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ABSTRACT OF THE DISSERTATION

Leveraging the Power of Crowds: Automated Test Report Processing for
The Maintenance of Mobile Applications

By

Yang Feng

Doctor of Philosophy in Software Engineering

University of California, Irvine, 2019

Professor James A. Jones, Chair

Crowdsourcing is an emerging distributed problem-solving model combining human and ma-

chine computation. It collects intelligence and knowledge from a large and diverse workforce

to complete complex tasks. In the software engineering domain, crowdsourced techniques

have been adopted to facilitate various tasks, such as design, testing, debugging, devel-

opment, and so on. Specifically, in crowdsourced testing, crowdsourced workers are given

testing tasks to perform and submit their feedback in the form of test reports. One of the

key advantages of crowdsourced testing is that it is capable of providing engineers software

engineers with domain knowledge and feedback from a large number of real users. Based

on diverse software and hardware settings of these users, engineers can bugs that are not

caught by traditional quality assurance techniques. Such benefits are particularly ideal for

mobile application testing, which needs rapid development-and-deployment iterations and

support diverse execution environments. However, crowdsourced testing naturally generates

an overwhelming number of crowdsourced test reports, and inspecting such a large number

of reports becomes a time-consuming yet inevitable task.

This dissertation presents a series of techniques, tools and experiments to assist in crowd-

sourced report processing. These techniques are designed for improving this task in multiple

xiii



aspects: 1. prioritizing crowdsourced report to assist engineers in finding as many unique

bugs as possible, and as quickly as possible; 2. grouping crowdsourced report to assist en-

gineers in identifying the representative ones in a short time; 3. summarizing the duplicate

reports to provide engineers with a concise and accurate understanding of a group of reports;

In the first step, I present a text-analysis-based technique to prioritize test reports for manual

inspection. This technique leverages two key strategies: (1) a diversity strategy to help

developers inspect a wide variety of test reports and to avoid duplicates and wasted effort

on falsely classified faulty behavior, and (2) a risk-assessment strategy to help developers

identify test reports that may be more likely to be fault-revealing based on past observations.

Together, these two strategies form our technique to prioritize test reports in crowdsourced

testing.

Moreover, in the mobile testing domain, test reports often consist of more screenshots and

shorter descriptive text, and thus text-analysis-based techniques may be ineffective or in-

applicable. The shortage and ambiguity of natural-language text information and the well-

defined screenshots of activity views within mobile applications motivate me to propose a

novel technique based on using image understanding for multi-objective test-report prioriti-

zation. This technique employs the Spatial Pyramid Matching (SPM) technique to measure

the similarity of the screenshots, and apply the natural-language processing technique to

measure the distance between the text of test reports.

Next, I design and implement CTRAS: a novel approach to leveraging duplicates to en-

rich the content of bug descriptions and improve the efficiency of inspecting these reports.

CTRAS is capable of automatically aggregating duplicates based on both textual informa-

tion and screenshots, and further summarizes the duplicate test reports into a comprehensive

and comprehensible report.

I validate all of these techniques on industrial data by collaborating with several compa-

xiv



nies. The results show my techniques can improve both the efficiency and effectiveness of

crowdsourced test report processing. Also, I suggest settings for different usage scenarios

and discuss future research directions.
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Chapter 1

Introduction

Crowdsourced techniques have recently gained wide popularity in the software-engineering

research domain [81]. The power of crowds has been widely employed to assist various

software engineering tasks, such as design [65, 89], development [67, 66], testing [143, 74]

and so on. By employing a large population of crowd workers in a short period, crowdsourced

techniques are capable of simulating various real usage scenarios and providing feedback of

real users [81].

Such benefits are particularly ideal for software testing. Crowdsourced testing (e.g., beta

testing) provides validation data for a large population of varying users, hardware, and oper-

ating systems and versions. In addition, crowdsourced mobile testing can provide developers

with real users’ feedback, new feature requests, and user-experience information, which can

be difficult to obtain through conventional software testing practices. For these reasons,

several successful crowdsourcing mobile testing platforms (such as uTest [132], Testin [125],

Baidu Crowd Test [8], Alibaba Crowd Test [1], MoocTest [86] and TestIO [126]) have emerged

in the past five years.

Typically, in crowdsourced testing, crowdsourced workers provide testing results for devel-
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opers in the form of test reports, which may consist of screenshots and textual content. Due

to the inherent nature of crowdsourced techniques, which usually involves a large number of

users, the number of test reports can be great and the resulting task of inspecting those test

reports can be quite time-consuming and expensive. As such, it is natural for developers to

seek methods to assist in processing crowdsourced test reports automatically.

In the past decades, to improve the efficiency of processing reports, software-engineering re-

searchers have presented many techniques. These work can be classified into two categories

based on information they employed to measure the similarity between reports. The first

category focuses on natural language information and leverages text-analysis techniques,

such as language modeling [109, 120], text mining [39], topic modeling [98], and informa-

tion retrieval [91, 27], to identify similar reports. Many later works in this direction tried

to enhance the accuracy of similar report detection based on metrics on textual similar-

ity [118, 69], identification strategies [119, 128, 46], or extra information [135]. On the other

hand, as many software applications, e.g., Microsoft Windows, Firefox, and Internet Ex-

plorer, have provided features to automatically record execution traces for field bugs and

send reports to their producers, it is natural to use such execution information to identify

similar reports. Execution traces mainly contain dynamic behaviors of the program, like

stack trace, branch, or statement coverage. Similar failing traces imply the same bug [73].

Based on execution traces, researchers have designed a number of models with supervised or

unsupervised learning techniques e.g., [26, 31, 32, 137, 30, 99]. These models can identify

failure reports with similar causes, and the classification results can be helpful for diagnosing

the frequency and severity of these reports.

Even though these works have significantly improved the efficiency of dealing with test re-

ports, they are often difficult to be applied to the specific domain of crowdsourced mobile

application testing. Crowdsourced workers often prefer to take a screenshot of the prob-

lematic activity view, which is relatively easy on most mobile devices, rather than type a
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long bug description, which is more difficult using the restricted small keyboard of most

mobile devices. Due to these factors, the textual information of crowdsourced mobile test

reports often lack sufficient details and accuracy, and execution traces are also difficult to

collect due to the limited processing capability, storage, battery power, and communication

of many mobile devices. While text-analysis-based methods become less effective because of

short and inaccurate text descriptions, automatically identifying information from screen-

shots becomes critical for developers to understand reports. Images are considered to be one

of the most essential and convenient communication carriers on the mobile platform [123].

Moreover, in comparison with desktop applications, screenshots of the mobile application

are often well-defined and describe the activity views. The resolutions, layouts, and even

features of these images are limited in a given scope, unlike desktop applications, where

windows can often be reshaped and occluded.

In this thesis, I present the following statement:

Thesis Statement: The thesis of this research is that

the crowdsourced test report processing technique can be

partially automated in a way that is capable of saving

bug identificaiton cost, improving the duplicate detection

accuracy, and supporting the test report comprehension.

Specifically, in this thesis, I evaluate the efficiency of bug identification based on the Average

Percentage of Faults Detected (APFD) metric, measure the duplicate detection accuracy

based on the V-measure scores, and assess the test report comprehension by conducting

user study. To validate my dissertation statement, I have been investigating the following

questions:

• How to organize test reports into proper order for software engineers to diagnose when
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these reports are rich in textual descriptions?

• How to organize test reports into proper order for software engineers to diagnose when

these reports are short of textual descriptions and rich in screenshots?

• How to summarize the critical information from a group of test reports for software

engineers to diagnose, when these reports contain both textual descriptions and screen-

shots?

• How to leverage duplicates to enrich the content of bug descriptions and improve the

efficiency of inspecting test report?

To answer the questions mentioned above, I have designed a systematical solution that

consists of fully and partially automated techniques. First, to dealing with the overwhelming

size of reports, I present a prioritization technique for crowdsourced mobile test reports. This

method can help testers to reveal as many faults as possible as early as possible; however,

it requires testers to inspect all reports. Because I observe that it is often impossible to

manually inspect all test reports in a limited time, I design an approach to aggregating

duplicates and summarizing them to enrich the content of bug descriptions. This aggregation

and summarization approach improves the comprehensibility of reports and saves the time

cost of testers in dealing with duplicates.

The primary techniques and studies presented in my dissertation are summarized as follows:

• Text-Analysis-Based Prioritization: I present a text-analysis-based technique to

prioritize crowdsourced test reports for use in crowdsourced testing. This technique is

built upon two prioritization strategies: the risk-assessment strategy (Risk) and the

diversity strategy (Div). The risk-assessment strategy is designed to dynamically select

the test report that has the highest probability of showing the new bug for inspection

in each iteration. The diversity strategy is designed to select the diversified test reports
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for inspection by maximizing the distances to already inspected test reports. For the

projects that contain rich texts, these techniques can reveal as many unique bugs as

possible and as quickly as possible.

• Image-Understanding-Based Prioritization: I employ the Spatial Pyramid Match-

ing (SPM) technique to measure the similarity of the screenshots and apply the natural-

language processing technique to measure the distance between the text of test reports.

I design a hybrid distance computation method to measure the distance between test

reports. Based on the hybrid distance, I prioritize the test reports for inspection using

a diversity-based approach, with the goal of assisting developers of finding as many

unique bugs as possible and as quickly as possible.

• Aggregation and Summarization: I propose a technique, named CTRAS, which

is capable of leveraging the information of duplicate test reports to assist develop-

ers in comprehending test reports. Different from the conventional bug/test-report-

processing techniques, instead of discouraging developers from submitting duplicates

and filtering them out, my technique aims at leveraging the additional information

provided by them, and summarizing both the textual and image information from the

grouped duplicates to a comprehensive and comprehensible report.

• Empirical Validation: I conduct an empirical study to investigate the performance

of crowdsourced test report clustering technique that leverages features of both the

textual descriptions and screenshots. This study is performed based on six indus-

trial projects that contain more than 1600 tests reports and 1400 screenshots. In this

study, I comprehensively analyze its performance regarding different parameter set-

tings. Based on the empirical results, I present guidance and suggestions for applying

the crowdsourced test report clustering technique under different scenarios.

The organization of this thesis. Chapter 2 presents the background of this disserta-
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tion. Chapter 3 presents a literature review on crowdsourced software testing and the recent

advancement in the research of test report processing techniques. Chapter 4 presents the

text-analysis-based prioritization technique; I validate this technique on three industrial

projects. Chapter 5 presents the image-understanding-based prioritization technique; I val-

idate this technique on six industrial projects. Chapter 6 introduces the crowdsourced test

report aggregation and summarization technique, namely CTRAS, and also includes the

design and implementation of the tool; I conduct Chapter 7 empirically investigates the ef-

fectiveness of image features in clustering crowdsourced test reports; Chapter 8 summarizes

the conclusion and contribution of this dissertation. In this chapter, I also explore future

research directions.
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Chapter 2

Background

2.1 Test and Bug Report Resolution

Software-maintenance activities are known to be generally expensive and challenging. One

of the most important maintenance tasks is bug-report resolution. However, current bug-

tracking systems such as Bugzilla, Mantis, the Google Code Issue Tracker, the GitHub

Issue Tracker, and commercial solutions such as JIRA rely mostly on unstructured natural-

language bug descriptions. These descriptions can be augmented with files uploaded by the

reporters (e.g., screenshots).

Although test descriptions and execution traces are currently used to characterize and an-

alyze test reports, how to involve screenshots remains unsolved. Specifically for mobile

crowdsourced testing, the reporters often prefer to provide only short text descriptions along

with necessary screenshots. In this situation, how to combine short text processing with

image processing is important for test-report prioritization.

Artificial-intelligence and computer-vision researchers created a class of analyses classified as
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image understanding, which extracts features from images and uses them for analysis. Within

the software-engineering research domain, image-understanding techniques have been used

in cross-browser issues for web applications. Cai et al. propose the VIPS algorithm[17],

which segments a web page’s screenshot into visual blocks to infer the hierarchy from the

visual layout, rather than from the DOM. Choudhary et al. proposed a tool called WEBD-

IFF to automatically identify cross-browser issues in web applications. Given a page to be

analyzed, the comparison is performed by combining a structural analysis of the information

in the page’s DOM and a visual analysis of the page’s appearance, obtained through screen

captures.

However, to date, there has been no work that addresses the use of screenshot images for

use with test reports, particularly for mobile test reports produced by crowd workers in

crowdsourced testing. Unfortunately, the crowd workers tend to describe bugs with a direct

screenshot and short descriptions rather than verbose and complex text descriptions. At the

same time, the developers are also interested in screenshots rather than inspecting the work-

ers’ long natural language descriptions. But, due the complexity of image understanding,

there is a paucity of study on automated processing of screenshots in crowdsourcing testing.

In this paper, I overcome the difficulties in understanding the screenshots by applying ad-

vanced image matching techniques.

2.2 Image Understanding

Image matching is an important problem in the area of computer vision. Matching images

of real world objects is particularly challenging as a matching algorithm must account for

factors such as scaling, lighting, and rotation. Fortunately, the images that I compare in

this work are screen captures of application views rendered by different devices by different
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workers for different apps. In this context, the above issues are ameliorated, and the main

problems are, for instance, the shifting of GUI elements or the fact that some elements are

not displayed at all.

A basic technique for comparing two images is to compare their histograms, where an image

histogram represents the distribution of the value of a particular feature in the image [13].

In particular, a color histogram of an image represents the distribution of colors in that

image (i.e., the number of pixels in the image whose color belongs in each of a fixed list of

color ranges, or “bins”). Obviously, if two images are the same, their color distributions will

also match. Although the converse is not true, and two different images can have the same

histogram, this issue is again not particularly relevant in our problem domain.

2.3 Mobile Crowdsourced Test Reports

In contrast to conventional bug repositories of desktop software applications, bug-report

repositories of mobile crowdsourced testing often have higher duplicate ratios, briefer text

descriptions, and richer screenshots [142].

High duplicate ratio. Crowdsourced testing is popular in mobile application testing be-

cause it enables developers to evaluate the performance of their software products under real

usage scenarios. However, in practice, crowd workers are often required to finish crowdsourc-

ing tasks in a given short time, and the number of completed tasks influences the rewards

for the crowd workers. As such, crowd workers are less apt to actively filter out duplicates,

and they are incentivized to submit as many reports as possible. These factors contribute

to crowdsourced testing to contain a higher duplicate ratio than conventional testing.

To illustrate this difference, I present the comparison of duplicate report ratio between 12

crowdsourced testing applications and reported data of Bhattacharya et al.’s[12] study for
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conventional bug reporting in Fig. 2.1. In this figure, the leftmost 25 blue bars represent the

duplicate ratio for conventional bug reporting systems, whereas the rightmost 12 orange bars

represent the duplicate ratio for crowdsourced testing. I notice that the duplicate ratio of

these 12 crowdsourced testing systems ranges from 27.1% to 65.8%, and it reaches 41.7% on

average. Compared with the test reports from conventional testing methods, which ranges

from 4.5% to 23.1% and the average stays around 12.0%.
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Figure 2.1: The duplicate bug report ratio of software applications

Short Text and Rich Screenshots. In addition, on almost all mobile devices, images have

played a crucial role in sharing, expressing, and exchanging information. End users can easily

take a screenshot and the crowd workers tend to describe bugs with a direct screenshot and

short descriptions rather than verbose and complex text descriptions, largely due to the ease

of taking screenshots and the relative difficulty in typing longer descriptions on mobile virtual

keyboards [142]. On mobile platforms, screenshots usually capture well-defined application

views, and do not suffer as many of the difficulties of desktop-application screenshots, such

as varying resolutions, scaling, occlusion, and window sizes. In this context, the above issues

are ameliorated, and the main problems are the prompting of the error-message dialogs,

shifting of GUI elements or the fact that some elements are not displayed at all.
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2.4 Motivation

The aforementioned features of mobile crowdsourced test reports, i.e., high duplicate ratio,

short text descriptions and rich screenshots, motivate us to propose an approach to lever-

aging both the text and image information from duplicate reports to enhance developers’

understanding of bugs.

Moreover, a common and conventional belief in software-development practice is that the

reporting of duplicate test reports is a bad practice and therefore considered harmful. The

long and frequent arguments against duplicates are that they strain issue-tracking systems

and waste efforts of software maintainers. Thus, based on this argument, prior researchers

have proposed many techniques to assist developers in avoiding wasting time on duplicates.

However, there are also arguments to the contrary. Zimmerman et al. [144] claim that the

missing information, such as reproduction steps and environment settings, is one of the most

serious problems of test reports of open-source projects. They find that developers often

need to spend extra time to interact with reporters to identify the missing information and

gain enough understanding of the bug. Bettenburg et al. [11] present empirical evidence to

show that duplicates provide additional information for describing bugs and this information

is helpful for fault localization and fixing. These findings fit the situation of mobile crowd-

sourced testing, which has been widely adopted in the quality assurance of modern mobile

applications.

Crowdsourced testing involves three different related stakeholders [81]. Figure 2.2 shows the

practical procedure of crowdsourced testing.

Companies and organizations often play the role of requesters. They release testing tasks

and software under test on the crowdsourced testing platform. Also, they set up constraints

regarding testing resources, environments, and technical requirements. Based on these con-

straints, platforms can match proper crowd workers for these tasks, and conversely, crowd
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Figure 2.2: Procedure of Crowdsourced Testing

workers can also find tasks of interests. In recent years, many crowdsourcing platforms have

been built for software testing tasks. Table 2.1 gives an overview of some popular industrial

crowdsourced software testing platforms. By inspecting this table, I can observe the testing

targets of these platforms vary widely, including performance testing, security testing, func-

tional testing and usability testing, and some of these platforms provide the functionality to

facilitate the testing process and manage the test reports. They not only enable the commu-

nication between requesters and crowd workers but also significantly improve the efficiency

of each part of the whole process.

Even though these platforms lay the infrastructure for flourishing crowdsourced software

testing, some features of test reports bring challenges into the inspection procedure. Crowd-

sourced testing is widespread in mobile application testing because it enables developers to

evaluate the performance of their software products under real usage scenarios, which in-

cludes a diverse set of mobile devices and OS versions. However, in practice, crowd workers

are often required to finish crowdsourcing tasks in a given short time, and the number of
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Table 2.1: Popular Crowdsourcing Platforms

Name Site Testing Domain
uTest utest.com performance testing, security testing, test case

management, test case recording
Testin testin.cn functional testing, performance testing, intelligent

hardware testing
TestIO test.io functional testing, exploratory testing, wearables

testing, IoT testing
Testflight testflight.apple.com functional testing, usability testing, performance

testing
Bugcrowd bugcrowd.com security testing

Baidu Crowd Test test.baidu.com functional testing, usability testing, performance
testing, text&image annotation

Alibaba Crowd Test mqc.aliyun.com performance testing, compatibility testing, test
case recording

Tencent Crowd Test task.qq.com functional testing, usability testing, performance
testing

completed tasks influences the rewards for the crowd workers. As such, crowd workers are

less apt to filter out duplicates actively, and they are incentivized to submit as many reports

as possible. These factors contribute to crowdsourced testing to contain a higher duplicate

ratio than conventional testing [142].

Further, on almost all mobile devices, images have played a crucial role in sharing, expressing,

and exchanging information. Zhang et al.’s research [142] finds test reports of mobile appli-

cations contain much shorter text descriptions and more screenshots in comparison with the

test reports of desktop applications. For testing mobile applications, testers tend to describe

bugs with a direct screenshot and short descriptions rather than tedious and complicated

text descriptions, mainly due to the ease of taking screenshots and the relative difficulty

in typing longer descriptions on mobile virtual keyboards [142]. The shortage of the tex-

tual description hinders applying the text-analysis-based test-report-processing techniques

for mobile crowdsourced testing. While the different knowledge background and software

configurations of crowd workers make it difficult for developers to fully understand the tex-

tual content of test reports, compared with the text description, screenshots can objectively
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describe the operation steps and GUI exceptions, which makes the test reports more read-

able. These screenshots of mobile applications are usually well-defined application views,

and do not suffer as many of the difficulties of desktop application screenshots, such as vary-

ing resolutions, scaling, occlusion, and window sizes. In this context, the above issues are

ameliorated, and the main problems are the prompting of the error-message dialogs, shifting

of GUI elements or the fact that some elements are not displayed at all. These facts moti-

vate us to propose an automated technique to extract the information from the screenshot

of crowdsourced test reports of mobile applications to assist the procedure of test report

inspection for developers.
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Chapter 3

Literature Review

3.1 Crowdsourced Software Testing

Crowdsourcing is a distributed problem-solving and production-organizing model brought by

the Internet, which solves the problems through the integration of unknown people and ma-

chines on the Internet. Since the concept of crowdsourcing was firstly introduced in 2006 [49],

it has been successfully applied in the fields of human-computer interaction, database, nat-

ural language processing, machine learning, artificial intelligence, information retrieval, and

computer theory science. In software engineering, crowdsourcing techniques also have been

gradually applied in almost all aspects. Particularly in software testing, a large number of

online workers work together to complete test tasks, which can provide the efficient simu-

lation of real application scenarios, shortens test life cycles and relatively reduce the cost.

For these advantages, crowdsourced testing has received extensive attention from academia

and industry. Many researchers focus on developing methods and techniques for improving

crowdsourced testing. And meanwhile, many commercial crowdsourced testing platforms

have emerged.
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Some researchers have already summarized relevant studies of crowdsourcing from different

perspectives. This research includes (1) optimization for specific types of testing, such as

quality of experience (QoE) testing, usability testing, GUI testing; and (2) optimization

for the testing process, such as test case generation, program debugging and fixing. In this

chapter, I present a literature review for the research on crowdsourced testing in recent years.

3.1.1 Crowdsourcing for Software Testing Tasks

Quality of Experience Testing. Quality of experience (QoE) is used to measure the

delight or annoyance of using a product or service. Because the quality of experience is

difficult to be evaluated automatically, conventional QoE testing often needs to involve many

users and thus become costly and time-consuming. Therefore, crowdsourcing techniques are

firstly applied to QoE testing field and lead to many extensive and lasting research, such as

[23, 22, 136, 48, 47, 38, 36, 37].

To ease the crowdsourced QoE testing, several research groups have designed and imple-

mented frameworks and web-based platforms [23, 22, 136]. Chen et al. present a crowd-

sourceable QoE evaluation framework for multimedia content [23, 22]. Their framework

derives interval-scale scores that enable subsequent quantitative analysis and QoE provision-

ing. Wu et al. present an evaluation framework to evaluate crowdsourcing projects regarding

software quality, costs, diversity of solutions, and competitive nature in crowdsourcing [136].

This framework is designed based on a game theory model, which analyze the primary factors

in the crowdsourcing process.

On the other hand, because the performance of QoE testing is often influenced by many fac-

tors, such as user habits, geographical distribution, user expectations, device environments

and so on, plenty of research have been conducted to analyze these impacts and improve the

QoE testing process. To solve the inherent problems in crowdsourced QoE testing, Hossfeld
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et al. analyzed existing solutions. They have made a comprehensive design of the crowd-

sourcing competition and presented many suggestions on practices [48, 47]. Gardlo et al.

compared the MOS (mean opinion score) scores of the two identical HD videos performed

on the payment crowdsourcing platform (Microworkers.com) and non-payment crowdsourc-

ing platform to examine the impact of different crowdsourcing platforms on QoE testing

results [38]. The experimental results preliminarily proved the importance of distinguishing

different platforms. Based on this finding, Gardlo et al. developed an exemplary application

which is closely linked to the social network environment of Facebook [36, 37].

Usability Testing. Crowdsourced usability testing is also widely applied in mobile appli-

cation testing. Vast crowd workers are often required to complete usability testing tasks on

their own mobile devices.

To record more runtime information and user behaviors, several research groups have de-

signed and implemented toolkits. Nebeling et al. present a toolkit, namely CrowdStudy, to

provide full supports for crowdsourced usability testing of web sites [89]. This toolkit can

recruit crowd workers effectively. It is also capable of evaluating the usability of websites

under different conditions.

On the other hand, several early studies are conducted to compare the performance of con-

ventional lab testing and crowdsourced testing [74, 84]. Liu et al.’s study shows that crowd-

sourced usability testing makes it easier to obtain data from different backgrounds globally,

and these crowdsourcing testing tasks can be conducted in parallel and thus significantly

reduce the cost [74]. Their study also claims both the quantity and quality of feedback for

crowdsourced usability testing are slightly fewer than the conventional methods. However,

Meier et al.’s research presents an opposite result to Liu and his colleagues’ study [84]. Meier

et al. conducted crowdsourced usability testing on MTurk to evaluate web-based tools. They

find the testing results similar to the conventional lab testing methods.

17



GUI Testing. Modern software applications often provide user-friendly graphical user

interfaces(GUIs). GUIs ease the interaction between users and software applications, and

developers contribute plenty of code to implement them. The quality assurance of GUIs

is critical for the entire system’s safety, robustness, and usability. However, current GUI

testing are strongly depend on software developers to design and maintain scripts.

To address this problem, researchers design and implement crowdsourcing tools to improve

the GUI testing. Vliegendhart et al. deploy the under test software system into virtual

machines and embed them in the HIT (Human Intelligence Task) of Mechanical Turk plat-

form [133]. Crowd workers can access these virtual machines through browsers and complete

the GUI testing tasks online. Dolstra et al. discuss the bias of employing virtual machines

to assist crowdsourced software testing [28]. They notice that this virtual-machine-based

method may make the crowdsourced GUI testing results inaccurate. To ameliorate this

problem, they present a method to improve the design of crowdsourcing tasks and filter

crowd workers. Similarly, to investigate the quality of data collected online, Komarov et

al. conduct an empirical study on crowdsourced GUI testing on MTurk [62]. They compare

the data collected on MTurk with the lab testing results. Their study shows there is no

significant or substantial difference in the data collected under the two different settings.

These results prove that crowdsourced GUI testing is an effective GUI testing method.

3.1.2 Crowdsourcing for Testing Process

Test case generation. Test case generation is one of the essential steps in software testing.

To harvest test cases that can reflect the real usage scenarios, several research groups gamify

the testing tasks and outsourcing them to crowd workers. Gamification breaks the problems

like object mutations and complex constraint into smaller puzzles and then distributes them

to crowd workers. It can enhance the understandability of crowdsourced testing tasks, and
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improve both the number of crowd workers and the quality of the crowdsourced work [87]

Chen et al. [24] conducted a study that shows these small puzzles can be efficiently solved

by crowd workers in a short time while obtaining a higher code coverage rate than the

current automatic test case generation techniques, such as jCUTE [112], Randoop [92], and

Pex [129].

Also, crowdsourced data can help developers generate test cases to reproduce defects. Gómez

et al. propose a crowdsourcing-based method to support application developers to reproduce

context-related crashes faced by end-users automatically [41]. The method retrieves crowd-

sourced data from the users’ mobile devices, then identifies the crash mode in the execution

of the application, and finally generates a test case that can reproduce the crash.

On the other hand, the knowledge of crowds is also employed to solve oracle problems in

the test case generation process [10, 5]. Pastore et al. proposed CrowdOracles to organize

the behaviors of current programs into assertions and publish these assertions as testing

tasks on crowdsourced platforms, then crowd workers will evaluate the correctness of these

assertions [94]. The experiments prove that CrowdOracles can effectively alleviate Oracle

problems and advance the automation of software testing. But this method is highly depen-

dent on the clear and understandable design of crowdsourced testing tasks. Meanwhile, this

method also faces the problem of crowdsourced feedback quality [94].

Debugging. The knowledge of crowds is often employed to assist debugging open-source

projects. However, this practice requires crowds to devote plenty of time on comprehending

the legacy code and fixing the bug. To assist crowds in debugging code, Chen et al. proposed

the crowd debugging method, which is based on the QA information in the Stack Overflow

community [21]. This technique employs clone detection and matching technique to identify

potential locations of bugs in the source code. And then it recommends the suspicious files

and locations to crowds and collect their feedbacks online. Eventually, a bug report that
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contains information like the name of the source file, the potential range of bugs, and error

correction instructions are generated to assist the debugging.

According to the “foraging” behavior in program debugging [68], Petrillo et al. proposed

the SDI framework (swarm debug infrastructure) and utilize the real-time information to

assist program debugging [96, 97]. This framework supports the collection, storage, sharing

and visualization of program debugging information, which allows multiple developers to

participate in the same program debugging task, using group intelligence to accomplish the

program understanding, error positioning and fixing more effectively.

3.1.3 Optimization of Crowdsourced Testing

In addition to applying crowdsourcing methods to specific types of testing or to solving

specific testing problems, some researchers focus on optimizing the process of crowdsourced

testing. These studies focus on improving the following two aspects: 1. the management of

crowd workers, 2. task design and assignment.

Recruiting and effectively managing high-quality crowd workers is a prerequisite for con-

ducting crowdsourced testing. Mantyla et al. have studied the impact of the scale of testers

with time constraints on testing effects in crowdsourced testing [80]. Their study shows that

individuals under time pressure can obtain better performance in detecting defects in com-

parison with individuals without time pressure. In software testing tasks, the scale of crowd

workers should be should be determined based on the share of duplicate and invalid reports

produced by the crowd and by the effectiveness of the duplicate handling mechanisms.

Task design and decomposition is critical for improving the efficiency and effectiveness of

crowdsourced testing. Tung et al. [131] theoretically model the task assignment of collabo-

rative testing in a crowdsourcing environment as an NP-complete problem. To improve the
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work assignment, they optimize the process and transform the problem into an integer linear

programming problem. Guo et al. [42] propose a distributed testing method that leverages

multi-task matching technique to solve large-scale collaborative testing. This method is

composed of three phases: task partitioning algorithm, greedy-based task matching algo-

rithm, and crowdsourced testing results integration. It can select task sets from test cases

dynamically and assign test cases or task sets to appropriate crowd workers. The method is

validated from quality, efficiency, reliability, and scalability as well as discussed the balance

between the number of testers and the quality of testing results.

3.1.4 Platforms

To optimize crowdsourced testing, many platforms and tools have been presented in the past

decades. Teinum et al. present an open source user testing tool to facilitate crowdsourced

testing by introducing the automated testing tools to assist the crowd workers in the testing

process [124]. They adopts the client-server architecture that reduces the requirement for

bandwidth and server capacity during testing activities. Nebeling et al. develop Crowd-

Study that adopts a light weight client-server architecture, which can be embedded in the

website through a single line of code [90]. CrowdStudy deploys a user activity tracking com-

ponent on client-side and a data record and crowdsourcing component on server-side. It is

capable recording behaviors of crowd workers, and automatically sending the results back to

server side. Starov et al. implement a cloud testing framework for mobile systems, named

CTOMS, to support crowd workers on conducting functional and UI testing of Android sys-

tem applications [117]. Similarly, Liang et al. implement Caiipa, a cloud service platform,

for extensible mobile application testing. Caiipa employs a fuzzy approach to extend the

context of mobile application refer to crowd workers’ input data and multiple measures (eg,

multiple network conditions, multiple operator networks and different geographical locations,

etc). iTest, designed by Yan et al., employs crowdsourcing techniques to complete testing
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tasks for mobile applications and web services [139]. Xue et al present CrowdBlaze which

firstly uses static analysis and automated testing to explore the application. Based on the

analysis results, CrowdBlaze can provide guidance to crowd workers in designing complex

cases [138]. By combining both automated testing and crowdsourced testing, CrowdBlaze

can effectively improve testing coverage.

3.2 Test Report Processing

In crowdsourced software testing, requesters need to analyze and understand the feedback

from crowd workers to fix bugs. Due crowdsourcing techniques inherently depend on the large

workforce, the number of test reports is often overwhelming for manual inspection. Thus,

software engineering researchers have proposed many techniques to assist in test report

processing tasks. In this section, I mainly discuss three strands of test report processing

techniques.

3.2.1 Duplicate Report Detection

Duplicate report detection is the technique of verifying whether a new test report is a du-

plicate of existing reports, which has been well studied by many researchers.

Previous duplicate detecting approaches are mainly based on natural language processing

techniques [109], machine learning techniques [119, 118, 2, 69, 26], and information retrieval

techniques [135, 120, 91, 46]. Runeson et al. [109] first studied the duplicate report detection

problem, they investigated the natural language processing techniques to support the du-

plicate identification by developing and evaluating the prototype tool, the evaluation result

showed that about 2/3 of the duplicates could be detected. Sureka and Jalote [120] proposed

an approach to utilize the character-level N-grams model, instead of word-based model, for
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the report text similarity matching and duplicate detection. In their work, they investigated

the advantages of character-level features over word-based features, such as robustness to

noisy text and language independence, the evaluation on a large bug report corpus from

Eclipse indicated the effectiveness of their approach. To detect duplicate bug reports more

accurately, Sun et al. [119] proposed a discriminative model, trained by Support Vector

Machine, to contrast duplicate bug reports from non-duplicate duplicate bug reports, the

approach improved the accuracy of state-of-the-art methods by up to 43% based on the

evaluation on three large software bug repositories from Firefox, Eclipse, and OpenOffice.

Nguyen et al. [91] introduced DBTM, a duplicate bug report detection approach based on

topic model, for the duplicate detection problem. The DBTM treated bug report as textual

document describing one or more technical topics and extended Latent Dirichlet Allocation

to represent the topic structure of the bug reports.

For the information that can be exploited to identify duplicate bug reports, dominant

works [109, 119, 120, 91] made use of the natural language information such as title, de-

scription in report. Wang et al. [135] first involved execution information to calculate the

similarity between reports, they extracted the natural language features and execution fea-

tures respectively, then retrieved potential target reports using the two kinds of features.

Furthermore, contextual information, e.g., product, component, priority, type, were used in

some research works [118, 2, 69, 46] for accurate duplicate detection.

Lately, Deshmukh et al. [27] sought to apply deep learning on detecting duplicate reports, the

result indicated their method can outperform the state-in-art approaches. The duplicates

also exist in crash reports besides test reports, to facilitate managing crashes efficiently,

Dang et al. [26] considered a novel bucketing method called ReBucket that clusters the

crash reports based on call stack matching using the Position Dependent Model (PDM).

Jiang et al. [56] applied the clustering technique on crowdsourced test reports. They proposed

TERFUR to aggregate multiple redundant test reports into clusters to reduce the number
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of reports that need to be inspected manually.

3.2.2 Bug Triaging

Bug report triage is a process that includes: prioritizing bug reports, filtering out duplicate

reports, and assigning reports to the proper bug fixer. Numerous bug reports are submitted

everyday for large and popular projects, and as such, manually assigning these reports to

the appropriate developer is a time consuming task. Thus various automatic bug triage

approaches have been proposed to assist this process, which are mainly ML and IR meth-

ods [19].

Murphy and Cubranic [88] first propose a computer-assisted bug report triage method. They

utilize supervised Bayesian learning to predict suitable developers based on bug text descrip-

tion. Anvik et al. [3] present a semi-automated approach that recommends a small number

of developers suitable for the triager to choose as the fixer. They apply a machine learning

technique to learn what kinds of reports have been assigned to each developer and use this

information to suggest potential developers.

Yu et al. [140] used neural networks to predict the priority of bug reports. Their technique

also employs the reused data set from similar systems to accelerate the evolutionary training

phase. Kanwal et al. [61] used SVM and Naive Bayes classifiers to assist bug priority

recommendation. Tian et al. [127] predicted the priority of bug reports by presenting a

machine learning framework that takes multiple factors including temporal, textual, author,

related-report, severity, and product into consideration. By analyzing the textual description

from bug reports and using text mining algorithms, Lamkanfi et al. [64] conducted case

studies on three large-scale open source projects, and based on the result, concluded that

the technique is able to predict the severity with a reasonable accuracy.
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Based on the investigation on the assignment and bug-tossing activities of Eclipse and

Mozilla, Jeong et al. [53] introduce a tossing graph model based on Markov chains. It

captures tossing probabilities between developers from historical tossing data. The exper-

iment with 445,000 bug reports shows that the model can reduce tossing events by up to

72%.

Tamrawi et al. [122] propose Bugzie, a fuzzy set and cache-based approach for bug triaging,

to reduce time and effort for a triager. The key idea of Bugzie is modeling the fixing

association of developers to multiple technical aspects through fuzzy sets. Thus when a new

report is submitted, Bugzie combines the fuzzy sets that are related with its content terms

and prioritizes the developers based on their membership scores toward that fuzzy set.

Lately, Mani et al. [78] explore the feasibility of applying deep learning on the bug triaging

problem. They propose a novel bug report representation approach which is based on the

Deep Bidirectional Recurrent Neural Network with Attention (DBRNN-A) mechanism, and

the experiment results show that this method outperforms the bag-of-words model for rank-

10 average accuracy. All above approaches are supervised methods, they need to build and

train models based the developers’ historical bug reports before triaging bugs. In order to

escape the training cost and potential problems caused by the noisy data in training dataset,

some unsupervised approaches [83, 102, 72, 134] are introduced in bug triaging.

3.2.3 Bug Report Summarization

There are several works discussing the problem of bug report summarization, which are

resolved in either a supervised or unsupervised way. Rastkar et al. [105, 104] developed a

supervised learning classifier to judge whether a sentence should be included in the sum-

mary, and found that the classifier trained specifically on bug reports outperformed existing

conversation-based classifiers. Jiang et al. [58] leveraged the authorship characteristics to
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assist bug report summarization. The intuition is that, given a new bug report created by

contributor A, the classifier trained over annotated bug reports by A is highly likely to gener-

ate better summaries than classifiers trained over annotated bug reports by others. Jiang et

al. [57] proposed a PageRank-Based Summarization Technique (PRST), which utilized the

information in a master report and associated duplicates to summarize the master report.

To address the problem that supervised approaches require manually annotated corpora and

generated summaries may be biased towards training data, Mani et al. [77] applied four

well known unsupervised summarization algorithms to bug report summarization. Lotufo et

al. [75] proposed a hypothetical model of users’ bug-report-reading processes, utilized it to

rank sentences by their probability of being read, and include sentences with the highest

probabilities into the summary.
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Chapter 4

Text-Analysis-Based Crowdsourced

Test Report Prioritization

In this chapter, I propose a text-analysis-based technique to prioritize test reports for use

in crowdsourced testing. I adopt natural language processing (NLP) techniques, including

word segmentation, and synonym replacement, to extract keywords of test reports. These

keywords are used to predict failure risks of tests and calculate distances of test reports.

I design two single prioritization strategies: the risk-assessment strategy (Risk) and the

diversity-based strategy (Div). While the risk-assessment strategy is designed to dynami-

cally select the test report having the highest risk-assessment score for inspection in each

iteration, the diversity-based strategy is designed to select the diversified test reports for

inspection by maximizing the distances to already inspected test reports. Finally, in order

to reveal as many faults as possible and as early as possible, I combine the two strategies to

a hybrid prioritization strategy (DivRisk).

In 2013, my collegues and I conducted crowdsourced testing on three projects with our in-

dustry partner, Baidu. The three projects were used to evaluate the effectiveness of test
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report prioritization methods. The average percentage of faults detected (APFD) [107] and

the fault-detection rate were introduced to compare four test-report prioritization meth-

ods: Random, Risk, Div and DivRisk. The Best and the Worst theoretical results of

test-report prioritization were computed to discover the room for improvement of our priori-

tization methods. The results of empirical study indicate that: (1) DivRisk can outperform

the random prioritization technique significantly (14.29%–34.52% improvement in terms of

the APFD metric); (2) DivRisk can approximate the Best theoretical result (the gap is

only 7.07% in terms of APFD) of crowdsourced testing for the mobile application testing.

4.1 Preliminary

Crowdsourced Testing Study. In 2013, my collegues and I conducted crowdsourced

testing on three projects with Baidu. Testers in Baidu prepared packages for crowdsourced

testing: software under test and testing tasks. Testing tasks were divided into some sub-

tasks. The packages were distributed online, and workers bid on testing tasks. Workers

were required to complete tasks in a limited time (3–5 days in our projects). Then workers

submitted test reports online. Workers submitted thousands of test reports due to financial

incentive and other motivations. These test reports had many false positive results (32%–

80% in our projects), i.e., a test report marked as “failed” that actually described correct

behavior. Test reports also contained many redundant behaviors, because workers preferred

to reveal simple faults instead of complex faults. Testers manually inspected all test reports

to judge the workers’ performance, i.e., their values for revealing faults. This was a time-

consuming and tedious process (nearly 12 days in our projects). Hence, it motivated me to

prioritize test reports to improve the effectiveness of inspection in crowdsourced testing.

The three software systems on which my collegues and I conducted crowdsourced testing are

as follows:
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P1: The first project is Baidu-Input1 on Android, which can support several input meth-

ods. Testers in Baidu provide 10 functionality sets. One crowd worker can select one

functionality set, and each functionality set can be selected by at most two crowd

workers, who use different mobile phones and different versions of Android.

P2: The second project is Baidu-Browser2, which is a web browser. Testers in Baidu

provide seven functionality sets for regression testing. One crowd worker can select

three functionality sets.

P3: The third project is Baidu-Player3, which is a multimedia player. Testers in Baidu

provide three performance testing scenarios. One crowd worker should cover all of

these three scenarios.

Workers can report other problems, such as usability and compatibility problems, in test

reports.

Experience and Lessons. In total, the crowdsourced workers submitted over 2000 test

reports. Of these submitted test reports, 757 were labeled as “failed” and as such were

gathered for manual inspection. Upon manual inspection of all test reports that were labeled

as failed, 462 of the 757 failed test reports were false positives. In other words, 462 out of

757 test reports described behavior that was either correct behavior or behavior that was

considered outside the behavior of the studied software system (e.g., external problems such

as advertisements).

Through informal and extensive discussions with professional test engineers at Baidu, a

number of observations and lessons were learned, which is summarized as follows:

1. The number of test reports submitted by crowdsourced workers quickly became chal-

1http://shurufa.baidu.com/
2http://liulanqi.baidu.com/
3http://player.baidu.com/
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lenging to manually inspect. A larger crowdsourced testing session would have pro-

duced prohibitively many reports to manually inspect.

2. The number of false positives were more numerous than would have been expected,

and presented challenges for inspection.

3. Many of the true positives and false positives were duplicates of the same underlying

behavior.

4. Many crowdsourced workers performed many easy tasks and reported shallow bugs,

presumably due to the incentive structures that reward quantity of submitted reports.

5. The word choice among the true positive and false positive test reports were sufficiently

consistent, when accounting for word variations and synonyms.

Based on these observations by test engineers at Baidu and informed by our discussions with

them, I attempted to assist with the processing and inspection of test reports, particularly for

the scenario of crowdsourced testing for which the plethora of reports would be even greater.

Lessons 1 and 2 simply motivate the need for some automated assistance. Lessons 3 and 4

motivate the need for looking for diversity in test reports — test reports that are duplicate

(whether true positives or false positives) present the opportunity for wasted inspection effort

and delayed identification of new true faults. Lesson 5 motivates the use of natural-language

techniques to categorize test reports in an effort to automatically infer duplicate test reports.

As such, our experiences and interactions with our industrial partners motivate us to use nat-

ural language techniques (i.e., NLP) to cluster test reports. Lessons 3 and 4 have motivated

the need to prioritize these clusters to account for diversity (i.e., our Div strategy).

However, because the goal of such prioritization is to reveal as many faults as early as

possible, I have incorporated an additional strategy that I are calling Risk. The Risk

strategy learns from already inspected test reports that were manually assessed as true
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positive, i.e., true failures that revealed true faults in the software system under test. As

such, the Risk strategy guides the prioritization order toward other test report clusters that

include similar words.

Finally, I note and recognize that the motivations for Div and Risk are, in a way, at

odds — Div seeks to find the next test-report cluster most dissimilar from the already

inspected ones, whereas Risk seeks to find the next test-report cluster most similar to

already-inspected true positives. To account for these contrasting motivations, I created

a hybrid strategy, DivRisk, that incorporates both Div and Risk to both maximize the

distance from inspected test reports (and thus reduce inspection of duplicates and false

positives) and guide the search toward the software behavior having higher likelihood to

detect errors(and thus increase discovery of new true positives).

4.2 Technique Design
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Figure 4.1: The framework of test report prioritization

In this section, I present the text-analysis-based test report prioritization methods in detail.

Figure 4.1 shows the process of text analysis, which mainly contains four steps: (1) test report

collection, (2) test report processing, (3) keyword vector modeling, and (4) prioritizing test

reports.
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Table 4.1: Seven test reports from P2

No. Operation Description Result
TR1 Login renren.com in compatibility mode, click on

“Personal Homepage” or “Send a Gift”(to friends),
then after clicking the back button, click the for-
ward button.

The page content is not consistent before clicking
the back button with the content after clicking the
forward button.

Non-
fault

TR2 Enter compatibility mode, login renren.com, click
one of the friend links, then click the “Personal
Homepage” button , click the back button after
loading.

It can go back to friend page only after clicking
the back button twice.

Fault1

TR3 Open the browser, select tools→options→security,
set “ad block” enhanced , input
“http://soudu.org/” in the address bar.

Ads on the lower right of the page are not blocked
successfully.

Fault2

TR4 In the input box in Baidu homepage , search
“group buying” in compatibility mode. Next,
search “ice cream” and the “red bull”, double click
the back button and then click the forward button
once.

The page content is not consistent before clicking
the back button with the content after clicking the
forward button .

Fault1

TR5 Open the browser, in maximized mode, wait for
the program to load and then switch the pro-
gram, which means rapid and continual full-screen
switch.

Sometimes the bug appears when taskbar at the
bottom of the system do not disappear, especially
when open other browser simultaneously . When
the system is busy, the bug is more likely to oc-
cur. Move the cursor onto some task and after
the appearance of the task, the system operates
correctly.

Non-
Fault

TR6 Select menu→options in the browser, set “ad
block” closed in the security page, open the link
“http://www.narutom.com/” and pop-up ads are
found while loading; select menu→options in the
browser, set “ad block” enhanced in the Security
page, open the link “http://www.narutom.com/”
to check again.

Ads blocking failed. Non-
Fault

TR7 Select menu→options in the browser , set “ad
block” closed in the Security page, open the
link “http://www.qidian.com/Default.aspx”, and
floating ads or ads around the edge of the web page
are found; select menu→options in the browser, set
“ad block” enhanced in the security page, open the
link to check; switch the browser mode, refresh the
page to check again.

When the blocking mode is switched, the number
of blocked ads is not consistent with the previous
one.

Non-
Fault

Running Example. In order to demonstrate our methods, I sample seven test reports in P2,

as shown in Table 4.1. TR1, TR5, TR6 and TR7 are false positive test reports. That is, workers

mark them as failed test reports, but testers inspect them and judge that they are not. TR2

and TR4 reveal the same fault, denoted by “Fault1”. TR3 reveals another fault, denoted by

“Fault2”. TR7 describes the problem of some inconsistent advertisements in different modes.

The test report is false positive, because it is not a fault of Baidu-Browser, but instead of

the advertisement host site. Please note that all test reports are written in Chinese, and our

implementation is written to handle Chinese test reports. In order to facilitate understanding,

my team translates them into English in the paper, as shown in Table 4.1.
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4.2.1 Test Report Collection

In our crowdsourcing projects, all test reports were committed online by workers in Excel

files. I predefined the format of Excel files, such that these test reports strictly contained

the fields of operations and descriptions. Note that operations and descriptions were used

to inform keywords for use by the NLP techniques.

4.2.2 Test Report Processing

As shown in Figure 4.1, test report processing contains two steps: word segmentation and

synonym replacement.

Word Segmentation. Word segmentation is a basic NLP task. There are many efficient

tools of word segmentation for different languages [61, 35]. I adopted ICTCLAS4 for word

segmentation, which is a widely used Chinese NLP platform. Operations and descriptions

of test reports were segmented into words marked with their Part-Of-Speech (POS) in the

context, and then the POS tagging was applied. Hidden Markov models were used in the

POS tagging [4]. Finally, the bi-gram model [14] was introduced to count the classes of

words.

Synonym Replacement. In crowdsourced testing, test reports are committed by part-time

workers or self-identified volunteers, who are often from different workplaces. Workers have

different preferences of words and different habits of expression. Some words in test reports

are meaningless for revealing faults. Hence, I filtered out these useless words (often referred

to as “stop words” in the NLP literature). Prior studies show that verbs and nouns are

most important to reflect the content of a document [100, 141]. Hence, I retained only verbs

and nouns as candidate keywords of test reports and filtered out other words. Also, workers

4http://ictclas.org/
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often use different words to express the same concept. For example, “thumb keyboard”

and “nine-grids keyboard” refer to the same layout of keyboard in Chinese. I introduced

the synonym replacement technique in NLP to alleviate this problem. In this method, I

adopted the synonym library of Language Technology Platform (LTP) [20], which is largely

considered as one of the best cloud-based Chinese NLP platforms.

Example. In our example, keywords are extracted from test reports, shown in Table 4.2. For

example, “compatibility” indicates that TR1, TR2 and TR4 may report some compatibility

problems; “menu” indicates that TR6 and TR7 may report some problems related to menu

options.

Table 4.2: Keywords from 7 test reports

No. Keywords
TR1 compatibility/n, mode/n, login/v, click/v, person/n, homepage/n,

friend/n, gift/n, back/v, button/n, forwad/v, page/n, content/n
TR2 enter/v, compatibility/n, mode/n, login/v, click/v, friend/n, link/n, per-

son/n, homepage/n, button/n, load/v, back/v, page/n
TR3 open/v, browser/n, tool/n, options/n, security/n, ads/n, block/v, se-

lect/v, address/n, input/v, page/n, corner/n, not/v
TR4 compatibility/n, mode/n, input/v, groupon/v, click/n, search/v, but-

ton/n, icecream/n, redbull/n, back/v, forward/v, result/n
TR5 open/v, browser/n, maximize/v, condition/n, wait/v, program/n,

load/v, finish/v, do/v, switch/v, fullscreen/n, appear/v, system/n,
task/n, miss/v, possibility/n, mouse/n, thumbnail/n, restore/v

TR6 browser/n, click/n, menu/n, options/n, security/n, page/n, ads/n,
block/v, close/v, open/v, link/n, load/v, find/v, strength/n, check/v,
fail/v

TR7 browser/n, click/n, menu/n, options/n, security/n, page/n, ads/n,
block/v, closed/v, open/v, link/n, appear/v, floating/v, strength/n,
check/v, switch/v, mode/n, refresh/v, button/n, select/v, change/v,
number/n
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4.2.3 Keyword Vector Modeling

The next step is to build the keyword vector model KV . I then create the risk-assessment

vector RV and the distance matrix DM based on KV .

Table 4.3: Keyword Dictionary

No. Word Freq. No. Word Freq.
K1 button 4 K2 strength 2
K3 homepage 2 K4 input 2
K5 person 2 K6 switch 2
K7 browser 4 K8 friend 2
K9 options 3 K10 login 2
K11 check 2 K12 back 3
K13 mode 4 K14 block 3
K17 click 5 K18 ads 3
K19 load 3 K20 menu 2
K21 security 3 K22 select 2
K23 link 3 K24 page 5
K25 forward 2 K26 compatibility 3

Keyword Dictionary. Keywords extracted from test reports play an important role in test

report prioritization. In order to summarize the information contained within the keywords,

I count the frequencies (i.e., the number of occurrence) of keywords. In practice, I set a

threshold ε to remove some keywords with low frequency to improve the effectiveness. As a

result, a keyword dictionary is built.

Example. Table 4.3 shows the keyword dictionary of the 7 test reports. In the example, ε = 2,

i.e., all keywords with frequency < 2 in Table 4.2 are removed to produce Table 4.3.

Table 4.4: Keyword Vector Model

No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
TR1 1 0 1 0 1 0 0 1 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 1 1 1
TR2 1 0 1 0 1 0 0 1 0 1 0 1 1 0 0 0 1 0 1 0 0 0 1 1 0 1
TR3 0 0 0 1 0 0 1 0 1 0 0 0 0 1 1 0 0 1 0 0 1 1 0 1 0 0
TR4 1 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1 1
TR5 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0
TR6 0 1 0 0 0 0 1 0 1 0 1 0 0 1 1 1 1 1 1 1 1 0 1 1 0 0
TR7 1 1 0 0 0 1 1 0 1 0 1 0 1 1 1 1 1 1 0 1 1 1 1 1 0 0
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Keyword Vector. Based on the keyword dictionary, I construct a keyword vector for

each test report tri = (ei,1, ei,2, · · · , ei,m), in which m is the number of keywords in keyword

dictionary. I compute that ei,j = 1 if the ith test report contains the jth keyword in keyword

dictionary; and ei,j = 0 otherwise.

Example. Table 4.4 shows the keyword vector model KV of the seven test reports, in which

the ith row is the keyword vector of TRi, i.e., KV (i, ∗) = tri. KV is an n ×m matrix for n

test reports and m keywords in keyword dictionary.

Table 4.5: Distance Matrix DM and Risk-ssessment Vector RV

DM TR1 TR2 TR3 TR4 TR5 TR6 TR7 RV
TR1 0 3 18 6 15 21 20 11
TR2 3 0 19 9 14 18 19 12
TR3 18 19 0 14 9 9 10 9
TR4 6 9 14 0 11 19 18 7
TR5 15 14 9 11 0 12 15 4
TR6 21 18 9 19 12 0 5 14
TR7 20 19 10 18 15 5 0 17

Risk-assessment Vector. Keywords in a test report reflect their values of revealing faults

to some extent. For example, the most frequent word is “click” in Table 4.3. However, I

cannot claim that “click” is the most important one for revealing faults, because “click” is

a common operation in a browser. I can simply count the number of “1”s in the keyword

vector as the risk-assessment value of test report, denoted by RV (i) =
∑m

j=1 ei,j. RV is an

n× 1 vector for n test reports, as shown in Table 4.5.

Distance Matrix. Based on the keyword vector matrix KV , I can calculate the distances

of each pair of test reports. In this work, I adopt the Hamming distance. That is, for two

keyword vectors tri and trk, I count the number of different ei,j and ek,j in the corresponding

position j, as the distance D(tri, trk). The inverse distance indicates the similarity of test

reports.
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Example. As a result, I construct an n × n distance matrix for n test reports. For example,

the distance matrix of the seven test reports is shown in Table 4.5. D(tr1, tr2) = 3, for TR1 and

TR2 have 3 different keywords; D(tr1, tr7) = 20, for TR1 and TR7 have 20 different keywords

in the keyword dictionary.

4.2.4 Prioritization Strategy

In this subsection, I present three prioritization strategies: Risk, Div and DivRisk, based

on the risk-assessment vector RV and the distance matrix DM , which are calculated based

on the keyword vector model KV .

Risk-assessment. In order to reveal faults as early as possible, it is natural to give the top

priority to inspect the test report having the highest probability to reveal bugs, i.e., the test

report TRi with the highest risk-assessment score computed from RV (i). If multiple test

reports share the highest risk-assessment score, one of them is selected for inspection. Let

QTR be the ordered set of already inspected test reports.

Example. Based on the risk-assessment scores in Table 4.5, TR7 (RV (7) = 17) is first selected

for inspection. Then TR6 (RV (6) = 14) is selected for inspection, followed by TR2 (RV (2) =

12). At this point of processing, QTR = {TR7, TR6 TR2}.

I adopt a dynamic prioritization strategy based on the risk-assessment scores and the inspec-

tion results. That is, if TRk is inspected and determined to be a true failure, all keywords of

TRk in KV are increased by δ (δ = 0.2 in our projects). The algorithm of updating KV is

shown in Algorithm 3. Based on the new KV , the risk-assessment scores in RV are updated.

That is, for each i, RV (i) =
∑m

j=1 KV (i, j).
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Algorithm 1: updateKV(KV , δ, k)

1: for all j do
2: if KV (k, j) > 0 then
3: for all i do
4: KV (i, j) := KV (i, j) + δ
5: end for
6: end if
7: end for
8: return KV

Example. Because TR2 is determined to be a true failure, the risk-assessment scores of

TR1, TR3, TR4 and TR5 are updated to 13(11+0.2*10), 9.2(9+0.2*1), 8.0(7+0.2*5) and

4.2(4+0.2*1), respectively. That is, for TR1, TR3, TR4 and TR5, there are 10, 1, 5 and 1

same keywords as TR2, respectively. In this way, I can get the final prioritization result of test

reports: QTR = {TR7, TR6, TR2, TR1, TR3, TR4, TR5}.

Div. The Div strategy is based on the diversity principle of test selection. I prefer to select

the test report tri with the maximal distance to QTR. Without confusion, QTR is also used

to denote the set of keyword vectors {tri} of already inspected test reports. The distance of

tr and QTR, denoted by D(tr,QTR), is defined by the maximum distance between tr and

each tri in QTR, i.e. D(tr,QTR) = Maxtri∈QTR{D(tr, tri)}.

Example. I use the seven test reports to demonstrate Div based on the distance matrix in

Table 4.5. Initially, the test report TR7 having the highest risk-assessment score is selected, thus

QTR = {TR7}. For the next test report, since the maximum distance is D(tr1,QTR) = 20,

TR1 is selected. Thus, QTR = {TR7, TR1}. And then TR5 is selected, because D(tr5,QTR) =

15 is the maximum distance for the remained test reports. In this way, I can get the final

prioritization result of test reports: QTR = {TR7, TR1, TR5, TR3, TR4, TR6, TR2}.

DivRisk. In order to reveal faults as early as possible and as many as possible, Risk and
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Div are combined to a hybrid strategy DivRisk. The algorithm of DivRisk is shown in

Algorithm 2. The risk-assessment vector RV and distance matrix DM can be calculated

based on KV (Line 1–2). Initially, the test report having the highest risk-assessment score

is selected for inspection (Line 4–6). Then, a candidate set CTR is constructed by selecting

nc test reports with maximum distance(s) D(tri,QTR) (Line 8). The test report having the

highest risk-assessment score in CTR is selected for inspection (Line 9–11). If the inspected

test report is a failed one and δ > 0, the keyword vector KV will be updated by Algorithm

3 and the risk-assessment value vector RV will also be updated (Line 12–15). Finally, the

prioritization result QTR is returned.

Example. I use the seven test reports to demonstrate DivRisk. Initially, TR7 is selected for

inspection, for it has the highest risk-assessment score. QTR = {TR7}. Since the number of

test reports is small in this example, I set nc = 2 to facilitate demonstration. The candidate

set CTR = {TR2, TR1}, for D(tr2,QTR) = 20 and D(tr1,QTR) = 19 are the two largest

ones. TR2 is selected for inspection, for TR2 has a higher risk-assessment score than TR1, i.e.

RV (2) = 12 > RV (1) = 11. In this way, I can get the final prioritization result QTR = {TR7,

TR2, TR3, TR4, TR6, TR1, TR5}.

The hybrid strategy DivRisk will be reduced to the Risk if nc ≥ |TR|, and it will be

reduced to the Div if nc = 1. Hence, I need to set a modest number to nc (nc = 8 in our

projects) for a reasonable hybrid result.

4.3 Experiment

In this study, I evaluated the test report prioritization methods: Risk, Div and DivRisk

with three crowdsourced testing projects. In our projects, δ = 0.2 and nc = 8 as described

above.
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Algorithm 2: DivRisk(KV , nc, δ)

1: For each i, j, DM(i, j) := D(KV (i, :), KV (j, :))
2: For each i, RV (i) :=

∑m
j=1 KV (i, j)

3: TR{1, 2 · · · , n}: n is the number of rows in KV
4: QTR := {TRk}: TRk with the highest risk-asssessment score RV (k) in TR
5: QTR:=QTR ∪ {TRk}
6: TR:=TR− {TRk}
7: while |TR| 6= 0 do
8: CTR:= Select nc reports TRi with the largest distances D(tri, QTR)
9: Select the test report TRk with the highest risk-asssessment score in CTR for

inspection
10: QTR:=QTR ∪ {TRk}
11: TR:=TR− {TRk}
12: if TRk is a failed test report by inspection AND δ > 0 then
13: KV := updateKV (KV, δ, k)
14: For each i, RV (i) :=

∑m
j=1 KV (i, j)

15: end if
16: end while
17: return QTR

4.3.1 Comparison Baselines

In order to verify the effectiveness of our prioritization methods, three baselines for com-

parison are selected. The first baseline of comparison was the Random strategy, which is

widely used in software testing. Given a set of finite number of test reports, all possible

orderings of test reports could be enumerated in theory. Supposing that I know which test

reports are truly fault revealing in advance, the Best and the Worst prioritization results

could be determined. For example, {TR2, TR3, TR4, TR1, TR5, TR6, TR7} is one of the

best prioritization results and {TR7, TR1, TR5, TR6, TR2, TR4, TR3} is one of the worst

prioritization results. In order to fairly compare these prioritization methods, the experiment

was repeated 50 times to collect experimental data.
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Table 4.6: Summary of Test Reports

Project P1 P2 P3
# Report 274 231 252
# F-Report 186 47 62
% F-Report 67.88% 20.35% 24.60%
# Fault 27 22 18

4.3.2 Datasets

In our projects, all test reports were manually inspected by testers without any prioritization

method. I carefully checked the inspection results again and get the final inspection results,

as summarized in Table 4.6.

In Table 4.6, “# Report” is the number of test reports marked as failed by workers. These

test reports were collected in the test report bucket. Testers inspected these test reports to

judge whether they could reveal faults. “# F-Report” and “% F-Report” are the number

and the percentage of test reports judged as failed ones by testers, respectively. In practice,

some tests may reveal same faults. “# Fault” is the number of faults revealed by these test

reports.

4.3.3 Research Questions

In the experiment, I investigated the following research questions.

• RQ1: Can our prioritization methods improve the effectiveness of test report inspec-

tion?

If the crowdsourcing requesters have no prioritization method on-hand, testers will inspect

test reports in a random order. That means, testers would be motivated to adopt a pri-

oritization method only if it can outperform the Random strategy. RQ1 evaluates the
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effectiveness of our prioritization methods Risk, Div, and DivRisk.

• RQ2: How large is the gap between our prioritization methods and Best?

In practice, it is difficult to design one method that can work well in all cases. Hence, it is

valuable to know the gap between the on-hand methods and the best one in theory. RQ2

evaluates the room for improvement of our prioritization methods.

4.3.4 Evaluation Metric

In order to measure the effectiveness of prioritization methods, I adopt the APFD (Average

Percentage of Fault Detected) [107], which is a widely used evaluation metric in test case

prioritization [71]. For each fault, I mark the index of the first test report which reveals it.

Based on the order of the test reports and information about which test reports revealed

which faults, I can calculate the APFD values to measure the effectiveness of the prioritiza-

tion methods. A higher APFD value indicates a better prioritization result. That is, it can

reveal more faults earlier than the other methods do. APFD is formalized as follows.

APFD = 1− Tf1 + Tf2 + ...+ TfM
n×M

+
1

2× n
(4.1)

in which, n denotes the number of test reports and M denotes the total number of faults

revealed by all test reports. Tfi is the index of the first test report that reveals fault i.

APFD indicates the fault detection rate of all test reports. However, testers cannot inspect

a large number of test reports in limited time. In practice, testers will stop inspecting test

reports when the limited resource is used up. At that time, testers may only inspect 25% or

50% test reports. Therefore, I evaluate how APFD varies for permutations of the same set

of test reports. I use the linear interpolation [71] as follows.
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(a) APFD on P1 (b) Average Fault Detection Rates on P1

(c) APFD on P2 (d) Average Fault Detection Rates on P2

(e) APFD on P3 (f) Average Fault Detection Rates on P3

Figure 4.2: Test report prioritization experiment results

(averaged over 50 runs)
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• M denotes the total number of faults revealed by all test reports.

• p ∈ {25%, 50%, 75%}, the percentage used in our experiment.

• Q = M × p, which is the number of faults corresponding to a percentage. Let int(Q)

and frac(Q) be the integer part and fractional part of Q, respectively. If frac(Q) = 0,

the linear interpolation is needed.

• i, j are the indexes of reports that reveal at least Q and Q+1 faults respectively. The

linear interpolation is calculated as i+ (j − i)× frac(Q)

The linear interpolation value indicates the cost of testing to detect the given number of

faults. Hence, a lower value of linear interpolation indicates a better prioritization result.

4.4 Result Analysis

In this section, I analyze the experimental results to answer RQ1 and RQ2. The results

of all prioritization methods are shown in Figure 4.2. Figure 4.2 (a, c, and e) shows the

box-plots of APFD results of the three projects (P1–P3) for the 50 experimental runs. The

prioritization methods are shown on the horizontal axis, and the APFD values are shown

on the vertical axis. The blue horizontal line in Figure 4.2 (a, c, and e) denotes the Best

APFD value, in theory, for that subject. Figure 4.2 (b, d, and f) shows the average growth

curves of the three projects (P1–P3). The percentage of the inspected test reports is shown

on the horizontal axis, the the percentage of revealed faults is shown on the vertical axis.

4.4.1 Addressing RQ1

RQ1: Can our prioritization methods improve the effectiveness of test report inspection?
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Based on the results shown in Figure 4.2 (a, c, and e), I can find that all of our prioriti-

zation methods outperform Random. In particular, DivRisk can outperform Random

significantly. The hybrid strategy DivRisk can also improve the single strategies Risk and

Div. Moreover, the box-plots show that our methods are substantially more stable than

Random. Figure 4.2 (b, d, and f) show the average growth curves. The line charts in

Figure 4.2 (b and d) show that DivRisk presents smooth curves to the top (Best).

In order to further investigate our test report prioritization methods, I do Bonferroni means

separation tests for all results in Table 4.7. All F -values are very large and the all p-values are

much smaller than 0.001 in Table 4.7. Compared with the Random strategy, the percentage

of improvement of DivRisk ranges 14.29%–34.52%. In summary, the experimental results

are encouraging for the use of the hybrid DivRisk strategy in practice.

In summary, I find that our prioritization methods can improve the effective-

ness of test report inspection.

4.4.2 Addressing RQ2

RQ2: How large is the gap between our prioritization methods and Best?

Figure 4.2 shows that the hybrid strategy DivRisk provides the best approximation of the

Best result in P1 and P2. For P3, DivRisk provides one of the best results, but there is

a larger gap between its results and the Best result than I found for P1 and P2. For more

details, I can observe the growth curves in Figure 4.2. The curves of Best grow very fast.

The curves of DivRisk reach the curves of Best when I have inspected nearly 30% test

reports in P1–P2 and nearly 60% test reports in P3.

Table 4.7 shows the gaps between our prioritization methods and Best. The gap between

DivRisk and Best on P1 is small (7.07%). Please recall that the results of Best are purely
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Table 4.7: Bonferroni Means Separation Tests

Method APFD Improvement Gap
Means X−Random

Random
Best−X

X

P1: F (3, 200) = 1549.27, p-value ≤ 0.0001
DivRisk 0.8879 29.66% 7.07%

Div 0.8094 18.20% 17.46%
Risk 0.7639 11.55% 24.45%

Random 0.6848 — 38.83%
Best 0.9507 38.83% —

P2: F (3, 200) = 474.15, p-value ≤ 0.0001
DivRisk 0.8113 34.52% 17.39%

Div 0.7167 18.84% 32.89%
Risk 0.7158 18.69% 33.05%

Random 0.6031 — 57.92%
Best 0.9524 57.92% —

P3: F (3, 200) = 90.42, p-value ≤ 0.0001
DivRisk 0.7686 14.29% 25.46%

Risk 0.7165 6.54% 34.58%
Div 0.6962 3.52% 38.51%

Random 0.6725 — 43.39%
Best 0.9643 43.39% —

hypothetical and based on an unrealistically omniscient best-case analysis. Hence the result

of DivRisk may be, or at least approximate, the best one in practice. The gaps on P2 and

P3 may be, thus, acceptable (17.79% and 25.49%) in practice, and moreover, do improve the

ordering of unordered or random ordering.

In order to explain the results more clearly, I calculate the linear interpolations shown in

Table 4.8. Table 4.8 shows the average numbers of inspected test reports in the cases of

detecting 25%, 50%, 75% and 100% faults. If the users need to reveal 25% or 50% faults,

DivRisk is near to Best. However, if the users need to reveal more faults, there may

be room for additional improvement. A strange phenomenon is worthy of attention: Risk

outperforms DivRisk for the 25% level of inspected faults faults for P2 and the 75% level

of inspected faults for P3. This result may be due to the heuristic nature of these methods

and will be a subject of additional investigation in the future.
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In summary, I find that our prioritization methods can provide a reasonable

approximation for the theoretical Best result for some software subjects, and

for other subjects provide some of the smallest gaps. In all cases that I studied,

it provided better than the unordered or random ordered test reports.

4.4.3 Discussion

Method Selection. The idea of prioritization is widely used in software engineering, es-

pecially in software testing. Crowdsourced testing is usually conducted in rapidly iterative

software development. In this situation, I can only inspect a subset of test reports for reveal-

ing and fixing faults before software release. Hence, test report prioritization plays a key role

for a cost-effective result of crowdsourced testing. Our prioritization methods contain two

key parts: the risk-assessment strategy (Risk) and the diversity strategy (Div). In software

development, I need to reveal as many faults as possible, i.e., Div. In contrast, I need to

inspect the most probable “true failure” test reports early, i.e., Risk. These two require-

ments of crowdsourced testing drive us to design a hybrid prioritization method DivRisk

by combining Risk and Div. Therefore, it is not surprising that DivRisk can outperform

the random prioritization technique significantly.

Mobile Application Testing. DivRisk shows different effectiveness in different crowd-

sourcing projects. The P1 project involves mobile application testing. The effectiveness of

DivRisk in P1 was very encouraging and approximated Best. I reviewed the test reports

in P1 and discussed with testers in Baidu. Since workers used different mobile phones and

different versions of Android, they reported many compatibility problems of the application

under test. The compatibility problems were easier to identified than other problems for

mobile applications. Moreover, part-time workers (crowd workers here) preferred to select

testing tasks of mobile applications, because it could be done anywhere and any time. There-
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Table 4.8: Linear interpolation of the average number of inspected test reports

Pro. Tech. 25% 50% 75% 100%

P1

Random 35.34 75.83 116.96 196.6
Risk 21.12 51.64 94.19 190.7
Div 22.39 46.80 81.27 123.5
DivRisk 8.885 20.38 43.09 99.20
Best 6.750 13.50 20.25 27.00

P2

Random 33.37 74.86 138.3 217.5
Risk 8.780 56.22 106.4 201.2
Div 9.200 47.46 121.2 170.1
DivRisk 21.97 36.24 66.93 98.30
Best 5.500 11.00 16.50 22.00

P3

Random 22.25 61.72 122.2 226.8
Risk 32.90 57.14 83.01 230.2
Div 23.88 61.16 104.4 246.4
DivRisk 14.90 42.44 95.94 145.3
Best 4.500 9.000 13.50 18.00

fore, it is not surprising that the prioritization results of P1, as shown in Table 4.6, were

more effective than on P2 and P3. Workers committed more test reports and revealed more

faults on P1 than on P2 and P3. The percentage of useful test reports (i.e., F-report) is

67.88%, which was better than P2 (20.35%) and P3 (24.60%). The high quality test reports

can help our test report prioritization methods, because our methods rely on keywords from

test reports. As such, such crowdsourced testing and prioritization methods may be a good

fit for mobile application testing.

Cost and Scalability. The total cost of test report processing in our projects is less than 10

minutes. Please note that our prioritization algorithms only involve numerical calculation on

KV , RV and DM . Hence, the cost of test report prioritization methods may be negligible.

The DivRisk algorithm is flexible. For example, I can set δ = 0 in Algorithm 2, and as a

result, the dynamic prioritization strategy are reduced to a static prioritization strategy. The

static prioritization strategy does not rely on inspection. Hence, it can be fully automated

and be more efficient, although the results may be worse. Moreover, DivRisk does not rely

on the languages of test reports. DivRisk can also be used for test reports written in other
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languages by using other NLP tools for other natural languages. For example, I can adopt

Stanford CoreNLP5 for word segmentation [60] and WordNet6 for synonym replacement [85]

to process English test reports, and build keyword vector model KV . Based on KV , I can

use the DivRisk algorithm for English test report prioritization.

4.5 Threats to Validity

There are some general threats to validity in our empirical study. For example, I need more

projects and different parameter values to reduce the threat to validity.

Subject selection bias:. These three crowdsourced testing projects are from industry. The

software products are widely used on the Internet, and were not especially designed for our

study. Due to the limited cost, I only required the industry partner to provide crowdsourced

testing tasks that could be finished in 5 days. The cost of conducting our empirical study

was very expensive (involving more than 200 people), so I have only three projects in our

empirical study. This may threaten the generalization of our conclusions. However, the

software products used in our crowdsourced testing projects are diverse. This may reduce

the threat to some extent.

Crowd worker relation:. “Crowdsourcing” often requires workers from a large pool of

individuals that one has no direct relationship with the others. In our experiment, the

students play the roles of crowd worker, which means our crowd workers have certain social

relations, and my collegues and I have only nearly 230 crowd workers. The results may be

different if the crowd workers are from Internet with open calls. However, Salman et al. [110]

found that that if a technique is new to both students and professionals, similar performance

can be expected to be observed. As such, I believe that this may not be a key point for our

5http://nlp.stanford.edu/software/corenlp.shtml
6http://wordnet.princeton.edu/wordnet/

49



test report prioritization techniques.

Data quality: The materials of crowdsourced testing are prepared and distributed by the

industrial testers. All test reports are committed by workers online directly. I checked all

data and participated in the discussions of the final inspection results. In summary, all data

used in this paper are from industry and the results were checked carefully by professional

testers of Baidu. This may reduce the threat to the validity of data quality.

4.6 Conclusion

In this chapter, I proposed a novel test report prioritization method DivRisk to reduce the

cost of inspection in crowdsourced testing. The keywords are extracted from test reports by

using NLP techniques. These keywords construct a keyword vector model KV . I calculate

the risk-assessment vector RV based on KV to predict failure risk of tests. I construct the

distance matrix DM based on KV to design the diversity strategy for prioritization. The

risk-assessment strategy and the diversity strategy are combined to a hybrid strategy Di-

vRisk to fulfill effective test report prioritization. Three crowdsourced testing projects from

industry have been used to evaluate the effectiveness of test report prioritization methods.

The results of empirical study encourage us to use DivRisk for test report prioritization in

practice, especially for mobile application testing. I also provide guidelines to extend our

prioritization methods to deal with test reports written in other languages.
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Chapter 5

Image-Understanding-Based

Crowdsoured Test Report

Prioritization

In this chapter, I proposed an technique to test-report prioritization that utilizes a hybrid

analysis technique, which is both text-based and image-based. This technique is a fully

automatic diversity-based prioritization technique to assist the inspection of crowdsourced

mobile application test reports. To facilitate this, I capture textual and image information

and measure the similarity among these artifacts. For the image analyses, I employed the

Spatial Pyramid Matching (SPM) [70] technique to measure the similarity of screenshots.

For the textual analyses, I used natural-language textual analysis techniques to measure

the similarity of textual descriptions within test reports. Finally, I combine these similarity

results using a multi-objective optimization algorithm to produce a hybrid distance matrix

among all test reports. Based on these results, I prioritize the test reports for inspection

using a diversity-based approach, with the goal of assisting developers of finding as many

unique bugs as possible, as quickly as possible.
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To evaluate this proposed hybrid test-report prioritization technique, I implemented the tech-

nique and conducted an experiment. The experiment was conducted with three companies

and more than 300 students, who simulated the crowdsourcing of testing of five widely-used

mobile applications. In all, I received and analyzed 686 crowdsourced test reports from the

crowd workers. I assessed effectiveness of our technique using the Average Percentage of

Faults Detected (APFD) [107] metric and the fault detection rate. To serve as our baseline

effectiveness results, I calculated the results of two strategies: an Ideal strategy, which is a

best-case ordering to find all bugs in the shortest order possible, and a Random strategy,

which is a random ordering.

The results of our empirical study shows that: (1) Screenshots are critical in the test report

of mobile application, which could significantly improve the effectiveness of the prioritization

technique and the efficiency of test-report inspection; (2) For certain classes of mobile ap-

plications, our multi-objective optimized prioritization technique can outperform the single

image-based optimized technique, the text-based optimized technique, as well as the random

technique.

5.1 Preliminary

Even though, in practice, there could be other multi-media information that exists in the

mobile test reports, such as the short operation videos and voice messages, my experience

indicates that text descriptions and screenshots are the most widely used types of informa-

tion. In this paper, I focus on the processing of mobile screenshots to assist the test-report

prioritization procedure. I assume each of the test reports only consists of two parts: a text

description and a set of screenshots, i.e., the test report set R(r) = {r(Si, Ti)|i = 0...n},

in which, S denotes the screenshots (i.e., images) containing the views that may capture

symptoms of the bug being reported, and T denotes the text describing the buggy behavior.
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Figure 5.1: Test-report processing framework

5.2 Technique Design

This section elaborates the details of my technique. I assume the test reports only consist

of two parts: text description and screenshots, which I will handle separately and finally

generate the balanced distance. Figure 5.1 shows the framework of calculating the distance

between the test reports, which mainly contains three steps: (1) screenshot-set distance

calculation, (2) test-description distance calculation, and (3) distance balancing. After I

compute the distance matrix from the test-report set, I apply various strategies to prioritize

test reports.

5.2.1 Test-Description Processing

The processing of text consists of two steps: (1) keywords set building and (2) distance

calculation. Because natural-language-processing (NLP) techniques have been widely used

to assist various software engineering tasks (e.g., [51, 109, 135, 32]), I focus our description

below on the distinguishing features and implementation choices of our approach.

Keywords Set Building. In order to extract the keywords from the natural-language

description, I first need to segment the text. Fortunately, word segmentation is a basic NLP

task, and as such many efficient tools for word segmentation for different natural languages

have been implemented [61]. In this technique, I adopted the Language Technology Platform
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(LTP)1 [20], which is the most widely used Chinese NLP cloud platform, to process the

Chinese text descriptions. LTP segments the Text parts of test reports and marks each word

with its Part-of-Speech (POS) for its context. In this procedure, LTP used the Conditional

Random Fields (CRF) [63] model to segment Chinese words and adopted the Support Vector

Machine (SVM) approach for tagging the POS. After I compute the segmentation results

with the POS tags, I filter out relatively meaningless words that could negatively impact the

distance calculation. According to prior works (e.g., [100, 115]), verbs and nouns can reveal

the main information of a document. So, to simplify the technique, I extract only the nouns

and verbs to build the keywords sets.

It is worth noting that our technique should not be limited to only the Chinese language.

By applying other NLP tools, such as the Stanford NLP toolkit,2 similar text models can be

built for text descriptions written in other languages, such as English, French, or German.

However, different natural languages have different characteristics, and may need special

accommodations. For example, languages with relatively more prevalent polysemy (i.e.,

many possible meanings for a word or phrase) and synonyms may require special processing,

such as synonym detection and replacement, to avoid negative impacts on analyses.

Distance Calculation. My technique focuses on processing mobile test reports. Compared

with the test reports of desktop or web applications, one characteristic of typical mobile test

reports, and based on our experience, is that their text descriptions are shorter and contain

more screenshots. As such, I treat all of the words in the text description equally, and I

adopted the Jaccard Distance to measure the difference between the text descriptions Ti

in the test-report set R(r). The definition of Jaccard Distance used in our technique is

presented in the following equation, in which, Ki denotes the keyword set of test report Ti,

and DT (ri, rj) denotes the distance between the text portion of the test reports ri and report

rj.

1http://www.ltp-cloud.com/
2http://nlp.stanford.edu/software/
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(a) Playing-1 (b) Playing-2 (c) Lyrics-1
(d) Lyrics-2

Figure 5.2: Four example screenshots from the CloudMusic application.

(a) and (b) are screenshots of the playing view, and (c) and (d) are screenshots of the lyrics
view of two different songs.

DT (ri, rj) = 1− |Ki ∩Kj|
|Ki ∪Kj|

(5.1)

5.2.2 Screenshot Processing

Compared with NLP techniques, image understanding techniques are relatively less studied

and used in the software-engineering domain. One of our motivations of conducting this

research is to proposed a method to extract the information from images to assist software-

engineering tasks. The workflow of processing screenshots S is presented in the top branch

of Figure. 5.1. The process is composed of three key steps to build up the distance between

screenshot sets: (1) building feature histograms, (2) calculating distance between individual

screenshots, and (3) computing the distance between screenshot sets.
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(a) Playing-1 (b) Playing-2

(c) Lyrics-1 (d) Lyrics-2

Figure 5.3: The corresponding feature histograms of the screenshots in Figure 5.2.

Feature Histogram Building. In order to compute the difference between the screenshots,

I convert the screenshots into feature vectors. Bug screenshots provide not only views of

buggy symptoms, but also app-specific visual appearances. I hope to automatically identify

application behaviors based on their visual appearance in the screenshots. However, the

screenshots often have variable resolution and complex backgrounds. Therefore, modeling

the similarity between the screenshots merely based on RGB is not an approach that is

well suited for our task. To address the challenges, I apply the Spatial Pyramid Matching

(SPM) [70] to build a global representation of screenshots. Since the details of SPM are

beyond this paper’s topic, I only briefly introduce it here.

Given an image, SPM partitions it into sub-regions in a pyramid fashion. At each pyramid

level, it computes an orderless histogram of low-level features in each sub-region. After

decomposition, it concatenates statistics of local features over sub-regions from all levels.

After building the “Spatial Pyramid” representation, I apply kernel-based pyramid matching

scheme to compute feature correspondence in two images.
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Figure 5.2 presents four original and actual screenshots from four test reports of a popular

Chinese music-playing app, CloudMusic. Figures 5.2a and 5.2b show the music-playing

view of the application, and Figures 5.2c and 5.2d show the lyrics view. Note that in each

screenshot, the details of the view differ: e.g., different music is playing, different background

images appear, different lyrics are shown, and even the screen size is different for the last

image. The layout of screenshots and background colors differ and provide challenges for

correct matching: although Figures 5.2a and 5.3b have the same view layout, Figures 5.3b

and 5.3d share a similar background color. If I were to directly calculate distance based on

the RGB histograms, I would incorrectly get a closer distance between Figures 5.3b and 5.3d.

Nevertheless, the image-understanding technique should be able to capture the similarities

of the the similar views. Intuitively, Figures 5.2a and 5.3b should be identified as similar

views, and Figures 5.3c and 5.3d should be identified as similar views.

Based on the four images, SPM first builds the histograms of features for each of image. The

resulting histograms for these images are shown in Figure 5.3.

Screenshot Distance Calculation. Using the screenshot feature histograms, a distance

is computed for each pair of images. To compute such distances between feature histograms,

I adopt the chi-square distance metric [108]. The chi-square metric is generally used to

compute the distance between two normalized histogram vectors, i.e., their elements sum to

1. Also, both of the pairwise histograms being compared should contain the same number

of bins (i.e., the vectors should have the same number of dimensions).

I use Hi(x1, x2, ..., xn) to denote the feature histogram of screenshot si, and Hi(xk) to denote

the value of kth feature of si. The formula used to calculate chi-square distance Ds(si, sj)
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Table 5.1: Distance between screenshots of Figure 5.2

Playing-1 Playing-2 Lyrics-1 Lyrics-2
Playing-1 0 0.38957 0.40255 0.45109
Playing-2 0.38957 0 0.51161 0.51873
Lyrics-1 0.40255 0.51161 0 0.32029
Lyrics-2 0.45109 0.51873 0.32029 0

between screenshot si and sj is defined as follows:

Ds(si, sj) = χ2(Hi, Hj)

=
1

2

d∑
k=1

(Hi(xk)−Hj(xk))
2

Hi(xk) +Hj(xk)

(5.2)

Based on Equation 5.2, I obtain the distance matrix shown in Table 5.1 from the feature

histograms of Figure 5.3.

These results show that the calculated distance between the same views (Playing-1 and

Playing-2, and Lyrics-1 and Lyrics-2) have relatively shorter (i.e., smaller) distances (0.389

between playing screenshots and 0.320 between lyrics screenshots) than the across-view dis-

tances.

Screenshot Sets Distance Calculation. The previous step uses the chi-square distance

metric to compute distances between pairs of screenshots. However, in practice, each test

report may contain more than one screenshot. So, in this step, I compute the distance

between screenshot sets. To account for the diversity of display resolutions of mobile devices

and user content (e.g., songs, backgrounds), I set a threshold γ to assess screenshots that

match. The γ threshold is first used to find representative members from within the same

screenshot set (i.e., from the same test report). Screenshot subsets whose histograms produce

chi-square distances that are below the distance threshold (i.e., assessed as representing the

same situation) are first represented as an aggregated, summary histogram which is computed

as the mean of the feature histograms from the constituent members.
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Once the representative set of screenshots are selected from each test report, the chi-squared

metric with the γ metric is again used to compute the across-test-report screenshot similarity

between the representative screenshots. Again, for screenshots (i.e., their representative

histograms) whose distance is less than γ, they are assessed as representing the same view,

and as such, the similar and non-similar screenshots from each test report can be used

to calculate the inter-test-report screenshot set distance for a pair of reports. For this

calculation, I use the Jaccard distance metric. For the test reports ri and rj and their

respective screenshot sets Si and Sj, the distance metric is defined as:

DS(ri, rj) = 1− |Si ∩ Sj|
|Si ∪ Sj|

(5.3)

Note that in the special case where both Si and Sj are the empty set (i.e., no screenshots

were included for either test report), I assess DS to be zero.

5.2.3 Balanced Formula

Based on above distance computations for both the textual descriptions and the screenshot

sets, I combine these distances to produce a hybrid distance. I present Equation 5.4 to

combine these differing distance values. Equation 5.4 is a step-wise formula, where the first

condition holds for when the textual descriptions are assessed to be identical by way of the

text distance formula DT . In this case, I assess the balanced distance metric to be similarly

identical. In the next step, where DS = 0, where typically no screenshots were included for

either test report, the textual difference is used and scaled to make them more similar, and

thus less diverse. This diversity adjustment will make these less descriptive test reports less

likely to be highly prioritized in the next prioritization step. In the final step, which holds
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in all other cases, the harmonic mean is calculated between the textual distance DT and

screenshot set distance DS. The resulting balanced distance BD is used to represent the

pairwise distance of the corresponding test reports.

BD(ri, rj) =


0, if DT (ri, rj) = 0

α×DT (ri, rj), if DS(ri, rj) = 0

(1 + β2)
DS(ri,rj)×DT (ri,rj)

β2DS(ri,rj)+DT (ri,rj)
, otherwise

(5.4)

5.2.4 Diversity-Based Prioritization

Using the computed balanced distance measures for all test reports, I can prioritize the test

reports for inspection by developers. The guiding principle of our prioritization approach is

to promote diversity of test reports that get inspected. In other words, when a developer in-

spects one test report, the next test reports that she inspects should be as different as possible

to allow her to witness as many diverse behaviors (and bugs) as possible in the shortest or-

der. This diversity-based prioritization strategy has been used by other software-engineering

researchers for test prioritization (e.g., [25, 55]). The goal is for software engineers to find

as many bugs as possible in a limited time budget.

Given Q denotes the result queue, the distance between a test report r and Q, denoted by

D(r,Q), is defined by the minimal distance between r and each ri in Q, i.e., D(r,Q) =

Minri∈Q{D(r, ri)}. The algorithm of BDDiv is shown in Algorithm 3. In the beginning, Q

is empty, I first initialize the algorithm by randomly choosing one report from R and append

it to Q. The second step is to calculate the distance between each test report ri ∈ R and

Q. As soon as I get the distance values, I choose the largest one to append to Q. The whole

procedure completes when |R| = 0.
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5.3 Experiment

In this experiment, I propose the following three research questions:

RQ1: Can test-report prioritization substantially improve test-report inspection to find

more unique buggy reports earlier?

RQ2: To what extent can the image-based approaches improve the effectiveness of the

text-only-based approach?

RQ3: How much improvement is further possible, compared to a best-case ideal priori-

tization?

Algorithm 3: BDDiv(BD, R)

1: Q = ∅
2: Randomly choose a test report rk from R, append rc to Q
3: R := R− {rk}
4: while |R| 6= 0 do
5: maxDis := −1, rc = NULL
6: for all ri ∈ R do
7: minDis := 2
8: for all rj ∈ Q do
9: if BD(ri, rj) < minDis then

10: minDis = BD(ri, rj)
11: end if
12: end for
13: if minDis > maxDis then
14: maxDis = minDis
15: rc = ri
16: end if
17: end for
18: Append rc to Q
19: R := R− {rc}
20: end while
21: return Q
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If the software engineers have no test report prioritization technique, they may randomly

inspect test reports, in a non-systematic order. RQ1 is designed to inform whether prioritiza-

tion of test reports is, in fact, advantageous. To address the RQ1, I conduct the experiment

to evaluate the effectiveness of our prioritization techniques alongside a Random-based

strategy. RQ2 is designed to investigate whether image-understanding techniques can assist

the inspection procedure compared with the text-only-based technique. RQ3 is designed to

investigate the gap between the performance of our techniques and the theoretical Ideal

prioritization technique, which could be helpful to engineers in selecting proper techniques

in practice and inform the future research in this field.

5.3.1 Software Subject Programs

From November 2015 to January 2016, my collegues and I collaborated with three companies

and more than 300 students to simulate a crowdsourced testing process. The five applications

on which I simulated crowdsourced testing are as follows:

• JustForFun: A picture editing and sharing application, produced by Dynamic Digit.

• iShopping: A shopping application for Taobao, produced by Alibaba.3

• CloudMusic: An application for free-sharing music as well as a music player, pro-

duced by NetEase.4

• SE-1800: A monitoring application for a power supply company, produced by Pan-

neng.

• Ubook: An application for online education, produced by New Oriental.5

3https://guang.taobao.com
4http://music.163.com
5http://www.pgyer.com/y44v
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Table 5.2: Experimental Software Subjects

Name Version |R| |F | |S| |Rs| |Rf |
SE-1800 2.5.1 192 7 856 164 99

CloudMusic 2.5.1 96 16 272 70 40
Ubook 2.1.0 99 22 719 90 99

iShopping 1.3.0 209 73 581 160 130
JustForFun 1.8.5 90 9 109 69 90

Totals 686 127 2537 553 458

Testing for all of these applications was crowdsourced to workers on Kikbug.net. For these

five apps, more than 300 students were involved. To perform crowdsourced testing, each

student installed a Kikbug-Android app, chose testing tasks, and completed testing tasks

on their own phone. During the testing process, workers performed testing tasks according

to some guidelines, specified by the app developers. During task performance, the workers

could take screenshots if necessary, such as experiencing some unexpected behavior. After

the testing task was completed, the worker could provide a brief description on bug phe-

nomenon on his own phone. Finally, the student submitted a test report, including the short

descriptions and possible screenshots.

Then all the test reports are submitted to app developers, and the developers can inspect the

reports and begin the debugging process. With the help of the developers’ inspection, Kikbug

obtained ground truth assessments for the students’ reports. The detailed information of

the applications is shown in Table 5.2, in which, the |R| denotes the number of reports,

|F | denotes the number of faults revealed in the test reports, |S| denotes the number of

screenshots contained in the test reports, |Rs| denotes the number of test reports containing

at least one screenshot, and |Rf | denotes the number of test reports that revealed faults.

5.3.2 Prioritization Strategies

In my experiment, I investigate the performance of following prioritization strategies.
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Technique 1: Ideal The best result in theory to inspect test reports in such a way as to

demonstrate the most unique bugs as early as possible. Represented as Ideal.

Technique 2: TextDiv The prioritization strategy based only on the distance between

test reports’ text descriptions, i.e., in this strategy DT will replace BD as the first

parameter of Algorithm 3. Represented as TextDiv.

Technique 3: ImageDiv The prioritization strategy based only on the distance between

test reports’ screenshots, i.e., in this strategy DS will replace BD as the first parameter

of Algorithm 3. Represented as ImageDiv.

Technique 4: Random The random prioritization strategy, which is used to simulate the

situation without any prioritization technique. Represented as Random.

Technique 5: Text&ImageDiv Our prioritization strategy that balances the distance of

screenshot sets and text descriptions. Represented as Text&ImageDiv.

5.3.3 Evaluation Metrics

I employed the APFD (Average Percentage of Fault Detected) metric [107], which is the

most widely-used evaluation metric for test-case prioritization techniques, to measure the

effectiveness of our techniques. For each fault, APFD marks the index of the first test report

revealing it. I present the formula to compute the AFPD value in Equation 5.5, in which,

n denotes the number of test reports, M denotes the total number of faults revealed by all

test reports, Tfi is the index of the first test report that reveals fault i.

APFD = 1− Tf1 + Tf2 + ...+ TfM
n×M

+
1

2× n
(5.5)

In our experiment, a higher APFD value implies a better prioritization result. That is, it

can reveal more faults earlier than the other methods do.
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Although the APFD values reflect the global performance of prioritization techniques, in

practice developers often cannot inspect all reports in a limited time budget. Thus, I also

provide a metric to reveal the percentage of bugs that would be found at certain milestones

of inspection. For this, I use linear interpolation [71] to evaluate the partial performance of

each prioritization technique. I define linear interpolation as following:

• Qp = M×p, which is the number of faults corresponding to a percentage p. Let int(Q)

and frac(Q) be the integer part and fractional part of Q, respectively. If frac(Q) 6= 0,

the linear interpolation is needed.

• i, j are the indexes of reports that reveal at least Q and Q+1 faults respectively. The

linear interpolation value Vp is calculated as Vp = i+ (j − i)× frac(Q)

In our experiment, I set the p ∈ {25%, 50%, 75%, 100%}.

5.3.4 Experimental Setup

In order to ensure the correctness of the implementation of SPM, I directly used the MAT-

LAB code provided by the inventors of SPM. There are some key parameters affecting the

performance of SPM, which are the size of the descriptor dictionary DictSize, number of lev-

els of the pyramid L, and number of images to be used to create the histogram bins HistBin.

In our experiment, as the recommended values of the SPM inventor, I set DictSize = 200,

L = 3, and HistBin = 100. For the NLP technique, because all of test reports in our exper-

iment are in Chinese, I employed the LTP platform to assist the text description analysis.

Moreover, the size of screenshots (i.e., image resolution) submitted by the crowd workers

was not fixed; in fact, they varied widely. In order to apply the SPM technique, I resize all

screenshots to 480× 480 pixels. Given the way that the SPM technique focuses on detecting
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features within images, resizing the images should not produce a substantial impact to the

distance calculation.

In this experiment, I implemented all of the strategies presented in Section 5.2. Particu-

larly for the Text&ImageDiv strategy, I set the threshold of determining the identity of

screenshots γ to 0.1, the factor α that is used to weaken the weight of test reports without

any screenshots to 0.75, and the parameter β used to balanced the text-based distance and

screenshot-set distance to 1, which means, I weigh the two kinds of distance equally.

5.4 Result Analysis

In this section I present the results of our experiment, then interpret those results to at-

tempt answers to our research questions, and finally discuss the overall results. In order

to reduce the bias that was introduced by the random initialization of the algorithm and

the tie-breaking, I conducted the experiment 30 times and present the result in Figure 5.4.

Figures 5.4 (a, c, e, g, and i) show the boxplots of the APFD results for the five projects,

respectively, each aggregated over the 30 experimental runs. Figures 5.4 (b, d, f, h, and j)

show the average fault detection rate curves. The exact mean value of APFD is shown in

Table 5.3, which also includes the result of one-way ANOVA tests of all strategies: the im-

proved extent over Random, and the gap between our strategies and Ideal. Furthermore,

I present the mean linear interpolation value over the 30 experiment runs in Table 5.4 to

demonstrate the performance of our techniques in limited time budgets.

5.4.1 Answering Research Question 1

RQ1: Can test-report prioritization substantially improve test-report inspection to find

more unique bugs earlier?
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Based on the results shown in Figure 5.4 (a, c, e, g, i) and in the third column of Table 5.3, I

find, to different extents, all of the three diversity-based prioritization strategies outperform

Random. Furthermore, in Table 5.3, all F-values are relatively large and the p-values

≤ 0.001, which means the APFD values of the four strategies are significantly different.

Compared with the Random strategy, the percentage of improvement of Text&ImageDiv

ranges 9.93% – 24.95%.

In summary, all of the diversity-based prioritization methods can improve the

effectiveness of test report inspection over Random, and thus test-report pri-

oritization can substantially, and significantly, find more unique buggy reports

earlier in the prioritized order.

5.4.2 Answering Research Question 2

RQ2: To what extent can the image-based approaches improve the effectiveness of the

text-only-based approach?

Figure 5.4 reveals that, except on the “JustForFun” project, the Text&ImageDiv out-

performs the TextDiv, ImageDiv and Random strategies, which means, the image-un-

derstanding technique improves the performance of the text-only-based technique. I did a

deeper investigation on this problem and found what I speculate to be the reason for the

different result for the “JustForFun” project. JustForFun is an image editing and shar-

ing application, and as such, the inherent functionality is to process various user-provided

photos. The screenshots for this app largely consist of user content, with relatively few

app-specific features in those screenshot images. Thus, the various screenshots of “Just-

ForFun” make the screenshot sets distance calculating procedure generate large distances,

even between the same activity views, which leads to a negative impact on the image-based

strategies. In contrast, based on Table 5.4, Text&ImageDiv outperformed the single text-
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based prioritization techniques on inspecting different percentage of test report of “SE-1800”,

“CloudMusic” and “Ubook.”

In summary, generally, compared with the text-only-based prioritization strat-

egy, the image-understanding technique is able to improve the performance of

prioritizing test reports, both globally (i.e., APFD) and partially (i.e., linear

interpolation at many level). However, I found that some classes of apps are

naturally less suited for image-understanding techniques — namely apps where

the bulk of the views are composed of user contect.

5.4.3 Answering Research Question 3

RQ3: How much improvement is further possible, compared to a best-case ideal prioritiza-

tion?

The fourth column of Table 5.3 shows the gap between our strategies and the theoretical

Ideal. I found the gap between Text&ImageDiv and Ideal vary from 15.21% to 31.98%.

For more details, I can observe the growth curves in Figure 5.4. The curve of Ideal grows at

a fast rate. The best situation reached top while the Text&ImageDiv only stayed around

35%.

In Summary, I find that my prioritization methods can provide a reasonable

small gaps for the theoretical Ideal result, particularly for some subjects. How-

ever, there is room for future work to continue to improve the prioritization

ordering of test reports.
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5.4.4 Discussion

Method Selection. Reflecting on all of our experimental results, I find that image-

understanding techniques can provide benefits to test-report prioritization, and that the

area of such hybrid text-and-image approaches demonstrates promise. That said, I also

observed that different techniques may be more or less applicable for different types of ap-

plications. Specifically, I observed that the image editor app produced the worst results for

the image-based and hybrid techniques, compared to text-only. In such cases, where the

screenshots mainly represent user content, image-based techniques may be less applicable.

However, in applications in which little user or external content is displayed, image-based or

hybrid techniques may be more applicable.

One noteworthy point is that both the TextDiv and Text&ImageDiv are full-automated,

which I believe are more applicable in practice than the semi-automated DivRisk and Risk

techniques [32] that require the users to input the inspection result to prioritize the crowd-

sourced test reports dynamically.

Mobile Application Testing. All of our experimentation was conducted on mobile appli-

cations, and thus I cannot state with certainty that such results would hold for other types

of GUI software, such as desktop or web applications. However, I speculate that while there

will likely be new and unique challenges in these domains, the basic concepts would likely

hold, at least for the class of applications with relatively less user content. Desktop and web

applications have the potential for even more differing screen and window sizes, as well as

multiple windows and pop-up dialog windows, and each of these unique aspects would likely

need to be addressed. Overall, I speculate that the success of such image-understanding-

assisted test-report prioritization techniques would likely depend on the visual complexity

of the application views.
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Table 5.3: One-way ANOVA Tests

Method APFD Improvement Gap
Means X−Random

Random
Best−X

X

SE-1800: F (3, 119) = 54.966, p-value ≤ 0.001
Ideal 0.982 37.47% —

Text&ImageDiv 0.852 19.32% 15.21%
TextDiv 0.817 14.46% 20.10%

ImageDiv 0.836 17.04% 17.45%
Random 0.714 — 37.47%

CloudMusic: F (3, 119) = 73.170, p-value ≤ 0.001
Ideal 0.917 58.65% —

Text&ImageDiv 0.722 24.95% 26.97%
TextDiv 0.664 14.98% 37.98%

ImageDiv 0.641 10.99% 42.94%
Random 0.578 — 58.65%
Ubook: F (3, 119) = 84.167, p-value ≤ 0.001

Ideal 0.889 40.92% —
Text&ImageDiv 0.750 18.95% 18.47%

TextDiv 0.735 16.57% 20.88%
ImageDiv 0.686 8.69% 29.65%
Random 0.631 — 40.92%

iShopping: F (3, 119) = 73.178, p-value ≤ 0.001
Ideal 0.825 45.08% —

Text&ImageDiv 0.625 9.93% 31.98%
TextDiv 0.614 7.88% 34.48%

ImageDiv 0.586 2.98% 40.89%
Random 0.569 — 45.08%

JustForFun: F (3, 119) = 94.482, p-value ≤ 0.001
Ideal 0.950 45.89% —

Text&ImageDiv 0.784 20.41% 21.16%
TextDiv 0.842 29.28% 12.85%

ImageDiv 0.681 4.54% 39.55%
Random 0.651 — 45.89%
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(a) APFD on SE-1800 (b) Fault Detection Rates on SE-1800

(c) APFD on CloudMusic (d) Fault Detection Rates on CloudMusic

(e) APFD on Ubook (f) Fault Detection Rates on Ubook

(g) APFD on iShopping (h) Fault Detection Rates on iShopping

(i) APFD on JustForFun (j) Fault Detection Rates on JustForFun

Figure 5.4: Test report prioritization experiment results
(averaged over 30 runs)
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Table 5.4: Linear interpolation of the average number of inspected test reports

Program Strategy 25% 50% 75% 100%
Ideal 1.75 3.50 5.25 7.00

Text&Image 3.51 12.32 31.30 91.70
SE- TextDiv 6.98 23.27 43.27 112.67
1800 ImageDiv 4.21 16.38 50.38 86.47

Random 4.79 31.05 79.36 145.57
Ideal 4.00 8.00 12.00 16.00

Text&Image 13.10 24.30 39.33 62.00
Cloud- TextDiv 16.10 34.57 44.57 59.00
Music ImageDiv 11.07 26.53 49.77 85.83

Random 14.10 33.97 59.20 88.83
Ideal 5.50 11.00 16.50 22.00

Text&Image 7.33 18.67 44.17 64.43
Ubook TextDiv 10.52 23.67 35.17 78.03

ImageDiv 8.05 20.20 50.73 95.40
Random 9.35 29.03 57.82 93.13

Ideal 18.25 36.50 54.75 73.00
Text&Image 37.16 66.42 119.27 201.23

iShop- TextDiv 52.89 82.82 111.30 160.07
ping ImageDiv 32.60 75.88 134.59 206.30

Random 37.20 83.72 144.13 207.13
Ideal 2.25 4.50 6.75 9.00

Text&Image 2.94 9.32 18.13 64.83
Just- TextDiv 2.88 8.07 17.28 45.23

ForFun ImageDiv 3.16 18.12 39.01 79.47
Random 2.88 22.25 49.88 80.17

5.5 Threats to Validity

There are some general threats to validity in our experimental results. For example, I need

more projects and different parameter values combinations to reduce the threat to external

validity and to better generalize our results.

Crowd Workers. Due to a monetary limitation, I simulated the crowdsourced mobile

testing procedure to validate our techniques, in which, I invited the students to work as

crowd workers. Such a choice means that our population of workers may be less diverse

than the population of crowdsourced workers from the general populace. Theoretically,
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“crowdsourcing” requires workers come from a large pool of individuals that one has no

direct relationship with the others [81], which implies that our result may be different if the

crowd workers were from the internet with open calls. However, according to the study of

Salman et al. [110], if a technique or task is new to both students and professionals, similar

performance can be expected to be observed. Based on this study, I believe this threat may

not be the key problem for our validation procedure.

Subject Program Selection. The cost of conducting this kind of experiment is quite

expensive (involved more than 300 people), the monetary budget is limited, so I conducted

the experiment on only five applications. However, these five applications are widely used

and publicly accessible. The functionalities of our subject applications vary widely, including

music player, video player, picture editor, power monitor, and online shopping assistant.

Thus, I believe these applications can be used to validate the our methods, at least to give

initial indications of effectiveness and applicability.

Natural Language Selection. Admittedly, in our experiment, all of the test reports were

written in Chinese, which could threaten the generalizability to other natural languages.

However, the NLP techniques and text-based prioritization technique are not the focus of

this work. Even though I used text-based techniques as one of our baselines, what mat-

ters to the performance of these technique is the distance built from keywords set but not

the languages. As for the keyword-extraction technique, different languages have their own

inherent characteristics, and thus NLP researchers have proposed keywords-extraction tech-

niques for different languages. In future research, I will validate our technique with test

reports written in English. Moreover, the focus of this work is to study the potential for

image-understanding techniques to augment text-only-based techniques.
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5.6 Conclusion

In this chapter, I proposed a novel technique to prioritize test reports for inspection by

software developers by using image-understanding techniques to assist traditional text-based

techniques, particularly in the domain of crowdsourced testing of mobile applications. I

proposed approaches for prioritizing based on text descriptions, based on screenshot images,

and based on a hybrid of both sources of information. To our knowledge, this is the first

work to propose using image-understanding techniques to assist in test-report prioritization.

In order to evaluate the promise of using image understanding of screenshots to augment

text-based prioritization, I implemented our hybrid approach, as well as a text-only- and

image-only-based approaches, and two baselines: an ideal best-case and a random average-

case baseline. I found that prioritization, in almost all cases, is advantageous as compared

to test-report inspection based on an unordered process. I also found that for most software

applications that I studied, there was a benefit to using the screenshot images to assist

prioritization. However, I also found that there exist a class of applications for which image-

understanding may not be as applicable, and found room for improvement to narrow the

gap to the hypothetical best-case ideal result.

As such, in future work, I will investigate ways to help prioritize for those classes of appli-

cations, and also identify application classes that are best suited for each type of technique.

Finally, in future work I will extend the set of software systems that I use and the natural

language used to write the test reports.
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Chapter 6

Crowdsourced Test Reports

Aggregation and Summarization

To improve the efficiency of processing test reports, software-engineering researchers have

presented many techniques to detect and summarize duplicates. Duplicate-detection tech-

niques aim at assisting developers in identifying duplicate submissions from the reposi-

tory [109, 119, 118, 2, 69, 135, 120, 91, 46, 27]. Prior research primarily focuses on two

kinds of information: text descriptions [109, 119, 118, 2, 69, 120, 91, 46, 27] and execution

traces [135] to reach this goal.

Further, conventional and widely used issue-tracking systems, such as Bugzilla [15], Jira [59],

and Mantis [79], have provided keyword-search-based features for reporters to query similar

reports to reduce duplicates [45, 103]. Also, Rastkar et al. presented a test-report summa-

rization technique to assist developers to identify key sentences from test reports to reduce

inspection efforts [105].

However, the settings and inherent features of mobile crowdsourced testing bring challenges

into applying these techniques. Zhang et al. found that mobile test reports often contain

75



insufficient text descriptions and rich screenshots in comparison with desktop software [142].

Under this situation, while text-analysis-based methods become less effective because of short

and inaccurate text descriptions, automatically identifying information from screenshots

becomes critical for developers to understand reports. Further, while all of these techniques

are built on the assumption that duplicate reports are harmful to software maintenance and

aim at filtering out this information, Zimmermann et al. and Bettenburg et al. empirically

found that duplicate reports are helpful for report comprehension and debugging [144, 11].

Thus, in this chapter, I propose an approach, named CTRAS, which is capable of leveraging

the information of duplicate test reports to assist developers in comprehending test reports.

Different from the conventional bug/test-report-processing techniques, instead of discour-

aging developers from submitting duplicates and filtering them out, our technique aims at

leveraging the additional information provided by them, and summarizing both the textual

and image information from the grouped duplicates to a comprehensive and comprehensible

report.

CTRAS automatically detects and aggregates the duplicate reports by measuring the simi-

larity of both the text description and screenshots. Based on the aggregation results, for each

duplicate report cluster, it identifies the most informative report, which I call the master

report, and summarizes the supplementary text and screenshots. These supplementaries are

sorted by their weight, and CTRAS generates the final summarized report by combining the

master report and supplementaries to provide the developer with a comprehensible overview

of each test-report duplicate group.

To validate CTRAS, I conducted both quantitative and qualitative experiments using more

than 5000 test reports collected from 12 mobile applications. The results show that CTRAS

can accurately detect and aggregate 87% duplicate reports, by utilizing both text descrip-

tion and screenshot information. It improves the duplicate report detection and aggregation

accuracy by 6%, and by 44% when compared to only text-based, screenshot-based methods.
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Meanwhile, based on our evaluation result, CTRAS generates more descriptive summaries

when compared to classic MCB [34, 121] and MMR [18] summarization methods. Further-

more, I conducted a task-based evaluation involving 30 participants, whose result indicates

that CTRAS can save 30% time costs on average without losing correctness.

6.1 Preliminary

In this section, I highlight the main goals of CTRAS and provide definitions and notations

that will be used subsequently. The overall goal is to aggregate duplicate test reports and

provide a comprehensible overview of the group. Specifically for mobile software, I seek to

provide a technique that is robust and effective in clustering test reports that may contain

short text descriptions, but may include screenshots that exhibit failure symptoms.

For a software project with submitted crowdsourced test reportsR(r) = {r(Si, Ti)|i = 0...n},

in which, S denotes the screenshots (i.e., images) containing the views that may capture

symptoms of the bug being reported, and T denotes the text describing the buggy behavior.

Note that each the text description consists of multiple sentences, thus I have Ti = {tij|j =

0...m}, in which, tij denotes the jth sentence in the test report ri. Similarly, I employ sij to

denote the jth screenshot in the test report ri.

Here, I list fundamental definitions as follows to ease my introduction.

Summary: The goal of CTRAS is to cluster duplicate reports into groups, each group

of duplicate reports is a subset of R, and then to generate a summary S for each group in

G. In my formulation, I define a summary for a group of duplicate test reports as a master

report and a list of supplementaries.

Master Report: In contrast to traditional testing, crowd workers are often inexperienced
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and unfamiliar with software testing. They may describe a bug from different aspects and

in various ways. This fact leads the quality, writing style, and content of these reports to

varying widely. Hence, I seek to find one report that provides a relatively comprehensive

description of the issue for the group of duplicates. A master report is defined as an individual

test report r? ∈ G that is identified as providing the most information.

Supplementary: Even though presenting the most informative one or its summary is

helpful for developers to build a high-level understanding of the bug, the supplementary

information, such as different software and hardware settings, diverse inputs, and various

triggers, is critical for developers to gain enough knowledge of debugging and fixing. These

supplementary details from other test reports in the duplicate group can provide additional

insights to developers in understanding the varying conditions the lead to the issue. Hence, I

seek to identify the useful information from the redundant information and summarize them

into the comprehensible supplementaries. A supplementary is defined as the representative

information item, i.e., either text or screenshot, which is taken from (G − {r?}).

Textual supplementaries are small snippets of text that present information that is not

included in the master report, and thus can provide more information and greater context for

developers during debugging and triaging. Likewise, image supplementaries are screenshots

that differ from those included in the master report.

6.2 Technique Design

I present the process flow of CTRAS in the Fig. 6.1. CTRAS is composed of three

main components: distance calculator, aggregator and summarizer. The distance calculator

measures the distances among reports based on their text description and screenshots. The

aggregator is designed for computing the distance between test reports and aggregating the
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Figure 6.1: Process flow of CTRAS

duplicates into group G. I use hierarchical clustering to accomplish this task. To assist

developers understanding the content of the duplicate groups quickly, the summarizer first

picks a single test report that best exemplifies the group of aggregated test reports, then it

supplements information by gradually extracting supplementary information, which contains

topics or features uncovered by the master report.

6.2.1 Distance Calculator

The distance calculator is a fundamental part of CTRAS. Its output, the distance matrix,

is employed by both the aggregator and summarizer. CTRAS first calculates the text-level

and screenshot-level distances separately by applying natural-language processing and image

processing techniques, then combine these distances to generate whole-report-level distances.

The text-level distance calculation is composed of the following sub-steps: (1) analyzing

reports’ textual descriptions, and (2) measuring distances among reports under a specific

strategy.
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Text Preprocessing. Similar to I discussed in Chapter 4, I preprocess the text from

each test report by spliting text into sentences and segmenting each sentence into words.

CTRAS applies Language Technology Platform (LTP)1, which is the most popular Chinese

processing platform. Then, I use LTP to mark each word with its Part-of-Speech (POS),

and then filter the words to retain only nouns and verbs, which can reflect the main content

of a document [100, 50]. Finally, I remove the stop words based on the stop-word-list2.

Text Distance Calculation. Considering that the words for each test report are gener-

ally short for mobile crowdsourced testing. In the implementation of CTRAS, I treat all

words (after preprocessing) equally and apply the Jaccard Distance to calculate the distance

between reports. The formula of Jaccard Distance is represented in Equation 6.1, in which

dT (ri, rj) means the textual distance between report ri and rj, and Ti and Tj denotes the set

of words of report ri, rj respectively.

dT (ri, rj) = 1− |Ti ∩ Tj|/|Ti ∪ Tj| (6.1)

The processing of screenshots consists of two steps: (1) feature extraction and (2) distance

calculation.

Feature Extraction. To get the representative features of the screenshots, I utilize the

Spatial Pyramid Matching (SPM) [70] technique, whose basic approach is subdividing the

image iteratively at different levels of resolution and computing the orderless histogram

of local features at each sub-region, and then concatenating these spatial histograms with

different weights. The final concatenated histogram represents the visual feature of the

image.

Distance Calculation. To perform distance calculations of screenshot sets for test reports,

1https://www.ltp-cloud.com
2http://www.datatang.com/data/19300
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I followed the conventions defined by Pele et al. [95]. I first utilize the chi-square distance

metric to calculate the distance between two screenshots. For each pair of screenshots si and

sj, I calculate their distance using their histograms generated from SPM Hi and Hj and the

distance measure in Equation 6.2. Considering that in practice there are often more than

one screenshot in a test report, I set a threshold `S to identify whether two screenshots are

describing the same scenario. Using Equation 6.2 and `S to define a corpus of representative

screenshots. As such, I identify the unique representative screenshots from each test report,

then calculate the final screenshots-set distance between two test reports with the Jaccard

distance metric. The Jaccard distance formula is listed in the Equation 6.3, in which Si, Sj

are the representative set of reports ri and rj respectively.

d∗S(si, sj) =‖ Hi, Hj ‖2=
√∑n

k=1(Hk
i −Hk

j )2 (6.2)

dS(ri, rj) = 1− |Si ∩ Sj|/|Si ∪ Sj| (6.3)

Once CTRAS has calculated the textual distance dT and the screenshot distance dS, it

can compute the overall test-report distance for each pair of test reports. CTRAS employs

the balanced formula, which I have introduced in the Chapter 5, as the report distance

calculation formula.

6.2.2 Aggregator

Based on the distance matrix produced by the distance calculator, the aggregator is capa-

ble of measuring the similarity between test reports and further grouping the duplicates.

Considering that in practice the number of groups cannot be predicted, I adopt Hierarchical
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Agglomerative Clustering (HAC) [29], which can determine the number of groups based on

a threshold distance value, to group the duplicates.

Hierarchical Agglomerative Clustering method treats all reports as independent clusters,

uses report distance as input and groups test reports over a variety of scales by creating

a hierarchical cluster tree, I utilize threshold t to determine the cut point and assign all

the test reports below the cut point to a single cluster. Particularly, I adopt Single-linkage

algorithm in the implementation of CTRAS, which takes the shortest distance between all

test reports in two clusters as their cluster distance. Through Single-linkage I can attain

relatively abundant and comprehensive duplicate reports.

6.2.3 Summarizer

The summarizer is the core component of CTRAS. For each duplicate test-report group G,

it performs the following three steps to generate a summary to assist developers in forming

a comprehensive understanding over all reports in G: (1) identifying the master report r?,

(2) generating supplementaries, and (3) forming and generating final summaries.

To ease explanation, I take a real group containing six test reports in our empirical study

as an example, and I illustrate each substep in Fig. 6.2. I list the six similar reports in the

exemplary group in Fig. 6.2-a. All of these six reports are describing the same bug, i.e.,

logging in error the App via a third-party tool, from different respects. As shown in Fig. 6.2-

a, there are six similar reports describing the error of third-party login in the exemplary

group. Each report of this group consists of its basic attributes, such as report names,

creation time, as well as its textual description and several screenshots.

Master Report Identification. To help the developers concisely understand the topic of

the test reports within the group, I identify the master report r? in the first step. I abstract
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Figure 6.2: A Running Example of CTRAS

each test-report group into a graph, within which each node represents an individual report.

The weight of edges between two nodes indicates the similarity between these two reports.

Thus, CTRAS can apply the PageRank [93] algorithm, which can compute a numerical

rank score and measure the importance for each node within a weighted graph, on each

test-report group. CTRAS identifies the test report having the greatest page rank score as

the master report for the group.

Example: The graph representing the exemplary group is illustrated in Fig 6.2-b, and the

table shows the hybrid similarity between each pair of these reports. CTRAS compute the

weight of each node by applying the PageRank algorithm. CTRAS can find that report-

3 has the highest weight, and thus it is selected as the master report (labeled with r?) of

these six reports. Through reading the contents of report-3, developers can reach a high-level

understanding of the whole test report group, i.e., , there is a bug that users can’t login the

App through QQ social login service as it fails the authentication and is regarded as non-official

software.

Supplementary Generation. Even though I have identified the master report r? and
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helped the developer get the most informative report within the group G, describing the same

bug from other perspectives and providing supplementary materials is critical for developers

in fixing the bug properly. Thus, I further analyze the other reports and identify the content

that is shared among them as the supplementary points. In this procedure, CTRAS perform

two substeps for identifying the supplementaries: (1) identifying candidate items from (G −

{r?}); (2) grouping the candidate items to form a supplementary.

Candidate Item Identification. Because the sentence is considered to be the immediate

integral unit in linguistic theory, a number of prior research efforts that aimed at analyzing

test/bug reports to assist developers in understanding the bug descriptions have selected

the sentence as the basic unit [105, 75, 77]. I thus also do so accordingly and measure the

similarity between two sentences by computing the Jaccard Distance between their keyword

vectors. Jaccard Distance is a useful metric to compare the similarity and diversity of two

sets, which is shown in Equation 6.4. In this equation, t and t′ denote the keyword sets

of two sentences, |t ∩ t′| denotes the number of words in the intersection of both sets, and

|t ∪ t′| denotes the number of words in the union of both sets. Regarding the screenshot, as

I discussed in Section 6.2.2, I adopt the method described in section 5.2 and corresponding

parameters to identify different screenshots.

Given a test-report group G and its master report r?, to generate supplementaries for r?,

the first step is to identify candidate items, i.e., sentences and screenshots, which are NOT

included in r? from (G − {r?}). From the set (G − {r?}), I extract all singleton items, i.e.,

individual sentences and screenshots, to get the set of sentences T = {tij} and the set of

screenshots S = {sij} of (G − {r?}). Similarly, I can get the set of sentences and set of

screenshots from r?, and I denote them T ? = {t?j} and S? = {s?j} respectively. For each

sentence, of which the keyword set is {t} in T , if not existing any element in S? having the

J(t, t?) is smaller than the predefined threshold value, I consider it is a candidate sentence

84



for r?. Similarly, given S and S?, I can identify the candidate screenshot for r?.

J(t, t′) = 1− |t ∩ t′|/|t ∪ t′| (6.4)

Example: As shown in Fig. 6.2-c, I label the text items with rectangles and the screenshot

items with diamonds. CTRAS identified eight candidate sentences and four candidate screen-

shots from the exemplary group. For example, t0,2 is a candidate sentence as it supplements the

“expected result” information (i.e., “ErrorCode: 100044”) for r?(i.e., report-3 ); t5,0 expresses

a special case that “without QQ installed” and s5,0 is a candidate screenshot for this case.

Candidate Item Refinement. Through candidate item identification, all candidate items,

which are not similar to any item in the master report, are identified. However, some of these

items may be too brief to understand, or they are similar with each other. Therefore, I refine

these candidate items into concise and representative supplementaries.

The refinement process of CTRAS consists of three sub-steps: 1. clustering similar candi-

date items; 2. providing an additional clustering of the candidate clusters; and 3. adding

weights to candidates within the clusters. In the first step, CTRAS groups similar candidate

items to remove redundancy and improve the conciseness of the supplementary. It applies

hierarchical agglomerative clustering on the set of candidate sentences to form some candi-

date sentence clusters. For each candidate sentence cluster, it further applies the PageRank

algorithm to compute the weight for every element, and then pick up the one with highest

weight as the representative.

Similarly, CTRAS can apply the same strategy on the candidate screenshot set and get the

candidate screenshot clusters. Moreover, it records the origin information for each candidate,

so that it can map candidates to reports and vice versa. This information is not only useful

for further aggregating candidate sentence clusters in the next sub-step but also helpful
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for developers to track back original reports in practice. Note that, even though CTRAS

conducts clustering over the candidate item sets and get the candidate item clusters, clusters

may have only one element because some items contain distinct information.

Next, it further groups the candidate clusters. The purpose of this step is to restore context

of the candidate sentences and screenshots. This extra level of grouping is useful particularly

for singleton clusters. CTRAS merges clusters based on the origin information: clusters

that contain candidates originating from much of the same test reports are clustered. Be-

cause restoring the sentence and screenshot to semantic context is helpful for improving the

understandability, this step is designed for grouping all candidate item clusters from the

same report. The benefits of doing this is two-fold: 1. connecting the singleton clusters from

the same report can form semantic context, which is capable of improving the understand-

ability; 2. the former substep has grouped these items having similar meaning into clusters,

further grouping these clusters coming from similar source reports is helpful to eliminate the

redundancy.

I define the distance between two candidate item clusters t and s as Equation 6.5, in which,

each cluster can be either candidate sentence cluster or candidate screen cluster and the Φ(t)

represents the set of test reports that contributed to the candidate item cluster t. Based

on the Equation 6.5, candidate item clusters are aggregated into supplementaries when the

distance between them is smaller than the threshold value θ.

D(t, s) = 1− |Φ(t) ∩ Φ(s)| / |Φ(t) ∪ Φ(s)| (6.5)

Further, I identify the most representative candidate items in each supplementary cluster.

Based on our definition of sentence similarity and screenshot similarity, I abstract all sen-
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tences and screenshots within a supplementary into a weighted graph respectively and employ

the similarity value as the weight of edges. Given these two weighted graphs, I apply the

PageRank algorithm and obtain the PageRank score for each of the node, i.e., sentences

and screenshots. These weights will be used within the next phase of content extraction to

highlight the most relevant and representative information for each supplementary.

Example: Fig. 6.2-d displays the refinement result of all candidate items: three candidate

sentences (i.e., t0,2, t2,1 and t4,2) are grouped together because they contain “100044 error

code”; candidate clusters {t5,0}, {t5,2} and {s5,0} are grouped because they belong to report-5.

Particularly, the size of supplementary-0 is 3 as its content comes from three reports.

Difference Grouping. After detecting all differences, CTRAS again applies Hierarchical

Agglomerative Clustering to group them into clusters, which are called text supplementaries

or image supplementaries according to their content type. Moreover, for each supplementary,

CTRAS adopts PageRank algorithm to sort its sentences/screenshots decreasingly.

Furthermore, for each supplementary sup, I set its attribute sup.sources = {r|∃ti ∈ r, ti ∈

sup} and sup.size = |sup.sources|. There are several advantages of maintaining these

attributes, firstly, developer can track the relationship between supplementary and report

through sup.sources which is helpful to understand where the supplementary topic comes

from and how does it evolve. Moreover, the size of supplementary indicates the frequency

that the topic is mentioned in reports, thus it can be treated as supplementary prioritization

criteria.

Taking all different sentences/screenshots as input, CTRAS adopts hierarchical clustering

technique (cut point threshold is set γT/γS) to cluster sentences/screenshots into groups.

In addition, there exists a lot of redundant information in the text/screenshot groups, so

CTRAS applies weighted pagerank algorithm to sort the sentences/screenshots in each
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group and extract few of them. I define Text/Screenshot Supplementary here as the ex-

tracted sentences/screenshots and the size of Text/Screenshot Supplementary is the number

of reports that contributes to its content.

Algorithm 4: COMBINATION ALGORITHM

function SupplementaryCombining(T , S, D, θ):
C ← ∅;
while T 6= ∅ and S 6= ∅ do

// find nearest pair between text and image supplementaries

(t, s)← argmint∈T ,s∈S D[t, s];

if D[t, s] > θ then // combination stops

break;

append (t, s, |t.sources ∪ s.sources|) to C;
T ← T \ {t};
S ← S \ {s};

return {T ,S, C};

Content Extractor. Based on master report and supplementaries, CTRAS can further

refine them and generate a concise final summary.

In many textual summarization techniques (e.g., [104, 105, 75, 57]), the compression ratio

K controls the conciseness of the final summary. In previous works, compression ratio is

computed as the ratio of the number of selected keywords to the number of total keyword

within the original document. However, because CTRAS aims at generating summary

over both text and screenshots, I extend the classic definition. For the text, I define the

compression ratio as the ratio of the number of unique selected word to the total number of

unique word within the supplementary. Similarly, for the screenshot, the compression ratio

is the ratio of the number of selected screenshots to the total number of screenshots within

the supplementary. I weight text and screenshot equally and thus utilize the mean value of

these two compression ratios as the compression ratio for the whole summary.

To generate the final summary, I first include the master report, and then list all supplemen-

taries sorted by the number of test reports that contributed to them in descending order.
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For each supplementary, I iteratively select the sentence or screenshot based on the weights

(computed in Step 3 of the candidate refinement phase) and include them into the summary,

until reaching the summary compression ratio set by the user.

Example: The detail summarizing process is shown in Fig. 6.2-e. I take the supplementary-0

as sample. It contains 28 keywords and 0 screenshots. At the beginning of summarization, the

sentence T0,2 is selected as it has the highest PageRank score, then the summary contains 9

keywords and the compression ratio has reached the limit (i.e., the compression ratio is 9/28

> 0.25), the summarization process ends.

Taking the master report and all supplementaries as input, CTRAS’s content extractor

generate the final summarized report through Algorithm 5. Given aggregate report RA and

its summarization ratio threshold K, CTRAS first detects master report rm and supple-

mentaries SU from RA, then it utilizes Algorithm 5 to generate summarized report RS.

In the beginning, RS is empty, CTRAS first appends master report rm to summary and

calculate the current summarization ratio k, then CTRAS appends supplementary to RS

until k reaches K or there is no more supplementary.

6.3 Implementation

6.3.1 Architect and Design

I present the architecture of CTRAS in Figure 6.3. In the implementation, CTRAS is com-

posed of four main components: aggregator, summarizer, analyzer, and visualizer. CTRAS

aims at assisting software developers in four software-maintenance tasks: bug triaging, test-

report comprehension, duplicate bug-report aggregation, and expert recommendation. First,

the aggregator computes the distance between each pair of test reports based on both the tex-
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Algorithm 5: SUMMARIZATION ALGORITHM

function CalCurrentRatio(S, G):
kT ← |Φ(S)|/|Φ(G)|; kS ← |Φ∗(S)|/|Φ∗(G)|;
k ← (kT + kS)/2;
return k;

function Summarization(G, K, r?, SU):
S ← ∅;
append r? to S;
k ← CalCurrentRatio(S,G);
while k < K and SU 6= ∅ do

su← GetTopItem(SU,K);
append su to S;
k ← CalCurrentRatio(S,G);
SU ← SU \ {su};

return S;
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Figure 6.3: Components and features of CTRAS
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tual description as well as the screenshots to form a distance matrix. Based on the distance

matrix, the aggregator is capable of detecting duplicates and grouping them into clusters.

And then, the summarizer identifies the most informative test report, i.e., master report,

and distinct topics for each duplicate group. Summarizer refines these distinct topics and

identifies the most representative items to form supplementaries. These supplementaries,

along with the master report, comprise the summary that summarizes the cluster of dupli-

cates to help developers comprehend the failures and localize bugs. Based on the summary,

the analyzer mines employ the historical information to predict the severity level, identify

the domain expert, and recommend the expert for fixing the bug. Further, to show the

aggregate result and help the developers track the summarization procedure, the visualizer

also shows aggregation graphs and duplicate-relationship graphs.

Duplicate Detector. Detecting duplicates from the overwhelming number of crowdsourced

test reports is the first step of our data processing. CTRAS measures the similarity in both

of the textual descriptions and screenshots of test reports. CTRAS employs NLP tech-

niques to process the textual descriptions, including parts of speech, stop-word removal, and

similarity computation. To measure the distance of screenshots, CTRAS uses SPM (Spatial

Pyramid Matching) to extract the SIFT (Scale-Invariant Feature Transform) features and

computes the Chi-Square distance. Based on the similarity of the textual descriptions and

screenshots, CTRAS detects duplicates and groups the test reports into test-report clusters.

Aggregator. Aggregator component has two fundamental functions: (1) identifying the

master report, and (2) extract supplementary topics from the duplicates. Based on the

distance matrix generated in the duplicate detector, the aggregator employs the PageRank

algorithm to measure the importance of reports within each cluster and further identify the

master report. After CTRAS identifies the master report, it compares each sentence of

other reports with the master report and marks the different ones. Then, CTRAS ranks

the marked sentences based on the PageRank algorithm and conducts hierarchical clustering
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on the set to identify topics. Because I consider all topics are helpful for reproducing and

understanding the bug, and thus should be included as supplementary descriptions, CTRAS

further groups the duplicate reports based on the sentence-clustering result and highlights

crucial sentences for each report. Users can check the aggregation result and choose to

confirm or modify it. To help users make this decision, the aggregator provides the duplicate-

relationship graph for each of the test reports. Finally, for test reports that are not aggregated

into any aggregate reports (i.e., their descriptions and screenshots are not similar to any other

test reports), CTRAS considers them as revealing a distinct bug. Thus, CTRAS allows

users to manually process and aggregate such test reports.

Analyzer. CTRAS employs the weighted keywords of each of the test-report clusters

to mine the historical assignment information in the database. Based on this historical

information, CTRAS predict the severity of each test report and matches the best fixer for

each group of test reports. Compared with similar conventional tools, with which users need

to assign reports manually, users only need to check the correctness of the recommendation

and choose to confirm or modify it. Note that for some new reports, there may be no domain

expert; under this situation, CTRAS cannot automatically identify the proper fixer and as

such leaves the recommendation as “None”.

Expert Recommender. After the duplicate detector completes its clustering, CTRAS

use the weighted keywords of each of the test-report clusters to mine the historical assignment

information in the version-history database. Based on this information, CTRAS finds the

best fitting domain expert for each cluster, and these recommendations are presented to the

user. Compared with similar conventional tools, with which users need to manually assign

reports, CTRAS only requires users to check the recommendations and choose to confirm

or modify them. Note that for some new reports, there may be no domain expert; in this

situation, the recommender cannot automatically identify the proper fixer and as such leaves

the recommendation as “None”.
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Visualizer. The results of the duplicate detector, aggregator, and expert recommender are

presented in a web-based UI, including several visualizations. A tag cloud is presented to

depict and summarize the main topics within an aggregate report. The duplicate-relationship

graph is visualized to show the relationships of an individual test report with the similar

test reports and the aggregate report. An aggregation graph is visualized to show the

relationships among all of aggregated test reports and their topics within a cluster. The

interface is further described, as well as their usage, are further described in the following

section.

To assist users to comprehend the reports, I present a set of web-based UI view and several

visualization results in CTRAS. For each of the test report clusters, CTRAS generate a

weighted keyword cloud from all textual description to present a high-level abstraction for

describing the bug. Because CTRAS split the text description and only keep the noun

and verb, with the keywords cloud, users can immediately catch fundamental operation and

object that are related with the bug. Besides, to assist developer to comprehend the test

reports, CTRAS also provides the aggregation graph in the aggregate report view, which

is helpful for users to understand the relationship between supplementaries.

6.3.2 Interface and Usage

Figures 6.4 and 6.5 show two main views of CTRAS. After a user, such as a project manager,

logs into CTRAS, she can choose the application to work on. Once an application has been

chosen, Figure 6.4 is presented. And at the top of Figure 6.4, CTRAS shows the total

number of submitted test reports, along with the number of assigned and unassigned test

reports. Below that is the list of individual test reports. Each test report is presented in

a row, along with user-submitted information, such as the test-report identifier, authors,

category, severity, and a snippet of the textual description. Additionally, automatically
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assigned information is further presented in each row, such as its membership to an aggregate

report and the developer to which it was assigned.

Aggregation
 result

Recommeded 
assignee

Assign
status

Figure 6.4: The test-report-list view of CTRAS

Note that CTRAS can aggregate and summarize test reports. The red button (i.e., the

Auto Assign) control the automatic test report aggregation and assignment process. Upon

completion of such processing, the aggregation result and assignee are displayed for each test

report, and the user can either approve or change the aggregation and assignment. Also, the

user can then view individual test reports by clicking a test-report ID, or view aggregated

reports by clicking the Aggregator ID.

I present the view of an exemplary summary of the duplicate group “ML-AG-1709” in

Figure 6.5. In the top of the center pane, CTRAS presents the basic information about

the group, including names of all crowd testers who submitted test reports, the assignee of

this report group, tags and so on. Additionally, the view shows the detailed information,
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including both the textual description as well as the screenshots, of the master report which

is identified as the most informative one of this group.

Below this pane, supplementaries are shown. Supplementaries are extracted from multiple

test reports within the aggregate report. These supplementaries can enrich context and

descriptions of the master report, which may help users to diagnose and fix bugs. Also,

to help users catch the key points of these supplementaries, CTRAS highlights the most

representative sentence or screenshot within each of them. Below the tag cloud, individual

test reports can be found and inspected.

Finally, at the bottom of the view is a graph that depicts the relationships between test

reports and their supplementaries. The orange circle denotes the summary, and yellow circles

represent individual reports, among which the largest one overlaps the orange circle is the

master report. The blue circles surrounding the orange circle represent the supplementaries.

The yellow circles radiating from the blue one represent the individual test report that shares

the information of the supplementary. The length of the edge denotes the distance between

nodes. Note that users can click on any of these nodes and view their details in the right

pane. Given this visualization, users can reach a high-level understanding of the aggregation

as well as the information of this group.

6.4 Experiment

6.4.1 Research Questions

To assess the performance of CTRAS in achieving its goals, i.e., to assist developers in (1)

processing test reports, (2) providing comprehensive and comprehensible summaries, and (3)

saving efforts, I conduct mixed evaluations to answer the following three research questions:
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RQ1. Effectiveness of Duplicate Aggregator. Can the aggregator accurately group du-

plicates? To what extent do the screenshots improve the accuracy of detecting and

aggregating duplicate reports?

RQ2. Effectiveness of Summarizer. To what extent can the summarizer refine the in-

formative and non-redundant content from the duplicates?

RQ3. Effectiveness of CTRAS. Can CTRAS help developers save time costs in in-

specting mobile crowdsourced test reports without loss of accuracy?

Both RQ1 and RQ2 are designed to evaluate the effectiveness of the Aggregator and Sum-

marizer components of CTRAS. Because identifying and aggregating duplicate reports are

foundational steps of correctly leveraging the information from test reports, RQ1 aims at

evaluating the accuracy of CTRAS in detecting duplicates and revealing the effectiveness of

employing the screenshot information to aggregate the duplicates. Also, identifying the crit-

ical, complementary, and non-redundant information from the large volume of information

plays an important role in helping developers to understand and fix the bugs. Thus, RQ2

aims at evaluating the effectiveness of the summarizer regarding the metrics of information

theory. Further, although RQ1 and RQ2 present quantitative and theoretical evaluations,

understanding the practical performance of CTRAS is critical. Thus, we design RQ3, which

is a task-based user study, to investigate the efficiency improvement as well as reporting any

accuracy loss.

6.4.2 Dataset Description

To produce the dataset for our evaluation, I utilized the results of the national software-

testing contest3, which simulated crowdsourced testing of several popular mobile applications

across multiple domains (including games, education, social media, and so on).

3http://www.mooctest.org/cst2016/index_en.html

97

http://www.mooctest.org/cst2016/index_en.html


Table 6.1: Statistical Information of Testing Applications

Name Version Category |R| |S| |Rs| |D|
p1 CloudMusic 2.5.1 Music 157 259 62 45
p2 Game-2048 3.14 Games 210 219 164 96
p3 HW Health 2.0.1 Health 262 327 201 109
p4 HJ Normandy 2.12.0 Education 269 436 241 123
p5 MyListening 1.6.2 Education 473 418 306 128
p6 iShopping 1.3.0 Shopping 290 508 150 83
p7 JayMe 2.1.2 Social 1400 1997 1168 678
p8 JustForFun 1.8.5 Photo 267 112 76 141
p9 Kimiss 2.7.1 Beauty 79 58 48 31
p10 Slife 2.0.3 Health 1346 2238 1124 885
p11 Tuniu 9.0.0 Travel 531 640 418 236
p12 Ubook 2.1.0 Books 329 710 88 108
total 5613 7922 4046 2663

The contestants of the contest were required to test the applications and report bugs in four

hours. They could write descriptions and take screenshots to document their testing proce-

dures and the unexpected behavior of applications. This contest attracted 4000 participants

and generated over 5000 test reports. More than 10 professional testers and members of the

organizational committee manually labeled and evaluated the quality of these reports. The

detailed information of the dataset is shown in Table 6.1, in which, |R| denotes the number

of reports, |S| denotes the number of screenshots, |Rs| denotes the number of reports that

contain at least one screenshot and |D| denotes the number of duplicates.

6.4.3 Parameter Settings

As discussed in Section 6.2, several fundamental parameters may influence the performance

of CTRAS. I provide our parameterizations for all three experiments to assist verifiability

and repeatability. Feng et al. [33] suggested that the β should be adjusted based on different

tasks, and given previous researchers, Bettenburg et al. [144], found that the textual infor-

mation (e.g., description, observed and expected behavior, reproduction steps) is capable of

providing more accurate description than screenshots for developers in debugging, I set β = 5
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to weight textual descriptions more. Also, there are two fundamental parameters of the HAC

algorithm: the linkage type, which defines the method of calculating the distance between

clusters, and the threshold γ for terminating the clustering. I choose the single-linkage type

because it makes the HAC to solely focus on the area where the two clusters come closest to

each other and ignore distant parts [111], which fits the goal of CTRAS well. I set the γ

to 0.5 that is the medium value of the scale of the distance between test reports. Further, I

apply strict combination strategy by setting θ = 0.2 that I defined in Section 6.2.3 to group

candidate item clusters. In the study of RQ1 and RQ3, I set the compression ratio K = 0.25,

which is considered to be a proper value in the paper[105, 104].

6.4.4 RQ1. Effectiveness of Duplicate Aggregator.

Methods. While a number of classic duplicate test-report-detection methods only focus

on the textual description to measure the similarity between reports [109, 119, 118, 2, 69,

120, 91, 46, 27], CTRAS employs both textual description as well as screenshots to assist

detecting duplicates. Thus, to answer the RQ1, I have the following three methods:

• CTRAS. Our duplicate detection method which employs both textual information

and screenshots. In this method, the distance between two reports is calculated based

on the balanced distance equation.

• CTRAS-TXT. The duplicate detection method employs only textual information. In

this method, the distance is calculated based on only textual distance.

• CTRAS-IMG. The duplicate detection method employs only screenshot information.

In this method, the distance is calculated based on only screenshot distance.

Evaluation Metrics. To measure the performance of these three methods, I employ three

classic metrics for evaluating clustering: Homogeneity, Completeness, V-Measure [106].
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Taking the classes set C and clusters set K as reference, I define the contingency table

A = {aij|i = 1, ..., n; j = 1, ...,m}, where aij denotes the number of test reports that belongs

to both ci and kj.

Homogeneity reflects the extent to which each cluster contains only members of a single

class. It can be calculated via h = 1−H(C|K)/H(C), where

H(C|K) = −
|K|∑
j=1

|C|∑
i=1

aij
N
· log aij∑|C|

k=1 akj
(6.6)

H(C) = −
|C|∑
i=1

∑|K|
j=1 aij

n
· log

∑|K|
j=1 aij

n
(6.7)

Completeness is a symmetrical criterion of homogeneity, which measures the extent to

which all members of a given class are assigned to the same cluster. It can be calculated via

c = 1−H(K|C)/H(K), where

H(K|C) = −
|C|∑
i=1

|K|∑
j=1

aij
N
· log aij∑|K|

k=1 aik
(6.8)

H(K) = −
|K|∑
j=1

∑|C|
i=1 aij
n

· log
∑|C|

i=1 aij
n

(6.9)

V-measure is the harmonic mean of homogeneity and completeness. It is widely used as

the measure of the distance from a perfect clustering. In our paper, a higher V-Measure

score indicates a better duplicate detection and aggregation result, which is calculated by

the Equation 6.10.

v = 2 · (h · c)/(h+ c) (6.10)
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6.4.5 RQ2. Effectiveness of Summarizer

Methods. To investigate the theoretical effectiveness of the summarizer of CTRAS, I

compared its performance with two classic summarization methods: Max-Coverage-based

(MCB) [34, 121] and Maximal Marginal Relevance (MMR) [18].

• CTRAS. Our summarization method that generates the summarized report under

ratio K.

• MCB. The Max-Coverage-based method is a greedy algorithm. MCB iteratively se-

lects the test report with maximal coverage score and inserts it into the summarization

until K is met. The original definition of coverage score in paper [34, 121] refers the ra-

tio of the number of selected conceptual units to the total number. In this experiment,

I have two kinds of conceptual units, i.e., keywords and screenshots. Thus, I define

the coverage score as the mean value of the keyword coverage score and screenshot

coverage score.

• MMR. The MMR method is a typical method for summarizing multiple topically

related documents, which employs keywords that have the highest frequency to build a

query [40]. This query is used to select the document from a set based on the maximum-

marginal-relevance strategy, which selects the one having the largest distance from the

selected set while being relevant to query in each step. In our implementation, I adopt

the same idea and construct the query with keyword and screenshot having the highest

frequency. I employ the distance between test reports, which I defined in Section 6.2.2,

as the distance measurement to implement the maximum-marginal-relevance strategy.

Note that I define the compression ratio of the final summary as the mean value of the text

compression ratio and screenshot compression ratio (see Section 6.2.3) — this strategy is

also applied in this experiment.
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Evaluation Metrics. I adopt a fully automatic evaluation method for content selection:

the Jensen Shannon divergence (JS divergence), which has been shown to be highly cor-

related with manual evaluations and sometimes even outperforms standard Recall-Oriented

Understudy for Gisting Evaluation (ROUGE) scores [76].

JS divergence employs the probability distribution of words to measure the distance be-

tween documents. A good summary is expected to have low divergence with the original

document. In this paper, I calculate the JS divergence of textual information and screenshots

respectively.

The JS divergence is represented in Equation 6.11, in which, P and Q denote the probability

distributions of word G and summary S, respectively. I entirely adopt the recommended

parameter settings in [76], i.e., , A = (P + Q)/2 denotes the mean distribution of P and

Q, C denotes the frequency of keyword ω, N is the sum of frequencies of all keywords,

B = 1.5|V | where V denotes the text corpus, and δ is assigned to 0.0005 to perform a small

smoothing. JSS is defined in a similar manner.

JST (P ||Q) = (D(P ||A) +D(Q||A))/2 (6.11)

where

D(P ||Q) =
∑

ω pP (ω)log2
pP (ω)
pQ(ω)

p(ω) = (C + δ)/(N + δ ∗B)

After JST and JSS are calculated, I utilize their harmonic mean as the measure of these

summarization methods.
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6.4.6 RQ3. Effectiveness of CTRAS

Although RQ2 evaluates the theoretical performance of CTRAS, I also seek to understand

its practical performance for real users. In [105], Rastkar et al. designed a task-based user

study to investigate whether the generated summaries can help developers in processing test

reports. In their study, participants were asked to read a new test report and a list of potential

duplicated reports, which were presented under their original or summary format, and then

determine for each whether it was duplicated with the new test report or not. Considering

both Rastkar et al.’s work and ours share the same goal, I adopt the task-based user study

to answer the RQ3. However, because their work is designed to produce a summary for a

single test report while CTRAS generates a summary for multiple test reports, I adjust

the duplicate test-report-detection task into duplicate test-report clusterization tasks in our

study.

For our study, I utilized a modified version of the web-based CTRAS tool to assist partici-

pants to cluster test reports. Our participants are given a set of test reports (see Table 6.1),

and optionally a set of summaries, and asked to group duplicate test reports (i.e., test

reports describing the same bugs). Our hypothesis is that CTRAS can help developers

reach a multi-perspective understanding of the bug and thus identify the duplicates more

efficiently without loss of accuracy. The rationale of this study design is straightforward: if

the summary generated by CTRAS failed to provide sufficient and correct knowledge for

participants to understand the bug, it cannot help participants and further improve their

efficiency in grouping the duplicates that are describing the same bug.

Study Setting. I recruited 30 second-year master students majoring in computer science or

software engineering as participants of this study. All of these 30 participants have at least

5 years programming experience but have no experience using any of these experimental

applications.
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I select 5 applications, i.e., MyListening (p5), iShopping (p6), Kimiss (p9), Tuniu (p11),

Ubook (p12) as subject programs. The categories of these applications are diverse and the

number of reports varies from 79 to 531, thus I believe these applications are representative.

I randomly divide the 30 participants into 3 groups. In the study, these three groups are

provided with different reference materials:

• Group A (Control Group): The participants of this group are only provided with

the original test report. There are no supportive materials for the participants of this

group.

• Group B (CTRAS): The participants of group B are provided with the original test

report and the summary that is generated by CTRAS. Note that, for this group, the

summarizer works on the fully-automated aggregator, which groups the test reports

based on both image and text similarity.

• Group C (Golden): The participants of group C are provided with the original test

report and summaries that are generated by the summarizer of CTRAS working on the

ground-truth clustering results(as manually determined by the professional developers,

described in Section 6.4.2). Because the quality of summaries is influenced not only by

the summarization algorithm but also by the duplicate aggregation algorithm, I set up

this group to evaluate the gap between the performance of CTRAS and the perfect

situation.

Within each group (10 participants, each), every subject application (5 software applications)

is assigned to two participants. Participants are required to manually cluster these original

test reports independently — without any collaboration. The modified version of CTRAS

shows summaries without showing any information that reveal test report identities — simply

showing the summarized sentences and screenshots that describe bugs. This version of

CTRAS also provides keyword search and keyword filtering.
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Table 6.2: Details of the summarization result in RQ3

p5 p6 p9 p11 p12
B C B C B C B C B C

#summary 98 97 35 63 15 25 145 182 64 96

#sentences
mean 3.12 4.13 2.33 3.15 2.25 6.00 4.51 4.80 3.85 5.00
std 1.95 3.77 2.01 1.96 1.85 2.10 3.46 2.63 3.37 7.93

#screenshots
mean 1.73 2.35 3.38 4.05 1.25 4.40 3.51 3.69 7.60 9.42
std 1.84 2.73 5.38 3.11 1.09 3.38 3.80 3.30 10.69 21.92

I employ CTRAS to generate summaries under the predefined condition of group B and C,

and then provide these summaries to the participant of corresponding groups as reference

material. Table 6.2 illustrates summarization results. For each subject application and

group (B & C), I show the number of summaries and their mean number of sentences and

screenshots.

Evaluation Metrics. I evaluate CTRAS based on three aspects: efficiency, accuracy, and

satisfaction.

• Efficiency. I adopt the average completion time for each report as the evaluation

metric of efficiency.

• Accuracy. Using the ground truth data described in Section 6.4.2, I determined the

accuracy of the participant’s inspection by utilizing V-measure metric (see definition

in Section 6.4.4).

• Satisfaction. The satisfaction of summary is measured upon the qualitative feed-

back from the questionnaire, which is shown in Table 6.3. Particularly, I present the

questionnaire only to participants of group B and C.
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Table 6.3: Interview Questions in RQ3

1. On a scale of 1–5 with 5 being the most positive, how would you describe the overall
performance of the summary in assisting your clusterization task?

2. Does the master report reflect the topic of the summary; if yes, how does it reflect it?

3. Is there additional information in the supplementaries that helped you cluster test reports?
If so, describe it.

4. Which type of information is more important for you in inspecting reports: textual
descriptions or screenshots? Why?

6.5 Results and Analysis

In this section, I present the experimental results to answer the three research questions.

6.5.1 Answering RQ1: Effectiveness of the Duplicate Aggregator

I present the homogeneity (H), completeness (C) and V-Measure (V) results of CTRAS

and the two baseline techniques in Table 6.4.

On average, CTRAS achieves 0.87 V-Measure score, while these two baseline techniques,

i.e., CTRAS-TXT and CTRAS-IMG, obtain 0.81 and 0.60 respectively.

Further, CTRAS outperforms these two baseline techniques over all subject projects except

the “Slife”(p10). I investigated the content of test reports of subject projects. I found the

application Slife is a daily activity tracker, which is designed for tracking the health data

of users’ daily activity. Even though its operation is simple, the testing procedure, which

requires a number of activities beyond the regular operations, becomes relatively difficult.

Given the fact that our test reports come from the contest which requires participants to

finish the tasks in a short time (4 hours), I speculate that the test reports of Slife could only

reveal simple bugs, and as such and their text descriptions were accurate. Thus, CTRAS-

TXT obtains the highest homogeneity score, which results in the relatively higher V-Measure
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Table 6.4: Evaluation Results for the Duplicate Aggregator: RQ1

p1 p2 p3 p4 p5 p6
H CTRAS 0.967 0.991 0.990 0.991 0.957 0.948

TXT 0.679 0.818 0.918 0.930 0.874 0.857
IMG 0.444 0.416 0.724 0.789 0.490 0.507

C CTRAS 0.778 0.782 0.876 0.855 0.925 0.904
TXT 0.660 0.755 0.872 0.856 0.909 0.903
IMG 0.748 0.682 0.863 0.863 0.883 0.874

V CTRAS 0.862 0.874 0.929 0.918 0.941 0.926
TXT 0.670 0.785 0.894 0.891 0.891 0.879
IMG 0.557 0.517 0.788 0.824 0.630 0.642

p7 p8 p9 p10 p11 p12 avg
H CTRAS 0.958 0.865 0.995 0.862 0.994 0.967 0.957

TXT 0.931 0.878 0.900 0.932 0.932 0.698 0.862
IMG 0.722 0.222 0.386 0.650 0.703 0.212 0.522

C CTRAS 0.851 0.493 0.845 0.657 0.877 0.774 0.801
TXT 0.839 0.426 0.834 0.628 0.880 0.713 0.773
IMG 0.821 0.318 0.693 0.602 0.864 0.525 0.728

V CTRAS 0.901 0.628 0.914 0.745 0.932 0.860 0.869
TXT 0.883 0.574 0.866 0.750 0.905 0.705 0.808
IMG 0.768 0.262 0.496 0.625 0.775 0.303 0.599

score in comparison with CTRAS.

Summary: The high V-Measure score indicates that the duplicate aggregator

is capable of accurately detecting and aggregating duplicate reports. In com-

parison with the classic text-only-based strategies, the screenshot information

is able to improve the performance of detecting duplicates (in 11 out of 12

subject applications).

6.5.2 Answering RQ2: Effectiveness of the Summarizer

The results of RQ2 are shown in Fig. 6.6, for all subject application with varying compression

ratios. I note that regardless of the compression ratio, CTRAS generally outperforms MCB

and MMR methods in all projects except “JustForFun.”
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Through further investigation, I found that “JustForFun” is an image editing and sharing

application. Thus, the screenshots are largely composed of user content (i.e., their photos)

instead of more standardized activity views, so most screenshots have a large distance from

each other, which causes them to be categorized as independent supplementaries. This causes

a decrease in JS divergence. In addition, as the summarization ratio increases, the score of

the JS divergence decreases except for the CTRAS result on project “Game-2048,” which is

caused by the fact that there is only one gaming interface. That is to say the overwhelming

majority of screenshots are similar. Few screenshots can represent the whole corpus, thus

the JS divergence is smaller under lower summarization ratio.

Summary: For most projects, CTRAS is more effective than classic summarization meth-

ods: MCB and MMR.

6.5.3 Answering RQ3: Effectiveness of CTRAS

Efficiency & Accuracy. Table 6.5 shows the average test report inspection time cost,

per test report, for group A (i.e., control group), B (i.e., CTRAS) and C (i.e., golden).

According to Table 6.5, the average completion time cost of each report are 19.32 and 20.58

seconds, respectively for group B and C, which saves 30.0% and 25.5% compared with group

A (27.63 seconds); and the average V-measure scores of group A, B, and C are 0.9071, 0.9316,

and 0.9400 respectively, which shows that group B and group C improve 2.7% and 3.6%

accuracy compared with group A. This result indicates that with the help of summarization,

people can substantially save their time in duplicate test report clustering work not only

without loss of accuracy, but even with slight improvement.

In addition, surprisingly, group B cost less time than group C on average. I investigated the

details of the summarization result that is presented in Table 6.2. I find that that CTRAS

performs a more strict duplicate aggregation than the professional developers, which leads
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Figure 6.6: Evaluation results for the Summarizer

(lower is better.)
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Table 6.5: Task Evaluation Results: RQ3

A B C

completion time (s) 27.6293 19.3179 (30.0%) 20.5754 (25.5%)
v-measure 0.9071 0.9316 (2.7%) 0.94 (3.6%)

the number of clusters for group B to be smaller than group C. As such, participants of

group B generally have fewer summaries to reference in the inspection procedure. Thus, in

comparison with group C, group B can save some time-cost at the expense of loss of accuracy.

Satisfaction. The participants’ satisfaction rating on average was high: 4.1 on a 1–5-

point scale. More subjectively, the semi-structured interviews produced qualitative results.

All participants thought that the master report can reflect the topic of summary, and it

“helps them get a general idea of the summary”, “instructs the granularity of clustering”, 18

participants (90%) mentioned supplementaries contained additional information which “is

clear and coherent”, “can be used as valuable reference when it comes to uncertain condition”

and “provides detailed operation steps.”

Many participants mentioned text was more useful, which supports our strategy of set-

ting distance calculation parameters described in Section 6.4. Some participants stated that

screenshots “are open to various interpretations” and “can’t tell where’s the problem.” More-

over, some suggestions for improvement were proposed, such as “the description is not well

structured,” and “highlighting important parts of screenshots.”

6.6 Threats to Validity

Subject Program Selection. The first threat is related to the generality of CTRAS.

I evaluated our approach on 12 projects, all of which are Android applications, thus it is

unclear whether CTRAS can achieve similar results on other projects from Android and
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other mobile platforms (e.g., iOS). However, the categories of our projects vary widely,

such as Music & Audio, Games, Health & Fitness, Education, Travel & Local, and so on.

Therefore, I believe the experiment result can indicate the usefulness of our method.

Natural Language Selection. All the crowdsourced test reports utilized in this paper are

written in Chinese, which may affect the generalization of CTRAS. However, the purpose

of our method is to generate comprehensive summaries by leveraging the information in

duplicated reports, and its key part is to measure the similarities between reports utilizing

textual description and screenshots. In the aspect of textual descriptions, the similarities

are effected by the keyword-corpus extraction methods, and NLP researchers have proposed

many relatively mature approaches targeting different languages.

Student Participant. In our user study, 30 students were recruited to complete the task,

although the participants are students, none have used the subject applications, which means

that diagnosing for these applications is a new task for them. Based on Salman et al.’s

research [110], under this situation, students and professionals often perform similarly. Thus,

I argue that the result can be generalizable to professionals.

6.7 Conclusion

The problem of diagnosing the overwhelming number of test reports has been a fundamen-

tal challenge for crowdsourced testing. To alleviate this problem, in this paper I present

CTRAS, a novel approach for aggregating and summarizing crowdsourced test reports.

CTRAS leverages the duplicate reports to assist professional testers to manage and un-

derstand crowdsourced test reports. It overcomes several shortcomings by: (1) aggregating

duplicates to enable batch processing, (2) summarizing the supplementary topics from dupli-

cates to facilitate developer comprehension of the reports. The evaluation result reveals that

CTRAS is capable of assisting people’s detecting and triaging crowdsourced test reports.
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Chapter 7

An Empirical Study on Clustering

Crowdsourced Test Reports of Mobile

Applications Using Image

Understanding

7.1 Study Design

To validate our technique, I conduct a comprehensive experiment on the industrial data. In

this section, I first raise research questions of this experiment, and then I detail the dataset,

settings, baselines, and evaluation metrics. I evaluate our technique through three aspects:

effectiveness, usefulness, and potential. In addition, I analyze the parameter sensitivity for

helping users to apply our technique in different settings.
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7.1.1 Research Questions

Identifying the test reports that describe the same bug or present similar topics is critical for

improving the efficiency of processing the overwhelming number of crowdsourced test reports.

For our technique, one of the critical steps is to group these test reports into clusters. Given

the fact that clustering result fundamentally determines the effectiveness of our technique, I

design the RQ1 to investigate whether our image-understanding-based clustering technique

is effective for grouping the test reports. RQ1 is formulated as follows:

[RQ1. Effectiveness:] To what extent can cluster with image features accurately group

the crowdsourced mobile test reports?

On the other hand, even though I investigate the effectiveness of our technique in clustering

the test reports in the RQ1, it is essential for validating its usefulness for the practical test

report inspection task. To understand its practical usefulness, I compare our technique with

the existing state-of-the-art crowdsourced test report processing techniques. In addition,

considering investigating the potential of our technique could be helpful for engineers to

optimize it in the application and inform the future research in this field, I design the

following two research questions:

[RQ2.1 Usefulness:] To what extent can our approach substantially improve test-

report inspection and find more unique buggy reports earlier?

[RQ2.2 Potential:] How large is the gap between our clustering method and IDEAL

strategies?

Finally, because the performance of our technique is influenced by several key parameters, I

analyze the performance of our approach under different parameter settings to present users

an extensive understanding of our technique. The RQ3 is designed as follows:
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[RQ3. Parameter Sensitivity:] How does the experimental parameter influence the

performance of our approach?

7.1.2 Data Collection

To investigate the performance of our technique under real crowdsourced testing settings,

my collegues and I collaborated with six industrial companies. Based on the mobile applica-

tion and testing requirement provided by these companies, I host a national software-testing

contest1 to simulate the crowdsourced testing. In total, more than 100 third-year undergrad-

uates come from 27 prestigious universities participate this contest. The contestants were

required to test the subject applications and report bugs within four hours. They could write

descriptions andor take screenshots to document their testing procedures and the behavior

of applications. More than 10 professional testers and developers from our collaborators

manually labeled and evaluated the quality of these reports. The detailed information of

the dataset is shown in Table 7.1, in which, |R| denotes the number of reports, |S| denotes

the number of screenshots, |Rs| denotes the number of reports that contain at least one

screenshot, and |F | denotes the number of faults that revealed by the reports. Based on this

figure, I can observe that 1119 out of 1644 crowdsourced test reports of mobile applications

contains screenshots, and these reports detected 119 bugs.

7.1.3 Experiment Setup

In this section, I detail the experiment setup and the parameter settings. One of the features

of crowdsourced testing is that it can provide the testing results of diverse devices. Thus,

given the screenshots submitted by crowd workers are potentially of different resolutions,

1http://www.mooctest.org/cst2016/index_en.html
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Table 7.1: Summary of Experimental Subjects

Name Category |R| |S| |Rs| |F |
p1 Wonderland Travel 191 116 93 23
p2 Game-2048 Game 210 174 154 12
p3 TravelDiary Travel 240 170 142 14
p4 HW Health Health 262 274 201 33
p5 HJ Normandy Education 269 381 241 22
p6 MyListening Education 432 348 288 15

Total 1644 1463 1119 119

in this experiment, I resize all the screenshots to 480×480 pixels. Further, as discussed in

the previous sections, some fundamental parameters can influence the performance of our

experiment. I set the threshold of identifying the similar screenshots γ = 0.1, the factor of

scaling the weight of text similarity α = 0.8, and the threshold of balanced factor β = 1.

Also, in agglomerative hierarchical clustering, I adopt the set the threshold of determining

the stop point of clustering ε = 0.8.

In the sampling procedure, I set the sampling ratio parameter ρ = 5%. This means, I

randomly sample 5% reports from clusters in each iteration. Especially, for the clusters that

contain only one test report, I take all singular test report in the first round. Note that,

except the experiment of RQ4 that is designed for investigating the parameter sensitivity, I

did not change these setting in the whole experiment to ensure the consistency of the results.

7.1.4 RQ1. Effectiveness

Baselines. Because RQ1 is designed for evaluating the quality of clustering results, I

adopted TXT, which clusters test reports based on only the text distance, and IMG, which

clusters test reports based on only the image distance to reveal the performance of image

information, as baselines. Thus, I have the following three techniques:

• TXT: The clustering is conducted based on only the text distance between test reports,
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which was presented as DT in equation 5.1.

• IMG: The clustering strategy based on the screenshot distance between test reports,

which was presented as DS in equation 5.3.

• TXT&IMG: The clustering is conducted based on both textual information and

screenshots. In this method, the distance between the two reports is calculated based

on the balanced distance equation 5.4.

Evaluation Metrics.

Similar to the Section 7.1.4, I employ widely-used metrics to analyze the result of clustering,

including Homogeneity, Completeness, and V-measure [106].

To ease the explanation, I use the class set C and cluster set K to denote ground truth and

clustering results. Then I define n as the total number of reports, nc and nk as the number

of reports respectively belonging to class c and cluster k, and nc,k denotes the number of

reports from class c assigned to cluster k. Based on these annotations, I can formulate these

metrics.

Homogeneity: A clustering result satisfies homogeneity if all of its clusters contain only

data points which are members of a single class. It reflects the extent to which each cluster

contains only members of a single class. Homogeneity scores are formally given by:

h = 1− H (C|K)

H (C)
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where

H (C|K) = −
|C|∑
c=1

|K|∑
k=1

nc,k
n
· log

(
nc,k
nk

)

H (C) = −
|C|∑
c=1

nc
n
· log

(nc
n

)

Completeness: A clustering result satisfies completeness if all the data points that are

members of a given class are elements of the same cluster. It measures the extent to which

all members of a given class are assigned to the same cluster. Completeness scores are

formally given by:

c = 1− H (K|C)

H (K)

where

H (K|C) = −
|K|∑
k=1

|C|∑
c=1

nc,k
n
· log

(
nc,k
nc

)

H (K) = −
|K|∑
k=1

nk
n
· log

(nk
n

)

V-measure: The V-measure is a harmonic mean between homogeneity and completeness,

which is widely used as a metric to evaluate the performance of clustering. In our experiment,

a higher V-measure score means better clustering performance. The V-measure score is

calculated as the following formula:

v = 2 · (h · c)
h+ c

(7.1)

The value range of all these above metrics lay into [0, 1], and they are the higher the better.
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7.1.5 RQ2. Usefulness

Baselines. Besides the three techniques I employed for addressing the RQ1, I simulate

the ideal inspection process, which can only be achieved theoretically, to investigate the

usefulness and potential of my technique. Further, I employ the method, which introduced

in Chapter 5 to prioritize test reports based on the distance of both text description and

images, as one of the baselines. Also, I simulate the situation that developers have no any

ancillary techniques for inspecting the reports. Under that situation, they may randomly

inspect test reports, i.e., in a non-systematic order. Thus, for RQ2, I have six techniques as

follows:

• Text: The sampled report clusters are derived from the results of only text-distance-

based clustering.

• Image: The sampled report clusters are derived from the results of only screenshot-

distance-based clustering.

• BDDiv: A multi-objective test-report prioritization technique proposed in Section 5.2

to assist the inspection of crowdsourced test reports.

• Text&Image: The sampled report clusters are derived from the results of hybrid-

distance-based clustering.

• RANDOM: The randomly inspection strategy, which is used to simulate the situation

without ancillary techniques.

• IDEAL: The theoretically ideal inspection orders.

Evaluation Metrics. I adopted the APFD (Average Percentage of Fault Detected) [116],

a widely-used evaluation metric of the classical test case prioritization, to measure the per-

formance of our technique. For each fault, APFD marks the index of first test report which
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reveals it. Based on the order of test reports and fault information they revealed, I can

calculate APFD scores to evaluate the usefulness of our technique for report inspection. I

present the formula of computing the APFD in the following equation:

APFD = 1− Tf1 + Tf2 + · · ·+ TfM
n×M

+
1

2× n
(7.2)

In Equation 7.2, n denotes the number of test reports, M denotes the number of faults

revealed by all test reports. Tfi is the index of the first test report that reveals fault i.

In our experiment, a higher APFD value indicates a better inspection procedure. That is,

the method with higher APFD value can reveal more faults earlier. In addition, I employ

Gap, which reflects the difference that our technique compared with the IDEAL strategy,

to evaluate the potential of our technique. In the experiment, the Gap between technique

X and the IDEAL can be calculated as G = (Best−X) /X. This metric indicates the

potential of techniques, which is helpful for researchers to design and improve crowdsourced

test report processing techniques.

7.1.6 RQ3. Parameter Sensitivity

In RQ3, I analyze the impact of parameters on the performance. I focus on the follow-

ing parameters: balanced factor β, which controls the weight of text distance and image

distance; clustering threshold ε, which determines the stop point of hierarchical clustering;

and sampling ratio ρ, which determines the number of test reports to be sampled from each

cluster.

The parameter β and ε are designed for controlling the process of clustering, thus, I employ

the evaluation metrics of RQ1, i.e., homogeneity, completeness, and v-measures, to analyze

their impacts. Similarly, because of the sampling ratio ρ influences the practical performance
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of our technique, I employ the evaluation metrics of RQ2, i.e., APFD, to analyze its impacts.

7.2 Results and Discussion

In this section, I present the experimental results to answer the three research questions.

7.2.1 Answering Research Question 1

[RQ1. Effectiveness:] To what extent can cluster with image features accurately

group the crowdsourced mobile test reports?

I present the homogeneity (H), completeness (C) and V-Measure (V) results of these three

techniques in Table 7.2. Regarding the V-Measure score, TXT&IMG, i.e., clustering based

on balanced-distance, achieves 0.643 on average, while the two baselines, i.e., TXT and IMG,

obtain only 0.592 and 0.622 respectively. I can observe that TXT&IMG outperforms the

two baselines over five subject projects, except the p2(Game− 2048).

I investigate the p2(Game − 2048) to identify the reason for this distinct result. I notice

that while the TXT&IMG obtains a relatively high homogeneity score of more than 0.8

and outperforms the two baselines on p1, p3, p4, p5, p6, TXT reaches 0.857 when TXT&IMG

achieves only 0.514 on p2(Game − 2048). When the completeness scores of these three

techniques are close to each other, the high homogeneity score of TXT naturally leads a high

V-measure score. I further analyze the raw reports of p2(Game− 2048). I found that within

the test reports of p2(Game− 2048) almost all screenshots submitted by crowd workers are

the activity view of the game content panel. Even though these screenshots are used to

describe different bugs, they are often similar to each other because all of them are captured

from the same activity view. This effect misleads the two image-involved techniques, i.e.,
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TXT&IMG and IMG, to group the test report that are describing different bugs into the

same clusters.

Summary: The high V-measure scores indicate that our image-understanding-

based test report clustering technique is capable of improving the test reports

describing similar bugs together. On the other hand, I found that the informa-

tion of screenshots may negatively influence the test report clustering of these

applications that contain limited number of activity views.

Table 7.2: Experiment Reuslts of Test Report Clustering with Different Distance Metrics

Method p1 p2 p3 p4 p5 p6 avg
TXT&IMG 0.900 0.514 0.890 0.914 0.807 0.800 0.804

H TXT 0.751 0.857 0.746 0.879 0.800 0.669 0.784
IMG 0.444 0.456 0.884 0.859 0.789 0.791 0.703

TXT&IMG 0.694 0.44 0.537 0.643 0.546 0.390 0.542
C TXT 0.660 0.386 0.513 0.592 0.444 0.316 0.485

IMG 0.683 0.393 0.526 0.633 0.533 0.386 0.527
TXT&IMG 0.783 0.474 0.670 0.755 0.651 0.525 0.643

V TXT 0.702 0.532 0.608 0.707 0.572 0.429 0.592
IMG 0.778 0.422 0.659 0.728 0.626 0.519 0.622

7.2.2 Answering Research Question 2

To reduce the bias that is introduced by the randomness in the iterative sampling process,

I conducted the experiment 30 times and present the result in Figure 7.1 and Figure 7.2.

Figure 7.1 shows boxplots of the APFD results for the six projects and Figure 7.2 presents the

average fault detection curves with the increasing number of inspected reports. In addition,

I present the mean value of APFD of the 30 runs, the improvement over RANDOM, and

the gap between our technique and IDEAL. Further, I conduct one-way ANOVA tests over

these six techniques and present the result in Table 7.3.
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RQ2.1: To what extent can our approach substantially improve test-report in-

spection and find more unique buggy reports earlier?

Note that I implemented Feng et al.’s prioritization technique [33], which is denoted as

BDDiv, and employed it as a baseline. Based on the boxplots of APFD values shown in

Figure 7.1 and the third column of Table 7.3, I observe that, to different extents, all of these

clustering techniques outperform the RANDOM inspection on all projects except p2(Game−

2048). Similarly, the curves in Figure 7.2 show that the TXT&IMG is able to detect all

faults earlier on these projects. Especially, for the BDDiv method, which also employed

the information of screenshots to analyze the test reports, I observed that the TXT&IMG

technique consistently outperforms it on all projects except p2(Game− 2048).

Further, considering I adopted the ramdom strategy to sample test reports from the cluster-

ing results, I repeat the experiment 30 times and conduct the one-way ANOVA tests based on

the APFD scores. I present the one-way ANOVA tests results and the average improvement

over RANDOM in Table 7.3. Based on Table 7.3, for all projects except p2(Game− 2048),

I can observe that the improvement of TXT&IMG ranges 21.3%-37.17% in comparison with

the RANDOM, while TXT improves only 0%-26.02%. Given the fact that all F − values

are relatively larger and the p − values ≤ 0.001, I can safely conclude that the improve-

ments coming from these clustering techniques are statistically significant. Also, on all

projects, I observe that the lengths of the boxplots of our clustering-sampling techniques,

i.e., TXT&IMG, TXT, and IMG, are smaller than the boxplot of RANDOM. Because the

box length indicates the data variability, this observation indicates the performance of these

four techniques is more stable than RANDOM.
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Figure 7.1: APFD of Experimental Subjects (averaged over 30 runs)
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RQ2.2: How large is the gap between our clustering method and IDEAL strate-

gies?

The fourth column of Table 7.3 shows the gap between our strategies and the theoretical

IDEAL. Over the six subject programs, I found the gap between TXT&IMG and IDEAL

varies from 17.56% to 41.42% while the gap between BDDIV and IDEAL ranges from 29.12%

to 64.16%. In Figure 7.2, which visualizes the growth rate of APFD value, the curves of

IDEAL grow at a fast rate, and the best situation reached the top while the TXT&IMG

stayed around 35%.

Summary: To answer the RQ2, I conducted one-way ANOVA tests over the

results of 30 executions. Based on the test result, I can draw the following

summaries: 1. all of these clustering techniques can improve the efficiency of

the test reports inspection in comparison with the RANDOM method. 2. the

image-based approaches distinctly improved the performance of conventional

text-based clustering techniques. 3. on the projects with ample app-specific

views, clustering techniques are more appropriate for report inspection than

the prioritization techniques. Compared with other strategies, the TXT&IMG

shows a smaller gap for the theoretical IDEAL result. However, there is room

for future work to improve the clustering-sampling techniques for test report

inspection.
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Figure 7.2: Average Fault Detection Rates (AFDR) on Experimental Subjects (averaged
over 30 runs)
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Table 7.3: One-way ANOVA Tests

Method APFD
Means

Improvement:
X−Random
Random

Gap:
Best−X

X

Wonderland: F (4, 159) = 82.659, p− value ≤ 0.001
IDEAL 0.939 73.89% /

TXT&IMG 0.664 22.96% 41.42%
TXT 0.607 12.41% 54.7%
IMG 0.643 19.07% 46.03%

BDDIV 0.572 5.93% 64.16%
RANDOM 0.54 / 73.89%

Game-2048: F (4, 159) = 7.223, p− value ≤ 0.001
IDEAL 0.971 36.95% /

TXT&IMG 0.695 -1.97% 39.71%
TXT 0.709 0% 36.95%
IMG 0.708 -0.14% 37.15%

BDDIV 0.752 6.06% 29.12%
RANDOM 0.709 / 36.95%
TravelDiary: F (4, 159) = 131.442, p− value ≤ 0.001
IDEAL 0.97 71.68% /

TXT&IMG 0.775 37.17% 25.16%
TXT 0.712 26.02% 36.24%
IMG 0.722 27.79% 34.35%

BDDIV 0.64 13.27% 51.56%
RANDOM 0.565 / 71.68%

HW Health: F (4, 159) = 89.866, p− value ≤ 0.001
IDEAL 0.937 60.17% /

TXT&IMG 0.735 25.64% 27.48%
TXT 0.722 23.42% 29.78%
IMG 0.641 9.57% 46.18%

BDDIV 0.645 10.26% 45.27%
RANDOM 0.585 / 60.17%
HJ Normandy: F (4, 159) = 130.542, p− value ≤ 0.001

IDEAL 0.959 51.74% /
TXT&IMG 0.808 27.85% 18.69%

TXT 0.672 6.33% 42.71%
IMG 0.695 9.97% 37.99%

BDDIV 0.669 5.85% 43.35%
RANDOM 0.632 / 51.74%
MyListening: F (4, 159) = 51.934, p− value ≤ 0.001
IDEAL 0.984 42.61% /

TXT&IMG 0.837 21.3% 17.56%
TXT 0.74 7.25% 32.97%
IMG 0.77 11.59% 27.79%

BDDIV 0.718 4.06% 37.05%
RANDOM 0.69 / 42.61%
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7.2.3 Answering Research Question 3

RQ3: How does the experimental parameter influence the performance of our

approach?

In this subsection, I further discuss the impact of parameter settings on the performance.

This study is helpful for users of our technique to set proper parameters for different usage

scenarios. I analyze the parameter sensitivity tests based on three key parameters: balanced

factor β, clustering threshold ε and sampling percent ρ, which influence the three funda-

mental steps of the clustering-sampling process respectively. The parameter β controls the

balance distance calculation as a harmonic weight. I analyze the clustering results when the

value of β ranges from 0.5 to 1.5 with the increment of 0.1. The parameter ε is employed to

control the stop point of hierarchical clustering. The clustering procedure terminates when

the distance between the closest cluster pair is larger than the value of ε. In this study, I

discuss the cluster results when the value of ε ranges from 0.5 to 0.9 with the increment of

0.1. Further, because the parameter ρ controls the number of reports sampling from each

cluster, it influences the efficiency of test report inspection. I analyze the trends of APFD

value when the value of ρ ranges from 5% to 30% with the increment of 5%.

Figure 7.3 shows the sensitivity of clustering results to the parameter β, given the ε = 0.8

and ρ = 0.1. And I present the average value of homogeneity, completeness, and v-measure

in the same setting in Table 7.4 . From the table I observe that when the value of β reaches

1.0, four projects, i.e., Wonderland, Game-2048, Travel Diary, and HJ Normandy, obtain

the highest v-measure score. The other two projects, i.e., HW Health and MyListening,

reach the highest v-measure score while β = 0.9, and the difference of v-measure between

β = 1.0 and β = 0.9 is less than 0.01. This indicates that setting the weight of the distance

of textual description as well as screenshots closely is helpful for optimizing the balanced-

distance-based clustering. Also, I present the average value and corresponding standard
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derivation for each of these projects in the last two columns of the Table 7.4. I observe

that the standard deviation value of homogeneity, completeness, and v-measure stays in a

range of small number, i.e., from 0.005 to 0.051, which indicates that the clustering result

is relatively stable to the change of β.

Similarly, Table 7.5 shows the average APFD score with the changes of paramter ε, given the

β = 1.0 and ρ = 0.1. From the table I observe that APFD of five projects (p1, p3, p4, p5, p6)

reaches highest values when ε = 0.8. In this table I also present the average value and

standard deviation. The results show that, for all the six subject programs, the standard

deviation of the APFD values is marginal in comparison with the average value, which

indicates the performance of our technique is stable under the setting of different ε value.

Further, the sample percent ρ influences the efficiency of test report inspection. I present

the average APFD score with the changes of paramter ρ in Table 7.6 and Figure 7.4, given

β = 1.0 and ε = 0.8. In Table 7.6, I observe that the APFD scores of these six subject

programs reach the highest value under different ρ value. However, the standard deviation

of the APFD value presented in Table 7.6 varies in 0.004∼0.012, and the curves are shown

in Figure 7.4 are relatively smooth. This fact proves our technique is relatively stable under

the different settings of sample percent ρ.

Summary: While all three parameters influence the performance of our tech-

nique to a different extent, the performance of our technique is generally stable

to their changes. Because the experiment result indicates setting the weight of

textual description and screenshots equally can make our technique perform

well, I suggest the users of our technique adjust β starts from 1. Similarly, I

suggest the users of our technique set the default value of ε into 0.8.
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Figure 7.3: The sensitivity of clustering results to the parameter β
(ε = 0.8 and ρ = 0.1)
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Figure 7.4: The sensitivity of APFD to the parameter ρ

(β = 1.0 and ε = 0.8)
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Table 7.5: The comparison of APFD mean value under different settings of ε

(over 30 executions, β = 1.0 and ρ = 0.1)

ε p1 p2 p3 p4 p5 p6
0.5 0.626 0.634 0.684 0.677 0.781 0.808
0.6 0.642 0.675 0.696 0.701 0.802 0.806
0.7 0.649 0.711 0.686 0.681 0.779 0.820
0.8 0.659 0.695 0.769 0.735 0.808 0.831
0.9 0.655 0.701 0.724 0.721 0.661 0.809
avg 0.646 0.683 0.712 0.703 0.766 0.815
std 0.012 0.027 0.032 0.022 0.054 0.009

Table 7.6: The comparison of APFD mean value under different settings of ρ

(over 30 executions, β = 1.0 and ε = 0.8)

ρ p1 p2 p3 p4 p5 p6
0.05 0.652 0.704 0.739 0.729 0.793 0.828
0.1 0.659 0.695 0.769 0.735 0.808 0.831
0.15 0.663 0.711 0.769 0.732 0.796 0.831
0.2 0.664 0.687 0.771 0.728 0.806 0.837
0.25 0.659 0.719 0.771 0.735 0.799 0.825
0.3 0.659 0.691 0.774 0.722 0.801 0.824
avg 0.659 0.701 0.766 0.73 0.8 0.829
std 0.004 0.011 0.012 0.004 0.005 0.004

7.3 Threats to Validity

Subject Program Selection. Although crowdsourced testing has covered a wide range of

mobile platforms (e.g., Android, IOS, WP), the limitations of data sources have allowed us to

experiment with only six Android applications. I cannot guarantee the similar good results

could generalize beyond the platforms. Nevertheless, this risk could be reduced because

our subject applications vary different categories that diversifies the functionalities including

health assistant, entertainment, travel assistant, diary editor, and language learning tools.

Thus, I believe these applications can indicate the effectiveness and applicability of our

methods.
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Natural Language Selection. In this experiment, all the crowdsourced test reports are

written in Chinese, which implies the similar results may not be observed based on the

test reports written in other languages. However, the natural language processing technique

is not the focus of our research. Instead, it works as the ancillary technique to generate

the intermediate outputs of our techniques. Even though our technique involves natural

language processing, this part focuses on building the keyword vector models to compute

the text distance between reports. To build keyword vector models from different languages,

many sophisticated methods and NLP tools are available, such as the CoreNLP, WordNet,

NLTK. This fact illustrates the transplantable potential of our technique.

Crowd Workers. To collect the experimental data and validate our technique, I collabo-

rated with several mobile application development companies and hosted a national contest.

In this contest, students play the role of crowd workers. This compromising choice means

that the population of our crowd workers may be less diverse than the population from the

general populace. In theory, crowdsourcing techniques require workers to come from a large

workforce pool. In this pool, individuals often have no relationship with each others [81].

Thus, this requirement implies that our result may be different if the crowd workers were

from the internet with open calls.

However, according to the study of Salman et al. [110], if a technique or task is new to

both students and professionals, similar performance can be expected to be observed. In

our experiment, I control all crowd workers have no experience in developing or using these

subject applications. All testing tasks are new to these crowd workers. Thus, I believe this

threat may not be a critical problem for our validation procedure.
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7.4 Conclusion

In this paper, I proposed a novel clustering technique to alleviate the challenge of inspecting

the overwhelming number of reports in crowdsourced software testing. In our preliminary

investigation, mobile crowdsourced test reports usually contain shorter text descriptions and

abundant screenshots. This fact motivates us to utilized image-understanding techniques to

assist the traditional text-based techniques, and I proposed approaches for clustering test

reports based on a hybrid information source. To the best of our knowledge, this is the

first work to propose using image-understanding techniques to improve the accuracy and

efficiency in test report clustering. I present the experimental results on four real industrial

mobile crowdsourced projects, and evaluate the results from the standpoints of effectiveness,

usefulness, and potential. I found that clustering-sampling technique, in almost all cases,

is advantageous as compared to test report inspection with an orderless strategy. I also

found that for most applications I studied, the practical usefulness which adopts the image-

understanding technique are more promising, even if there is a minor class of applications

may not be as applicable. As such, in future work, I will improve our technique to help to

cluster for these classes of applications, and narrow the gap between our technique and the

hypothetical ideal strategy.
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Chapter 8

Conclusion

This dissertation presents a family of techniques to process crowdsourced test reports by em-

ploying natural language processing, image understanding, and information retrieval tech-

niques. It also contains comprehensive studies that show the effectiveness and efficiency of

these techniques on industrial applications.

These techniques provide a comprehensive solution to improve the efficiency of inspecting,

analyzing and understanding crowdsourced test reports under different usage scenarios and

settings. Specifically, the text-analysis-based crowdsourced test report prioritization tech-

nique can assist requesters in revealing as many faults as possible and also as early as

possible. This technique is designed for these test reports that contain only textual descrip-

tions. Aiming at the same goal, the image-understanding-based crowdsourced test report

prioritization technique is designed for testing tasks of mobile applications. It can leverage

both image features and text features. I have compared the effectiveness of the image-

understanding-based and text-analysis-based prioritization techniques on mobile apps. The

experiment results show the image-understanding-based prioritization technique can obtain

a significant improvement regarding AFPD value. The crowdsourced test report aggregation
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and summarization technique, CTRAS, is capable of automatically aggregating duplicates

based on both textual information and screenshots, and further summarizes the duplicate

test reports into a comprehensive and comprehensible report. To validate CTRAS, I con-

duct quantitative studies using more than 5000 test reports, collected from 12 industrial

projects. The experimental results reveal that CTRAS can reach an accuracy of 0.87, on

average, regarding automatically detecting duplicate reports, and it outperforms the classic

Max-Coverage-based and MMR summarization methods under Jensen Shannon divergence

metric. Furthermore, based on CTRAS, I implement a web-based tool to assist requesters

in managing these reports. The tool includes many test report management functionalities,

including bug triaging, duplicate bug-report aggregation, expert recommendation, and so

on. And finally, I conduct a comprehensive empirical study to validate the effectiveness

of the image features in clustering crowdsourced test reports. In this study, I analyze the

parameter sensitivity of this technique, and further present suggests on settings for different

application scenarios.

8.1 Contributions

The research presented in this dissertation provides a number of contributions for the field

of software engineering:

1. A comprehensive literature review on the crowdsourced software testing;

2. A text-analysis-based approach that combines the risk-assessment and diversity to-

gether to prioritize the crowdsourced test reports;

3. An approach that takes the image information, as well as the text information of the

crowdsourced test, reports into consideration to assist the inspection procedure;
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4. A multi-objective-optimization-based technique is proposed to combine the image sim-

ilarity and text similarity, which improves the effectiveness and efficiency of test-report

analysis;

5. An approach that can aggregate multiple duplicate test reports and further summarize

them into an enriched report;

6. A web-based test report management tool, which is capable of identifying useful infor-

mation from the duplicates to supplement the main topics and further assist developers

to understand the reports;

7. An empirical study that investigates the effectiveness of the image features in clustering

crowdsourced test reports;

8. An empirical evaluation on the parameter sensitivity of image-understanding-based

crowdsourced test report clustering technique;

8.2 Future Work

This dissertation motivates future research efforts in four directions as follows.

Collaboration and Coordination in Crowdsourced Software Testing. Some stud-

ies [113, 130] have shown that contributions from many parties in a collaborative manner can

significantly improve the quality of testing work. Based on these studies, several research

groups have proposed a number of frameworks [7], approaches [44], and tools [6] to improve

the collaborative testing process. In crowdsourced testing, requesters can obtain the testing

results at a low cost by outsourcing testing tasks online to a large group of people in the form

of an open call [74], Existing crowdsourcing platforms have made the worker-task matching

process efficient; however, they fail to provide service for crowd testers to collaborate with
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each other. Under this situation, crowd testers work on the crowdsourcing task without the

awareness of the status of other workers and tasks. This lack may reduce the quality of

crowdsourced testing results and increase the cost. Future research can explore the method

to support collaborative testing in a crowdsourcing environment.

Leveraging Crowd Knowledge to Guide Automated Software Testing.. Automated

mobile testing has achieved tremendous advancements in recent years [16, 43]. These fully-

automated tools have significantly improved the efficiency and efficacy of software testing.

They adopt some classical criteria, such as structural code coverage and diversity of inputs,

to guide the testing process. However, some recent research shows that these fully-automated

tools can save efforts on the developer’s side but are incapable of finding complex bugs [101].

This lack results from the missing of human knowledge and makes these tools difficult to be

applied widely. The features of crowdsourcing can be leveraged to address this problem. Re-

searchers can propose semi-automated techniques to assist in software testing by leveraging

the knowledge of crowd workers as guidance. For example, building platforms or tools to

ease and guide crowds in contributing their domain knowledge to generate test cases. These

test cases contributed by crowd workers can reflect the real usage scenarios better and be

effective complementarity of automated generated ones [82].

Incentive Mechanism Design for Crowdsourced Software Engineering.. For crowd-

sourced software engineering, one of the primary challenges of crowdsourcing is to build a

capable and reliable workforce. Because the inherent difference in skills and knowledge of

crowd workers, crowd workers’ expectations about effort and rewards for completing the

same task vary widely. Expectations about effort and rewards can significantly influence

people’s preferences, decisions or behaviours [52, 54]. Incentive mechanisms, which define

the task-worker matching and rewarding strategy, can be introduced to optimize the worker

gathering process and effort-reward model for crowdsourced testing. However, the existing

crowdsourcing platforms provide limited service and assistant for requesters. This lack may
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make it difficult to attract qualified crowd workers and thus negatively influence the quality

of testing results. The future research can lay on, but not limited to, the following questions:

1. how to automatically assign the reward for each task, given the fixed amount of budget,

number of tasks, and estimated difficulty of solving each task? 2. how to automatically

estimate the time cost of completing a task based on its text description? 3. how to au-

tomatically recommend tasks to workers, taking consideration of their history performance

and reward expectations?

Tools for Crowdsourced Software Testing.. Designing and implementing tools can

facilitate crowdsourced software testing and benefit both crowd workers and requesters in

various perspectives. First, automated tools should be provided to ease crowd workers to

complete tasks and thus involve more workforce. Given the fact that crowdsourcing testing

has been applied to assist in various testing tasks, it is natural that some tasks may require

crowd workers to be experienced or skilful in software testing techniques. For these tasks, the

technical barrier makes gathering qualified crowd workers challenging for their requesters.

Several automated tools have been developed for crowdsourced testing to lower the technical

barrier. For example, the Applause crowdsourced testing platform provides a set of tools 1

to support the testing process [9]. These tools help crowd workers to automatically record

runtime information in the on-going testing sessions, including program execution profiles,

devices, environments, locations, and so on. Even though these tools have succeeded in

saving crowd testers plenty of time cost of capturing a bug of the mobile app under test and

taking screenshots to file the bug report, they failed to guide for crowd workers to detect

bugs and analyze the potential vulnerabilities.

On the other hand, designing tools that enable requesters to monitor, evaluate, analyze and

review the testing processes and results is critical for bug reproduction. They are critical for

improving the efficiency of the bug diagnosis and fix. These tools should be integrated with

1www.applause.com/platform
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data analytics to handle large scale of reports submitted by crowd workers, and further,

provide the insights and critical features of the testing results. Further, considering the

feedbacks from crowd workers are not limited to texts, these tools should be able to support

various data types, such as screenshots, voice records and videos.
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