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Abstract. Expressions for the solar radiation input and the duration of the daily insolation on 15 

surfaces of arbitrary slope and  aspect are presented in this work. It is shown that the sunrise- 16 

and sunset-hour angles and the duration of daily insolation depend on the roots of the 17 

equation A cos  + B sin + C = 0, in which   is the hour angle and A, B, and C are 18 

coefficients that involve the slope of the surface, the aspect of the sloping surface, the solar 19 

declination, and the latitude of a point of interest on the sloping surface. The method to 20 

calculate the duration of daily insolation developed in this article can be applied to any 21 

sequence or combinations of days to obtain the total number of daylight hours over arbitrary 22 

periods. It is applicable to clear-sky conditions and, therefore, it produces the theoretical 23 

upper limit of the duration of daily insolation. It can be altered to calculate the amount of 24 

direct solar radiation with arbitrary atmospheric transmissivity, and coupled with other 25 

radiatiative fluxes  to quantify the energy budget on the surface of the earth. Ways to cope 26 

with a changing climate and variable atmospheric conditions are analyzed in this work. The 27 

paper identifies areas of  application for the methods herein presented.  28 

Keywords: solar radiation, climate change, slope, aspect, energy balance, evapotranspiration. 29 

 30 
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 The amount and duration of daily insolation are prime determining factors of the energy 1 

input to the Earth’s surface. The duration and intensity of solar-energy input to the earth’s 2 

surface drive evaporation (Brutsaert, 1982), evapotranspiration (Blaney et al., 1952; 3 

Hargreaves and Samani, 1985; ASCE, 2005), photosynthesis (Rosenberg et al., 1983), 4 

snowmelt  (Aizen et al., 2000), soil and surface-air heating (Monteith, 1973; Allen et al., 5 

2006), they influence microclimates (Bennie et al., 2008), the crop response to solar 6 

insolation (Wilson, 1999), biophysical ecology (Gates, 1980), and play a central role on the 7 

overall earth-atmosphere radiation balance (Loáiciga et al., 1996). The Blaney-Criddle 8 

method (Blaney et al., 1952) used to calculate the evapotranspiration by crops, and which has 9 

been widely applied, has as one of its input variables the duration of clear-sky insolation 10 

during  the calculation period (ASCE, 1990). The duration and intensity of solar insolation 11 

are variables with primordial roles in the surficial energy budget of the earth and they affect 12 

multiple realms of life and biogeochemical processes. 13 

 This paper focuses on the determination of the duration of daily insolation on uniformly 14 

sloping terrain. The main objective of this work is to find a closed-form equation to calculate 15 

the times of sunrise and sunset in terrain of arbitrary (uniform) slope and aspect at any 16 

latitude and on any day of the year. The closed-form equation is solved easily and avoids the 17 

more involved use of the equivalent slope method (Lee, 1964). These two features –18 

expediency and improved accuracy in the calculation of daily insolation-  are novelties of the 19 

method presented in this paper relative to previous related work.  The usefulness of a closed-20 

form equation for daily insolation is evident from its centrality in determining the solar 21 

energy input to sloping terrain, which, in turn, is a key factor controlling biophysical 22 

terrestrial processes (Buffo et al., 1972). The calculation of the daily solar radiation to sloping 23 

terrain is possible once the sunrise and sunset angles are determined from the results of this 24 

paper, and in combination with atmospheric properties as explained in the subsection The 25 
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daily solar radiation input to sloping terrain. This paper provides a cost-effective 1 

computational alternative to proprietary software with solar-radiation calculation capabilities. 2 

The paper’s method can be merged with non-proprietary, open-access, software for 3 

calculation of solar radiation input to sloping terrain. In addition, it extends the work of 4 

previous authors concerning the calculation of solar radiation input to terrain of  arbitrary 5 

slope, aspect, for any latitude and solar declination (Buffo et al., 1972; McCune and Dylan, 6 

2002; Pierce et al., 2005; Allen et al., 2006; McCune, 2007).  7 

 The method presented in this work can be applied to any sequence or combination of 8 

days to yield the total daylight hours during an arbitrary period. Calculating the duration of 9 

insolation on sloping terrain requires the exact determination of the geometry of (direct) solar 10 

radiation reaching a sloping surface. That determination is facilitated by first examining the 11 

geometry of insolation on a horizontal surface, which is undertaken next.  12 

Insolation on a horizontal surface 13 

 Geometric fundamentals. Figure 1 depicts the beam of direct solar radiation (b) reaching 14 

a point P on horizontal terrain. The point P is located uniquely by the latitude   and hour 15 

angle  . A positive (or negative) hour angle is measured counterclockwise (or clockwise) 16 

from the solar-noon meridian to the meridian containing the point P. The hour angle is 17 

depicted by the circular sector a- 'P -P on a plane parallel to the equatorial plane in Figure 1. 18 

The temporal rate of change of hour angle  is   = d /dt = d )t( /dt =  , in which   is the 19 

Earth’s rotational angular velocity (approximately 2   radians / 24 hr, and counterclockwise 20 

when seeing the Earth over the north pole, where 1 radian = 180/   angular degrees). Time t = 21 

0 is chosen to correspond to solar noon, and the hour angle equals zero along the solar-non 22 

meridian. In other words, the hour angle evaluated at time zero is   = t = 0 = 0. The 23 

beam of direct solar radiation strikes perpendicular to a horizontal surface at point 'Z  on the 24 

solar-noon meridian. The latitude of point 'Z , that is, the latitude at which the sun is directly 25 
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overhead at solar noon, is called the solar declination (  ). Its range is 1 

approximately − 45.2345.23 (Stacey, 1992), being positive (or negative) when it is a 2 

northern (or southern) latitude. The solar declination is about + 45.23  ( − 45.23 ) on summer 3 

(or winter) solstice in the northern hemisphere, and equals zero on the autumnal and vernal 4 

equinoxes. The solar declination (  ) is approximated by the following equation (ASCE, 5 

1990): 6 

( ) 365/J284360sin45.23 +=             (1) 7 

in which  and the argument of the sine function are in degrees, and J is the day of the year (J 8 

= 1 on January 1st at midnight , J = 365 on  December 31st at midnight, etc.). Figure 1 also 9 

shows the approximate  45.23  tilt of the Earth’s rotation axis (N-S) with respect to the line-10 

segment O- 'O perpendicular to the plane of the ecliptic. The latter plane contains the orbit 11 

followed by the Earth as it revolves about the sun. 12 

 The daily solar radiation input to horizontal terrain. The relation between the duration 13 

of daily insolation and the daily energy input by direct solar radiation on a horizontal surface 14 

( HI , J m-2) is embodied  by the following equation:  15 






=
0ss

0sr

00H dcosI)(I               (2) 16 

in which: 0I is the solar radiation flux at the top of the atmosphere at the mean Earth-sun 17 

distance ( 0I , the solar constant, is about  1367 W m-2
 = 1.181 x 108 J m-2 d-1);  , the 18 

eccentricity ratio, equals ( )20 r/r , where 0r  is the Earth-sun mean distance and  r is the  19 

Earth-sun distance on any particular day of the year; 0  is the angle comprised between the 20 

beam vector (b) of direct solar radiation impinging at a specified point P (with latitude   and 21 

hour angle  ) on the horizontal surface and a line perpendicular to the horizontal surface at P 22 

( 0 = ( )−−− sinsincoscoscoscos 1 , in radians); 0sr  and 0ss are the sunrise-hour 23 
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and sunset-hour angles (expressed in  radians in the limits of integration of equation (2)), 1 

respectively, which depend on the latitude   and solar declination  ;   is the (total) 2 

atmospheric transmissivity ( 10  , see Haltiner and Martin, 1957; Bolsenga, 1964; 3 

Garnier and Ohmura, 1968). The transmissivity depends on the hour angle in equation (2) in 4 

a manner that requires numerical integration of its right-hand side (see, for example, Garnier 5 

and Ohmura, 1968). The radiative flux |b| = 0I equals the fraction of the solar constant that 6 

is transmitted to the Earth’s surface by the atmosphere. The integrand on the right-hand side 7 

of equation (2) is a special case of Lambert’s cosine law, which states that the radiative flux 8 

received by a surface equals the component of the beam of solar radiation perpendicular to 9 

the surface. This component is precisely 00 cosI  . The integral in equation (2) is over the 10 

range of the hour angle during which there is insolation on the horizontal surface at point P. 11 

This description of the key geometric elements governing the insolation of a horizontal 12 

surface is generalized in the next section to the case of sloping terrain.  13 

The geometry of insolation on a sloping surface 14 

 Sunrise (or sunset) occurs when solar radiation shines for the first (or last) time upon a 15 

surface assuming clear-sky conditions in any given day. The duration of daily insolation 16 

equals the time of sunset minus the time of sunrise. There may be double times of sunrise and 17 

sunset for certain combinations of slope, aspect, latitude, and solar declination, in which case 18 

the determination of the duration of daily insolation becomes more involved.  In some 19 

instances daily insolation on a sloping surface (or on level terrain) may  last 24 hours. The 20 

following sections derive the times of sunrise and sunset in terrain of arbitrary slope and 21 

aspect at any latitude and on any day of the year. It is assumed in this work that insolated 22 

areas are not shaded by topographic promontories or other obstacles and that the slope of 23 

insolated terrain is uniform. Terrain of variable slope can be approached by applying the 24 
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method of this paper to a series of adjacent, short, portions of the terrain with unequal slopes 1 

that approximate the actual shape of the land. 2 

 Spherical coordinate system. The determination of the duration of daily insolation on 3 

sloping terrain is helped by introducing a spherical coordinate system that is used to capture 4 

the passage from a horizontal to a sloping surface. The spherical coordinate system features 5 

three mutually orthogonal unit direction vectors ( re , e , and e ), shown in Figure 2, which 6 

depicts an oblique view of the solar-noon meridian and of the meridian containing the point P 7 

of latitude   and hour angle  . P lies on the sloping surface under study. Notice that the 8 

latitude is positive (or negative) north (or south) of the equator. The unit vector re  is directed 9 

radially outward at point P and is perpendicular to the horizontal plane tangential at point P. 10 

e  points in the direction of increasing absolute value of the latitude and is tangential to the 11 

meridian containing point P at point P. e  points in the direction of increasing hour angle and 12 

is perpendicular to e  and re . The unit vectors so defined can be related to a Cartesian 13 

system of coordinates defined in terms of (mutually orthogonal) unit direction vectors i, j, 14 

and k with origin at the Earth’s center (point O in Figure 2). The k axis coincides with the 15 

direction of the line segment O-N, which is part of the Earth’s rotation axis. The unit vectors i 16 

and j lie on the equatorial plane, with the vector i corresponding to an hour angle 0= . The 17 

re , e , and e  unit vectors can be expressed as follows as a function of the latitude, hour 18 

angle, and the Cartesian unit vectors i, j, and k: 19 

kji ++= sinsincoscoscoser           (3)  20 

kji +−−= cossinsincossine           (4) 21 

j i +−= cossine               (5) 22 
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 The unit vectors re , e , and e  in equations (3)-(5) are consistent with a horizontal 1 

slope at point P. The next subsection shows how to convert them into a coordinate system 2 

consistent with a sloping surface.  3 

 Coordinate system for a sloping surface. Figure 3 shows how a plane can be rotated 4 

 degrees west (or east) of north to achieve aspects ranging from 0  degrees west (or east) of 5 

north to 180 west (or east) of north, where   is the angle of orientation of a slope, or aspect. 6 

The convention of this paper is to make   positive if the rotation is west of north, or 7 

negative if the rotation is east of north. The rotation shown in Figure 3 is with respect to the 8 

radial unit vector re  (see Figure 2), to obtain rotated unit vectors rr e'e = , 9 

 −= esinecos'e , and  += ecoscesin'e . 10 

 Figure 4 depicts a view perpendicular to the great circle containing the solar-noon 11 

meridian. This simplified, 2-dimensional, view shows several of the geometric factors 12 

governing the insolation of a sloping surface. For simplicity, the aspect  = 0 in Figure 4.  13 

Point 'P  is at the base of a slope. A slope can be downward or upward from the horizontal 14 

plane tangential at 'P , where the latter plane contains the unit vector 'e  (and 'e , as well, 15 

which is hidden by the 2-dimensional perspective used). This paper’s convention is to assign 16 

a positive sign to a downward slope, or a negative sign to an upward slope. The downward  17 

slope 'P -1 (or upward 'P -2) shown in Figure 4 is obtained by rotating the unit vector e  18 

counterclockwise   (or clockwise 1 ) degrees, as seen in Figure 4. The axis of rotation in 19 

this case is the (hidden) unit vector 'e  which is aimed onto and perpendicular to the plane of 20 

Figure 4. The downward slope in Figure 4 was rotated   degrees, which in this case is the 21 

critical angle that, if exceed, would result in a shaded slope during solar noon.  22 

 It is pertinent in this analysis to highlight that locations of high latitude, such as X   on 23 

Figure 4, receive 24-hr daily insolation for the shown solar declination. In fact, as shown on 24 
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Figure 4, any location with latitude higher than that of X   is lighted 24 hours daily. For 1 

specifics, if the view in Figure 4 represented the summer solstice in the northern hemisphere 2 

then, the solar declination would be = 45.23 , and day-long insolation would be 3 

experienced at latitudes  9055.66 . 4 

 Figure 5 is a graphical summary of a rotation of the coordinate vectors r'e , 'e , and 'e  5 

exerted to achieve a downward (that is, positive) slope. The doubly-rotated coordinates 6 

vectors r"e and "e , are shown in Figure 5. The third unit vector "e = 'e  is perpendicular 7 

onto the plane of Figure 5 and serves as the axis of rotation in this instance. An upward (that 8 

is, negative) slope would be achieved by making the rotation shown in Figure 5 in a 9 

clockwise direction. 10 

 These doubly-rotated unit vectors r"e , "e , and "e  provide the coordinate system with 11 

which to describe the geometry of a sloping surface in full generality, and are given by the 12 

following equations:  13 

 

 
 
 k

j

i

+

+−−

++−=

coscossinsincos

cossinsinsinsincossinsincoscos

sinsinsincossincossincoscoscos"e r

     (6)  14 

 
 

 k
j

i

+−

+++−

++−−=

coscoscossinsin

cossincossinsincoscossincossin

sinsincoscossincoscoscoscossin"e

    (7)     15 

 16 

 

 
 k

j

i



+−

++−=

cossin

sinsinsincoscos

cossinsinsincos"e

           (8)    17 

 18 

The unit vectors in equations (6), (7), (8) revert to those in equations (3), (4), (5), 19 

respectively, when the slope angle   and the aspect  equal zero.  20 
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  The daily solar radiation input to sloping terrain. By analogy with equation (2) and 1 

considering the geometry presented in Figure 1, the daily energy input by solar radiation to a 2 

sloping surface ( SI , in J  m-2) is given by the following expression:  3 






=
ss

sr

0S dcosI)(I                (9)  4 

in which 0I ,  ,  , and   were defined after equation (2); sr and ss are the sunrise- and 5 

sunset-hour angles, respectively, at point P, where the sloping surface may exhibit downward 6 

(or upward) descent (or ascent);   is the angle comprised between the beam of direct solar 7 

radiation impinging upon point P on the sloping surface and a line normal to the horizontal 8 

surface at P, which can be shown to be given (in radians) by: 9 

( )CsinBcosAcos 1 ++= −             (10) 10 

where:  11 

 A = +− sincossincoscoscoscos           (11) 12 

−= sinsincosB                (12) 13 

−−= coscossinsinsincossinC           (13)   14 

The point P has latitude   and hour angle  , as depicted in Figure 1. The angles sr  and ss  15 

(expressed in  radians in the limits of integration of equation (9)) depend on the latitude   16 

and the solar declination  , as is the case for a horizontal surface, and, in addition, on the 17 

slope ( ) and aspect ( ) of an insolated surface.  18 

The sunrise- and sunset-hour angles on a sloping surface 19 

The basic equation. Direct solar radiation is tangential to a surface when the component 20 

of the direct solar radiation normal to the surface is zero. This happens when solar radiation 21 
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first shines upon a surface (sunrise), or when it last shines upon a surface (sunset) on any 1 

clear-sky day. This condition is expressed by the following scalar-product statement:  2 

cos = r"eb  = 0               (14) 3 

The radial unit vector r"e  is given in equation (6). From Figure 4, the solar-beam vector (b) 4 

is:  5 

( )kib −−= sincosI0              (15) 6 

Performing the scalar product in equation (14) leads to the following expression in terms of 7 

the hour angle: 8 

0CsinBcosA =++               (16) 9 

where A, B, C depend on the slope, aspect, latitude, and solar declination and are given by 10 

equations (11), (12), and (13), respectively. 11 

The solutions of equation (16) can be found with iterative algorithms available in 12 

commercial numerical packages (Excel, Matlab, Mathematica, for example) or programmed 13 

anew (see, e.g., Loáiciga, 2005). Equation (16) has either two solutions or none. When 14 

solutions exists, one is in the interval [0,  ], herein denoted by *
ss , the hour angle for sunset. 15 

The other is in the interval [- , 0] , denoted by *
sr , the hour angle for sunrise, which is 16 

negative due to the convention of this paper to setting the noon hour angle equal to zero. 17 

Equation (16) does not have solutions when the latitude, solar declination, aspect, and slope 18 

at a site are such that there is 24-hour insolation.  The effect of the Earth’s near spherical 19 

shape shading on slopes needs to be considered before the solution angles *
sr  and *

sr  can be 20 

related to the times of sunrise and sunset, respectively, as shown next. 21 

Adjustments needed because of shading of slopes by the Earth’s near spherical shape. 22 

The solution hour angles *
sr  and *

ss  from equation (16) may or may not equal the actual 23 

sunrise-hour or sunset-hour angles, respectively. This is caused by the curved Earth’s 24 
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geometry that shades a slope in variable form as the earth rotates. To validate this assertion, it 1 

is helpful to first derive the sunrise- and sunset-hour angles when a surface is horizontal. 2 

Equation (16) simplifies to the following expression in the case of a horizontal surface 3 

( 0== ):   4 

−=−= tantan
A

C
cos               (17) 5 

from which follow the well-known corresponding expressions for the sunrise-hour and 6 

sunset-hour angles (in radians) on horizontal terrain:   7 

( )−−= − tantancos 1
0sr     00sr −       (18) 8 

( )−= − tantancos 1
0ss       0ss0        (19)  9 

The times of sunrise and sunset associated with equations (18) and (19) are = /t 0sr0sr  10 

and = /t 0ss0ss , respectively, in which the rotational angular velocity is approximately 11 

  2 /24 hr. 0srt  is negative, meaning that it precedes solar noon. In general, the duration 12 

of daily insolation (in hours) is D = 0sst – 0srt −= /)( 0ss0sr . In the northern and 13 

southern hemispheres, locations with a latitude − 90||90 (with solar declination   14 

being positive or negative depending on the day of the year according to equation (1)) are 15 

insolated 24 hrs daily. In this case, −= 0sr  and = 0ss .  16 

 The derivation of a rule to determine the sunrise- and sunset-hour angles on a sloping 17 

surface is furthered with the aid of Figure 6, which shows a view of the Earth from over the 18 

north pole and perpendicular to the ecliptic plane when = 45.23 (summer solstice). For the 19 

sake of argument, Figure 6 depicts a downward slope starting at point P. The slope has aspect 20 

 =  90− º (due east). If the surface at point P were horizontal then the sunset-hour angle 21 

there would be 0ss  given by equation (19). In Figure 6 the theoretical sunset-hour angle *
ss  22 

obtained from equation (16) is smaller than 0ss  (given by equation (19)). In this instance, 23 
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the actual sunset-hour angle equals *
ss , that is, *

ssss = , because at angle 0ss  the sloping 1 

surface is shaded by the curved shape of the Earth.  Figure 7 shows the continuation of the 2 

situation introduced in Figure 6, now with point P emerging from darkness. The theoretical 3 

sunrise-hour angle *
sr  from equation (16) is smaller (that is, more negative) than 0sr  (from 4 

equation (18)). In this instance, the theoretical sunrise-hour angle does not equal the actual 5 

sunrise-hour angle. Rather, the actual sunrise-hour angle equals 0sr , the sunrise-hour angle 6 

at P on a horizontal surface. This is so because at angle *
sr  the curved Earth’s geometry 7 

shades point P. The implication from Figures 6 and 7 is that the solutions *
sr  and *

ss  of 8 

equation (16) equal the actual sunrise- and sunset-hour angles, respectively, only when the 9 

sloping surface is not shaded at *
sr  or at *

ss . This same conclusion can be arrived at by 10 

analyzing surfaces of arbitrary  declination, slope and aspect.  11 

The decision rule. The preceding arguments lead to the following rule for determining 12 

the actual sunrise- and sunset-hour angles, sr  and ss  (in radians), respectively, in terrain of 13 

arbitrary slope, aspect, for any latitude and solar declination:  14 

( )0sr
*
srsr ,oflargerthe =      0sr −       (20)  15 

( )0ss
*
ssss ,ofmallersthe =                 ss0      (21) 16 

In which *
sr  and *

ss  are the solutions to equation (16), 0sr and 0ss are obtained from 17 

equations (18) and (19), respectively. 18 

Some combinations of latitude, solar declination, slope, and aspect produce 24-hr daily 19 

insolation. In this case, −=sr  and =ss . Once sr  and ss  are determined, they can be 20 

used in equation (9) to calculate the daily direct solar radiation input provided that the 21 

atmospheric transmissivity (  ) is known.  22 
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 The duration of daily insolation (in hours) is given by the following expression:  1 




−




=−= srss

srss ttD              (22)  2 

in which srt  and sst  are the times of sunrise and sunset, respectively, and   = 2  radians / 3 

24 hr. 4 

 Figure 8 shows calculation of the duration of daily insolation for clear-sky conditions in 5 

north facing ( = 0 with downward slope), west facing (  = 90 with downward slope), and 6 

south facing ( = 180 with downward slope) sloping terrain, for a northern latitude of  = 7 

23.45 and solar declination  = 23.45 (summer’s solstice). The graphs for west-facing and 8 

south-facing terrain show that the duration of insolation decreases with increasing slope. In 9 

the south-facing case, the duration of insolation vanishes when the slope of south-facing 10 

terrain approaches   = 90 (vertical slope). Arbitrary combinations of  ,  , and   could be 11 

entertained equally as easily.  12 

Double sunrise and sunset  13 

There are northern and southern high latitudes (high in absolute value in the latter case) 14 

that, when combined with steep slopes, produce two sunrises (hour angles 1sr , 2sr , with 15 

1sr2sr  ) and two sunsets (hour angles 1ss , 2ss , with 1ss2ss  ). This situation occurs 16 

when, for example, the critical  slope  -shown in Figure 4- is exceeded, producing in this 17 

instance a shaded slope during an interval that would otherwise (i.e., without the slope) be 18 

lighted. Yet, that slope may be insolated prior to and after the interval of darkness. This 19 

situation calls for two sunrises and two sunsets. The first sunrise ( 1sr ) occurs when the sun 20 

first shines on the slope on any clear-sky day.  The first sunset ( 1ss ) ends the first period of 21 

insolation, at which time darkness sets in on the slope until the second sunrise ( 2sr ) 22 
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reinitiates insolation. The latter ends with the second sunset ( 2ss ). In this case the energy-1 

input equation (9) must be  rewritten as follows:  2 










+=

2ss

2sr

1ss

1sr

d"ed"eI rrS bb             (23)  3 

in which all the intervening terms in the integrands are exactly as defined in  association with 4 

equation  (9), and the solar-beam vector b is specified in equation (15). The angles that 5 

appear as limits of integration in equation (23) are expressed in radians. In equation (23), 6 

0sr1sr = , *
sr1ss = , *

ss2sr = , and 0ss2ss = , where 0sr  and 0ss  were defined in 7 

equations (18) and (19), respectively, and correspond to the horizontal-case hour angles; *
sr , 8 

*
ss  are the solutions to equation (16). The duration of daily insolation when there are two 9 

times of sunrise and two times of sunset is:  10 

( )2sr2ss1sr1ss
1

D −+−


=              (24) 11 

where   = 2   radians / 24 hr. 12 

 To illustrate the occurrence of double sunrise and sunset –as well as the calculation of 13 

the various hour angles introduced above- let the slope ( ), latitude ( ), solar declination 14 

( ), and aspect ( ) be 3/,3/  , 23.45, and 0 degrees, respectively. In this case, 1sr = 15 

0sr  421.2− , 1ss = *
sr   721.0− , 2sr = *

ss  0.721, and 421.20ss2ss = . Notice 16 

that the sloping surface is dark when the hour angle is zero in this instance. For the sake of 17 

contrast, let the aspect   be nonzero, say, equal to 4/ , and using the same  ,,  as 18 

before, yields: 1sr = 0sr  421.2− , 1ss = *
sr   216.2− , 2sr = *

ss  0669.0− , and 19 

2ss = 0ss  2.421. Evidently, in this second example the sloping surface is insolated when 20 
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the hour angle is zero. Any other combination of the variables controlling the duration of 1 

daily insolation can be handled similarly with the equations developed in this paper. 2 

 The method developed in this paper to calculate the duration of daily insolation follows 3 

directly from equations (16), (18)-(19) and (22) or (24). It avoids the use of equivalent slopes 4 

(see, Lee, 1964), in which an actual sloping surface at a given latitude and longitude is 5 

replaced by an (equivalent) horizontal surface placed at a different longitude and latitude for 6 

the purpose of calculating the times of sunrise and sunset on the actual slope. This subterfuge 7 

introduces unnecessary complications in the calculation of energy input by direct solar 8 

radiation, which are avoided by the direct method of calculation of this work.  9 

Conclusion 10 

 A closed-form equation for the duration of daily insolation on surfaces of arbitrary slope 11 

and aspect has been derived in this article. The key to obtaining the duration of daily 12 

insolation lies on finding the roots of the trigonometric equation A cos  + B sin + C = 0 for 13 

the hour angle  , in which the coefficients A, B, C encompass the geometric factors that 14 

govern the flux of solar radiation normal to a surface, namely, slope, aspect, solar declination, 15 

and latitude. The method to calculate the duration of daily insolation developed in this paper 16 

can be efficiently implemented for use in a variety of agricultural meteorologic and 17 

hydrologic applications, a key one being the calculation of clear-sky daily solar radiation 18 

input to sloping surfaces.  19 

20 
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LIST OF FIGURES 1 

Figure 1. Geometry and variables involved in the determination of the duration of daily 2 

insolation and energy input by solar radiation.  ,,,  denote the solar declination, 3 

latitude, hour angle, and the Earth’s angular rotational velocity, respectively. O is the 4 

Earth’s center, and b is the vector of direct solar radiation reaching the Earth’s surface. 5 

See the text for other details. 6 

Figure 2. Oblique view of coordinate systems involved in the calculation of the duration of 7 

daily insolation and energy input by solar radiation. O is the Earth’s center, N the North 8 

Pole, b the vector of direct solar radiation reaching the Earth’s surface,   and   are the 9 

hour angle and latitude of the meridian containing point P, respectively,   the Earth’s 10 

angular rotational velocity; re , e , and e  are the unit direction vectors associated with 11 

the spherical coordinate system; i, j, and k are the unit vectors associated with the 12 

Cartesian coordinate system with origin at the Earth’s center. See text for more in depth 13 

description of features shown on the Figure. 14 

Figure 3. Rotation of the spherical coordinate system to achieve a desired aspect  . The axis 15 

of rotation coincides with the unit vector re . See text for definitions. 16 

Figure 4. View perpendicular to the plane of great circle containing the solar-noon meridian 17 

illustrating the relation of the solar beam to key geometric variables. An aspect 0= is 18 

assumed in the illustration. 1  and   are upward and downward slopes, respectively;  , 19 

 , and   denote latitude, solar declination, and the Earth’s angular rotational velocity, 20 

respectively; O and N are the Earth’s center and North Pole, respectively. X   receives 24-21 

hr daily insolation. The shaded hemisphere is leftward of the axis containing the points O 22 

and X  . See text for other features shown on the Figure. 23 
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Figure 5. Rotation of the spherical coordinate system to achieve a desired slope  . The axis 1 

of rotation coincides with the unit vector 'e . See text for definitions. 2 

Figure 6. View from over the north pole and perpendicular to the ecliptic plane showing a 3 

slope and aspect that reduce the sunset-hour angle relative to that associated with a 4 

horizontal surface ( 0ss ). The actual sunset-hour angle equals the theoretical angle ( ss* ) 5 

in this case. 6 

Figure 7. View from over the north pole and perpendicular to the ecliptic plane showing a 7 

slope and aspect for which there is shading of the sloping surface at the theoretical 8 

sunrise-hour angle ( sr* ). The actual sunrise-hour angle equals 0sr  in this case.  9 

Figure 8. Daylight hours, or duration of daily solar insolation with clear-sky conditions, for a 10 

terrain of aspect   = 0 (north-facing slope),  = 90 (west-facing slope), and   =180 11 

(south-facing slope), as a function of slope (downward or positive in this instance). The 12 

latitude of the sloping terrain in this example is  = 23.45, with declination  =23.45 13 

(summer solstice in the northern hemisphere). 14 
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Figure 1. Geometry and variables involved in the determination of the duration of daily 4 

insolation and energy input by solar radiation.  ,,,  denote the solar declination, 5 

latitude, hour angle, and the Earth’s angular rotational velocity, respectively. O is the 6 

Earth’s center, and b is the vector of direct solar radiation reaching the Earth’s surface. 7 

See the text for other details. 8 
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Figure 2. Oblique view of coordinate systems involved in the calculation of the duration of 4 

daily insolation and energy input by solar radiation. O is the Earth’s center, N the North 5 

Pole, b the vector of direct solar radiation reaching the Earth’s surface,   and   are the 6 

hour angle and latitude of the meridian containing point P, respectively,   the Earth’s 7 

angular rotational velocity; re , e , and e  are the unit direction vectors associated with 8 

the spherical coordinate system; i, j, and k are the unit vectors associated with the 9 

Cartesian coordinate system with origin at the Earth’s center. See text for more in depth 10 

description of features shown on the Figure. 11 
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Figure 3. Rotation of the spherical coordinate system to achieve a desired aspect  . The axis 4 

of rotation coincides with the unit vector re . See text for definitions. 5 
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Figure 4. View perpendicular to the plane of great circle containing the solar-noon meridian 7 

illustrating the relation of the solar beam to key geometric variables. An aspect 0= is 8 

assumed in the illustration. 1  and   are upward and downward slopes, respectively;  , 9 

 , and   denote latitude, solar declination, and the Earth’s angular rotational velocity, 10 

respectively; O and N are the Earth’s center and North Pole, respectively. X   receives 24-11 

hr daily insolation. The shaded hemisphere is leftward of the axis containing the points O 12 

and X  . See text for other features shown on the Figure. 13 
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Figure 5. Rotation of the spherical coordinate system to achieve a desired slope  . The axis 11 

of rotation coincides with the unit vector 'e . See text for definitions. 12 
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 1 
Figure 6. View from over the north pole and perpendicular to the ecliptic plane showing a 2 

slope and aspect that reduce the sunset-hour angle relative to that associated with a 3 

horizontal surface ( 0ss ). The actual sunset-hour angle equals the theoretical angle ( ss* ) 4 

in this case. 5 

6 
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Figure 7. View from over the north pole and perpendicular to the ecliptic plane showing a 7 

slope and aspect for which there is shading of the sloping surface at the theoretical sunrise-8 

hour angle ( sr* ). The actual sunrise-hour angle equals 0sr  in this case. 9 
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Figure 8. Daylight hours, or duration of daily solar insolation with clear-sky conditions, for a 7 

terrain of aspect   = 0 (north-facing slope),  = 90 (west-facing slope), and   =180 8 

(south-facing slope), as a function of slope (downward or positive in this instance). The 9 

latitude of the sloping terrain in this example is  = 23.45, with declination  =23.45 10 

(summer solstice in the northern hemisphere). 11 




