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Abstract

With the availability of massive amounts of data from electronic health records and registry 

databases, incorporating time-varying patient information to improve risk prediction has attracted 

great attention. To exploit the growing amount of predictor information over time, we develop 

a unified framework for landmark prediction using survival tree ensembles, where an updated 

prediction can be performed when new information becomes available. Compared to conventional 

landmark prediction with fixed landmark times, our methods allow the landmark times to be 

subject-specific and triggered by an intermediate clinical event. Moreover, the nonparametric 

approach circumvents the thorny issue of model incompatibility at different landmark times. 

In our framework, both the longitudinal predictors and the event time outcome are subject to 

right censoring, and thus existing tree-based approaches cannot be directly applied. To tackle the 

analytical challenges, we propose a risk-set-based ensemble procedure by averaging martingale 

estimating equations from individual trees. Extensive simulation studies are conducted to evaluate 

the performance of our methods. The methods are applied to the Cystic Fibrosis Foundation 

Patient Registry (CFFPR) data to perform dynamic prediction of lung disease in cystic fibrosis 

patients and to identify important prognosis factors.

ys3072@cumc.columbia.edu . 
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1. Introduction

Cystic fibrosis (CF) is a genetic disease characterized by a progressive, irreversible decline 

in lung function caused by chronic microbial infections of the airways. Despite recent 

advances in diagnosis and treatment, the burden of CF care remains high, and most patients 

succumb to respiratory failure. There is currently no cure for CF, so early prevention of 

lung disease for high-risk patients are essential for successful disease management. The 

goal of this research is to develop flexible and accurate event risk prediction algorithms 

for abnormal lung function in pediatric CF patients by exploiting the rich longitudinal 

information made available by the Cystic Fibrosis Foundation Patient Registry (CFFPR).

The CFFPR is a large electronic health record database that collects encounter-based records 

of over 300 unique variables on patients from over 120 accredited CF care centers in 

the United States (Knapp et al., 2016). The CFFPR contains detailed information on 

potential risk factors, including symptoms, pulmonary infections, medications, test results, 

and medical history. Analyses of CFFPR suggested that the variability in spirometry 

measurements over time is highly predictive of subsequent lung function decline (Morgan 

et al., 2016). Moreover, the acquisition of chronic, mucoid, or multidrug-resistant subtypes 

of Pseudomonas aeruginosa (PA) leads to more severe pulmonary disease, accelerating 

the decline in lung function (McGarry et al., 2020). In this paper, the event of interest is 

the progressive loss of lung function, defined as the first time that the percent predicted 

forced expiratory volume in 1 second (ppFEV1) drops below 80% in CFFPR. Since 

risk factors such as weight and height in pediatric patients can change substantially over 

time, models with baseline predictors have limited potential for long-term prognosis. 

Incorporating repeated measurements and intermediate clinical events would reflect ongoing 

CF management and result in more accurate prediction.

To incorporate the longitudinal patient information in risk prediction, one major approach 

is joint modeling (see, for example, Rizopoulos, 2011; Taylor et al., 2013). Under the 

joint modeling framework, a longitudinal submodel for the time-dependent variables and a 

survival submodel for the time-to-event outcome are postulated; the sub-models are typically 

linked via latent variables. Such a model formulation provides a complete specification 

of the joint distribution, based on which the survival probability given the history of 

longitudinal measurements can be derived. Most joint modeling methods consider a single, 

continuous time-dependent variable. Although attempts have been made to incorporate 

multiple time-dependent predictor variables (Proust-Lima, Dartigues and Jacqmin-Gadda, 

2016; Wang, Luo and Li, 2017), correct specification of the model forms for all the 

time-dependent covariates and their associations with the event outcome remains a major 

challenge. Moreover, it is not clear how existing joint modeling approaches can further 
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incorporate the information on the multiple intermediate events, such as the acquisition of 

different subtypes of PA, in risk prediction.

Another major approach that can account for longitudinal predictors is landmark analysis, 

where models are constructed at pre-specified landmark times to predict the event risk in 

a future time interval. For example, at each landmark time, one may postulate a working 

Cox model with appropriate summaries of the covariate history up to the landmark time 

(e.g., last observed values) as predictors and then fit the Cox model using data from subjects 

who are at risk of the event. The estimation can either be performed using a separate 

model at each landmark time point or a supermodel for all landmark time points (van 

Houwelingen, 2007; van Houwelingen and Putter, 2008, 2011). This way, multiple and 

mixed type time-dependent predictors can be easily incorporated. Moreover, to better exploit 

the repeated measurements and to handle measurement errors, one may also consider a 

two-stage landmark approach (Rizopoulos, Molenberghs and Lesaffre, 2017; Sweeting et 

al., 2017; Ferrer, Putter and Proust-Lima, 2019): in the first step, mixed-effects models are 

used to model the longitudinal predictors; in the second step, functions of the best linear 

unbiased prediction (BLUP) estimator of the random effects are included as predictors of 

the landmark Cox model. Other than Cox models, Parast, Cheng and Cai (2012) considered 

time-varying coefficient models to incorporate a single intermediate event and multiple 

biomarker measurements. Zheng and Heagerty (2005), Maziarz et al. (2017), and Zhu, 

Li and Huang (2019) further considered the impact of informative observation times of 

repeated measurements on future risk.

Direct application of the existing landmark analysis method to the CFFPR data may not be 

ideal for the following reasons: first, imposing semiparametric working models at different 

landmark times may result in incompatible models and inconsistent predictions (Jewell 

and Nielsen, 1993; Rizopoulos, Molenberghs and Lesaffre, 2017). In other words, a joint 

distribution of predictors and event times that satisfies the models at all the landmark times 

simultaneously may not exist. Second, the specification of how the predictor history affects 

the future event risk may require deep clinical insight. For example, researchers have shown 

that various summaries of the repeated measurements, including the variability (Morgan 

et al., 2016), the rate of change (Mannino, Reichert and Davis, 2006), and the area under 

the trajectory curve (Domanski et al., 2020), can serve as important predictors of disease 

risks, while the last observed value has been commonly used in the statistical literature. 

Therefore, nonparametric statistical learning methods are appealing in landmark prediction, 

because they require minimal model assumptions and have the potential to deal with a large 

number of complicated predictors. Tanner et al. (2021) applied super learners for landmark 

prediction in CF patients, where discrete time survival analysis were conducted via the use 

of machine learning algorithms for binary outcomes.

In this paper, we propose a unified framework for landmark prediction using survival tree 

ensembles, where the landmark times can be subject-specific. A subject-specific landmark 

can be defined by an intermediate clinical event that modifies patients’ risk profiles and 

triggers the need for an updated evaluation of future risk. In our application, the acquisition 

of chronic PA usually leads to accelerated deterioration in the pulmonary function and 

serves as a natural landmark. When the landmark time is random, the number of observed 
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predictors at the landmark time often varies across subjects, creating analytical challenges 

in fully utilizing the available information. Moreover, unlike static risk prediction models 

where baseline predictors are completely observed, the observation of the time-dependent 

predictors is further subject to right censoring. To tackle these problems, we propose a 

risk-set-based approach to handle the possibly censored predictors. To avoid the instability 

issue of a single tree, we propose a novel ensemble procedure based on averaging unbiased 

martingale estimating equations derived from individual trees. Our ensemble method is 

different from existing ensemble methods that directly average the cumulative hazard 

predictions and has strong empirical performances in dealing with censored data.

The rest of this article is organized as follows. In Section 2, we introduce a landmark 

prediction framework that incorporates the repeated measurements and intermediate events. 

In Section 3, we propose tree-based ensemble methods to deal with censored predictors and 

outcomes. We propose a concordance measure to evaluate the prediction performance in 

Section 4 and define a permutation variable importance measure in Section 5. The proposed 

methods are evaluated by extensive simulation studies in Section 6 and are applied to the 

CFFPR data in Section 7. We conclude the paper with a discussion in Section 8.

2. Model Setup

In contrast to static risk prediction methods that output a conditional survival function 

given baseline predictors, dynamic landmark prediction focuses on the survival function 

conditioning on the predictor history up to the landmark time. Since history information 

involves complicated stochastic processes, challenges arise as to how to partition the 

history processes when applying tree-based methods. In what follows, we first introduce 

a generalized definition of the landmark survival function, starting from either a fixed or 

subject-specific landmark time. We then express the history information as a fixed-length 

predictor vector on which recursive partition can be applied.

Denote by T a continuous failure event time and by TL a landmark time. The landmark 

is selected a priori and is usually clinically meaningful. We allow TL to be either fixed or 

subject-specific. We focus on the subpopulation that is free of the failure event at TL and 

predict the risk after TL. Denote by Z the baseline predictors and denote by ℋ(t) other 

information observed on [0, t]. Our goal is to predict the probability conditioning on all the 

available information up to TL, that is,

P T − TL ≥ t ∣ T ≥ TL, TL, ℋ TL , Z . (1)

To illustrate the observed history ℋ(t), we consider two types of predictors that are available 

in the CFFPR data. The first type of predictors is repeated measurements of time-dependent 

variables such as weight and ppFEV1. It is worthwhile to point out that both internal and 

external time-dependent predictors can be included, as only their history up to TL will be 

used. We denote this type of predictors by W(t), a q-dimensional vector of time-dependent 

variables, and assume W(·) is available at fixed time points t1, t2, …, tK. The observed 

history up to t is ℋW (t) = {W(s)dO(s), 0 < s ≤ t}, where O(t) is a counting process that 

jumps by one when W(·) is measured (i.e., dO(tk) = 1 for k = 1, …, K). The second type 
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of predictors is the timings of intermediate clinical events such as pseudomonas infections. 

Denote by Uj the time to the jth intermediate event, j = 1, …, J. The observed history up to 

t is ℋU(t) = {I(Uj ≤ s), 0 < s ≤ t, j = 1, …, J}. Collectively, we have a system of history 

processes ℋ(t) = (ℋW (t), ℋU(t)).

In our framework, both tk and Uj can serve as landmark times. Due to the stochastic nature 

of Uj, the order of {tk, Uj, k = 1, …, K, j = 1, …, J} can not be pre-determined. As a result, 

the number of available predictors at a given landmark time can vary across subjects. For 

illustration, we consider one fixed time point t1 at age 7 and one intermediate event chronic 

PA (cPA), of which the occurrence time is denoted by U1. Figure 1 depicts the observed data 

of two study subjects. At t1 = 7, subject 1 has experienced cPA (U1 = 4.8 ≤ t1), while subject 

2 remains free of cPA (U1 = 10.2 > t1). Let W(t) be the body weight measured at time t (i.e., 

q = 1). The probabilities of interest are given as follows:

I. At a fixed landmark time TL = t1, we predict the risk at t1 + t, t > 0, among those 

who are at risk, that is, T ≥ t1. Note that subjects in the risk set may or may not 

have experienced the intermediate event prior to t1. Given W(t1) and the partially 

observed U1, the conditional survival probability (1) can be reexpressed as

P T ≥ t + t1 ∣ T ≥ t1, Z, W t1 , U1 , if U1 ≤ t1,
P T ≥ t + t1 ∣ T ≥ t1, Z, W t1 , U1 > t1 , otherwise.

In other words, at t1, we output the former for subjects who experience the 

intermediate event prior to t1 (subject 1, Figure 1a), while output the latter for 

others (subject 2, Figure 1b).

II. At a random landmark time TL = U1, we predict the risk for subjects who have 

experienced the intermediate event and are free of the failure event. The predictor 

value W(t1) is available only if U1 ≥ t1. In this case, we predict

P T ≥ t + U1 ∣ T ≥ U1, Z, U1 , if U1 ≤ t1,
P T ≥ t + U1 ∣ T ≥ U1, Z, W t1 , U1 , otherwise.

Therefore, at U1, we output the former for subjects whose W(t1) is observed after 

U1 (Subject 1, Figure 1c), while output the latter for others (Subject 2, Figure 

1d).

In the above example, the observed predictors vary across subjects. We then represent the 

history ℋ(TL) as a vector with a fixed length, so that tree-based methods can be applied to 

estimate the probability in (1). Define the complete predictors X = {W(t1), …, W(tK), U1, …, 

UJ}. The information in X may not be fully available at a given landmark time. We define 

the available information up to t by X(t) = {W(t1, t), …, W(tK, t), U1(t), …, UJ(t)}, where

W tk, t =
W tk , if tk ≤ t,
NAq, otherwise, Uj(t) =

Uj, if Uj ≤ t,

t+, otherwise.
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By a slight abuse of notation, we write Uj(t) = t+ if Uj > t and W(tk, t) = NAq if tk > t, 

with NAq =def (NA, …, NA) denoting a non-numeric q-dimensional vector. Here an NA value 

indicates that the covariate value is collected after the landmark time and thus should not 

be used for constructing prediction models. In other words, under our setting NA is treated 

as an attribute rather than missing data, as the target probability is not conditional on W(tk) 

for tk > TL. The covariate history ℋ(TL) can then be expressed as X(TL), which is a (qK + 

J)-dimensional vector. This way, a covariate not being observed is predictive of the outcome, 

and the target survival probability function can be expressed as follows:

S(t ∣ a, z, x) = P T ≥ t + a ∣ T ≥ TL = a, Z = z, X TL = x . (2)

In the example depicted in Figure 1, we have X(t) = {W(t1, t), U1(t)}. For TL = t1, the 

predictor values in Figure 1a and 1b correspond to x = (19.7, 4.8) and x = (21.5, 7+), 

respectively. For TL = U1, the predictor values in Figures 1c and 1d correspond to x = (NA, 

4.8) and x = (21.5, 10.2), respectively. Since the information at TL involves left-bounded 

intervals and non-numeric values, applying semiparametric methods to estimate S(t | a, 

z, x) is challenging. Hence we propose tree-based methods to handle partially observed 

predictors.

3. Survival trees and ensembles for landmark prediction

At a given landmark time, we build a tree-based model to predict future event risk. Survival 

trees are popular nonparametric tools for risk prediction. The original survival trees take 

baseline predictors as input variables and output the survival probability conditioning on 

the baseline predictors (see, for example, Gordon and Olshen, 1985; Ciampi et al., 1986; 

Segal, 1988; Davis and Anderson, 1989; LeBlanc and Crowley, 1992, 1993; Zhang, 1995; 

Molinaro, Dudoit and Van der Laan, 2004; Steingrimsson et al., 2016), and ensemble 

methods have been applied to address the instability issue of a single tree (Hothorn et 

al., 2004, 2006; Ishwaran et al., 2008; Zhu and Kosorok, 2012; Steingrimsson, Diao and 

Strawderman, 2019). However, existing methods may not be directly applied, because the 

predictors in X are not completely observed at TL, and the available predictors (TL, X(TL)) 

are subject to right censoring. In the absence of censoring, we introduce a partition scheme 

for subjects who are event-free at the landmark time in Section 3.1. To handle censored data, 

we propose risk-set methods to estimate the partition-based landmark survival probability in 

Section 3.2 and propose an ensemble procedure in Section 3.3.

3.1. Partition on partially observed predictors at the landmark time

A tree partitions the predictor space into disjoint subsets termed terminal nodes and assigns 

the same survival prediction for subjects that enter the same terminal node. In dynamic 

risk prediction, the population of interest is subjects who remain event-free at the landmark 

time, that is, those with T ≥ TL. We use  = {τ1, τ2, …, τM} to denote a partition on the 

sample space of (TL, Z, X(TL)) | T ≥ TL, where τm, m = 1,…, M, are the terminal nodes. 

The terminal nodes are formed recursively using binary partitions by asking a sequence of 

yes-or-no questions. Existing implementations of trees usually do not handle mixtures of 

numeric and nominal variables. Since a variable in X(TL) may take either numeric/ordinal 
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values or NA, the conventional partition scheme needs to be extended. When a variable in 

W(tk) is nominal, its counterpart in W(tk, TL) is also nominal and can be split applying 

existing approaches. In what follows, we focus on the case where the longitudinal marker 

measurements W(tk) are numeric/ordinal.

When TL is random, the partition is based on the variables in (TL, Z, X(TL)). We consider 

the following situations:

(R1) When W(tk, TL)’s are the splitting variables, conventional splitting rules may 

not be directly applied because they take NA values when tk > TL. Supposed W is an 

element of W(tk, TL) and c is a cutoff value. We consider two possible splits, (a) {W 
> c} versus {W ≤ c or W = NA} and (b) {W > c or W = NA} versus {W ≤ c}, and 

select the split that yields a larger improvement in the splitting criterion. We note that 

W = NA (i.e., TL < tk) is treated as an attribute rather than missing data.

(R2) Conventional splitting rules cannot be directly applied to Uj(TL), because Uj(TL) 

can be TL
+ and the support of Uj(TL) is not an ordered set. To tackle this problem, we 

employ a set of transformed predictors {U1(TL)/TL, …, UJ(TL)/TL}, which, together 

with TL, contains the same information as {U1(TL), …, UJ(TL), TL}. Then the rule 

Uj(TL)/TL > c can be applied for c ∈ (0, 1], and Uj(TL)/TL > 1 is equivalent to Uj(TL) 

= TL
+.

The splitting rules in (R1) and (R2) can be implemented by transforming X(TL) to a 

numeric/ordinal vector and passing the transformed predictors into a tree algorithm using 

conventional partition rules: First, we create two features for each element W in W(tk, TL). 

The two features, denoted by W+ and W−, take the same value as W when W ≠ NA (i.e., tk 

> TL), and take extreme values M and −M otherwise, where M is a large positive number 

outside the possible range of predictor values. Instead of using W, we use W+ and W− as 

candidate variables for splitting. The partition “{W+ > c} versus {W+ ≤ c}” is equivalent 

to the type (b) partition “{W > c or W = NA} versus {W ≤ c}”, because observations 

satisfying W = NA or W > c are assigned to the same child node; similarly, splitting based 

on W− yields type (a) partitions. As an example, if landmark is cPA and W denotes the 

observed age-7 weight at the landmark time, then the rule “Is W+ > 20?” is equivalent 

to “Is weight at age 7 greater than 20kg or does the subject have cPA before age 7?”. 

Implementing such a partition rule is equivalent to the “missings together” approach (Zhang, 

Holford and Bracken, 1996) and missingness incorporated in attributes (Twala, Jones and 

Hand, 2008). Second, for each transformed intermediate event time Uj(TL)/TL(j = 1, …, J), 

we replace the value 1+ with M. The details are described in Algorithm 1 (see Table 1). The 

partition scheme also apply to the trivial case of fixed landmark times. Figure 2 illustrates 

the proposed data preprocessing procedure.

The partition scheme described above guarantees that each individual has a well-defined 

pathway to determine its node membership. Given such a partition , one can define a 

partition function l  (a, z, x), which returns the terminal node in  that contains (a, z, x). 

We define the following partition-based survival function,

ST(t ∣ a, z, x) = P T ≥ t + a ∣ T ≥ TL, TL, Z, X TL ∈ lT(a, z, x) . (3)
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The probability S  (t | a, z, x) approximates the target function S(t | a, z, x).

3.2. Partition-based estimation at the landmark time

The follow-up of a subject can be terminated due to loss to follow-up or study end. We now 

consider estimating S  (t | a, z, x) with censored data. Denote by C the censoring time and 

assume C is independent of (TL, T, X) given Z. We follow the convention to define Y = 

min(T, C) and Δ = I(T ≤ C). We further define YL = min(TL, Y) and ΔL = I(TL ≤ T, TL ≤ 

C). Note that ΔL = 1 is the at-risk indicator at TL. For subjects who are free of the failure 

event at TL, one can observe TL and X(TL) when ΔL = 1. The training data are {(Yi, Δi, YLi, 

ΔLi, Xi(YLi), Zi), i = 1, …, n}, which are assumed to be independent identically distributed 

replicates of (Y, Δ, YL, ΔL, X(YL), Z).

Define N(t, a) = ΔI(Y − a ≤ t). Denote by λ(t | a, z, x) the landmark hazard function, that is, 

λ(t | a, z, x)dt = P(T − TL ∈ [t, t + dt) | T − TL ≥ t, TL = a, Z = z, X(TL) = x). The survival 

function S(t | a, z, x) and the hazard function λ(t | a, z, x) have a one-to-one correspondence 

relationship: S(t ∣ a, z, x) = exp −∫0
tλ(u ∣ a, z, x)du . For t > 0, we have

E N dt, Y L − I Y − Y L ≥ t λ(t ∣ a, z, x)dt ∣ ΔL = 1, Y L = a, Z = z, X Y L = x
= E N(dt, a) − I(T ≥ a + t, C ≥ a + t)λ(t ∣ a, z, x)dt ∣ C ≥ a, T ≥ TL = a, Z = z, X TL = x
= E I T − TL ∈ [t, t + dt) − I T − TL ≥ t λ(t ∣ a, z, x)dt ∣ C ≥ a, T ≥ TL = a, Z = z,
X TL = x × P (C ≥ a + t ∣ C ≥ a, Z = z)
= 0.

Then we have

λ(t ∣ a, z, x)dt = E N dt, Y L ∣ ΔL = 1, Y L = a, Z = z, X Y L = x
E I Y − Y L ≥ t ∣ ΔL = 1, Y L = a, Z = z, X Y L = x . (4)

Conditioning on ΔL = 1 and (YL, Z, X(YL)), subjects with Y − YL ≥ t can be viewed as a 

representative sample of the population with T − TL ≥ t for each t > 0. Heuristically, the 

numerator and denominator in (4) can be estimated using partition-based estimators in the 

subsample with ΔL = 1. Given a partition , the function S  (t | a, z, x) in (3) can be 

estimated by the following estimator,

ST(t ∣ a, z, x) = exp −∫
0

t ∑i = 1
n ΔLiI Y Li, Zi, Xi Y Li ∈ lT(a, z, x) Ni du, Y Li

∑i = 1
n ΔLiI Y Li, Zi, Xi Y Li ∈ lT(a, z, x), Y i − Y Li ≥ u . (5)

When a new subject is event-free at the landmark time TL0 with predictors Z0 and 

X0(TL0), the predicted survival probability based on a single tree is ST t ∣ TL0, Z0, X0 TL0 . 

In practice, the partition  can be constructed via a recursive partition algorithm, and the 

split-complexity pruning can be applied to determine the size of the tree (LeBlanc and 

Crowley, 1993). More details of the tree algorithm are given in the Supplementary Material 

(Sun et al., 2022).

3.3. Survival tree ensembles based on martingale estimating equations

Since the prediction based on a tree is often unstable, ensemble methods such as bagging 

(Breiman, 1996) and random forests (Breiman, 2001) have been commonly applied. The 
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original random forests perform the prediction for a new data point by averaging predictions 

from a large number of trees, which are often grown sufficiently deep to achieve low bias 

(Friedman, Hastie and Tibshirani, 2001). However, for censored data, a large tree may result 

in a small number of observed failures in the terminal nodes, leading to increased estimation 

bias of survival or cumulative hazard functions. Existing survival forests inherit from the 

original random forest and directly average the cumulative hazard prediction from individual 

trees. Therefore, the node size parameter needs to be carefully tuned to achieve accurate 

prediction. On the other hand, if the target estimate can be expressed as the solution of an 

unbiased estimating equation, a natural way is to solve the averaged estimating equations. In 

what follows, we propose an ensemble procedure based on averaging martingale estimating 

equations.

For b = 1, …, B, we draw the bth bootstrap sample from the training data. Let T = Tb b = 1
B

be a collection of B partitions constructed using the bootstrap datasets. Each partition 

is constructed via a recursive partition procedure where at each split, m predictors are 

randomly selected as the candidate variables for splitting, and m is smaller than the number 

of predictors. Let lb be the partition function based on the partition b. The tree-based 

estimation from b can be obtained from the following estimating equation,

∑
i = 1

n
wbiI Y Li, Zi, Xi Y Li ∈ lb(a, z, x) ΔLi Ni dt, Y Li − I Y i − Y Li ≥ t λ(t ∣ a, z, x)dt = 0,

where wbi is the frequency of the ith observation in the bth bootstrap sample. Note that when 

wbi = 1 for all i = 1, …, n, solving the above estimating equation yields the estimator in 

(5). To perform prediction using all the trees, we consider the following averaged estimating 

equation,

∑
i = 1

n
wi(a, z, x) Ni dt, Y Li − I Y i − Y Li ≥ t λ(t ∣ a, z, x)dt = 0,

where wi(a, z, x) = ∑b = 1
B wbiI Y Li, Zi, Xi Y Li ∈ lb(a, z, x) ΔLi/B. Solving the averaged 

estimating equation yields

ST(t ∣ a, z, x) = exp −∫
0

t ∑i = 1
n wi(a, z, x)Ni ds, Y Li

∑i = 1
n wi(a, z, x)I Y i − Y Li ≥ s

.

The estimator ST(t ∣ a, z, x) can be viewed as an adaptive nearest neighbour estimator (Lin 

and Jeon, 2006), where the weight assigned to each observation comes from random forests. 

The risk prediction algorithm is given in Table 1.

4. Evaluating the landmark prediction performance

To evaluate the performance of the predicted risk score, we extend the cumulative/dynamic 

receiver operating characteristics (ROC) curves (Heagerty, Lumley and Pepe, 2000), which 
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has been commonly used when a risk score is based on baseline predictors. We note that 

ROC and concordance indices for dynamic prediction at a fixed landmark time has been 

studied in the literature (Rizopoulos, Molenberghs and Lesaffre, 2017; Wang, Luo and Li, 

2017). Here we consider a more general case where the landmark time TL is random and 

subject to right censoring. For t > 0, subjects with 0 ≤ T − TL < t are considered as cases 

and subjects with T − TL ≥ t are considered as controls. The ROC curve then evaluates the 

performance of a risk score that discriminates between subjects who have experienced the 

events prior to TL + t and those who do not.

Let g(t, TL, Z, X(TL)) denote a risk score based on (TL, Z, X(TL)), with a larger value 

indicating a higher chance of being a case. For each t > 0, The true positive rate and false 

positive rate at a threshold of c are defined as follows,

TPRt(c) = P g t, TL, Z, X TL > c ∣ 0 ≤ T − TL < t, TL ≤ τ0 ,

FPRt(c) = P g t, TL, Z, X TL > c ∣ T − TL ≥ t, TL ≤ τ0

where τ0 is a pre-specified constant. The ROC curve at t is defined as 

ROCt(p) = TPRt FPRt
−1(p) . Following the arguments of McIntosh and Pepe (2002), it can 

be shown that g(t, a, z, x) = 1 − S(t | a, z, x) yields the highest ROC curve, which justifies the 

use of the proposed time-dependent ROC curve. Moreover, the area under the ROC curve is 

equivalent to the following concordance measure,

CONt(g) = P g t, TL1, Z, X1 TL1 < g t, TL2, Z, X2 TL2 ∣ 0 ≤ T2 − TL2 < t ≤ T1 − TL1, TL1 ≤ τ0, TL2 ≤ τ0
+ 0.5P g t, TL1, Z, X1 TL1 = g t, TL2, Z, X2 TL2 ∣ 0 ≤ T2 − TL2 < t ≤ T1 − TL1, TL1 ≤ τ0, TL2 ≤ τ0 ,

where (TL1, Z1, X1(TL1), T1) and (TL2, Z2, X2(TL2), T2) are independent pairs of 

observations, and the second term accounts for potential ties in the risk score.

In practice, one usually builds the model on a training dataset and evaluates its performance 

on an independent test dataset that are also subject to right censoring. To simplify notation 

here, we construct the estimator for CONt(g) using the observed data introduced in Section 

3.2, although CONt evaluated using the test data should be used in real applications. Define 

dij(t) = g(t, YLj, Zj, Xj(YLj))−g(t, YLi, Zi, Xi(YLi)). The CONt(g) measure can be estimated 

by

CONt(g)

=
∑i ≠ j I dij(t) > 0 + 0.5I dij(t) = 0 ΔjI 0 ≤ Y j − Y Lj ≤ t < Y i − Y Li, Y Li ≤ τ0, Y Lj ≤ τ0

SC Y j ∣ Zj SC Y Li + t ∣ Zi

∑i ≠ j
ΔjI 0 ≤ Y j − Y Lj ≤ t < Y i − Y Li, Y Li ≤ τ0, Y Lj ≤ τ0

SC Y j ∣ Zj SC Y Li + t ∣ Zi

, (6)

where SC(t ∣ z) is an estimator for the conditional censoring distribution SC(t | z) = P(C 

≥ t | Z = z). For example, survival trees or forests can be applied to estimate SC(t | z); 

when censoring is completely random, the Kaplan-Meier estimator can also be applied. 

Under regularity conditions, we show that CONt(g) consistently estimates CONt(g) in the 
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Supplementary Material. In practice, one can either use the concordance at a given time 

point t or an integrated measure to evaluate the overall concordance on a given time 

interval [tL, tU]. In the latter case, a weighted average of concordance on a grid of time 

points in [tL, tU] can be reported. For example, one may assign equal weights to all the 

time points. Another example is a weight proportional to the denominator in CONt(g), 
that is, ∑i ≠ j ΔjI 0 ≤ Y j − Y Lj ≤ t < Y i − Y Li, Y Li ≤ τ0, Y Lj ≤ τ0 /SC Y j ∣ Zj SC Y Li + t ∣ Zi , to avoid 

potentially unstable estimation for very small or large time points.

5. Permutation variable importance

Variable importance is a useful measure for understanding the impact of predictors in 

tree ensembles and can be used as a reference for variable selection (Breiman, 2001). 

In the original random forests, each tree is constructed using a bootstrap sample of the 

original data, and the out-of-bag (OOB) data can be used to estimate the OOB prediction 

performance. The permutation variable importance of a predictor is computed as the average 

decrease in model accuracy on the OOB samples when the respective feature values are 

randomly permuted.

To study variable importance in dynamic risk prediction using censored data, we consider 

an extension of variable importance. Following the original random forests, the OOB 

prediction for each training observation is made based on trees constructed without using 

this observation. Applying the same arguments as in Section 4, the prediction based on trees 

built without the ith subject is

S−i(t ∣ a, z, x) = exp −∫
0

t ∑k = 1
n wk, − i(a, z, x)Nk ds, Y Lk

∑k = 1
n wk, − i(a, z, x)I Y k − Y Lk ≥ s

,

where wk, − i(a, z, x) = ∑b = 1
B wbkI Y Lk, Zk, Xk Y Lk ∈ lb(a, z, x), wbi = 0 ΔLi. Define 

dij(t) = − S−i t ∣ Y Li, Zi, Xi Y Li + S−j t ∣ Y Lj, Zj, Xj Y Lj . The OOB concordance at t can be 

calculated by applying (6). To compute variable importance for a predictor, we permute this 

predictor and calculate the OOB concordance after permutation. We repeat the permutation 

multiple times (e.g., 100 times) and define the variable importance as the average difference 

in OOB concordances over all the permutations.

Permuting variables is straightforward in the case of fixed landmark times (i.e., TL = tk), 

where we randomly shuffling the observed values of the predictor among individuals who 

remained under observation at the landmark time, that is, subjects with ΔL = 1. When the 

landmark time is random (i.e., TL = Uj), we propose different permutation procedures for 

calculating variable importance according to the type of the variable: (1) If the variable of 

interest is completely observed at the landmark time TL (e.g., the value of TL and baseline 

covariates Z), we randomly shuffle its values among subjects with ΔL = 1. (2) If the variable 

of interest is an intermediate event time Uj′(j′ ≠ j), we propose to permute its relative 

value to the landmark time, that is, Uj′(TL)/TL, among subjects with ΔL = 1. Note that the 

reason to permute the ratio Uj′(TL)/TL instead of the untransformed intermediate event time 

directly is to avoid incompatible pairs of the intermediate event time and the landmark time 
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under permutation. (3) If the variable of interest is an element of W(tk), we permute its 

values among subjects with complete observations at the landmark time (i.e., TL ≥ tk and ΔL 

= 1). This is because W(tk) is not used in prediction for subjects with TL < tk.

6. Simulation

Simulation studies were conducted to assess the performance of the proposed methods in 

estimating the landmark survival probability in (1) under scenarios when the landmark time 

is fixed or random. In both cases, we generated the time-independent predictors Z = (Z1, …, 

Z10) from a multivariate normal distribution with E(Zi) = 1, Var(Zi) = 1, and Cov(Zi, Zj) = 

0, for i, j = 1, …, 10. The longitudinal predictors were observed intermittently at time points 

specified below.

In the first set of simulations, the longitudinal predictors W(·) were measured at fixed 

landmark time points tk = k for k = 1, …, K. The longitudinal predictors W(t) = (W1(t), …, 

W10(t)) were generated from Wi(t) = aiF(bit)/t, i = 1, …, 10, where ai and bi are independent 

standard uniform random variables and F(x) = 1 − exp(−x2). The probability in (1) can be 

expressed as P(T ≥ tk + t | T ≥ tk, W(t1), …, W(tk), Z) for 0 < t < tk+1 − tk, k ≥ 1, and P(T ≥ t 
| Z) for 0 < t < t1. For k ≥ 1, we assume the hazard function of T on (tk, tk+1) depends on the 

history of W(·) up to t only through its value at tk. For t ∈ (tk, tk+1) and k ≥ 0, we consider 

the following hazard functions for T,

(I) λ t ∣ ℋW (t), Z = t2exp −5 + ∑j = 1
10 αkjW j tk + ∑j = 1

10 βkjW j tk Zj + ∑j = 1
3 Zj

2 , αkj = βkj 

= 2I(k = 1) + 4I(k ≥ 2) for 1 ≤ j ≤ 3, and αkj = βkj = 0 for 4 ≤ j ≤ 10;

(II) λ t ∣ ℋW (t), Z = 0.1t2 + exp −5 + ∑j = 1
10 αkjW j tk + ∑j = 1

10 βkjW j tk Zj + ∑j = 1
3 Zj

2 , αkj 

= βkj = I(k = 1) + 2I(k ≥ 2) for 1 ≤ j ≤ 3, and αkj = βkj = 0 for 4 ≤ j ≤ 10.

The closed-form expressions of the true landmark survival probabilities under Models 

(I) and (II) are given in the Supplementary Material. When evaluating the prediction 

performance of different approaches, we focus on the landmark probability at t2 = 2.

In the second set of simulations, we consider the case where both an intermediate event 

and longitudinal markers are present. Specifically, we generated the event times from 

irreversible multi-state models with three states: healthy, diseased, and death. We assume 

that all subjects started in the healthy state, disease onset is an intermediate event, and death 

is the event of interest. We generated the time to the first event, denoted by D, from a 

uniform distribution on [0, 5]. Define the disease indicator, Π, where Π = 1 indicates the 

subject moves from the healthy state to the disease state at time D, and Π = 0 indicates the 

subject moves from the healthy state to death at time D. The disease indicator was obtained 

via a logistic regression model, logitP (Π = 1 ∣ Z, W (D)) = ∑j = 1
3 W i(D) + ∑j = 1

3 Zj + γ, where 

γ is a frailty variable following a gamma distribution with mean 1 and variance 0.5, W(t) 
= (W1(t), …, W10(t)) were generated from Wj(t) = aj{1 − exp(−0.04t2)}, and aj follows a 

uniform distribution on [−1, 1] for j = 1, …, 10. Given a subject had developed the disease at 

time D, i.e., Π = 1, the residual survival time, R, was generated from the following models,

(III) log R = − 5 + ∑j = 1
3 W j(D) + ∑j = 1

3 Zj
2 + ∑j = 1

3 W j(D)Zj + log(1 + D) + γ + ϵ, where ϵ 
is a standard normal random variable;
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(IV) log R = − 5 + ∑j = 1
3 W j(D) + ∑j = 1

3 Zj
2 + ∑j = 1

3 W j(D)Zj + log(1 + D) + γ + I(Z1 > 0)ϵ1
+ I(Z1 ≤ 0)ϵ2

, where ϵ1 and ϵ2 are independent normal random variables with variances 1 and 

0.25, respectively;

(V) The hazard function of R is 

t2exp −5 + ∑j = 1
3 2I(1 ≤ D < 2) + 4I(D ≥ 2) W j(D) + W j(D)Zj + Zj

2 .

When Π = 1, the time to death is T = D + R, and the time to the intermediate event is U = 

D; when Π = 0, the time to death is T = D and the intermediate event does not occur. Under 

Models (III)-(V), we consider the following three scenarios depending on how the landmark 

time and the longitudinal markers are observed:

A. The landmark is the intermediate event, i.e., TL = U, and W(·) is observed 

intermittently at tk = k, k = 1, …, 5. The target probability in (1) is

P T ≥ U + t ∣ T ≥ U, U, W t1, U , …, W tK, U , Z

B. The landmark time is fixed at TL = a, and W(·) is observed at the intermediate 

event. The target probability is

P (T − a ≥ t ∣ T ≥ a, U, W (U), Z), U ≤ a,
P (T − a ≥ t ∣ T ≥ a, U > a, Z), U > a .

C. The landmark is the intermediate event, and W(·) is observed at the intermediate 

event. The target probability is P(T ≥ U + t | T ≥ U, U, W(U), Z).

Scenario (A) is motivated by the CFFPR data, where the longitudinal marker is regularly 

monitored. Scenarios (B) and (C) are motivated by applications where markers are observed 

when a disease is diagnosed. In Scenario (B), we set a = 2. Due to the complicated 

relationship between event times and longitudinal markers, deriving the closed-form 

expression of the true probability under Models (III)-(V) is challenging. We outline the 

the Monte Carlo method used to approximate the true probabilities in the Supplementary 

Material.

For all scenarios, the censoring time was generated from an independent exponential 

distribution with rate c, where c was chosen to achieve either a 20% or 40% rate of 

censoring at the baseline. We simulated 500 training datasets with sample sizes of 200 

and 400 at baseline. The results for large sample sizes (n = 5000) are included in the 

Supplementary Material. The trees were constructed with a minimum terminal node size 

of 15. When a single tree was used for prediction, the size of the tree was determined by 

split-complexity pruning via ten-fold cross-validation. To grow the trees in the ensemble 

method, we randomly selected p  variables at each splitting step and did not prune the 

trees. We applied the log-rank splitting rule in the ensemble method in order to compare the 

martingale-based ensemble approach with the default ensemble approach in random survival 

forests. Each fitted model was evaluated on independent test data with 500 observations. 

The evaluating criteria were the integrated mean absolute error (IMAE), the integrated mean 

squared error (IMSE), the integrated Brier score (IBS), and the integrated concordance over 

Sun et al. Page 13

Ann Appl Stat. Author manuscript; available in PMC 2023 June 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[0, t0], where t0 is set to be approximately the 90% quantile of T − TL. The integrated 

concordance was defined in Section 4, and other evaluating criteria are defined as follows:

IMAE = ∑
i = 1

500 ∫
0

t0
S t ∣ TLi

0 , Zi
0, ℋi

0 TLi
0 − S t ∣ TLi

0 , Zi
0, ℋi

0 TLi
0 dt/500,

IMSE = ∑
i = 1

500 ∫
0

t0
S t ∣ TLi

0 , Zi
0, ℋi

0 TLi
0 − S t ∣ TLi

0 , Zi
0, ℋi

0 TLi
0 2dt/500,

IBS = ∑
i = 1

500 ∫
0

t0
S t ∣ TLi

0 , Zi
0, ℋi

0 TLi
0 − I T i

0 − TLi
0 ≥ t 2dt/500,

where S(t | TL, Z, ℋ(TL)) = P(T − TL ≥ t | T ≥ TL, TL, Z, ℋ(TL)) is the target survival 

probability, and the superscript 0 is used to denote the test data.

For comparison, we applied the conventional random survival forest implemented in the 

R package ranger (Wright and Ziegler, 2017) and the simple landmark Cox model in all 

scenarios; we also applied the two-stage landmark approach in Models (I) and (II). We used 

the proposed data preprocessing procedure to prepare the predictors for the conventional 

random survival forest but calculated the predicted survival probabilities by default (i.e., 

averaging the cumulative hazard predictions). Under Models (I) and (II), the predictors in 

the simple landmark Cox model are {W(t1), …, W(tk), Z}. Under Models (III)-(V), the 

predictors in the simple landmark Cox model are {U, Z, W(tk)I(tk ≤ U), I(tk > U); k ≥ 1}, 

{Z, UI(U ≤ a), W(U)I(U ≤ a), I(a > U)}, and {U, Z, W(U)} in sub-scenarios (A), (B), and 

(C), respectively. For the two-stage landmark approach, we fit separate linear mixed models 

for all the variables in W(·): each model includes a time variable and a random intercept, and 

were estimated using repeated measurements from subjects who are at-risk at the landmark 

time. The predictors of the landmark Cox model then include the BLUPs of random effects 

and Z.

The simulation results are summarized in Tables 2 and 3, in which the proposed ensemble 

method outperforms the others based on the four evaluation criteria we considered. As 

expected, when the sample size increases from 200 to 400, the IMAEs, the IMSEs, and 

the IBSs of the proposed methods decrease, while the integrated concordance increases. 

The conventional random survival forest approach performs similarly to the proposed 

ensemble method when n = 200 but loses its edge as the sample size increases. On the 

other hand, the simple landmark Cox model and the two-stage landmark approach yield 

similar results under Model (I), but the former yields better results under Model (II). When 

comparing the tree models with the Cox models, we observe that a small IMSE does not 

necessarily accompany by a large integrated concordance. We conjecture this is because the 

concordance measure only depends on the order of the predicted survival probability and is 
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less sensitive in terms of risk calibration. In summary, the proposed ensemble method has 

strong performances and serves as an appealing tool for dynamic risk prediction.

7. Application to the Cystic Fibrosis Foundation Patient Registry Data

Understanding the risk factors associated with the progressive loss of lung function is 

crucial in managing CF. The risk for lung disease depends on patient characteristics, and 

certain patient groups, such as Hispanic patients, are at increased risk of severe disease 

for reasons not yet known (McGarry et al., 2019). Our goal is to build prediction models 

for the development of moderate airflow limitation, defined as the first time that ppFEV1 

drops below 80% in CFPPR. Our analysis focused on 5,398 pediatric CF patients who were 

diagnosed before age one between 2008 and 2013; among them, 419 were Hispanic. The 

data were subjected to right-censoring due to loss of follow-up or administrative censoring. 

A total of 4,507 failure events were observed with a median follow-up time of 7.71 years.

The rich information in the CFPPR data renders the possibility of a comprehensive 

evaluation of important risk factors. We considered baseline predictors including gender, 

ethnicity, maternal education status (≥16 years of education vs. else), insurance status, 

geographic location (West, Midwest, Northeast, and South), and mutation class (severe, 

mild, and unknown). Since baseline factors may have limited predictability, we further 

included repeated measurements and intermediate events as predictors. The longitudinal 

measurements, ppFEV1, percent predicted forced vital capacity (ppFVC), weight, and 

height, were assessed regularly throughout the study and were annualized at integer ages 

via last observation carried forward. The intermediate events include different subtypes 

of PA (initial acquisition, mucoid, chronic, multidrug-resistant), methicillin-sensitive 

staphylococcus aureus (MSSA), methicillin-resistant staphylococcus aureus (MRSA), as 

well as the diagnoses of CF-related diabetes (CFRD) and pancreatic insufficiency.

For landmark prediction, we considered the following fixed and random landmark times:

(LM1) The landmark time is age 7, with the target prediction interval [7, 22].

(LM2) The landmark time is age 12, with the target prediction interval [12, 22].

(LM3) The landmark time is the acquisition of chronic Pseudomonas aeruginosa 
(cPA), and the target prediction interval is from the time of acquiring cPA to age 22.

The fixed landmark ages 7 and 12 correspond to middle childhood and preadolescence. The 

random landmark event cPA was considered because patients with cPA are more likely to 

develop increased inflammation, leading to an accelerated loss in lung function (Kamata et 

al., 2017). The median time to cPA in our dataset was 15.5 years. While PA is a frequent 

pathogen in cystic fibrosis, early PA is eradicated in the majority of patients through inhaled 

and intravenous antibiotics (Döring et al., 2004; Heltshe et al., 2018). When PA is not 

eradicated after initial PA, it converts to chronic PA. Since initial PA is frequently eradicated 

and does not have the long-term impact on pulmonary function, we chose the landmark time 

of cPA (Harun et al., 2016). A model using initial PA as the landmark is reported in the 

Supplementary Material. To perform risk prediction, we used Model (LM1) to obtain the 

future risk for a patient who is event-free at age 7. An updated prediction can be carried 
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out using Model (LM2) if the patient remains event-free at age 12. Upon converting to 

cPA, the predicted risk can be updated using Model (LM3). Although landmark prediction 

models can be constructed at multiple time points, we suggest practitioners focusing on the 

predicted probabilities given by the landmark model that is most close in time. To illustrate 

the event history and landmark times, we show the occurrence of PA during the follow-up 

period for a random sample of 50 patients in the Supplementary Material. At each landmark 

time, the exact timing of an intermediate event is available only if it has occurred before the 

landmark time.

The data were partitioned into a training set (60%) and a test set (40%). The landmark 

prediction models were built using the training data and were evaluated on the test data 

via the proposed concordance measure. Results from the simple landmark Cox model and 

the two-stage approach were also reported for comparison. Similar to the conventional 

landmark prediction models, the Cox models were constructed using subjects who remained 

event-free and uncensored at each landmark time. In the Cox models, the jth partially 

observed intermediate events was incorporated via two predictors, UjI(Uj ≤ TL) and I(Uj > 

TL). In the simple landmark Cox model, the partially observed repeated measurements at tk 

were expressed using W(tk)I(tk ≤ TL) and I(tk > TL) under Model (LM3). The models were 

built in the way described in the simulation section.

The concordance measures are summarized in Table 4. For landmark prediction at ages 

7 and 12, we reported the average CONt at 50 equally spaced time points on the target 

prediction intervals. For the prediction at the landmark age of 12, both Models (LM1) and 

(LM2) can be applied: (LM1) used history up to age 7 while (LM2) used history up to 

age 12. As expected, incorporating additional information between ages 7 and 12 results in 

an increase of average concordance from 0.711 to 0.739 in our ensemble model. For the 

landmark model at cPA, we used the concordance at a time horizon of 5 years after cPA as 

the evaluation criterion. Since we focus on the risk prior to age 22, predicting the 5-year risk 

for individuals who acquired the chronic form of PA after age 17 is not feasible. Therefore, 

the concordance was evaluated in the subsample of subjects who developed cPA before age 

17. The ensemble method yielded better performances compared to its competitors.

In an attempt to identify important predictors in the ensemble models, we computed the 

permutation variable importance with 100 permutations. Under the fixed landmark time 

models, we permuted all of the repeated measurements of a marker simultaneously to 

evaluate the overall impact of the longitudinal marker. The results of the permutation 

variable importance are summarized in Figure 3, where ppFEV1, ppFVC, weight, and height 

are identified as the top four important predictors for both landmark ages 7 and 12 (Figures 

3a and 3b). Following them, intermediate events related to PA and staphylococcus aureus are 

moderately important. We note that mucoid PA and MSSA became more important at age 

12 when compared to age 7. This could be due to the fact that these intermediate events are 

less common before age 7. When using cPA as the landmark, the repeated measurements 

after the acquisition of cPA were not used in prediction, and thus the number of observed 

repeated measurements varied across subjects. Unlike baseline variables and intermediate 

events of which the permutations were performed among subjects who experienced cPA, the 

permutation of a marker at a specific time point (e.g., age 7) was performed among subjects 
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who experienced cPA after the time point. To this end, we plot the variable importance for 

predictors at different ages separately, so that the variable importance measures in each plot 

are based on permuting the same set of subjects. Figure 4a shows the importance of baseline 

variables and intermediate events. The timing of cPA plays an important role in predicting 

future event risk. We note that baseline factors such as ethnicity have a relatively low 

variable importance. However, this does not mean that ethnicity does not affect the risk of 

lung function decline. We conjecture that the effect of ethnicity was predominantly mediated 

through spirometry measurements. Therefore, one should be cautious when interpreting 

the variable importance. When applying the proposed method in health disparity research, 

one can further build separate models for Hispanic and non-Hispanic patients. Additional 

analyses in different ethnic groups are included in the Supplementary Material.

Our models identify repeated measurements of weight and height as important variables 

in landmark prediction. To provide more insight into how historical weight measurements 

affect future risk in our ensemble model, we present the predicted event-free probabilities 

for hypothetical patients with different weight trajectories in Figure 5. Specifically, we 

consider Hispanic and non-Hispanic male patients whose weights were in the 10th, 50th, 

and 90th weight-for-age percentiles of the corresponding ethnicity-gender subgroup. For 

all six patients, the intermediate event times were fixed at the median derived from the 

Kaplan-Meier estimates, while categorical predictors and continuous predictors were fixed 

at the reference levels and mean values, respectively. At the landmark age 7, patients with 

the 10th percentile weight trajectories had the highest predicted risk, followed by patients 

with 90th percentile and those with 50th percentile weight trajectories (Figure 5a). At the 

landmark age 12, the predicted risk in patients with 10th percentile weight remains the 

highest, followed by patients with 50th percentile and those with 90th percentile weight 

trajectories (Figure 5b). A possible explanation for the predicted curves of the 50th and 90th 

weight percentiles to flip between landmark age 7 and 12 is a higher degree of survivor 

bias at the later landmark age; in other words, the event-free individuals at landmark age 

12 tended to have better lung function than those at landmark age 7. So if overweight is 

associated with a higher risk of lung function decline, the 90th percentile patients are more 

likely to fail before age 12. As a result, we have a group of healthier overweight subjects at 

the landmark age 12, and thus their risk beyond age 12 can be lower than individuals with 

50th percentile weight. As for underweight individuals, the degree of selection bias may not 

be large enough to compensate for the poor lung function and thus remains the highest risk 

group at landmark age 12. To summarize, the landmark prediction models built at age 7 and 

age 12 are for different survivor populations, and thus can not be directly compared.

8. Discussion

In this paper, we proposed a unified framework for tree-based risk prediction with updated 

information. Compared to semiparametric methods, our methods can handle a large, 

growing number of predictors over time and do not impose strong model assumptions. 

Furthermore, the landmark times at which a prediction is performed are allowed to 

be subject-specific and defined by intermediate clinical events. Notably, our ensemble 

procedure averages the unbiased martingale estimation equations instead of survival 

probabilities and avoids the potential bias arising due to small terminal node sizes.
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Our discussion has focused on the case where the time-dependent variables W(·) are 

observed at fixed time points t1, …, tK. The proposed method can also be applied to the case 

where repeated measurements are collected at irregular time points, such as hospitalizations. 

When building prediction models, one can consider using up to K repeated measurements 

as predictors, where K is a fixed integer. Denote by V1 < V2 < ⋯ < VK the potential 

observation times of W(·). At time t, the available information can be expressed using X(t) = 

{W(V1, t), …, W(VK, t), V1(t), …, VK(t)}, where W(Vk, t) = W(Vk) and Vk(t) = Vk if Vk ≤ 

t, while W(Vk, t) = NAq and Vk(t) = t+ otherwise. In other words, the random measurement 

times V1, ⋯ , VK are treated as intermediate event times. In this way, our framework can 

incorporate irregularly observed covariate information.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig 1: 
Illustration of fixed and random landmark times.  marks the landmark time point;  marks 

the available information at the landmark time;  marks the unavailable information at the 

landmark time;  marks the target prediction interval.
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Fig 2: 
Illustration of observed data and preprocessed data from three subjects at fixed and random 

landmark times. At each landmark time TL, only subjects with T ≥ TL (subjects 1 and 2) are 

of interest. For each predictor that can take the value NA (e.g., W(t1, TL)), we create two 

features that take extreme values M and −M if the predictor is not observed. For partially 

observed intermediate events (e.g., U1(TL)), we first divide the event time by TL and replace 

the value 1+ with M. After preprocessing, zero-variance features and duplicate features can 

be removed before running the tree algorithm.
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Fig 3: 
The permutation variable importance in the CFFPR data analysis, when the landmark times 

are ages 7 and 12. The boxplots show the decreases in OOB concordances from the 100 

permutations and are ranked in descending order according to the mean value.
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Fig 4: 
The permutation variable importance in the CFFPR data analysis, when the landmark time is 

cPA. The boxplots show the decreases in OOB concordances from the 100 permutations and 

are ranked in descending order according to the mean value.
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Fig 5: 
Survival predictions for patients in different weight groups. Curves on the left show the 

repeated weight measurements before the landmark time. Curves on the right show the 

survival predictions over the interval of interests for the corresponding groups. The weight 

groups were chosen by the percentiles and ethnicity, : 10th percentile, non-Hispanic; 

: 50th percentile, non-Hispanic; : 90th percentile, non-Hispanic; : 10th 

percentile, Hispanic; : 50th percentile, Hispanic; : 90th percentile, Hispanic.
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Table 1

The data preprocessing and risk prediction algorithm

Ann Appl Stat. Author manuscript; available in PMC 2023 June 05.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Sun et al. Page 27

Table 2

Summaries of integrated mean absolute error (IMAE) (×1000), integrated mean squared error (IMSE) 

(×1000), integrated Brier score (IBS) (×1000), and integrated concordance (ICON) (×1000) of different 

methods in the first set of simulations.

IMAE IMSE IBS ICON

n cen Tr E1 E2 C1 C2 Tr E1 E2 C1 C2 Tr E1 E2 C1 C2 Tr E1 E2 C1 C2

Scenario (I)

200 20% 213 196 219 220 216 74 64 71 91 91 192 183 196 208 208 508 642 634 572 624

40% 215 202 222 236 239 76 68 74 106 112 185 177 188 212 217 509 621 615 562 607

400 20% 201 172 207 204 197 65 48 63 74 66 181 165 188 192 184 515 694 687 593 655

40% 205 178 212 209 206 70 51 66 80 73 176 160 180 188 181 526 675 666 586 647

Scenario (II)

200 20% 73 76 83 139 175 13 13 14 38 58 172 172 182 196 214 531 537 537 533 534

40% 76 79 86 192 236 13 14 15 69 98 161 161 171 208 235 530 538 536 536 536

400 20% 64 59 81 91 114 11 10 13 19 26 164 160 172 177 184 530 547 546 539 541

40% 62 64 83 113 145 10 11 14 26 41 156 150 159 172 184 531 544 542 536 538

cen is the censoring percentage; Tr: the proposed tree; E1: the proposed survival tree ensemble; E2: the original random survival forest; C1: the 
landmark Cox model; C2: the two stages landmark Cox model.
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Table 3

Summaries of integrated mean absolute error (IMAE) (×1000), integrated mean squared error (IMSE) 

(×1000), integrated Brier score (IBS) (×1000), and integrated concordance (ICON) (×1000) of different 

methods in the second set of simulations.

IMAE IMSE IBS ICON

n cen Tr E1 E2 C1 Tr E1 E2 C1 Tr E1 E2 C1 Tr E1 E2 C1

Scenario (III-A)

200 20% 192 167 178 310 84 72 79 237 98 79 86 260 816 902 900 531

40% 266 194 198 405 114 85 93 319 140 81 87 323 610 906 906 530

400 20% 173 154 169 255 68 61 69 185 70 67 78 210 904 909 909 544

40% 204 178 191 323 85 76 84 239 74 64 76 241 882 917 915 523

Scenario (III-B)

200 20% 234 216 219 249 94 81 89 122 143 132 133 161 544 713 700 614

40% 245 228 215 268 99 83 87 138 144 133 133 169 545 652 645 584

400 20% 212 181 192 213 84 65 70 92 132 116 126 133 572 764 760 646

40% 224 196 193 226 92 67 68 101 135 117 127 136 584 708 703 619

Scenario (III-C)

200 20% 236 214 228 259 108 93 97 125 150 138 138 168 524 822 713 643

40% 253 233 256 292 121 106 110 150 160 147 147 187 522 783 678 623

400 20% 232 187 206 236 95 66 85 98 138 113 128 143 550 901 810 688

40% 247 204 233 258 106 77 94 114 146 122 134 153 574 872 777 669

Scenario (IV-A)

200 20% 183 163 170 311 80 69 69 238 94 80 81 261 844 902 876 519

40% 248 191 195 411 109 83 81 324 127 81 83 329 680 906 871 526

400 20% 168 150 165 258 74 59 66 187 79 67 78 209 906 909 879 510

40% 197 173 187 325 90 72 79 241 83 64 76 240 885 915 876 510

Scenario (IV-B)

200 20% 199 180 181 206 73 62 63 91 142 132 134 161 543 717 706 615

40% 198 178 177 216 72 59 60 98 144 133 133 168 549 655 648 585

400 20% 184 153 156 190 65 49 53 72 130 115 125 132 581 770 770 647

40% 186 152 157 188 66 46 50 72 134 117 127 135 580 712 707 620

Scenario (IV-C)

200 20% 269 245 243 263 114 98 103 130 150 136 137 167 520 828 833 649

40% 299 276 275 297 128 112 117 155 159 146 146 185 522 789 789 631

400 20% 252 209 212 244 101 81 90 114 147 111 125 151 552 904 897 694

40% 278 239 240 274 114 93 100 131 155 120 132 162 571 878 871 674

Scenario (V-A)

200 20% 212 185 190 349 89 75 78 311 133 112 115 333 688 832 824 534

40% 229 208 215 368 103 90 92 350 115 100 103 316 707 815 820 526

400 20% 193 166 179 377 75 66 69 310 107 105 105 362 828 859 843 534

40% 220 190 206 427 91 83 84 365 95 92 93 347 810 847 842 539

Scenario (V-B)
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IMAE IMSE IBS ICON

n cen Tr E1 E2 C1 Tr E1 E2 C1 Tr E1 E2 C1 Tr E1 E2 C1

200 20% 180 158 154 188 54 42 42 70 161 150 151 175 564 672 677 572

40% 189 164 164 200 62 46 47 83 147 135 138 164 569 650 651 566

400 20% 168 136 141 173 53 31 35 55 160 135 143 161 566 715 710 599

40% 177 141 149 178 63 33 39 62 147 120 128 146 604 691 685 589

Scenario (V-C)

200 20% 234 208 207 239 89 71 71 108 157 140 141 174 527 747 733 580

40% 242 222 223 257 101 80 81 128 145 129 130 167 549 712 694 568

400 20% 219 179 181 226 83 54 55 91 151 125 127 159 581 827 812 609

40% 219 192 194 237 90 61 62 101 137 114 112 146 631 808 797 595

cen is the censoring percentage; Tr: the proposed tree; E1: the proposed survival tree ensemble; E2: the original random survival forest; C1: the 
landmark Cox model.
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Table 4

Concordance measures evaluated using the test data in the CFFPR analysis. The column Landmark gives the 

left bound of the target prediction interval. The integrated concordance is reported for Models (LM1) and 

(LM2) over the interval where the risk prediction is performed, where CON[a, b] = ∑j = 1
50 CONtj/50 and tj = a + (b 

− a)j/50. The concordance at year 5 after cPA is reported for Model (LM3).

Landmark Measure Model Tree Ensemble Cox-1 Cox-2

Age 7 CON[0, 15] LM1 0.654 0.748 0.695 0.699

Age 12 CON[0, 10] LM2 0.667 0.739 0.674 0.674

Age 12 CON[0, 10] LM1 0.620 0.711 0.611 0.669

cPA CON5 LM3 0.763 0.813 0.788 -

Note: Cox-1 stands for the simple one-stage landmark Cox models, and Cox-2 stands for the two-stage landmark Cox models.
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