairs for Resource Leak Warnings. In this

chapter, I discuss the design of RLFixer, a specialized repair tool that generates high-quality

fixes for resource leaks identified by any resource-leak static analysis. A major challenge

for the resource-leak repair problem is that it is at least as hard as compile-time object
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deallocation, a well-known hard problem for compilers. RLFixer tackles this challenge using

a new analysis, called resource escape analysis, that separates out the decidable fixes and

generates correct repairs for them. RLFixer is demand-driven and hence only analyzes

statements relevant to the leak, thereby keeping overhead low. When applied to five popular

Java resource-leak detectors, RLFixer can generate repairs for a majority (66%) of their

warnings with a 14 second repair time and a fix-correctness of 95%.
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CHAPTER 2

Static Analysis Background

In this chapter, I shall introduce some basic concepts about static analysis and give a broad

overview of the main challenges in the field. Readers who already understand static analysis

well can skip to the next chapter.

2.1 Basic Concepts

We start off this chapter by discussing some basic concepts about static analysis.

Over-approximation and under-approximation. A static analysis used in the context

of code-quality improvement typically aims to statically compute all information about a sin-

gle kind of error across the program. For example, a null-pointer analysis would compute all

pointers that could point to null and be dereferenced. However, Rice’s theorem [Ric53] shows

that most non-trivial properties that static analysis tools reason about, such as null-pointer

information, are undecidable. Even in programs where it is decidable, computing perfectly

accurate information is often prohibitively computationally expensive. Hence, static anal-

ysis tools can resort to either over-approximating or under-approximating or both. An

over-approximation includes the effects of all possible executions and hence never misses an

error, but it may also include impossible executions, and this could produce false-positive

error warnings. An analysis that perfectly over-approximates is said to be sound. An under-

approximation only includes effects of executions that are actually possible, but it may miss

out on some of the possible executions, and hence could miss some errors (false-negatives).
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Precision and Recall. The over-approximation and under-approximation of a static anal-

ysis are quantified using precision and recall respectively.

Precision is the ratio of true-positive errors to the total number of errors output by the

static analysis. Precision can also be thought of as true-positive rate. Recall is the ratio

of true-positive errors output by the static analysis to the ground-truth errors. A perfectly

sound analysis has 100% recall.

Precision =
|True-positive errors|
|Total errors by analysis|

Recall =
|True-positive errors|
|Ground-truth errors|

Getting an accurate ground-truth is typically challenging. Researchers have used manual

programmer annotation, results from running the program, or the results of a reference

tool as approximations for the ground-truth. Each of these have their own advantages and

problems, and the best source of ground-truth may depend on the specific benchmark-set

and analysis.

Inter-procedural and Intra-procedural analyses. A static analysis is intraprocedural

if it analyzes a method in isolation. A static analysis is interprocedural if it models effects

and dependencies across method calls. A special case of an interprocedural analysis is a

whole-program analysis, which analyzes the whole program as one and captures all the

inter-procedural effects in the program. Researchers have shown that an interprocedural

analysis is often needed for accurate static analysis results on most real-world programs.

Data-flow and Control-flow. Control-flow is the order in which statements of an im-

perative program are executed. An intra-procedural Control-Flow Graph (CFG) represents

this control flow as a graph with the instructions as nodes and edges between instructions a

and b if b appears immediately after a in some execution. For example, for code of the form
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(S0; if(a) S1; else S2;), there will be one edge from S0 to the if statement, and two

outgoing edges from the if statement: one to S1 and the other to S2. An inter-procedural

control-flow graph needs to additionally depict the targets of method calls.

Data-flow represents the flow of data through the nodes of the control-flow graph. The

kind of data we are interested in depends on the analysis. For example, for a null-pointer

analysis on the program (x = null ; y = x), the data we are interested in is the null value

and it flows from x to y.

Both data-flow and control-flow are typically over-approximated in static analysis. Hence,

if control can flow in two directions depending on the input, the control-flow graph shows

that both are possible. Similarly, if two data values flow into a given node, we assume that

the node can potentially get both values.

Static Single Assignment. Static Single Assignment or SSA is a property of an IR

(Intermediate Representation) that it requires each variable to be assigned once. Static

analysis tools often transform code into SSA form before analyzing it because it simplifies

the analysis passes significantly. Source-code variables that have multiple assignments are

split into multiple variables in the SSA form, each with a single assignment. Instructions

in SSA also often have a single operation with operands being variables and constants (no

complex expressions).

2.2 Applications of Static Analysis

Here are some of the applications of static analysis:

1. Security: Security is the application that has gained the most interest recently. Static

analysis is especially useful here since security vulnerabilities will not show up during

unit testing. Some of the most common and severe security vulnerabilities such as

SQL-Injection, Cross-site scripting, etc. can be identified with a static taint anal-
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ysis [TPF09a]. Some other kinds of vulnerabilities can be cast as static type-state

analysis [FYD08] problems.

2. Preventing program crashes: Errors such as null-pointer warnings, resource leaks,

buffer-overflows, etc. can cause a program to crash, and occasionally also cause security

vulnerabilities. Static analysis can identify and warn programmers of such errors at

compile time [BCS19, KSS21a].

3. Automated program repair: Static analysis results can enable automated repair

tools for certain kinds of errors such as null-pointer errors [LHO22, XSY19], memory

leaks [HLL20, GXM15, LHO18], and buffer overflows [SDH14]. The category of errors

here has a large overlap with the category of errors that a static analysis can catch.

4. Program Optimization: A program could potentially be optimized based on the

results of a static analysis. For example, static analysis can help identify dead-code,

common sub-expressions, optimal register allocation, loop optimization opportunities,

etc. This application, however, is the oldest and most well-studied and hence will not

be explored in this thesis.

5. Others: There are several other applications of static analysis such as program un-

derstanding, greybox fuzzing, etc. that we don’t discuss in detail here.

For this thesis, we focus our experiments on errors that can cause program crashes such

as null-pointer errors and cast-check errors, as well as automated program repair. However,

our techniques are not tied to a particular application; they benefit the other applications

as well.

2.3 Example

While most of the concepts in this discussion apply to other programming languages, we

specialize to Java static analysis for the rest of this chapter to keep our discussion concrete.
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1 class A {
2 void f oo ( int opt ion ) {
3 Scanner sc = new Scanner ( System . in ) ;
4 S t r ing use r Id = sc . nextLine ( ) ;
5 B x = null ;
6 i f ( opt ion = = 1){
7 x = new B( ) ;
8 }
9 else i f ( opt ion = = 2) {
10 x = new C( ) ;
11 }
12 x . bar ( user Input ) ;
13 }
14 }
15
16 class B {
17 void bar ( S t r ing use r Id ) {
18 System . out . p r i n t l n ( "UserID : " + use r Id )
19 }
20 }
21
22 class C extends B {
23 void bar ( S t r ing use r Id ) {
24 St r ing query = " s e l e c t ∗ from T where user_id =" + user Id
25 Resu l tSet r s = Sq lUt i l . stmt . executeQuery ( query ) ;
26 Sq lUt i l . p r i n tRe su l tSe t ( r s ) ;
27 }
28 }

Figure 2.1: Java program snippet with a potential SQL Injection vulnerability and null-
pointer error. We can catch these using static analysis tools.
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Figure 2.2: Data-flow graph of a null-pointer analysis for method foo in Fig. 2.1.

We will use the Java code-snippet from Fig. 2.1 as the running example in this chapter to

illustrate how we analyze code using static analysis. The figure has 3 classes A, B and C,

with C being a subclass of B. Execution starts at the foo method, where a user-id is read

and passed in the method call to bar. Classes B and C both have a bar method. In B.bar

we just print the user-id, whereas in C.bar we make an SQL query with the user-id and then

print the result.

Let us now look at three analyses, a null-pointer analysis, a call-graph analysis and a

taint analysis, for the code snippet from Fig. 2.1

Null Pointer Analysis. A null-pointer analysis tracks the flow of null values through the

program, and flags method calls or field accesses where the receiver object could be null. 1

For example, in Fig. 2.1 the variable x is initially assigned to null. Then, if option is either

1 or 2, x gets assigned to some object. However, if option has any other value, x remains

null, and the method call on line 12 throws a null pointer exception.

Fig. 2.2 gives the data-flow graph for an intra-procedural null-pointer analysis of foo.

There is one node for sc. There are 4 nodes for x, (x1, x2, x3, x4), one for each of the 4

definitions of x on lines 5, 7, 10, and 12 respectively. (In SSA form, these would anyways be

4 different variables). We leave out the userId node for brevity. There are only two possible

1It additionally tracks null values originating from uninitialized fields, but we will ignore these kind of
null values for now.
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values in this analysis: non-null and maybe-null. Only nodes that are guaranteed to not be

null get non-null ; all others get maybe-null. sc, x2 and x3 clearly get assigned a non-null

value, whereas x1 gets assigned a maybe-null value. x4 potentially gets its value from x1,

x2 or x3, depending on the value of option; hence we add an edge from each of these to

x4. Solving for the data-flow here simply involves taking a transitive closure over the graph.

Here are the results from the transitive closure.

• x1 : maybe-null, x2 : non-null, x3 : non-null, x4 : maybe-null, sc : non-null

The results for x1, x2, x3 and sc are trivial. x4 gets its value from both, maybe-null and

non-null values. Therefore, there are executions where x4 could be null, and since we are

performing an over-approximation, we set its final value as maybe-null. In the general static

analysis framework, the set of values are organized in a lattice, and to over-approximate, the

result of merging two values is given by the common ancestor of the values in the lattice. A

more in-depth discussion of this lattice structure can be found here [ALS06].

Finally, since x4 (i.e. x at line 12) can be null, the method call x.bar(userInput) is flagged

as a null-pointer error.

Call Graph Analysis. A call graph is a graph of all possible method calls in the program.

It is necessary for any inter-procedural analysis. Call-graph analysis in Java is hard because

of Java’s dynamic dispatch feature (also called virtual method calls). Java programs are

object-oriented, with a class hierarchy where a subclass inherits all the methods and fields of

its super class. If a subclass implements the same method as its super class (called function

overloading), we get dynamic dispatch for method calls, where the target of the call depends

on the type of the receiver object. For example, in Fig. 2.1, the receiver object in the method

call to bar is x. The declared type of x is B, but at runtime x could point to either a B

object, or a C object, and they both implement bar. Hence, the runtime target of the

method call to bar on line 12 depends on the runtime type of the receiver object x. An
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Figure 2.3: Data-flow graph of a static taint analysis for the code in Fig. 2.1.

accurate call-graph analysis estimates a tight over-approximation on the runtime types in

order to get accurate method call targets and build an accurate graph of method calls.

Static Taint Analysis. Next, let us look at an inter-procedural taint analysis for the

SQL-Injection vulnerability in Fig. 2.1. A static taint-analysis takes as input an untrusted

source, such as the user input on line 3, and a vulnerable sink, such as the SQL query on

line 25. It then outputs whether there is a path in the program from the source to the sink

without any sanitization code in between. The taint source and sink have to be specified, but

the set of potential sources and sinks for a given language and framework are fixed; hence

the analysis writer can define this upfront.

Fig. 2.3 gives the data-flow graph for the analysis (also called taint-propagation graph). In

addition to modeling the intra-procedural edges, this graph also includes the two call-graph

edges from the bar method call to C.bar and B.bar. There are edges to both methods because

the call-graph analysis could not statically estimate the target, and an over-approximation
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strategy requires us to add both edges. The only taint source here is the call to sc.nextLine().

Solving for the data-flow here simply involves taking a transitive closure over the graph. Since

there is a tainted-path to the executeQuery sink node, the transitive closure will mark the

executeQuery sink as tainted, and the analysis gives an alarm for a possible SQL injection

vulnerability.

We explained some examples of data-flow and control-flow analysis very briefly and infor-

mally here. For a more comprehensive and formal discussion, refer to the following textbook

[ALS06].

2.4 Challenges and Limitations

We touched on some of the main challenges in static analysis briefly in the last section, but

we discuss them in more detail here.

Soundness

Soundness is the ability to perfectly over-approximate the set of possible executions (i.e.

100% recall). It is valuable for verification because if we can be sound in our analysis of

an error, and there are no static analysis warnings, we can guarantee the absence of that

error in all possible program executions. While it is possible to achieve perfect soundness in

theory, there are a few obstacles to achieving it in practice.

1. Reflection: Reflection allows a developer to examine or modify the behavior of meth-

ods and classes at runtime. For example, a user can call methods by their name, create

objects given their class names, and access object fields given their name. The chal-

lenge is that this dynamic behavior is hard to model statically. If the reflection uses

user-input, it may even be impossible to model this behavior statically.

Nevertheless, there are two major approaches to partially resolve reflective calls. The
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first is static resolution, which uses points-to and type-cast information to narrow down

the possible reflection targets [LWL05]; the targets can be further narrowed using some

user annotations. The second method involves recording the method calls dynamically

(i.e. at runtime), and augmenting the static analysis with any missed edges [BSS11].

The first method is an over-approximation which introduces many false-positive edges,

whereas the second method is an under-approximation which may miss some reflection

edges (i.e. false negatives).

2. Native code: The Java Native Interface (JNI) allows a Java program to call native

code (external methods from a binary). Since this native code is often unavailable at

compile time or is hard to analyze with the Java code, the static analysis may miss

out on its effects.

3. Dynamic class loading: Java programs can load classes at runtime, using a feature

called dynamic class loading. Since these classes may be unavailable at compile time,

it is difficult to model their behavior statically.

Given that these features make a perfectly sound static analysis (i.e. 100% recall) infea-

sible, practitioners opt for a soundy analysis [LSS15a], which is a sound analysis except for

these features.

This inability to reach 100% recall adds indirect support for our idea of trading off recall

(i.e. soundness) for the criteria that users care about. Not only is perfect soundness not

important to users, but it is also infeasible to achieve in practice.

High Precision (fewer false-positives)

Christakis and Bird’s developer survey [CB16a] shows that static analysis tool designers

should aim for at least 80-85% precision. Since most vanilla static analysis implementations

don’t meet this goal, designers often use one or more of these strategies to improve precision:
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1. Improving Sensitivity: The most well-studied strategy is to improve sensitivity,

which means having a more fine-grained modeling of some aspect of the program. Field-

sensitivity [LH03a] models field accesses more precisely, context-sensitivity [Shi91]

models the calling context more precisely, flow-sensitivity [DD12] models the control

flow more precisely, and path-sensitivity [DDA08] models branch conditions more pre-

cisely. We elaborate on each of these sensitivities later in this section. Improving

sensitivity often improves precision, but it comes at the cost of (often significant) in-

creased analysis time. The advantage of this precision-improving strategy over the rest

is that it preserves soundness. No recall is lost. All other techniques will trade off some

recall.

2. Machine-learning based methods: Several researchers have proposed using ma-

chine learning to prune false-positives from static analysis results [RPM08, TGP14,

FSS18, ULK22]. The typical workflow is as follows: collect static analysis results, get

ground-truth labels for the results (using manual annotation, dynamic analysis, etc.),

design a feature-set for the results (or learn the features using neural networks), and

then train a classifier on these labeled results to identify false-positives.

3. Combining with dynamic analysis: This third strategy involves using the results

from a dynamic analysis (see Dynamic Analysis in Section 2.5) to refine the results of a

static analysis. The dynamic information is used to either replace the static information

for a part of the analysis [GFF18b], or it can be used to prioritize alarms [CHR21,

AKG07]. The main drawback of this approach is the same as that faced by dynamic

analysis tools: we may not have test inputs, the inputs may take too long to run, or

the inputs may not have good coverage of the code.

4. Alarm correlation: Two static analysis alarms can be correlated if they share a

root cause. Correlated alarms can introduce false-positives because the second alarm

examined in a correlated pair is often already fixed (because of the fix for the first
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alarm) and hence becomes a false-positive. Identifying alarm correlations can help

reduce these false-positives, because one can show just one alarm for every correlated

pair [LLK17, LS10].

5. Heuristic pruning: One could come up with heuristic rules for pruning false-alarms.

These heuristics are often specific to a language, platform and error type, but they are

simple to implement and can work well in practice.

Let’s take a more detailed view of context-, flow-, path-, and field-sensitivity.

• Context-sensitivity: A context-sensitive analysis considers the calling context of a

function when analyzing it. The two main types of sensitivity are call-string sensi-

tivity and object-sensitivity. Call-string sensitivity [Shi91] maintains a separate con-

text for every unique caller method. For example, in Fig. 2.1 we would analyze a

separate copy of foo for every different caller. This would prevent the merging of

information from different callers. Object sensitivity [MRR05] maintains a separate

context for every unique receiver object. Object sensitivity is especially effective for

analyzing libraries (such as the Collections library) in Java. Since context-sensitivity

significantly increases analysis time, researchers have attempted to selectively apply

context-sensitivity to the methods that need it the most [LTM20].

• Flow-sensitivity: A flow-sensitive analysis takes into account the order of statements

in a program, whereas a flow-insensitive analysis simply treats a method as a set of

statements with any possible order. Code, when analyzed in SSA form, automatically

gets partial flow-sensitivity.

• Path-sensitivity: A path-sensitive analysis records the branch condition when ana-

lyzing code in a branch. For example, in the following code

(if(x != null) x.toString();), when analyzing the branch with x.toString, a
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path-sensitive analysis tracks that x is not null, and hence rules out a null-pointer

error.

• Field-sensitivity: A field-sensitive analysis models field accesses in a fine-grained

fashion. In the data-flow graph, it maintains a separate node for every instance’s field.

Hence, if there are I instances of a class which has F fields, it would maintain I ∗ F

nodes for the fields of that class. Field insensitive analyses are split into two types:

field-based analysis and field-independent analysis. A field-based analysis maintains

just one node per field, and merges information from all the instances that use the field.

A field-independent analysis distinguishes between different instances, but merges the

information from all the fields of a given class or struct. This saves analysis time in

C/C++, where fields are accessed by offsets from the object pointer. In Java, however,

since fields are accessed by their names, it makes no sense to use a field-independent

analysis. Hence, a field-insensitive in Java often specifically refers to a field-based

analysis.

Data-structures such as arrays and hash-maps present another challenge to high-precision

analysis. The main challenges with array is that it could have an unbounded number of

elements (could be unknown statically), and we need to accurately identify the relationship

array indices and the actual size of the array. A first approach is to solve this is array

smashing [BCC02], where we over-approximate the whole array with a single element in the

analysis; any read or write could go to any index in the array. This solution is sound but it

compromises on precision because information from different array indices gets merged. Some

advanced techniques improve precision by partitioning the array and using a different element

in the analysis for each partition [GRS05a]; this is more precise than array smashing, but it

still merges some information. More complex data-structures such as hash-maps, linked-lists

and trees are even harder, and have no good solutions apart from a corresponding version

of array smashing.
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Analysis time

Depending on when the static analysis runs there could be different timing expectations: in

an IDE it needs to run in seconds, in a code-review platform it needs to run in minutes,

and in a nightly-build scenario, it needs to run in hours. However, Christakis and Bird’s

developer survey [CB16a] show that most users expect the static analysis to run in the IDE or

code-review platform, thereby giving us strict time requirements. Computation speeds have

increased over the last two decades, but so have codebase sizes and library dependencies;

analysis time continues to be a concern. It is especially a concern for large programs with

millions of lines of code, or a large collection of programs, like an app-store with a million

apps. Without efficient analysis strategies, these large cases could take days or even years

of compute time. There are 4 popular strategies to improve analysis time:

1. Efficient analysis: Efficient set propagation algorithms, efficient set implementations

and propagation-graph simplifications significantly improve analysis speeds [LH03b].

2. Decrease analysis precision: Decreasing analysis precision by using more coarse-

grained abstractions generally decreases time complexity, and hence analysis time. For

example, one can merge the sets used to represent different allocation sites, or use static

declared types instead of types computed using a data-flow analysis. Dropping context-

, flow-, path-, and field-sensitivities also trade-off precision for a quicker analysis. The

main disadvantage of this approach is the reduced precision (i.e. increased false-positive

rate). Researchers have tried to mitigate this by selectively reducing sensitivity only

when it doesn’t significantly affect precision [LTM20, RRL99].

3. Demand-driven analysis: A demand-driven analysis [SGS05a, HT01] only computes

the analysis results for a single query (i.e. demand). Since this analysis computes

much less information than a whole-program analysis it is significantly faster when the

number of queries are small. However, it adds overhead which is proportional to the
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number of queries, eventually making it slower than a whole program analysis. Thus

it is most effective for quick results on a single or small number of queries.

4. Partial-program analysis: A partial program analysis analyzes only a part of the

program isolation, while using a model or some assumptions to account for the effects

from the rest of the program [AL13, RSX08, CC02, UP22].

5. Incremental analysis: Codebases often evolve incrementally, and rerunning an anal-

ysis after every update can do redundant analysis on the unchanged code. An incre-

mental analysis [AB14, LH22] gets rid of this redundancy by caching the results of a

static analysis and updating its results to incorporate incremental code changes. The

assumption here is that if the incremental code change is small, the analysis result

update will also be relatively small and much cheaper than a fresh whole program

analysis.

The issues of soundness, precision and analysis time are intertwined because trying to

maximize two of the metrics often comes at the cost of the third. The challenge is to strike

the right balance between these three.

Automated Repair

As Christakis and Bird’s developer survey [CB16a] pointed out, users expect automated

repair suggestions for static analysis warnings, and it was the third most important point on

the list. However, there are two major hurdles to achieving this. Firstly, we need to track the

chain of variables that propagated an error. This chain, called the provenance information,

is often computationally expensive to generate. Secondly, we often do not have an accurate

specification for what the correct program behavior should be. For example, a null-pointer

warning was given at the call to bar in Fig. 2.1. What should the correct fix be? There are

at least 3 options:
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1. Place a non-null check before the call to bar.

2. Add an else branch in foo, where x is assigned to a new object.

3. Add an else branch in foo, with a user-defined exception.

Picking the correct option depends on the intention of the programmer, and could be hard

to guess correctly. An automated tool would need some kind of specification to pick the

correct option, and writing such a specification is often quite hard for a programmer; it is

often harder than making the fix itself.

There are some partial solutions to this repair problem for some kind of static analysis

warnings [HLL20, LHO22] but for the most part, this is an open research problem.

Ranking of Warnings

All warnings given by the static analysis are not equally important; ranking the alarms by

importance will allow users to examine the most important ones first. This was reported

as the ninth most important feature in the list of pain-points from Fig. 1.1. One simple

approach to this problem is to rank warnings by their severity. In this case, an expert

gives a severity score for each analysis, and the warnings from multiple analyses are ranked

by this severity score. Another approach to rank warnings is by their probability of being

false-positives [KE03, JKS05]. Taking this a step further, one can incorporate the user’s

feedback in real time about which of the examined warnings were false-positives, and re-

order the rankings of the remaining warnings accordingly [RKH18a, MZN15a]. For example,

if warning-1 was marked as a false-positive by the user, and warning-2 has the same root

cause as warning-2, we can downgrade warning-2 because it is also likely to be a false positive.
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Dealing with Libraries

An important challenge for Java is its extensive ecosystem of libraries. The standard library

and third party libraries are very large, often making the whole-program size several fold

bigger than just the application code. Furthermore, library methods often use Java Gener-

ics and get called from multiple application methods; this necessitates over-approximation,

which in turn can lead to more false positive warnings.

There are two main approaches to minimize the increase in analysis time and false-

positive rate caused by libraries. The most effective approach is to manually write stubs for

common library methods that capture the effects of analyzing the library. The stubs are

usually quite small and context-sensitively analyzing them prevents loss of precision. The

downside, however, is the manual effort by a static analysis expert in writing correct stubs.

A second approach is to create an analysis summary for the library, and then use this library

summary instead of the actual library for the analysis [AL13, RSX08, UP22].

Android Static Analysis.

Static analysis has been used extensively to analyze Android applications. Getting Java

static analysis tools to work on Android requires us to additionally model the life-cycle

methods in Android (such as the onStart or onPause methods) as well as event call-backs

(such as when a user presses a button). Today, most popular Java analysis frameworks such

as WALA, Soot or Infer provide support to automatically model these aspects of Android

programs. These frameworks build a call-graph that incorporates these additional features,

and we can build our tools on top of this call-graph. Hence, even though this thesis focuses

on the analysis of regular Java programs, its techniques can easily translate to Android

programs using the support provided by these analysis frameworks.

Other programming frameworks such as Java enterprise applications or Java web appli-

cations require similar modeling of features outside of the code that can affect the data flow
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and control flow.

Limitations of the technique

Static analysis tools only catch a certain class of errors, and cannot ensure that the program

is free of other kinds of errors. They generally target the kind of errors that are common

to all programs, and don’t require the tool to know the logic of the programmer’s intention.

For example, in a banking application, a static analysis tool can catch all null-pointer errors

and resource leaks, but it cannot check if the programmer’s code deducts the correct amount

of bank fees for a transaction.

2.5 Other Program Verification Techniques

Next, I discuss some other program verification approaches to give the reader a broader

understanding, as well as distinguish static analysis from these other approaches.

1. Symbolic execution: Symbolic execution [PR10] involves running an interpreter for

the program with symbolic values for inputs rather than actual inputs. The values of

expressions and branch conditions can then be expressed in terms of these symbolic

values. Finally, one can generate a query for an error condition by asking whether there

exist any symbolic values that could satisfy the error condition. Typically, this query

is solved using a model checker [Cen05], which uses a SAT [MMZ01] or SMT [DB08]

solver in the backend.

The advantage of this approach is that it models all properties of a program and can

be used to verify arbitrary properties and assertions. However, the main downside of

this approach is that it scales very poorly; often, analyzing even a thousand lines of

code times out. Furthermore, verifying correctness with this approach involves writing

accurate mathematical specifications, which is hard for both users as well as automated
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tools.

2. Linters: Linters [web01] parse a software to catch stylistic errors or simple bugs. They

are typically very local and they only analyze a single line or a couple of lines at a

time. They are often simple to write and run very quickly, but unlike static analysis

tools, they often cannot catch errors that span multiple lines or methods.

3. Type checking: Type checkers verify and enforce type-based constraints over values.

For example, a type-checker can statically check that a variable declared to be an

integer type only holds integer values. More complex type systems can check a broader

set of type-based conditions.

Type checkers are often incorporated into standard compilers because they are efficient,

accurate, and their errors are easily understood by programmers. However, the type

errors that most popular type-checkers catch have only a small intersection with the

kind of errors tackled by static analysis tools.

4. Dynamic Analysis: A dynamic analysis executes the program on concrete inputs,

and collects runtime information about the program execution. It then flags an error

if the runtime information does not match with an expected value. Popular dynamic

analysis techniques include unit testing, debugging, runtime error detection [NS07],

and fuzzing [PLS19].

The main disadvantage of dynamic analysis is that it can only test a finite number

of input-output pairs. It will leave out all the program execution paths that are not

covered by these finite inputs. A secondary disadvantage is that it is hard to apply in

cases where inputs are not available or the program takes very long to execute.

Note that some researchers use static analysis to refer to any analysis which does not

run the program, including symbolic execution, linters, static type-checking, etc. I, however,
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use static analysis in this thesis to specifically refer to the kinds of analyses discussed before

Section 2.5.
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CHAPTER 3

CGPruner: Pruning False-Positives from Static Call

Graphs

In this chapter, we introduce the first tool, CGPruner [ULK22], which tackles the first biggest

pain point for users: the large false-positive rate in existing static analysis tools. CGPruner

achieves this by pruning the static call-graph that sits at the core of all inter-procedural

static analyses. To demonstrate the impact of this call-graph pruning on a downstream

analysis, we added CGPruner to a null-pointer analysis, and decreased its false-positive rate

from 73% to 23%.

3.1 Overview

The Problem. Christakis and Bird [CB16a] interviewed developers about program anal-

ysis tools and they concluded:

Program analysis design should aim for a false-positive rate no higher than

15–20%.

Other empirical studies have found similar results [BBC10a, JSM13c, SAE18b]. Until now,

this goal has been particularly hard to achieve for static analyses.

As a motivating experiment, we tried Wala [WAL15], which is one of the best tools for

static analysis of Java bytecode, on a subset of the NJR-1 benchmark suite [PL18]. For

each benchmark, we compared the edges in the static call graph with the edges found by
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executing the benchmark. With a context-insensitive analysis, Wala has a false-positive rate

of 76%, while with a better but also much slower context-sensitive analysis, the false-positive

rate is 70%. Those results are disappointing though we must emphasize that call graphs are

usually fed to client tools rather than directly to developers. So, we did a second experiment

to see how the high false-positive rate of call-graphs affects client tools. Specifically, we

implemented a version of a static analysis for warning about null-pointer problems [HJP08]

that is a client of the context-insensitive call graphs produced by Wala. We ran this tool on

the same subset of NJR-1 and again had disappointing results: 60 bugs among 223 warnings,

on average, so a false-positive rate of 73%. We can easily imagine how a developer will tire

of investigating warnings that in nearly three of every four cases are false alarms. The false

alarms have several causes, but an important cause is the high false-positive rate in the

underlying static call graph. Hence, we can also see a glimmer of hope: if we can reduce

the false-positive rate of static call-graph constructors, we may be able to move client tools

closer to the goal of a false-positive rate of 15–20%.

Our Idea. Our approach stems from another conclusion by Christakis and Bird [CB16a]

who reported a preference of developers:

When forced to choose between more bugs or fewer false positives, they typi-

cally choose the latter.

This quote inspired our idea for how to improve the false-positive rate: we will report

fewer bugs but also much fewer false positives. Indirect support for this idea comes from pre-

vious work that showed that practical static analyses aren’t totally sound [LSS15a, SDT20]

and therefore may miss bugs. Thus, developers expect bug reports to be incomplete so

reporting fewer bugs seems acceptable.

We want to reduce the false-positive rate in a modular way that leaves existing call-graph

constructors unchanged. This brings us to our idea of a call-graph pruner that statically
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post-processes a static call graph by removing many false-positive edges but few true edges.

The challenge is to strike a balance between being aggressive in removing false-positive

edges but not so aggressive that no true edges remain. Additionally, we have to do better

than removing edges at random because random removals will leave the false-positive rate

unchanged.

How can we design a call-graph pruner?

Our Approach. We execute an automatic, ahead-of-time learning process on results from

both a static and a dynamic call-graph constructor. The outcome is a call-graph pruner

that works as follows. The call-graph pruner determines the probability that an edge in the

call graph is a false positive, and if this probability is above a threshold, then the call-graph

pruner removes the edge. We can vary this threshold and thereby tune the call-graph pruner.

In contrast to previous work on using a dynamic analysis to improve a static analysis

[GFF18b, AKG07, CHR21], we use the dynamic call-graph constructor only in an ahead-

of-time training phase and only on a training set of programs. Once the training phase

has produced a call-graph pruner, the combination of the call-graph constructor and the

call-graph pruner is itself a static analysis, as illustrated in Figure 3.1.

Our Contributions and the Rest of the Chapter. We begin with an example of how

a call-graph pruner works (Section 3.2) and then we detail our contributions:

• We present the design (Section 3.3) and implementation (Section 3.4) of a tool that

produces call-graph pruners.

• We show experimentally (Section 3.5) that adding a call-graph pruner to a client tool

can significantly decrease the false-positive rate, in one case from 73% to 23%. Specifi-

cally, we added a call-graph pruner to the tool for warning about null-pointer problems,
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Balanced call-graph
construction tool

new

Figure 3.1: Overview of our technique

after which we got 15 bugs among 20 warnings, on average. Thus we reported 45 fewer

bugs but also 158 fewer false positives.

• We show experimentally (Section 3.5) that the overhead of adding a call-graph pruner

is 18% of the original call-graph analysis time.

We end with a discussion of related work (Section 3.6).

Significance. Call-graph pruners improve static call-graphs significantly and thereby make

client tools more useful to developers.

3.2 Example

Now we give an example of a call-graph pruner, how it works on a example call graph,

and how it affects a client analysis for warning about null-pointer problems. Our example

program fragment in Figure 3.2, has three classes A, B, C, each of which has a method foo,
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...
A x = getObjC();
x.foo(x.f);

class A {

    A f;
    foo(A a){
       a.toString();
 }}

class B extends A {

    foo(A b){
       b.toString();
    }
 }

class C extends B {

    foo(A c){
       c.toString();
    }
 }

DECISION TREE

dest-node-in-deg > 2.5

src-node-out-deg > 2.5 10%

55%

70%

STATIC-ANALYSIS CALL-GRAPH

70%

T

T

F

F

dest-node-in-deg > 1.5

40%

F T

40% 10%

Figure 3.2: Example call graph and call-graph pruner

and a main method that contains a method call x.foo(x.f). The call to getObjC() returns

an object of type C, which is then assigned to the variable x. On the next line, the access x.f

happens, but the field A.f may be uninitialized hence null. Thus the call x.foo(x.f) may

pass null as an argument to C.foo, which, in turn, at the call c.toString(), may throw a

NullPointerException. The program has two additional methods, including getObjC, that

we omitted from Figure 3.2.

Null-Pointer Warnings. As we mentioned in Section 3.1, we implemented a version of

a static analysis for warning about null-pointer problems. This analysis finds null-pointer

problems that stem from uninitialized fields, like the problem with c.toString() that is

caused by the uninitialized field A.f. If we run this tool on the example program, we get

three warnings, one for each call of toString in the foo methods. One of them is a true

warning but the other two are false alarms. Let us investigate how that could happen and

what a call-graph pruner can do about it.
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Call Graph. The null-pointer tool uses a static call-graph constructor that built the call

graph shown in Figure 3.2. In a call graph, each node is a method, and each edge is a

directed edge from one method to another. Such an edge represents a call that may happen

during the execution of the program.

The call-graph constructor uses a data-flow analaysis to analyze the entire program,

including the methods that we omitted from Figure 3.2. We skip the details of how this

works and instead we focus on the constructed call graph. Specifically, in Figure 3.2 we

focus on the four nodes for the main method, A.foo, B.foo, and C.foo. The call graph has

an edge from the main method to each of A.foo, B.foo, and C.foo, as well as an edge some

other method to B.foo and a couple of edges from some other methods to A.foo. The edge

from main to C.foo is a true edge, while the edges from main to A.foo and from main to

B.foo are false positives. The false call-graph edges from main to each of A.foo and B.foo

can arise from some of the challenges discussed in Section 2.4.

The Null-Pointer Analysis in more Detail. Based on the call graph in Figure 3.2,

the null-pointer analysis derives that x.foo(x.f) may call any of A.foo, B.foo, and C.foo.

Then the null-pointer analysis uses the rule that if a field is not initialized by the end of a

constructor, it is marked as Uninitialized; and if an Uninitialized field is dereferenced, the

analysis gives a null-pointer warning. Thus, the analysis concludes that each of the foo

methods may be passed null as an argument, and thus it issues a warning for every one of

those methods.

Call-Graph Pruner. The goal of a call-graph pruner is to remove edges from the call-

graph, preferably many false-positive edges and few true edges. The key component of a

call-graph pruner is a classifier that computes the probability that a call-graph edge is a

true-positive. Based on that probability, a call-graph pruner will decide whether to keep

or to remove the edge. Figure 3.2 shows a classifier that is represented as a decision tree.
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Each internal node of the decision tree asks a true-false question about a call-graph edge.

The recursive decision process begins in the root of the decision tree; if the answer to the

question at the root is false, we move to the left subtree, while if the answer is true, we move

to the right subtree. When we reach a leaf, we find the probability that the call-graph edge

is a true-positive. The probabilities computed for each call-graph edge in this fashion are

marked on the call graph in Figure 3.2. Based on these probabilities, we will decide whether

to keep or remove the call-graph edge.

The decision tree in Figure 3.2 has three internal nodes that are labeled with questions

about dest-node-in-deg, which is the in-degree of the destination node of the edge, and about

src-node-out-deg, which is the out-degree of the source node of the edge. For example,

the edge from main to C.foo has destination-node in-degree 1 and source-node out-degree 3.

This gives us the path false-true-false, which assigns the edge the probability 70%. Similarly,

the edges from main to A.foo and B.foo get probabilities 10% and 40%, respectively. The

call graph in Figure 3.2 shows those three probabilities.

Let us set a threshold of 50% for when we deem an edge to be a false-positive: if the

probability of being a true-positive is below 50%, we remove the edge. Then the call-graph

pruner will remove the edges from main to A.foo and B.foo. Hence, the null-pointer analysis

will issue just a single warning, and indeed a true warning, namely for the call of toString

in C.foo.

3.3 Call-Graph Pruners

Now we describe how we use machine learning to produce a call-graph pruner.

3.3.1 Overview

We will use Program to denote the set of Java bytecode programs.
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A call graph G ∈ CallGraph is a multi-graph in which each node represents a method and

each edge represents a potential transfer of control at a method call. Two nodes can have

multiple edges between them because of multiple method calls. Each edge has a label that

identifies the method call site.

We distinguish between two kinds of call-graph constructors that have the same type:

StaticCallGraphConstructor = Program→ CallGraph

DynamicCallGraphConstructor = Program→ CallGraph

Here, an element of StaticCallGraphConstructor constructs a call graph without running the

program, while, in contrast, an element of DynamicCallGraphConstructor runs an instru-

mented version of the program on one or more inputs and examines the output from the

instrumentation.

The key component of each call-graph pruner is a classifier. A classifier C ∈ Classifier is

a function that maps a vector of feature values for an edge to a probability that the edge is a

true-positive. In our case, such a vector has 11 elements that we will define in Section 3.3.3.

Our tool for generating classifiers implements a function of this type:

classifier generator : (StaticCallGraphConstructor×

DynamicCallGraphConstructor×

Set[Program])

→ Classifier

Our classifier generator executes an automatic, ahead-of-time learning process on results from

running both a static and a dynamic call-graph constructor on a training set of programs.

The dynamic call graphs serve as ground-truth for the learning process. We will detail this

learning process in Section 3.3.2.
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Inputs: CallGraph G, Classifier C, Threshold T
let G′ be a copy of G
for every edge e in G do v = the feature values for e

if C(v) < T then
remove e from G′

end if
end for
Output G′

Figure 3.3: Call-graph Pruner

Once we have a classifier, we can use it in a call-graph pruner of this type:

call-graph pruner :

(CallGraph× Classifier× Threshold)→ CallGraph

The algorithm in Fig. 3.3 shows how a call-graph pruner works. Intuitively, a call-graph

pruner uses a classifier to determine the probability that an edge in a static call graph is a

true-positive. If that probability is below a given threshold T ∈ Threshold, the call-graph

pruner removes the edge.

The threshold parameter enables us to explore different levels of aggressiveness in remov-

ing edges. For our example in Figure 3.2, we discussed a threshold of 50% in Section 3.2,

which led to the removal of two edges. We could also use a lower threshold of 20%, which

would lead to the removal of a single edge, namely the one from main to A.foo. The chal-

lenge is to strike a balance between removing many false-positive edges and keeping many

true-positive edges. In Section 3.5 we will show results from an experimental investigation

of how to choose a good threshold.

Notice that we use a static call graph constructor, a dynamic call graph constructor, and

the training set of programs for the sole purpose of generating a classifier, while those items

are no longer needed when we use the call-graph pruner.
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Edge f1 ...  fk Label

e1 10 ... 0.3 1

e2 8 ... 0.7 0

... ... ... ... ...
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Program-1 Program-n
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Dynamic 
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Edge f1 ...  fk Label

e3 7 ... 0.1 0

e4 1 ... 0.6 1

... ... ... ... ...

Compute Features

Static
call-graph

Dynamic 
call-graph

Figure 3.4: Classifier Generator workflow
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3.3.2 Classifier Generator

We cast the edge-pruning problem as a classification problem for which learning a classifier

can be done with machine learning. We proceed in three steps, as shown in Fig. 3.4.

In the first step, we run existing static and dynamic call-graph constructor tools on every

program in the training set (the dataset of programs is described in Section 3.4). The result

is a set of pairs of call graphs: each pair consists of a static call graph and a dynamic call

graph. We use the dynamic call graph as an approximation of the ground truth: if a static

call-graph edge is also present in the dynamic call graph, we view it as a true-positive, and

otherwise as a false-positive.

In the second step, for each program, we construct a table in which each row represents

a static-call-graph edge. Fig. 3.4 illustrates this table. The last column in each row (titled

Label in Figure 3.4) contains a label of 1 or 0, based on whether the edge exists in the

dynamic call graph. The remaining columns (titled f1 to fk) represent the set of features

of the static call-graph edge. The example in Figure 3.2 uses two features: dest-node-in-deg

and src-node-out-deg; we will discuss other features below. We can view each row in the

table as a vector of feature-values. Concatenating the tables of each individual program

gives us a single large training dataset of call-graph edges with ground truth labels. This

training dataset consists of a large number of pairs (xe, ye), where xe is a vector of feature

values corresponding to a static call-graph edge, and ye is a prediction of whether it is a

false-positive or not. Our problem is now expressed in a format where it can be cast as a

machine-learning classification problem [Kot07].

In the third step we run an off-the-shelf machine-learning tool on the table constructed

in second step. The result is a classifier that for any edge assigns a probability that it is a

true-positive. We picked random forests [Ho95] (ensembles of Decision Trees). One might

try other approaches, which we leave to future work. Our goal with this step is to show that

an off-the-shelf machine-learning tool is sufficient to get good results.
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For readers unfamiliar with machine-learning classification, let is a brief overview of the

binary classification problem. Given a large number of examples, R = (xi, f(xi))|i ∈ 1..n,

where xi is a data point (typically a vector of real values), and f(xi) is a binary class label for

the data-point xi, we need to learn a function f ′ that approximates f as closely as possible.

This learned function f ′ is called the classifier. The difficulty in learning a good f ′ is that we

cannot observe the function f we are approximating; we only see the training examples from

R. Different classification algorithms use different assumptions on the space of functions

from which they will choose f ′. For example, a decision tree classifier picks the best f ′ from

the space of all decision trees. Most classifiers, in addition to providing a predicted label

f ′(x), also provide a likelihood score for f ′(x) being a 0 or 1. Finally, once the classifier f ′ is

learned, it can be applied a new unseen datapoint y to predict f ′(y) and its likelihood score.

See [Kot07] for a more detailed discussion on classification.

Getting back to our classifier generator: our classifier generator can take any static

call-graph constructor as input. For example, we have used the call-graph constructors

WALA [WAL15], Doop [BS09], and Petablox [MZN15b] as inputs and generated a call-graph

pruner for each one.

The complexity of generating a classifier based on a training set with n edges is O(n log n)

[Ho95].

3.3.3 Feature set

Now we describe how we designed the feature set that both our classifier generator and our

generated call-graph pruners use.

A feature is information about a static-call-graph edge that may help predict whether

the edge is a true-positive. We would like our feature set to capture important context and

semantic information about a call-graph edge. Encoding important semantic information as

features is a common machine learning practice for incorporating domain knowledge into the
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learning process. For example, since dynamic dispatch is likely to affect the false-positive

probability of a call-graph edge, we should add features that capture information about the

targets of a method call. Using the context information of a graph edge has been useful

for the related task of selective context and heap sensitivity in pointer-analysis [JLO20],

and we consider it a good criteria for picking features. Context information can be local

by describing the neighborhood of the edge, or global by describing the call graph that the

edge is a part of. In addition to capturing context and semantic features, we identify three

criteria that we want our feature set to satisfy:

1. linear-time computation complexity,

2. interpretable and generalizable, and

3. black-box.

The time-complexity guideline is particularly important given that some of our benchmarks

can have several hundred thousand call-graph edges. Interpretability gives us an understand-

ing of which call-graph edges are being dropped, and generalizability ensures that what is

learned for the training edges also applies to call-graph edges of unseen programs. The black-

box criterion implies that the features should only be designed on the output call graph, and

not on some internal state or representation of a tool. This allows us to post-process the

results without being specific to a particular algorithm or tool. Using these criteria, we

arrived at the following features for an edge.

Figure 3.5 presents our feature set for an edge in a static call graph G, where the edge

is from a caller method caller to a callee method callee. The node for the main method in

G is main. The first seven features describe local information while the last four describe

global information. Note that the L-fanout of an edge is the number of outgoing edges at the

call-site of that particular edge, whereas src-node-out-deg is the number of outgoing edges

from all the call-sites of an entire source method.
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Feature Description
src-node-in-deg number of edges ending in caller
src-node-out-deg number of edges out of caller
dest-node-in-deg number of edges ending in callee
dest-node-out-deg number of edges out of callee
depth length of shortest path from main to caller
repeated-edges number of edges from caller to callee
L-fanout number of edges from the same call-site
node-count number of nodes in G
edge-count number of edges in G
avg-degree average src-node-out-deg in G
avg-L-fanout average L-fanout value in G

Figure 3.5: Our feature set

Our selection process started with a much longer list of features that all satisfy the three

criteria listed above. We picked from that list the ones that helped the most with removing

false-positives. Our process used the training set as case studies to find the main reasons

why tools give false positives. The result was the eleven features in Figure 3.5.

3.4 Implementation and Dataset

Static Call-Graph Constructors We used the static call-graph constructors WALA [WAL15],

Doop [BS09], and Petablox [MZN15b]. In each case we used the default setting, which im-

plements 0-CFA for methods that are estimated to be reachable from the main method and

without any special handling of reflection. Those tools produce significantly different call

graphs and so we generate a separate call-graph pruner for each tool.

Reflection In preliminary experiments, we found that enabling special handling of reflec-

tion in the static call-graph constructors introduces many false-positive edges in the call

graphs. Our generated classifiers tend to assign each of those edges a low probability of be-

ing a true-positive, and therefore our call-graph pruners will correctly remove most of them.

Therefore, special handling of reflection presents no additional challenge for call-graph prun-
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ing and we decided to go with the default setting of each static call-graph constructor.

Dynamic Call-Graph Constructor We used the open-source tool Wiretap [KP18] to

instrument the Java bytecode and thereby enable dynamic call-graph construction. Next,

we ran the instrumented bytecode and collected data about the run, particularly about the

method calls.

Standard Library The Java standard library is large and has the potential to dominate

the measurements for every benchmark,

which is counterproductive. So, when we do our measurements and training, we omit nodes

from the standard library as well as edges between standard library nodes. We preserve

aspects of the edges to and from the standard library in the following way. For every path

of the form

v → 〈. . . standard library nodes . . . 〉 → w

where v, w are nodes outside the standard library, we create a single edge from v to w.

Random Forest Classifier Our classifier generator uses the Random Forest algorithm [Ho95]

implemented with the Scikit-Learn [PVG11] library (v0.21.3). The Random Forest algorithm

works as follows:cgpruner- it trains several decision-trees using Bagging [Bre96], and makes

predictions by a “majority vote” across the decision trees. The training took 4 minutes.

We tuned the hyper-parameters using Random Hyper-Parameter Search [BB12] with 4-fold

cross-validation on the training set. The chosen hyper-parameters are listed in Fig. 3.6.

Dataset Our dataset consists of 141 programs from the NJR-1 benchmark suite [PL18],

of which we used 100 programs for generating three call-graph pruners and the remaining 41

programs for our evaluation. We selected those 141 programs from the 293 NJR-1 programs

according to the following criteria:
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Hyperparameter Value
Number of Trees 1000
Maximum Depth 10
Bootstrapping False
Minimum samples for split 2
Maximum features for split sqrt(feature count)
Minimum samples for leaf 1
Split quality criterion Entropy
Other hyper-parameters Library default

Figure 3.6: Hyper-parameters for Random-Forests

• consists at least 1,000 methods and at least 2,000 static call-graph edges according to

Wala,

• executes at least 100 distinct methods at runtime, and

• has high coverage: executes a large percentage of the methods that are reachable from

the main method according to Wala; for our benchmarks, the coverage is 68%, on

average.

Each program consists of 560,000 lines of code, on average (not counting the standard li-

brary). In more detail, each program consists of the main application, which is 8,000 lines of

code, on average, in addition to third-party libraries which account for an estimated 552,000

lines of code, on average.

The total number of static-call-graph edges (not counting the standard library) that are

reachable from the main methods of the 141 programs is 1.3 million. For our classifier

generator, each edge from 100 of those programs is a data point, which is 860,000 edges.

Note that manual creation of ground truth about those 860,000 edges infeasible.

Large Benchmarks The histogram in Figure 3.7 gives the distribution of the edge counts

in the training programs. The X-axis is plotted on a logarithmic scale due to the skew in

the distribution. Among the 100 training programs, 7 of them have a very large number of
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Figure 3.7: Histogram of Edge-counts in the 100 Training Programs.

call-graph edges (> 20,000). This gives them the potential to dominate how the classifiers

work. To overcome this, we randomly sample 20,000 edges from the edge-sets of these 7

programs. Notice that this sampling is done only during generation of call-graph pruners,

while we use all the edges from the 41 programs that we use for evaluation.

Analysis Time Running the three static call-graph constructors and the dynamic call-

graph constructor on all the programs takes four days of compute time.

Precision and Recall We estimate the quality of a static call graph using the standard

notions of precision and recall. In our setting, if S is the edge set produced by a static

call-graph constructor, and W is the edge set produced by Wiretap, then:

Precision =
|S ∩W |
|S|

Recall =
|S ∩W |
|W |

The rate of false-positives is (1 − Precision). We compute the average precision and recall

values for the entire test-set by taking the arithmetic mean over the precision and recall

values of individual programs.
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Figure 3.8: Precision and recall for 41 test
programs.
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Figure 3.9: Precision and recall after call-
graph pruning.

Figure 3.8 shows a histogram of the original precision and recall scores for WALA on the

41 individual programs of the test set. Note that the precision values vary significantly, but

almost all programs get below 40% precision. Hence, there is a lot of scope for improving

the precision. The recall is close to 100% for most programs, but low for some due to heavy

use of reflection, dynamic class-loading or native code.

3.5 Experimental Results

In this section, we discuss our experimental results that validate the following claims.

1. Our generated call-graph pruners for WALA, Doop, and

Petablox produce call graphs with balanced 66% precision and 66% recall.

2. For precision-sensitive clients, our generated call-graph pruners are significantly bet-

ter at boosting precision than context-sensitive analyses, and have a much smaller
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overhead.

3. The precision improvement is consistent across the test set.

4. The call-graph pruner enables a monomorphic call-site client to balance its skewed 52%

precision and 93% recall to a more balanced 68% precision and 68% recall.

5. The call-graph pruner enables a null-pointer analysis to reduce its average warning

count from 223 to 20, while increasing precision from 27% to 77%.

All experiments are run on a separate test set of 41 programs which were not used during

training. The experiments were carried out on a machine with 24 Intel(R) Xeon(R) Silver

4116 CPU cores at 2.10GHz and 188 Gb RAM. A minimum RAM size of 32Gb is essential

for ensuring that the static analyses run in reasonable time. The artifact for the chapter is

available here [UKL21] and the NJR-1 dataset can be downloaded from [UKL20].

3.5.1 Main Result

Figure 3.10 gives the main result of the chapter: a call-graph pruner can be successfully

used to boost precision and to balance the goals of precision and recall for the 0-CFA call-

graph analysis of WALA, Doop and Petablox. The plot is used to represent the precision

and recall values of various tools, wherein all precision and recall values are reported as

averages over the test-set programs. The black triangle marks the WALA 0-CFA analysis

(23.8% Precision, 95.3% Recall), the green triangle marks the Doop 0-CFA analysis (23.1%

Precision, 92.6% Recall) and the blue triangle marks the Petablox 0-CFA analysis (29.8%

Precision, 88.8% Recall). They all have close to perfect recall, but poor precision. The red

plus sign marks the WALA 1-CFA analysis (29.6%. 95.4%). The black curve represents the

precision-recall trade-off points obtained when a call-graph pruner is applied to the WALA

0-CFA output. The original WALA-0CFA output is a single point on the precision-recall

graph, but the call-graph pruner gives a curve instead. This is because the call-graph pruner
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Figure 3.10: Main Result for the WALA, Doop and Petablox static analysis tools. The
baseline precision-recall values for the 3 tools, along with the precision-recall curve obtained
after applying a call-graph pruner (averaged over all test programs)
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gives a probability score for each edge being in the ground-truth call-graph, and by setting

different thresholds (i.e. cutoffs below which an edge is removed), we can obtain different

points on the precision-recall curve. Joining all these different points gives us the black curve

in the figure. Setting a low-probability threshold for accepting an edge, gives us points near

the left end of the black curve, because we accept a large percentage of edges, thereby giving

us higher recall but lower precision. Setting a high-probability threshold gives us points near

the right end of the curve because we accept only very few edges which are very likely to be

in the ground-truth call-graph, and this gives us high-precision and low recall. The green

and blue curves represent the precision-recall trade-off obtained by applying the call-graph

pruner to the Doop and Petablox call-graphs respectively, and the case is very similar to the

black WALA curve.

These curves which trade-off recall for precision show that the classifier has assigned

probabilities meaningfully. In contrast, a tool that randomly assigns probabilities to edges

would result in a curve that goes straight down to zero recall without improving any precision.

This is because it results in a random removal of edges, which keeps the ratio of true-positives

(i.e. precision) the same. Boosting precision requires the ratio of false-positive edges in the

removed edge set to be higher than the rest of the edges.

There are 2 particularly interesting points on the black (WALA) curve in Figure 3.10.

The first is the one marked by the black (WALA) square (66.0% Precision, 66.0% Recall),

which represents the point with balanced precision and recall. Such a point will be useful

to a precision-sensitive client analysis. As compared to the original WALA 0-CFA (black-

triangle), this point has over 72% of the edges from the original call-graph removed, and out

of the removed edges, less than 10% are true positives. This point is at a 0.45 probability

threshold. Similar points for Doop and Petablox, marked by a green square (hidden behind

the black square) and blue square (also hidden behind the black square) respectively, are at

(66.2% Precision, 66.2% Recall) and (66.4% Precision, 66.4% Recall) respectively. A second

interesting point is the right-most point on the curve after which recall starts dropping faster,

50



represented by a black circle (50% Precision, 92% Recall). Such a point would be useful for

a client analysis that needs to increase a little precision, without losing much recall. Similar

points for Doop and Petablox are marked by the green circle (50% Precision, 88% Recall)

and blue circle (50% Precision, 87% Recall) respectively.

Both these points give larger precision boosts than the 1-CFA analysis. However, in

general, the best precision-recall trade-off point is decided by the needs of the client of the

call graph. Precision-sensitive clients would benefit more from our call-graph pruner since

it gives a larger precision boost, but clients that need high recall may prefer the 1-CFA call

graph.

Our call-graph pruner adds an overhead of 18% to the WALA 0-CFA analysis, whereas

moving to a 1-CFA analysis adds 292% overhead. Prior research also finds that context-

sensitivity increases analysis time by many folds [LTM18b].

For completeness, we also ran this experiment for WALA’s RTA implementation and

it gets similar results. Since the three tools show similar characteristics, we only present

numbers for the WALA 0-CFA call graph in the rest of this section.

Picking a Cutoff value We picked the balanced precision-recall point because it gave

good results for a null-pointer analysis client, but different precision-recall trade-off points

may be suitable for different client analyses. Figure 3.11 helps a user pick the right trade-off

point for their client. It plots the probability cutoff values on the X-axis, and the Precision,

Recall and F-score on the Y-axis. The graph shows what values each of these metrics takes

at every probability cutoff value, as well as what the expected cutoff would be for a given

target Precision, Recall or F-score. For example, by looking at the figure, we can say that to

obtain an expected Precision of 60%, we can set a cutoff value of 0.4. At this point we would

get a Recall of approximately 75% and F-score of around 65%. This graph also shows that

the balanced precision-recall point is also very close to the point with maximum F-score.
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Figure 3.11: Probability cutoff plotted vs Precision, Recall and F-score curves for WALA

Feature Importance Figure 3.12 gives the impurity-based importance [Sci] for each fea-

ture used in the random-forest in descending order. The L-fanout and dest-node-in-deg are

the most important features and the four global features are the least important. Dropping

the four global features decreases the area under the precision-recall curve from Figure 3.10

by 6%.

Human-Interpretable Explanation of the Classifiers. We can give a human-interpretable

explanation of the main aspects of the Random Forest classifiers that were learned in the
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Feature Importance
L-fanout 0.182
dest-node-in-deg 0.114
src-node-out-deg 0.094
repeated-edges 0.092
src-node-out-deg 0.090
depth 0.084
dest-node-out-deg 0.079
node-count 0.071
edge-count 0.067
avg-L-fanout 0.036
avg-degree 0.028

Figure 3.12: Importance of each feature in the Random Forest Classifier in descending order.

experiment. In each case, the top-level decisions center around the following generic classifier:

if ((L-fanout > m) ∧ (dest-node-in-deg > n)) then 0 else 1

The above expression says that if an edge has L-fanout greater than m and destination-node

in-degree greater than n, then the probability that it is a true edge is 0, and otherwise 1.

For each of the static call-graph constructors, we can identify the constants m and n:

WALA:

if ((L-fanout > 3.5) ∧ (dest-node-in-deg > 9.5)) then 0 else 1

Doop:

if ((L-fanout > 3.5) ∧ (dest-node-in-deg > 16.5)) then 0 else 1

Petablox:

if ((L-fanout > 3.5) ∧ (dest-node-in-deg > 20.5)) then 0 else 1

The orange cross (49% precision, 92% recall) in Figure 3.10 gives the precision-recall

trade-off when using the generic classifier for WALA. This generic classifier has a slightly

worse trade-off and is much less tunable than the black line (WALA with call-graph pruner).
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Figure 3.13: Historgram of Percentage Improvement in Precision scores for individual pro-
grams.

However, its pruning rules are also much simpler and easily understandable. The use of

L-fanout and dest-node-in-deg in the generic classifier aligns with the fact that these are the

most important features according to Figure 3.12.

3.5.2 Distribution of Precision and Recall for individual programs

Figure 3.9 gives a histogram of the precision and recall scores of individual programs when

a call-graph pruner is used to prune the WALA call graph at the balanced precision-recall

point (marked by the black square in Figure 3.10). Most of the programs get at least 50%

precision, and a several even reach the 70% precision goal. Contrast this to the precision in

Figure 3.8 where almost all programs fail to cross the 40% precision point.

As expected, the recall scores from Figure 3.9 dropped as compared to Figure 3.8. How-

ever, most programs still get at least 50% recall, implying that they retain a good portion of

their true edges. Note that it is impossible to improve recall using a call-graph pruner since

it cannot find new edges that WALA did not find.

The histogram from Figure 3.13 illustrates the percentage improvement in precision
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Call-graph tool Precision Recall
WALA 0-CFA 51.8% 92.6%
WALA 0-CFA + call-graph pruner 67.7% 68.4%

Figure 3.14: Impact of improved call-graph precision on a monomorphic call-sites client

scores. The X-axis is plotted on a logarithmic scale. By using a call-graph pruner, 30

out of the 41 programs have their precision score boosted by at least 2 times their original

precision score. All but 2 programs have their precision score boosted by at least 20%. No

benchmark gets a worse precision. Thus, a significant majority of the individual programs

consistently get a large precision improvement without loosing too much recall, and achieve

a better precision-recall balance.

3.5.3 Effect on Client Analyses

Next, we look at the effect of improved call-graph precision on the monomorphic call-site

detection and null-pointer analysis clients.

Monomorphic call-site client. This client is based on the WALA-generated 0-CFA call

graph, and it uses the dynamic analysis as the ground-truth. Figure 3.14 give the precision

and recall of a monomorphic call-site client with and without the call-graph pruner. The

call-graph pruner helps the client boost precision from 52% to 68% and balance its goals of

precision and recall.

Applications of the monomorphic call-sites client include devirtualization and inlining.

Since the call-graph analysis is never sound in practice [LSS15a], these applications require

some safety checks, resulting in overheads. For example, if devirtualization is used for

optimization, run-time checks need to be inserted to ensure correctness [IKY00]. Higher

precision for the monomorphic call-sites client implies that more of the call-sites declared

monomorphic by the static analysis actually turn out monomorphic in the ground-truth.
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ID Warnings True-Positives in a sample of 10
Before After Before After

B1 137 12 2 10
B2 365 31 4 5
B3 190 15 2 8
B4 308 44 7 10
B5 204 16 0 10
B6 429 42 0 7
B7 404 136 7 10
B8 70 10 0 0
B9 231 10 0 9
B10 102 34 5 8

Average 2.7 7.7

Figure 3.15: Total warning counts and a manual classification of a sample of 10 warnings for
the null-pointer analysis before and after applying a call-graph pruner

This in turn implies that whenever we incur the overhead of inlining or devirtualization, we

are also more likely to realize its benefits.

Null pointer analysis. This analysis is based on the paper by Hubert et al. [HJP08]. It is

implemented in WALA, and is used to find null-pointer errors originating from uninitialized

instance fields. The analysis is context-insensitive, field-insensitive and flow-sensitive. It

only reports potential null-pointer dereferences in application code, and not for the standard

library.

The original WALA call graph gives us, on average, 223 null pointer warnings per pro-

gram. The high volume of warnings makes it cumbersome for developers to manually inspect

and in practice this results in developers ignoring the tool output entirely [JSM13c, BBC10a].

Using the call graphs produced after pruning gives us much fewer (on average 20 per pro-

gram) warnings.

Two of the authors manually inspected a random sample of 10 null-pointer warnings

from 10 of the 41 test programs when used with and without the call-graph pruner. The 10
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programs were chosen with the criteria that they had at least 10 warnings both with and

without the call-graph pruner, and the ratio of warnings with and without the call-graph

pruner was close to (20/223). Figure 3.15 gives the total warning counts as well as the true-

positive counts (from a sample of 10 warnings) for each of these 10 programs. The use of a

call-graph pruner helped the null-pointer analysis improve its precision from 27% to 77%

The criteria for marking a warning as a true-positive was that the author could trace

the backward slice of a dereference to an instance field which was uninitialized by the end

of a constructor. Warnings that either could not be verified in 10 minutes, ran into another

exception before triggering the null exception, or otherwise unverifiable by the authors, were

considered as false-positives. Reachability from the main method was not considered because

it is hard to verify manually.

We leave to future work to try other clients, including other approaches to null-pointer

analysis such as NullAway [BCS19].

3.5.4 Threats to Validity

The first threat is the use of a dynamic analysis as a proxy for the call-graph ground truth.

It assumes good coverage of the true ground-truth call-graph and affects the precision-recall

calculations. If the dynamic analysis had higher coverage, more of the static analysis edges

would be in the dynamic call-graph. As a consequence, both the baseline precision scores

as well as the pruned-call-graph precision scores would be higher. In contrast, we expect

the recall scores to remain similar. However, improving dynamic analysis coverage is a non-

trivial and orthogonal problem and any techniques improving coverage will automatically

improve our technique and evaluation. Symbolic execution [KPV03] is one option to improve

coverage, but it doesn’t scale to the size of our programs. Instead, we use a subset of the

NJR-1 benchmark set which gets good coverage. Note that this threat does not affect the

evaluation of the null-pointer analysis.
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The second threat is the manual inspection of the null-pointer warnings, which are vul-

nerable to human errors. The authors inspecting the errors have a limited familiarity with

the code-bases of the examined program. This could lead to misclassification of both true

and false errors, and affect the precision score accordingly. Further, the precision scores are

reported for a sample of 10 programs.

The third threat to validity is the generalizability of the results to programs outside the

NJR dataset. Our assumption is that our learning and evaluation results generalize to other

programs outside the dataset.

The fourth threat to validity is that programs in the training set and evaluation set share

some third-party libraries. On average (geometric mean), 3.6 percent of the methods of a

program in the evaluation set also occur in some training program. We believe that this

overlap is low enough to not significantly affect the conclusions of our evaluation.

3.6 Related Work

Our technique is the first to apply machine learning to boost call-graph precision. In our

discussion of related work, we focus on three areas: combining static and dynamic analy-

ses, applying machine learning to remove static-analysis false-positives, and improving the

precision of call-graph construction.

Combining static and dynamic analysis Prior research has used a dynamic analysis

to improve the precision of a static analysis. Grech et. al [GFF18b] generate dynamic heap

information and use this as a drop-in replacement for the heap modeling part in an existing

static analysis tool to improve its precision. Artzi et. al [AKG07] use a dynamic analysis to

confirm the mutability information computed by a static analysis. Chen et. al [CHR21] use

the information from test-executions to prioritize the alarms given by a static analysis. The

main drawback that these tools face is that they need the dynamic analysis to be run every
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single time the tool is run. In contrast, our technique needs the dynamic analysis only for

generating a call-graph pruner. After that, a call-graph pruner is purely a static tool, and

hence does not suffer from the usual drawbacks of a dynamic analysis like long execution

times or finding good inputs.

Applying machine learning to improve static-analysis by removing false-positives

The technique of filtering static-analysis false-positives by casting it to a classification prob-

lem with hand-picked features has been used for static bug-analysis tools [RPM08, HW09,

TGP14, YS13, FSS18]. Each of these works follows the same workflow: collect static analysis

error-reports, get a programmer to label them as true or false-positives, design a feature-set

for the error reports, and then train a classifier on these labeled error-reports to identify

false-positives. However, they have minor differences among themselves in terms of the

feature-set chosen, the bug-reporting tool used and the benchmarks used for the training

data. Ruthruff et. al [RPM08] use the FindBugs [HP04] bug-reporting tool and the set of

Java programs at Google as their dataset. Heckman and Williams [HW09] also use FindBugs

reported bugs on 2 open-source Java projects. Yuksel and Sozer [YS13] classify bug-alerts

for a digital TV software. Flynn et al. [FSS18] combine the bug-alerts from multiple tools,

in addition to using the hand-picked features. Tripp et. al [TGP14] work with a JavaScript

security checker’s warnings from popular Web sites as its dataset.

Our work differs in three ways: it uses an estimate of ground-truth produced by dynamic

analysis, it has a generalizable approach to picking a feature set, and it has a tunable

precision-recall trade-off, as we discuss next.

The key bottleneck faced by each of these prior works was that they relied on the collection

of human-labeled ground-truth, which does not scale. This restricted their dataset to a

handful of projects and a couple of thousand data-points (bug reports) at best. In fact, for

each type of error, there is typically less than a few hundred bugs in each of the datasets.

In contrast, our technique uses an estimate of ground-truth produced by dynamic analysis,
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which allows it to scale to a much larger number of programs with a million data points

(call-graph edges).

The second major difference is in the choice of the feature-set. This is partly a conse-

quence of the fact that the previous work focuses on static-analysis error report data, which

is different from the graph output generated by call-graph construction tools. Hence some

of the common features used in these works are the bug-priority level, file-modification-

frequency, coding-style metrics, and lexical features (like method or package names). These

features, though appropriate, violate generalizability and black-box guiding principles listed

in Section 3.3.3. Non-black-box features like bug-priority level will not generalize across dif-

ferent tools or algorithms, and non-generalizable features like lexical features are unlikely to

generalize to programs outside the dataset. In contrast, we use a systematic approach to se-

lecting features, as described in Section 3.3.3, and as a consequence, our approach generalizes

easily across multiple programs and multiple call-graph construction tools.

The third difference is that these prior works, except for [TGP14], provide a single

precision-recall point. [TGP14] provide eight different precision-recall points, by varying

the classifier used. Instead, our approach has a tunable precision-recall trade-off by predict-

ing edge-probabilities and pruning edges with probability lower than a threshold. Further,

we only use a single classifier (Random Forests) since it achieves superior precision-recall

trade-offs than the classifiers used in [TGP14].

Another area that uses machine learning for filtering false positive is the work by Raghothaman

et al. [RKH18a]. They predict the probabilities of static-analysis alarms using Bayesian in-

ference and update these as the user resolves alarms as true or false positives. This paradigm

of online learning, where the model is learned and improved as the user gives feedback, is

quite different from our fully-automated offline learning paradigm, where we do a one-time

training on a large dataset of static and dynamic analysis outputs and require no user input.

Recently data-driven techniques have also been used to selectively apply context- and

flow-sensitivity [JJC17, CJO18] to methods that will benefit it the most. These techniques
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can potentially provide the precision improvement of a 1-CFA at a lower overhead, but

as seen in Figure 3.10, this improvement is still much lower than what is achieved by our

call-graph pruner.

Improving the precision of call-graph construction Lhotak [Lho07] designed an in-

teractive tool to qualitatively understand the root cause of differences between different static

and dynamic analysis tools. This is then used in a case study to understand the main cause

of imprecision in a static analysis tool as compared to its corresponding dynamic analysis

output. In contrast, our classifier generator is fully automated, using machine learning, and

doesn’t require a skilled programmer to use an interactive tool to figure out the cause of the

imprecision.

Sawin and Rountev [SR11] propose certain heuristics to deal with dynamic features like

reflection, dynamic class loading and native method-calls in Java, which helps to improve

call-graph precision of the CHA algorithm without sacrificing much recall. Similarly, a call-

graph pruner trades of a little recall for a large boost in precision, but it achieves this through

automated machine learning on a dataset of call graphs instead, and is able to boost precision

by a much larger amount. Additionally, we work with a 0-CFA baseline (with no handling

of dynamic features like reflection), which already has a large precision gain over a CHA

algorithm with reflection handling.

Zhang and Ryder [ZR07a] create precise application-only call graphs by identifying which

edges from the standard library to the application are really false-positive. This is similar

to the precision boost we gain for the edges that go via the standard library. However, we

generate a classifier that learns this on its own from data, and we use the classifier in a

call-graph pruner that is able to boost precision even further.

The patent by Reif et. al [LWR20] uses probabilities to quantify analysis imprecision.

Each analysis constraint is assigned a probability heuristically or via user configuration, and

the probabilities for call-graph edges are derived from these using a type-propagation graph.
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In contrast, our call-graph pruner learns all its edge probabilities from data about static

and dynamic call-graphs. Further, while their technique calls for a new static analysis, our

call-graph pruner works as a black-box post-processor for existing call-graph construction

tools.

More distantly related is the work by Blackshear et. al [BCS15], which prunes control-

flow edges representing interleavings between events in an event-driven system. This pruning

task is different from our task which focuses on pruning call-graphs edges for sequential code.

There has also been prior work that uses a dynamic analysis to evaluate call-graph related

static analysis tools [SDT20, AL12, RKG04, BW09, GFF18b]. Our tool additionally uses

the dynamic analysis results as training labels to prune the result from a static call-graph

construction tool.
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CHAPTER 4

QueryMax: Application Code Analysis using Partial

Libraries

In this chapter, we introduce the second tool, QueryMax [UP22], which tackles the second

biggest pain point for users: long analysis times for existing static analysis tools. QueryMax

achieves a speedup by selecting a partial library (instead of the whole library) to analyze

with the application code. It catches, relative to a whole-program analysis, 87% of its errors,

with a 0% false-positive rate and a geometric mean speedup of 10x.

4.1 Overview

Motivation. Long analysis times are a key bottleneck for the widespread adoption of

whole-program static analysis tools. Several recent papers for both Java [LTM18a, BKL20a,

GFF18a] and C/C++ [SWF20, FWS19, SZ20] report that a whole-program analysis on their

largest benchmarks can take several hours. Analyzing a large collection of benchmarks like

an app-store takes even longer, with a total compute time of many years for the largest

app-stores. Hence, a speedup in analysis time can save significant compute time and energy,

and enable us to use more precise and expensive algorithms.

Whole-program analyses may be slow, but a user is often only interested in finding errors

in the application code [ZR07b], which constitutes a small fraction of the whole program.

In the NJR-1 dataset [UKL20], application code (excluding third-party libraries) constitutes

less than 1% of the whole program on average. Hence, an application-focused analysis has
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the potential for a large speedup.

Ideally, an application-focused analysis should compute the same set of errors for the

application-code as a whole-program analysis. However, this is hard to achieve because er-

rors can both originate in or propagate through the library. We use the singular library

to refer to the aggregate of the third-party libraries and the standard library. The quality

of an application-focused analysis tool’s results can be quantified using precision and re-

call. Precision is the ratio of true-positives in the tool’s results, with the whole-program

analysis results serving as the ground-truth. Recall is the ratio of whole-program analysis

errors caught by the tool. Thus, any application-focused analysis tool can be judged by its

performance on the three metrics of precision, recall and speedup.

The current best tool for an application-focused analysis is Averroes [AL13]. Averroes

overapproximates the effect of the library with a compact summary. The overapproximation

ensures high recall and the small size of the summary compared to the whole library gives

a large speedup. However, this summary is created by merging the analysis information

from all the library pointers into a single set, resulting in significantly worse precision than

the whole program analysis. In our experiments, Averroes gets an average precision of 59%

relative to the whole-program analysis. This precision drop is problematic because empirical

studies show that users have a very high bar for precision.

For example, Christakis and Bird [CB16b] find that, in practice, static analysis users care

much more about precision than recall. They conclude that practical analysis tools must aim

for a minimum of 80% user-perceived precision. Failing to meet this value results in users

ignoring the tool output entirely. Other empirical studies [BBC10b, JSM13a] also arrive

at similar conclusions. Whole-program analyses themselves often get much less than 80%

user-perceived precision [BKL20a, BCS13, RKH18b]. Hence, an application-focused analysis

that gets less than 100% precision relative to a whole-program analysis will almost certainly

fail to meet the 80% user-perceived precision target. This defines the goal for this chapter.

64



Partial Library

Application code

Analysis queries

Errors

QueryMax Existing static
analysis tool

Application code

Analysis queries

Library

87% recall 
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Figure 4.1: Overview of the QueryMax workflow

Our goal is to capture the speedup potential of an application-focused analysis, while

maintaining 100% precision relative to the whole-program analysis.

Our technique. In this chapter, we introduce a new application-focused analysis tool

called QueryMax, that achieves our goal of 100% precision and gets both good speedup and

good recall. Figure 4.1 gives an overview of the workflow. QueryMax acts as a pre-processor

to an existing static analysis by selecting a small subset of the library (i.e. partial library)

which is relevant to the set of analysis queries in the application. To decide which part of

the library is most relevant, QueryMax uses a new static analysis called the external source

analysis. Once QueryMax picks the partial library, the existing static analysis tool is run on

the application code plus the partial library, with all external library pointers treated as the

bottom element in the abstract domain.

The analysis queries used in Figure 4.1 are exactly like the queries in a demand-driven

analysis [SGS05a] and they represent all the instructions of interest in the application code.
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For example, in a cast-check analysis, the analysis queries would be all the down-cast in-

structions in the application code.

The complexity of QueryMax is O(a3 + p2) where a is the size of the application-code

and p is the size of the (application-code + partial-library). This is much less than the

complexity of a whole-program analysis like 0CFA, which has complexity O(n3) where n is

the size of the whole program. Here we assume (n > p) and (n >> a), both of which are

true for our benchmarks.

Our experiments focus on Java bytecode programs from the NJR-1 dataset [UKL20], but

our approach applies to other object-oriented languages as well. We implemented QueryMax

in Wala [WAL15] and ran experiments on it with an existing cast-check analysis and null

pointer analysis.

Our contributions.

• We introduce a new static analysis, the external source analysis, which computes the

set of external library pointers affecting each pointer in the application code.

• We describe the QueryMax tool which uses the external source analysis and picks a

partial library which is small yet sufficient to yield a good recall.

• We show experimentally that QueryMax successfully speeds up two different analyses.

In a particular configuration, QueryMax achieves a 97% recall (on average, relative

to a whole-program) and an 8.7x geometric-mean speedup for a cast-check analysis,

and a (79% recall, 11.2x speedup) for a null pointer analysis. Both analyses get 100%

precision.

Significance. The impact of this research contribution is that the 10x analysis speedup

without any loss in precision will help us meet user expectations on both speedup and pre-

cision. Further, the speedup will enable us to use expensive and precise analysis algorithms
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Figure 4.2: Schematic of a cast-check analysis on application-code

as well as analyze large programs or large collections of programs (like an app-store) that

previously couldn’t be analyzed in a reasonable amount of time.

4.2 Example

In this section, we show an example of how QueryMax picks a partial library to analyze,

and compare this with Averroes’ approach. We also discuss two other baselines which can

be adapted to provide a speedup over a whole-program analysis:querymax- a demand-driven

analysis [SDA16, SGS05a] and an application-only analysis.

Figure 4.2 shows the schematic of a program we wish to analyze for cast-errors. The

application code, represented by the circle, is the part in which we wish to catch the cast

errors, and everything outside is the library. The grey boxes (labeled A,B,C) on the edge

of the circle show library methods with pointers that influence the value of cast instructions

in the application code. The accompanying number in the grey box tells us how many
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cast instructions are affected by that method. The application code has a total of 10 cast

instructions and each cast instruction is considered an analysis query. We say that an

application-focused analysis covers a cast-query if it overapproximates the result of that

query. In other words, a query covered by a tool is guaranteed to mark it as a cast-error if

the whole-program analysis does.

The first baseline technique is to run a demand-driven analysis for every analysis query

in the application. The demand-driven analysis exhaustively traces the backward slice of all

10 cast instructions. Casts numbered 7-10 at the bottom of the application circle get their

value from inside the application, and hence are answered quickly. The casts affected by B

and C (casts numbered 3-6) are also answered quickly because the backward slices have only

2 and 0 caller-methods respectively. However, the demand-driven analysis faces a significant

slowdown when answering the two cast queries influenced by A (Cast1 and Cast2). Their

backward trace involves the 10 callers of A, each of which could result in a long trail, making

this approach expensive because of these two queries. In total, the demand-driven analysis

analyzes all the 15 library methods in the figure. It gets 100% precision and covers all 10

cast instructions since its output is identical to the whole-program analysis. Note that the

demand-driven analysis is the only one which requires a new demand-driven design of an

existing inter-procedural analysis; the others use the existing interprocedural analysis as is.

The second baseline is an application-only analysis. Such an analysis analyzes the code

inside the application circle in isolation and assumes the bottom element of the abstract do-

main for all library pointers outside. Hence it analyzes zero library methods and only covers

the 4 casts that get their values from inside the application (that is, the casts numbered

7-10). The application-only analysis gets 100% precision because its errors are the subset of

the whole-program errors that do not involve the library.

Averroes [AL13] improves upon the application-only analysis by modeling the whole li-

brary with a small summary. In Figure 4.2, everything outside the application circle is rep-

resented using this summary. The summary primarily consists of a single summary-pointer
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to represent all library pointers, and a single summary-node to perform all the object ini-

tializations and application call-backs. A usual inter-procedural cast-analysis is performed

on the application-code plus this summary. Averroes’s summary is sound for some analyses,

the cast check being one them. Hence, it covers all 10 cast instructions while only analyzing

the summary. However, the analysis information merged in the common summary-pointer

and summary-node drops precision relative to the whole-program analysis.

QueryMax’s approach differs from Averroes primarily in that it selects a small part of

the library to fully analyze instead of modeling the library using a summary. QueryMax

keeps expanding the partial library to be used until it reaches some stopping criterion. Let

us assume that we use QueryMax with a stopping criterion of 80% query coverage. This

means that we will have to pick a fragment consisting of the application-code plus a partial

library, such that at least 8 of the 10 queries (i.e. casts) are covered within this fragment.

QueryMax starts out by performing an external source analysis on the application code

to find out which library pointers affect the 10 cast instructions. This information is marked

by the arrows inside the application circle. QueryMax then assigns priorities to each external

library method based on the number of casts it affects. In Figure 4.2, this is denoted by

the numbers in the grey boxes. Next, QueryMax expands on the method with the highest

priority (method B) to look at its callers, callees and field-reads. Method B has 2 callers, D

and E. We estimate that each of D and E affects half as many casts as B, and hence each

of them get half its priority (i.e. 1.5 each). Now, the method with the highest priority is

A, which on expansion leads to 10 different caller methods, and we assign a priority of (2 /

10) to each of them. The next methods with the highest priority are D and E, followed by

method C. Each of these methods are expanded in turn.

At this point, our fragment consists of the application code plus a partial library con-

sisting of methods (A,B,C,D,E). Performing another external source analysis on this

fragment shows that now 8 of the casts (casts numbered 3-10) are covered within this frag-

ment. Recall that we started QueryMax with a stopping criterion of 80% query coverage,
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Analysis Tool Casts
covered

Lib Methods
analyzed

Precision

Application-only 4 0 100%
QueryMax 8 5 100%
Demand-driven 10 15 100%
Averroes 10 Summary Low

Figure 4.3: Number of casts covered, library methods analyzed, and Precision (relative to
the whole program analysis) for each of the competing tools

or in other words, we would like to terminate when 8 of the 10 casts (i.e. queries) are

covered. Hence, QueryMax stops expanding at this point, and an existing inter-procedural

cast-check analysis is now performed on this fragment. By terminating the expansion early,

QueryMax avoided exploring the 10 callers of method A, and their subsequent callers which

could potentially expand large sections of the program, while only answering the queries for

Cast1 and Cast2. In total, by using QueryMax, we analyzed only 5 library methods and

covered 8 casts. QueryMax, just like an application-only analysis, reports a subset of the

whole-program errors, thereby getting 100% precision.

Figure 4.3 summarizes the number of library methods analyzed (less is better), the cast-

instructions covered (more is better), and precision (more is better) for each of the four

techniques. QueryMax, the demand-driven analysis and the application-only analysis each

get 100% precision. For the other two metrics, QueryMax obtains a useful trade-off point

in between the application-only analysis and the demand-driven analysis. Note that the

differences in library methods analyzed is rather small for this example, but the differences

are much larger in real programs. Averroes covers all casts and analyzes just the small

summary, but gets low precision, thereby falling short of our 100% precision goal.

This example illustrates the core insight underlying QueryMax’s speedup: few queries

in the application code require large sections of the library for their analysis (like Cast1

and Cast2), whereas the remaining queries need a much smaller subset of the library. By

identifying these expensive queries and assigning them a low priority, QueryMax can pick a
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small partial library that is sufficient to cover all the remaining queries. The downstream

client can now use this partial library in its analysis, which is a fraction of the size of the

whole library. The trade-off is that the few expensive queries (like Cast1 and Cast2 in the

example) are not fully covered by the partial library, resulting in a few missed errors.

4.3 Approach

In this section, we describe in detail how QueryMax works to pick the partial library to

analyze.

4.3.1 Overview

QueryMax picks its partial library by finding the library classes mostly likely relevant to the

queries in the application code. QueryMax accomplishes this by using a new static analysis

called an external source analysis. QueryMax expands its partial library in a greedy fashion

to maximize the number of queries answered in the application code until some stopping

criterion is reached. We discuss two stopping criteria: a class-budget if the user wants to set

a limit on the number of classes analyzed (proxy for analysis time), and a query-coverage if

the user wants to set a goal for the number of queries covered (proxy for recall).

4.3.2 External Source Analysis (ESA)

The external source analysis, or ESA for short, takes a program and a subset of its classes

called the fragment, and computes, for every pointer in the fragment, the set of external

pointers that pass values to it. For example, defining the application code as the fragment

would make the library pointers the external pointers, and an ESA would tell us which

library pointers directly pass values to each pointer in the application code. An example

of applying the ESA was illustrated in the example in Figure 4.2, where we computed the
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No Stmt Condition Constraint
1 x = y x is not an array ext(y) ⊆ ext(x)
2 x = y x is an array ext(y) ⊆ ext(x) and

ext(x) ⊆ ext(y)
3 x = y.f field f is internal ext(f) ⊆ ext(x)
4 y.f = x field f is internal ext(x) ⊆ ext(f)
5 x = foo(z) target foo(p){.. ret q} is internal ext(q) ⊆ ext(x) and

ext(z) ⊆ set(p)
6 x = y.f field f is external {f} ⊆ ext(x)
7 y.f = x field f is external (No constraint)
8 x = foo(z) target foo(p){.. ret q} is external {q} ⊆ ext(x)
9 N/A foo(x) has an external caller y.foo(z) {z} ⊆ ext(x)

Figure 4.4: Constraints for the External Source Analysis

library methods affecting cast-instructions in the application code.

The ESA is designed to be context-, flow- and field-insensitive because it’s primary ap-

plication is partial-program analysis, which is time-sensitive. Any overhead of performing an

ESA during partial program analysis eats into the speedup that we may get over a whole-

program analysis.

Figure 4.4 outlines the core constraints used for ESA. The second column lists a state-

ment, the third column lists an accompanying condition, and the fourth column gives the

corresponding constraint. The third column in the figure uses the words internal and exter-

nal. A pointer is considered internal if it is within the fragment, and external otherwise. The

abstract domain for the ESA consists of all possible subsets of external pointers. Hence, the

notation ext(y) in the fourth column represents the set of external pointers passing values

to the fragment pointer y. This is different from the notation {z} which is a singleton set

consisting of the external pointer z.

Rows 1-5 in Figure 4.4 are identical to a standard context, flow and field-insensitive

pointer analysis such as [SHR00], and we assume that the reader understands them well.

Rows 6-9 deal with the different types of external pointers: external fields, external return

values, and external function-arguments. The constraints for these rows are similar to what
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one would expect for a new statement in a pointer analysis. Row 6 says that for the read

of an external field f , the external field f should be added to the ext set of the assigned

variable x. Row 7 says that writes to external fields produce no constraint. Row 8 says that

for every external target of a method call, the return pointer of the target should be added

to the ext set of the assigned variable x. There are no constraints for the arguments in this

case. Row 9 says that if a method in the fragment has a caller outside the fragment, then

the external caller’s argument should be added to the ext set of the method’s parameter.

The generated constraints can be solved using standard static-analysis constraint solving

techniques. The complexity of solving the ESA constraints on a fragment of size p is O(p3).

The complexity calculations are very similar to that of a context-insensitive pointer analysis.

In addition to the ESA, we define a faster version of it called the fast-ESA, with the

primary change being to the abstract domain. Instead of maintaining the set of external

sources for every fragment pointer, fast-ESA only maintains whether or not the set is non-

empty. Hence there are only two elements in the fast-ESA abstract-domain: the top element

is used when the fragment pointer may be passed a value by an external source, and the

bottom element is used when the pointer is guaranteed to not get any values from external

sources. The constraints are the same as in Figure 4.4, except for Rows 6-9 using the Top

element instead of the external pointer names. Due to the smaller size of the abstract domain,

the complexity of fast-ESA on a fragment of size p is O(p2), which is lesser than the cubic

complexity of ESA. Hence, fast-ESA allows us to compute whether a fragment pointer is

affected by external sources much quicker than an ESA.

4.3.3 QueryMax Algorithm

The QueryMax algorithm is used to pick a fragment to analyze, consisting of the application

and the partial library, with a best effort to catch as many of the whole-program errors as

possible. The example in Section 4.2 showed how QueryMax runs for one particular case.

Here, we describe the algorithm (given in Figure. 4.5) in detail. The figure has three main
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1: procedure QueryMax(appClasses, allClasses, queries)
2: fragment ← appClasses
3: visited ← new Set()
4: pQueue ← new PriorityQueue()
5: esa ← ESA(allClasses, appClasses)
6: extLibPtrs ← computeAffectedQueries(esa, queries)
7: for ExternalLibraryPointer e in extLibPtrs do
8: pQueue.setPriority(e.method, e.affectedQueries)
9: visited.add(e.method)
10: end for
11: while not (pQueue.empty() ∨ Criterion) do
12: Method m ← pQueue.poll()
13: analysisFragment.add(m.declaringClass)
14: methodSlice ← getmethodSlice(m)
15: newPriority ← m.priority / methodSlice.size
16: for Method n in methodSlice do
17: if visited.contains(n) then
18: pQueue.addToOldPriority(n, newPriority)
19: else
20: pQueue.setPriority(n, newPriority)
21: visited.add(e)
22: end if
23: end for
24: end while
25: return fragment
26: end procedure
27:
28: procedure BudgetCriterion(fragment)
29: percentAnalyzed ← (fragment.size / allClasses.size)
30: return (percentAnalyzed ≥ budget)
31: end procedure
32:
33: procedure CoverageCriterion(fragment, queries)
34: coveredQueries ← fastESA(allClasses, fragment, queries)
35: coverageRatio ← coveredQueries / fragment.totalQueries
36: return (coverageRatio ≥ goal)
37: end procedure

Figure 4.5: QueryMax algorithm
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procedures: the main algorithm, the class-budget stopping criterion and the query-coverage

stopping criterion.

The main algorithm (line 1) takes as input the application classes, set of all classes, and

the queries to be answered. For internal bookkeeping, QueryMax uses the set fragment

to mark the classes that are to be analyzed finally, a visited set for the methods, and a

priority-queue pQueue to keep track of the priorities of the external (library) methods to

be explored. The intuition behind the priority values is that they represent the estimated

number of queries answered by that method, and QueryMax will explore methods with a

higher priority earlier.

The main algorithm starts off by performing an ESA (line 5), with the application classes

as the fragment. The ESA computes the set of external library pointers affecting each

pointer in the application classes. Using the ESA result, we compute its inverse information:

the number of queries affected by each of the external library pointers (line 6). Now, the

method of each of the external library pointers is added to pQueue with a priority equal to

the number of queries it affects. For external field pointers, we add the methods which write

to that field. Each of the external library pointers’ methods are added to the visited set.

After this initialization phase, we move into the main algorithm loop.

The main algorithm loop starts at line 11. It keeps looping until either pQueue is empty

or we satisfy the stopping criterion (described below). Inside the loop, we remove the method

m with the maximum priority in pQueue, and add its class to the fragment. This step is a

greedy move to expand the class that is expected to affect the largest number of queries. The

next step is to find the method-slice of m (line 14). This is similar to computing one step

in the backward slice of a pointer, but is performed at the granularity of methods instead of

pointers to reduce the overhead. The method-slice consists of callers and callees of m, as well

as methods which write to fields that are read in m. Each method in the method-slice gets a

new priority which is the priority of m divided by the size of its method-slice. The intuition

behind this priority assignment is that if m affects k queries and has t callers/callees, then
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each caller/callee is expected to affect k/t queries. If a method from the method-slice is

already in pQueue we add the new priority to its old priority, else we add the method to

pQueue with the new priority. Finally, once the loop has terminated, the fragment, which

has the set of classes to be analyzed, is returned. An existing inter-procedural static analysis

is performed on the set of classes returned, with all external pointers assumed to be the

bottom element.

QueryMax uses a stopping criterion to know when to stop expanding the fragment and

return, and we experiment with two such criteria: class-budget and query-coverage goal.

Class budget. The class budget stopping criterion (line 28) is used when the user wants a

handle on the analysis time. The class budget is a proxy for a time budget, and we prefer to

use the number of classes instead of analysis time because it can be accurately computed in

advance without running the actual analysis. This criterion simply checks if the percentage

of classes used in the fragment is greater than a certain budget. The budget is assumed to

be specified as a global variable for readability. For this chapter, we experiment with a 3%,

10% and 30% class-budget. A budget of under 2% will have no space for library methods

in some programs, and a budget of over 40% will analyze a large partial library, resulting in

only a small speedup.

Query-coverage goal. The query-coverage criterion (line 33) is used when the user wants

a handle on the recall. Query-coverage is a proxy for recall, because the number of errors

found is expected to be proportional to the number of queries covered. The query-coverage

criterion uses a fast-ESA (line 34) to find the number of queries covered by the fragment

classes, and computes a coverage-Ratio which is the percentage of queries covered. Finally, if

the coverage-Ratio exceeds the query-coverage goal, then we return true. The goal is assumed

to be specified as a global variable for readability. The coverage criterion is not used at every

iteration of the main loop because the fast-ESA adds significant overhead. Instead, we only
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evaluate this criterion at some set checkpoints. For this chapter, we experiment with 70% and

90% query-coverage goals. A goal of less than 60% gives recall close to that of a application-

only analysis, and a goal of greater than 95% requires too many classes to be added to the

partial library, thereby resulting in too small a speedup.

The overall complexity for QueryMax is O(a3+p2) where a is the size of the application-

code and p is the size of the (application-code + partial-library). The O(a3) term comes

from the ESA performed on the application-code on line 5, and the O(p2) term comes from

the fast-ESA performed for the coverage-criterion on line 34.

4.3.4 Applicability of QueryMax to Client Static Analyses

Now that we understand how QueryMax works as a preprocessor to select a partial library,

we can discuss what kind of client analyses QueryMax can be applied to.

Firstly, since QueryMax trades off recall for analysis speedup, its client analysis should be

able to afford to lose some recall. For example, compiler optimization clients that prefer the

static analysis be sound (or soundy [LSS15b]), will not use QueryMax. Secondly, QueryMax

is restricted to client analyses that only care about errors manifesting in the application

code. It cannot speed up a client analysis that aims to catch errors manifesting in both the

application code and the library.

On the plus side, QueryMax makes no assumptions about the flow-, context- and field-

sensitivity of the client analysis that it is preprocessing for. Hence it can be applied regardless

of the client analysis’ sensitivities. Further, unlike [AL13], it makes no assumptions about the

demarkation between application and library code. Hence, the user can choose any subset

of classes as the application code to focus on and get everything outside the subset treated

as the library.

Figure 4.6 lists some analysis clients that QueryMax could be applied to and shows the

corresponding analysis queries for such a client analysis. This is not an exhaustive list of

77



Client Analysis Analysis Queries
Cast-check analysis [SHR00] Cast instructions
Null-pointer analysis [HJP08] Method calls and field accesses
Taint Analysis [LL05] Taint sink instructions
Type-state analysis [FYD08] State-change instructions
Pointer analysis [LH03c] Client analysis queries

Figure 4.6: Analaysis Queries for different Client Analyses

client analyses, and its main purpose is to give examples of what the analysis queries would be

for different kinds of client analyses. Typically, an analysis query would be any instruction in

the application code where a particular kind of error could potentially manifest. For example,

for a cast-check analysis the queries are cast instructions. For a null-pointer analysis they are

all dereference instructions, including method calls and field accesses. For a taint-analysis

which is defined in terms of vulnerable source-sink pairs, the analysis queries would be all

the sinks. For a type-state analysis, like one that checks for the correctness of file-operations,

all the state-change operations (like file-open, file-close, etc.) will be the analysis queries. A

pointer analysis itself does not have any statements or variables of interest, and hence cannot

define analysis queries for itself. However, if the pointer analysis is used by a particular client

(like cast-check or taint analysis), we can define its analysis queries as the queries of that

client.

4.4 Implementation

The WALA [WAL15] framework for Java bytecode analysis is used to implement QueryMax

and the ESA analysis. The actual analysis is performed on the WALA IR, which is in SSA

form and hence automatically grants partial flow-sensitivity. We use the CHA-callgraph

for all the analyses, since computing a whole-program 0-CFA call-graph would defeat the

purpose of doing a partial library analysis. We ignore call-graph edges involving a single call-

site with more than 10 targets, since the likely root cause of this is severe imprecision, and it
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results in mostly false-positives. We also exclude the java/util package since it is well known

for introducing too many false-positives unless one uses high context-sensitivity [TPF09b].

Client Analyses QueryMax accepts any inter-procedural analysis to run with as long as

the analysis can be run on a subset of the classes in the program. We experiment with two

such analyses: a cast-check analysis and a null-pointer analysis. The cast-check analysis

is based on the VTA algorithm [SHR00] for pointer analysis. The null-pointer analysis

(based on [HJP08]), focuses on catching null-pointer exceptions resulting from uninitialized

instance fields. The two analyses vary significantly in their constraints, abstract domains,

design decisions, number of analysis queries, and number of errors per program. Hence,

the two analyses offer considerable diversity for experimentation. We leave to future work

to experiment with other client analysis, including other implementations of cast-check and

null-pointer analysis, such as NullAway [BCS19].

For the analysis sensitivities, we choose to be context-, flow- and field-insensitive as far

as possible. The cast-check analysis is insensitive on all three axes. The null-pointer analysis

is context- and field-insensitive but flow-sensitive because a flow-insensitive version of the

analysis trivially marks all fields as null. Our choice of sensitivities are different from other

papers such as [SDA16, Spo11, SB06a], because their task is to improve precision, whereas

ours is to improve analysis speed. For the task of improving precision, a flow-, context- and

field-sensitive analysis is the hardest baseline because it is the most precise. In contrast, for

our task of improving analysis speed, a context-, field- and flow-insensitive analysis is the

hardest baseline because it is the fastest.

Demand-driven analysis We choose to write our own demand-driven cast-check instead

of using an existing tool like [SDA16] or [SGS05a]. This ensures that the whole-program

analysis and demand-driven analysis are identical in their various sensitivities, analysis design

decisions, constraint solvers and errors generated. This normalization helps to make a fair
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timing comparison between the demand-driven analysis, and other techniques like QueryMax,

Averroes and the application-only analysis. For the demand-driven cast check, we implement

caching across queries to reuse computations done for a previous query.

Most prior research on demand-driven analysis deals with pointer analysis which can

be used to implement the cast-check. However, a design of the demand-driven version of

the null-pointer analysis [HJP08] is not publicly available and is non-trivial to design from

scratch. Hence, for the demand-driven analysis, we only report experiments for the cast-

check analysis.

Averroes Averroes takes as input the original Jar file and the set of application classes,

and produces modified Jar files consisting of the application classes and the library summary.

We do not count the time taken to produce the modified Jar files since it is a one-time cost

which is amortized across all client analyses. The Averroes library summary also has the

java/util package excluded from it. Finally, the same null-pointer and cast-check analyses

described above are run on the modified Jar files, thereby making a fair comparison between

Averroes and the other techniques.

Reflection We do not use WALA’s inbuilt reflection support for the client analyses because

this would worsen the analysis time of the baseline, thereby making QueryMax look better.

Further, we also do not use reflection support for the ESA. While reflection support may

help the ESA find external sources reachable through reflection, its overhead is too high and

this reduces the effective speedup provided by QueryMax.

Precision, Recall and Speedup To measure the quality of an analysis using QueryMax

or any of the baseline techniques like Averroes, demand-driven analysis, etc., we evaluate

it on the three axes of speedup, precision, and recall. Here are the standard formulae for

computing these metrics:
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Statistic Mean Std-dev
Lines of application code 9911 12689
Number of application classes 97 91
Number of 3rd party library classes 2608 5220
Percentage of application classes 0.33% 0.33%

Figure 4.7: Statistics about the benchmark programs

Speedup =
Whole-program analysis time

Application-focused analysis time

Precision =
|A ∩W |
|A|

Recall =
|A ∩W |
|W |

where A is the set of errors given by QueryMax and W is the set of errors given by the

whole-program analysis (which we consider as the ground-truth).

4.5 Dataset Description

We use the NJR-1 dataset (available here [UKL20]), as our benchmark-set. We chose NJR-1

because its 293 Java bytecode programs run successfully with WALA, and each program

explicitly lists its set of application and third-party library classes. Out of the 293 programs

we remove 68 programs that crash the Averroes tool. The crash reports have been filed

with the developers. Another 4 programs which run out of memory for the whole-program

null-pointer analysis are removed, leaving us with a total of 221 programs.

Figure 4.7 lists some statistics about the benchmark programs. On average, each bench-

mark program has almost 10k lines of Java source code in the application, with an average

of almost 100 classes each. The third-party library classes are much larger, with an aver-

age of 2608 classes per benchmark, and these correspond to an estimated 250,000 lines of

Java source code. The application classes constitute just 0.33% of the program, with the
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Statistic Cast-check Null-pointer
Total number of programs 221 221
Mean Errors per program 4.4 37
Std-dev Errors per program 27 56
Programs with non-zero errors 58 177
Mean Analysis time 27 sec 293 sec
Std-dev Analysis time 41 sec 142 sec

Figure 4.8: Statistics about the whole-program cast-check and null-pointer analysis on the
benchmark set

remaining being the Java standard library and third party library classes. The large stan-

dard deviation for all these metrics implies that they vary significantly across benchmarks.

Among the 221 benchmarks, 63 use reflection in the application code and 130 use reflection

in the third-party libraries.

Figure 4.8 lists some statistics about the benchmarks when analyzed with a whole-

program null-pointer analysis and the cast-check analysis. The cast check analysis gets

4.4 errors per program on average, whereas the null pointer analysis gets 37. This large

difference is expected, since down-casting is rare, whereas method calls and field accesses are

common.

The table also shows that only 58 of the 221 programs have non-zero cast errors and only

177 of them have non-zero null-pointer errors. The programs with zero errors in the whole

program analysis are a problem for the evaluation because their recall is undefined for all of

the techniques. Hence, the experimental results are reported in two parts:querymax- those

with zero errors and those with non-zero errors. We report the recall and speedup for the

non-zero error cases and only speedup for the zero error cases.

The analysis times for the two analyses also vary widely, with the cast-check taking 27

seconds per program and the null-pointer analysis taking 293 seconds per program. The

standard deviation for analysis times is large, especially for the cast-check analysis, implying

that a few outliers have large analysis times.
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4.6 Experimental Results

In this section, we discuss our experimental results which validate the following claims.

1. C1: QueryMax gets a significant speedup, full precision and reasonable recall as com-

pared to the whole-program analysis, with trade-off points that none of the existing

techniques can achieve.

2. C2: The distribution of speedups and recall-scores are uniform across the benchmarks.

The experiments were carried out on a machine with 24 Intel(R) Xeon(R) Silver 4116

CPU cores at 2.10GHz and 188 GB RAM. For the JVM, the default heap size of 32GB, and

default stack size of 1MB, was used. The artifact for the paper is available here [UP21].

The first two sub-sections validate the claims made, and these experiments focus on the

programs with non-zero errors. The third subsection evaluates the programs with zero errors,

the fourth examines the QueryMax analysis time split-up, the fifth compares the correlation

between class-budget and analysis time, and the sixth subsection outlines the threats to

validity.

4.6.1 C1: Main Result

Figures 4.9 and 4.10 show the various recall and speedup trade-off points for the cast-check

analysis and null-pointer analysis respectively. The X-axis gives the recall plotted on a linear

scale and the Y-axis gives the speedup plotted on a logarithmic scale. There is actually a

third axis for precision, but we do not show it because all the techniques except for Averroes,

get a 100% precision. We mark Averroes’ precision directly in the figure.

Whole-program analysis The whole-program analysis (marked by the black circle) is

considered as the ground-truth and the reference for all speedup calculations. Hence it

trivially gets 100% recall and 1x speedup.
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Figure 4.9: Recall and Speedup for the various techniques for the cast-check analysis
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Figure 4.10: Recall and Speedup for the various techniques for the null-pointer analysis
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Demand-driven analysis The demand-driven analysis (marked by the green triangle)

computes the same result as a whole-program analysis and hence gets 100% recall, but it

manages a 5.1x geometric mean speedup for the cast-check analysis because it avoids analyz-

ing the whole program. This mean speedup is not representative of the average benchmark.

One portion of the benchmarks get a large speedup because they analyze a small part of

the program, while others experience a slowdown because they analyze a large section of

the program and the demand-driven analysis adds some overhead. The reason for this dif-

ference in speedups is that some programs either have expensive queries like the example

in Section 4.2, or a larger number of queries, and others don’t. This observation is in line

with previous experiments on demand-driven analyses [HT01]. A demand-driven version of

the null-pointer analysis does not exist (see why in Section 4.4), but we expect it to perform

worse than in the cast-check analysis because there are significantly more queries in the

null-pointer analysis and the demand-driven analysis works on a per-query basis.

Application-only analysis At the other end of the spectrum is the application-only anal-

ysis (marked by a grey star), which is orders of magnitude faster, but gets a significantly

lower recall. For the cast-check analysis it gets a 254x speedup and a 56% recall, whereas

for the null-pointer analysis it gets 1222x speedup and 58% recall. The large speed-up is

attributed to the fact that the application constitutes only 0.33% of the whole program on

average (Figure 4.7 ). An application-only analysis is a good option for use-cases where

analysis speed is significantly more important than recall, but when both are important, it

doesn’t strike as good of a balance between the two.

Averroes The point closest to this is Averroes (marked by a red plus), which gets a (179x

speedup, 60% recall, 71% precision) for the cast check analysis, and a (913x speedup, 53%

recall, 47% precision) for the null-pointer analysis. This is the only tool for which we report

the precision because the other tools get 100% precision.
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The massive speedup of Averroes is attributed to the fact that its summary is tiny

compared to the size of the library. However, the tiny size is also what causes analysis

information to be merged and precision to drop. The 47% and 71% precision values are

significantly lower than our target of 100% precision.

Averroes should theoretically get 100% recall for the cast-check, but not for the null-

pointer analysis because its library summary includes information about object-initialization

but not about field-initialization. The observed recall is lower than expected because of a bug

in its dealing of inner-classes which causes any error propagating through a Java inner-class

to be dropped. The bug has been reported to the developers.

QueryMax Finally, QueryMax gives some points in between these two extremes. The

points marked with crosses are for the class-budgets and the points marked with with squares

are for the query-coverage goals.

For the cast-check analysis (Figure 4.9) QueryMax performs very well. The 3% budget

(purple cross) gets a 24x speedup and 92% recall, and this strikes a really useful balance

between the two metrics. The 10% budget (blue cross) gets an 8.7x speedup and a 97%

recall, thereby favoring the recall a little more than the speedup, but still a great trade-off

between the two metrics. The 30% budget (pink cross) gets 3.9x speedup and a 99.6% recall.

The query-coverage stopping criterion (represented by the squares) for the cast-check

analysis gets similarly good results. The 70% goal (brown square) gets (12x speedup, 94%

recall) and the 90% goal (yellow square) gets (6.7x speedup, 97% recall). The speedups

for the coverage goals are slightly lower than the class budgets. For example, the yellow

square in Figure 4.9 is directly below the blue cross. This happens because calculating the

query-coverage involves the overhead of at least one fast-ESA, which the class-budget version

avoids. However, the coverage-goal gives a guarantee on the number of queries covered, which

could be more valuable than a guarantee on the number of classes analyzed.

For the null-pointer analysis (Figure 4.10), we see a similar speedup vs recall trade-off for
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QueryMax. The 3% class-budget, marked by the purple cross gets (34x speedup, 69% recall),

the 10% class budget marked by the blue cross gets (11x speedup, 77% recall), and the 30%

class-budget, marked by the pink cross gets (5.2x speedup, 91% recall). The query-coverage

points (marked by squares) lie in between these three points. Unlike the cast-check analysis,

the coverage-goal variants are not much worse than the class-budget variants for the null

pointer analysis. We discuss the reason for this observation in Section 4.6.4

Comparing figures 4.9 and 4.10 shows that QueryMax gets much better recall for the

cast-check than the null-pointer analysis. The main reason for this is that some dereference

instructions get a high-priority from QueryMax, but are often never null-pointer exceptions.

For example, in any given program, the println() call occurs many times, and in all cases

gets its value from the field java/lang/System.out. Since this field affects several dereference

instructions, it ends up getting a high-priority and that part of the library gets added to our

partial library first, even though the println() calls never cause null-pointer exceptions. A

similar case happens to some other common dereference instructions.

To sum up, QueryMax with either stopping criterion provides a useful analysis design

point in-between the application-only analysis and the demand-driven analysis, just like in

the example from Section 4.2. Further, unlike Averroes, it achieves this speedup without

sacrificing precision, and thus continues to meet the high-precision expectation of its users.

4.6.2 C2: Distribution of Recall and Speedup

We now understand the recall and speedup trade-off points for QueryMax, but we would also

like to know their distribution across the benchmark programs. Figures 4.11 and 4.12 use

a histogram to show the distribution of the recall and speedup for QueryMax with a 70%

query coverage. The X-axis gives the speedup or recall, with the values split into bins, and

the Y-axis gives the number of programs in each bin. Just like figures 4.9 and 4.10, we use

a logarithmic scaling for speedup here. The recall is still plotted on a linear scale.
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Figure 4.11: Speedup and Recall histograms for QueryMax
(70% query coverage) on the cast-check analysis
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Figure 4.12: Speedup and Recall histograms for QueryMax
(70% query coverage) on the null-pointer analysis
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Analysis Cast-check Null-pointer
Application-only 395x 2196x
Averroes 230x 1744x
QueryMax 3% class-budget 30x 84x
QueryMax 10% class-budget 13x 33x
QueryMax 30% class-budget 6.4x 18x
QueryMax 70% query coverage 16x 20x
QueryMax 90% query coverage 12x 10x
Demand-driven 42x N/A

Figure 4.13: Speedup for the various analysis techniques for the Zero-error benchmarks

The recall for QueryMax with the cast-check analysis (Figure 4.11) is close to 100% for

most of the programs, with only a couple of programs getting lower scores. Two programs

get a 0 recall. These programs had just 1 and 2 errors each and missing those errors meant

a recall of 0. The null-pointer analysis (Figure 4.12) has a similar story for recall, but it has

a larger number of programs with 0 recall. In most of these cases, the null-errors are very

few and highly related, and hence missing one library method could cause all the null-errors

to be missed.

The speedups for both analyses are consistent, with most programs getting close to the

mean speedup value. The cast-check has 2 programs that get less than a 1x speedup. This

happens because if QueryMax cannot guarantee that 70% coverage has been reached by the

time its chosen fragment expands to 30% of the program, it simply falls back to picking the

whole program, thereby resulting in no speedup.

4.6.3 Zero-Error Benchmarks

The results so far focused on the programs with non-zero errors. Figure 4.13 lists the speedup

for programs with zero errors in the whole-program analysis. The speedups for QueryMax

are on average twice as much as the non-zero error benchmarks. The demand-driven cast-

check however, gets a 42x speedup here as compared to the 5.1x speedup on the non-zero

error benchmarks. This high speedup for the demand-driven analysis on these benchmarks
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Figure 4.14: Split up of the time taken by each component for an analysis using QueryMax
with the query-coverage goal

stems from the fact that these programs have much fewer down-cast instructions than the

non-zero error benchmarks. Thus, when there are very few analysis queries, a demand-driven

analysis gets a higher speedup.

4.6.4 Split-up of Analysis Time

Recall the workflow of QueryMax from Figure 4.1. We first run QueryMax with either a

query-coverage goal or a class-budget. For query-coverage, QueryMax includes the additional

overhead of the fast-ESA. Finally, we run the existing analysis. Figure 4.14 gives a split-up

of the time between QueryMax (minus the fast-ESA), the fast-ESA, and the existing static

analysis, for the query coverage goal.

For the cast-check, the fast-ESA takes 51% of the time, whereas the other QueryMax

part takes just 4%. This explains why the query-coverage criterion from Figure. 4.9 is slower

than the class-budget one; computing the query-coverage needs the fast-ESA, but computing
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Figure 4.15: Class-budget and analysis time relationship.

the class-budget does not.

For the null-pointer analysis, both the fast-ESA and the other part of QueryMax take up

a small percentage of the time (8% totally). The contribution of QueryMax and fast-ESA to

the total analysis time is larger for the cast-check than the null-pointer analysis. The reason

for this is that existing null-pointer analysis has a longer absolute analysis time than the

cast-check, but the absolute fast-ESA time is similar in both cases.

4.6.5 Analysis-time vs Number of Classes

As a minor result, we show the relationship between the class-budget and the analysis time,

to justify our use of the former as a proxy for the latter. Figure 4.15 compares the number
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of classes analyzed on the X-axis with the analysis time on the Y-axis for both analyses.

Each point represents one analysis of QueryMax with a class-budget. For both analyses, the

analysis time is almost linear, but the cast check has more outliers, which explains the high-

standard deviation for its analysis time (see Figure 4.8). The figure also plots a regression

line, and the equation of this line can be used to convert time-budgets into class-budgets.

4.6.6 Threats to Validity

There are two main threats to validity. The first is that out of the application, third party

libraries and standard library, the standard library forms the largest part. Even though

different programs interact with different parts of the standard library, it still means that

the benchmarks are not perfectly independent for a static analysis. However, this issue occurs

with any static-analysis benchmark-set where the programs access the standard library.

The second is that analysis time measurements for all the programs were performed using

a single run, even though execution times can vary across runs. However, since the speedups

are large (an order of magnitude) and the benchmarks are numerous, these variations matter

less. Further, since the total experiment-time is already ten days, performing multiple runs

is infeasible.

4.7 Related Work

The three research directions that focus on speeding up static analysis by avoiding the

analysis of the entire program are library-summary based analysis, demand-driven analysis,

and the analysis of program fragments. We discuss each of these in turn.

Library-summary based analysis The main idea behind the research in this area is

to create an analysis summary for the library and use this library summary instead of the

actual library code to analyze the application.
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Averroes [AL13] heavily compresses the library into a small summary. This summary

consists of a single summary-pointer to represent all library pointers, stubs for methods

called directly from the application, and a single summary-method to perform all the object

initializations and application call-backs. Since this summary is quite small compared to

the library, using it in place of the library results in a massive speedup. However, the small

size of the summary has two downsides:querymax- precision drops because information is

merged in the single summary-pointer, and some kinds of information (like field initialization

information for the null-pointer analysis) get left out out of the summary. QueryMax, in con-

trast, leaves out no information in the partial library that it chooses, and more importantly,

preserves the precision.

The component-level analysis by Rountev et. al [RKM06, RSX08] differs from Averroes

in that its library summary contains all the information necessary to get the same result

as a whole program analysis. The first time an analysis is run, the library is separately

analyzed and summarized, and the summary is integrated with the application analysis.

This saves no time in the initial run (the overhead causes a slowdown). However, it saves

time in subsequent runs when the same library summary is reused across different programs

or future versions of the program. QueryMax on the other hand never uses the whole library

and it speeds up the analysis of each program independently. Further, unlike the component-

level analysis which needs a separate design for each type of analysis, QueryMax can be used

off-the-shelf with any analysis.

Demand-driven analysis Demand-driven analyses [SGS05a, HT01, SB06b, SDA16] are

well-accepted as the most efficient option for single analysis queries, and work best for

resource-constrained environments like IDEs and JIT compilers. They also perform well

when the number of queries is small [SGS05a]. However, when analyzing entire applications

in which the number of queries is large, the demand-driven analysis could end up analyzing

large parts of the program and cause a slowdown because of their overhead [HT01]. We
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also see this observation in our benchmarks, where some programs get huge speedups over a

whole-program analysis, but some experience slowdowns.

Unlike the demand-driven approach, QueryMax avoids expensive queries by assigning

them a low priority, like in the example from Section 4.2. It also avoids the demand-driven

overhead since it still runs a batch analysis, thereby performing better when there are many

queries to be answered. Further, since QueryMax is only a preprocessor to an existing whole-

program analysis, it can be used with an existing analysis, without requiring a design of a

demand-driven version of it.

Analysis of Program Fragments There has been past research on analyzing program

fragments in isolation. In our use-case, the program fragment is the application-code.

Cousot and Cousot [CC02] describe four techniques for this general approach. The first is

a simplification-based separate analysis, which analyzes the various fragments of a program

separately and then combines their information. This idea is similar to the library-summary

based analysis by [RKM06], and has the drawbacks as discussed above. The second tech-

nique is a worst-case analysis, which means running an application-only analysis, but using

the top element of the abstract domain for library pointers. This introduces additional false-

positives. Our experiments on this technique show that it gets a precision (averaged over

both analyses) of 22% which is far below our 100% target precision. The third technique is

to ask a user to provide stubs for the library (i.e. information about the library interface)

and then perform an application-only analysis that incorporates these stubs instead of the

library. This can give high recall, precision and speedup, but it requires a static-analysis

expert to manually write and update the stubs for each library. The fourth technique uses

a relational abstract domain and analyzes a program fragment by giving symbolic names to

external pointers and lazily evaluating the values they pass. To the best of our knowledge,

there are no recent implementations or experimental results to compare the effectiveness of

this technique in practice.
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Rountev et. al [RRL99] introduce a technique to improve the performance of a whole-

program flow-sensitive analysis. They perform a flow-sensitive analysis for the application

code and then use a whole-program flow-insensitive analysis to overapproximate the effect

of the library pointers. The two limitations of this technique are that it drops precision

as compared to the original flow-sensitive analysis, and it cannot be used to speed up a

flow-insensitive analysis. QueryMax on the other hand maintains the same precision as the

original analysis tool and works with any level of context-, flow- or field-sensitivity.
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CHAPTER 5

RLFixer: Automated Repairs for Resource Leak

Warnings

In this chapter, we introduce the third tool, RLFixer, which tackles the third biggest pain

point for users: a lack of suggested fixes in existing static analysis tools. More specifically,

RLFixer focuses on repairs for resource-leak warnings from static analysis tools. When

applied to five popular Java resource-leak detectors, RLFixer generates repairs for 66% of

their warnings with a 14 second repair time and a fix-correctness of 95%.

5.1 Overview

Motivation. Most programs use resources such as files, sockets and database connections.

Resource leaks are a common bug introduced unintentionally by programmers, which can

result in security vulnerabilities [CWE22] and severe failures [GCS20]. Resource leaks are

elusive because they only cause crashes when many resources leak and the OS runs out of

that resource-type; this typically does not happen during testing. An effective approach

for identifying these resource leaks during development is static analysis [KSS21b]. Today,

developers can choose from several open-source static-analysis tools that perform resource-

leak detection [CDD15, KSS21b, Spo17, Cod20, PMD02], many of which provide accurate

warnings.

While static analyzers can detect resource-leaks, users also need tool-support to fix these

errors. For example, Christakis and Bird’s empirical study [CB16c] shows that a lack of
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suggested fixes is one of the top pain points reported by static analysis users. Other developer

studies [JSM13b, SAE18a, DWA22] also report very similar findings. Hence, what we need

is a tool to fix resource-leaks.

Existing repair tools. Since there are currently no specialized tools for resource-leak

fixing, one could try using general-purpose repair tools [COZ21, LCL17a, LCL17b, AMS21,

MYR16, NQR13, JXZ18, KNS13, LR15, LR16, WNL09, LWN20, JLT21, XZ22, LWN22,

YMM22], which work on a wide variety of errors. These tools generate candidate patches

using a variety of techniques, but they all validate a patch by checking if it passes the

previously failing test case. Resource leaks, however, do not show up during tests, and hence

cannot be fixed by such tools. Footpatch [TG18], one of the only general-purpose tools that

does not rely on tests, is the current best tool for fixing resource leaks. However, it suffers

from low-quality fixes for Java resource-leaks; it suggests fixes for only 15% of the leaks, out

of which only 50% are correct.

Achieving a perfect fixable-rate (percentage of warnings for which a fix was suggested) and

fix-correctness (percentage of correct fixes out of the suggested fixes) for Java resource-leaks

is a lofty goal. The problem is at least as hard as compile-time object deallocation [GMF06,

CR07] (i.e. replacing Java’s runtime garbage collector with static deallocation), a known hard

problem for compilers. Furthermore, in this repair problem, some corner cases involving loops

or aliasing also reduce to undecidable problems. Hence, there will always be some resource-

leaks that are infeasible to fix for a compile time-tool. However, we show that by separating

the leaks that are infeasible to fix from those that are feasible to fix, it is possible to have

better repairability than Footpatch in both fixable-rate and fix-correctness.

Our Approach. In this paper, we introduce RLFixer, a specialized repair tool for resource

leaks that generates high-quality fixes. Fig. 5.1 gives an overview of its workflow. The

warnings computed by an existing black-box resource-leak detector are first parsed to extract
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Figure 5.1: Overview of the RLFixer workflow

the location where the resource was created. Next, the resource alias identification step

identifies pairs of resource objects that use the same underlying system resource. The third

step tracks the data-flow of the resource object using a new demand-driven static analysis

called a resource escape analysis. This analysis serves two purposes: it identifies leaks that

are infeasible to fix, and it helps pick the correct repair-template for the feasible-to-fix ones.

Finally, using this repair template, the last stage generates the correct fix.

In addition to generating correct fixes, we designed RLFixer to be fast. Repair time

is important because suggested fixes typically accompany static analysis warnings in IDEs,

which are time sensitive environments. RLFixer’s demand-driven design enables it to analyze

only those statements relevant to the resource leak and hence takes, on average, only 1

seconds per program, excluding the 13 seconds for setting up the call-graph, class-hierarchy,

etc. This is significantly faster than most other repair tools, which take minutes or hours.

We evaluated RLFixer by applying it to five popular Java resource-leak detectors: In-

fer [CDD15], PMD [PMD02], Checker-Framework [KSS21b] , Codeguru [Cod20], and Spot-

bugs [Spo17], each of which is run on programs from the NJR dataset [UKL20].
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Our Contributions. We begin with an example of RLFixer fixing a resource leak (Sec-

tion 5.2), and then we detail our contributions:

• We introduce a new static analysis, resource escape analysis, which helps identify leaks

that are infeasible to fix, as well as pick the repair template for feasible ones (Sec-

tion 5.3).

• We design and implement RLFixer, a specialized repair tool for resource-leaks that is

based on the resource escape analysis, and can repair leaks from multiple leak detectors

(Section 5.4).

• We show, experimentally, that RLFixer generates high-quality fixes with low overhead

for five popular Java resource-leak detectors. On average, it generates fixes for 66% of

the warnings, out of which an estimated 95% are correct (Section 5.6).

We end with a discussion of related work (Section 5.7).

5.2 Examples

This section shows two simplified examples of how the five resource leak detectors report

leaks, and how RLFixer goes about repairing them. It highlights the need for suggesting

fixes for resource-leaks, as well as some of the challenges in generating a correct fix.

Fig. 5.2 shows a simplified Java code snippet from one of the NJR benchmarks. It has two

methods, each with one resource object. First, let us look at the method foo. foo creates

a FileReader resource, which gets passed in to the bar method. Note that foo continues

using the FileReader after the bar function returns. The foo method also declares that

it potentially throws an exception. This declaration is required by the Java-compiler’s type

and effect system when a resource’s potential exception is not handled in a try-catch block.

The lines highlighted in green constitute the fix suggested by RLFixer ; they have not been

added to the code yet.
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1 . .
2 void f oo ( F i l e a ) throws IOException{
3 Fi leReader f r = null ;
4 + try{
5 f r = new Fi leReader ( a ) ;
6 bar ( f r ) ;
7 int data = f r . read ( ) ;
8 + } f ina l ly {
9 + try{
10 + f r . c l o s e ( ) ;
11 + }catch ( Exception e ) {
12 + e . pr intStackTrace ( ) ;
13 + }
14 + }
15 }
16
17 void bar ( Fi leReader f ) {
18 BufferedReader r = null ;
19 try {
20 r = new BufferedReader ( f ) ;
21 System . out . p r i n t l n ( r . r e ad l i n e ( ) ) ;
22 } catch ( IOException e ) {}
23 }

Figure 5.2: Example of a resource leak fixed by RLFixer

Next, let’s focus on the method bar. The bar method creates a BufferedReader re-

source object with the FileReader parameter f as an argument. Here, the BufferedReader

is a wrapper resource that provides buffering functionality for the FileReader f. Hence

we say that the resource variables f and r are resource aliases. This means that even

though they point to different resource objects (f points to a FileReader and r points to a

BufferedReader), the underlying system resource pointed to by those objects is the same.

This implies that closing one resource object closes all its resource aliases. In this case, nei-

ther the BufferedReader nor the FileReader have been closed, and hence we get a resource

leak.

We now run five resource-leak detectors (Infer, PMD, Checker-Framework, Codeguru,

and Spotbugs) on this code, and Fig. 5.3 shows the output given by each. PMD and Infer

identify a resource leak for the BufferedReader, whereas Checker-Framework identifies a
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Tool Output
Infer Resource of type BufferedReader at line 20 is not released

after line 21
PMD Ensure that resources like this BufferedReader object are

closed after use (line 18)
Checker-
Framework

@MustCall method close may not have been invoked on ‘fr’
or any of its aliases (line 5)

Codeguru N/A (Resource leak missed)
Spotbugs N/A (Resource leak missed)

Figure 5.3: Outputs for the five resource-leak detectors, when given the code snippet from
Fig. 5.2

resource-leak for the FileReader. Codeguru and Spotbugs do not report any resource leak.

Even after getting one of these warning messages, a developer is still several steps away from

a correct fix.

We also run the baseline repair tool, Footpatch, on this file-handle leak. Footpatch is

tightly integrated with Infer, and relies on Infer’s warning output for identifying fix locations.

Footpatch first generates candidate patches by searching the code-base for program fragments

that close a file, and then validates the patches by confirming that they fix the error. In this

case, Footpatch is unable to generate any patch candidates for the warning. Furthermore,

even if Footpatch did hypothetically find a patch, it would apply the patch at the location

in Infer’s warning (after line 21). Closing the BufferedReader after line 21, or anywhere in

function bar, will mean that the file pointed to by its resource-alias FileReader will be closed

before it is read on line 7. This fix is dangerous since it introduces a new use-after-close

error.

Finally, let us examine how RLFixer deals with the resource leak, assuming the warning

came from Infer (i.e. for line 20). RLFixer starts off by performing a resource alias identifi-

cation for the new BufferedReader object. This analysis reveals that f is a resource-alias.

Next, RLFixer performs a resource escape analysis, a static analysis that computes how

the BufferedReader and any of its aliases escapes the method. The two ways the resource
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1 class A{
2 Fi l eWr i t e r fw ;
3 void c r e a t e ( F i l e b) throws IOException{
4 F i l eWr i t e r f = new Fi l eWr i t e r (b) ;
5 s t o r e ( f ) ;
6 }
7
8 void s t o r e ( F i l eWr i t e r a ) throws IOException{
9 fw = a ; /∗ Resource escapes to a f i e l d ∗/
10 }
11 }

Figure 5.4: Example of a resource leak that is infeasible to fix

escapes the bar method are via the readline method call and via the parameter f. When

a resource escapes via a parameter, we cannot close the resource in the current method,

since the resource is still accessible after the method returns. Instead, we examine the caller,

which is in foo. Carrying out the resource escape analysis for fr in foo shows that it only

escapes via method calls, and hence can be closed in the method foo itself. RLFixer then

picks the correct repair-template, and it suggests the fix highlighted in green in Fig. 5.2.

The repair-code correctly fixes the leak without introducing new errors or modifying the

semantics of the original program. RLFixer computes the same fix for the warnings given

by PMD and Checker-Framework.

A Resource Leak that is Infeasible to fix

Figure. 5.4 shows an example of a resource leak that may be infeasible to fix at compile

time. RLFixer, during its resource escape analysis, tracks the FileWriter resource through

the call to the method store, and identifies that it is assigned the field fw. Since this field

is accessible as long as its parent A object is alive, we can only safely close this resource

when the A object is getting deallocated. This reduces the problem to compile-time object

deallocation [GMF06, CR07], which has been a known hard problem for compilers. Prior

research has only managed to statically deallocate some objects in the program [GMF06],

102



and the hardness of this problem is the reason why Java uses a runtime garbage collector.

This is just one of the infeasible cases for resource-leak repair; we discuss the full list of cases

in Section 5.3.

There will always be resource-leaks that are too hard to fix statically. RLFixer aims to

identify and separate out the hard-to-fix leaks like the one in Fig. 5.4, while correctly fixing

the rest of the resource-leaks, like the one in Fig. 5.2.

5.3 Approach

This section gives an overview of RLFixer’s approach to fixing resource-leaks. Fig. 5.1 shows

the four main components of RLFixer : the warning parser, the resource alias identification,

the resource escape analysis, and the application of repair templates; we now discuss each of

these in detail.

5.3.1 Warning Parser

The first component parses the resource-leak detector’s warning and extracts the source file

and line number where the leaked resource was created. Each resource-leak detector needs

a separate parser because each tool uses a different output format, but this component is

simple and small. On average, it takes only 15 lines of Python code per new tool.

5.3.2 Resource Alias Identification

The second step for RLFixer is identifying resource aliases for the leaked resource objects.

Since a majority of resource usage in Java involves resource aliasing, this step is essential

before proceeding with any kind of static analysis over resources. We have already seen an

example of resource aliasing in Fig. 5.2, where the FileReader and BufferedReader objects

pointed to the same OS resource. Prior research [KSS21b, TC10] has studied resource-
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1 class WrapperType{
2 private ResourceType out ;
3 public WrapperType ( ResourceType w) {
4 out = w;
5 }
6 public c l o s e ( ) {
7 out . c l o s e ( ) ;
8 }
9 }
10 . .
11 {
12 /∗ Resource−l ea k repor t ed here ∗/
13 x = new ResourceType ( "a . txt " ) ;
14 y = new WrapperType (x ) ;
15 }

Figure 5.5: Resource Alias Identification: checking if the WrapperType object is a wrapper
for the ResourceType object

aliasing from the point of view of pruning false-positive resource-leak warnings. Here, we

study resource-aliasing from the point of view of generating correct repairs. Below is the

resource-aliasing definition that RLFixer uses.

1. Variables x and y are resource-aliases if x is a wrapper for y, or y is a wrapper for x.

2. Resource W constructed with the constructor CW is a wrapper for resource R if:

(a) R is passed as a parameter to CW , and

(b) R is a must-alias of a field of W at the end of CW , and

(c) The must-alias field always gets closed in the close() function of W

3. All pointer aliases are treated as resource-aliases.

This definition also serves as a specification for a static analysis, which RLFixer im-

plements to identify resource alias pairs. Let us use the example from Fig. 5.5 to check if

the variables x and y are resource-aliases. The resource leak warning is reported for the

ResourceType object on line 13. The ResourceType cannot be a wrapper for any other
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object because its constructor only takes a string input, and this will never satisfy condi-

tion (2a). So let us check the 3 conditions for the WrapperType to be a wrapper for the

ResourceType. We first perform a def-use analysis [PLR94] of x, which identifies all uses of

x. Since x is used as a parameter in the constructor for the WrapperType, condition (2a) is

satisfied. Next, for condition (2b), we check the WrapperType constructor and its callees for

an assignment of its parameter w (or one of its aliases) to a field of the WrapperType. In this

case we have such a field, out; the condition is satisfied. Analyzing the close function reveals

that the resource from the field out gets closed in it and this satisfies condition(2c). Thus,

all three conditions are satisfied; the WrapperType and ResourceType are resource-aliases.

The final part of the definition says that all pointer-aliases are resource-aliases. Computing

pointer-aliases is a solved problem, and can be done with a typical demand-driven pointer

analysis [SGS05b].

We now know how to identify pairs of resource-aliases, but we also need to consider

resource-objects that are linked by multiple layers of resource-wrapping. This is quite com-

mon in Java programs; a resource can be wrapped in up to four or five layers of resource

wrappers. We identify this linking by computing a transitive closure over the resource-

aliasing relationship.

5.3.3 Resource Escape Analysis

The third component, the resource escape analysis, takes the warning parser’s resource-

leak location and list of resource-alias pairs as input, and computes all the types of program

constructs that the resource can escape to. This analysis is used by RLFixer for two purposes:

it helps separate out the infeasible-to-fix leaks, and it helps compute repairs for the feasible-

to-fix leaks.

The resource escape analysis is carried out on the WALA IR [WAL15] 1 , since it is

1WALA is the static analysis framework used by RLFixer, and the WALA IR is very close to Java
bytecode.
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Program : : (C, C, . . . C)
C : : <cname> Ext ImpDS { f i e l d s : { f ; . . f ; } methods : {M, . . ,M}}
M : : <mname>(V1 , . . , Vn ) { i n s t r u c t i o n s : { I ; . . I ; }}
I : : ArrayStore | Fie ldWrite | Assgn | PhiStmt | ReturnStmt | Invoke |

FieldRead | Condit ionalBranch | NewStmt | ArrayLoad
ArrayStore : : Varr [Vidx ] = Vrhs

Fie ldWrite : : Vlhs . f = Vrhs

Assgn : : Vlhs = Vrhs

PhiStmt : : Vlhs = phi (V1 , . . , Vn )
ReturnStmt : : return V
Invoke : : Vlhs = Vrhs .<mname>(V1 , . . , Vn )
FieldRead : : Vlhs = Vrhs . f
Condit ionalBranch : : i f Vbool goto I
NewStmt : : Vlhs = new <cname>
ArrayLoad : : Vlhs = Varr [Vidx ]
V : : <var−name>
Ext : : extends <cname> | ’ ’
ImpDS : : implements <data−st ruc ture−i n t e r f a c e > | ’ ’

Figure 5.6: Simplified grammar for the WALA IR

easier to write a data-flow analysis for WALA IR than Java source code. Fig. 5.6 gives a

simplified grammar of the WALA IR. Since most of the grammar has terms that are common

in most intermediate representations, we only explain a few terms. The PhiStmt is a special

instruction in all SSA-based IRs to merge values from a source-variable that appears on two

different control-flow paths. It is primarily introduced for the purpose of data-flow analysis,

and can be thought of as an assignment statement with an OR between multiple variables

on the right hand side. The ImplDS non-terminal specifies if the class implements any of the

data-structure interfaces (such as Map, Collections, etc.) in Java.

Enumerating through all the instructions in the grammar shows that there are exactly

five program constructs to which a resource can escape from its method: a field, a data-

structure (an array or a data-structure class), a return variable, a parameter, and an invoke

(i.e. method-call). We define five escape types corresponding to these five constructs: Field-

Escape, Data-Structure-Escape, Return-Escape, Parameter-Escape, Invoke-Escape. Fig. 5.7

describes what each escape type means. A resource can have multiple escape types.

From an abstract-interpretation [SCS21] view of the analysis, the bottom element of the
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Escape type A resource object has this escape type if it:
Field-Escape aliases with either an instance field or a static field
Data-Structure-
Escape

aliases with an element in an array or data-structure.

Return-Escape gets returned by the method it is created in.
Parameter-Escape aliases with a formal parameter of the method it is created in
Invoke-Escape is passed as an argument to an invoke statement (i.e. method call)

Figure 5.7: The five escape mechanisms for a resource object

lattice is the empty set and the top element is a set with all five escape types. The analysis

is designed to be demand-driven, and its output is the set of possible escape types for the

resource.

Fig. 5.8 gives pseudo-code for the analysis. The analysis procedure, whose name is

shortened to rea, takes two arguments: the resource variable whose escape mechanisms we

wish to analyze, and the method it is declared in. escTypes, the set of escape types, is

initialized to the empty set in the beginning. The bulk of the method is a for loop over the

uses of the resource variable.

For each use, we perform a case analysis based on the type of the use instruction. The

possible use instructions come from the grammar in Fig. 5.6. If the use-instruction is an

ArrayStore, it follows that the resource object aliases with an array element, and according

to Fig. 5.7, this implies a Data-Structure Escape; we add this to escTypes. Similarly a

FieldWrite implies a Field Escape. An Assgn or PhiStmt requires us to recursively track the

assigned variable; hence we call rea on it. Being used in a Return statement in the warning’s

original method implies that Return should be in escTypes. Additionally, since we need to

track the returned variable in all callers, we add the escape types of the callers’ call-sites to

escTypes. If the use-instruction is an Invoke (i.e. method call), we split it into two sub-cases.

If the method belongs to a data-structure class, we add Data-Structure to escTypes. If not,

we add Invoke to escTypes, and track the escape types in the method call by recursively

calling rea on the matching argument in the invoke targets. We do not need to do anything
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1: procedure rea(resourceV ariable, method)
2: escTypes = ∅
3: for I in getUses(resourceV ariable) do
4: switch I.instructionType do
5: case ArrayStore:
6: escTypes 3 Data-Structure
7: case FieldWrite:
8: escTypes 3 Field
9: case Assgn:
10: escTypes ⊇ rea(Assgn.Vlhs, method)
11: case PhiStmt:
12: escTypes ⊇ rea(PhiStmt.Vlhs, method)
13: case ReturnStmt:
14: if method == originalWarningMethod then
15: escTypes 3 Return
16: end if
17: for caller in callers(method) do
18: escTypes ⊇ rea(caller.Vlhs, caller.method)
19: end for
20: case Invoke:
21: for M in invoke.targets do
22: if M.isDataStructureMethod() then
23: escTypes 3 Data-Structure
24: else
25: escTypes 3 Invoke
26: p =M.matchingParam(resourceV ariable)
27: escTypes ⊇ rea(p, M)
28: end if
29: end for
30: case FieldRead: do nothing
31: case ConditionalBranch: do nothing
32: case NewStmt: do nothing
33: case ArrayLoad: do nothing
34: end for
35: if isParameter(resourceV ariable) then
36: if method == originalWarningMethod then
37: escTypes 3 Parameter
38: end if
39: for caller in callers(method) do
40: p = caller.matchingArgument(resourceV ariable)
41: escTypes ⊇ rea(p, caller.method)
42: end for
43: end if
44: return escTypes
45: end procedure

Figure 5.8: Resource Escape Analysis (Name shortened to rea)
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for the last four instruction types. A FieldRead does not propagate any escape information

from the resource variable because only the field is read. ConditionalBranch, NewStmt, and

ArrayLoad do not even support the use of a resource variable.

In addition to checking for the uses of the resource variable, we also need to check if it

escapes to a parameter (see line 35). If so, we add Parameter to escTypes. Additionally,

we recursively track the escape types in the caller methods, by calling rea on the resource

variable’s matching argument in the caller methods.

Finally, the analysis returns escTypes, the aggregate set of escape types for resourceV ariable.

Since resource aliases point to the same underlying resource, an escape type for one alias

applies to all other aliases. Hence, the resource escape analysis must be repeated for all

resource-aliases of resourceV ariable, and their escape types added to escTypes.

5.3.4 Applying Repair Templates

The final step for RLFixer is generating repair code. The repair code has the following spec-

ification: it should close the leak after the last use of the resource, without introducing new

errors (such as a new leak, a use-after-close error, or a null pointer exception) or modifying

the semantics of the original program.

RLFixer uses the decision tree from Fig. 5.9 to pick the correct repair strategy. If a

resource escapes to a field or data-structure, RLFixer marks it as infeasible to fix. If the

resource does not escape to a field or data-structure, but does escape to a return or parameter,

RLFixer creates dummy leak warnings at the caller methods, and closes the leak there. If it

does not have any of these four escape types, we can close the resource in the same method

as it was created. Based on how the resource is used, we then apply one of three repair

templates. Since the decision tree covers all the five escape types, it exhaustively covers all

the cases in which a single resource can leak. Let us now examine each of these cases in

more detail.
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Resource is defined in a try-catch
block, and all its uses (and aliases)

are contained in the same block

Resource has a post-dominator

If the resource is not defined in a try-
catch block

Paramter ∈ escTypes

Return ∈ escTypes

Data-Structure ∈ escTypes OR
Field ∈ escTypes

No

No

No

No

No

Infeasible to Fix
Yes

Yes Create dummy
warning at the callers'

arguments

[Resource either has an Invoke escape or no
escape. It can be closed in this method itself.] 

[Resource (or alias) uses are partly inside a
try-catch block and partly outside]

Yes

No Infeasible to Fix

Create dummy
warning at the callers'

return variables

Yes

Apply the 'Throws
Template'

Apply the 'Contained
Try-Catch Template'

Apply the 'Escaped
Try-Catch Template'

Yes

Yes

Figure 5.9: Decision-tree depicting how RLFixer decides which leaks are infeasible to fix,
and picks the correct repair template to apply.
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Field-Escape. Resources with a Field Escape are infeasible to fix. We have already seen

why a resource that escapes to an instance field, like in the example from Fig. 5.4, is infeasible

to fix. The problem reduces to compile-time object deallocation. A resource that escapes

to a static field (i.e. a field associated with the class definition rather than any object) also

cannot be closed, but for a different reason. Static fields are alive throughout the program,

and hence their associated resources will not be safe to close before the end of the program.

An additional roadblock to generating fixes for Field-Escapes is that we may not have access

to all the code at compile time. For example, if RLFixer is given library code to fix, it does

not have access to all the applications using this library code; such application code can also

create library objects or access its fields.

Data-Structure-Escape. Fixing Data-Structure-Escapes is hard because it is well-known

that unbounded data structures such as arrays are hard to accurately model using static

analysis [GRS05b]. Hence, static analysis tools model arrays using over-approximation. An

over-approximation captures the effects of all possible executions of the program, but it may

additionally include effects from executions that are not possible. In the case of an array, the

over-approximation is to assume that a read or write to the array could affect any possible

index. Such an over-approximation is safe for resource-leak detection because it will never

miss out on a leak that occurs in a possible execution. However, this over-approximation is

unsafe for our repair problem because to close a resource from an array requires us to know

the exact index that the resource was written to. A similar argument applies to other kinds

of data-structures. Hence, RLFixer does not generate any repairs for these cases.

Return Escape. At the Return ∈ escTypes node of the decision tree, we already know

that the resource does not escape to a field or data-structure. If the resource does escape

via a Return, we create one dummy warning for each caller at the returned variable. For

example, in the snippet (Resource r = getRes()), a resource object gets returned by the

getRes method and hence is still alive after the getRes method returns. Consequently, we
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cannot close the resource inside the getRes method. Instead, we create dummy leak warning

at the returned variable (r in this case). We then recursively apply RLFixer to the dummy

warning(s), and suggest their repairs as a fix for the original warning.

Parameter Escape. The Parameter Escape case is similar to the Return Escape case,

where we create a dummy warning at the caller methods. The only difference is that the

dummy warning is created at the corresponding argument of the paramter in the caller. We

already saw this strategy being applied to the example in Fig. 5.2. The resource leak was

reported at the new Buffered Reader in the bar method of Fig. 5.2. The Buffered Reader

resource escapes to the parameter via its resource alias (FileReader f ). Hence, we create a

dummy warning for the argument fr at the method call to bar in the caller method foo.

We then recursively apply RLFixer on the dummy warning(s), and suggest their repairs as

a fix for the original warning.

Invoke Escape and Non-escape. At the decision tree node where we have neither a

Data-Structure, Field, Return or Parameter escape, we are left with resource-leaks that

either have an Invoke Escape (i.e. escape via method call) or no escape types. In these two

cases, the resource is not used after the method completes, and hence should closed in the

same method. Based on whether the resource is defined inside or try-catch block or not, we

define three repair templates: the Throws Template, the Contained Try-Catch Template, and

the Escaped Try-Catch Template. Fig. 5.10 illustrates these templates. The lines highlighted

in green give the fix suggested by RLFixer.

The Throws Template (see Fig. 5.10a) applies when the resource is not created or used

within a try-block. The repaired code places all the resource (and alias) uses within a try-

finally block. The try block starts at the first line where the resource is used. The finally

block starts after the last line where the resource is used, but with adjustments to match

the scope of the newly added try-block. Note that the new close statement is placed within
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1 void f oo ( ) throws Exception {
2 Resource r = null ;
3 + try {
4 r = new Resource ( . . ) ;
5 r . useResource ( ) ;
6 + } f ina l ly {
7 + try{ r . c l o s e ( ) ; }
8 + catch ( Exception e ) {
9 + e . pr intStackTrace ( ) ;
10 + }
11 + }
12 }

(a) Throws Template

1 Resource r = null ;
2 try {
3 r = new Resource ( . . ) ;
4 r . useResource ( ) ;
5 } catch ( IOException e ) {
6 e . pr intStackTrace ( ) ;
7 }
8 + f ina l ly {
9 + try{ r . c l o s e ( ) ; }

10 + catch ( Exception e ) {
11 + e . pr intStackTrace ( ) ;
12 + }
13 + }
14 /∗ No Resource use a f t e r t h i s ∗/

(b) Contained Try-catch Template

1 void bar ( ) throws Exception {
2 Resource r = null ;
3 try {
4 r = new Resource ( . . ) ;
5 r . useResource ( ) ;
6 } catch ( Exception e ) {}
7 i f (b) {
8 + try{
9 r . useResource ( ) ;
10 + } catch ( Exception e ) {
11 + try{ r . c l o s e ( ) ; }
12 + catch ( Exception f ) {}
13 + throw e ;
14 + }
15 }
16 + try{
17 + r . c l o s e ( ) ;
18 + } catch ( Exception E) {
19 + e . pr intStackTrace ( ) ;
20 + }
21 }

(c) Escaped Try-Catch Template

Figure 5.10: RLFixer’s Repair Templates

113



its own try-catch block to handle any exception (either related to resource access, or a null-

pointer exception) it may throw. Without the enclosing try-catch block, an exception in the

close statement will modify the control flow of the original program. We will see the same

pattern with the next two templates. Similarly, we do not add a corresponding catch block

to the outer try-finally block in the Throws Template because it will modify the control-flow

of the program if an exception is thrown. Modifying the control flow of the original program

modifies the semantics, and this goes against our repair specification.

The Contained Try-Catch Template (see Fig. 5.10b) is applied when the resource creation

and all its uses (and resource aliases) are contained within a try block. In this case, the correct

repair is to attach a corresponding finally block that closes the resource. The finally block in

Java always executes after the try-catch block, even if the try block has a return statement

or an exception. Hence, with this fix, the resource is closed on all program paths, including

ones involving an exception. 2

The Escaped Try-Catch Template (see Fig. 5.10c) applies when only some of the resource

creation and use statements (and resource aliases) are inside a try block, whereas the rest

are not. Here, we first place all statements that are outside a try block (like line 9 from

Fig. 5.10c) in a new try-catch block; this prevents control from escaping the method bar

before we get a chance to close the resource. Note that we re-throw the exception on line 13

to avoid modifying the semantics of the program when an exception is thrown. Without

this re-throw, any exception handler in the caller method of bar will not execute, thereby

modifying the program semantics in this case. Finally, the resource needs to be closed at

its earliest post-dominator. A post-dominator for a resource is an instruction in the method

that appears on every control-flow path from a resource use to the end of the method. In

Fig. 5.10c, the earliest post-dominator for the resource is on line 16, which is where we

close the resource. Choosing the earliest post-dominator for closing the resource is always

2The Contained Try-Catch Template has a corner case when a finally block is already present. In this
case, we add the close statement to the existing finally block.
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safe, but in corner cases with a method having multiple exit points, a resource may have no

post-dominator; RLFixer does not suggest any fix in this corner case. 3 4

Loops and Existing Close Statements

There are two more details we need to handle in the repair code: loops and existing close

statements.

Dealing with Loops. Our discussion so far has assumed that the resource was never created

inside a loop, but we need to deal with this case. We divide the resource-leaks in loops into

two sub-cases. The first, more common sub-case, occurs when the resource is created during

a loop iteration and is never used after the end of that iteration. We deal with this sub-case

by extracting the loop-body and computing the fix on this loop-body as we would for any

loop-free resource leak. For the very rare sub-case where a resource created in a loop stays

alive beyond the end of a loop iteration, RLFixer does not suggest a fix; this sub-case gives

an undecidable problem. 5

Deleting Existing Close Statements. In addition to adding repair code, we also need

to delete unnecessary close statements added by the programmer, so that we can avoid a

double close. For example, in Fig. 5.10b, if the programmer had inserted a close statement

inside the try block, we would need to delete it. Such a close statement inside the try block

does not prevent a resource-leak on the exception path, and once RLFixer adds the code

highlighted in green, an additional close inside the try-block will lead to a double-close of the

resource. We design each of our repair-templates to require a single close statement; hence,

3The Escaped Try-Catch Template has a corner case when the earliest post-dominator is inside a try-catch
block. Here, the close statement goes inside a finally block.

4We avoid using Java’s try-with-resources statement for the fix-templates because it only applies to
resources that implement the java.lang.AutoCloseable interface. Furthermore, it supresses exceptions in the
try-with statement in some cases, thereby modifying the semantics of the program. Also, it cannot handle
the resource usage pattern from the Escaped Try-Catch Template.

5Fixing the leak in this rare sub-case requires us to identify the last loop iteration to close the leak. This
is at least as hard as proving loop termination, a known hard problem for compilers.
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RLFixer deletes any existing close statements that were added by the programmer.

5.4 Implementation

This section discusses the implementation details for RLFixer. RLFixer is primarily im-

plemented in the WALA static analysis framework for Java bytecode [WAL15]. We choose

to write RLFixer’s analyses in the WALA IR instead of the Java source AST because the

IR has simpler control flow, fewer instruction types, and is already in SSA form. Further-

more, WALA automatically sets up the core information needed by any static analysis, such

as computing the class-hierarchy, call-graph (using the 0-CFA algorithm) and basic-blocks.

The Repair-Template stage of RLFixer additionally uses JavaParser [Jav19] to scan the Java

source ASTs for scoping and line number information. The front-end of the tool is imple-

mented in Python because of Python’s scripting capabilities, and its parsing libraries for

XML and JSON, the most common output formats for resource-leak detectors.

The resource-escape analysis, call-graph, and resource-alias analysis all use a context-

insensitive analysis. Context-sensitivity is not needed because we know of no way to represent

context in repair code. Our analyses automatically get partial flow-sensitivity because of the

WALA IR’s SSA form. Field-sensitivity is redundant because all resources aliasing fields

become Field Escapes and do not get fixed. Reflection support can trivially be added by

turning on WALA’s reflection analysis, but we skip this option; it only benefits a tiny fraction

of repairs, while increasing call-graph computation time by many fold. In our experiments,

out of the 150 resource-leaks that were manually examined, none were affected by reflection.

The output format of the tool is much like that in Fig. 5.2, and can easily be incorporated

into an IDE or existing static analysis tool. Note that RLFixer does not automatically adjust

variable scopes in its output; it is up to the programmer to correct this.
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5.5 Dataset

We use the NJR-1 dataset (available here [UKL20]), as our benchmark-set. It has 293

Java-8 programs from GitHub, which run off-the-shelf with Java analysis tools that RLFixer

uses, like WALA and JavaParser, as well as several existing resource-leak detectors. The

programs also have several resource leaks. Furthermore, these benchmarks ship with pre-

compiled dependencies and can be compiled with a simple javac command. We leave out

6 of the 293 benchmarks; Footpatch runs out of memory for three benchmarks, two are

missing a library class, and one gets incorrect line numbers for WALA. This leaves us with

287 benchmarks for our experiments.

We run five popular Java resource-leak detectors on this dataset: Infer [CDD15], PMD

[PMD02], Checker-Framework [KSS21b] (shortened to CF), Codeguru [Cod20], and Spot-

bugs [Spo17]. The warnings given by these tools is then fed to RLFixer. We ran all the tools

with their default options, and after post-processing the warnings to filter out duplicate

warnings, etc., we got a total of 2205 unique resource-leaks. During the duplicate filtering,

if there are two warnings for a resource-alias pair (i.e. same root cause), one gets removed.

Fig. 5.11 lists the number of warnings given by each tool. Checker-Framework gets the most

resource-leaks, probably because of its commitment to soundness (i.e. catching as many

possible leaks). Spotbugs gets the fewest resource-leaks, probably because soundness was

traded off for speed. Similarly, the other tools differ in their set of reported leaks because of

different design decisions.

Fig. 5.12 reports some statistics about the frequency of resource leaks in the NJR dataset.

207 out of 287 programs, or 72% of the benchmark programs, have at least one leak. By

taking a union of the resource leaks by the five tools, we get an estimated total of 2205

unique resource leak warnings. This averages to 8 resource leaks per program. Given that

the average number of lines of application code in the NJR dataset is almost 10k, we can

expect one resource leak in every 1300 lines of code. Thus, resource leaks are prevalent in
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Figure 5.11: Warnings reported by the five resource-leak analyzers when applied to the NJR
dataset.

Tool Output
Total number of programs: 287
Programs with at least one resource
leak:

207

Estimated number of unique re-
source leaks (across the five tools)

2205

Lines of application code per
benchmark

9911

Figure 5.12: Statistics about the frequency of resource leaks in the NJR dataset

the dataset; developers need better tool-support for fixing these leaks.

5.6 Experimental Results

In this section, we discuss our experimental results which validate the following claims (all

numbers are averages across the five tools).

1. RLFixer suggests fixes for 66% of the resource-leak warnings from the five tools.

2. 95% of the fixes suggested by RLFixer are correct.

3. RLfixer produces higher quality fixes than Footpatch.
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4. RLFixer takes, on average, 1 seconds per program, excluding the 13-second WALA

setup time.

The first four sub-sections below validate these four claims, and the fifth sub-section

outlines the threats to validity. The experiments were carried out on a machine with 24

Intel(R) Xeon(R) Silver 4116 CPU cores at 2.10GHz and 188 GB RAM. For the JVM, the

default heap size of 32GB, and default stack size of 1MB, was used.

5.6.1 Fixable Rate

Fixable Rate is the percentage of warnings for which a fix was suggested. It is defined as:

Fixable Rate =
# warnings for which a fix was suggested

Total # warnings

Fig. 5.13 gives a split up of the fixable and unfixable resource-leaks for each of the five

tools. On average, RLFixer gets a 66% fixable rate, with PMD getting the highest fixable-

rate (75%). The unfixable resource-leaks are further split based on the reason they are not

fixed: From the graph, we see that the main reason for unfixed leaks are Field Escapes

(20%). Checker-Framework (shortened to CF), gets a lower fixable-rate than the other tools

because of a large percentage of its leaks being Field Escapes. A smaller contributor to

unfixed leaks are Data-Structure Escapes (9%). Some 1% of resource leaks escape to both, a

data-structure and a field. We report these as data-structure escapes to simplify the graph.

The last 5% of leaks are not fixed (in red color) because, as discussed in Section 5.3.4, there

are corner cases for some templates that result in undecidable problems.

5.6.2 Fix Correctness

Another important metric is Fix Correctness, the percentage of correct fixes out of the

suggested fixes. It is defined as:
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Percentage of Resource-Leaks (%)

Infer

PMD

CF

Codeguru

Spotbugs

Average

0 25 50 75 100

Fixable rate Unfixed because of Data-Structure Escape
Unfixed because of Field Escape Unfixed for other reasons

Figure 5.13: Fixable-rate for RLFixer for each resource-leak detector, along with reasons for
the unfixed leaks.

Fix Correctness =
# warnings with a correct fix suggestion

# warnings with a fix suggestion

We picked a sample of 150 fixes (30 per resource-leak detector) suggested by RLFixer

to estimate the fix-correctness. We re-ran the resource-leak detector on the fixed code to

ensure that the old leaks disappeared. For 2 fixes the old leaks remained, and these were

marked as incorrect. For the remaining fixes, we had 5 volunteer programmers classify the

fixes as correct or incorrect. The volunteers, none of whom are authors, are computer-science

graduate students who are familiar with Java and resource leaks. The volunteers classify

different subsets of the fixes, but each fix is classified by at least 3 volunteers. Each volunteer

uses the following criteria to evaluate correctness, and a fix is considered incorrect even if

one of these criteria is not met.

1. The fix repairs the leak.
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2. The fix does not introduce a null-pointer error.

3. The fix does not introduce a use-after-close error (e.g. file written after being closed).

4. The fix does not introduce a double close.

5. The fix does not modify the behavior of the program.

Finally, we computed the fix-correctness by taking an average over the scores of the

volunteers. The scores for each tool are shown in Fig 5.14. On average, RLFixer’s fix-

correctness is 95%, with Infer and Codeguru getting near perfect fixes. Given that less than

one in twenty fixes by RLFixer are incorrect, we can put high confidence in its generated

repairs.

Examining the small fraction of incorrect fixes shows that there are two major roadblocks

to RLFixer reaching perfect fix-correctness. The first is that we use an under-approximation

for the resource-alias analysis ; this may lead to missed resource-aliases, which could in turn

give incorrect fixes. We discuss in Section 5.3.2, why this is unlikely to ever be perfected.

The second roadblock is that RLFixer’s templates are designed to fix individual resource-

leaks, and hence do not work perfectly when multiple resource-leaks occur in the same code

block.

Another correctness issue that most repair-tools need to deal with is false-positive warn-

ings, and whether one suggests repairs for these false warnings; this, however, does not seem

to be an issue in practice for RLFixer. To get a measure of false-positive warnings, we

asked the volunteers to also examine the same 150 repairs and decide whether the original

leak-detector warning was a false positive. All five resource-leak detectors gave zero false-

positive warnings for the leaks fixed by RLFixer. 6 This low false-positive rate is expected,

since these are all mature tools that have been heavily engineered to weed out false-positive

warnings.

6There could still be false-positive warnings among the infeasible-to-fix leaks.
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Figure 5.14: Percentage of correct fixes by RLFixer (i.e. fix-correctness) for the five resource-
leak detectors

5.6.3 Comparison with Footpatch

Fig. 5.15 summarizes the comparison between Footpatch and RLFixer. We only use the Infer

warnings for the comparison because Footpatch is tightly integrated with Infer; it cannot be

used with other resource-leak detectors. We split the results into two parts: the first part

(columns 2 and 3) shows the results on the warnings from the NJR benchmarks, and the

second part (columns 4 and 5) gives the results on the apktool benchmark from the Footpatch

paper [TG18].

For the NJR benchmarks, out of the 30 Infer warnings examined by users, Footpatch

generated fixes for only 4 of them, out of which 2 were correct; this gives a fixable-rate of

15% and fix-correctness of 50%. RLFixer, on the other hand, gets a fixable-rate of 65% and

fix-correctness of 99%.

For apktool, the only benchmark from the Footpatch paper [TG18] with Java resource

leaks, Infer gives out 19 warnings. Out of these 6 are duplicates and we remove them. For

the remaining 13 warnings, Footpatch attempts a fix for 1 warning (fixable-rate 8%), and

RLFixer attempts a fix for 12 warnings (fixable-rate of 92%). Both tools produce only correct
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NJR benchmarks apktool
Tool Fixable

Rate
Fix Cor-
rectness

Fixable
Rate

Fix Cor-
rectness

Footpatch 15% 50% 8% 100%
RLFixer 65% 99% 92% 100%

Figure 5.15: Comparing the repair quality of RLFixer and the Footpatch baseline when fixing
the Infer warnings. We show the results separately for the NJR benchmarks and apktool.

Tool Leak Overall fix time
detector
time (s)

WALA setup
time (s)

RLFixer
time (s)

Infer 42 13 1
PMD 6 12 1
Spotbugs 13 13 1
CF 63 12 1
Average 31 13 1

Figure 5.16: Split up of the time taken per program by RLFixer and the resource-leak
detectors

fixes for this benchmark (fix-correctness 100%).

The large gap in fix-quality between Footpatch and RLFixer is expected; Footpatch is

a more general purpose tool that works with multiple kinds of errors, as well as on both C

and Java. RLFixer, on the other hand, is specialized for resource-leaks in Java, and hence

is able to vastly outperform Footpatch on this task.

5.6.4 Time overhead

Fig. 5.16 shows the time taken per program by RLFixer and four of the resource-leak detec-

tors. We do not report the time for Codeguru because it is only accessible via a web service;

this makes it hard to separate out the time taken for the network, web-service handler, etc.

On average, resource-leak detection takes 31 seconds per program, but this varies widely

across the four detectors. PMD and Spotbugs are very fast, whereas Infer and CF take

much longer. The overall repair time is 14 seconds per program. A majority of this time
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(13 seconds) is taken by the WALA setup, whereas RLFixer, as described in Section 5.3,

takes just 1 second per program because of its demand-driven design. Its fix time per leak is

even lesser. The WALA setup includes tasks like constructing the class-hierarchy, call-graph,

basic-blocks, etc., but a majority of the time is taken for call-graph construction.

Call-graph construction is unavoidable for any inter-procedural analysis, but we could

eliminate this component by integrating RLFixer with a WALA based resource-leak detector.

Since RLFixer is implemented in the WALA framework, such a design allows RLFixer to

reuse the WALA setup information, including the call-graph, computed during the resource-

leak detector phase. This strategy will bring the total fix-time down to 1 second per program,

but it will not work for tools built with other frameworks.

A direct comparison of repair times with Footpatch is not meaningful because Footpatch

suggests very few fixes, and it is hard to factor out the time taken by unsuccessful fix attempts

and fixes for other kinds of bugs. However, results from the Footpatch paper show that it

takes several minutes per Java program, which is at least an order of magnitude larger than

RLFixer. There are two reasons why RLFixer is quicker than Footpatch: it is demand-

driven, and unlike other Footpatch, RLFixer does not need to perform a search over possible

repair codes; it constructs fixes from repair templates.

5.6.5 Threats to Validity

The first threat to validity is that the human volunteers we used for the experiment in

Section 5.6.2, could make mistakes in their evaluation of the fixes. We mitigate this threat

by averaging scores over multiple volunteers and and a large number of leaks (150 in total)

from different tools. Furthermore, we also re-ran the resource-leak detectors on the fixed

code to confirm that the resource-leak warning disappeared.

The second threat is that our evaluation was carried out on Java-8 programs from the

NJR-1 dataset. The assumption is that our results will generalize to other Java benchmarks.
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The third threat is the applicability of RLFixer’s approach to other langauges and plat-

forms, since RLFixer’s design and our experiments only focus on Java code.

5.7 Related Work

The research direction closest to this work is automated program repair, and one can split

this category into general-purpose, special-purpose, and linter-based repair tools. Two other

directions that seem deceptively close to our work because of their similar names but are

not really close, are escape analysis and repairing Android resource leaks. We discuss each

of these in turn.

General-purpose repair tools. General-purpose repair tools aim to fix a wide-variety

of program errors. Most of these tools are test-based techniques, and can be split into

three paradigms. The first paradigm, generate-and-validate [JXZ18, KNS13, LR15, LR16,

WNL09], generates candidate patches by searching through existing patches and code.

The second is the deep-learning based paradigm [LWN20, JLT21, XZ22, LWN22, YMM22,

FTL22] that uses deep-learning to find patches, often by applying Neural Machine Trans-

lation models from NLP. The third semantics-based paradigm [LCL17a, LCL17b, MYR16,

NQR13, AMS21] generates patches by casting the repair problem as a constraint satisfaction

problem. Ultimately, all three paradigms validate each patch by checking if it passes the

previously failing test case. These paradigms cannot be applied to resource-leaks because

resource-leaks do not cause test-failures. Unlike these general-purpose tools, RLFixer is

specialized to fix resource leaks.

Footpatch [TG18] is the only general-purpose tool which can be applied to resource-leak

because it uses a slight modification to these test-based paradigms, where it relies on a static

analysis tool instead of tests to verify the fix. Footpatch searches for patches in the same

code-base and verifies its fixes using the Infer static analysis tool. It is semi-specialized to
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heap errors including null-pointer errors, resource leaks, etc. The limitation of Footpatch’s

approach is that such static analysis verification does not ensure that the semantics of the rest

of the program are unmodified and no new errors are introduced. Nevertheless, we performed

a quantitative comparison of the fixable-rate and fix-correctness with Footpatch [TG18]. As

seen in Section 5.6.3, Footpatch generates low quality fixes for resource leaks; it pays for its

generality with a lower fixable-rate and lower fix-correctness.

First and foremost, RLFixer has an order-of-magnitude better fixable-rate and fix-correctness,

as seen in Section 5.6.3. Second, RLFixer’s repair templates, by design, do not modify the

semantics of the program or introduce any new errors. Thirdly, RLFixer is much faster. it

takes seconds instead of minutes or hours.

Special-purpose repair tools. Special-purpose repair tools, as opposed to general-purpose

tools, focus on repairing a single kind of error; this enables them to produce much higher

quality fixes. Most of these tools report fixable-rates of 40-70% and a high fix-correctness,

which is very similar to what we see with RLFixer, and this is usually significantly higher

than what general-purpose tools can achieve. The kind of errors tackled by special-purpose

tools include null-pointer errors [LHO22, XSY19], integer overflows [CZS17, MMS21], buffer

overflows [SDH14], concurrency errors [AMK17, JSZ11, LCL16], performance bugs [SP15],

and memory leaks [HLL20, GXM15, LHO18].

Among the existing special-purpose repair tools, memory-leak fixing [HLL20, GXM15,

LHO18] is the closest to resource-leak fixing because it has a similar specification: repair

the leak without modifying the semantics of the program. However, these tools focus on C

programs, and memory-leaks present different challenges than resource-leaks. For example,

features such as Java’s exception mechanism, its reliance on try-catch blocks for resource

management, resource aliasing, and the presence of class fields are a few of the challenges in

Java resource-leak fixing that do not appear when dealing with memory leaks in C.

Unlike all these specialized repair tools, RLFixer focuses on resource-leaks, a problem
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that has not been tackled by any specialized tool before. Additionally, RLFixer’s demand-

driven design makes it significantly faster than most special-purpose tools. Most other tools

use time-budgets of a few minutes or more per program, whereas RLFixer finishes in 1

second, excluding the 13 seconds it takes for WALA to setup the call-graph, etc. At this

speed, RLFixer is one of the few repair tools that are fast-enough to match the timing

requirements of IDEs.

Linter-based repair tools. Linters scan code for style or coding-convention violations us-

ing pattern matching on the AST (Abstract Syntax Tree). Linter-based repair tools [MFB20,

EHL22, LMM22, BYP19] use a similar AST pattern-matching approach to apply repairs

for a linter’s warnings. These tools vary in the coding-conventions they target, and in their

method of learning repair patterns. Phoenix [BYP19] mines patches from a corpus of Github

programs, and uses it to learn generalized repair strategies that are represented as executable

programs in a domain specific language (DSL). Styler [LMM22] similarly learns fix patterns

for code-formatting violations from a corpus, but it learns using an LSTM neural network.

Getafix [BSP19] applies a hierarchical clustering algorithm to effectively summarize fix pat-

terns, and then uses a novel ranking technique based on past human fixes to pick the most

plausible fix. TFix [BHR21] formulates the linter-repair problem as a text-to-text prediction

task and then uses a pre-trained text-to-text Transformer model to generate fixes. Sponge-

Bugs [MFB20] and Sorald [EHL22] create manually defined fix templates for a handful of

linter violations.

The errors targetted by linter-based repair tools are often local and can be represented

using AST patterns. Hence, unlike RLFixer, their techniques will not work for a more

complex bug such as resource-leaks which requires data-flow tracking and an inter-procedural

analysis.
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Escape analysis. Escape analysis [CGS99, WR99] is a research direction which sounds

similar to our resource escape analysis from Section 5.3.3, but these two have very different

designs and goals. Escape analysis characterizes how objects allocated in one region of the

program escape to code outside this region. It cares less about the kind of program construct

(such as an array or field) it escapes to. On the other hand, our resource escape analysis tries

to establish the kinds of program constructs (such as a field or parameter) that a resource

aliases with, and has no concept of regions. Hence, the two analyses end up having different

abstract domains, constraints, and design decisions.

Repairing Android Resource Leaks. Another related direction is repairing Android

Resource Leaks. Android Resource Leaks are leaks involving event-driven control flow from

Android events, and are different from the Java resource leaks discussed in this paper, which

involve sequential control flow. Let us take a closer look at how these two kinds of leaks are

different to understand why they need different kinds of tools.

An Android application is an event-driven system with event-handlers responding to a

sequence of events such as user-interaction or the application life-cycle events. For example,

Android defines the event handlers onPause and onDestroy for when the user pauses and

closes an application, respectively. Android Resource Leak detectors [WLX16, LXC16] model

these event sequences and find ones that can leak some Android resource. For example, if a

resource is not closed in the onPause or onDestroy event handlers, we may get an Android

Resource Leak. Liu et. al [LWW19] prepare a database of such Android Resource Leaks.

Android Resource Leak repair tools such as [BCB18, BF22, LWY16] then suggest the correct

event-handler to close the resource in. Hence, all these leak detection and repair tools for

Android Resource Leaks focus exclusively on Android’s event-driven control flow.

On the other hand, tools such as RLFixer and Footpatch [TG18] focus on Java resource

leaks resulting from the control-flow in sequential Java code. Thus, they solve a completely

different problem than Android Resource Leak repair tools, and their design is consequently
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different.
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CHAPTER 6

Conclusion

Most static analysis tools have prioritized soundness (or recall), and consequently their

designs has sacrificed some precision (i.e. true-positive rate), analysis time or repairability.

However, several user studies have shown that the average user cares most deeply about

exactly these three criteria: precision, analysis time and repairability. In fact, they have very

high expectations on these three criteria, and since most static analysis tools are optional to

use in practice, tools that don’t meet these user expectations stop getting used. Soundness,

on the other hand, is a low-priority criteria for the user.

To enable existing soundness-focused static analysis tools to meet user-expectations, we

designed three new tools, CGPruner, QueryMax, and RLFixer to improve the three criteria

that users care about the most. These tools act as pre-processors or post-processors to an

existing static analysis, and trade off a small amount of soundness, for fewer false positives,

faster analysis time, and automated repair suggestions. We conducted experiments that

showed how our three tools can get several existing static analysis tools much closer to

meeting user expectations.

An interesting future direction is to combine all three new tools in a single static analysis

pipeline. This idea has the potential to improve a soundness-focused static analysis on all

three user criteria simultaneously. The main challenge, however, is that all our three tools

trade off a little recall; the cumulative loss of recall may be unacceptable. Hence, for a

combined pipeline to be effective, it would have to jointly manage the overall recall traded

off across all three tools.

130



REFERENCES

[AB14] Steven Arzt and Eric Bodden. “Reviser: Efficiently Updating IDE-/IFDS-Based
Data-Flow Analyses in Response to Incremental Program Changes.” In Proceed-
ings of the 36th International Conference on Software Engineering, ICSE 2014,
p. 288–298, New York, NY, USA, 2014. Association for Computing Machinery.

[AKG07] Shay Artzi, Adam Kiezun, David Glasser, and Michael D. Ernst. “Combined
Static and Dynamic Mutability Analysis.” In Proceedings of the Twenty-Second
IEEE/ACM International Conference on Automated Software Engineering, ASE
’07, p. 104–113, New York, NY, USA, 2007. Association for Computing Machin-
ery.

[AL12] Karim Ali and Ondřej Lhoták. “Application-Only Call Graph Construction.” In
James Noble, editor, ECOOP 2012 – Object-Oriented Programming, pp. 688–712,
Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[AL13] Karim Ali and Ondřej Lhoták. “Averroes: Whole-Program Analysis with-
out the Whole Program.” In Proceedings of the 27th European Conference on
Object-Oriented Programming, ECOOP’13, p. 378–400, Berlin, Heidelberg, 2013.
Springer-Verlag.

[ALS06] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compil-
ers: Principles, Techniques, and Tools (2nd Edition). Addison-Wesley Longman
Publishing Co., Inc., USA, 2006.

[AMK17] Christoffer Quist Adamsen, Anders Møller, Rezwana Karim, Manu Sridharan,
Frank Tip, and Koushik Sen. “Repairing Event Race Errors by Controlling Non-
determinism.” In Proceedings of the 39th International Conference on Software
Engineering, ICSE ’17, p. 289–299. IEEE Press, 2017.

[AMS21] Afsoon Afzal, Manish Motwani, Kathryn T. Stolee, Yuriy Brun, and Claire
Le Goues. “SOSRepair: Expressive Semantic Search for Real-World Program
Repair.” IEEE Transactions on Software Engineering, 47(10):2162–2181, 2021.

[BB12] James Bergstra and Yoshua Bengio. “Random Search for Hyper-parameter Op-
timization.” J. Mach. Learn. Res., 13(1):281–305, February 2012.

[BBC10a] Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth Hallem,
Charles Henri-Gros, Asya Kamsky, Scott McPeak, and Dawson Engler. “A Few
Billion Lines of Code Later: Using Static Analysis to Find Bugs in the Real
World.” Commun. ACM, 53(2):66–75, February 2010.

131



[BBC10b] Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth Hallem,
Charles Henri-Gros, Asya Kamsky, Scott McPeak, and Dawson Engler. “A Few
Billion Lines of Code Later: Using Static Analysis to Find Bugs in the Real
World.” Commun. ACM, 53(2):66–75, February 2010.

[BCB18] Abhijeet Banerjee, Lee Kee Chong, Clément Ballabriga, and Abhik Roychoud-
hury. “EnergyPatch: Repairing Resource Leaks to Improve Energy-Efficiency
of Android Apps.” IEEE Transactions on Software Engineering, 44(5):470–490,
2018.

[BCC02] Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent
Mauborgne, Antoine Miné, David Monniaux, and Xavier Rival. Design and Im-
plementation of a Special-Purpose Static Program Analyzer for Safety-Critical
Real-Time Embedded Software, p. 85–108. Springer-Verlag, Berlin, Heidelberg,
2002.

[BCS13] Sam Blackshear, Bor-Yuh Evan Chang, and Manu Sridharan. “Thresher: Precise
Refutations for Heap Reachability.” In Proceedings of the 34th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’13, p.
275–286, New York, NY, USA, 2013. Association for Computing Machinery.

[BCS15] Sam Blackshear, Bor-Yuh Evan Chang, and Manu Sridharan. “Selective Control-
Flow Abstraction via Jumping.” In Proceedings of the 2015 ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA 2015, p. 163–182, New York, NY, USA, 2015. Asso-
ciation for Computing Machinery.

[BCS19] Subarno Banerjee, Lazaro Clapp, and Manu Sridharan. “NullAway: Practical
Type-Based Null Safety for Java.” In Proceedings of the 2019 27th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ESEC/FSE 2019, p. 740–750, New York,
NY, USA, 2019. Association for Computing Machinery.

[BF22] Bhargav Nagaraja Bhatt and Carlo A. Furia. “Automated Repair of Resource
Leaks in Android Applications.” J. Syst. Softw., 192(C), oct 2022.

[BGO18] Sam Blackshear, Nikos Gorogiannis, Peter W. O’Hearn, and Ilya Sergey. “RacerD:
Compositional Static Race Detection.” 2(OOPSLA), oct 2018.

[BHR21] Berkay Berabi, Jingxuan He, Veselin Raychev, and Martin Vechev. “TFix: Learn-
ing to Fix Coding Errors with a Text-to-Text Transformer.” In Marina Meila
and Tong Zhang, editors, Proceedings of the 38th International Conference on
Machine Learning, volume 139 of Proceedings of Machine Learning Research, pp.
780–791. PMLR, 18–24 Jul 2021.

132



[BKL20a] Manuel Benz, Erik Krogh Kristensen, Linghui Luo, Nataniel P. Borges, Eric
Bodden, and Andreas Zeller. “Heaps’n Leaks: How Heap Snapshots Improve
Android Taint Analysis.” In Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering, ICSE ’20, p. 1061–1072, New York, NY,
USA, 2020. Association for Computing Machinery.

[BKL20b] Manuel Benz, Erik Krogh Kristensen, Linghui Luo, Nataniel P. Borges, Eric
Bodden, and Andreas Zeller. “Heaps’n Leaks: How Heap Snapshots Improve
Android Taint Analysis.” In Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering, ICSE ’20, p. 1061–1072, New York, NY,
USA, 2020. Association for Computing Machinery.

[Bre96] Leo Breiman. “Bagging predictors.” Machine Learning, 24(2):123–140, Aug 1996.

[BS09] Martin Bravenboer and Yannis Smaragdakis. “Strictly Declarative Specification
of Sophisticated Points-to Analyses.” In Proceedings of the 24th ACM SIGPLAN
Conference on Object Oriented Programming Systems Languages and Applica-
tions, OOPSLA ’09, pp. 243–262, New York, NY, USA, 2009. ACM.

[BSP19] Johannes Bader, Andrew Scott, Michael Pradel, and Satish Chandra. “Getafix:
Learning to Fix Bugs Automatically.” Proc. ACM Program. Lang., 3(OOPSLA),
oct 2019.

[BSS11] Eric Bodden, Andreas Sewe, Jan Sinschek, Hela Oueslati, and Mira Mezini.
“Taming Reflection: Aiding Static Analysis in the Presence of Reflection and
Custom Class Loaders.” In Proceedings of the 33rd International Conference on
Software Engineering, ICSE ’11, p. 241–250, New York, NY, USA, 2011. Associ-
ation for Computing Machinery.

[BW09] Raymond P. L. Buse and Westley Weimer. “The Road Not Taken: Estimating
Path Execution Frequency Statically.” In Proceedings of the 31st International
Conference on Software Engineering, ICSE ’09, p. 144–154, USA, 2009. IEEE
Computer Society.

[BYP19] Rohan Bavishi, Hiroaki Yoshida, and Mukul R. Prasad. “Phoenix: Automated
Data-Driven Synthesis of Repairs for Static Analysis Violations.” In Proceedings
of the 2019 27th ACM Joint Meeting on European Software Engineering Confer-
ence and Symposium on the Foundations of Software Engineering, ESEC/FSE
2019, p. 613–624, New York, NY, USA, 2019. Association for Computing Ma-
chinery.

[CB16a] Maria Christakis and Christian Bird. “What Developers Want and Need from
Program Analysis: An Empirical Study.” In Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering, ASE 2016, p.
332–343, New York, NY, USA, 2016. Association for Computing Machinery.

133



[CB16b] Maria Christakis and Christian Bird. “What Developers Want and Need from
Program Analysis: An Empirical Study.” In Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering, ASE 2016, p.
332–343, New York, NY, USA, 2016. Association for Computing Machinery.

[CB16c] Maria Christakis and Christian Bird. “What Developers Want and Need from
Program Analysis: An Empirical Study.” In Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering, ASE 2016, p.
332–343, New York, NY, USA, 2016. Association for Computing Machinery.

[CC02] Patrick Cousot and Radhia Cousot. “Modular Static Program Analysis.” In
Proceedings of the 11th International Conference on Compiler Construction, CC
’02, p. 159–178, Berlin, Heidelberg, 2002. Springer-Verlag.

[CDD15] Cristiano Calcagno, Dino Distefano, Jeremy Dubreil, Dominik Gabi, Pieter
Hooimeijer, Martino Luca, Peter O’Hearn, Irene Papakonstantinou, Jim Pur-
brick, and Dulma Rodriguez. “Moving Fast with Software Verification.” In Klaus
Havelund, Gerard Holzmann, and Rajeev Joshi, editors, NASA Formal Methods,
pp. 3–11, Cham, 2015. Springer International Publishing.

[Cen05] NASA Ames Research Center. “Java PathFinder.” https://github.com/
javapathfinder/jpf-core, 2005.

[CGS99] Jong-Deok Choi, Manish Gupta, Mauricio Serrano, Vugranam C. Sreedhar, and
Sam Midkiff. “Escape Analysis for Java.” In Proceedings of the 14th ACM SIG-
PLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA ’99, p. 1–19, New York, NY, USA, 1999. Association for
Computing Machinery.

[CHR21] Tianyi Chen, Kihong Heo, and Mukund Raghothaman. “Boosting Static Analysis
Accuracy with Instrumented Test Executions.” In Proceedings of the 29th ACM
Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, ESEC/FSE 2021, p. 1154–1165, New
York, NY, USA, 2021. Association for Computing Machinery.

[CJO18] Sooyoung Cha, Sehun Jeong, and Hakjoo Oh. “A scalable learning algorithm for
data-driven program analysis.” Information and Software Technology, 104:1–13,
2018.

[Cod20] “Amazon Codeguru Reviewer.” https://aws.amazon.com/codeguru/, 2020.

[COZ21] Lingchao Chen, Yicheng Ouyang, and Lingming Zhang. “Fast and Precise On-the-
Fly Patch Validation for All.” In 2021 IEEE/ACM 43rd International Conference
on Software Engineering (ICSE), pp. 1123–1134, 2021.

134

https://github.com/javapathfinder/jpf-core
https://github.com/javapathfinder/jpf-core
https://aws.amazon.com/codeguru/


[CR07] Sigmund Cherem and Radu Rugina. “Uniqueness Inference for Compile-Time Ob-
ject Deallocation.” In Proceedings of the 6th International Symposium on Memory
Management, ISMM ’07, p. 117–128, New York, NY, USA, 2007. Association for
Computing Machinery.

[CWE22] “Common Weakness Enumeration (CWE-400).” https://cwe.mitre.org/
data/definitions/400.html, 2022.

[CZS17] Xi Cheng, Min Zhou, Xiaoyu Song, Ming Gu, and Jiaguang Sun. “IntPTI: Au-
tomatic Integer Error Repair with Proper-Type Inference.” In Proceedings of the
32nd IEEE/ACM International Conference on Automated Software Engineering,
ASE ’17, p. 996–1001. IEEE Press, 2017.

[DB08] Leonardo De Moura and Nikolaj Bjørner. “Z3: An Efficient SMT Solver.” In
Proceedings of the Theory and Practice of Software, 14th International Confer-
ence on Tools and Algorithms for the Construction and Analysis of Systems,
TACAS’08/ETAPS’08, p. 337–340, Berlin, Heidelberg, 2008. Springer-Verlag.

[DD12] Arnab De and Deepak D’Souza. “Scalable Flow-Sensitive Pointer Analysis for
Java with Strong Updates.” In Proceedings of the 26th European Conference on
Object-Oriented Programming, ECOOP’12, p. 665–687, Berlin, Heidelberg, 2012.
Springer-Verlag.

[DDA08] Isil Dillig, Thomas Dillig, and Alex Aiken. “Sound, Complete and Scalable Path-
Sensitive Analysis.” In Proceedings of the 29th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’08, p. 270–280, New
York, NY, USA, 2008. Association for Computing Machinery.

[DFL19] Dino Distefano, Manuel Fähndrich, Francesco Logozzo, and Peter W. O’Hearn.
“Scaling Static Analyses at Facebook.” Commun. ACM, 62(8):62–70, jul 2019.

[DWA22] Lisa Nguyen Quang Do, James R. Wright, and Karim Ali. “Why Do Software
Developers Use Static Analysis Tools? A User-Centered Study of Developer Needs
and Motivations.” IEEE Transactions on Software Engineering, 48(3):835–847,
2022.

[EHL22] Khashayar Etemadi Someoliayi, Nicolas Yves Maurice Harrand, Simon Larsén,
Haris Adzemovic, Henry Luong Phu, Ashutosh Verma, Fernanda Madeiral, Dou-
glas Wikstrom, and Martin Monperrus. “Sorald: Automatic Patch Suggestions
for SonarQube Static Analysis Violations.” IEEE Transactions on Dependable
and Secure Computing, pp. 1–1, 2022.

[FSS18] Lori Flynn, William Snavely, David Svoboda, Nathan VanHoudnos, Richard Qin,
Jennifer Burns, David Zubrow, Robert Stoddard, and Guillermo Marce-Santurio.
“Prioritizing Alerts from Multiple Static Analysis Tools, Using Classification

135

https://cwe.mitre.org/data/definitions/400.html
https://cwe.mitre.org/data/definitions/400.html


Models.” In Proceedings of the 1st International Workshop on Software Qual-
ities and Their Dependencies, SQUADE ’18, p. 13–20, New York, NY, USA,
2018. Association for Computing Machinery.

[FTL22] Michael Fu, Chakkrit Tantithamthavorn, Trung Le, Van Nguyen, and Dinh
Phung. “VulRepair: A T5-Based Automated Software Vulnerability Repair.” In
Proceedings of the 30th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, ESEC/FSE 2022,
p. 935–947, New York, NY, USA, 2022. Association for Computing Machinery.

[FWS19] Gang Fan, Rongxin Wu, Qingkai Shi, Xiao Xiao, Jinguo Zhou, and Charles
Zhang. “Smoke: Scalable Path-Sensitive Memory Leak Detection for Millions of
Lines of Code.” In Proceedings of the 41st International Conference on Software
Engineering, ICSE ’19, p. 72–82. IEEE Press, 2019.

[FYD08] Stephen J. Fink, Eran Yahav, Nurit Dor, G. Ramalingam, and Emmanuel Geay.
“Effective Typestate Verification in the Presence of Aliasing.” ACM Trans. Softw.
Eng. Methodol., 17(2), may 2008.

[GCS20] Mohammadreza Ghanavati, Diego Costa, Janos Seboek, David Lo, and Artur
Andrzejak. “Memory and Resource Leak Defects and Their Repairs in Java
Projects.” Empirical Softw. Engg., 25(1):678–718, jan 2020.

[GFF18a] Neville Grech, George Fourtounis, Adrian Francalanza, and Yannis Smaragdakis.
“Shooting from the Heap: Ultra-Scalable Static Analysis with Heap Snapshots.”
In Proceedings of the 27th ACM SIGSOFT International Symposium on Soft-
ware Testing and Analysis, ISSTA 2018, p. 198–208, New York, NY, USA, 2018.
Association for Computing Machinery.

[GFF18b] Neville Grech, George Fourtounis, Adrian Francalanza, and Yannis Smaragdakis.
“Shooting from the Heap: Ultra-Scalable Static Analysis with Heap Snapshots.”
In Proceedings of the 27th ACM SIGSOFT International Symposium on Soft-
ware Testing and Analysis, ISSTA 2018, p. 198–208, New York, NY, USA, 2018.
Association for Computing Machinery.

[GMF06] Samuel Z. Guyer, Kathryn S. McKinley, and Daniel Frampton. “Free-Me: A
Static Analysis for Automatic Individual Object Reclamation.” In Proceedings
of the 27th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’06, p. 364–375, New York, NY, USA, 2006. Association
for Computing Machinery.

[GRS05a] Denis Gopan, Thomas Reps, and Mooly Sagiv. “A Framework for Numeric Anal-
ysis of Array Operations.” In Proceedings of the 32nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’05, p. 338–350,
New York, NY, USA, 2005. Association for Computing Machinery.

136



[GRS05b] Denis Gopan, Thomas Reps, and Mooly Sagiv. “A Framework for Numeric Anal-
ysis of Array Operations.” In Proceedings of the 32nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’05, p. 338–350,
New York, NY, USA, 2005. Association for Computing Machinery.

[GXM15] Qing Gao, Yingfei Xiong, Yaqing Mi, Lu Zhang, Weikun Yang, Zhaoping Zhou,
Bing Xie, and Hong Mei. “Safe Memory-Leak Fixing for C Programs.” In Pro-
ceedings of the 37th International Conference on Software Engineering - Volume
1, ICSE ’15, p. 459–470. IEEE Press, 2015.

[HJP08] Laurent Hubert, Thomas Jensen, and David Pichardie. “Semantic Foundations
and Inference of Non-null Annotations.” In Gilles Barthe and Frank S. de Boer,
editors, Formal Methods for Open Object-Based Distributed Systems, pp. 132–149,
Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[HLL20] Seongjoon Hong, Junhee Lee, Jeongsoo Lee, and Hakjoo Oh. “SAVER: Scalable,
Precise, and Safe Memory-Error Repair.” In Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering, ICSE ’20, p. 271–283, New
York, NY, USA, 2020. Association for Computing Machinery.

[Ho95] Tin Kam Ho. “Random Decision Forests.” In Proceedings of the Third Interna-
tional Conference on Document Analysis and Recognition (Volume 1) - Volume
1, ICDAR ’95, p. 278, USA, 1995. IEEE Computer Society.

[HP04] David Hovemeyer and William Pugh. “Finding Bugs is Easy.” SIGPLAN Not.,
39(12):92–106, December 2004.

[HT01] Nevin Heintze and Olivier Tardieu. “Demand-Driven Pointer Analysis.” In Pro-
ceedings of the ACM SIGPLAN 2001 Conference on Programming Language De-
sign and Implementation, PLDI ’01, p. 24–34, New York, NY, USA, 2001. Asso-
ciation for Computing Machinery.

[HW09] Sarah Heckman and Laurie Williams. “A Model Building Process for Identifying
Actionable Static Analysis Alerts.” In Proceedings of the 2009 International Con-
ference on Software Testing Verification and Validation, ICST ’09, p. 161–170,
USA, 2009. IEEE Computer Society.

[IKY00] Kazuaki Ishizaki, Motohiro Kawahito, Toshiaki Yasue, Hideaki Komatsu, and
Toshio Nakatani. “A Study of Devirtualization Techniques for a Java Just-In-
Time Compiler.” In Proceedings of the 15th ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA
’00, p. 294–310, New York, NY, USA, 2000. Association for Computing Machin-
ery.

[Jav19] “JavaParser.” https://javaparser.org, 2019.

137

https://javaparser.org


[JJC17] Sehun Jeong, Minseok Jeon, Sungdeok Cha, and Hakjoo Oh. “Data-Driven
Context-Sensitivity for Points-to Analysis.” Proc. ACM Program. Lang., 1(OOP-
SLA), oct 2017.

[JKS05] Yungbum Jung, Jaehwang Kim, Jaeho Shin, and Kwangkeun Yi. “Taming False
Alarms from a Domain-Unaware c Analyzer by a Bayesian Statistical Post Anal-
ysis.” In Proceedings of the 12th International Conference on Static Analysis,
SAS’05, p. 203–217, Berlin, Heidelberg, 2005. Springer-Verlag.

[JLO20] Minseok Jeon, Myungho Lee, and Hakjoo Oh. “Learning Graph-Based Heuristics
for Pointer Analysis without Handcrafting Application-Specific Features.” Proc.
ACM Program. Lang., 4(OOPSLA), November 2020.

[JLT21] Nan Jiang, Thibaud Lutellier, and Lin Tan. “CURE: Code-Aware Neural Machine
Translation for Automatic Program Repair.” In Proceedings of the 43rd Interna-
tional Conference on Software Engineering, ICSE ’21, p. 1161–1173. IEEE Press,
2021.

[JSM13a] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge.
“Why Don’t Software Developers Use Static Analysis Tools to Find Bugs?” In
Proceedings of the 2013 International Conference on Software Engineering, ICSE
’13, p. 672–681. IEEE Press, 2013.

[JSM13b] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge.
“Why Don’t Software Developers Use Static Analysis Tools to Find Bugs?” In
Proceedings of the 2013 International Conference on Software Engineering, ICSE
’13, p. 672–681. IEEE Press, 2013.

[JSM13c] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge.
“Why Don’t Software Developers Use Static Analysis Tools to Find Bugs?” In
Proceedings of the 2013 International Conference on Software Engineering, ICSE
’13, p. 672–681. IEEE Press, 2013.

[JSZ11] Guoliang Jin, Linhai Song, Wei Zhang, Shan Lu, and Ben Liblit. “Automated
Atomicity-Violation Fixing.” In Proceedings of the 32nd ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, PLDI ’11, p.
389–400, New York, NY, USA, 2011. Association for Computing Machinery.

[JXZ18] Jiajun Jiang, Yingfei Xiong, Hongyu Zhang, Qing Gao, and Xiangqun Chen.
“Shaping Program Repair Space with Existing Patches and Similar Code.” In
Proceedings of the 27th ACM SIGSOFT International Symposium on Software
Testing and Analysis, ISSTA 2018, p. 298–309, New York, NY, USA, 2018. As-
sociation for Computing Machinery.

138



[KE03] Ted Kremenek and Dawson Engler. “Z-Ranking: Using Statistical Analysis to
Counter the Impact of Static Analysis Approximations.” In Proceedings of the
10th International Conference on Static Analysis, SAS’03, p. 295–315, Berlin,
Heidelberg, 2003. Springer-Verlag.

[KNS13] Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. “Automatic
Patch Generation Learned from Human-Written Patches.” In Proceedings of the
2013 International Conference on Software Engineering, ICSE ’13, p. 802–811.
IEEE Press, 2013.

[Kot07] S. B. Kotsiantis. “Supervised Machine Learning: A Review of Classification Tech-
niques.” In Proceedings of the 2007 Conference on Emerging Artificial Intelligence
Applications in Computer Engineering, p. 3–24, NLD, 2007. IOS Press.

[KP18] Christian Gram Kalhauge and Jens Palsberg. “Sound Deadlock Prediction.”
Proc. ACM Program. Lang., 2(OOPSLA), October 2018.

[KPV03] Sarfraz Khurshid, Corina S. Păsăreanu, and Willem Visser. “Generalized Sym-
bolic Execution for Model Checking and Testing.” In Proceedings of the 9th Inter-
national Conference on Tools and Algorithms for the Construction and Analysis
of Systems, TACAS’03, p. 553–568, Berlin, Heidelberg, 2003. Springer-Verlag.

[KRS13] Carsten Kolassa, Dirk Riehle, and Michel A. Salim. “The Empirical Commit
Frequency Distribution of Open Source Projects.” In Proceedings of the 9th In-
ternational Symposium on Open Collaboration, WikiSym ’13, New York, NY,
USA, 2013. Association for Computing Machinery.

[KSS21a] Martin Kellogg, Narges Shadab, Manu Sridharan, and Michael D. Ernst.
“Lightweight and Modular Resource Leak Verification.” In Proceedings of the 29th
ACM Joint Meeting on European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering, ESEC/FSE 2021, p. 181–192,
New York, NY, USA, 2021. Association for Computing Machinery.

[KSS21b] Martin Kellogg, Narges Shadab, Manu Sridharan, and Michael D. Ernst.
“Lightweight and Modular Resource Leak Verification.” In Proceedings of the 29th
ACM Joint Meeting on European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering, ESEC/FSE 2021, p. 181–192,
New York, NY, USA, 2021. Association for Computing Machinery.

[LCL16] Haopeng Liu, Yuxi Chen, and Shan Lu. “Understanding and Generating High
Quality Patches for Concurrency Bugs.” In Proceedings of the 2016 24th ACM
SIGSOFT International Symposium on Foundations of Software Engineering,
FSE 2016, p. 715–726, New York, NY, USA, 2016. Association for Computing
Machinery.

139



[LCL17a] Xuan-Bach D. Le, Duc-Hiep Chu, David Lo, Claire Le Goues, and Willem Visser.
“JFIX: Semantics-Based Repair of Java Programs via Symbolic PathFinder.” In
Proceedings of the 26th ACM SIGSOFT International Symposium on Software
Testing and Analysis, ISSTA 2017, p. 376–379, New York, NY, USA, 2017. As-
sociation for Computing Machinery.

[LCL17b] Xuan-Bach D. Le, Duc-Hiep Chu, David Lo, Claire Le Goues, and Willem Visser.
“S3: Syntax- and Semantic-Guided Repair Synthesis via Programming by Exam-
ples.” In Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2017, p. 593–604, New York, NY, USA, 2017. Associa-
tion for Computing Machinery.

[LH03a] Ondřej Lhoták and Laurie Hendren. “Scaling Java Points-to Analysis Using
SPARK.” CC’03, p. 153–169, Berlin, Heidelberg, 2003. Springer-Verlag.

[LH03b] Ondřej Lhoták and Laurie Hendren. “Scaling Java Points-to Analysis Using
SPARK.” In Proceedings of the 12th International Conference on Compiler Con-
struction, CC’03, p. 153–169, Berlin, Heidelberg, 2003. Springer-Verlag.

[LH03c] Ondřej Lhoták and Laurie Hendren. “Scaling Java Points-to Analysis Using
SPARK.” In Proceedings of the 12th International Conference on Compiler Con-
struction, CC’03, p. 153–169, Berlin, Heidelberg, 2003. Springer-Verlag.

[LH22] Bozhen Liu and Jeff Huang. “SHARP: Fast Incremental Context-Sensitive Pointer
Analysis for Java.” Proc. ACM Program. Lang., 6(OOPSLA1), apr 2022.

[Lho07] Ondrej Lhoták. “Comparing Call Graphs.” In Proceedings of the 7th ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and En-
gineering, PASTE ’07, p. 37–42, New York, NY, USA, 2007. Association for
Computing Machinery.

[LHO18] Junhee Lee, Seongjoon Hong, and Hakjoo Oh. “MemFix: Static Analysis-Based
Repair of Memory Deallocation Errors for C.” In Proceedings of the 2018 26th
ACM Joint Meeting on European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering, ESEC/FSE 2018, p. 95–106,
New York, NY, USA, 2018. Association for Computing Machinery.

[LHO22] Junhee Lee, Seongjoon Hong, and Hakjoo Oh. “NPEX: Repairing Java Null
Pointer Exceptions without Tests.” In Proceedings of the 44th International Con-
ference on Software Engineering, ICSE ’22, p. 1532–1544, New York, NY, USA,
2022. Association for Computing Machinery.

[Lin23] Linux. “Linux Github Repository.” https://github.com/torvalds/linux,
2023.

140

https://github.com/torvalds/linux


[LL05] V. Benjamin Livshits and Monica S. Lam. “Finding Security Vulnerabilities in
Java Applications with Static Analysis.” In Proceedings of the 14th Conference on
USENIX Security Symposium - Volume 14, SSYM’05, p. 18, USA, 2005. USENIX
Association.

[LLK17] Woosuk Lee, Wonchan Lee, Dongok Kang, Kihong Heo, Hakjoo Oh, and
Kwangkeun Yi. “Sound Non-Statistical Clustering of Static Analysis Alarms.”
ACM Trans. Program. Lang. Syst., 39(4), aug 2017.

[LMM22] Benjamin Loriot, Fernanda Madeiral, and Martin Monperrus. “Styler: Learn-
ing Formatting Conventions to Repair Checkstyle Violations.” Empirical Softw.
Engg., 27(6), nov 2022.

[LR15] Fan Long and Martin Rinard. “Staged Program Repair with Condition Synthe-
sis.” In Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2015, p. 166–178, New York, NY, USA, 2015. Associa-
tion for Computing Machinery.

[LR16] Fan Long and Martin Rinard. “Automatic Patch Generation by Learning Correct
Code.” SIGPLAN Not., 51(1):298–312, jan 2016.

[LS10] Wei Le and Mary Lou Soffa. “Path-Based Fault Correlations.” In Proceedings of
the Eighteenth ACM SIGSOFT International Symposium on Foundations of Soft-
ware Engineering, FSE ’10, p. 307–316, New York, NY, USA, 2010. Association
for Computing Machinery.

[LSS15a] Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis, Ondřej Lhoták, J. Nel-
son Amaral, Bor-Yuh Evan Chang, Samuel Z. Guyer, Uday P. Khedker, Anders
Møller, and Dimitrios Vardoulakis. “In Defense of Soundiness: A Manifesto.”
Commun. ACM, 58(2):44–46, January 2015.

[LSS15b] Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis, Ondřej Lhoták, J. Nel-
son Amaral, Bor-Yuh Evan Chang, Samuel Z. Guyer, Uday P. Khedker, Anders
Møller, and Dimitrios Vardoulakis. “In Defense of Soundiness: A Manifesto.”
Commun. ACM, 58(2):44–46, jan 2015.

[LTM18a] Yue Li, Tian Tan, Anders Møller, and Yannis Smaragdakis. “Scalability-First
Pointer Analysis with Self-Tuning Context-Sensitivity.” In Proceedings of the
2018 26th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, ESEC/FSE 2018,
p. 129–140, New York, NY, USA, 2018. Association for Computing Machinery.

[LTM18b] Yue Li, Tian Tan, Anders Møller, and Yannis Smaragdakis. “Scalability-First
Pointer Analysis with Self-Tuning Context-Sensitivity.” In Proceedings of the
2018 26th ACM Joint Meeting on European Software Engineering Conference

141



and Symposium on the Foundations of Software Engineering, ESEC/FSE 2018,
p. 129–140, New York, NY, USA, 2018. Association for Computing Machinery.

[LTM20] Yue Li, Tian Tan, Anders Møller, and Yannis Smaragdakis. “A Principled Ap-
proach to Selective Context Sensitivity for Pointer Analysis.” ACM Trans. Pro-
gram. Lang. Syst., 42(2), may 2020.

[LWL05] Benjamin Livshits, John Whaley, and Monica S. Lam. “Reflection Analysis for
Java.” In Proceedings of the Third Asian Conference on Programming Languages
and Systems, APLAS’05, p. 139–160, Berlin, Heidelberg, 2005. Springer-Verlag.

[LWN20] Yi Li, Shaohua Wang, and Tien N. Nguyen. “DLFix: Context-Based Code
Transformation Learning for Automated Program Repair.” In Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering, ICSE ’20,
p. 602–614, New York, NY, USA, 2020. Association for Computing Machinery.

[LWN22] Yi Li, Shaohua Wang, and Tien N. Nguyen. “DEAR: A Novel Deep Learning-
Based Approach for Automated Program Repair.” In Proceedings of the 44th
International Conference on Software Engineering, ICSE ’22, p. 511–523, New
York, NY, USA, 2022. Association for Computing Machinery.

[LWR20] Yi Lu, Daniel Wainwright, and Michael Reif. “Probabilistic call-graph construc-
tion.” US Patent No. 10,719,314 B2, Jul 2020.

[LWW19] Yepang Liu, Jue Wang, Lili Wei, Chang Xu, Shing-Chi Cheung, Tianyong Wu,
Jun Yan, and Jian Zhang. “DroidLeaks: a comprehensive database of resource
leaks in Android apps.” Empirical Software Engineering, 24:1–49, 12 2019.

[LWY16] Jierui Liu, Tianyong Wu, Jun Yan, and Jian Zhang. “Fixing Resource Leaks
in Android Apps with Light-Weight Static Analysis and Low-Overhead Instru-
mentation.” In 2016 IEEE 27th International Symposium on Software Reliability
Engineering (ISSRE), pp. 342–352, 2016.

[LXC16] Yepang Liu, Chang Xu, Shing-Chi Cheung, and Valerio Terragni. “Understanding
and Detecting Wake Lock Misuses for Android Applications.” In Proceedings of
the 2016 24th ACM SIGSOFT International Symposium on Foundations of Soft-
ware Engineering, FSE 2016, p. 396–409, New York, NY, USA, 2016. Association
for Computing Machinery.

[MFB20] Diego Marcilio, Carlo A. Furia, Rodrigo Bonifácio, and Gustavo Pinto. “Sponge-
Bugs: Automatically generating fix suggestions in response to static code analysis
warnings.” Journal of Systems and Software, 168:110671, 2020.

[MMS21] Paul Muntean, Martin Monperrus, Hao Sun, Jens Grossklags, and Claudia Eck-
ert. “IntRepair: Informed Repairing of Integer Overflows.” IEEE Transactions
on Software Engineering, 47(10):2225–2241, 2021.

142



[MMZ01] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and
Sharad Malik. “Chaff: Engineering an Efficient SAT Solver.” In Proceedings
of the 38th Annual Design Automation Conference, DAC ’01, p. 530–535, New
York, NY, USA, 2001. Association for Computing Machinery.

[MRR05] Ana Milanova, Atanas Rountev, and Barbara G. Ryder. “Parameterized Object
Sensitivity for Points-to Analysis for Java.” ACM Trans. Softw. Eng. Methodol.,
14(1):1–41, jan 2005.

[MYR16] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. “Angelix: Scalable
Multiline Program Patch Synthesis via Symbolic Analysis.” In Proceedings of the
38th International Conference on Software Engineering, ICSE ’16, p. 691–701,
New York, NY, USA, 2016. Association for Computing Machinery.

[MZN15a] Ravi Mangal, Xin Zhang, Aditya V. Nori, and Mayur Naik. “A User-Guided
Approach to Program Analysis.” In Proceedings of the 2015 10th Joint Meeting
on Foundations of Software Engineering, ESEC/FSE 2015, p. 462–473, New York,
NY, USA, 2015. Association for Computing Machinery.

[MZN15b] Ravi Mangal, Xin Zhang, Aditya V. Nori, and Mayur Naik. “A User-Guided
Approach to Program Analysis.” In Proceedings of the 2015 10th Joint Meeting
on Foundations of Software Engineering, ESEC/FSE 2015, p. 462–473, New York,
NY, USA, 2015. Association for Computing Machinery.

[NQR13] Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and Satish Chan-
dra. “SemFix: Program repair via semantic analysis.” In 2013 35th International
Conference on Software Engineering (ICSE), pp. 772–781, 2013.

[NS07] Nicholas Nethercote and Julian Seward. “Valgrind: A Framework for Heavy-
weight Dynamic Binary Instrumentation.” In Proceedings of the 28th ACM SIG-
PLAN Conference on Programming Language Design and Implementation, PLDI
’07, p. 89–100, New York, NY, USA, 2007. Association for Computing Machinery.

[PL16] Rachel Potvin and Josh Levenberg. “Why Google Stores Billions of Lines of Code
in a Single Repository.” Commun. ACM, 59(7):78–87, jun 2016.

[PL18] Jens Palsberg and Cristina V. Lopes. “NJR: A Normalized Java Resource.” In
Companion Proceedings for the ISSTA/ECOOP 2018 Workshops, ISSTA ’18, p.
100–106, New York, NY, USA, 2018. Association for Computing Machinery.

[PLR94] H.D. Pande, W.A. Landi, and B.G. Ryder. “Interprocedural def-use associations
for C systems with single level pointers.” IEEE Transactions on Software Engi-
neering, 20(5):385–403, 1994.

143



[PLS19] Rohan Padhye, Caroline Lemieux, Koushik Sen, Mike Papadakis, and Yves
Le Traon. “Semantic Fuzzing with Zest.” In Proceedings of the 28th ACM SIG-
SOFT International Symposium on Software Testing and Analysis, ISSTA 2019,
p. 329–340, New York, NY, USA, 2019. Association for Computing Machinery.

[PMD02] “PMD Source Code Analyzer.” https://pmd.github.io, 2002.

[PR10] Corina S. Păsăreanu and Neha Rungta. “Symbolic PathFinder: Symbolic Exe-
cution of Java Bytecode.” In Proceedings of the 25th IEEE/ACM International
Conference on Automated Software Engineering, ASE ’10, p. 179–180, New York,
NY, USA, 2010. Association for Computing Machinery.

[PVG11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. “Scikit-learn: Ma-
chine Learning in Python .” Journal of Machine Learning Research, 12:2825–
2830, 2011.

[Ric53] H. Gordon Rice. “Classes of recursively enumerable sets and their decision prob-
lems.” Transactions of the American Mathematical Society, 74:358–366, 1953.

[RKG04] Atanas Rountev, Scott Kagan, and Michael Gibas. “Static and Dynamic Analysis
of Call Chains in Java.” In Proceedings of the 2004 ACM SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA ’04, p. 1–11, New York, NY,
USA, 2004. Association for Computing Machinery.

[RKH18a] Mukund Raghothaman, Sulekha Kulkarni, Kihong Heo, and Mayur Naik. “User-
Guided Program Reasoning Using Bayesian Inference.” In Proceedings of the
39th ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI 2018, p. 722–735, New York, NY, USA, 2018. Association for
Computing Machinery.

[RKH18b] Mukund Raghothaman, Sulekha Kulkarni, Kihong Heo, and Mayur Naik. “User-
Guided Program Reasoning Using Bayesian Inference.” In Proceedings of the
39th ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI 2018, p. 722–735, New York, NY, USA, 2018. Association for
Computing Machinery.

[RKM06] Atanas Rountev, Scott Kagan, and Thomas Marlowe. “Interprocedural Dataflow
Analysis in the Presence of Large Libraries.” In Proceedings of the 15th Interna-
tional Conference on Compiler Construction, CC’06, p. 2–16, Berlin, Heidelberg,
2006. Springer-Verlag.

[RPM08] Joseph R. Ruthruff, John Penix, J. David Morgenthaler, Sebastian Elbaum, and
Gregg Rothermel. “Predicting Accurate and Actionable Static Analysis Warnings:

144

https://pmd.github.io


An Experimental Approach.” In Proceedings of the 30th International Confer-
ence on Software Engineering, ICSE ’08, p. 341–350, New York, NY, USA, 2008.
Association for Computing Machinery.

[RRL99] Atanas Rountev, Barbara G. Ryder, and William Landi. “Data-Flow Analysis of
Program Fragments.” In Proceedings of the 7th European Software Engineering
Conference Held Jointly with the 7th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, ESEC/FSE-7, p. 235–252, Berlin, Hei-
delberg, 1999. Springer-Verlag.

[RSX08] Atanas Rountev, Mariana Sharp, and Guoqing Xu. “IDE Dataflow Analysis in
the Presence of Large Object-Oriented Libraries.” In Laurie J. Hendren, editor,
Compiler Construction, 17th International Conference, CC 2008, Held as Part
of the Joint European Conferences on Theory and Practice of Software, ETAPS
2008, Budapest, Hungary, March 29 - April 6, 2008. Proceedings, volume 4959 of
Lecture Notes in Computer Science, pp. 53–68. Springer, 2008.

[SAE18a] Caitlin Sadowski, Edward Aftandilian, Alex Eagle, Liam Miller-Cushon, and
Ciera Jaspan. “Lessons from Building Static Analysis Tools at Google.” Com-
mun. ACM, 61(4):58–66, mar 2018.

[SAE18b] Caitlin Sadowski, Edward Aftandilian, Alex Eagle, Liam Miller-Cushon, and
Ciera Jaspan. “Lessons from Building Static Analysis Tools at Google.” Com-
mun. ACM, 61(4):58–66, March 2018.

[SB06a] Manu Sridharan and Rastislav Bodík. “Refinement-Based Context-Sensitive
Points-to Analysis for Java.” In Proceedings of the 27th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, PLDI ’06, p.
387–400, New York, NY, USA, 2006. Association for Computing Machinery.

[SB06b] Manu Sridharan and Rastislav Bodík. “Refinement-Based Context-Sensitive
Points-to Analysis for Java.” In Proceedings of the 27th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, PLDI ’06, p.
387–400, New York, NY, USA, 2006. Association for Computing Machinery.

[Sci] Scikit-learn. “Feature importances with a forest of trees.” https:
//scikit-learn.org/stable/auto_examples/ensemble/plot_forest_
importances.html.

[SCS21] Benno Stein, Bor-Yuh Evan Chang, and Manu Sridharan. “Demanded Abstract
Interpretation.” In Proceedings of the 42nd ACM SIGPLAN International Con-
ference on Programming Language Design and Implementation, PLDI 2021, p.
282–295, New York, NY, USA, 2021. Association for Computing Machinery.

145

https://scikit-learn.org/stable/auto_examples/ensemble/plot_forest_importances.html
https://scikit-learn.org/stable/auto_examples/ensemble/plot_forest_importances.html
https://scikit-learn.org/stable/auto_examples/ensemble/plot_forest_importances.html


[SDA16] Johannes Späth, Lisa Nguyen Quang Do, Karim Ali, and Eric Bodden.
“Boomerang: Demand-Driven Flow- and Context-Sensitive Pointer Analysis for
Java.” In Shriram Krishnamurthi and Benjamin S. Lerner, editors, 30th European
Conference on Object-Oriented Programming (ECOOP 2016), volume 56 of Leib-
niz International Proceedings in Informatics (LIPIcs), pp. 22:1–22:26, Dagstuhl,
Germany, 2016. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
[Keywords: Demand-Driven; Static Analysis; IFDS; Aliasing; Points-to Analy-
sis.]

[SDH14] Alex Shaw, Dusten Doggett, and Munawar Hafiz. “Automatically Fixing C Buffer
Overflows Using Program Transformations.” In Proceedings of the 2014 44th An-
nual IEEE/IFIP International Conference on Dependable Systems and Networks,
DSN ’14, p. 124–135, USA, 2014. IEEE Computer Society.

[SDT20] Li Sui, Jens Dietrich, Amjed Tahir, and George Fourtounis. “On the Recall of
Static Call Graph Construction in Practice.” In Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering, ICSE ’20, p. 1049–1060,
New York, NY, USA, 2020. Association for Computing Machinery.

[SGJ15] Caitlin Sadowski, Jeffrey van Gogh, Ciera Jaspan, Emma Söderberg, and Collin
Winter. “Tricorder: Building a Program Analysis Ecosystem.” In Proceedings
of the 37th International Conference on Software Engineering - Volume 1, ICSE
’15, p. 598–608. IEEE Press, 2015.

[SGS05a] Manu Sridharan, Denis Gopan, Lexin Shan, and Rastislav Bodík. “Demand-
Driven Points-to Analysis for Java.” In Proceedings of the 20th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA ’05, p. 59–76, New York, NY, USA, 2005. Associ-
ation for Computing Machinery.

[SGS05b] Manu Sridharan, Denis Gopan, Lexin Shan, and Rastislav Bodík. “Demand-
Driven Points-to Analysis for Java.” In Proceedings of the 20th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA ’05, p. 59–76, New York, NY, USA, 2005. Associ-
ation for Computing Machinery.

[Shi91] Olin Grigsby Shivers. Control-Flow Analysis of Higher-Order Languages of Tam-
ing Lambda. PhD thesis, USA, 1991. UMI Order No. GAX91-26964.

[SHR00] Vijay Sundaresan, Laurie Hendren, Chrislain Razafimahefa, Raja Vallée-Rai,
Patrick Lam, Etienne Gagnon, and Charles Godin. “Practical Virtual Method
Call Resolution for Java.” In Proceedings of the 15th ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and Applications, OOP-
SLA ’00, p. 264–280, New York, NY, USA, 2000. Association for Computing
Machinery.

146



[SP15] Marija Selakovic and Michael Pradel. “Poster: Automatically Fixing Real-World
JavaScript Performance Bugs.” In 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering, volume 2, pp. 811–812, 2015.

[Spo11] Fausto Spoto. “Precise Null-Pointer Analysis.” Softw. Syst. Model.,
10(2):219–252, may 2011.

[Spo17] “SpotBugs Static Analysis Tool.” https://spotbugs.github.io, 2017.

[SR11] J. Sawin and A. Rountev. “Assumption Hierarchy for a CHA Call Graph Con-
struction Algorithm.” In 2011 IEEE 11th International Working Conference on
Source Code Analysis and Manipulation, pp. 35–44, 2011.

[SSC18] Caitlin Sadowski, Emma Söderberg, Luke Church, Michal Sipko, and Alberto
Bacchelli. “Modern Code Review: A Case Study at Google.” In Proceedings of
the 40th International Conference on Software Engineering: Software Engineering
in Practice, ICSE-SEIP ’18, p. 181–190, New York, NY, USA, 2018. Association
for Computing Machinery.

[SWF20] Qingkai Shi, Rongxin Wu, Gang Fan, and Charles Zhang. “Conquering the Ex-
tensional Scalability Problem for Value-Flow Analysis Frameworks.” In Proceed-
ings of the ACM/IEEE 42nd International Conference on Software Engineering,
ICSE ’20, p. 812–823, New York, NY, USA, 2020. Association for Computing
Machinery.

[Syn17] Synopsys. “2017 Coverity Scan Report.” https://www.synopsys.com/blogs/
software-security/2017-coverity-scan-report-open-source-security/,
2017.

[SZ20] Qingkai Shi and Charles Zhang. “Pipelining Bottom-up Data Flow Analysis.”
In Proceedings of the ACM/IEEE 42nd International Conference on Software
Engineering, ICSE ’20, p. 835–847, New York, NY, USA, 2020. Association for
Computing Machinery.

[TC10] Emina Torlak and Satish Chandra. “Effective Interprocedural Resource Leak
Detection.” In Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering - Volume 1, ICSE ’10, p. 535–544, New York, NY, USA,
2010. Association for Computing Machinery.

[TG18] Rijnard van Tonder and Claire Le Goues. “Static Automated Program Repair for
Heap Properties.” In Proceedings of the 40th International Conference on Soft-
ware Engineering, ICSE ’18, p. 151–162, New York, NY, USA, 2018. Association
for Computing Machinery.

147

https://spotbugs.github.io
https://www.synopsys.com/blogs/software-security/2017-coverity-scan-report-open-source-security/
https://www.synopsys.com/blogs/software-security/2017-coverity-scan-report-open-source-security/


[TGP14] Omer Tripp, Salvatore Guarnieri, Marco Pistoia, and Aleksandr Aravkin.
“ALETHEIA: Improving the Usability of Static Security Analysis.” In Proceed-
ings of the 2014 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’14, p. 762–774, New York, NY, USA, 2014. Association for Com-
puting Machinery.

[TPF09a] Omer Tripp, Marco Pistoia, Stephen J. Fink, Manu Sridharan, and Omri Weis-
man. “TAJ: Effective Taint Analysis of Web Applications.” In Proceedings of
the 30th ACM SIGPLAN Conference on Programming Language Design and Im-
plementation, PLDI ’09, p. 87–97, New York, NY, USA, 2009. Association for
Computing Machinery.

[TPF09b] Omer Tripp, Marco Pistoia, Stephen J. Fink, Manu Sridharan, and Omri Weis-
man. “TAJ: Effective Taint Analysis of Web Applications.” In Proceedings of
the 30th ACM SIGPLAN Conference on Programming Language Design and Im-
plementation, PLDI ’09, p. 87–97, New York, NY, USA, 2009. Association for
Computing Machinery.

[UKL20] Akshay Utture, Christian Gram Kalhauge, Shuyang Liu, and Jens Palsberg.
“NJR-1 Dataset.” https://doi.org/10.5281/zenodo.4839913, June 2020.

[UKL21] Akshay Utture, Christian Gram Kalhauge, Shuyang Liu, and Jens Palsberg.
“Artifact for ICSE-22 submission "Striking a Balance: Pruning False-Positives
from Static Call Graphs".” https://doi.org/10.5281/zenodo.5177161, Au-
gust 2021.

[ULK22] Akshay Utture, Shuyang Liu, Christian Gram Kalhauge, and Jens Palsberg.
“Striking a Balance: Pruning False-Positives from Static Call Graphs.” In Pro-
ceedings of the 44th International Conference on Software Engineering, ICSE ’22,
p. 2043–2055, New York, NY, USA, 2022. Association for Computing Machinery.

[UP21] Akshay Utture and Jens Palsberg. “Artifact for ICSE-22 submission "Fast and
Precise Application Code Analysis using a Partial Library".” https://doi.org/
10.5281/zenodo.5551128, August 2021.

[UP22] Akshay Utture and Jens Palsberg. “Fast and Precise Application Code Analysis
Using a Partial Library.” In Proceedings of the 44th International Conference on
Software Engineering, ICSE ’22, p. 934–945, New York, NY, USA, 2022. Associ-
ation for Computing Machinery.

[WAL15] WALA. “IBM, “T.J. Watson Libraries for Analysis (WALA),”.” http://wala.
sourceforge.net, 2015.

[web01] Checkstyle website. “Checkstyle.” https://checkstyle.org, 2001.

148

https://doi.org/10.5281/zenodo.4839913
https://doi.org/10.5281/zenodo.5177161
https://doi.org/10.5281/zenodo.5551128
https://doi.org/10.5281/zenodo.5551128
http://wala.sourceforge.net
http://wala.sourceforge.net
https://checkstyle.org


[WLX16] Tianyong Wu, Jierui Liu, Zhenbo Xu, Chaorong Guo, Yanli Zhang, Jun Yan,
and Jian Zhang. “Light-Weight, Inter-Procedural and Callback-Aware Resource
Leak Detection for Android Apps.” IEEE Transactions on Software Engineering,
42(11):1054–1076, 2016.

[WNL09] Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie Forrest.
“Automatically finding patches using genetic programming.” In 2009 IEEE 31st
International Conference on Software Engineering, pp. 364–374, 2009.

[WR99] John Whaley and Martin Rinard. “Compositional Pointer and Escape Analysis
for Java Programs.” In Proceedings of the 14th ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA
’99, p. 187–206, New York, NY, USA, 1999. Association for Computing Machin-
ery.

[XSY19] Xuezheng Xu, Yulei Sui, Hua Yan, and Jingling Xue. “VFix: Value-Flow-Guided
Precise Program Repair for Null Pointer Dereferences.” In Proceedings of the 41st
International Conference on Software Engineering, ICSE ’19, p. 512–523. IEEE
Press, 2019.

[XZ22] Chunqiu Steven Xia and Lingming Zhang. “Less Training, More Repairing Please:
Revisiting Automated Program Repair via Zero-Shot Learning.” In Proceedings of
the 30th ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ESEC/FSE 2022, p. 959–971, New
York, NY, USA, 2022. Association for Computing Machinery.

[YMM22] He Ye, Matias Martinez, and Martin Monperrus. “Neural Program Repair with
Execution-Based Backpropagation.” In Proceedings of the 44th International
Conference on Software Engineering, ICSE ’22, p. 1506–1518, New York, NY,
USA, 2022. Association for Computing Machinery.

[YS13] U. Yüksel and H. Sözer. “Automated Classification of Static Code Analysis
Alerts: A Case Study.” In 2013 IEEE International Conference on Software
Maintenance, pp. 532–535, 2013.

[ZR07a] Weilei Zhang and Barbara G. Ryder. “Automatic Construction of Accurate Ap-
plication Call Graph with Library Call Abstraction for Java: Research Articles.”
J. Softw. Maint. Evol., 19(4):231–252, July 2007.

[ZR07b] Weilei Zhang and Barbara G. Ryder. “Automatic Construction of Accurate Ap-
plication Call Graph with Library Call Abstraction for Java: Research Articles.”
J. Softw. Maint. Evol., 19(4):231–252, July 2007.

149


	Introduction
	Static Analysis Background
	Basic Concepts
	Applications of Static Analysis
	Example
	Challenges and Limitations
	Other Program Verification Techniques

	CGPruner: Pruning False-Positives from Static Call Graphs
	Overview
	Example
	Call-Graph Pruners
	Overview
	Classifier Generator
	Feature set

	Implementation and Dataset
	Experimental Results
	Main Result
	Distribution of Precision and Recall for individual programs
	Effect on Client Analyses
	Threats to Validity

	Related Work

	QueryMax: Application Code Analysis using Partial Libraries
	Overview
	Example
	Approach
	Overview
	External Source Analysis (ESA)
	QueryMax Algorithm
	Applicability of QueryMax to Client Static Analyses

	Implementation
	Dataset Description
	Experimental Results
	C1: Main Result
	C2: Distribution of Recall and Speedup
	Zero-Error Benchmarks
	Split-up of Analysis Time
	Analysis-time vs Number of Classes
	Threats to Validity

	Related Work

	RLFixer: Automated Repairs for Resource Leak Warnings
	Overview
	Examples
	Approach
	Warning Parser
	Resource Alias Identification
	Resource Escape Analysis
	Applying Repair Templates

	Implementation
	Dataset
	Experimental Results
	Fixable Rate
	Fix Correctness
	Comparison with Footpatch
	Time overhead
	Threats to Validity

	Related Work

	Conclusion
	References



