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Abstract

Uniqueness of VOA structure of 3C-algebra and 5A-algebra
by

Wen Zheng

In this thesis, we study the structure of 3C-algebra and 5A-algebra constructed by
Lam-Yamada-Yamauchi. We mainly use relevant braiding matrices to establish
the uniqueness of the vertex operator algebra structure of these two algebras.
Besides, we also give the fusion rules for these two algebras.
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iv



Acknowledgments

First I would like to express my gratitude to my supervisor Chongying Dong for
his invaluable advice, continuous support, and patience during my PhD study.
Without his help, I would never have come this far. I would also like to thank
Xiangyu Jiao for her encouragement and valuable discussion. Second, I wish to
acknowledge the help provided by the staff in the Mathematics department of the
University of California, Santa Cruz. I also would like to thank Professor Bruce
Cooperstein and Hiromichi Yamada for being my committee members and taking
time in reading my dissertation. Finally, I would like to express my gratitude to
my parents. Without their tremendous understanding and encouragement in the

past few years, it would be impossible for me to complete my study.



Chapter 1

Introduction

The Monster simple group M [18] is generated by some 2A-involutions and the
conjugacy class of the product 77" of two 2A-involutions is one of the nine classes
14,2A,3A,4A,5A,6A,4B,2B and 3C in M [5]. Moreover, each 2A-involution 7
defines a unique idempotent e, in the Monster Griess algebra, which is called an
axis. The inner product of e, and e, is uniquely determined by the conjugacy
class of the product of two 2A-involutions 77’. From the construction of the moon-
shine vertex operator algebra V* [17] we know that the Monster Griess algebra is
the weight two subspace V3 of the V. It was discovered in [I3] that V¥ contains
48 Virasoro vectors, each Virasoro vector generates a Virasoro vertex operator
algebra isomorphic to L(3,0) in V* and L(3,0)®* is a conformal subalgebra of
V% Such a Virasoro vector is called an Ising vector. Miyamoto [27] later realized
that 2e, is an Ising vector for any 2A-involution 7. Conversely, for an Ising vector
e in Vzh, one can construct a 2A-involution 7, which is called Miyamoto involu-
tion. Thus there is a one-to-one correspondence between 2 A-involutions of M and
Ising vectors of V% According to a result in [5], the structure of the subalgebra
generated by two Ising vectors e and f in the algebra V; depends on only the
conjugacy class of 7.7;. For the nine classes 1A4,2A,3A,4A,5A,6A,4B,28 and



3C, the inner product (e, f) are i, 2%, 2%, 2—17, 2%, 2%, 28 0, = 55, respectively.

It is natural to ask what the vertex operator subalgebra generated by two
Ising vectors in an arbitrary vertex operator algebra is. A beautiful result given
in [28] asserts that the inner product of any two different Ising vectors again take
these 8 values as in the case of the moonshine vertex operator algebra. In [24],
[25], for each of the nine cases, they constructed a subalgebra of V55, which is
generated by two Ising vectors. These vertex operator algebras generated by two
Ising vectors are simply called 1A4,2A,3A,4A,5A,6A,48,28 and 3C-algebras,
denoted by U, x. But this raises two more questions: (1) Is the vertex operator
algebra structure of these algebras constructed in [24], [25] unique? (2) Is any
vertex operator algebra generated by two Ising vectors isomorphic to one of these
9 algebras? The uniqueness of VOA structure of Us4 has been given in [7]. In
[29], they proved the VOA generated by two Ising vectors whose inner product
is 210 has a unique VOA structure, so 3A case in question (2) has been solved
thoroughly.

Now consider the uniqueness of VOA structure of U, x-algebra where nX #
3A or 6A. Note that Uy = L(%,O) and Uyp = L(%,O) ® L(%,O). So the
uniqueness of VOA structure of these two algebras is trivial. We also know that
Usn = L (%,O) ® L (170,O> ®L (2, 2) ® L (11 %) is a simple current extension of
the subVOA L (3,0)® L (£,0), Usp = L (3,0)9 L (§,0)0 L (F,0)oL (3. 1)@
L (10’ 2)®L (17070>@L (27 2)®L (17()70)®L (107 2)@L (2’ 2)®L (107 2)®L (107 2)
is a simple current extension of the subVOA L (5, 0) ® L (170, O) ® L (10, 0),
the uniqueness of the VOA structure of Uy and U,p follows from [12], also see
Remark . Uipg = V/\JF, So Uya, Usa and Usc are the three nontrivial cases left.
In this paper, we only consider the uniqueness of VOA structure of Us4 and Use.

The main idea is to use relevant braiding matrices.



This thesis is organized as follows. In Chapter [2, we review some basic notions
and some well known results in the vertex operator algebra theory. In Chapter [3]
we study the structure of the 5A-algebra and prove the uniqueness of the vertex
operator algebra structure on Us4. In Chapter [l we study the structure of the
3C-algebra and prove the uniqueness of the vertex operator algebra structure on

Usc. In Chapter [ we give fusion rules of the 5A-algebra and 3C-algebra.



Chapter 2

Preliminaries

2.1 Basics

We first state the definition of vertex operator algebra from [4], [17].

Definition 2.1.1. A vertex operator algebra (V,Y,1,w) is a Z-graded vector space

with a linear map

YV = (EndV)[[z, 27 Y]

v Y(v,2) = v,27" v, € EndV

nez

called the vertex operator of v for each v € V' satisfying:
(1) For any u,v € V, u,v = 0 for n sufficiently large.

(2) There is a specific element 1 € V; called the vaccum such that

Y(]_, Z) = Idv,

v_11l=wv, v,1 =0 forn > 0.

(8) There is a specific element w € V; called the Virasoro element such that

4



(i) {L(n) := wpy1} s a Virasoro algebra generator, that is , they satisfy

3

[L(m), L(n)] = (m = n)L(m + 1) + o ——c
where ¢ € C is called the rank of V.
(ii) The L(—1)-derivative property:
L(-1), Y (0,2)] = ¥ (v, 2)
? 9 dz 9
(iii) L(0)|y, = n - Idy,.
(4)Jacobi identity: For any u,v € V,
Z9 — 21

z ' (Zl _ 22) Y(u,z1)Y (v, 29) — zalé ( ) Y (v, 29)Y (u, 21)

20 —20

=21 (Zl _ ZO) Y (Y (u, 20)v, 22),

Z2

where 6(z) = Y 2™ and all binomial expressions (here and below) are to be ex-

nez
panded in nonnegative integral powers of the second variable.

From now on, we denote by (V,Y,1,w) a vertex operator algebra. Next we

recall notions of weak, admissble and ordinary modules from [17], [31], [9].

Definition 2.1.2. A weak V-module M is a vector space equipped with a linear

map

Y 0V — (EndM)][z, 27 Y]]

v Yiy(v,2) =D vz " v, € EndM,

nel



which satisfies the following conditions: for u,v € V, w € M,

ww = 0 for [ > 0,

YM(]., Z) = IdM,

Z9 — 21

2615 (Zl — Z2> Yar(u, 21)Yar (v, 22) — 2615 (

% ) Yar(v, 22)Yar (u, 21)

— z;lé (Zl z_ ZO) Y (Y (u, 29)v, 29).
2

We use Z, to denote the set of nonnegative integers.

Definition 2.1.3. An admissible V-module M is a weak V-module which
carries a Zi-grading M = ®pez, M(n) satisfying the following condition: for

m € Z,n € Z, and homogeneous v € V, v,, M(n) C M(wtv +n —m — 1).

Definition 2.1.4. An ordinary V-module M is a weak V-module which carries
a C-grading M = @xecc M)y, where My = {w € M|L(0)w = Mw} and L(0) is the
component operator of Y (w, z) = Y ,cz L(n)z7""2. We also require that dim M)
is finite and for fired X, My, = 0 for small enough n € Z. From now on, if we

say M is a V-module, we mean M s an ordinary V -module.

Definition 2.1.5. A vertex operator algebra V' is said to be rational if the ad-

missible module category is semisimple.

Definition 2.1.6. A vertex operator algebra V is called Cy-cofinite if it satisfies
dim V/Cy(V) < oo, where Co(V') = (u_sv|u,v € V).

It is proved in [9] that if V' is rational, then there are finitely many inequivalent

irreducible admissible modules M°, M*, ..., M? and each irreducible admissible



module is an ordinary module. Each M® has weight space decomposition
M= @n€Z+M§\¢+m

where \; € C is a complex number such that M f\l # 0 and M f\l +n 18 the eigenspace
of L(0) with eigenvalue A\; + n. The ); is called the conformal weight of M. If
V' is both rational and Cs-cofinite, then each \; and the central charge of V' are
rational numbers [10].

For a vertex operator algebra V', the following skew symmetry property [16]
Y (u, 2)v = XYY (v, —2)u

for u,v € V is useful later.

Definition 2.1.7. A vertex operator algebra V' is said to be CFT type if V =
®nez, Vo and Vo = C1.

We say V is simple if as a V-module, V is irreducible. If V' is both rational
and CFT type, then it is easy to see that V' is simple.

The following lemma from [7] will be used later.

Lemma 2.1.8. Let (V,Y,1,w) be a vertex operator algebra and o : V — V be a
linear isomorphism such that o (1) = 1,0 (w) =w. Then (V,Y?,1,w) is a vertex

operator algebra where
Y (u,2) = oY (0, 2)o!

and (V.Y 1,0) = (V,Y, 1,0).



2.2 Ising vector

Definition 2.2.1. A vector e € V5 is called a conformal vector with central
charge c. if it satisfies e;e = 2e and eze = 1. Then the operators Lj, :=

eni1, N E 7, satisfy the Virasoro commutation relation

m3 —m

Ly, L]l =(m —n) Lfn+n + O, DTCe

form, n € Z. A conformal vector e € Vo with central charge 1/2 is called an Ising

vector if e generates the simple Virasoro vertex operator algebra L(1/2, 0).

2.3 Invariant bilinear form

Let M = @ cc M)y be a V-module. The restricted dual of M is defined by M’ =
@rec M5 where My = Homg (M, C). It is proved in [16] that M’ = (M’ Yy ) is

naturally a V-module such that

(Yarr (v, 2) fu) = <f, Yu (GZL(I) (—Z_Q)L(O) v, z_1> u> ;

forveV, fe€ M and u € M, and (M") = M. Moreover, if M is irreducible, so
is M'. A V-module M is said to be self-dual if M = M’.

Let C[z1, z2] be the polynomial ring and C(z, 22) be the field of all rational
functions in z; and z3. Set S = {21, 29, 21 + 20}. Let C[z1, 25]s be the subalgebra

of C(z1, 25) generated by 2!, z&! and (2, £ 25)~". Define 15 to be the linear map
112 : Clz1, 22)s = Cl[z1, 27, 20, 25 Y]]

such that t15(f(z1, 22)) is the formal Laurent series expansion of f(z1, z3) involving



only finitely many negative powers of z3. Analogously, we define the linear map

121(f (21, 22)) using the opposite expansion.

Proposition 2.3.1. Let u,v,w € V and w' € V' be arbitrary. We have:

(a) (rationality of products) The formal series

(WY (u,21) Y (v, 29) w) (: > (W, umvnw)zfm_lzgn_l) (2.3.1)

mneZ

lies in the image of the map t1o:
(W'Y (u,21) Y (v, 29) w) = t12f (21, 22), (2.3.2)

where the (uniquely determined) element f € Clzy, 225 is of the form

9(z1, %)

(z1 — zo)kzlz

f(zla 22) ==

for some g € Clzy, 2] and k,l,m € Z, where k depends only on u and v; it is
independent of w and w'.

(b) (commutativity) We also have

(W'Y (0,22) Y (u, 21) w) = 191f (21, 22), (2.3.3)

that is, in informal language,
Y (u, 21)Y (v, 22) agrees with Y (v, z5)Y (u, 1)
as operator-valued rational functions.”

Definition 2.3.2. A bilinear form (, ) on a V-module M is said to be invariant



if it satisfies the condition
(Y(a,z)u,v) = (u, Y (e*W (=272 EO0q z71)y)

foraeViuve M.
The following result about invariant bilinear forms on V' is from [206]:

Theorem 2.3.3. The space of invariant bilinear forms on V' is isomorphic to the
space

(Vo/L (1) V1)" = Home (Vo/L (1) V3, C).

In particular, if V' is a simple vertex operator algebra of CFT type with Vi = 0,
then there is a unique nondegenerate invariant bilinear form (, ) on V satisfying

(1,1)=1and V=V"

2.4 Intertwining operators and fusion rules

Definition 2.4.1. Let V be a vertex operator algebra and let (M*,Y"), (M7,Y7),

Mk
(Mk, Yk> be three V -modules. An intertwining operator of type
Mt MI

s a linear map

Y(-,2): M"— Hom (Mj, Mk> {z}

ur—Y(u,z) = Z Upz "L
neQ

satisfying:
(1) For any u € M* and v € M7, u,v =0 for n sufficiently large;
(2) Y(L_yv, z)= (d%) Y (v,2) forve M

10



(3) (Jacobi Identity) For any u € V, v € M",

—Z29 + 21
20

210 (le_'ZQ) Y*(u,21) Y (v, 29) — 256 <
0

=z! (Zl — ZO) Yy (Yi (u, 20) v,zz) .

Z9

) Y (v,22) Y7 (u, )

Mk;
The space of all intertwining operators of type | is denoted by the
MY MY
k

symbol I, . Without confusion, we also denote it by Ifj. Let Nf i=
MM | |

dim [i]‘fj. These integers ij are called the fusion rules.

Definition 2.4.2. Let M*' and M? be V-modules. A tensor product for the
ordered pair (M*', M?) is a pair (M,Y (-,z)) which consists of a V-module M
and an intertwining operator Y (-, z) of type o satisfies the following
universal property: For any V-module W and any intertwining operatorZ (-, z) of
type , there exists a unique V-homomorphism ¢ from M to W such

MY M?
that Z(-,z) = ¢ o Y (-,2). From the definition it is easy to see that if a tensor

product of M' and M? exists, it is unique up to isomorphism. In this case, we

denote the fusion product by M* Xy M?2.

Let V! and V2 be vertex operator algebras. Let {M® , i = 1,2,3} be V-
modules, and {N%, i = 1,2,3} be V?*modules. Then {M’® N*, i = 1,2,3} are

V1 ® VZmodules by [16]. The following property was given in [3]:

o . 3 3
Proposition 2.4.3. If NM', . < 00 or N§| 2 < oo, then
M3QN3 M3 N3
NM1®N1,M2®N2 = NM17M2NN1,N2'

11



2.5 Simple current extensions

Definition 2.5.1. Let V' be a simple VOA. An irreducible V- module U is called a
simple current V-module if for any irreducible V-module M, the fusion product

UNX M s also irreducible.

Definition 2.5.2. A VOA is graded by an abelian group G if V = @4V, and

upv € VI for any w € V9,0 € V', and n € Z.

Definition 2.5.3. Let V = 3" V7 be a simple G-graded VOA such that V9 # 0
forallg € G, then'V is called a G-graded simple current extension if all V9, g € G

are simple current V°-modules.
By [12], we have the following proposition:

Proposition 2.5.4. Let V =} . VY be a simple G-graded VOA which is a sim-
ple current extension of V°. Then the VOA structure of V is determined uniquely

by the V°-module structure of V.

2.6 Quantum dimensions

Definition 2.6.1. An automorphism g of a vertex operator algebra V' is a linear
isomorphism of V satisfying g(w) = w and gY (v,2)g~! =Y (gv, 2) for anyv € V.

We denote by Aut(V') the group of all automorphisms of V.

For a subgroup G < Aut(V) the fixed point set V& = {v € V|g(v) =
v, forany g € G} has a vertex operator algebra structure. By [I1], [8], we have the

following;:

Theorem 2.6.2. Suppose that V' is a simple vertex operator algebra and that G

is a finite group of automorphisms of V.. Then the following hold:

12



(1) V = @yemrc)VX, where VX is the subspace of V' on which G' acts according
to the character x. Each VX is nonzero;
(ii) For x € Irr(G), each VX is a simple module for the G-graded vertex

operator algebra CG @ V& of the form

VX =M, ®V,

where M, is the simple G-module affording x and where V, is a simple VE-module.
(iii) The map M, — V, is a bijection from the set of inequivalent simple
G-modules to the set of inequivalent simple V¢-modules which are contained in

V.

Now we recall the notion of quantum dimensions from [6]. Let M = @®y,ez, Mays,

be a V-module. The formal character of M is defined to be

Cth _ tquL(O)—c/24 _ q)\—c/24 Z (dlm M)\+n)qn‘
nel4
It is proved in [31] and [I0] that ch,M converges to a holomorphic function on
the domain |¢| < 1 if V' is Cy-cofinite. We sometimes also use Z,/(7) to denote
the holomorphic function ch,M with variable 7 in the complex upper half-plane

H and g = ¢*™". By [6], we have the following:

Definition 2.6.3. Let M be a V-module such that Zy (1) and Zy(7) exist. The

quantum dimension of M over V is defined as

7
gdimy M = lim M(?y),
y—=0 Zy (iy)

where y s real and positive. Sometimes we use an alternative definition which

13



involves the q-characters:

. . chyM
qdimy M= 1“3 7

We have the following results [6], [3]:

Theorem 2.6.4. Let V' be a rational and Cs-cofinite simple vertex operator alge-
bra, G, V, and M, are defined as in Theorem[2.6.9 Assume V is g-rational and
the conformal weight of any irreducible g-twisted V-module is positive except for

V' atself for all g € G. Then
gdimyc V) = dim M,.

Proposition 2.6.5. Let V' be a rational and Cs-cofinite simple vertex operator
algebra of CFT type with V = V'. Let M°, M*', ---, M¢? be all the inequivalent
irreducible V-modules with M® = V . The corresponding conformal weights \;
satisfy \; > 0 for 0 < < d. Then
(i) qgdimy (M*X M7?) = qdimy M" - qdimy M7, for any i,j € {0,1,...,d}.
(ii) A V-module M" is simple current if and only if ¢ dimy M = 1.

(iii) q dimy M* € {2cos (7/n)|n > 3} U{a|2 < a < 0o, a is algebraic} .

Remark 2.6.6. Let U and V' be a vertex operator algebra under the same as-

sumption with Proposition[2.6.5, M be a U-module and N be a V-module. Then

qdimygy M @ N = qdimy M - ¢gdimy N.

2.7 The unitary series of the Virasoro VOAs

From now on we always assume p, g € {2, 3,4, ...}, and p, ¢ are relatively prime.

14



Definition 2.7.1. An ordered triple of pairs of integers ((m,n) ,(m/,n’), (m",n"))
is called admissible if 0 < m,m’, m” < p,0 <n,n’,n" <q, m+m'+m" < 2p,
n+n'+n" < 2q, m < m’4+m”, m' <m4+m”, m" <m+m/, n <n'4+n", n’ <n+n”,
n” < n+n', and the sums m +m’ +m”, n+n' +n" are odd. We identify the

triples ((m7 n) ’ (m/v TL/) ) (m//7 n//)) and ((ma n) ) (p - mlv q— n/) ) (p - m//a q— n//))'

6(p—q)? np—mq)%—(p—q)?
Let ¢,, = 1—%, o = %,O <m < p0<n<q
L (¢p g, himn) is the irreducible highest weight representation of the Virasoro al-
gebra L with highest weight (¢, 4, hmn). Then L(c,4,0) has a VOA structure.

Moreover, we have the following results [30]:

Theorem 2.7.2. The vertex operator algebra L (c,4,0) is rational and the mini-

mal modules L (¢y g, himn), 0 < m < p,0 <n < q are all irreducible representations

of L(cpy,0).

Theorem 2.7.3. The fusion rules between L (c, 4, 0)-modules L (cpq, by n/) and

L (Cp7q, hm//m//) are

L (pgs P ) B L (Cpgo hugrn) = 30 N o L (Cpgs )
(m,n)
where N((x,’z),)’(m,,’n,,) is 1 if and only if ((m,n), (m',n’), (m”,n")) is an admissible

triple of pairs and 0 otherwise.

2.8 Braiding matrices

Let V be a rational and Cs-cofinite vertex operator algebra of CFT type and
V V. Let A={0,1,2,..,d} and {M*,i € A} be the set of all inequivalent

irreducible V-modules. Let [ o

o’ 4, De the space of all intertwining operators of type

15



Mas
for ai, as,as € A. Tt follows from [19] that for any ay, as, az, a4 € A
Mar Mo
there is a braiding isomorphism B?"?? from H 18+ & I . to ]_[ 134

a4,a3 cA al,a az,a3 az,a
a

of the space I3® , for ay,az,a3 € A and 1=

Ie We choose a basis Y%

ai,as "’ a1,a2;t

1,2,...,Ng?, . Then we obtain the braiding matrices Bg}? corresponding to

the braiding isomorphisms B2y, as, as, as € A, whose entries are given by

a4,a3?

aq a
Nag,a Nal,a3

a a a. as ai,a YL a.
(Bela2) (Ve o @ Vad i) = D (Baiaj) (Vi @V ) (2.81)

acA k=1 I[=1

forase A,i=1,... . Ng j=1,...,N2 ..
Consider the simply connected regions in C? obtained by cutting the regions
|z1] > |22] > 0 and |z5| > |z1] > 0 along the intersections of these regions with

R2? Cc C%. We denote them by R; and R, respectively. For aq,as,as,as € A, let

G192:93,%4 he the space of multivalued analytic functions on

R={(z1,2) € C?|z1,20 # 0,21 # 22}

with a suitable choice of a single valued branch which is called prefered branch

in [19] on the regions Ry and Ry. Then we have linear maps

L 9 . Gal,ag,ag,a4 - H :Ci\ml_)\al_)\a.r;a_)\GQ_/\a:’)(C[l.l,xflg xQ,:C;l]Hl'Q/xl]]
acA

R | I;a‘l_/\%_/\%ia_M_A%C[xl,351_1,$2,$z_1][[$1/$2]]
acA

where \;,i € A is the conformal weight of M?. These maps are injective and

generalize 119, 191 discussed before. We have the following result [19]:

Proposition 2.8.1. For any a1, az, a3, as, a5 € A, anyw,, € M*,1=1,2,3,w,, €

(M), any i,j € Z satisfying 1 <1 < N3, 1< j < N .. the (multivalued)

ai,as’ az,as’

16



analytic function

<wa4> 514(15 z(wanxl)yg;ag](wawx2)wa3>|wl 21,T2=22

defined on the region |z1| > |z2| > 0 and the (multivalued) analytic function

Naga Ni s W5kl
>3y (Baw)

as.a ’ <w;47 ys;,a;k (w(127 $2)yz(zll,a3;l(wa1 ) xl)was> |CE1=21,$2=22

on the region |z3| > |z1| > 0 are analytic extensions of each other. We can simply

write this property in the following way:

L121 <w;4, ygf,a5;i(wa17 Zl)ysg,ag;j (waza 22>wa3>
Ngd . N2

ag,a ay,azy

i,7;k,1 _
= Z Z Z (Bgi:g§>a5 ) L211 <wa47 s;,a;k<w(l27 ZQ)ygl,ag;l(walv Zl)wa?,)‘

a€A k=1 I=1 -

Remark 2.8.2. By [20], for any ai,as,a3,a4 € A,

—1 a a
L12 <wa47 a14,a5;i (w(ll ) Zl) yas,ag;j (wa27 ZQ) wa3>

where i =1,--- N2, j=1,--- N2 a5 € Ais a linearly independent set.

ai,a az,as’

Now let’s recall some formulas about minimal models of Virasoro vertex op-

erator algebra given in [I5]. Let o? = 1%, ol = here p' = p+ 1. Let z =

ﬂ
p’
exp (27”'0&), Y = exp (27?2'0&), (] = 22 — 272 [I) = y"/? — y~1/2. Denote c, =

1— b withp =2,3,4,- -, he)y=1(%—1)a2 -1 (- 1)+ (- 1)a2 =
% Now we fix the central charge ¢,, denote L (cp, h( ; )) by (#',1). Note

that here (¢/,4) is the same as (4,4") in Theorem 2.7.3| Let (d’,a), (m’,m), (n/,n),
(c,c), (b,b), (d,d) be irreducible L (c,,0)-modules. The braiding matrices of
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screened vertex operators have the almost factorized form (cf. (2.19) of [15]):

(355;"734)(,6(,45),71)) (v,b),(d" )

— Om D ) 1)) (_y(ambremd)(o'bm) 24 (@ Y= d)ntm)/2 g g oy

' (', m! n' )y g (a,mym,0), g,

where the nonvanishing entries of r-matrices are

r(a,1,n,¢)  =r(a,m, 1,0)0@ =1,

a,c

r(l£2,2,2,0),,,, =2,

1
r(0,2,2,0) 140 440 = $$_1/4:Fl/2u

UK

[£1
.22 gy =2 283)
and other entries of r-matrices are given by the recursive relation
r(a,m+ 1,n, c)b’d = Z r(a,2,n, dl)al,d -1 (ay,m,n, c)bd1 ,
di>1
r(a,m,n+1, c)bd = Z r(a,m,2, cl)bd1 -1 (dy, m,n, c)q’d, (2.8.4)
di>1

for any choice of a; and ¢; compatible with the fusion rules. The ' matrices are

given by the same formulas with the replacement z — 5, [ ] —=[ .

Remark 2.8.3. Using the above notation, we see that the central charge of the
model L (%,0) corresponds to the parameter a® = g with p =7, p' = 8. The

: : : 3 13
pairs (1,1), (3,1) , (5,1) and (7,1) correspond to the highest weights 0, 3, =
21

and % respectively. The central charge of the model L (ﬁ,

O) corresponds to the

parameter a® = % with p = 11, p’ = 12. The pairs (1,1), and (7,1) correspond

18



to the highest weights 0 and 8 respectively.

Now we will prove two lemmas which will be used in the proof of the uniqueness
of 5A and 3C algebras. First we consider braiding matrix for L (3—2, 0)-modules.
Note that P, = L (E E), P;=1L (%, %),P4 =L (;—g, 1?3) are irreducible L (%, O)—

287 2
by (Bj;;f) - for a,b,c, d,

BPde)
Pe,Py e,

modules. For convenience, we will denote ( PP,

e, f €{2,3,4}.

Lemma 2.8.4. (B;’?,)“ : <B§f§>23

<B§:§)4,4 N (B§:§)4,2 ' (B§’,§)3,4 #0.

- (B33),, (B35),, # 0. and (Bs), -

Proof. Using ([2.8.2), (2.8.3) and Remark|2.8.3|, we have <B§7’§>44 =1"(5,3,3,5)55-

Let [I]' = 2isin (%Wl), Yy = exp (Zm’). Using ([2.8.3)) and ([2.8.4) we obtain:

7 (5,3,3,5)55 = 1 (5,2,3,4), 5 -7 (4,2,3,5)5 , + 17 (5,2,3,6), 5 - 1 (4,2,3,5)5 5,

T, <5’ 2’ 3’ 4>4,5 = T, (57 27 27 3)474 ' 7’/ (47 2a 2a 4)3,5 y% "y F = Tl
(42,3, 5)54 = ' (4,2,2, 6)s,5 - ' (5,2,2, 56 = ?Ji Y i =

7 (5,2,3,6),5 =1 (5,2,2,5), , 1" (4,2,2,6); 5 + 17 (5,2,2,5), 5 -1 (6,2,2,6) ;
52111 16]" + [4)" [1]'

5]'[6]
T/ (47 27 3’ 5)576 - T/ (4’ 2’ 2’ 4)5,5 ’ 1”/ (57 27 27 5)4,6 = _y5/2E}/.
Then we have:
) RO CRAC)
(B3,3)474 =T (5, 3,3, 5)575 - [5]/ [4]/ - [5],2 [6], . (285)
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Similarly, we obtain:

o (W () le)) () m’))
(BB 3)24 - (57 37 37 5)7,5 =Y ( [5]/2 [4]/ + [6],2 [5]/
(2.8.6)
From , and a direct computation, we obtain:
(85, (B19),, - (855), (813),, =, t0 0 20 @287
By a similar process, we obtain:
ey ey [AVB) (o) TP+ [61’))
(B83)sa (B5)u =" forr Gy~ oPr
=y ' (V2-1) (2.8.8)

From ([2.8.8) and ([2.8.9)), we have

(Bs3),, (Bsi),, — (Bs3),, - (Bs3),, =V =1+i#0.  (2810)
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]

Next we consider the braiding matrix for L <%, 0)—modules. Note that U! =

29

L (%,O), U? =1 (%,8) are irreducible L (21 O)—modules. For convenience, we

will denote (BUC’Ud by (ngf) g for a,b,c, d, e, f € {1,2}. Now we are

U“,Ub)UeJ]f e,

ready to give the following lemma:
2,2
Lemma 2.8.5. (32’2)2’1 # 0.

Proof. Let [I]' = 2isin (%Wl), Yy = exp (%m’). By a careful computation which is

similar to Lemma [2.8.4] we obtain

(B32), =yt (17 - ([21" + [4)) - (23] + [2'[5]" + [5]'[4]")
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Chapter 3

Uniqueness of VOA structure of

the 5A-algebra U 4

As in [24], we denote the irreducible module L (%, hl) ® L (25 hz) ® L (%, h3)

287

by [h1, ha, hs] for simplicity. Let

15 15 3 13 13 13
1_ 2 _ oY Y V3: e 4 _ oY Y
V [07 070]7 V [07 2 ) 9 ]7 [07 47 4 ]7 V [07 4 ) 4 ]7
1 15 1 15 133 1 13 13
4 [2707 2]7 V [27 270]7 V [27474]7 [27 47 4]7
1 5 57 1 57 5 1 57 165 1 165 57
VQ B VIO [ 2= = Vll [ 2 =% V12 =[—, —, =]
[16’32’32]7 [16’32732]’ [16’32’ 32]’ [16 32 32]

Then the 5A-algebra

U, 2 VieoTVie. . oViigy!2

as V1-modules. Since V1 is rational and Cs-cofinite, by [I] and [22], it is easy to

see that Us,4 is a simple, rational and Cs-cofinite VOA.

Lemma 3.0.1. Let W = V1 + V24 V3 4+ V4 then W is a subVOA of Usa and

the VOA structure of 5A-algebra Usy is uniquely determined by W.
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Proof. By the fusion rules of L (%,O) modules and L (3—2,0) modules, we see

that W = V! + V2 + V3 4+ V1 is a subVOA of V! + V2 + .. + V7 + V¥ and
VI4 V24 . +VT+V8isasubVOA of Uss. By [27], we can define an involution 7
of Us 4 by letting it act by —1 on VI4+ V104V 4+ V12 and by 1on VI+ V24 .. +
V7 + V8. Then it follows from [6] that V* + V10 + V1 4 V12 is a simple current
module over V! 4+ V2 + ...+ V74 V8 Similarly, one can define an involution o of
V4 V24 . +VT4+ V8 whichactsby 1lon W =V'4+V24+V34+V*and by —1
on V5 + V6 4+ V7+ V8 Then again by [6] we see that M = V5 + V6 4+ V7 + V8 is

a simple current module over WW.

Claim 1. The W-module structure of M is unique. That is, if M' is also a
W -module such that M* = M as V-modules, then M' = M as W -modules.

We need to use some category theory to prove that claim. Recall some basics
on category theory from [23], [I4]. An object A in a braided fusion category C
is called regular commutative algebra if there are morphisms p : AKX A — A
and  : 1¢ — A such that po (pXida) o waaa = po (ida X p), po (nX
idg) ol ! =idy = po (idy Xn) oryt, = pocaa and dimhom(1le, A) = 1 where
agan: AK(AKA) — (AKA)XA is the associative isomorphism, [4 : 1.XKA — A
is the left unit isomorphism, r4 : AKX 1 — A is the right unit isomorphism and
caa: AMA — AKX A is the braiding isomorphism. A left A-module N is an
object in C with a morphism puy : AKN — N such that pyo (pXidy)oasan =
py o (ida X puy). We denote the left A-module category by Ca. Let Ny, Ny € Ca.
Define Ny X4 No = Ni X No/Tm (g — pe) where g, ps : AK Ny X Ny — Ny X Ny
are defined by 1 = pn, Widp,, po = (ida X up,) o can, Widy,. Then Cy4 is a
fusion category with tensor product Ny X4 No. An A-module N is called local if
iUN ©Cna©can = puny. We denote the local A-module categoy by CY. Then CY

is a braided fusion category. Moreover, if C is modular tensor category, so is C§
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[23]. For any N € C4 and X € C, NX X € Cy4. From [2I] we know that the
module category Cy of any rational, Cs-cofinite, selfdual vertex operator algebra
V' is a modular tensor category with tensor product X. Thus both Cy1 and Cy
are modular tensor categories. Moreover, W is a regular commutative algebra in
Cy1 [22]. From the discussion above, (Cy1)w is a fusion category and (Cy1)Y, is
exactly Cy [22].

We now can prove M = M!' = W Ky V° as W-modules. Note that

qdimy (W Ky V) = qdimy (W)qdimy (V?) = qdimy. (W)

by Proposition as V? is a simple current. Thus

qdimV1 (W &vl V5)

= 1.
qdimy (W)

From Theorem 1.6 of [23] we have isomorphisms
Hom(cvl)W(W IEV1 V5, M) = HOmvl (V5, M) = HOIH(CVI)W(W &Vl V5’ M1>

Since (Cy1)w is a semisimple category, M and M are irreducible W-submodules of
WXy V2. Using the fact that qdimyy, (M) = qdimy, (M) = qdimy, (WK V?) =1

we immediately conclude that M = M = W X1 V5 as W-modules.
Claim 2. The vertex operator algebra structure on W + M is unique.

From Claim 1 and the discussion above, W + M is a simple current extension

of W. The Claim follows from Proposition [2.5.4]

Claim 3. The W-module structure of N =V + V0 £ VI L V12 js unique. That
is, if N* is also a W-module such that N' = N as V'-modules, then N' = N as
W -modules.
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Consider W Xy1 V? € (Cy1)w. By Theorem 1.6 of [23] again we have isomor-

phisms

Homc, ,y,, (W By V2, W Ky V°) = Homy (V2 W Ky V7)

= Homy (V2 Ry (V) W)

where (V?) is the restricted dual of V¥ and is isomorphic V. Tt is easy to see
that the projection V? X1 V? to W + M is isomorphic to V! + V3 + V5 + V7,
Thus Homy (VO Ky (V)W) is 2-dimensional and W K1 V¥ is a direct sum
of two inequivalent irreducible W-modules in (Cy1)w. As before one can compute
that qdimy, (W Ky1 V?) = qdimy: (V) = 4 + 2v/2. Also, both N and N! are
submodules of qdimy, (W K1 V). If N and N are inequivalent W-modules then
qdimy, (W Ky1 VY) = N @ N'. But this is a contradiction as qdimy, (N + N*1) =
2qdimy, (N) = 4.

Claim 4. There are two inequivalent W + M-module structures on N.

Define an automorphism o of W + M such that 0 =1 on W and —1 on M.
Following [10] N oo is also a W + M-module such that Yyo, (v, z) = Yn(ov.2) for
veE W + M where N oo = N as vector space. Since N is an irreducible module,
Noo and N are inequivalent W+ M-modules [12]. Note that Yyo, (v, 2) = Yy (v, 2)
if v e W and Yno,(v,2) = =Yn(v,2) if v € M.

Now let N' = (N')Y}) be any irreducible W+ M-module such that N' = N as
W-modules. Then Yy(v,2) = Yi(v, z) for v € W by Claim 3. Since M is a simple
current, the space of intertwining operators Iy, is one dimensional and

M N
spanned by Yy. Then there is a nonzero constant A such that Y;(u, z) = AY (u, 2)
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for all w € M. Using the associativity

Yn (Y (u, 20)v, 22)

= Res,, (zo_15 (21 z_ Z2> Yi(u, 21)Yi(v, 29) — 250 (ZQ —ZZ1> Y1 (v, 29)Yi(u, zl))
0 —20
= )2
Res., (20_15 (Zl z_ ZQ) Yy (u, 21)Yn (v, 22) — 2510 (ZZ —221> Yy (v, 29)Yn (1, zl)>
0 —20
= Res,, <ZO_15 (21 Z_ Z2> Y (u, 21)Yn (v, 25) — 2510 (22 _ZZ1> Yn (v, 29)Yn (u, zl)>
0 —20

for u,v € M, we see that A = +1. So N! is either isomorphic to N or N o 0. We

denote these two module structures by N*, N~.
Claim 5. VOA structure of 5A-algebra Us 4 is uniquely determined by W.

Let V be a vertex operator algebra such that V = Us4 as V!-modules. From
the discussion above we see that V=ZW + M+ NT or W+ M+ N~ as W + M-
modules. Note that both W + M + Nt and W + M + N~ are simple current
extensions of W+ M. By Proposition [2.5.4] the vertex operator algebra structures
on both W+ M + NT and W + M + N~ are unique.

Finally we show that W + M + Nt and W + M + N~ are isomorphic vertex
operator algebras. Note that as vector space W + M + Nt =W + M + N~ =
W + M + N. We now extend the action of o from W + M to W + M + Nt so
that ¢ = 1 on N. Then o is a linear isomorphism of W + M + N7 satisfying
0(1) = 1 and o(w) = w. Let Y defines the vertex operator structure on W +
M + N*. Then Y?(v,z) = oY (ov,z)o defines a new vertex operator algebra
structureon W+ M+ NTand W+ M+NT YV, 1, w) 2 (W+M+NT Y7 1,w)
by Lemma 2.1.8] It is easy to verify that Y(u,z) = Y (u,z2) for v € W and
Yo (u,z) = Y(u,z) on W+ M and Y (u,z) = =Y (u,2) on N for u € M. Thus,
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(N,Y?) = (Noa,Ynos) where Yn(a, z) = Y(a,z) on N for a € W+ M. Using the
uniqueness of the vertex operator algebra structure on W 4+ M + N~ we conclude
that (W + M+ Nt Y7 1, w) 2 W+ M+ N-. Asaresult, W+ M + NT and

W 4+ M + N~ are isomorphic vertex operator algebras. The proof is complete. []

Let U' = L(£,0)®L(Z,0), 1?=L(Z2)oL(Z %) 1°=L(Z% e

287 287 28 2 287 2 287 4

L(Z%), vt =L(B %) eL(E3) and U = U' + U? 4+ U + U'. Then
W =1L (%, O) ® U and U admits a VOA structure. Next we will prove the vertex

operator algebra structure on U over C is unique.

Remark 3.0.2. By [1] and [15], U is rational and Cs-cofinite. Since Uy = 0 and
dim Uy = 1 by Theorem [2.3.5, there is a unique nondegenerate invariant bilinear

form on U and thus U = U. Without loss of generality, we can identify U with
U'.

Set
25 25 15
Pi=Qi=1(300), P=Q=L(5.).
25 3 25 13
P3_Q4_L<2874)7P4—Q3_L(2874)'

Then Ul = P, ® Q; for i = 1,2,3,4, and
UXPRQIOPRRQ(OPRRQ:OPQ,=U'0U*0 U9 U

. . . P c .
For convenience, we list fusion rules Ip (Pa cpb) and I (UaU Ub) with a,b,c €

{1,2,3,4} in the following table.
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P | P Py Py

B Py Py Py

Po | Py | P+ P+ Py | B+ P+ Py

P\ P3|\ B+Ps+PFP | PP+Ps+ Py

Ut | U? Us Ut

U Ut Ut U?

U U U+ U3+ U | U2+ U+ U

Ut U3 |\ U+ 03+ U | U+ U+ U

Let Io, (o%%,) = CViy and Ip, (5/%,) = CV,. Then In (,y,) = CI,
where 77, = Vg, ® ?g,, Let (U,Y) be a vertex operator algebra structure on U
with

Y(u,z) = Z ab " Loy (U, 2) u’
a,b,ce{1,2,3,4}
where A7, € C.
Lemma 3.0.3. XS, # 0 if N¢, = dim I (;,V7,) # 0.
Proof. The proof consists of several claims.

Claim 1. )\’,3’1 #0,for k= 2,3,4.

For any u* € U*, k = 1,2, 3,4, using skew symmetry of Y (-, z), we have

Y (uF, 2)ut = e#H Dy (ul, —z) ub = )\’ik : eZL(_l)If’k (ul, —z) u®

= )‘Zl -Lﬁl <uk, z) ut,

Since U* is an irreducible U'-module, we have )\’f,k # 0, for k = 1,2,3,4. So
/\’/,;1 £ 0, for k= 2,3, 4.
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Claim 2. )i, #0, for k = 2,3,4.

By Remark U has a unique nondegenerate invariant bilinear form (-, -)
with (1,1) = 1. For u*,v* € U* k =1,2,3,4, we have

<Y (uk’ Z),Uk) ,u1> _ <Uk’ y (ezL(l) (_Z,Q)L(O) uk, Z1> u1> )
That is,
<)\]1€’k _I];k (uk, z) Uk’u1> _ <Uk, )\21 'I;'i,l (ezL(l) (_2,2)L(0) uk, Zl) u1> .

By Claim 1, we see that )\',271 #0,. Hence )\}C,k # 0, for k = 2,3, 4.
Claim 3. A3, M35, A3, Alo, A3y, Af 5 areallnonzero .

Let w2 € U2, u® € U3, u* € U* . Tt follows from the skew symmetry of Y that
(¥ (42, 2) ) = (Y (48, —2) o ).
That is,
(M Thy (42, 2) ) = (- MV, (8, —2) ). (301)

So \j5 and A1, are both zero or nonzero. Similarly, A3, and A}, are both zero
or nonzero, A2 ; and A%, are both zero or nonzero. For any u' € U!, u? v* € U?,

u?,v3 € U? and u* € U*, commutativity of Y implies
L1_21 <u1, Y (uQ, zl> Y (u3, 22) u4> = L2_11 <u1, Y (u3, zl) Y (uQ, zl) u4> ,
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ty <U1> Y (U4, 21) Y (u3, 22) u2> =15 <u1, Y (u3, zl> Y (u4, zl) u2> ,

L1_21 <U27 Y (UQ, 21) Y (ug, Zg) v3> = L2_11 <02, Y (u3, 21) Y (uZ, zl) v3> .
Equivalently,

-1 1 41 2 1 2 2 3 4

=15 <u1, A§’3A§A -I§73 (u3, zz) 13,4 (u2, zl> u4> , (3.0.2)

—1/, 1 \1 \4 1 (4 4 (3 2
12 <U y A1a032  Lay (U 721) I3, (U 72’2) u >

=15 <u1, A33A o I3 (u3, 22) 73, (u4, zl> u2> , (3.0.3)

—1/,2 42 y1 2 (2 1 (.3 3
12 <U s A21A33 Lo, (U 721) L33 (u 7Z2> v >

= Ly <v2, )\374)\373 -I§74 (u3, 2’2) I§73 (u2, zl) v3> . (3.0.4)

Claim 3 now follows from ({3.0.1)), (3.0.2)), (3.0.3), (3.0.4) and Claims 1 and 2.

Claim 4. A3, A}g, N33, A0y, A3 4 A5y, Als, A3 5, AR, areallnonzero .

First we will show that A}j, A5 Ajy, A3, are all zero or all nonzreo. Let
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ul € Ul u? € U, v3,u® € U3, vt ut € U? . By skew symmetry of YV, we have

Equivalently,
</\§74 -I§’4 <u3, z) ut, v3> = </\i3 . eZL(_l)Iig (u4, —z) u?, v3> . (3.0.5)
So A3, and A} 4 are both zero or nonzero. By commutativity of Y, we have

L1_21 <u1, Y <u3, zl) Y <u4, ZQ) v3> = L2_11 <u1, Y (u4, zl> Y (u3, zl) v3> ,

L1_21 <u2, Y <u3, zl) Y <u4, 22) v4> = L2_11 <u2, Y (u4, zl> Y (u3, zl) v4> .

That is,

-1 1 1 3 1 3 3 4 3

=15 <u1, )\1’4/\373 'Ii,4 (u4, zg) I§,3 (u3, zl) v3> : (3.0.6)

~1/,2 \2 4 2 (3 4 (4 4
12 <U s A34A54 L3y (U 721> Ty4 (U 722) v >

= i51 <U27 Ai,s)\gA ‘Iig (U4, ZQ) 13?74 (U3, 21) "U4> . (3.0.7)

Combining with Claims 1-3 and (3.0.5), (3.0.6), (3.0.7) we have A} and Ay,

are both zero or nonzero, A}, and A3, are both zero or nonzero. In total, A3,

N33, Ai4s A3 4 are all zero or all nonzero. Similarly, A3 4, A3, A§ 3, A}, are all zero
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or all nonzero.

Next we use braiding matrices to establish this Claim 4. Let p?®@p3, t3@t3 € U3,
ui @ud, vi @i € UL Let Bys, By’s be as defined in . Then by Proposition
2.8 we have

L1 <t3 ®t,Y (U;l ® v, zl) Y (u‘l1 ® uj, z2> P e p§>

= lyg <t3 ® t )‘?1,2>‘z21,3 ) yziz ® yig (Uil ® U%a Zl) ) y42,3 ® yia (“41l ® ug, Z2> 'p:{’ ® pg
+ )\431,3>‘i,3 : yzi:a ® yi,?, (Uil ® vy, Zl) : yi:s ® yi,:& (u% ® uj, 22) - P} @ p3)
+ /\3,4)‘3,3 : yzi4 ® yi,zx <Uil ® vy, Zl) : yf,:a ® yj,:a (u% ® uy, Z2> -1 ® D)

=y <t3 ® t )‘2,2/\42;,3 ) yzi2 (Ui Zl) yig (U%a Z2> p? ® yia (Ugv 21) yi,:s (“37 Z2> pg
+ /\2,3)‘2,3 : yzi:a (U%a Zl) yzi:a (“4117 22) P ® yi,s (vg, Zl) yi,a (u%, 32) P

+ )\i,4>‘i,3 : yffA (vf, Zl) yf,:a (uzlla 22) P ® yiA (vg, Zl) yi,zs (ug, Z2> p3)

= 151 (t] @ 13, N} oA] 3A + AL 5L s B + A§ A1 5C) (3.0.8)
where
A= (B§’§) y4z (Uzit» 2’2) y43 (Ui Zl) Dy
i=2,3,4
® > \ (B§f§> y4] (U2> 2’2) y43 (U2> Zl) D
J=2,3,
B = (B§:§> y4z (u;l’ 22) y43 (Ui Zl) P}
i=2,3,4
® > (B§f§) y4] (U27Z2) y43 (7}2721) D
j=2,3,4
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C= X (Bss),, Vi (ul 22) Vig (v, 1) oY

A
® Z (B§§> y4] (Ug 22) y43 (Ug Zl) Ps-
In the meantime, we have

loq <t3®t3 Y (u‘f@ug 22)Y<vf®v4 zl> pi’®p§>
=13 {1} © )‘22/\43 y42 (U1 22) yf:a (U1 Zl) P ® y42 (ug Z2) y43 (Ug Zl) P
+ NiaNis Vis (u1722) Vis ('017 1) Py ®y43 (U2az2) y43 <v2,21> P

+)\§14)‘i3 y44(“172’2) y43 (’Ul>zl)p1®y44(u2 22) y43<”2 Zl>p2>

(3.0.9)
By Proposition [2.3.1], we have
' <t3 & t3 Y (vf ® vg, zl) Y (1/11 ® ug, 22) p:{’ ® pg>
= 15 <t3 ®t,Y (u‘l1 ® U, 22> Y (vf ® vy, zl) Pl ®p‘3> : (3.0.10)

Then by (3.0.8)), (3.0.9)), (3.0.10) and Remark [2.8.2) comparing the coefficients of

Loy <t3 ® tg y4 2 ( 22) yf,:a (Uila 21) pi’ ® yi,z (u;l, 2’2) yi,fﬁ (Ugv Zl) pg),
Loy <t3 ® tg ))4 3 ( ) yzi:a (Uila Zl) P? ® yiz (U37 22) yi,:& (U§7 Zl) pg),
TR GR=EE N 4 ( ) yf,s. (Uila Zl) P yiz (ug, 22) yi,s (vg, Zl) P3)
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in - and - we have

FA NS - (B§§)4’2
X5 (Bss), - (Bsi),, T ATaNs - (B3),, - (Bss),,
+X M- (Bss), -
A5 (Bss),, - (

‘1“)‘?1,4/\?1,3 : (Bg,é)

5),, - (3.0.120) — (By;
4 4
3 3

(B33),, - (3:0.12d) — (Bs3), , - (3.0.128),
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then we get:

Ai2Als (B§ 3)272 (Bg §>272 + ALl (B§f§>472 : (B§ §)472 = il
NN ((B3),, - (1), - (BE),, - (B3),,) - (B4),, -
N ((B3),, - (B1),, - (BE),, - (B3, ) - (B4),, =0

Since by Lemma
(Bs3),, (Bs3),, — (Bs3),, - (Bs3),, #0.
from the last two equations of we have
N2, (1@3‘3‘;)2’2 =0,\3 )\, (B§;§)4’2 — 0.

But then by the first equation of (3.0.13)) we get 0 = )\272)\42173, contradicting Claim
3. So A}3 # 0. By a similar procedure, we get A3, # 0. Hence A}, A}j,

A5, Nias A3 4, Ag4s Als. A35, AR, are all nonzero . O
Let (U, Y) be a vertex operator algebra structure on U. First we fix a basis

{sz (,2)|a,b,c =1,2,3, 4} for space of intertwining operators of type
Qa Qb
a,b,c € {1,2,3,4} as in [I5]. By Lemma [3.0.3| without loss of generality, we can

choose a basis {yg,b (,2)]a,b,e =1,2,3, 4} for space of intertwining operators of

P
type , a,b,c € {1,2,3,4} such that the coefficients A; , = 1 if Ng, # 0.
Pa Pb

Now we have (U,Y), a vertex operator algebra structure on U = U@ U? U3 @ U

such that for any u*,v* € U* with k = 1,2, 3,4, we have
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Y (ukz> ul = 7F, (ukz> u', ke {2,3,4},
Y (v 2)ut =2, (u?, 2) u®, {a, b} = {3,4},
Y (ut,2)u? = I, (u, 2) u?, {a, b} = {3,4},
Y (u?2)v* =13, (v, 2) 7,
Y (uf 2) of = Ty (ub, 2) of + I, (uF, 2) oF + T (u, 2) oF k€ (3,4}
Y (ut,2)ub = T2, (u®, 2) ub + T2, (u®, 2) ub + I, (u®, 2) o, {a, b} = {3,4},
(3.0.14)

where 77, € I (UngUb), a,b,c € {1,2,3,4} are nonzero intertwining operators.
Furthermore, for each u' € U, we write v’ = u} ® u}, where v} € P; and u} €
Qi IS, = Vi, @ Yy, where V5, € In (p5,), Yoy € To, (07%,) with a,b,c €
{1,2,3,4}.

Theorem 3.0.4. The vertex operator algebra structure on U over C is unique.
Proof. Let (U,Y) be the vertex operator algebra structure as given in (3.0.14]).
Suppose (U, 7) is another vertex operator algebra structure on U. Without loss

of generality, we may assume Y (u,z) =Y (u, 2) for all w € U'. From our settings

above, there exist nonzero constants \¢,, A\, A&

kK \P \P l !
2.5 )‘j,Z N3.4:A13, Azzs Agy Where

i,p=2,3,4,{j,k} = {3,4}, I = 1,3,4 such that for any u’,v' € U*, i = 1,2,3,4,
we have

?( k,z) u' =Xy - Ty (U, 2)ut for ko€ {2,3,4},
Y (uQ, z) v’ = )\52 Ty o (WP, 207,
Y (u2, z) u' =Xy, - I3 (u?, z)u, for {a,b} = {3,4},
Y (u,z)u = Aoy - Z0,(u®, 2)u’, for {a,b} = {3,4},
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Y (uk, z) vh = A,lf’k -I,;k (uk, Z) P 4 /\2# -I,ik (uk, Z) P+ /\i,k -I,ik (uk, z) "

for k € {3,4},
V(ut,2)u’ = Moy I3y (u, 2) u® + N0 - I0y (u, 2) u® + Ny Ty (u, 2)

for {a,b} = {3,4},
where Z¢, € Iin (g; Ub) , for a,b,c € {1,2,3,4} are nonzero intertwining opera-
tors.

The rest of proof is similar to that of Lemma [3.0.3] In the proof of Lemma
we need to show certain constants are nonzero. But we need to determine these

constants explicitly here.
Claim 1. A}, =1, for k € {2,3,4}.

For any u! € U, u* € U* k € {2,3,4}, skew symmetry of Y (-, 2) and Y (-, 2)

imply

Y (uF, 2)ut = e HVY (ul, —z) ub = eHEVY (bl =2

=Y (uk,z> ut = I,]j’l (uk,z> ut,

In the meantime, Y (uk, z) u' = Ap - IEy (uF, 2)u'. Thus we get Af, = 1.
Claim 2. X\, =1, for k € {2,3,4}.

Note from Remark that U has a unique nondegenerate invariant bilinear

form (-,-) with (1,1) = 1. For ! € U' and u*,v* € U* k € {2, 3,4}, we have
L
<Y (uka)vk) ,u1> _ <Uk’Y (ezL(l) (_272) (0) uk,zl> u1> .
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This implies that

<Ili,k (uk, z) v'“,u1> = <vk,I;]§,1 <€zL(_1) (—Z_Q)L(O) uk, z_1> u1> .

The invariant bilinear form on (U, ?) gives
1 1 (k ko1 k \k 7k [ zL(=1) N\EO 1)1
</\k7k Ty (u ,z) VYU > = (v, N1 Ly (e (—z ) ut oz u ).

Using Claim 1, we get /\}Cﬁk =1.

Let u? € U?, u? € U3, u* € U*. By skew symmetry of Y we have
<Y <u2, z) u?, u4> = <eZL(’1)Y (u3, —z) u?, u4> .

That is,

<I§73 (u2, z) u3u4> = <€ZL(_1)I§’2 (u3, —z) u?, u4> .

Skew symmetry of Y gives
)\%73 <I§73 (uz, z) u3, u4> _ )\372 <€ L(—1)I§172 (ug’ —z) u2, u4> ‘

The above two identities give Aj5 = A3,. Similarly, we can prove A3, = Aj,,
A4 = Mz Then for any u' € U', w?v* € U? v?v® € U and u* € U,
commutativity of Y implies

1/ 171 (2 2 (3 1

119 <u Ly (u ,zl) I3, (u ,22> U >

_ -1/, 1 71 (3 3 (2 4
= lo] <u L3 (u ,22) 75, (u ,zl) U >,
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commutativity of Y implies

-1 1 41 2 1 2 2 3 4

=15 <u1, )\51,,’3)\374 -1';73 (u3, zz) 13,4 (uQ, zl> u4> .
The above two identities and Claim 2 together imply

A= A3, (3.0.15)

Similarly, using (3.0.3]) and (3.0.4) gives

Asa = Mo (3.0.16)

A4 Ags =1 (3.0.17)

SO A%,'g - )\§72 - )\374 - )\43172 - )\3,3 - >\§’4 — )\, fOI' >\2 - 1

Claim 4. )\3,4 = )‘3,3 = )\§,3 = )‘3,4 = WK, )\34 = )‘3,3 = Ai,4 = )‘3,3 =7, for
p=v*=1

The proof of equalities A, = Xj3 = )\31’3 = /\374, /\§74 = /\373 = A, = A4 is

similar to Claim 3, we denote them as p, v respectively. Now we prove p? = 72 = 1.

For (U,Y) and (U, 7), similar to (3.0.11)) we have
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(=)« (Bis),, (Bis),, + (=77 (Biz),, - (Bis),, = 1- 4 (3.0.18)
(1—=1®) - (Bs3),, (Bss),, + (1 =" (Bss),, - (Bs3),, =0, (3.0.19)
(=) (B), - (B),, + -7 (B3),,- (B4),,=0. (020

(B3z),, - (3:0.19) — (B33),, - (3.0.20),

(B33),, - (3.0.20) — (B33). , - (3.0.19),

(3.0.21)

By Lemma [2.8.4] (B§;§)3 , (B§;§)4 - (B§;§)4 2- (B§;§)3 , 70, s from the last two

equations of (3.0.21)) we have (1—p?) (Bgﬁ)gg = 0 and (1—72)-(B§:§)43 = 0. But

then from the first equation of (3.0.21)), we get 1—pu? = 0, which is a contradiction.

So pu? = 1. Similarly, we have 4% = 1.
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Claim 5. (U,Y) is isomorphic to (U, ?).

Define a linear map o such that

olin =1, olyz = Ay, olys =, olps = p,

where \? = p? = % = 1.

It is clear that o is a linear isomorphism of U.
Using Lemma o gives a vertex operator algebra structure (U,Y?) with
Y (u,z) = oY (0 u, z)o~! which is isomorphic to (U,Y). It is easy to verify that

Y7 (u,z) =Y (u,2) for all w € U. Thus we proved the uniqueness of the vertex

operator algebra structure on U . O]

Theorem 3.0.5. The vertex operator algebra structure on 5A-algebra Us, over C

1S UNique.

Proof. Recall that Usq = W + VP + VO VT4 VEL VI V0 L VI 4L V120 Agsume
there are two VOA structures (Usa, Y'!), Usa, Y?) on Usa. By Lemma [3.0.1, W
is a subalgebra of both (Us4,Y?') and (Usa, Y?), so there are two VOA sturctures
(W, Y w) and (W,Y?|y,) on W. The unique VOA structure on U by Theorem

3.0.4| implies that the VOA structure on W = L (%,0) ® U is unique. So we

have Y| = Y?|y. Then again by Lemma we have Y! = Y2 on Usy, as
desired. n
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Chapter 4

Uniqueness of VOA structure of

the 3C-algebra Usq-

Set

1 21 1 21
= (p0) oL (50) v=(50)@ L (509)
V 270 ® 22’0"/ 2’0 ® 227 )

11 21 45 11 21 7
=i(za)e () v=t5a) ot (Grs)
v 2°2 © 227 9 » vV 2°2 © 2272)"

1 1 21 31 1 1 21 175
=1(355) 2 re) V= (aw) o F ()
v 2716 ® 22716/’ v 2’16 © 227 16

Then from [24], the 3C-algebra

Use VI V2 V3ieVia Ve Ve

Since V1! is rational and Cs-cofinite, by [I] and [22], it is easy to see that Usc is a

simple, rational and Cs-cofinite VOA.

Lemma 4.0.1. Let W = V! + V2 then W is a subVOA of Usc and the VOA

structure of 3C-algebra Usc is uniquely determined by W'.

Proof. The proof is similar to that of Lemma|3.0.1] By the fusion rules of L (%, 0)
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modules and L (%, O) modules, we see that W = V! + V2 is a subVOA of V! +
V24+V3+V4hand VI + V2 + V3 4+ V71is a subVOA of Use. By [27], we can
define an involution 7 of Usc by letting it act by —1 on V® + V6 and by 1 on
V14 V24 V3 4+ V4 Then it follows from [6] that V + V¢ is a simple current
module over V1! 4+ V2 4+ V3 4 V4. Similarly, one can define an involution o of

V4 V24 V34 V4 whichactsby lon W =V!+V2and by —1 on M = V34 V4,

Then again by [6] we see that M is a simple current module over W.

Claim 1. The W-module structure of M is unique. That is, if M' is also a
W -module such that M* = M as V'-modules, then M' = M as W -modules.

We need to use category theory to prove this claim. For the notations, see
Lemma or [23], [14]. We prove M = M' = W Ky V3 as W-modules. Note
that

qdimy: (W Ky V3) = qdimy (W)qdimy (V?) = qdimy. (W)

by Proposition as V3 is a simple current. Thus

qdimy (W Ky V3)

di X 3 =
qdimy, (W Xy V?) iy (V)

= 1.

Theorem 1.6 of [23] gives isomorphisms
Home, . (W Byt V3, M) 2 Homy (V3 M) 2 Homge, 1y, (W By1 V3, MY,

Since (Cy1)w is a semisimple category, M and M! are irreducible W-submodules
of W Ky1 V3. Noting that qdimy, (M) = qdimy, (M) = qdimy, (W Ky V3) =1

we immediately conclude that M = M!' = W Ky V3 as W-modules.
Claim 2. The vertex operator algebra structure on W + M is unique.

From Claim 1 and the discussion above, W + M is a simple current extension
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of W. The Claim follows from Proposition [2.5.4]

Claim 3. The W-module structure of N = V5 + V° is unique. That is, if N is
also a W-module such that N* = N as V'-modules, then N' = N as W -modules.

First it is easy to see that NN is an irreducible W-module. Consider WXy V? €

(Cy1)w. By Theorem 1.6 of [23] we have isomorphisms:

Hom(cvl)W(W Xyt V5a W Ky V5) = Homy 1 (V5, W Xy V5)

= Homy (V° Ry (VP) W)

where (V®) is the restricted dual of V® and is isomorphic V5. Tt is easy to
see that the projection V° Xy V® to W + M is isomorphic to V! + V2 4+ V4,
Thus Homy1 (V? Ky (V) W) is 2-dimensional and W Ky V® is a direct sum
of two inequivalent irreducible W-modules in (Cy1)y . As before one can compute
that qdimy, (W Ky1 V®) = qdimy:(V?) = 3 4+ /3. Also, both N and N! are
submodules of qdimy, (W Xy V?). If N and N are inequivalent W-modules then
qdimy, (W Ky1 V®) = N @ N'. But this is a contradiction as qdimy, (N + N') =
2qdimy, (N) = 4.

Claim 4. There are two inequivalent W + M -module structures on N.
The proof is exactly same as Claim 4 in Lemma [3.0.1]
Claim 5. VOA structure of 3C-algebra Usc is uniquely determined by W.

The proof is exactly same as Claim 5 in Lemma [3.0.1] The proof is complete.
O

Let U =U'+U? for U' = L(%,0), U* = L(%,8). Then W =L (},0)®U

227 227

and U admits a VOA structure. By [I] and [22], U is simple, rational and Cy-
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cofinite. Next we will prove the vertex operator algebra structure on U over C is

unique.

Remark 4.0.2. Since Uy = 0 and dim Uy = 1 by Theorem[2.5.3, there is a unique
nondegenerate invariant bilinear form on U and thus U = U. Without loss of

generality, we can identify U with U’.

Let (U,Y’) be a vertex operator algebra structure on U with

Y(U,Z) = Z )‘ccz,b 'Ig,b (uCL?z) ub7

a,b,ce{1,2}

where I; (Uchb) = CIg,, for a,b,c € {1,2}.

Lemma 4.0.3. XS, # 0 if N¢, = dim I (,¥,) # 0,
Proof. The proof consists of three claims.

Claim 1. A3, #0.

For any u* € U*, k = 1,2, using skew symmetry of Y (-, z), we have

Y (u?, 2)ut = Dy (ul, —z) w =27, ezL(_l)IiQ (ul, —z) u?

= /\371 -1'2271 (u2, z) ut.

Since U? is an irreducible U'-module, we have A, # 0. So A3, # 0.
Claim 2. \;, # 0.

By Remark U has a unique invariant bilinear form (-, -) with (1,1) = 1.

For v* v* € U*, k = 1,2, we have

<Y (uz’ z)v2> ,u1> _ <v2, Yy (ezL(l) (_Z,2>L(0) u2, Z1> u1> ‘
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This implies that
1 1 2 2 1 2 2 2 [ zL(-1) B AACUNE R D
</\2,2 Iy (U ,z) v,u > = (v, A5, Iy e (_Z ) u,z u ).

Applying Claim 1 gvies )\%’1 # 0, hence )\é,Q # 0.
Claim 3. A3, # 0.

Assume )\372 = 0. Let X, X5 be two subspaces of U. Define X; - X5 to be
the linear span of u,v for v € X;,v € X, and n € Z. Then we have U' - U? =
U2, U?.-U' =U? U?-U? = U'. Define 0 : U' +U? — U' + U? such that

olpn = 1 and o|pz2 = —1. Then o is an order 2 automorphism of U' + U?

with (U' +U?)” = U' and U? is a U'-module. By Theorems [2.6.2| and [2.6.4}

qdimg1 U? = 1 because any irreducible representation of the group generated by
57

o is 1-dimensional, contradicting the fact that ¢ dimg: U? = lei((ﬁ)) # 1. Therefore,
12

A2, #0. 0

Let (U, Y) be a vertex operator algebra structure on U. Without loss of
generality, we can choose nonzero Z¢, € Ijn (U[,{CUb) for a,b,c € {1,2} such that
the coefficients \;, = 1 if N, # 0. Now we have (U, Y), a vertex operator

algebra structure on U = U' @ U? such that for any u*, v* € U* with k =1, 2,

Y (uz, z) ul = 12271 (uQ, z) ul,
Y (uz, z) v? = 122,2 (uz, z) v,
2 2

Y (u ,z) v? 2221’2 (u2,Z)U .

(4.0.1)

Theorem 4.0.4. The vertex operator algebra structure on U over C is unique.

Proof. Let (U,Y) be the vertex operator algebra structure as given in (4.0.1)).
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Suppose (U, ?) is another vertex operator algebra structure on U. Without loss
of generality, we may assume Y (u,z) =Y (u, 2) for all w € U'. From our settings
above, there exist nonzero constants A3, Ay,, A3, such that for any u*,v* € U’,

1 =1,2, we have

Y (uz, z) u' =X, - I3, (v, 2)ut
Y (u2, z) v? =Ny, - Iy (u?, 207,
Y (uz, z) u? =N, I35 (u?, 2)u?,

where Z¢, € It (g; U,,) for a,b,c € {1,2} are nonzero intertwining operators.
Claim 1. A3, = 1.

For any u! € U, u? € U?, skew symmetry of Y (-, 2) and Y (-, 2) imply

Y (u?, 2)ut = e HVY (ul, —z) u? = VY (Wb, —2)u?

=Y <u2, z) ut = I2271 (uQ, z) u'.

In the meantime, Y (u?, 2z) u' = A3, - Z3 | (u?, 2)u'. Thus we get A3, = 1.
Claim 2. \j, = 1.

Note from Remark [4.0.2] that U has a unique nondegenerate invariant bilinear

form (-,-) with (1,1) = 1. For u' € U' and v?,v* € U?, we have

<Y (uQ, z)vz) ,u1> _ <UQ7 % (ezL(—l) (_Z_2>L(0) uz’ Z_1> u1> '

Consequently,

<Izl,2 (u2, z) v?, u1> = <v2,I§,1 <6ZL(_1) (—2_2>L(0) u?, z_1> u1> .



The invariant bilinear form on (U, ?) gives
1 1 (2 2 1 2 2 2 [ _2L(-1) L0 o 1) 1
</\2’2 Iy, (u ,z) V7 u > = (v, Ay, L5, e (—z ) ut, 2w ).

Using Claim 1 obtains Aj, = 1.
Claim 3. A3, = +1.

For simplicity, we denote A3, := X. For (U, 7), let p?, 12, u?,v* € U?, we have

I (% 22) Ty (0%, 20) - 17). (4.0.2)
On the other hand,

ot (.Y (18, 22) ¥ (0%,2) )

ST <t27122,1 (U27 2’2) I21,2 (UQ, Zl) pP )\2122’2 (uQ, ZQ) 122’2 (vQ, 21) -p%). (4.0.3)

By Proposition [2.3.1} (4.0.2)), (4.0.3) and Remark [2.8.2] comparing the coefficients
of

T (W2 2) T, (v, 21) - )
in (4.0.2) and (4.0.3]), we have

(BS;S)M +22-(B33) =1L

2,1

48



Similarly, for (U,Y), we have

(Bgﬁ)m T (322:3)2,1 =L

From these two equations, we get

(1-2)-(B33), =0

2,1

By Lemma [2.8.5[ we have (B;g)z . # 0, which implies \? = 1.

Claim 4. (U,Y) is isomorphic to (U, 7).

Define a linear map o such that
O'|U1 = 1, O"UQ = )\,

where A\? = 1. It is clear that o is a linear isomorphism of U. Using Lemma , o
gives a vertex operator algebra structure (U, Y?) with Y (u, 2) = oY (0 tu, z)o ™!
which is isomorphic to (U,Y). It is easy to verify that Y7 (u,z) =Y (u, 2) for all
u € U. Thus we proved the uniqueness of the vertex operator algebra structure

onU . O

Theorem 4.0.5. The vertex operator algebra structure on 3C-algebra Usc over

C is unique.

Proof. Recall that Usc = W + V3 + V4 + V5 + V6. Assume there are two VOA
structures (Usc, Y1), (Usc,Y?) on Usc. By Lemma W is a subalgebra of
both (Usc,Y!') and (Usc,Y?), so there are two VOA sturctures (W, Y!|y,) and
(W,Y?|w) on W. By Theorem the VOA structure on U is unique, we

conclude that the VOA structure on W = L (%,0) ® U is unique. So we have
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Y w = Y?|y. By Lemma again, we have Y'! = Y2 on Usc. The proof is

complete. n
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Chapter 5

Fusion rules

In this section, we will use the following result:

Proposition 5.0.1. [2] Let V be a vertex operator algebra and let W, W2, W3 be
V -modules among which W' and W? are irreducible. Suppose that V is a vertex
operator subalgebra of V' (with the same Virasoro element) and that N' and N*
are irreducible Vy-modules of W and W2, respectively. Then the restriction map

from Iy (W‘{V?,Vg) to Iy, (NW;ﬂ) is injective. In particular,

3

dim IV (WI{V;/VQ) § dim [Vo (NYVNz) .

5.1 Fusion rules of the 5A-algebra U4

First we need the following theorem:

Theorem 5.1.1. (Theorem 3.19 in [24)]) There are exactly nine irreducible mod-
ules Z/{5A(i7j)a 27] = 173757 fOT Z/{5A- AS L (%a 0) (%9 L (25 O) &® L (25 O) —modules,

287 287
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they are of the following form:

Us(i,7) Z[0,hin, hi1] &[0, his, hjs] &[0, his, hjs] @ [0, hiz, hjql

1 1 1 1
> [57 hix, hjz] ® [57 his, hjs) ® [57 his, hjs) @ [57 hiz,hjal

1 1 1 1
< [T6’ hisg, hja] © [TG’ hias hjo] © [T6’ hig, hjal © [TG’ hias hjgl,
_ ("Tm—8m)?—1
wher@ hmm = 4778

Now we can state our theorem:

. Us (i 5" . . , .
Theorem 5.1.2. dim [, (usA(‘;?:;)( ugA)(i/,j/)) = 1 if and only if both ((i,1), (i',1)
,(17,1)) and ((5,1),(5',1),(5”,1)) are admissible triples of pairs forp ="7,q =8

(see Definition[2.7.1) and 0 otherwise.

Proof. Theorem [5.0.1] implies the following inequality:

. USA(i”7jN) ) . ( USA(i”7jN) )
dim Tt (UsA(iJ) Usa(i,5") < dim ][0’070] (0,h6,1,h5,1] [0hgr 45k 4]

. [O,hi// l’hj” 1}
= dim jo 0 ([o,hi,l,hj,l] 0.y 1 by ] ) -

On the other hand, by directly computation, we have

. o ) sm(gﬂ) sm(@)
d U =qd 0,h;1,h;1] = 7 ’
q ANy, , UsA (Z7 J) q dlno,0,0] [ » 1,1 371] Sin(g%r) Sin(877r)

So we have

. Usa(i”,5") ) T ( Usa(i”,5") )
dim I, , (u5A(i,j) Usalirj))) = dim Ijp,0,0] [0,i,1.h50) [0,y 3o 1)

L(%rhi”,l)

L : L(5R:hy 1)
= dim Iy, (<> <>) dim 1 (2 o) (<> L(Zn))

Then we can conclude our theorem by using Theorem [2.7.3 O]
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5.2 Fusion rules of the 3C-algebra U;-

First we need the following theorem:

Theorem 5.2.1. (Theorem 3.38 in [2])]) There are exactly five irreducible Usc-
modules Usc (2k), for 0 < k < 4. In fact, Usc(0) = Usc and as L (%, 0) QL (21 0)_

227

modules,

e O E R P L P R L P g
11 11 2722 27 22 16’ 176 16 176
o0, e[, ] @ 5, 2] @ [, k] @ [, o]
11 11 2722 27 22 16 176 167 176"
11 " 11 2722 2722 16 176 167 176"
11 T 11 2722 27 22 167 176 16" 176

Z/[3C(2) = [0 ]7

Usc(4) = [0

112

Usc(6) = [0

I

Usc(8) = [0

Now we can state our theorem:

Theorem 5.2.2. dim I, (o) (14, (1 Vi) = 1 if and only if (i +1,1), ( + 1,1),
(k4 1,1)) is an admissible triple of pairs for p=11,q = 12 (see Definition[2.7.1])

and O otherwise.

Proof. Let hy,p = % Then the irreducible L (%, O)—module L (%, hm,n)
with Ry, = 0, £, 22, L6 corresponds to (m,n) = (1,1), (3,1), (5,1),(7,1), (9, 1)
respectively. If we use the pair (m, n) to denote the irreducible L (%, 0) ®L (21 )_

2927
module [0, Ay, ], then by Theorem we have

. Usc () : Usc (k)
dim Jy4, (0) (Uscg(% U3c(j)) < dim [L(%,0)®L(%,0) ([Ovhi+1,1] [Offfﬁl,l])

T [0,hgy1,1]
= dim IL(%,O)®L(%D) ([O:hH—l,l] [O,hj+1,1]) :
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On the other hand, by directly computation, we have

1 dimuc 0 Use(i) = qdimy (4 0)o5(3.0) [0 hivanl = =5ray

So we have

. Us () Y [0,k 11.1]
dim Jy, (0) (ugc?’(f) Z/[gc(j)) = dim ]L(%,O)®L(%,O) ([0,hi+1,1] [0?};111,1})

L L(%,thJ)
= dim IL(%,O) (L(21 hi+1,1) L<21 hj+1,1) ’

227 227

Then we can conclude our theorem by using Theorem [2.7.3
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