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ABSTRACT OF THE DISSERTATION

The Rigidity Theorems and Pointwise 0-estimates
By
John Treuer
Doctor of Philosophy in Mathematics
University of California, Irvine, 2021

Professor Song-Ying Li, Chair

By Guan and Zhou’s resolution of the Suita Conjecture, it is known that for any open, hyperbolic
Riemann surface X, the Bergman kernel K, the logarithmic capacity cg, and the analytic capacity
cp, are related by 7K > ¢ > cp. When X is a domain in C, we show that cg > 7(Vol(X))™!
where Vol is the volume, and determine the conditions for when there exists a point 2y such that
cp(z0) = m(Vol(X))™h, cs(z0) = m(Vol(X))™t, and 7K (z9) = m(Vol(X))~*. For open Riemann
surfaces, we also determine equality conditions for cg < cg. A significant portion of this part of

the thesis is based on joint work with Dong and Zhang.

The second part of the thesis is motivated by Henkin and Leiterer’s question of whether uniform
estimates for the O-operator hold on the Cartan classical bounded symmetric domains. Using
weighted L?-methods initiated by Berndtsson, we obtain a pointwise estimate for the canonical
solutions to the equation du = f when f is bounded in a Bergman-type L>-norm. This part is

based on joint work with Dong and Li.

In the third part of the thesis, we extend a theorem of M. Christ and S.-Y. Li on the d-equation
Ou = f. Let D C C" be a bounded pseudoconvex domain with C* boundary which has a Stein
neighborhood basis. We show that if f is a (p,q) form defined on © whose coefficients lie in a
quasi-analytic class C*(Q), then there exists a solution u to Ju = f such that the coefficients of

u belong to the same quasi-analytic class.
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Preface

In complex analysis of one variable and Riemann surface theory there are several canonical sur-
face functions which have been used to prove many of the subject’s major theorems. Every open,
potentially-hyperbolic Riemann surface X has a Green’s function G. The Green’s function is
essential to the proof of the uniformization theorem, and in the case of simply-connected domains,
the Riemann map can be written in terms of the Green’s function. In harmonic function theory,
the Green’s function is used to solve Laplace’s equation with Dirichlet boundary conditions. The
Green’s function gives rise to two additional surface functions: the logarithmic capacity cg, and
for domains in C, the Bergman kernel function. The Bergman kernel is central to the proof of
the Fefferman Mapping Theorem, which when restricted to domains in C affirmatively answers
the question do biholomorphisms between bounded domains with C* boundaries extend to the clo-
sures as C*-diffeomorphisms? The final canonical surface function we investigate is the analytic
capacity cg, which was defined by Ahlfors to study the domains which do not admit bounded

holomorphic functions.

In 1972, Suita proved using the Green’s function and Riemann surface theory that ¢% < 7K
and equality holds at a single point on the surface if and only if the surface is either potentially
parabolic or biholomorphic to the unit disk less a relatively closed polar set. Suita conjectured
that

5 < c% <7K, (0.1)

and that equality holds in c% < 7K at a single point on the surface if and only if the surface is

1



either potentially parabolic or biholomorphic to the unit disk less a relatively closed polar set. His
conjecture, now eponymously referred to as the Suita conjecture, was studied by Ohsawa, Blocki,
and ultimately proved in its entirety by Guan and Zhou. The theorems which determine the
equality conditions in ¢ < 7K and ¢ < 7K, due to Suita and Guan-Zhou respectively, may be
called rigidity theorems because equality at a single point on the surface determines the surface,
when it is hyperbolic, up to biholomorphism and a polar set. In the first part of the thesis, we
show that the rigdity theorems due to Suita and Guan and Zhou are two among many rigidity
theorems for these canonical surface functions. For domains in C, we extend the work of Guan

and Zhou and Suita (0.1) by showing

3 < 7K, (0.2)

where v(€2) is the volume of 2, and prove several rigidity theorems which describe the remaining
equality conditions between any two of the four quantities listed in (0.2). The rigidity theorem for
the equality case in cg > cp is also valid for open Riemann surfaces, and it is proved by proving
a rigidity theorem for the Green’s function. A significant part of this portion of the thesis is joint
work with Dr. Dong of the University of Connecticut and Dr. Zhang of Purdue Fort-Wayne. 1

am grateful for our collaboration.

One of the most striking differences between holomorphic function theory in complex analysis of
one variable and several variables is that by Hartogs’ extension theorem, it is easy to construct
domains in C", n > 2, where every holomorphic function is the restriction of a holomorphic
function on a larger domain. Such domains show that not all domains are natural domains for
studying the holomorphic functions. The most natural ones are called domains of holomorphy
(see [40] for the precise definition). A fundamental question in the early to mid-twentieth century
was whether there was a geometric characterization of the domains of holomorphy? One was
ultimately given by Oka, Bremermann and Norguet in the 1940s and 1950s. Their work showed

that the domains of holomorphy are precisely the pseudoconvex domains, domains satisfying a



complex convexity condition, and equivalently, the domains where the d-problem is always solvable

in the C'*-setting, [16].

The 0-problem asks for any (p, ¢)-form f =Y f; jdz! Adz’ does there exist a (p,q — 1)-form u so
that the 0-equation Ou = f holds. When we require f € L%M)(Q) and u € L%M_l)(Q), we call this
problem, the d-problem in the L?-setting. An analogous statement describes the d-problem in the
C>™-setting. The O-equation is the fundamental partial differential equation of several complex
variables. It is the basis of the L*methods of several complex variables and the 0-Neumann
problem. Through Kohn’s formula, it is related to the Bergman kernel and metric, which are
used to prove Fefferman’s generalization of the Riemann Mapping Theorem: Let f : ; — €y

be a biholomorphism between bounded strictly pseudoconvexr domains with C*°-boundary. Then f

extends to a C*-diffeomorphism between the closures of the domains.

Let A2(Q) = L%(2) Nker(d) denote the Bergman space over 2. Since the kernel of d contains the
holomorphic functions, if the -problem is solvable in the L-setting and A%(€2) # {0}, then the 0-
equation Ou = f has infinitely many solutions. However, there exists a unique solution to du = f
with u | A%*(Q), which is called the canonical solution because it has minimal L*norm among
all solutions. Hérmander [35] showed that if §2 is bounded and pseudoconvex and f € L?o;)(Q) is
0-closed, then the canonical solution u satisfies the estimate |u|| ;2 < C||f]z2 for some constant C
depending only on the diameter of €. In view of Hormander’s result, a natural question is when
the canonical solution can be represented by a continuously-differentiable function, can pointwise
estimates be given on the values of the canonical solution? In the second part of the thesis, we will

investigate this question on certain convex domains. Let g = (9;‘12)%:1 be the Bergman metric on

a domain Q. For a (0,1)-form f = 37" | fjdz;, define

1f 1500 = esssup { D g™ (2) fu(2)f;(2) : 2 € 2},

jk=1

where (gj’_“)T = (g;z)~". Berndtsson used weighted L* estimates of Donnelly-Fefferman type to



prove the following pointwise estimate.

Theorem 0.1. [§] There is a constant C = C(n) such that for any 0-closed (0,1)-form f on the

unit ball in C", the canonical solution to Ou = f satisfies

u(2)] < Ol fllg.00 log (0.3)

1=z

The estimate (0.3) is sharp. In the second part of the thesis, we will derive a pointwise estimate
for u(z) on the simple convex domains and the Cartan classical bounded symmetric domains.
Both classes of domains contain the unit ball in C". The estimate on the Cartan classical domains
restricted to the unit ball will agree with Berndtsson’s estimate (0.3). Additionally, we will show
that the estimate we derive is sharp on the Cartan classical bounded symmetric domain 17(2).
This part of the thesis is based on joint work with Dr. Dong of the University of Connecticut and

Dr. Li of the University of California, Irvine.

When 2 € C", n > 2, is bounded pseudoconvex with C'*°-boundary, Kohn proved that for any
fe Cf;iq)(ﬁ) where 0 < p < n, 1 < g < n with f = 0, there exists u € C’E’;qfl)(ﬁ) such that

Ou = f, [16, Theorem 6.1.1]. This important result due to Kohn was investigated further in 1997
by Christ and Li, when they examined the special case where f € CE;L 2 () and Q has additionally
real-analytic boundary. They showed that if Q@ C C*,n > 2, is bounded pseudoconvex with C“-
boundary, then for any [ € C&,q)(ﬁ) where 0 < p < n, 1 < g < n with df = 0, there exists

ueCy )(ﬁ) such that du = f.

p,q—1

The class of real-analytic functions on a domain €2 can be distinguished from the class of C*°-
functions by the important property that the real-analytic functions are the functions which locally
have convergent power series expansions. As a result of this property, the real-analytic functions
satisfy a second property that any real-analytic function which vanishes to infinite order at any
point in 2 must be the zero function. This second property does not imply the first property, and

the classes of C'"*°-functions which have this property are called quasi-analytic. When appropriately



defined, the quasi-analytic classes can be recognized by the Denjoy-Carleman Theorem, and can
serve as intermediate classes of functions between the real-analytic functions and the C'* class of

functions.

In the final chapter of my thesis, we extend Christ and Li’s theorem by investigating Kohn’s
regularity theorem for the d-problem for forms f belonging to quasi-analytic classes. Let C*(€Q) be
a quasi-analytic class defined as in Chapter 4, and let Q C C", n > 2, be a bounded pseudoconvex
with C'*°-boundary and a Stein neighborhood basis. We show that if f € C{;}’ " (Q) where 0 < p <
n, 1 < ¢ < n with 9f = 0, then there exists u € C(?y,qq)(ﬁ) such that Ou = f. Christ and Li’s

theorem follows from this result.

We begin the thesis by reviewing the basic facts about the Bergman kernel. For a domain in C",
the Bergman kernel is the integral kernel which reproduces the L2-holomorphic functions. The

Bergman kernel is central to the results in both Chapters 2 and 3.



Chapter 1

Introductory Bergman kernel theory

1.1 Introduction

In this chapter, we review background material on the Bergman kernel. The Bergman kernel will

be extensively used in both Chapters 2 and 3.

1.2 The Bergman kernel

Let Q C C" be a domain and let L?*(Q2) denote the Hilbert space of square-integrable functions

with respect to the Euclidean volume measure dv, the inner product and norm

(f.g) = / F29@) do(z), 1fI12=<f.f>.

Let O(2) denote the set of holomorphic functions on Q. The Bergman space A%(Q) = L*(Q) N

O(Q) is the set of L2-holomorphic functions on 2. Using the mean-value property, one can show



that A?(Q) is a Hilbert space and the linear-functional

ev,(f) = f(2), f€ A%Q),

is bounded. By the Riesz representation theorem, ev, has a Riesz representative k,(w) € A?(Q);

that is k,(w) satisfies

f(z) = / f (W) () dv(uw).

The Bergman kernel K : Q x Q — C is the function K(z,w) = k,(z). It is the unique function

on £ x € which satisfies

1. (reproducing property of the Bergman kernel)

f(z2) = / W) K (2, w)do(w), [ € A%(S), (1.1)

2. K(z,w) = K(w, z2)

3. K(,w) € A%(Q) for all w € Q.

When we wish to emphasize the domain €2, we will use the notation Kqo. When it is clear from

context which domain the Bergman kernel belongs to we shall omit the subscript.

By the uniqueness of the Bergman kernel and the change of variables formula from integral cal-
culus, it follows that the Bergman kernel satisfies a transformation law under biholomorphic

mappings.

Theorem 1.1. If h: Q4 — Qs is biholomorphic between two domains, then

Kq,(z,w) = det(Jch(z))det(Jch(w))Kaq,(h(2), h(w)), z,w € Q, (1.2)

where Jch denotes the complex Jacobian of h.



As L*() is separable, its subspace A%(f)) is also separable and admits an orthonormal basis

{6n}22,. It can be shown that the Bergman kernel has an orthonormal series expansion

— Zqﬁn(,z)(bn(w), z,w € €, (1.3)

which converges uniformly on compact subsets of €2 x 2. The series expansion is independent of
the choice of orthonormal basis. In this thesis, we will denote the balls in C and C” for n > 1

respectively by
D(zp,r)={2z€C:|z—2| <r}, B"z20,7)={2€C":|z— 2| <1}

When n > 1, if 2 = (21,...,2,) and 7 = (r1,...,7,), we will use the notation

to denote the polydisk centered at z with polyradius r. Using the orthonormal series expansion of
the Bergman kernel (1.3), one can derive the Bergman kernel for D(0, 1) as follows. By integrating

in polar coordinates,

P 2 2k

<7Tl/2<k T 1)1 p2(5 4 1)71/2> = Ok, H7T1/2(k’ +1)-1/2 1l =L

Since any holomorphic function in D(0, 1) has a power series expansion converging in D(0,1), by

integrating in polar coordinates, we can also check that {z;}7°, is a complete orthogonal system.

By (1.3),
K 1 EOO E+1)z L (1.4)
(z,w) = — —_. .
P 7 s 7 (1— zw)?
A similar, but more complicated calculation gives
n! 1
K]Bn(()’l)(z,w) = — (15)

(1= kg 2eWp)"™ T



By the transformation property of the Bergman kernel (1.2), similar equations can be derived
for the Bergman kernel for balls of other radii centered at other points in C". For details on
these calculations and the preceding Bergman kernel theory, see [40]. When () has finite volume,
[0(Q)2 ]|y = 1, and {v(Q2)= } can be completed to an orthonormal basis {v(Q)= } U {¢}22, of
A%(Q). By (1.3),

K(z,2)=v(Q)7 + ) |n(2)]?, ze€Q, (1.6)
k=1

which implies the lower bound for the Bergman kernel
K(z,2) >v(Q)"". (1.7)

We will use the convention that v(2)™! = 0 when v(2) = co. When we consider the Bergman
kernel restricted to the diagonal, for brevity we often write K(z) := K(z,z). This lower bound
also holds for domains of infinite volume because by (1.3), K(z) > 0. It can be seen by (1.4) and

(1.5) that this lower bound is sharp.

The proceeding chapter will in part investigate the question is there a geometric characterization
of the domains € so that Kq(z) = v(2)7'? A few more observations that will be relevant to this

question can be made from the basic theory described in this chapter.

Lemma 1.2. Let Q C C" be a domain. If there exists zg € Q so that K(z29,20) = v(Q)7!, then

K(-, 20) = v(Q)™! and Q satisfies the mean-value property

]' 2
10 = < / fw)do(w),  f € A2(Q). (18)

Proof. Suppose v(Q) < oo and let {v(Q)72} U {¢,}22, denote an orthonormal basis of A2(Q).
By (1.3), ¢x(20) = 0. It follows that K(-,z) is a constant function. If v(2) = oo, then for
any orthonormal basis {¢;}72, of A%(2), we have again that ¢y (z9) = 0 and K(-,29) = 0. The

mean-value property (1.8) holds by the reproducing property of the Bergman kernel (1.1).
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Chapter 2

The rigidity theorems

2.1 Introduction

Let X be an open hyperbolic Riemann surface (that is, an open Riemann surface admitting a
Green’s function) and consider the negative Green’s function G(z, zp), the logarithmic capacity cs

and the analytic capacity cg for X. Here, with respect to a fixed local coordinate,

G(z,20) = sup{u(z) : u € SH (X),limsupu(z) — In |z — 2| < 00}, (2.1)

Z—20

where SH~(X) denotes the negative subharmonic functions on X not identically equal to —oo,

cs(z) = lim exp(G(z, z0) — In |z — z|) (2.2)

Z—r20

and

¢5(z0) = sup {\g—fm ] € O, If] < L, f(z0) = o} . (2.3)

In 1972, Suita [52] determined the relationship between the analytic capacity and the Bergman

11



kernel restricted to the diagonal K(z) := K(z, z).

Theorem 2.1. [52] Suppose X is an open Riemann surface. Then wK(z) > c¢%(z) and equality
holds at some zy € X if and only if either X is biholomorphically equivalent to the unit disk less

a (possibly empty) closed set of inner capacity zero, or X is a parabolic Riemann surface.

A closed set of inner capacity zero is a relatively closed polar set. One may think of Suita’s theorem
as a rigidity theorem because equality at a single point between the two quantities determines
the surface up to biholomorphism. In that same paper, Suita conjectured that the logarithmic

capacity would satisfy a similar inequality and rigidity theorem.

Theorem 2.2 (Suita Conjecture). [52] Suppose X is an open Riemann surface. Then K (z) >
c%(z) and equality holds at some zy € X if and only if either X is biholomorphically equivalent to
the unit disk less a (possibly empty) closed set of inner capacity zero, or X is a parabolic Riemann

surface.

The Suita conjecture was proved completely in 2015 by Guan and Zhou [31] and has been studied
by several other outstanding mathematicians. In 1995, Ohsawa noted [49] that the Suita conjecture
was connected to his Ohsawa-Takegoshi L?-extension theorem. He was able to prove that c% <
750m K. Blocki lowered the constant from 7507 to 27, and in 2013, he proved the inequality
c% < wK for bounded domains in C, see [10, 11]. In 2015, Guan and Zhou proved the Suita
conjecture in its entirety. Their solution of the Suita conjecture was proved as an application of
their proof of the Ohsawa-Takegoshi L2-extension theorem with optimal constants. It should be
noted in particular, their solution is a very deep theorem which used methods of several complex
variables. Dong [23] reproved parts of Guan and Zhou’s proof using Maitani and Yamaguchi’s

variational formula for the Bergman kernel.

It should be noted that it is straightforward to show that ¢ < ¢3, see Lemma 2.26 below; hence

the solution of the Suita conjecture does not follow from Suita’s Theorem, Theorem 2.1.

12



Consequently, for any open hyperbolic Riemann surface

7K > c% > %, (2.4)

and if mK () = ¢3(20) or K (20) = ¢3(20), then the Riemann surface is biholomorphic to a disk

less a relatively closed polar set.

In this chapter, we first establish a rigidity theorem which desribes the equality condition between
cp and c¢g in (2.4). We then restrict our attention from surfaces to domains in C where we extend

(2.4) by proving that for any domain 2 C C,

™

v(©)

K > cé > % > (2.5)

We establish the conditions for equality between the various quantities, and in particular, we give

several proofs of the equality conditions for the inequality 7K (z9) > —&

2 oy We begin by studying

in more depth the Green’s function, logarithmic capacity and analytic capacity.

This chapter is based on the works [25], [54], [26]. I thank my collaborators Dr. Dong and Dr.

Zhang.

2.2 The Green’s function of Riemann surfaces

In this chapter, we consider the (negative) Green’s function (of the Laplacian).

Definition 2.3. For an open Riemann surface X, the Green’s function with pole at zo € X, if it
exists, is defined to be

G(z,z0) = sup{u(z) : v € SH™ (X),limsupu(z) — In |z — 29| < o0}, (2.1 revisited)

Z—20

13



where SH™ (X)) denotes the negative subharmonic functions not identically equal to —oo. If the
Green’s function with a pole at zy exists for all zg € X, then X is said to be hyperbolic. Other-

wise, it is said to be parabolic.

Remark 2.4. The definition of hyperbolic/parabolic follows the definition used in the classification
theory of open Riemann surfaces, cf. [3]. There are other non-equivalent definitions of hyperbolic

and parabolic used in other areas of geometry.

From the definition, several properties of the Green’s function can be derived.

Proposition 2.5. An open Riemann surface is hyperbolic if and only if there exists a non-constant

negative subharmonic function defined on it. Moreover

1. The Green’s function with pole at zy € X exists if and only if Gx (-, z) ezists for all z € X.

Consequently, we can refer to the Green’s function Gx : X x X — R without referring to the

particular pole. The Green’s function satisfies additionally

2. Gx(-,-) is harmonic on X x X \ {(z,w) : z = w}, and Gx(z,29) — In |z — 2| is harmonic in

z in a neighborhood of zy.
3. Gx(,20) € SH(X), 2z €X.
4. (Symmetry property) Gx(z,w) = Gx(w,2), z,we X xX
5. Gx(z,w) = —o0 if and only if z = w.
6. (Monotonicity property) If X1 C Xa, then Gx,(z,20) > Gx,(z, 20).

7. (Biholomorphic transformation law) If h : X1 — Xy is biholomorphic and X5 admits a
Green’s function, then Gx,(z,w) = Gx,(h(2), h(w)).

14



Remark 2.6. By Proposition 2.5(1), a Riemann surface is hyperbolic if and only if the Green’s

function with pole at zy exists for a single zg € X.

There are several equivalent definitions for the Green’s function. The basic properties in Propo-

sition 2.5 can be found in several books including [3] and [50].
Let Co, = CU {00} denote the Riemann sphere. The boundary values of the Green’s function for
domains in C,, are important for our applications.

Definition 2.7. Let Q C C be a domain admitting a Green’s function. A point zy € 0S) is said

to be a regqular boundary point if

lim G(z,w) =0, w €,

Z—r20

otherwise, zy 1s said to be an irreqular boundary point.

The set of irregular boundary points is small.

Definition 2.8. A Borel set E C C, is said to be polar if there is an open set U containing E

and a subharmonic function u : U — R U {—occ} such that

Ec{zeU:u(z) =—o0}.

Proposition 2.9. If F is a polar set, then E is totally disconnected and has Hausdorff dimension

0; hence its two-dimensional Lebesque measure is 0.

From Proposition 2.9, since polar sets are totally-disconnected, a domain 2 satisfies that 0 is

polar if and only if C, \ © is polar. In that case C., \ = 0.

Theorem 2.10. [Kellogg’s Theorem| Let Q@ C Cy, be a domain which admits a Green’s function.
The set of irreqular boundary points form an F,-polar set (a polar set which is the countable union

of closed sets.)

15



Using the notion of polar sets, we can classify the parabolic domains in C.

Theorem 2.11. A domain Q C C, is parabolic if and only if Co. \ Q is polar if and only if 09

18 polar.

Using Theorem 2.11, we can prove a subordination property of the Green’s function, well-known
for domains, cf. [50]. The proof in [50] needs to be modified to work for Riemann surfaces with
our choice of definition of the Green’s function. Therefore, we prove the subordination property

below in its entirety.

Lemma 2.12 (Subordination Property). Let X be an open Riemann surface and let f be a

holomorphic function on X such that 0f(X) is not a polar set. Then

Gx(z,20) 2 Gyx)(f(2), f(20)), (2,20) € X x X. (2.6)

Moreover, if there exists a (z,z9) € X x X with z # zy so that equality holds, then

Gx(220) = Groo(F(2). f(20)), (220) € X x X, (2.7)
and f is injective.

Proof. Since 0f(X) is not polar, f(X) admits a Green’s function Gyx). If v : f(X) = Cis
a non-constant, negative subharmonic function, then u o f is also non-constant, negative and

subharmonic. Thus, X admits a Green’s function G'x. First assume that %(zo) # 0. Since
G0 (f(2), f(20)) =In[f(2) = f(20)] = O(1), == 20,

Grx)(f(2), f(20)) —In|z — 29| =1n %(zo) +0(1) =0(1), z— 2.

Thus, Gx)(f(2), f(20)) is in the defining set of Gx (-, z9), which implies that (2.6) holds for z,
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such that %(zo) # 0. Since the zero set of df is discrete and Green’s functions are continuous off

their diagonal, the inequality (2.6) holds for all (2, z)) € X x X.

Suppose Gx (2, 20) = Gyx)(f(2), f(20)) for some z # 2. Define

ur (1) = Gy (f(4), f(20)) = Gx(+,20),  ual’) = Gy (f(2), (1) = Gx(2,).

Then
up € SH(X \ {20}), w2 € SH(X\{z}),

and they attain a maximum at z and z, respectively. By the maximum principle,

Groo(f(), f(20)) = Gx (-, 20),  Gpx)(f(2), f(+) = Gx(2,°),

which proves (2.7).

If f(2) = f(20), then by (2.7), Gx(z,29) = —o0. Thus, z = 2. ]
One of the most famous applications of the Green’s function is the uniformization theorem [3,
Theorem II1.11G]. We state one of its consequences.

Theorem 2.13. Let X be an open, hyperbolic Riemann surface. Then there exists a holomorphic

covering map p : D(0,1) — X.

2.3 Logarithmic capacity

Definition 2.14. Let X be an open hyperbolic Riemann surface. The logarithmic capacity cs :
X — R is defined as

cs(z) = lim exp(G(z, z0) — In |z — z|) (2.2 revisited)

Z—r20
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where z is a local coordinate. If X is an open parabolic Riemann surface, then we define cg = 0.

When we wish to emphasize the surface under consideration, we will use the notation cg x.

Remark 2.15. By Proposition 2.5(2), if X is hyperbolic, then cg > 0. Thus, for a domain
QO =C,\E, by Theorem 2.11, E is polar if and only if csc.\g = 0 if and only if cgc_\p vanishes

at a single point.

One can show that the logarithmic capacity satisfies a transformation law under biholomorphic

mappings.

Proposition 2.16. [Transformation law of the logarithmic capacity]

Let h - X7 — X5 be a biholomorphic mapping between open Riemann surfaces such that Xs is

hyperbolic. Then

Ooh

cs,x1(20) = ¢,x,(M(20)) @(Zo) ,

where z 1s a local coordinate.

Proof. If u : Xo - RU{—00} is a negative, subharmonic function, then so is u o h. Thus, X; is

also hyperbolic. Notice that

cox1(20) = zlgl;o exp(Gx, (2, 20) — In |z — 2))
= zlgr;g exp(Gyx,(h(2),h(z)) —In|h(z) — h(zo0)| + In|h(z) — h(z0)| — In|z — 2|)
oh

— G (a0) | (o).

Polar sets are removable singularities for bounded harmonic functions. Since the Green’s func-
tion with a pole at w is harmonic and bounded away from w, closed polar sets are removable

singularities for the Green’s function.
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Proposition 2.17. Let QQ C C be a domain and P C ) be a relatively closed polar set. Then

Gaor(z,w) = Ga(z,w), zweQ\P.

We can also use that polar sets are removable singularities for bounded harmonic functions, to

extend Liouville’s Theorem.

Proposition 2.18. Let P C C be a closed polar set. If h: C\ P — C is a bounded holomorphic

function, then h is constant.

Theorem 2.19. Let P C D(0,1) be a relatively closed polar set. If h : D(0,1) \ P — X s

biholomorphic, then
—1

Ooh

1
&(2)

cpx(h(z)) = T— 2P (2.8)

Proof. The Green’s function with pole 0 for D(0,1) is given by Gp1)(2,0) = In|z|. By the

biholomorphic transformation law of the Green’s function and Proposition 2.17,

w—z
Gpounp(zw) =In|s—0r—o/, 2w e D(0,1) \ P.
Thus,
. z—
cgpp\p(2) = limexp(ln |-— ’ —In |w — 2[)
= lim exp(—In|l — Zw|)
w—z
B 1
R
The result follows from Proposition 2.16. O]

19



2.4 Analytic capacity

In classical complex analysis, one of the fundamental questions is Painlevé’s question: which
compact sets E in the Riemann sphere are remouvable for the bounded holomorphic functions. We
can think of E as the complement of the domain C,, \ F and reformulate Painlevé’s question as

which domains in C do not admit non-constant, bounded holomorphic functions?

From Liouville’s theorem and Riemann’s removable singularity theorem, if F is a discrete closed
set, then any bounded holomorphic function on C., \ E is constant. On the other hand, if F is
a compact connected set with at least two points, then C,, \ E is simply-connected and by the
Riemann mapping theorem, there exists a bounded holomorphic function mapping C., \ E into
D(0,1). From these examples, we see that the domains which do not admit bounded, non-constant

holomorphic functions exist and their complements are totally-disconnected.

Ahlfors introduced the analytic capacity

@@@:amﬂggm

:feomMﬂ<1Ju@=o}

for domains Q, [2], [1] in order to study Painlevé’s question. The definition of analytic capacity
extends to open Riemann surfaces as a conformally-invariant metric cg(z)|dz|. Compact Riemann
surfaces are not of any interest because all holomorphic functions on a compact Riemann surface
are constant. The domain or surface under consideration will usually be understood from context,
but when it is not, we will use the notation cp,x to clarify that the analytic capacity refers to
the domain or surface X. It is obvious that for a domain 2, cg = 0 if and only if €2 does not
admit non-constant, bounded holomorphic functions. In this section, we introduce results about

the analytic capacity needed for subsequent sections. We begin by defining the Painlevé null sets,

cf. [1].
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Definition 2.20. A compact set E C Cy, is said to be a null set of class Np if

CB7(COO\E = 0
Remark 2.21. Equivalently, a compact set E € Ng if the set of bounded holomorphic functions
on Cy \ E consists of only the constant functions.

Remark 2.22. By Proposition 2.18, if P is a compact polar set, then P € Ng. However, there

are sets Q@ € Ng which are not polar, cf. [30].

The next proposition leads to another equivalent definition of a null set of class Nz.

Proposition 2.23. [1] Let Q C C, be a domain. Then cg = 0 if and only if there exists a zy € 2

so that cg(zo) = 0.

Proof. We prove the non-trivial direction. After an automorphism of C,, we may assume zy # oo.

We first claim that
0
cg(20) = sup {'a—‘z(zo)

. f € O(Q, D(0, 1))}. (2.9)

Notice that for a € D(0,1), the automorphism ¢,(z) = (a — 2)/(1 — az) of D(0,1) satisfies
¢, (a) > 1. Thus, if f is in the defining set of the right hand side, then ¢y, o f is in the defining

set of cp(zp) and

(65t © £l 2 | 3 (o

Y

which proves

cp(z0) > sup {%(zo) . f € O(Q, D(0, 1))} . (2.10)

The reverse inequality is trivial, which establishes the claim. Suppose that cg(z9) = 0. If f €

O(£, D(0,1)) is non-constant, then in a neighborhood of zj, there exists & > 1 so that

f(2) = flz0) + a(z — 20)" + O((z — 20)*™), 2= 20, ar#0.
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The function g(z) = ¢(f(2) — f(20))/(z — 20)*~* for sufficiently small ¢ > 0 is in the defining set

of cp(zp) and ¢'(zp) > 0, which is a contradiction. Thus, c¢g = 0.

As an example we calculate the analytic capacity for certain domains.

Proposition 2.24. Let h: X — h(X) be biholomorphic. Then

Oh

¢p,x(20) = cn(x)(h(20)) |52 (20)

0z

]

Proof. If f is in the defining set of cpp(x)(h(20)), then f o h is in the defining set of cp x(20).

Since

df oh 0 Ooh

2222 )| = |5 | G| < cmxCen

oh
cmacn (o) |5 o)| < cmslan
Similarly,
oh~!
csx(20) |5 (h(20))| < epaco) (h(20))-

Thus,

Oh

B n(x)(M(20)) @(Z'O) > cp.x(20)-

The result follows by considering (2.11) and (2.12).

Lemma 2.25. Let QQ C D(zo,7) be relatively closed such that

QN D(z,8) € Ng, s<r.

Then
= 1
CB,D(zo,r)\Q(ZO) = m T

Additionally, let P C D(0,1) be a relatively closed polar set and h : D(0,1)\ P — X
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morphic. Then

Cg.x =CBX- (214)

Proof. By the Schwarz lemma, if f is in the defining set of ¢z p(o,1)(0), then | f'(0)| < 1 and equality
holds for f(z) = €z. Thus, cp p,1)(0) = 1. By Proposition 2.24, since ¢, = (a — 2)/(1 — az)

where |a| < 1 is an automorphism of D(0, 1),

1

= —7. 2.15

¢B,0(0,1) (W) = ¢B,0(0,1)(0)|d,, (w)]

By Proposition 2.24,
1

Since Np sets are removable for bounded analytic functions, plugging in w = 2, proves (2.13).

Since P € N3,
1
e — 2.16
CB,D(O,l)\P(w) 1— |w|27 ( )
If h:D(0,1)\ P — X is biholomorphic, then by (2.16) and Proposition 2.24,
) = = 2| se b
c 2) = —|=—(z z :
Bx 1— |z |0z ’ ’
Comparing this formula with (2.8) proves (2.14). O

In general, cg < cp.

Lemma 2.26. For an open Riemann surface cg < cg.

Proof. First assume X is hyperbolic. Then cg > 0 by Remark 2.15. Without loss of generality,

we may assume cg # 0. It suffices to show that if f is in the defining set of the analytic capacity,
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(2.3), and %(zo) # 0, then

In g(zo) < lim G(z,20) —In|z — 2. (2.17)
aZ Z—20
Notice that
— 00 # In ﬁ(ZO) = In |lim S = lim In|f(2)| —In|z — 2. (2.18)
0z z—z0 Z — 2 Z—20

Since In |f| is in the defining set of the Green’s function (2.1), (2.17) follows from (2.18).

Suppose now that X is parabolic. If f is a bounded, nonconstant holomorphic function, then
|f| —supx | f], is a negative, non-constant subharmonic function. Since X is parabolic, such an f

cannot exist. Thus, ¢g = 0, which completes the proof of the lemma. O

Definition 2.27. A function fo: X — D(0,1) is said to be an extremal function for the defining

set of the analytic capacity or an extremal function of cg(zo) if

o) =0, [0

= cp(20).

A normal family argument shows that extremal functions for cp exist.

Proposition 2.28. Let X be an open Riemann surface and zg € X. There exists an extremal

function fy for cg(2o).

Proof. If cg(z9) = 0, then any constant function is an extremal function. Thus, we may assume
that 0 < ¢p(20) < cs(z0). Since cg(zp) > 0, X is hyperbolic. By the uniformization theorem, there
exists a holomorphic covering map p : D(0,1) — X. Let {f,} be in the defining set of cp(2)
so that {%iz”(zo)} is monotone increasing to cg(zp). By Montel’s theorem, there is a holomorphic
function g : D(0,1) — D(0,1) and a sequence {n,,}>°_, so that f,, o p converges to g uniformly

on compact subsets of D(0,1). Let z € X and consider a neighborhood U, of  and a local inverse
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p1 of p such that p; is biholomorphic on a neighborhood of U, onto its image in D(0,1).

Since {fn,, o p} converges uniformly on py(U,) to g, {f., } converges uniformly on U, to g o p;.
As x € X was arbitrary, it follows that {f,, } converges uniformly on compact subsets of X. Let
fo(2) equal g evaluated at any element of p~'(z). Since z € X was arbitrary and the choice of
the local inverse of p; of p was arbitrary, it follows that f; is a well-defined, holomorphic function
on X. Thus, f,, converges uniformly on compact sets of X to fy. By the uniform convergence,
G2 (20)| = ca(20). o
If fo is an extremal function, then so is e f, for 6 € [0, 2n]. Havinson [32] described the images

of the extremal functions in D(0, 1).

Proposition 2.29. [32, Theorem 28] Let fy be an extremal function of the analytic capacity of Q
such that cg £ 0. Then fo(Q2) = D(0,1) \ P where P satisfies that

PND(,r)eNg, 0<r<l.

The analytic capacity is often defined in the literature, equivalently, in terms of compact sets.

Definition 2.30. [29] The analytic capacity v(E) of a compact subset E C C is

Y(E) = sup{|g'(c0)| : g € O(Cxc \ E), g(o0) = 0,]g(2) < 1}

where

g'(00) = lim z(g(2) — g(o0)).

Z—00

A compact set E C C satisfies v(E£) = 0 if and only if every bounded holomorphic function on

C\ FE is constant. The two definitions of analytic capacity given are related as follows.

Definition 2.31. Let f.,(z) = —. For ease of notation, when 2o = 0, let f = f.,.

z—2z0 "
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Lemma 2.32. For any domain Q C C, cp(20) = 7(Coo \ f2,(2)).

Proof. Since f(Q — {20}) = f.,(2), by Proposition 2.24, cpa(20) = cpa-{}(0), it suffices to
prove the lemma when 2y = 0 € ). Notice that for g holomorphic in a neighborhood of co with

g(o0) =0,

(90 f)(o0) = lim w((go f)(w)— (g0 f)(0))

oy 200G = 9(0)

w—0 w — 0
L gw) = g(0)
w—0 w—0

= ¢'(0).

Let E = Cu \ £(€). Then

cp(0) = sup{|g'(0)] : g € O(),9(0) =0, |g(2)| < 1}
= sup{|(go f)(c0)| : go f € O(f()), (g0 f)(o0) =0,]go f| <1}
< 7(E)
= sup{|g'(c0)| : g € O(Cs \ E), g(o0) =0, |g| <1}
= sup{[(go f)'(0)| : go f € O(Q),(g0 f)(0) =0,[go f| <1}

S CB<O>.

The analytic capacity is difficult to compute in general for most domains. It does however satisfy

the following lower bound due to Ahlfors and Beurling, see [1], [29, Theorem 4.6].

Theorem 2.33 (Ahlfors-Beurling Inequality). For any compact set E C C,




2.5 Rigidity theorem of the relation cp = cp

In this section, we prove that if X is an open Riemann surface, then cp(zy) = cs(zp) for some
zo € X if and only if X is biholomorphic to the unit disk less a relatively closed polar set, or X

is parabolic. Towards this end, we establish first a rigidity theorem for the Green’s function.

Theorem 2.34. On an open, hyperbolic Riemann surface X, the Green’s function with a pole
20 € X equals
G2, 20) = log | (=) (2.19)

for some holomorphic function f on X if and only if f is a biholomorphism from X to a disk

possibly less a relatively closed polar subset.

Proof of Theorem 2.34. Since Gx(z,2y) < 0, f(X) C D(0,1). Moreover, f(z) = 0. The
image f(X) admits a Green’s function because Jf(X) is not polar. By Lemma 2.12 and the

monotonicity property of the Green’s function, Proposition 2.5(6),

log |f(2)| = Gx(2,20) = Gpx)(f(2),0) = Gy (f(2),0) = log | f(2)].

By Lemma 2.12, f is injective and G(x)(¢,0) = log|¢| for ¢ € f(X). Let n € 0f(X) N D(0,1)
and ¢, — n with ¢, € f(X). Since

Gx)(n,0) = log |n| = T}g{)lo log [Cn| = nllj{)lo G p(x)(¢n, 0) <0,

n is an irregular boundary point. By Kellogg’s Theorem, Theorem 2.10, P = 9f(X) N D(0,1)

is a polar set relatively closed in D(0,1). Suppose zo € D(0,1) \ f(X). Then for some ¢ > 0,

f(X) C D(0,1)\ D(29,€). Let k be the harmonic function defined on the latter set with Dirichlet
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boundary data
0, 2z € 0D(0,1)
—log(|z0| +€), z€ dD(z,¢).

Since Gy(x)(2,0) < Gfx)(2,0) + k(z) and Gfx)(z,0) + k(2) is in the defining set of the Green’s

function for the domain f(X), (2.1), we have arrived at a contradiction. Thus, D(0,1) = f(X)UP.

The converse direction follows by the biholomorphic transformation law of the Green’s function,
Proposition 2.5(7) and that G'p(o,1)\p(2,0) = In |z| for any relatively closed polar set P. The proof

of the theorem is complete.

Guan and Zhou prove in Lemma 4.25 of [31]

Lemma 2.35. If there is a holomorphic function g on §, which satisfies |g(z)| = exp G(z, 2p),

then we have c3(z0) = c3(20).

In the conclusion of their proof of the Suita conjecture, [31, Theorem 3.1, page 1196], they show
that if 7K (2o, 20) = c%(zo), then the hypotheses of Lemma 2.35 are satisfied. Consequently, by
Suita’s Theorem, Theorem 2.1, €2 is biholomorphic to a disk less a relatively closed polar set.
The main result of this subsection improves this line of argument. We show that the hypothesis
cs(20) = cp(20) is enough to conclude that €2 is biholomorphic to a disk less a relatively closed

polar set.

Theorem 2.36. For an open Riemann surface X, cz(20) = cp(20) for some zy € X if and only if

either

1. X is parabolic;

2. X 1s biholomorphic to the unit disk possibly less a relatively closed polar subset.
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Moreover, in case 2, the set of bitholomorphisms equals the set of extremal functions of the analytic

capacity, cg(-).

Proof. c3(20) = 0 if and only if X is parabolic, and by Lemma 2.26, c¢g < c¢z. So we may assume
cg > 0. If X is biholomorphic to the unit disk less a relatively closed polar set, then by Lemma
2.25, cg = cg. It remains to consider the case where c3(29) = ¢p(20) > 0 and show that X is

biholomorphic to a disk less a relatively closed polar set.

Let u(z) :=log(|fo(z)]) for z € X, where f; is an extremal function of the analytic capacity. Then
u € SH(X) and

oo

. (z0)| =Incp(zg) > —0. (2.20)

lim log | fo(2)| —In|z — 29| = In
Z—20
By the definition of the Green’s function, u(z) — G(z, z9) < 0. Furthermore,

lim u(z) — G(z,20) = lim In(|fo(2)]) —In|z — 20| — (G4 (2) — In|z — z|)

= Incp(zp) —Ines(2o)

= 0.

By the maximum principle,

G(z,20) = In|fo(2)]-

By Theorem 2.34, fy is a biholomorphism to the unit disk less a relatively closed polar set P. By
Lemma 2.25,

cg(z) =cp(z), ze€X.

Repeating the argument with a fixed z € X in place of zy, any extremal function for cp(z) is a

biholomorphism to the unit disk less a relatively closed polar set.
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If f is any biholomorphism from X to the unit disk less a relatively closed polar set, then for
20 = f7H0), G(z,20) = log|f(2)]. For any h € O(X, D(0,1)) with h(z) = 0, log|h| € SH~(X).
By the definition of the Green’s function, log|h| < G(z, z9) = log | f|. Thus, |h'(20)|] < |f'(20)|. By

the definition of the analytic capacity (2.3), |f'(z0)] = cB(20).

2.6 Equality conditions for & < ¢h < ¢

v

In this subsection, we restrict our attention from Riemann surfaces X to domains 2 C C. With
this restriction we will be able to examine the relationship between the domain functions cg, cp

and the volume of the domain v(£2).

We establish ¢% > ﬁ, including for the case where v(§2) = co. Consequently, we will have proved

K > cé > > v(g) (2.5 revisited)
We will then establish the equality cases for the inequalities c% > v&) and C2B > U(’;Z).

Lemma 2.37. Let Q C C be a domain with zp € Q and v(2) < co. Then

T _0(Cx\ f5())
@ < . (2.21)

and equality holds if and only if Q2 is a disk centered at zy less a relatively closed set of measure 0.

Proof. 1t M C C is a set with v(M) = 0, then v(f,,(M)) = 0. With this fact it is straightforward
to verify that equality holds for a disk less a relatively closed set of measure 0. Since v(€)) =

v(Q —{z}) and f.,(Q) = f(Q — {z0}), without loss of generality we may suppose zp = 0 € 2.
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Since f is an automorphism of C,

f(Q)I_J((COO\f(Q)):COO:QU(COO\Q),

where LI denotes the disjoint union. Hence

Coo \ F() = f(Csc \ ).

By (2.22), (2.21) is equivalent to

V(f(Coo \ 2))0(Q) > 7.

Let D = D(0,a) denote the disk centered at 0 of radius a where a is chosen so that v(D)

Since

©* = v(D)v(f(Cx \ D)),
(2.23) is equivalent to
v(f(Cox \ Q) 2 v(f(Cx \ D)).
Let
S1=(Co\QND, Sy=(Csx\D)NAQ.

Since

Cao \2=C\(QUD)U(Cx \ Q)N D

and f is an automorphism of C,,

v(f(Coo \ ) = v(f((Cso \ (U D)))) + v(f(51))-
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Similarly,
V(f(C \ D)) = v(f((Coc \ (DUR)))) + 0v(f(52))-

Thus, (2.25) is equivalent to
V(F(S1) = v(F(S2)). (2.26)

For all z € Sy, |z| < a and for all z € Sy, |z| > a. Hence

Notice also that

v(S1) =v(D\ Q) =v(2\ D) =v(S5).

Thus, (2.26) is equivalent to

W(f(S1) = /f e

= v(f(52))- (2.27)

This completes the proof of the inequality part. For the equality part, first replace the inequalities
in (2.23)-(2.26) with equalities. By (2.26) and (2.27),

/ L () — xs (2))dulz) = 0.
C |Z’

Since v(Sy) = v(952),
/(C(st(z) — X5 (2))dv(z) = 0.
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Thus, for all o € C,

/@ @ T a)(xs (=) — vs (2))du(z) = 0. (2.28)

Without loss of generality, there exists r so that
S1 € D(0,a) \ D(0,7), Sy C{z€C:|z| >a}.

With this r,

€S = L < L < L
< 1 al \z|4 ra
1 1
€S =>— < —.
o 2 [t = o
Let « = —a~*. Then
1
(W + Oé)XSQ (Z) S 0 (2.29)
1
(W +a)(=xs,(2) <0 (2.30)

It follows from (2.28)-(2.39) with this « that v(S;) = v(S2) = 0. Furthermore, since 2 is open,

So=Q\ D =1. Thus, Q = D\ S;. Notice S; = D\ Q is closed in D.

O
Theorem 2.38. Let Q2 C C, be a domain. Then
T
cp(z) > ()’ 2z €Q, (2.31)

where we use the convention that if v(2) = oo, then v(Q)~' = 0. Moreover,

1. If v(2) = oo, then equality holds at some zo if and only if Q@ = Co \ P where P € Ng. If
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additionally c3(z) = oy then equality holds if and only if @ = Cy \ P where P is a closed

polar set.

2. If v() < oo, then equality holds at some zy if and only if @ = D <zo, \/U(Q)T{'_1> \ P where
P satisfies

PN D(z,s) € Ng, s<r.

If additionally c%(zo) = ﬁ, then equality holds if and only if Q = D (zo, U(Q)W_1> \ P

where P is a relatively closed polar set.

Proof. 1f v(2) = oo, then the inequality is trivial. By Proposition 2.23 and Definition 2.20,
cp(z0) = 0 if and only if Q = C \ P where P € N. By Remark 2.15, ¢g(z9) = 0 if and only if

2 =Cy \ P where P is polar. We now assume v(£2) < oo.

By Lemma 2.32 and the Ahlfors-Beurling Inequality, Theorem 2.33,

L UC\ F(@) | 7

(%) - v(Q)’

which establishes (2.31).

If equality holds at some zg, then by Lemma 2.37, Q = D(z,r) \ P where r = \/@ and P is a

relatively closed set of measure 0.

The function h(z) = r~1(z—z) is in the defining set of the analytic capacity and h/(zy) = cp(z2) =
r~!. By Proposition 2.29, h(Q2) = D(0,1) \ Q where

Q=h(P), QNDO,r)eNg, 0<r<l.

If additionally ¢3(z) = >{cy» then by Theorem 2.36, / is a biholomorphism from € to D(0,1) \ @

where () is a relatively closed polar set.
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The converse directions of case 2 follow from Lemma 2.25 and that if P is relatively closed and
polar, then

PN D(z,s) € Ng, s<r.
[

Remark 2.39. If ¢*(z)) > c¢%(2) = o then P, in the preceeding theorem, may not be polar as

the next example shows.

Example 2.40. Let K be the compact four-corner Cantor set defined in [30]. As shown therein,
K € Np, but is not polar. Let Q = D(z,7) \ K where zq and r are chosen such that zo ¢ K C

D(zg,7). Since K € Np, all bounded holomorphic functions on S extend to holomorphic functions

on D(zy,r). Thus,

cp:(20) = CBiD (o) (20) = \/’U(D(ZO,T)) - \/v(g)’

where the last equality used that sets of class Np have two-dimensional Lebesgue measure 0, cf.

[53].

Corollary 2.41. Let Q) C C be a domain. Then,

K > c% > % > 0(7;2) (2.5 revisited)
Proof. This follows from Theorems 2.2, Lemma 2.26 and Theorem 2.38. O]
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2.7 Rigidity theorem of the Bergman kernel

In this section, we complete describing the equality conditions of the quantities

2 2
K > c5>cp >

v(€)’
by characterizing the domains Q C C which satisfy K (z) = v(2)™! for some z € Q.

Theorem 2.42. Let 2 C C be a domain. Suppose there exists a zg € €2 such that

K(z) = (2.32)

where we use the convention v(Q)~' =0 if v(Q) = oo.

(i) If v(2) = oo, then Q = C\ P where P is a possibly empty, closed polar set.

(i1) If v(2) < oo, then Q = D(zy,r) \ P where P is a possibly empty, polar set closed in the

relative topology of D(zo,r) with r* = v(Q)7w 1.

We give several proofs of Theorem 2.42 This first one is based most closely on the preceeding

subsections and is the simplest.

Proof of Theorem 2.42. If 1K (z) = mv(Q)~", then by Corollary 2.41, c3(z) = mv(Q)~". The

proof now follows from Theorem 2.38. O

The preceeding proof used the inequality part of the Suita conjecture when we cited Corollary
2.41. In a sense, this is undesirable as Guan and Zhou's (respectively Blocki’s [11]) solution [31]
for surfaces (respectively bounded domains) used methods of several complex variables, whereas

Theorem 2.42 is a statement about domains in one-dimensional complex space.
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The case when v(Q2) = oo for Theorem 2.42 can be proved without the logarithmic or ana-
lytic capacity and essentially follows from an argument of Wiegerinck [56], who showed that

dim(A?(2)) = 0 or oo for all domains 2 C C.

Lemma 2.43. Suppose Q2 C C is a domain such that {z : |z| > R} C Q for some R > 0. If
h € A%(Q) and there exists wqy € Q with h(wq) # 0, then

k(z) =

h(z) = h(wi)  h(w) (h(z) - h(w2)>, w, € Q,

2z —w; h(ws) Z — We

is also in A%(R2).

Proof. Without loss of generality suppose |w;| < R for i = 1,2. When |z| > R,

1 1 w1

Z— W z £ AL

k(z) = — + Fi(2)h(z) — Bi1F1(z) — O‘@ — aFy(2)h(2) + afaFa(2), |2| > R,

which is a sum of functions in A?({z : |z| > R}). The singularities at z = w;, wy are removable

and k € A%2(2N D(0, R)). Thus, the proof of the lemma is complete. ]

Proof of v(2) = oo case of Theorem 2.42. After a translation 0 € 2, and after applying an auto-

morphism L of C,, which fixes 0 and sends some point z; € Q) to oo,
K@\ (oo} (0,0)|L(0)]* = Kq\(211(0,0) = Kq(0,0) = 0.

It suffices to show that L(Q2) \ {cc} = C\ P where P is a compact polar subset of C. For ease
of notation, denote the domain L(€) by Q. Suppose towards a contradiction that A?*(Q2) # {0}.

Then there is a function h € A*(Q) and w; # wy € Q so that h(w;), h(we) # 0. Necessarily,
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wi, we # 0 because

0= K(0,0) = sup{|g(0)|* : [lgll2 < 1,9 € A*()}. (2.33)

Consider

h(z) = h(wy) — h(w) (h(Z) - h(w2)>.

2 —w h(ws) Z— ws

k(z) =

By Lemma 2.43, k € A%*(Q). However, k(0) # 0, which contradicts (2.33). Thus, A%(Q) = {0}.
Carleson proved that this is equivalent to Q2 = C\ P where P is a compact polar set. See [14,
VI.Theorem 1] or [18]. O

When v(2) < oo, Theorem 2.42 may be proved without using the logarithmic capacity (and the

inequality part of the Suita conjecture) as follows.
Proof of v(2) < oo case of Theorem 2.42. By Theorems 2.1 and 2.33 and Lemmas 2.32 and 2.37,

K (20) > ch(20) = 7 (Coo \ () =

L)) B S

By Theorem 2.1, Q2 is biholomorphic to a disk less a relatively closed polar set. Let F': Q@ — D(0, 1)
be biholomorphic with F’(z5) > 0 and F(z) = 0. By the transformation law of the Bergman
kernel,

F,(Z)F,(Zo)KD(()’l)(F(Z),0) = KQ(Z,Z()>. (235)

By Lemma 1.2, since Ko (z,z0) = v(Q)7!, Kq(+, 29) is a constant function. Since Kp1(-,0) is

also constant, so is F'(-). Thus, F' is affine and (2 is a disk less a closed polar set. O

As a corollary, the previous proof improves the lower bound K(z) > v(Q2)~' for the Bergman

kernel.
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Corollary 2.44. Let f.,(2) = = and Q C C be a domain with v()) < co. Then

Z—20

and the second inequality is strict if and only if Q) does not equal a disk less a relatively closed set

of measure 0.

Proof. As with (2.34), this follows from Theorems 2.1 and 2.33 and Lemmas 2.32 and 2.37.

We may also prove Theorem 2.42 without using the analytic capacity if we use the equality part

of the Suita Conjecture.

Proof of Theorem 2.42. First suppose, v(§2) = co. Then cz(29) = 0. By Remark 2.15, Q = C\ P

where P is a polar set. P is closed because it is the complement in C of an open set.

Now suppose v(£2) < co. Since polar sets have two-dimensional Lebesgue measure 0, by Theorem
2.11, Q admits a Green’s function. After a translation, zp = 0 and Kgq(-,0) = v(Q)~!. Let

Q, ={2€Q:G(%0) <7} Let A =1Incs(z) and

Then for 7 < 0 sufficiently negative,

D(0,79) € Q. C D(0,1)

(cf. [9, 12].) Hence,

—2¢e ,2X(0) 27 2¢ ,2A(0)




Letting ¢ — 0T,

~ , as T — —o0.

By Theorem 3 of [13], % is a decreasing function on (—oo,0]; hence,

By the equality part of the Suita Conjecture, there exists a biholomorphic map f : D(0,1)\ P — Q
where P is a relatively closed polar set. After a Mobius transformation of the unit disk, we may
assume 0 ¢ P, f(0) = 0 and f(0) > 0. Since P is removable for functions in A%(D(0,1) \ P),
Kpoinp(-,-) = Kpoa)(+; ) when both sides are well-defined. By the transformation law of the
Bergman kernel, f is linear. Hence Q = D(0, f(0)) \ f(P) and f(P) is a relatively closed polar

set. O

2.7.1 Minimal domains

A bounded domain 2 C C" with 2z, € € is called a minimal domain with center zj if for every

biholomorphism f :  — Q" with det(Jf(z0)) = 1,

w(Q) < o(Q).

Here Jf denotes the Jacobian matrix of f. It is known that equivalently a domain (2 is minimal

with center zp if and only if

For more information about minimal domains, see [39, 44, 57]. Theorem 2.42 classifies the minimal

domains of C. More precisely, we have the following corollary.
Corollary 2.45. Let Q C C be a domain. Suppose there exists a zy € Q such that K(-,z) = C.
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Then C =v(Q)~! and

1. If C =0, then Q= C\ P where P is a closed polar set.

2. If C >0, then Q = D(zp,r) \ P where P is a possibly empty, polar set closed in the relative

topology of D(zg,r) with r = \/v(Q)r~1.

Consequently, all minimal domains in C with center zy are disks centered at zy minus closed polar

sets.

Proof. Since 1 = [, K (w, z)dv(w), it follows that C' = v(Q)~" and K (2, 20) = v(£2)~'. The result

now follows from Theorem 2.42. OJ

2.7.2 A proof of Theorem 2.42 for smoothly bounded domains

When €2 is a bounded domain with C'* boundary, we provide an additional proof of Theorem

2.42, which does not use the logarithmic or analytic capacity.

Let 2 be a bounded domain with C'*°-smooth boundary and denote its boundary by 0f2. Then
Q) is n-connected with n < oo and the boundary consists of n simple closed curves parametrized
by C* functions z; : [0,1] — C. Without loss of generality, let z, parametrize the boundary
component which bounds the unbounded connected component of the complement and let 0€;

denote the boundary component parametrized by z;, j = 1,...,n. Let T'(z) denote the unit

tangent vector to the boundary and ds denote the arc-length measure of the boundary. Define
L*(09Q) = {f : Q2 — C : || fll12(00) < oo} where the norm || - [|12(90) is induced by the inner

product
(f,9)="[ Ffgds.
o0

Let A~(99) denote the boundary values of functions in O(2) N C>=(2). The Hardy space of 9
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denoted H?(99) is the L*(09) closure of A®(9Q). If P : L*(0Q) — H?(0Q) is the orthogonal

projection, then the Szegd kernel for Q, S(z,a), is defined by

PC)(:) = S(e.a), azeQ, Cofz) = L)

2wz — a

[5, Section 7]. It can be shown that S(z,a) = S(a, z), and from the proof of the Ahlfor’s Mapping
Theorem, for each a, S(-,a) has n — 1 zeros counting multiplicity [5, Theorem 13.1]. We note that
the proof of the Ahlfor’s Mapping Theorem just cited requires C*°-boundary regularity. Since we
will need the fact about the n — 1 zeros of S(-,a), we have imposed a C* boundary regularity

assumption on 2 in this section.

Let w; be the (unique) solution to the Dirichlet boundary-value problem

(

Au(z) =0 z€

Juz) =1  z€9Q;

uz) =0 z€0y, k#j

and define F; : Q@ — C by Fj(z) = 20w;/0z. Then the Bergman kernel and Szegé kernel are

related by

K(z,a) = 475(z,a)* + ni N Ei(2) (2.36)

where \; are constants in z and depend on a [5, Theorem 23.2]. Since w; € C*°(£2) is harmonic,

F; € O(Q)NC>=(Q2) C A%(Q). We now prove Theorem 2.42 when (Q is bounded with C* boundary.

Proof. After a translation we may assume that zy = 0. Let {v(Q2)~"?} U {9152, be a complete

orthonormal basis for A2(£2). Then

1 [e.9]
oy = K00 = T+ Z 6;(0)%;(0),
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which implies that ¢;(0) = 0, for all j. It follows that K(0,a) = v(Q2)~!, and for any f € A%*(Q)

by the reproducing property (1.1)

£(0) = ﬁ / F(w)do(w).

In particular for Fj,j =1,...,n—1,

1 .
Fi(0) = = Q>/Q2a%du‘)Adw

Hence setting z = 0 in (2.36),

1
v(Q)

= K(0,a) = 475%(0, a)

Since S(0, ) = S(+,0) has n — 1 zeros counting multiplicity, n = 1; that is, Q is simply-connected.
Let F' : D(0,1) — Q be the inverse of the Riemann map with F(0) = 0, F’(0) > 0. By the

transformation law of the Bergman kernel,

% = Kpo1)(2,0) = F'(2)Ko(F(2),0)F/(0) = — 2/ (2.37)

<
~—~
N
~—
<
—~
=)
~—

So F'is linear; hence Q2 = D(0, F'(0)).
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2.8 Rigidity theorem of the Bergman kernel in C”

When n > 1, a much wider class of domains have Bergman kernels which satisfy K (zy) = v(Q2)™".
A domain (Q is said to be circular containing its center zy if zo € Q and {20} +€?(Q — {20}) C Q.

The Bergman kernel of such a domain satisfies K (z9) = v(Q)~!, see [4].

Thus, to generalize Theorem 2.42 to C™, n > 1, D(zg, r) cannot simply be replaced by a translation
and rescaling of B”. However, the unit ball, in addition to being circular containing its center,
is complete Reinhardt, strongly convex with algebraic boundary. So, we also consider whether
Theorem 2.42 generalizes to C™ if ) is required to be complete Reinhardt, strongly convex with

algebraic boundary. The answer is no as the next example shows.

Definition 2.46. A domain Q in C" is said to be complete Reinhardt if for all z = (21, ..., 2,) € Q

()\121, ...,)\nzn) € Q, ‘)\1’ S 1.

Complete Reinhardt domains are circular containing their center 0; thus, they too satisfy K(0) =

v(Q)~L

Example 2.47. Let Q = {z € C?: |1]|* + |21* + | 22> < 1} be a domain with algebraic boundary.

Then ) is complete Reinhardt, strongly convex and not biholomorphic to B2.

Proof of Example 2.47. 1t is easy to see that €2 is complete Reinhardt with algebraic boundary.
To verify that © is strongly convex, one lets p(z) = |z1]* + |21]* + |22/*> — 1 and verifies that the

real-Hessian of H(p)(z) satisfies
wH(p)(z0)w >0, 2z €09, weR {0}

Suppose towards a contradiction that there exists an F : B> — Q which is biholomorphic. Since

the holomorphic automorphism group of B? is transitive, we may suppose that 0 — 0. By Henri
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Cartan’s theorem, [51, Theorem 2.1.3.], F is linear; that is F(z) = (ai121 + ag29,a321 + as22).
Consequently, F' : 0B? — 0. After composing with a holomorphic rotation of B2, we may also
suppose F((0,1)) = (0,1). Then, as = 0,a4 = 1. Since for all 6 € [0, 27],

1 ei@

) =

a; as
o> F , ¢ — —
VoAV AW

Sl

we see that

lar[*  ai]? asg)? oy L
R ¢ — =1
A p ty o T Relas ) 4o =1,

which implies that a3 = 0. Thus,

lag |* + 2]a1)? = 2. (2.38)
Since (a1,0) = F((1,0)) € 09,

|CL1|4 + ’CL1’2 =1. (239)
Equations (2.38) and (2.39) do not have a simultaneous solution. Thus, F' does not exist. O

2.8.1 Rigidity theorem for the Bergman kernel of ellipsoids

In general, it is difficult to calculate the Bergman kernel for a domain 2 C C". It is known that
K(0) = v(Q)~! for any circular domain containing its center 0. We ask if there are any other
domains which might satisfy that equality. In this subsection, we investigate whether that equality

holds for the real ellipsoids

{(131 +ixo, ..., Ton_1 —|—'l.flf2n) e C": Zajxgj,1+bjx§j < 1}, a; > bj > O, j = 1, cea,n. (240)
j=1
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After a complex linear change of variables, the ellipsoids in (2.40) can be written in its Webster

normal form [34, 55]

aj—bj
CLj‘i‘bj

Ex={2€C":p(z) =z’ + ) AjRe(z}) <1}, 0<A;= <1, j=1,....n,
j=1

where A = (Ay,..., A,). The Bergman kernels of the ellipsoids were studied by Hirachi, [34, 55].

The ellipsoids have also been studied in pseudo-Hermitian CR geometry, see [41, 43]. The final

result of the paper characterizes the ellipsoids which satisfy (2.32).

Theorem 2.48. Let K (-, -) denote the Bergman kernel of the normalized real ellipsoid E4. Then
K4(0,0) = v(EA)~' if and only if A= (0,...,0).

Proof of Theorem 2.48. If A = (0,...,0), then E, is the unit ball and (2.32) holds. The other
direction will be proved by contradiction. Suppose without loss of generality that A, # 0. If
K4(0,0) = v(E4)™!, then by Lemma 1.2, K4(0,2) = K4(0,0). By the reproducing property of

the Bergman kernel,

0= ! /Eszdv(z) (2.41)

Notice that

Re(/ 2dv(z)) = / w3,y dv(wy, ..., Tay) — / w3, dv(xy,. .., 209,) = 1 —II.
Ea Ea Ea
Let X = (X3,..., Xs,) where

Xoic1 =TV 1+ A, Xog=x9/1—-A;, 1=1,...,n,

and a = (], (1 + A;)(1 — A;))"z. Using these coordinates,

46



= — au = -
(x2axz,<1y (1+4) (1+A,)

Similarly, I1 = my. Notice I — I1 # 0, which implies that (2.41) does not hold. Thus,
KA(0,0) # 0(Ba)
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Chapter 3

The O-problem on convex domains

3.1 Introduction

In several complex variables, the fundamental differential operator is the d-operator defined on
functions and differential forms. Specifically, if u is a function and f = 7, f;dz; is a (0, 1)-form,

then

= - ou _ —= u @f] 8fz _ _

Ou = Z 6_%dzj7 of = Z 95, 5, dz; N dz;. (3.1)
j=1 1<i<j<n

We say that a differential-form f = Z;."Zl f;dz; is in Lz(’o’l)(Q) if f; € LP(Q2) for each j. When not

all of the f;’s are differentiable, we interpret Of in (3.1) in terms of distributional derivatives. A

fundamental question in several complex variables in its simplest form is the O-problem.
O-problem (simple version). Given a domain Q, p € [1,00], and f € Lf’m)(Q) so that Of = 0,

does there exist a constant C' > 0 depending only on Q2 and u € LP(Q)) so that

ou=f, l|lullre) < C [l

2
(Oﬁl)(Q) :
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The O-problem has been an active area of research for over half a century. Most famously,
Hormander [35] solved the d-problem in the affirmative when p = 2 for pseudoconvex domains. In
[33], Henkin and Leiterer asked whether the d-problem can be solved affirmatively when p = oo
and €2 is a Cartan classical bounded symmetric domain of types I-IV. Motivated by the problems

raised by Henkin and Leiterer [33], in this chapter, we give the following O-estimates.

Proposition 3.1. Let Q2 be a simple conver domain (see Definition 3.7), g be the Bergman metric
and K the Bergman kernel. Then there exists a constant C such that for any 0-closed (0,1)-form

f on Q with || f||y.00 < 00, if the canonical solution to du = f is in C1(Q), then it satisfies
1
u(a)] < Cllfllgooi(a,a)2,  a €,

or equivalently,

[u(@)] < Cllflgoe [ [ 757 (@),
j=1

where in both cases C' depends only on the domain.

Proposition 3.1, while applicable to a wide class of domains, is not optimal. On a narrower class

of domains, the Cartan classical domains, we give a sharp estimate:

Theorem 3.2. Let Q) be a Cartan classical domain whose Bergman kernel and metric are denoted
by K and g, respectively. Then there is a constant C such that for any O-closed (0,1)-form f with

[ £llg00 < 00, if the L2-minimal solution u to Ou = f is in C*(2), then it satisfies

u(z)] < Ollfllg,oo/QIK(z,w)ldv(w), z €. (3-2)

Remark 3.3. That the above estimate (3.2) is sharp for the unit ball was first proved by B.

Berndtsson in [8].

Remark 3.4. Theorem 3.2 also holds on the strictly convexr domains, see the paper of Dong, L,

and myself [24].
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Remark 3.5. If Ouy = f, then the canonical solution to Ou = f is given by
u = uy — Plusy],
where P is the Bergman projection. Since Pluy|(2) is holomorphic, if us € C*(Q), thenu € C1(Q).

In Section 3.7, we show that Theorem 3.2 is sharp for the Cartan classical domain I71(2) as z — 0%
along a certain direction. I will use Remark 3.5 in that example. This chapter is based on my

joint work with Dong and Li [24].

3.2 Bergman metric and estimates for convex domains

The Bergman space A%(Q) on a domain 2 C C" is the closed holomorphic subspace of L*(€2). The

Bergman projection is the orthogonal projection Py : L?(2) — A%(Q) given by

Polf](z) = / K (2, w) f(w)dvw), (3.3)

where K (z,w) is the Bergman kernel on Q and dv is the Lebesgue R?*" measure. We will write
K (z) to denote the on-diagonal Bergman kernel K(z, z). When € is bounded, the complex Hessian

of log K(z) induces the Bergman metric Bq(z; X) defined by

NI

n . 82
Bo(z; X) = (Z gijij> o gE(z) = 9507, log K(z), forzeQ, X eC"
j

jk=1

The Bergman distance between z,w € (Q is

Ba(z,w) := inf {/01 Ba(v(t);v’(t))dt} ,

where the infimum is taken over all piecewise C'-curves 7 : [0, 1] — € such that y(0) = z,7(1) = w.
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Throughout this chapter,
B.(r) :={2€Q: fa(z,a) <r} (3.4)

will denote the hyperbolic ball in the Bergman metric centered at a € Q of radius r. Addition-
ally, K(z,w), Po and g will always denote the Bergman kernel, Bergman projection on € and the

Bergman metric respectively.

Consider a convex domain €2 that contains no complex lines and a € 2. Choose any a' € 9 such
that 7 (a) := |a—a'| = dist(a, 0Q) and define V; = a+span(a’ —a)*. Let Q; = QNV; and choose

any a? € 0§ such that 75(a) := ||a — a?|| = dist(a,dQ). Let Vo = a + span(a' — a,a® — a)* and

Qs = QN Va. Repeat this process to obtain a, ..., a", w; = HZ;—:ZH, 1 < 5 <n. Define
D(a;w,r) ={2€ C": |(z —a,w;)| <r;,1 <i<n} (3.5)
and
D(a,r)={2€C":|z; —a;] <1y, 1 <i<n}. (3.6)

By [47, Theorem 2], for convex domains that contain no complex lines, the Kobayashi metric and
the Bergman metric are comparable. It follows by [48, Corollary 2] that if  is a convex domain
with no complex lines, then for every € > 0 there exists constants C . and Cy such that for any
a,

D(a;w,Cy7(a)) C By(€) C D(a;w,Cyc7(a)). (3.7)

By [47, Theorem 1] (see also [45]),

(2n)!

n
on

< K@ w7 < (38)
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which implies that

()" < ks < con (F) (39

For positive real-valued functions f and g on €2, we say f = g if there exists a constant C'
Ch<fgi<C

Using this notation, (3.9) may be rewritten as for every ¢ > 0, K(a) ~ v~ '(B,(¢)) where ~ is

independent of the choice of a.

For any open subset A of €2, we define

ng”g,oo,fl = ngu('zNQHLOO(A)' (3.10)

In the proofs below, C' will denote a numerical constant, which may be different at each appearance.

The Cauchy—Pompeiu formula gives the following useful proposition.

Proposition 3.6. Let ) be a bounded conver domain. For any € > 0 sufficiently small, there

exists a constant C' so that for any complex-valued C* function u on €,

lu(a)] < ]i e+ Ol

Proof. After a complex rotation, without loss of generality, using the notation of (3.5), we may

assume the standard basis for C" is (wy)}_;. Let 7;(a) = Ci7;(a) and consider the polydisk

D(a;w,r) as defined above. Define the pseudometrics

Xkl
z

My, (2, X) = Z% My, (2 X) =
k=1
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Notice that these pseudometrics are equivalent because

> 1<keion | Xl X5l /T6(2)75(2)
> ke | Xk2/72(2)
(1/2) 221 e jn | Xu PP /77 + 1G5
> i [ Xk 2/ 72(2)
P (1/2) 3005 s | Xl /78 + 1 X517/ 77
- > e [ Xi?/ 7 (2)
C.

- o Xl /m(2))?

LS S X ()2

1+

< 1+

IN

McNeal in [46, Theorem 2.5] proved that
My, (% X) = Bo(z; X), X eC"

where = is independent of z and X. Therefore,

(9" (2)ij = DIri(2), ..., 7,(2)], z€%,

r'n

2

where the right hand side denotes the diagonal matrix with entries 72(z),...72(2) and ~ is inde-

pendent of z. Consequently, with r = (r1,...,r,) and a = (a4, ..., a,),

]{ f rk||5ku(w1,...,wk_l,-,akﬂ,...,an)||Loo(D(ak,rk))dv(wk_1,...,wl)
D(a1,m1) D(ap—1,mk-1)

- ou
< ]{ ]é sup ril=—m)| | dv(wg_1, ..., wy)
D(a1,m1) D(ak—1,k-1) (WED(CLW’T); ! Ow;
u ou
= sup rilm=—m)|
neD(a;w,r) *; 1 ! 8w]
<0 s Sl (311)
< up Tila)5=— (1) )
neD(a;w,r) =1 ! 810]‘
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Similarly, when k£ = 1,

= = Ju
r1)|01u(-, ag, . .. an)|| Lo (D(ar,m) < C sup ZTj(a)|F<n)|‘ (3.12)
ne€D(a;w,r) j=1 Wj

Thus, (3.11) and (3.12) are less than or equal to

- ou W
o s [SHeZer < 0w | YR

z€D(a;w,r) =1 z€D(a;w,r) ij=1
= CHEUHg,oo,D(a;w,T)

< Clloullyee,puo

By the Cauchy-Pompeiu Theorem,

1 u(wn, ag, ..., ay 1 8u 1
T w1 aq ™ |w1—a1|<s1 W1 Wy aq

dwl/\d?fh
|lwi—a1]|=s1
1 . 1 ou 1

0
= 2— u(al + 81€Z , a2, . )d9 + 2— (9
™ Jo e |w1—a1|<s1 w1 W1 — aq

d’LUl VAN dwl.

Multiplying by s; and integrating with respect to s; from 0 to rq,

2
T 1

1
:—/ u(a; + w, ag, ..., a, / / —_— dw; N dwy N dsy.
27 D(0,r1) 27TZ lwi—a1|<s1 (9w1 w1 — aq

Thus,
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|u(a)l

<

<

IN

IN

<

S1

% lu(a; +w, ag, . ..ay |de—|—— / / -

D(O Tl) 7TT1 w1 a1|<51 awl wl - al

lu(wy, ag, ..., a,)|dv (ay +wy,a")—
‘%l;(a17rl) o U)1‘<81 aU-]].
L Ou .

f [u(wy, ag, ..., an)|dvg, + ——(ay + te",

D(al,m) 8w1

(a1 + te’e
UJ1

2
% lu(wy, ag, . .., an)|dvy, + / / /
D(a1,r1)

2
d)=pt dt A dO A ds,

dw1 VAN dw1 VAN d81

S
2L dw, A diwy A dsy
1

)281 dt A\ df A dSl

f et @z, ., an) dvwy + — / ||—||m<a1,m>x{<a2, oy dmsids,
D(a1,r1) r 0

1

i “u ||
B Lo (D(a1,r1)x{(az2,....an)})

% lu(wy, ag, ..., an)|dvy, +
D(a1,r1)

s n d w o a - R ai,r a a
fl;(ahm) |u(w1,a2, , @ )| Vay + 3T1||81I}1 ||L (D(a1,r1)x{(a2,....an)})

f lu(wy, as, . . ., an)|dve, + C||Ou|lg.00,54(0)-
D(a1,r1)

Repeating similar steps for as, ... a,, one gets that

ju(a)]

<

IN

IN

?{ (w1, ey w0) [t + CllFull g 5000
(a,C1,e7(a))

n

+ E f f CrkHaku(wl,...,wk_l,-,ak+1,...,
D(a1,r1) D(ag—1,m%-1)

k=2

74 (s ey 03 v + OBl
(a,C1,e7(a))

7{ [u(w)|dvy, + C||0u
Ba(€)

9,00,Bq(€)

Therefore the proof is complete.

95

a’n)”L"O(D(ak,rk))dv(wk_l, e

7wl)



3.3 Pointwise estimates on the simple convex domains

McNeal proved an L*-estimate using the Bergman metric for the simple domains, see [46]

Definition 3.7. [46] A domain Q C C" is a simple convex domain if it is a smoothly bounded

convex domain of finite type.

Theorem 3.8. [46, Proposition 3.3] Let Q@ C C" be a simple convexr domain. There exists a
constant C' > 0 such that if f is a O-closed (0, 1)-form on Q, then there exists a solution to
Ou = f which satisfies

[uerase) < [ Ik

Proposition 3.6 and Theorem 3.8 yields a pointwise estimate for the canonical solution to the

O-problem on the simple convex domains.

Proposition 3.1. Let ) be a simple convex domain. Then there exists a constant C' such that
for any d-closed (0,1)-form f on Q with ||f|l;00 < 00, if the canonical solution to Ou = f is in
CL(2), then it satisfies

lu(a)] < Ol fllgecK(a,0)2, a€Q,

or equivalently,

u(a)] < C|flg.00 H%—‘l(a)

where in both cases C depends only on the domain.
Proof. By Theorem 3.8 and Hoélder’s inequality,

/B Tl < il (Bu(©) < Ol (Bu(e)
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By Proposition 3.6 and (3.8),

IN

Cllfllg.oov™ (Ba(€)) + Clli fllg,o0,Ba(0)
Cllfllg.ooE (@, a)? + Cl| fllg.o0,Ba0

Ol fllgno K (a,a)?, (3.13)

[u(a)]

Q

Q

where = is independent of a € €.

Equivalently, by (3.7) and (3.8), (3.13) is equivalent to

[u(a)] < C| fllg.00 HT{l(a)-

In Section 3.6, on a different class of domains, we will derive a better estimate for |u(a)| using
more complicated L?-estimates due to Donnelly and Fefferman. We will additionally show that

these estimates are sharp.

3.4 Bergman kernel on the Cartan classical domains

A domain € is homogeneous if it has a transitive (holomorphic) automorphism group. A domain
Q) is symmetric if for all a € €2, there is an involutive automorphism G such that a is isolated in
the set of fixed points of G. All bounded symmetric domains are convex and homogeneous. E.
Cartan proved that all bounded symmetric domains in C up to biholomorphism are the Cartesian

product(s) of the following four types of Cartan classical domains and two domains of exceptional

types.

Definition 3.9. A Cartan classical domain is a domain of one of the following types:
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(i) I[(m,n) = {2z € Mmn)(C): I, — zz* >0}, m < n;
(i) II(n) :=={z € I(n,n): 2" =z};
(iii) I(n) ={z¢€ I(n,n): 2" =—z};

(iv) IV(n):={z € C": 1-2|z]*+|s(2)|* > 0 and |s(2)| < 1}, where s(z) :=>_."_, 22 and n > 2.

j=1%j

Here z* := Z7 is the conjugate transpose of z.

Hua [37] obtained explicit formulas for the Bergman kernels on the Cartan classical domains. For

a domain €2 of type I, II or 111,

K(z,w) = Cq [det(I — zw*)] ", (3.14)

for some constant p depending on €2, and for a domain of type IV,

K(z,w)=C,[1 -2 Z 2w, + s(z)s(w)] ™. (3.15)

We can give further estimates for the Bergman kernel beyond (3.8) for these types of domains,

(see [38]).
Proposition 3.10. Let €2 be a bounded homogeneous convexr domain. Then,

|K(z,0)| = K(a) ~ m, z € By(e),

where = s independent of the choice of a. If € is furthermore a Cartan classical domain, then

for any € > 0, there is a C, such that for any a € €,

K(z,w)
K(z,a)

max

<C., z€eq.
wEBq(€)

o8



Proof. The first ~ is Theorem A of [38], which only requires the domain to be bounded and

homogeneous. The second equivalence is (3.8).

Let ¢, be an involutive automorphism such that ¢,(a) = 0. By the transformation law of the

Bergman kernel

K(z,w)|
K(z,a)

(3.16)

max
wEBq (€)

detjc¢a<W) ‘ ) (¢a< )7 ¢a(w>>
| detJega(a) Il K(¢a(2),0) I

wGBa

Since biholomorphisms are isometries of the Bergman metric,

BQ(Qba(w)a O) = 69(¢a(w)7 qba(“)) = BQ(wa a) S €.

Since © is bounded and symmetric, K (-, -) is nonzero and continuous on By(e) x Q and K(-,0) =
const. (cf. [6], [38], [42]). This can also be deduced from the explicit formulas (3.14), (3.15).

Hence (3.16) is less than or equal to

detJcpq(w) ‘

C max @

’u)EBa

By the transformation law of the Bergman kernel

detJecpq(w)det Jedg(a) K (pq(w),0)
|det Jega(a)*K (0, 0)

| detJcga(w)
| detJega(a)

Since |K(w,a)| = K(a) for w € B,(€) independent of the choice of a,

— €

‘M
K(a,q)

which completes the proof of the Proposition. n

Lemma 3.11. Let Q be a Cartan classical domain. Let ¢(z) := vlog K(z), v > 0. Then, for v

sufficiently small, ||0¢)> aa¢ < 2
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Proof. Notice ||06||?

w08 = 7|01log K||2. In Theorem 3.16, we compute

[0log K |2 = cT'r(zz").

Thus, the inequality follows by taking + to be sufficiently small. O]

3.5 L’-estimates of solutions to the O-problem

An upper semicontinuous function ¢ defined on a domain  C C" with values in R [ J{—o0} is called
plurisubharmonic if its restriction to every complex line is subharmonic. Let L*(, ¢) denote the

set of measurable functions h satisfying [, |h(z)[*e=

Adv, < co. A C? function ¢ is called strongly
plurisubharmonic if i90¢ is strictly positive definite. Now, let Q be a bounded pseudoconvex
domain and ¢ be strongly plurisubharmonic on €. Then, for any (0,1)-form f = ",_, fu(2)dzy,

define the norm of f induced by i00¢ as

Floms(2) 1= D &M ()F ) (), (3.17)

where (¢/%)7 equals the inverse of the complex Hessian matrix H(¢). Demailly’s reformulation
19, 20] of Hérmander’s theorem [35] says that for any 9-closed (0,1)-form f, the canonical solution
in L2(, @) (i.e. the L*(Q, ¢)-minimal solution) of Ou = f satisfies

/|u|2 ¢dv</\f|aa¢ - (3.18)

From this we see that when the (0,1)-form f is bounded in the Bergman metric g, then the

canonical solution u to Ju = f exists and satisfies the estimate (3.18).

Donnelly and Fefferman [27] (see also the papers by Berndtsson [7, 8]) modified Hormander’s

theorem further as follows.
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Theorem 3.12 (Donnelly-Fefferman type estimate). Let Q be a bounded pseudoconvex domain in
C". Let v and ¢ be plurisubharmonic functions on Q2 such that i09¢ > 0 and |0¢|? 99 = < 1. Then,

the canonical solution uy € L*(Q, v + 5) to Ou = f satisfies

[ tuolevan < [ 1f e (3.19)

Next, we prove the following lemma, using the estimates (3.18) and (3.19).

Lemma 3.13. Let Q be a bounded pseudoconver domain and f be a O-closed (0,1)-form on €.
Let 4 and ¢ be plurisubharmonic on Q and uy and u; be the L*>-minimal solutions to Ou = f in
LA, + %5) and L*(, ¢), respectively. Suppose B is a compact subset of Q and h € L>(Q) with
support in B.

(i) If i00¢ > 0 and ||0¢|? 90 < <ionQ, then

2
1

/\uoydv<2 /]f|83¢ wdv </Bewdv)2 (3.20)

and

1

SQU(B)HhHOO(/Q]f|288¢e wdv) ( maX|K(z,w)|2ew(z)dvz)2. (3.21)

Q weB

‘ /Q uoP(h)dv

(i)

1

/B|u1|dv§2</Q|f|?aa¢e—¢dv>é(/Be¢dv>z

and
1

B) || /|f|283¢e Sdv ( max|K(z,w)|2e¢<z>dvz)?

9] weB
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Proof. Let yp denote the characteristic function on B, and let 8 := x5 By (3.19),

uo(2)]
(/B\uoldv> ‘/uoﬂdv

/]u0|2 Yy - /]5]2 wdv<4/\f|aa¢ ¢dv/ eV dv,
which proves (3.20). Notice that

/uOP /\uo\z Yy - /]P )|*e¥dv
0

S 4/§;|f|238¢6 "Z}d/l) v ( ) ||]’L||§O /leé%qK(z,w)F@w(z)dvz,

which proves (3.21). Part (ii) can be proved similarly using Hérmander’s estimate (3.18) in place

of Donnelly-Fefferman’s estimate (3.19). O

3.6 Pointwise estimates on the Cartan classical domains

Theorem 3.2. Let QQ be a Cartan classical domain. Then, there is a constant C' such that for

any O-closed (0,1)-form f on Q with || f||y.00 < 00, the canonical solution to du = f satisfies

(=) < Cllfllpoe / K (2, 0)|dv, 2 € 9.

Proof. By (3.18), the canonical solution to du = f exists. For an arbitrary a € Q and any
sufficiently small € > 0, let g := XBa(e)%a where xp,() is the characteristic function of the
hyperbolic ball B,(¢). Let ¢ := vlog K(z) be a plurisubharmonic function on €2 for some chosen
7 that satisfies the condition in Lemma 3.11. Define ¢,(z) := —log |K(z,a)|. Since K(-,a) # 0

and continuous on €, 1, is pluriharmonic and bounded on 2. Also define the function

¢0 = ¢a+§>
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and let ug be the L%(£2, ¢9) minimal solution to the equation dv = f. Let m, = min, g |K(2,a)| >

0. By Theorem 3.12,

ma/ |uo|2dv < / lug|?e ™ dv < C’/ ]flze’w“dv §C|]f\|§,oo/e¢“dv< 00,
Q 0 Q Q

where the last inequality follows because K (-,a) is nonzero and continuous on 2. This implies

that ug € L*(Q). So u — ug € A%(Q) and

/a(e) luldv = /QUde = /U(ﬁ—P(ﬁ))dv = /Quf)(ﬁ——P(,B))dv — /QUOBCZU—/QUQP(ﬁ)dU.

Q

By Lemma 3.11 and (3.20) in Lemma 3.13,

2
§4/|f|288¢e_“’“dv- / eV dv

< ClfI? /|K 2 a)|dv. - / K (2, )|~ dv.
B 6)

ug B dv
Q

< CIFI2n / K (2,a)|dv, - v(Ba(e)) - K(a)"!
< CIFI2t®(Ba(e) / K (2, 0)|dv.,

where the last two inequalities hold due to Proposition 3.10, and C, is a constant depending on e.

On the other hand, by (3.21) in Lemma 3.13 and Proposition 3.10 again,

/Q ugP(B)dv

2

5))/ |f‘?35¢€7¢“dv~ max |K(Z,w)!2€w“(z)dvz

Q WEBg(€)

< C¥( /|f|188¢ ) K(z,a)|dv, - /|Kz a)|* tdv,

< CUfIEA (/|Kza|dvz> .
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Combining the above estimates, one can see easily

/ fuldv < Clfllyoe / K (2, 0)|do..

Ba(€)

v(Ba(€))

Fix € > 0. By Proposition 3.6, there exists a constant C' depending only on {2 such that

u(@)] < O gm0 / K (2, a)|dus.

]

Remark 3.14. These estimates also hold on the strictly convex domain. See the paper of Dong,

Li and myself [24].

3.7 Example on 71(2)

Lemma 3.15. Let Q be a Cartan classical domain and u(z) = log K(z). Then Plu](z) is a

constant function on €.
Proof. Notice that for all z € €2,

Plu)(z) = [ w(w)K(z,w)duv,

1 2 0
%/0 u(ew)

1 27 ]
—/ u(w)K (2, e®w)dfduv,,
0

K(z, e%w)dfduv,

2

)

S~— 55— S— S—

u(w)K(z,0)duv,

< | utwydc.

~~
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where the second equality uses that €2 is circular, the third equality follows from the transformation
rule of the Bergman kernel, the fourth equality follows from the mean-value property of (anti-

Yholomorphic functions, and the fifth because (2 is a circular domain containing its center. O
Theorem 3.16. Let 2 be a Cartan classical domain and u(z) = log K(z). Then there exists a

constant ¢ so that [Ou|? = ¢ Tr(zz*).

Proof. By [15, Proposition 2.1] and [37], using the notation of [15], for z € M, »,)(C), if W (z,w) =

I, — zw*, V(2) = W(z, z) and V,,, denotes the (u,v) entry of V| then

VieWBap — S0y z1aZig) = g7 z € I(m,n)

joz,k,B ) = l ] Vaﬂ ]_[
RS R v 2 € 1)

\}lekVaB(l — (Sja)(l — 5kﬁ) z € III(n)

and for a type IV domain,

g () = 1(2) (G50 — 225%k) + 25 — s(2)27) (21 — s(2)%) (3.22)

where z € C" and

s(z) = sz-, and  r(2) =1—2[z)* + |s(2) .
For a domain of types I — I1I, by (3.14) up to a constant C, depending on the type of domain,

log K(z) = C'logdet V(z) = C'logdet W (z, 2).

Hence for those domains, it suffices to show that |0log det 1 (z, 2)2 = Tr(zz").
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In [15], the authors proved, for z € I1(n) and w € I1(n),

Cialzsw) o= LOBITWEW) o 5 1 (2, )

82]‘@

and

a2, w) = —(2 = drp) W (w, 2)w]is

Similar elementary proofs show

Jlogdet W(z,w) [—w W, z,w € I(m,n)

0 jou
“ —2(1 = 0j0)[WW sy z,w € I1I(n).

Thus, for I(m,n),

Z Z gja’mﬁlog det W (z, z) Olog det W(z, 2)

e 0%ja Ozip

= Z Vik(6ap — Zzlazlﬁ vV o (=[2* V] 1)
73,8k, « =1
= > Viell = 27Zapl"V a2V
7,8,k,a
= > VT Viell = 27 Zag TV e
7,8,k,a
= ) [V V]l = 272)2V u
ak
= Yl lal (= 7V

o,k

= Y [Farle™(I = 227)(I = 22%) Vak

o,k

= Z[Z*]ak[ZT]ak

o,k
= Tr(zz").
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For z € I1(n),

Z gj%@@ log det W(z, z) Ologdet W(z, 2

0Zja D215 ) - kX{;‘/jkVaﬁ[Z*V(z)—l]jam

k,a

= S EVE) Vs S ValV(E) 2

a

= ["];5l2;8

Thus, for z € 11(n),

mg0logdet W(z, z) Ologdet W(z, 2 . - « %
3 e PR D) DLoCA D) S fely = Sl gl = T(e2")
3B ka ja kB iB iB

For z € I11(n),

Z Z gja,ﬁa logdet W(z, z) 0logdet W (z, 2)

B ko 8zja 8zk5

- 411 Z VikVap((1 — 0j0) (1 — 0k5) (—2) (1 — dj0)(—2)(1 — 5%)[2*‘/—1]&]'[2*‘/71]&
= D VikVas(1 = 85a)(1 = 54) ="V oy BV g

= Y [V e ViVasl=V
a,B,4,k

= = [#Takl2lo
= —T;"(ZTZ*)

= Tr(zz").

For the IV (n) case, recall that its Bergman kernel is

K(2) 1+]z2@2*—22R2")™"

1
N Vol (ij)
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Notice that

n*log(l+|z® 2" —22®27);log(1+ [ ® 27| =22 ® 27);
n2
= 52252 ® 27 — 27] (22 (2 ® 27) — 224]

r(z)?
4n? o
)2 —al%5(Z) = Z][Zes (2) — ).

Thus,

Let
= 4(_ Z ik — 2z]zk —s(z ) ][Zk_5< )Zk]
j k=
and
_ 8”2 Z (z — V2 (2 — s(2)%)?
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Then S(z) = F(z) + G(z). We calculate F' and G separately:

F(z) = %Z[@k—zzjzk]mzk—s<z>m 220502 + |3(2) Py
k=1

4n2 _
= Z‘ZJP

4n?

— el -

r(z)

4n?

z" — 215(2) + [s(2) P

—2 Z |23 20]” = s(2) 2" — 23 laxl*s(2) + |s(2)*277°)]
7,k=1

[s(2)|” =
=2(]2* = s(2)|2s(2) = s(2)[2s(2) + |s(2)Ps(2)5(2))]

[s(2)” + [5(2)*] I

= ——[l21* = 2ls(2)* + [s(2)]*2* — 2|2 + 4]s(2)’|2]* — 2Is(2) "]

r(z)

2

= 22l 4 5ls(2) el — 2As() + I — 2fs(2)].

r(z)

Now, we calculate G(z):

) \Zz = 2s(2) 5" + s(2)"5"[*
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Thus,

F(z)+G(2)

4n?
@[—2|Z|4 +5]s(2)|*[2> = 2|s(2)]* + | 2> — 2|s(2)|"] + 8n®|s(z)|?
4n? 4n?

@[—2\2\4 +5ls(2)P12* = 2s(2)° + 2 = 20s(2)["] + —=2Is(2)*r(2)
4_n2[_2‘z|4 +5ls(2)Pl2l* = 2ls(2)” + |2* = 2]s(2)["

r(z)
+2]s(2)[*(1 = 2/2* + [s(2)[*)]

4 2
%[—2'2'4 + 121%5(2) 2 + |217]
4"12|Z|2 2 2

1 -2
T L IsG)P = 212P)
4n?|2 P2,

which concludes the IV (n) case.

Theorem 3.17. IfQ = 11(2), u(z) = log K(z), and a = D|[r,0], the diagonal matriz with diagonal

entries v and 0, then

for all r sufficiently close to 1, which shows that Theorem 3.2 is sharp on Q = I1(2) in this

direction.

Proof. Since u(z) € C*(), the second inequality follows from Theorem 3.2 and Remark 3.5.
Since the canonical solution of du = f is u(z) — P[u](z), by Lemma 3.15, the canonical solution

is u(z) — C for some constant C. By Theorem 3.16, ||0ul|, is finite. From the formula for the

e[l 0 / K (2, a)|du(z) < u(a) < CBullpm / K (2, 0)dv(2),

Bergman kernel of 171(2), (3.14),

log K(z) = C'log(1 — 7?).
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Thus, it remains to verify that

/Q|K(2’,a)]dv(z)zlog(l—r)7 1

This was verified by Englis and Zhang [28, Theorem 1].
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Chapter 4

Quasi-analytic solutions to the

O-problem

4.1 Introduction

In 1997, Christ and Li [17] proved the following.

Theorem 4.1. [17] Let Q2 be a bounded pseudoconver domain in C™ with real-analytic boundary,
and suppose that 0 < p < n and 0 < ¢ < n. Let f € Oé,q)(ﬁ) be O-closed. Then there is a
u € C&q_l)(ﬁ) so that Ou = f on Q.

In this chapter, we extend their result from forms f with real-analytic coefficients to those that

belong to a quasi-analytic class, see Theorem 4.23 below.

The chapter is organized as follows. In Section 4.2, we define quasi-analytic classes of forms
and review Hormander’s elliptic regularity theorems for certain partial differential equations with
sources from quasi-analytic classes. In Section 4.3, we define the d-Neumann operator, and in

Section 4.4, we prove the main theorem, Theorem 4.23.
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4.2 Quasi-analytic classes and elliptic regularity

Let X C R™, D'(X) denote the set of distributions on X and £'(X) denote the set of distributions

with compact support in X.

Definition 4.2. Let {L;}2, be an increasing sequence of positive numbers such that Ly =1 and
k< Lg, Ligi <ClLy,

for some constant C. Let X be an open subset of R™. We define a class of functions C*(X) to be

the set of all u € C*(X) so that for every compact set K C X, there is a constant C'x with
D%u(z)| < Cx(CrL, |O“, re K, aeN".
|

Example 4.3. Let L, = k + 1. Then CL(X) is the set of real-analytic functions in X.
Example 4.4. More generally, let Ly = (k + 1)® where a > 1. Then C*(X) is the Gevrey class
of order a.

We extend this definition to forms.

Definition 4.5. Let Q be a bounded domain in C*. For 0 < p,q < n, let C’é’q)(Q) denote the

(p,q) forms
W = Z /f]JdZ[ A\ dZJ,
1,J

where the primed-summation denotes that the summation is over the strictly increasing p-tuples

and g-tuples I = (iy,...4,) and J = (j1,...J,) respectively,
de' =dziy Ao Ndzy, dET =dz AL ANdE,

and f1; € CE(X) for some neighborhood X of 2.

73



In this chapter, we restrict our attention to the classes C*(X) and Cé 9 (X) that are quasi-analytic.

Definition 4.6. Let (Ly)72, satisfy the conditions of Definition 4.2. C’(f;’q)(ﬂ) is said to be a

quasi-analytic class if and only if
{f1s € C*(Q) : 3o € A s.t. Ya € N, D*(f)(wo) = 0} = {0}, [I|=p, |J|=4q,

where 0 denotes the function which s identically 0.

Theorem 4.7. (Denjoy-Carleman theorem) Let L = (L), satisfy the conditions in Defi-
nition 4.2. CL(Q) is a quasi-analytic class if and only if

1

k

00
=0

From the Denjoy-Carleman theorem, one can conclude that the Gevrey classes of order a > 1
are not quasi-analytic. We will be interested in partial differential equations on forms where the

L

source forms belong to a quasi-analytic class C(p’ q)(Q). We begin by recalling Hormander’s work

on linear partial differential operators [36, Chapter 8|.

Proposition 4.8. CL(X) is a ring (with binary operations function addition and multiplication)

and it is closed under differentiation.

Definition 4.9. Let X be an open set in R™. For any distribution v € D'(X) we define
sing suppr, u to be the smallest closed subset of X such that u is C* in the complement of

the closed set.

Definition 4.10. If X C R” and u € D'(X), then we denote by W Fy(u) the complement in
X x (R™\ {0}) of the set of (x9,&) such that there is a neighborhood U C X of xo, a conic

neighborhood T of & and a bounded sequence uy € E'(X) that satisfies

1. uN|U =Uu
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CLy

)N ¢el, N
ZENYT geDl, N=1,2,.
[3

an(©) <

For a distribution u, W Fp(u) and sing suppr(u) are related by
Theorem 4.11. Ifu € D'(X), then the projection of W F(u) in X is equal to sing suppr(u).

Definition 4.12. Let P be a linear partial differential operator of order m in X with C* coeffi-
cients. That 1s,

P=P(z,D)= Y an(x)D au(z)e€ C¥(X).

|| <m

The principal symbol P,, of P is defined to be

Pu(w,6) = > aa(a)E™.

|al=m

Recall the definition of an elliptic operator:

Definition 4.13. Let T*(X) denote the cotangent bundle of X. The characteristic set of P,
CharP is defined by

CharP = {(x,&) € T*(X) \ {0} : P.(x,&) = 0}.

P s called elliptic if
CharP = 0.

Example 4.14. The Laplacian A\ is an elliptic operator.

With these definitions, Hérmander proved

Theorem 4.15. If P(x, D) is a linear partial differential operator of order m with real analytic
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coefficients in X, then
WFp(u) C CharPUWFL(Pu), ueD(X).
Corollary 4.16. If P(x, D) is elliptic of order m with real analytic coefficients in X, then
WFp(u) C WFL(Pu), ueD(X).

Proof. If P is an elliptic operator then, W Fy(u) N CharP = (. O

Corollary 4.17. Let zy € X. If P(z, D) is elliptic of order m with real analytic coefficients in
X and Pu € C*(U) where U is a neighborhood of xo, then there exists a neighborhood V' of xq so
that uw € CE(V).

Proof. By Theorem 4.11 and the previous corollary, if x € sing suppy(Pu), then x & sing suppr(u).
Thus, if Pu is a C* function in a neighborhood of a point x € X, then u is also a C* function in

some neighborhood of z € X. O

4.3 O0-Neumann operator

We now restrict our attention from domains in R” to domains @ C C". The d-operator may be

extended to an unbounded operator on forms in L%p,q)(Q) with
DOm(E) ={fe L?p,q)(Q> : Ef < L%p,qul)(Q)}a q<n,

and
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By integration by parts, the formal adjoint 1 of 9 is given by

If = (=) DYy —‘QIZ’J_KdzI NdzR |1 =p,|K|=q—1. (4.1)
J

1K j=1

As an unbounded operator of a Hilbert space, 0 has an adjoint operator denoted 9. When

f € Dom(8), we have 9 f =0 f.

The 0-Neumann problem is closely related to the d-problem. One of the fundamental operators

in the problem is the complex Laplacian.

Definition 4.18. The complex Laplacian is the operator U, q) : L%p "

(Q) — L? () defined by

(p,q
Opa) = 00.-1)0.9) T 9pgr1)0.0)

where

Dom(0) ={f € L () : fe Dom(g(p,q)) N Dom(é?pﬂ)),g(p,q)f € Dom((’??nqﬂ)),

(p,q)

5?p7q)f € Dom(9p4-1))}-

The complex Laplacian acts coordinate-wise as the standard Laplacian.

Proposition 4.19. [16, Theorem 4.2.4] If f = Z'IJ frodz" ndz? € CE ()N Dom(0y,), then

(»,9)
_1 /
Opaf =— > Afrgdet AdZ
1,J

where A is the Laplacian.
Corollary 4.20. If f € C(Qp’q) (Q) N Dom(Tp,y) and Oy, f € CE (), then f € CE ().

(»,9) (,9)

Proof. This follows by Corollary 4.17 because A is elliptic with constant coefficients. ]

7



The inverse of the complex Laplacian is the O-Neumann operator.

Theorem 4.21. [16, Theorem 4.4.1 and Theorem 5.3.9] Let Q2 be a bounded pseudoconver domain
in C", n > 2. For each 0 < p <n,1 < q<n, there exists a bounded operator N, q) : L%p’q)(Q) —

L2

(p,q)

(Q) such that

1. Ran(N(p,q)) is contained in the domain of Oy, g
2 HpaNpa =1

8. ONgp.g) = Nipgr10 on Dom(d), 1<qg<n-—1
Additionally, if ) is strongly pseudoconvex with C'*° boundary, then

4- N(p,q)(céf,q) (ﬁ)) - Caq)<ﬁ)? q=0.

4.4 O-problem in the quasi-analytic class

Definition 4.22. Let Q be a bounded domain. ) is said to have a Stein neighborhood basis
if there exists a sequence of strictly pseudoconver domains with C* boundaries {§2;}32, such that

ﬁ = ﬂ‘;‘;le and ﬁj—i—l C Qj.

The closures of all bounded strictly pseudoconvex domains with C'>° boundaries and all weakly
pseudoconvex domains with real-analytic boundary have a Stein neighborhood basis. The worm
domain is an example of a bounded pseudoconvex domain with C'**° boundary regularity whose

closure does not have a Stein neighborhood basis. See [22, 21].

We now prove the main theorem. As stated in the introduction, the case where €2 has real-analytic

boundary was solved by Christ and Li, [17].
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Theorem 4.23. Let €2 be a bounded pseudoconvex domain in C*, n > 2, whose closure has a Stein
neighborhood basis. Let C’(Lp’q) (Q) be quasi-analytic with 0 <p<n, 1 <q<n. If f € Cé),q)(Q) is

O-closed, then there is a u € C'(L (Q) such that Ou = f in .

p,q—1)

Proof. Let {€;}32, be the Stein neighborhood basis, and without loss of generality, let f =
> o1y frr dz' Adz?. Select Q so that each component of f is in C'*(€). Since C* () is quasi-
analytic and, by Proposition 4.8, closed under differentiation, each component of df is identically

0 in . Thus, f is O-closed in €.

Since ;11 is a bounded strictly pseudoconvex domain with C**° boundary, by Theorem 4.21, there

exists a g € C(C;q)(QkH) that satisfies g = f on 1. Since Qg € C’ém(QkH), by Corollary

~k

4.20, g € Cé}q)(QkH)‘ Since g € Dom(9, ), by (4.1) and Proposition 4.8, dge C’(%qfl)(QkH).
Let u = 5*9 = 5*Nf. Then on 41,

ou = OONYf

= (O-39I)NYf

= ONf—-99)Nf

= f—O NOf

= f
where the second to last equality follows Theorem 4.21, and the last equality follows because
Of = 0. The proof of the theorem is complete. O

Remark 4.24. Since the closure of a pseudoconver domain with real-analytic boundary admits a
Stein neighborhood basis, in the case where ) has real-analytic boundary, the Stein neighborhood

basis hypothesis in the above theorem is redundant.
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