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Genomic, Immunologic, Transcriptional and Functional Interrogation of  

SARS-CoV-2 and Respiratory Syncytial Virus 

 

Sara Sunshine 

 

Abstract 

 

 SARS-CoV-2 and RSV are ubiquitous respiratory viruses, and a leading cause of morbidity 

and mortality globally. Despite great advances in our biological understanding of these pathogens, 

there remains a need for multidisciplinary research that improves diagnostics, utilizes genomic 

surveillance for viral variant detection, characterizes the innate and adaptive immune response to 

viral infections, and identifies host determinants of infection. In this dissertation, I describe the 

work that I have contributed to for the systematic interrogation of these aspects of SARS-CoV-2 

and RSV biology. Chapters 2 through 5 describe the collaborative studies performed to evaluate a 

SARS-CoV-2 rapid antigen test (Chapter 2) and to investigate the humoral immune response to 

SARS-CoV-2 infection (Chapter 3-5). We additionally used Perturb-seq, a single-cell CRISPRi 

screening method, to functionally interrogate how host genetic perturbations affect SARS-CoV-2 

infection dynamics (Chapter 6). The final chapter of this dissertation focuses on RSV. We 

characterized the transcriptional signatures of RSV infected and bystander activated cells using 

single-cell RNA sequencing and identified host determinants of RSV infection using a genome-

wide CRISPR screening approach. Together, these chapters provide insight into multiple aspects 

of SARS-CoV-2 and RSV biology, and lay the groundwork for future studies. 
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Chapter 1: Introduction 

         Respiratory infections are a global health burden and a leading cause of mortality world-

wide [1]. Despite successful vaccine development and distribution campaigns for viral respiratory 

pathogens such as influenza and COVID-19, there remains a paucity of efficacious and specific 

antiviral agents for respiratory viruses. Furthermore, as both infection and the subsequent host 

immune response are thought to damage the host, it remains imperative to understand the innate 

and adaptive immune response to respiratory viral infections. 

Effective management of viral outbreaks requires multidisciplinary and multifaceted 

strategies including: 1) the development, validation and wide-spread use of pathogen detection 

methodologies; 2) up-to-date viral genomic surveillance; 3) a detailed understanding of the host 

response to infection and; 4) identification of host factors that are co-opted for viral infection. 

While specific introductions are included with each chapter of this thesis, broadly, the work 

discussed in this dissertation investigates these different aspects of two major respiratory viral 

pathogens: Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and Respiratory 

Syncytial Virus (RSV). 

 
SARS-CoV-2 

The causative agent of the coronavirus disease 2019 (COVID-19) pandemic, SARS-CoV-

2, has claimed millions of lives globally. Rapid vaccine and therapeutic development have sought 

to alleviate the global health burden of SARS-CoV-2. In this dissertation, we sought to improve 

SARS-CoV-2 testing, utilize genomic surveillance for viral variant detection, improve our 

biological understanding of the host innate and humoral response to infection, and to 

systematically interrogate host determinants of SARS-CoV-2 infection. 
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Chapter 2 describes a close collaboration of academic (UCSF, UC Berkeley) and 

community health (Unidos en Salud) programs to evaluate the Abbot BinaxNOW SARS-CoV-2 

rapid antigen test [2]. Along with comparing results from this rapid antigen test to qRT-PCR for 

patient samples, we titrated cultured SARS-CoV-2 and determined the observable threshold of 

these rapid antigen tests. As SARS-CoV-2 continued to spread globally, we next shifted our efforts 

to investigate the presence of SARS-CoV-2 variants. In Chapter 3, we again worked as a 

multidisciplinary team to perform genomic surveillance. In this study, we identified variants 

circulating in San Francisco, and subsequently determined the viral load and relative household 

attack rate of the identified strain [3]. 

We subsequently coupled the genomic surveillance data with both household metadata and 

methods to investigate the humoral immune response to SARS-CoV-2 infection and vaccination. 

It was again due to highly collaborative efforts with academic and community organizations that 

enabled a deep evaluation of the variant specific humoral response. We used a split luciferase 

antibody sensing assay to detect anti-Nucleocapsid and anti-Spike antibodies [4], as well as a 

pseudovirus reporter assay [5] to assess the neutralizing capacity of antibodies elicited from 

vaccination and infection. In Chapter 4, we characterized the SARS-CoV-2 transmission dynamics 

and the immune response dynamics in a household of vaccinated individuals [6]. In Chapter 5, we 

investigated cross-neutralization of SARS-CoV-2 variants using the sera from vaccinated, 

infected, and vaccinated infected individuals [7]. 

To complement our prior studies, we next investigated the host innate immune response to 

SARS-CoV-2 infection and performed a systematic interrogation of host factors that are necessary 

for viral infection. Using Perturb-seq [8–11], an approach that couples single-cell RNA sequencing 
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and functional genomics, we characterized the heterogeneity of the transcriptional response to 

infection and identified host factors necessary for infection and bystander activation [12]. 

  

RSV 

         RSV infects an estimated 64 million people and leads to approximately 160,000 deaths 

annually [13]. RSV is particularly problematic for infants, immunocompromised populations and 

the elderly with symptoms ranging from coughing and sneezing to more severe wheezing, fever, 

bronchiolitis and pneumonia. While Palivizumab, an FDA approved monoclonal antibody, may 

provide protection prophylactically, there remains no effective RSV-specific therapeutic for 

infected patients [14]. RSV primarily infects airway epithelial cells from the nasal cavity down to 

the lower respiratory tract [15]. Since epithelial cells are the first line of defense against RSV 

infection, the temporal and qualitative response of the innate immune system are key determinants 

of infection outcome [16]. As the first to be infected, epithelial cells set the immunologic tone by 

inducing a pro-inflammatory response. 

In Chapter 7, we investigate the host innate immune response and host factors necessary 

for RSV infection. We used single-cell RNA sequencing to investigate the transcriptional response 

of RSV infected and bystander activated cells. To complement this transcriptional data, we 

subsequently used whole-genome CRISPR/Cas9 screening to identify host determinants of viral 

infection. We identified host factors important for RSV infection, and comparative analyses 

revealed overlapping host dependency factors with other RNA viruses.  

In summary, this dissertation contributes to our fundamental knowledge about SARS-CoV-

2 and RSV biology, and is the culmination of the collaborative and multidisciplinary work that I 

have proudly contributed to. 
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Chapter 2: Evaluation of Abbott BinaxNOW rapid antigen test for SARS-CoV-2 detection 

 

This chapter is a reprint of the following publication: 

 

Pilarowski G, Lebel P, Sunshine S, Liu J, Crawford E, Marquez C, Rubio L, Chamie G, Martinez 

J, Peng J, Black D, Wu W, Pak J, Laurie MT, Jones D, Miller S, Jacobo J, Rojas S, Rojas S, 

Nakamura R, Tulier-Laiwa V, Petersen M, Havlir DV, DeRisi J. Performance Characteristics of a 

Rapid Severe Acute Respiratory Syndrome Coronavirus 2 Antigen Detection Assay at a Public 

Plaza Testing Site in San Francisco. J Infect Dis. 2021 Apr 8;223(7):1139-1144. doi: 

10.1093/infdis/jiaa802. PMID: 33394052; PMCID: PMC7799021. 

 

Supplemental files are included with original published work.  
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Abstract 

We evaluated the performance of the Abbott BinaxNOW rapid antigen test for coronavirus disease 

2019 (Binax-CoV2) to detect virus among persons, regardless of symptoms, at a public plaza site 

of ongoing community transmission. Titration with cultured severe acute respiratory syndrome 

coronavirus 2 yielded a human observable threshold between 1.6 × 104-4.3 × 104 viral RNA copies 

(cycle threshold [Ct], 30.3–28.8). Among 878 subjects tested, 3% (26 of 878) were positive by 

reverse-transcription polymerase chain reaction, of whom 15 of 26 had a Ct <30, indicating high 

viral load; of these, 40% (6 of 15) were asymptomatic. Using this Ct threshold (<30) for Binax-

CoV2 evaluation, the sensitivity of Binax-CoV2 was 93.3% (95% confidence interval, 68.1%–

99.8%) (14 of 15) and the specificity was 99.9% (99.4%–99.9%) (855 of 856). 

 

Main Text 

The global pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 

infection has spread at an unprecedented pace [1] fueled by efficient transmission of infection by 

the respiratory route, including by asymptomatic and presymptomatic persons. Instances of 

successful control make use of masking, social distancing, and aggressive testing, tracing, and 

quarantine [2]. 

To date, the cornerstone of testing has been reverse-transcription polymerase chain reaction 

(RT-PCR) examination of respiratory secretions, which has excellent sensitivity and specificity 

but is expensive and requires sophisticated equipment and highly trained personnel [3]. In practice, 

these features have often generated testing delays compromising their utility [4]. As a result, there 

is interest in rapid and economical assays that circumvent these limitations [5]. However, methods 

that do not include an amplification step are inherently less sensitive; their proper deployment will 
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therefore require a rigorous evaluation of performance characteristics in different epidemiologic 

settings. 

Lateral flow antigen detection diagnostics have been deployed for a variety of infectious 

diseases including malaria, RSV, and influenza. The Abbott BinaxNOW COVID-19 Ag Card 

(hereafter referred to as Binax-CoV2) is one such assay that detects viral nucleocapsid (N) protein 

directly from nasal swab samples. The test requires no instrumentation; results are scored visually 

and returned within 15 minutes. In August 2020, the Food and Drug Administration issued an 

emergency use authorization for the diagnosis of SARS-CoV-2 infection in symptomatic patients 

within 7 days of symptom onset [6]. The US Department of Health and Human Services has 

distributed 150 million test kits. Given the value of a rapid assessment of infectiousness, there is 

anticipated use in a broad range of subjects, including those who are asymptomatic. Here we 

present a systematic examination of the performance characteristics of the Binax-CoV2 test in a 

community screening setting where testing was offered for symptomatic and asymptomatic 

subjects. 

 

Methods 

Study Population and Specimen Collection 

Over 3 days in September 2020, we offered testing in the Mission District, a Latinx-

predominant neighborhood, known from prior surveys to have an elevated prevalence of SARS-

CoV-2 infection [7, 8]. Walk-up, free testing was conducted at a plaza located at an intersection 

of the Bay Area-wide subway system (BART) and the San Francisco city bus/streetcar system 

(MUNI). On the day of testing, participants self-reported symptoms and date of onset, 

demographics, and contact information, as required by state and federal reporting guidelines. A 
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laboratory technician performed sequential anterior swab (both nares) for the Binax-CoV2 assay 

followed by a second swab (both nares) for RT-PCR. Participants were notified of RT-PCR test 

results. For this study, Binax-CoV2 results were not reported back to study subjects. 

 

Laboratory Testing for SARS-CoV-2 

RT-PCR detection of SARS-CoV-2 was performed at the Clinical Laboratory 

Improvement Amendments–certified laboratory operated by the University of California, San 

Francisco (UCSF), and the Chan Zuckerberg Biohub, as described elsewhere [9, 10]. 

 

Field Testing Using Binax-CoV2 Assay 

The Binax-CoV2 assay was performed by technicians on site as described by the 

manufacturer using the supplied swabs. Each assay was read by 2 independent observers, and a 

site supervisor served as a tiebreaker. Beginning on day 2 of the study, each Binax-CoV2 assay 

card was scanned onsite using a color document scanner (CanoScan LIDE 400; Canon). Sample 

bands were retrospectively quantified from image data. Sample and background regions were 

localized by offset from the control band, and relative mean pixel intensity decreases were 

calculated from blue and green channels averaged with respect to background. 

 

Titration of in vitro Cultured SARS-CoV-2 on Binax-CoV2 Cards 

SARS-CoV-2 from a UCSF clinical specimen was isolated, propagated and plaqued on 

Huh7.5.1 cells overexpressing angiotensin-converting enzyme 2 and transmembrane serine 

protease 2 (TMPRSS2) [11]. Viral titers were determined using standard plaque assays [12]. For 

titration experiments, SARS-CoV-2 was diluted in Dulbecco phosphate-buffered saline, and 40 
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µL of each dilution was absorbed onto the supplied swab samples. Images of Binax-CoV2 cards 

were taken with an Apple iPhone 6. All experiments using cultured SARS-CoV-2 were conducted 

in a biosafety level 3 laboratory. 

 

N Protein Titration Assay 

SARS-CoV-2 N protein (1–419) was expressed in BL21(DE3) Escherichia coli and 

purified by nickel–nitrilotriacetic acid chromatography, incorporating a 1-mol/L sodium chloride, 

50-mmol/L imidazole wash to remove bound RNA. Six concentrations of N protein were tested 

on 10 lots of Binax-CoV2 kits, and 40 µL of N protein was absorbed onto the provided swab 

sample. 

 

Ethics Statement 

The UCSF Committee on Human Research determined that the study met criteria for public 

health surveillance. All participants provided informed consent for dual testing. 

 

Results 

Binax-CoV2 Performance Using a Titration of in vitro Cultured SARS-CoV-2 

To explore the relationship of RT-PCR cycle threshold (Ct), viral load, and the 

corresponding visual Binax-CoV2 result, a dilution series of laboratory-cultured SARS-CoV-2 

with known titers was assayed with both RT-PCR and Binax-CoV2 (Figure 2.1). For this stock of 

virus, the threshold for detectability by human eye on the Binax-CoV2 assay was between 1.6 and 

4.3 × 104 viral copies (100–250 plaque-forming units), corresponding to t values (average of N 

and E genes) of 30.3 and 28.8, respectively, in this assay. 
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Community RT-PCR Testing Results 

Of the 878 subjects tested, 54% were male, 77% were 18–50 years of age, 81% self-

identified as Latinx, and 84% reported no symptoms in the 14 days before testing. Twenty-six 

persons (3%) were RT-PCR positive; of these, 15 (58%) had a Ct <30, and 6 of the 15 (40%) were 

asymptomatic. Among asymptomatic individuals with a Ct <30, 4 of 6 developed symptoms within 

2 days after testing. Of the 11 persons RT-PCR–positive with a Ct >30, 4 reported symptom onset 

≥7 days before testing, 1 reported symptom onset 3 days before testing, and the remainder reported 

no symptoms. 

Comparison of RT-PCR and Binax-CoV2 Testing Results from Community Testing 

Because the readout of the Binax-CoV2 assay is by visual inspection, results may be subjective, 

especially when bands are faint or partial. The manufacturer’s instructions suggest scoring any 

visible band as positive. On day 1 of testing, these reading instructions were used and 217 samples 

tested, of which 214 yielded valid Binax-CoV2 results: 7 of 214 (3.3%) were RT-PCR positive; 

using the manufacturer’s proposed criteria, 5 of these 7 were Binax-CoV2 positive. Of 214, a total 

of 207 were RT-PCR negative, 9 (4.3%) of which were Binax-CoV2 positive. Thus, using the 

manufacturer’s criteria, 9 of 14 Binax-CoV2–positive tests (64%) in this population of 217 tests 

had false-positive results (Binax-CoV2 positive/RT-PCR negative). We thought that these initial 

criteria used on day 1 of testing were insufficient for classifying faint Binax-CoV2 assay bands, 

resulting in excessive false-positive calls. 

On subsequent testing days, we evaluated additional criteria for classifying a band as 

positive, in consultation with experts from the manufacturer’s research staff. Optimal performance 

occurred when the bands were scored as positive, if they extended across the full width of the strip, 
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irrespective of the intensity of the band. Updated scoring criteria were implemented by the third 

day of testing, when a total of 292 tests were administered. Of this total, 283 were RT-PCR 

negative, all of which scored Binax-CoV2 negative, demonstrating these updated reading criteria 

markedly alleviated false-positive readings. Of the 292 total day 3 tests, 9 were RT-PCR positive, 

of which 5 were Binax-CoV2 positive for antigen with these updated scoring criteria. Of the 9 RT-

PCR–positive samples, the 4 that were Binax-CoV2 negative had a Ct >30, consistent with our 

laboratory-observed limit of detection for Binax-CoV2. We find that scoring a test as positive if 

bands extend across the full width of the strip, irrespective of band intensity, is the least subjective 

and easiest method to implement in the field, and we have developed a training tool 

(https://unitedinhealth.org/binax-training). 

The results of the 26 RT-PCR–positive individuals identified throughout the 3-day study 

were stratified by RT-PCR test Ct value and categorized according to Binax-CoV2 result (Figure 

2.2). The rapid antigen detection test performed well in samples with higher viral loads: 15 of 16 

samples with a Ct<32 were Binax-CoV2 positive (Figure 2.2A). By contrast, none of the 10 

samples with a Ct ≥34 were positive by Binax-CoV2 antigen detection. Retrospective image 

quantification of Binax-CoV2 sample band intensity is correlated with RT-PCR Ct values for those 

individuals (Figure 2.2B). In each case, the corresponding image is shown to demonstrate the 

correspondence between RT-PCR and the visual result (Figure 2.2C). 

 

Sensitivity and Specificity 

RT-PCR is considered a reference standard [3] and, in the RT-PCR assay used in this study, 

has a limit of detection of 100 viral RNA copies/mL. Direct antigen assays are inherently not as 

sensitive as RT-PCR. In the context of community based testing, we defined a threshold for high 
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virus levels corresponding to the range of highest probability of transmissibility: a Ct of 30, which 

corresponds to a viral RNA copy number of approximately 1.9 × 104 in this assay [10, 13]. Using 

this Ct <30 case definition and 95% confidence intervals (CIs), the sensitivity of the Binax-CoV2 

was 93.3% (95% CI, 68.1%–99.8%) (14 of 15), and the specificity was 99.9% (99.4%–99.9%) 

(855 of 856). Adjusting the threshold to a more conservative Ct value of 33 (2.6 × 103 viral RNA 

copies), the sensitivity was 93.8% (95% CI, 69.8%–99.8%) (15 of 16), and the specificity was 

100% (99.6%–100%) (855 of 855). Without a Ct threshold, the sensitivity of the Binax-CoV2 

assay was (57.7%; 95% CI, 36.9%–76.6%) (15 of 26), and the specificity was (100%; 99.6%–

100%) (845 of 845). Given that the Binax-CoV2 assay detects infected individuals with high levels 

of virus (>104), the sensitivity of the assay in the absence of a threshold will largely depend on the 

viral kinetics within the testing population. Sensitivity and specificity calculations were completed 

with the final scoring criteria, using retroactive Binax-CoV2 scores from images covering all 3 

study days. 

 

Evaluation of Binax-CoV2 Lot-to-Lot Variation 

We quantified lot-to-lot variability in 10 different lots of Binax-CoV2 card tests using a 

dilution series of N protein. (Figure 2.3). At protein concentrations of ≥17.2 ng/mL, a sample band 

was detected in all lots and thus would not affect the outcome of this binary assay (Figure 2.3A). 

 

Discussion 

The data reported here describe the performance characteristics of the Binax-CoV2 antigen 

detection kit in the context of community testing including asymptomatic subjects. These results 

indicate a clear relationship between relative viral load and test positivity and provide a practical, 
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real-world criterion to assist calling results in this setting. We found that small training 

modifications reduced the presence of false-positives, a legitimate concern for the rollout of these 

tests. 

The currently approved emergency use authorization for the Binax-CoV2 assay specifies 

use only in symptomatic individuals. The results presented here suggest that the Binax-CoV2 test 

should not be limited to symptomatic testing alone. Many asymptomatic individuals have high 

viral loads (corresponding to low Ct values) and, therefore, have a high probability of being 

infectious and transmitting the virus, a feature and likely driver of the pandemic that we and others 

have observed previously [7, 14]. Limiting use of Binax-CoV2 to symptomatic individuals would 

have missed nearly half of the SARS-CoV-2 infections in the current study. 

Furthermore, the impact of testing on forward transmission is hampered by long wait times. 

Our group reported previously that in the community setting, by the time a person is tested, 

counseled, and situated under isolation conditions, the effective isolation period is often nearly 

over [8]. This is particularly true for many communities of color, where reported delays in 

accessing tests and results are even longer [4, 15]. Rapid tests could reduce these delays and 

maximize the time of effective isolation. Limitations of our study include its cross-sectional design 

and the overall small number of RT-PCR positive cases. Additional field performance of this assay 

is needed and will help inform optimal use strategies. We recommend evaluating the Binax-CoV2 

assay side by side with RT-PCR in each context where it will be used before using Binax-CoV2 

without RT-PCR. 

During the early stages of infection, viral load may be too low to detect by direct antigen 

assays such as Binax-CoV2. This inherent lower sensitivity may be offset by faster turn-around 

and higher frequency of testing, with overall lower cost, relative to RT-PCR methods. That said, 
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for persons who present with a high index of suspicion of coronavirus disease 2019 and a negative 

Binax-CoV2 result, the test should be complemented with RT-PCR or a repeated Binax-CoV2 test 

at a later time to make sure cases are not missed. 

In summary, under field conditions with supplementary technician training, the Binax-

CoV2 assay accurately detected SARS-CoV-2 infection with high viral loads in both 

asymptomatic and symptomatic individuals. The Binax-CoV2 test could be a valuable asset in an 

arsenal of testing tools for the mitigation of SARS-CoV-2 spread, as rapid identification of highly 

infectious individuals is critical. 

 

Supplementary Data 

Supplementary materials are available at The Journal of Infectious Diseases online. 

Consisting of data provided by the authors to benefit the reader, the posted materials are not 

copyedited and are the sole responsibility of the authors, so questions or comments should be 

addressed to the corresponding author. 

  



 

 16 

 

Figure 2.1. Titration of in vitro grown severe acute respiratory syndrome coronavirus 2 and 

detection with Binax-CoV2 assay. Top, Normalized Binax-CoV2 sample band intensity (blue-
green average) for cards loaded with a known amount of virus. Error bars represent standard 
deviation of sample band intensity of technical replicates. Reverse-transcription polymerase chain 
reaction (RT-PCR) testing was performed at the CLIAHUB consortium [10]. Corresponding RT-
PCR cycle threshold (Ct) values (average of N and E gene probes) are shown in black, and the 
corresponding RNA copy numbers in blue. Note that Ct and genome copy number correlation 
varies by RT-PCR platform. Bottom, Representative card images from each data point. 
Abbreviation: PFUs, plaque-forming units. 
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Figure 2.2. Comparison of Binax-CoV2 test with quantitative reverse-transcription 
polymerase chain reaction (RT-PCR) test. A, Average viral cycle threshold (Ct) values from all 
26 RT-PCR–positive individuals from the community study, plotted in ascending order. Blue 
circles indicate Binax-CoV2–positive samples; yellow squares, Binax-CoV2–negative samples. 
Open symbols represent individuals who were asymptomatic on the day of the test and filled 
symbols, those who reported symptoms on that day. B, Normalized sample band signal from 
retrospective image analysis of Binax-CoV2 cards was plotted as a function of Ct value for all 
available scanner images (19 of 26 RT-PCR–positive samples and a random subset of RT-PCR–
negative samples). Binax-CoV2 true-positives are shown in blue and labeled TP; false-negatives, 
shown in yellow and labeled FN; and true-negatives, shown in red and labeled TN. C, 
Corresponding Binax-CoV2 card images from the data in B. 
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Figure 2.3. Variability of signal intensity in Binax-CoV2 card lots. (A) Normalized sample 
band signal intensity of Binax-CoV2 cards from different lots run with a dilution series of purified 
SARS-CoV-2 N protein with known concentration. N=4 cards per lot per concentration. Each point 
represents one card. (B) Images of each card test for the highest (126029) and lowest (126028) 
performing lots. 
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Chapter 3: Investigation of secondary attack rates of SARS-CoV-2 emerging variants in 

San Francisco 
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Abstract 

Background 
Sequencing of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral 

genome from patient samples is an important epidemiological tool for monitoring and responding 

to the pandemic, including the emergence of new mutations in specific communities. 

Methods 

SARS-CoV-2 genomic sequences were generated from positive samples collected, along 

with epidemiological metadata, at a walk-up, rapid testing site in the Mission District of San 

Francisco, California during 22 November to 1 December, 2020, and 10–29 January 2021. 

Secondary household attack rates and mean sample viral load were estimated and compared 

across observed variants. 

Results 

A total of 12 124 tests were performed yielding 1099 positives. From these, 928 high-

quality genomes were generated. Certain viral lineages bearing spike mutations, defined in part 

by L452R, S13I, and W152C, comprised 54.4% of the total sequences from January, compared 

to 15.7% in November. Household contacts exposed to the “California” or “West Coast” variants 

(B.1.427 and B.1.429) were at higher risk of infection compared to household contacts exposed 

to lineages lacking these variants (0.36 vs 0.29, risk ratio [RR] = 1.28; 95% confidence interval 

[CI]: 1.00–1.64). The reproductive number was estimated to be modestly higher than other 

lineages spreading in California during the second half of 2020. Viral loads were similar among 

persons infected with West Coast versus non-West Coast strains, as was the proportion of 

individuals with symptoms (60.9% vs 64.3%). 
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Conclusions 

The increase in prevalence, relative household attack rates, and reproductive number are 

consistent with a modest transmissibility increase of the West Coast variants. 

 

Main Text 

Genomic surveillance during the severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2) pandemic is a critical source of situational intelligence for epidemiological control 

measures, including outbreak investigations and detection of emergent variants [1]. Countries with 

robust, unified public health systems and systematic genomic surveillance have been able to 

rapidly detect SARS-CoV-2 variants with increased transmission characteristics, and mutations 

that potentially subvert both naturally acquired or vaccination-based immunity (eg, COVID-19 

Genomics UK Consortium). Examples include the rapidly spreading B.1.1.7 lineage documented 

in the United Kingdom and the B.1.351 lineage described from South Africa, or the P.1/P.2 

lineages that harbor the spike E484K mutation that is associated with reduced neutralization in 

laboratory experiments [2–5]. 

In the United States, genomic surveillance is sparse relative to the number of confirmed 

cases (27.8 million as of 20 February 2021), with 123 672 genomes deposited in the GISAID 

database, representing only 0.4% of the total reported cases. Despite the low rates of US genomic 

surveillance, independent local programs and efforts have contributed to our understanding of 

variant emergence and spread [6–8]. The appearance of new nonsynonymous mutations highlight 

the utility of this approach in the United States [9]. 

Genomic sequencing of SARS-CoV-2 in California has predominantly been conducted by 

academic researchers and non-profit biomedical research institutions (eg, the Chan Zuckerberg 
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Biohub and the Andersen Lab at the Scripps Research Institute) in conjunction with state and local 

public health partners. These efforts identified an apparent increase in the prevalence of lineages 

B.1.427 and B.1.429 (“California” or “West Coast” variant), which share S gene nonsynonymous 

mutations at sites 13, 152, 452, and 614, during December 2020 to February 2021 when California 

was experiencing the largest peak of cases observed during the pandemic. Although the cluster of 

mutations was first observed in a sample from May 2020, these variants rose from representing 

<1% of the consensus genomes recovered from California samples collected in October 2020 

(5/546; 0.91%) to over 50% of those collected during January 2021 (2309/4305; 53.6%; GISAID 

accessed 20 February 2021). 

The majority of sequencing efforts in the United States utilize samples from symptomatic 

individuals or outbreaks, introducing selection bias making interpretation of trends, such as the 

rise in lineage prevalence, complex. Furthermore, clinical remnant samples are most often delinked 

from case information, thus eliminating the possibility of evaluating genotypes with detailed 

household information, and other metadata useful for investigation of transmission dynamics. 

Sequencing cases identified during intensive, longitudinal community-based testing may 

help address both limitations. Here we describe an investigation of the prevalence of the West 

Coast variants as well as other variants among persons tested at a community testing site situated 

in the Mission District of San Francisco, a neighborhood with high coronavirus disease 2019 

(COVID-19) incidence, during 2 periods: 22 November to 1 December 2020 and 10–29 January 

2021. Using metadata collected at the testing site and supplementary household testing, we 

estimated secondary household attack rate with respect to viral genotype to evaluate relative 

transmissibility of identified variants. 
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Methods 

Study Setting and Population 

Over 22 November to 1 December 2020 and 10–29 January 2021, BinaxNOWTM rapid 

antigen tests were performed at the 24th & Mission BART (public transit) station in the Mission 

District of San Francisco, a setting of ongoing community transmission, predominantly among 

Latinx persons [10, 11]. Tests for SARS-CoV-2 were performed free of charge on a walk-up, no-

appointment basis, including persons ≥1 year of age and regardless of symptoms, through “Unidos 

en Salud,” an academic, community (Latino Task Force) and city partnership. Certified lab 

assistants collected 2 bilateral anterior nasal swabs. The first was tested with BinaxNOWTM, 

immediately followed by a separate bilateral swab for SARS-CoV-2 genomic sequencing [11, 12]. 

Results were reported to participants within 2 hours, and all persons in a household (regardless of 

symptom status) corresponding to a positive BinaxNOW case were offered BinaxNOW testing. 

All persons testing BinaxNOW positive were offered participation in longitudinal Community 

Wellness Team support program [13, 14]. 

 

SARS-CoV-2 Genomic Sequence Recovery and Consensus Genome Generation 

SARS-CoV-2 genomes were recovered using ARTIC Network V3 primers [15] and 

sequenced on an Illumina NovaSeq platform. Consensus genomes generated from the resulting 

raw.fastq files using IDseq [16] were used for subsequent analysis. Full details are included in 

Supplementary materials. 
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Household Attack Rate Analyses 

Households (n = 328) tested in January and meeting the following inclusion criteria were 

eligible for secondary attack rate analyses: 1) ≥1 adult (aged ≥ 18 years) with a positive 

BinaxNOW result; 2) ≥1 case in household sequenced; and 3) ≥2 persons tested with BinaxNOW 

during the study period. Households in which sequences represented both West Coast and non-

West Coast variants were excluded (n = 9). The index was defined as the first adult to test positive. 

Crude household attack rates, stratified by variant classification, were calculated as i) the 

proportion of positive BinaxNOW results among tested household contacts; and ii) the mean of 

the household-specific secondary attack rate, with 95% confidence interval (CI) based on cluster-

level bootstrap. Generalized estimating equations were used to fit Poisson regressions, with 

cluster-robust standard errors and an exchangeable working covariance matrix. Because symptoms 

and disease severity may be affected by strain, these factors were not included in the a priori 

adjustment set. We evaluated for overdispersion [17] and conducted sensitivity analyses using 

targeted maximum likelihood estimation (TMLE) combined with Super Learning to relax 

parametric model assumptions; influence curve-based standard error estimates used household as 

the unit of independence [18]. 

 

Bayesian Phylogenetic Analysis 

We compared the growth rates of B.1.427 and B.1.429 Phylogenetic Assignment of Named 

Global Outbreak (PANGO) lineages against 2 other lineages, B.1.232 and B.1.243, that had been 

circulating in California during the latter half of 2020. To do this, we built a Bayesian phylogeny 

for each lineage in BEAST v.1.10.4 and estimated the effective population size over time using 

the Bayesian SkyGrid model. We fit an exponential model to the median SkyGrid curve and 
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inferred the reproductive numbers based on the exponential growth rates and generation time 

estimates from literature. Full analysis details are included in Supplementary materials. 

 

Ethics Statement 

The UCSF Committee on Human Research determined that the study met criteria for public 

health surveillance. All participants provided informed consent for dual testing. 

 

Results 

Low-Barrier SARS-CoV-2 Testing and Sequencing 

From 22 November to 1 December 2020, 3302 rapid direct antigen tests were performed 

on 3122 unique individuals; sample characteristics from this testing have been previously 

described [11]. From 10–29 January, using identical methods, 8822 rapid direct antigen tests were 

performed on 7696 unique individuals, representing 5239 households; household attack rate 

analyses were restricted to January samples, described here (Supplementary 3.1). 

Test subjects originated from addresses in 8 Bay Area counties, indicating a wide catchment area 

(Figure 3.1). During this time period, there were 885 (10.0%) samples from 863 unique persons 

that were BinaxNOW positive for SARS-CoV-2 infection. From this set, a total of 80 samples 

were sequenced for the S gene only, of which 58 had S gene coverage over 92%. In addition, full 

SARS-CoV-2 genome sequencing was attempted on a total of 775 samples, of which 737 (95%) 

samples resulted in a genome coverage over 92% (Supplementary Table 3.2, sequences deposited 

in GISAID). These 986 samples, together with an additional 191 SARS-CoV-2 genome sequences 

generated from the same testing site during the period of 22 November to 1 December 2020 

[11, 19] had adequate coverage of the full genome or spike protein for further analysis based on S 
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gene sequence (Supplementary Table 3.3). Classification as either a West Coast variant or a non-

West Coast variant was determined for 846 of all samples sequenced. 

Similar to previous observations in San Francisco [20], full length sequences were 

distributed among the major clades (Supplementary Figure 3.1) [21]. Notably, mutations at spike 

position 501 were not observed, and thus no instances of the B.1.1.7 strain or any other strain 

bearing the N501Y mutation were detected in any sample during this period in January 2021. A 

single individual was found to have been infected with the P.2 strain, which carries the spike 

E484K mutation and was described in Brazil from a reinfection case [5]. This mutation has been 

associated with decreased neutralization in laboratory experiments [2, 4]. 

We observed SARS-CoV-2 genome sequences that belonged to PANGO lineages B.1.427 

and B.1.429, both of which share a trio of recent mutations in the spike protein (S13I, W152C, and 

L452R) (Figure 3.2). These lineages are separated by differing mutations ORF1a and ORF1b, 

including ORF1b:P976L and ORF1a:I4205V, respectively. Sequencing of 191 viral genomes from 

22 November to 1 December 2020 revealed that sequences carrying this trio of mutations 

represented only 15.7% of the total. A trend of increasing frequency was observed on a daily basis 

during the January testing period (Figure 3.2A), and the frequency of these lineages were observed 

to have increased to 54.4% of the total, representing an increase of more than 3-fold in 

approximately 1.5 months (Figure 3.2B, 2C).This increase in frequency is consistent with an 

expansion of viruses more broadly in California carrying these same mutations [23]. 

Additional nonsynonymous mutations were observed throughout the genome, including 

108 unique non-synonymous mutations in the spike gene, several within functionally-significant 

regions of the protein (Figure 3.2C, Supplementary Table 3.3). Twelve unique mutations were 

observed in the receptor binding domain, most of which have yet to be investigated for functional 
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effects. Additionally, 8 unique mutations were found adjacent to the polybasic furin cleavage site 

at the S1/S2 junction, which is reported to have a potential role in determination of virulence and 

host cell tropism [24–27]. Moderately prevalent mutations were observed at spike position 681 

(P681H, n = 34 and P681R, n = 1), which is within the furin recognition site, and at spike position 

677, where 2 different amino acid substitutions were observed in this cohort (Q677H, n = 22 and 

Q677P, n = 11). Multiple mutations at both of these sites have been previously observed [9]. 

 

Disease Severity 

The SARS-CoV-2 reverse transcription polymerase chain reaction (RT-PCR) cycle 

thresholds (Ct) for nasal swab samples from which whole genomes corresponding to the West 

Coast variant were recovered were compared to parallel non-West Coast variant samples. Mean 

Ct values did not differ significantly between persons infected with West Coast (mean Ct 23.56; 

interquartile range [IQR] 6.4) versus non-West Coast (mean Ct 23.67; IQR 7.8) strains (95% CI: 

−.77 to .50, P-value = .67) (Supplementary Figure 2, Supplementary Table 3.2). The proportion of 

individuals with symptoms was similar among persons infected with West Coast (273/448, 60.9%) 

versus non-West Coast (250/389, 64.3%) strains. Among 364 sequenced cases with longitudinal 

follow-up by the Community Wellness Team, 4 (1.1%) were hospitalized (3/183, and 1/181, for 

West Coast and non-West Coast, respectively). 

 

Household Secondary Attack Rate 

A total of 328 households met inclusion criteria for evaluation of secondary attack rate; of 

these, 9 households had individuals with mixed strains and thus were excluded from analyses. 

Among the remaining 319 households, characteristics including race/ethnicity, ages of other 



 

 30 

household members, household size, density, and location were similar, regardless of whether the 

members were positive for West Coast or non-West Coast variants. (3.1, Supplementary Table 4). 

The 319 index cases had a total of 1241 nonindex household members; of these, 867 

(69.9%) had a BinaxNOW test result available (452/658 [68.7%] for West Coast variant 

households; 415/583 [71.2%] of non-West Coast variant households). A total of 35.6% (161/452) 

of household contacts exposed to the West Coast variant tested BinaxNOW positive (33.2%, 

78/235 for B1.427; 40.3%, 79/196 for B.1.429), whereas 29.4% (122/415) of contacts exposed to 

non-West Coast variant tested positive (Table 3.2). Secondary cases were identified a median of 1 

day after index cases (IQR 0–4). 

Based on unadjusted Poisson regression with cluster-robust standard errors, household 

contacts exposed to the West Coast variant had an estimated 28% higher risk of secondary 

infection, compared to household contacts exposed to a non-West Coast variant (RR: 1.28, 95% 

CI: 1.00–1.64, P-value = .05). When exposure to West Coast variants was disaggregated by 

B.1.427 and B.1.429, corresponding risks of secondary infections relative to exposure to non-West 

Coast variants were 1.19 (95% CI: .89–1.59, P-value = .20) and 1.43 (95% CI: 1.07–1.91, P-value 

= .02), respectively. Dispersion ratios were >0.9 in all regression analyses. Estimated relative risks 

of infection after household exposure to West Coast versus non-West Coast variants were similar 

after adjustment for household and individual-level characteristics of secondary contacts (adjusted 

risk ratio [aRR]: 1.25, 95% CI: .98–1.59, P-value: .07 for West Coast vs non-West Coast variants; 

aRR: 1.19, 95% CI: .90–1.59, P-value = .20 and aRR: 1.36, 95% CI: 1.01–1.83, P-value = .04 for 

B.1.427 and B.1.429, respectively). Relative attack rates were generally similar when stratified by 

household characteristics and by the characteristics of secondary contacts (Table 3.3); secondary 

attack rates among children aged <12 years were 51.9% (41/79) and 39.7% (31/78) when exposed 
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to West Coast and non-West Coast strains, respectively. Sensitivity analyses in which parametric 

assumptions were relaxed using TMLE and Super Learning yielded similar estimates 

(Supplementary Table 5). 

 

Estimation of Reproductive Number 

Using Bayesian phylogenetic analysis, we estimated the reproductive number to be 1.27 

(95% CI: 1.10–1.46) for B.1.427 and 1.18 (95% CI: 1.05–1.32) for B.1.429 during the second half 

of 2020. These values were slightly higher than 2 other lineages spreading in California during the 

same time period: 1.12 (95% CI: 1.10–1.14) for B.1.232, and 1.02 (95% CI: .98–1.05) for B.1.243. 

As the reproductive numbers are very similar and were calculated from the median SkyGrid 

estimates, we cannot conclude any statistically significant differences between the lineages. 

 

Discussion 

We monitored SARS-CoV-2 viral variants by genomic sequencing and integration of 

metadata from households at a community based “test-and-respond” program. We found that the 

West Coast variants (PANGO lineages B.1.427 and B.1.429) increased in prevalence relative to 

wild type from November to January in the San Francisco Bay Area among persons tested in the 

same community-based location. These data extend and confirm prior observations from 

convenience, outbreak, and clinical samples reporting apparent increases in relative prevalence of 

the West Coast variants [23]. 

Household secondary attack rates of the West Coast variants were modestly higher than 

for non-West Coast variants, suggesting the potential for increased transmissibility. The West 

Coast variants compromise two closely related lineages (B.1.427 and B.1.429) that share identical 
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sets of mutations in the spike protein but differ by additional synonymous and nonsynonymous 

mutations in other genes. Although the frequency of both lineages increased in this study and in 

California more widely [23], and the estimated increase in risk of secondary household infection 

relative to non-West Coast variants was fairly consistent across lineages, the point estimate was 

somewhat higher for B.1.429. Although moderate compared to increased transmissibility of other 

previously identified variants, even small increases in transmissibility could contribute to a 

substantial increase in cases, particularly in the context of reproductive numbers just below 1. 

Although this finding may be due to chance, future work should continue to monitor individual 

lineages. 

The household attack rate observed here was higher than that reported in a recent global 

meta-analysis [28], even for the non-West Coast variants. It was similar to, or lower than, attack 

rates reported in other US settings. Prior US reports, however, were based on substantially smaller 

sample sizes. 

Our findings that the West Coast variants increased in relative prevalence and had higher 

household secondary attack rates potentially suggest higher transmissibility. However, the West 

Coast variant has been detected in multiple locations and has been detected since May 2020 in 

California without relative expansion until the peak associated with the holiday season of 

November–January. Using Bayesian phylogenetic analysis, the estimated reproductive number for 

both West Coast lineages was found to be modestly higher than other circulating lineages. 

We found no significant differences in viral load (using Ct) between West Coast and non-

West Coast variants (Supplementary Figure 2), and recorded hospitalizations (n = 5/388) remained 

rare, despite the West Coast variant representing 54.4% of positive cases. This highlights the 
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importance of studying walk-up populations, whether they are symptomatic or asymptomatic, as 

hospitalized populations often are confounded by comorbidities and subject to selection bias. 

At the time of this sampling, no instances of B.1.1.7, or independent N501Y mutations 

were detected in our sample population of 830, despite sporadic observations elsewhere in CA 

(approximately 3% [69/2423] of genomes reported in California during the January study period; 

accessed from GISAID 24 February 2021), suggesting that introductions of B.1.1.7 have been rare 

in this catchment area, despite high SARS-CoV-2 incidence [29]. A single case of the P.2 variant, 

which carries the E484K mutation [2], was detected in this study. Surprisingly, this case did not 

have a travel history, highlighting the risk of cryptic transmission. 

In addition to the mutations associated with spike L452R in the West Coast variants, we 

observed, at lower frequencies, other mutations of interest, such as those at spike positions 677 

and 681, both of which have been reported previously on their own [9]. 

This study has several limitations. First, testing was conducted at a walk-up testing site, 

and thus these are inherently convenience samples; however, this would not be expected to impose 

a differential selection bias for those with or without any particular variant. Second, clear 

classification of the index case was not always possible, particularly when multiple adults from a 

household tested positive on the same date; furthermore, secondary household attack rate 

calculations do not account for potential external sources of infection other than the index case. 

However, the relative risk of secondary infection from household exposure to West Coast versus 

non-West Coast variants was similar among children, a group less likely to have been misclassified 

as non-index or to be exposed to external infection. Third, household testing coverage was 

incomplete and, in some cases, consisted of only a single follow-up test; this might contribute to 
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an underestimate (or overestimate) of secondary attack rate, and although we again have no reason 

to suspect differential ascertainment by strain, this could bias estimates of relative risk. 

The occurrence of variants in SARS-CoV-2 was always expected; however, it is often 

difficult to understand the clinical and epidemiological importance of any given single or set of 

co-occurring mutations. Although further epidemiological and laboratory experiments will be 

required to fully understand the community impact and mechanistic underpinnings of each variant, 

it is clear that enhanced genomic surveillance paired with community engagement, testing, and 

response capacity is an important tool in the arsenal against this pandemic. 
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Figure 3.1: Testing catchment area. The location of the 24th & Mission testing site is denoted 
by the yellow symbol. Negative tests are in gray, and positive tests are shown in red. Household 
locations shown have a random offset of up to 750 meters to obfuscate the precise addresses of 
individuals. The testing catchment area encompasses a substantial number of individuals in the 
surrounding 8 Bay Area counties (A). The greatest concentration of individuals reside within San 
Francisco county (B), Map tiles by Stamen Design and data by OpenStreetMap. 
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Figure 3.2: Variants observed at 24th & Mission. A, Proportion of daily cases belonging to 
West Coast and non-West Coast variants. B, Total number of samples per day. C, D, Area maps 
[22] showing the relative proportion of PANGO lineages acquired from full length genomes 
from the November (N = 191) and January (N = 737) time periods, respectively. E, Genome 
maps for variants detected in this study. Dominant mutations (filled black circles), and 
nonsynonymous mutations detected at lower frequency in combination with existing lineages 
(filled gray circles) are shown in gray. Abbreviation: PANGO, Phylogenetic Assignment of 
Named Global Outbreak. 
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Table 3.1: Characteristics of Households Included in the Household Attack Rate Analysis, 
Stratified by Strain. 

 
 
 

Table 3.2: Secondary Household Attack Rates for West Coast Variants, Combined and 
Disaggregated by B.1.427 and B.1.429. 
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Table 3.3: Secondary Attack Rate Disaggregated by Covariates. 
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Abstract 

While SARS-CoV-2 vaccines prevent severe disease effectively, postvaccination “breakthrough” 

COVID-19 infections and transmission among vaccinated individuals remain ongoing concerns. 

We present an in-depth characterization of transmission and immunity among vaccinated 

individuals in a household, revealing complex dynamics and unappreciated comorbidities, 

including autoimmunity to type 1 interferon in the presumptive index case. 

 

Main Text 

Coronavirus disease 2019 (COVID-19) has caused over 230 million cases of infection 

worldwide, leading to more than 4.7 million deaths due to COVID-19 [1]. Global vaccination 

efforts have so far administered 6.1 billion vaccine doses [2]. In the United States, 3 Food and 

Drug Administration (FDA)–authorized vaccines have been widely distributed: BNT162b2 by 

Pfizer/BioNTech, mRNA-1273 by Moderna, and JNJ-78436735 by Johnson & Johnson/Janssen. 

Each has demonstrated, through clinical trials and retrospective studies, the capacity to prevent 

symptomatic infection and severe disease [3]. 

Approximately 50% of the US population is considered fully vaccinated. Many households 

have mixed populations of adults and children with variable completion of COVID-19 vaccination 

[2]. Furthermore, most severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineages 

have been outcompeted and replaced by newer variants of concern, including the Delta and 

Gamma variants. Further, many spike protein mutations associated with neutralizing antibody 

escape (K417N/T, R346K, L452R, T478K, E484K/Q, N501Y) have emerged [4, 5]. Given these 

factors, COVID-19 infections in fully vaccinated people (ie, breakthrough) are well documented 

[6]. However, there have been relatively few detailed studies to date of household transmission 
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trajectories, especially in households with individuals who received different vaccines, or who 

have different vaccine completion statuses. 

Here, we describe a household cluster of Gamma variant COVID-19 cases occurring in 

vaccinated family members living in co-residence that resulted in mixed clinical outcomes. A 

detailed inspection of the epidemiological and clinical features of these cases, together with 

serology testing and genomic sequencing, suggest complex factors including partial immunity and 

unrecognized underlying autoimmunity, as potential contributors to breakthrough infections. Our 

data add to the rapidly emerging literature on SARS-CoV-2 transmission dynamics within 

households of vaccinated persons. 

 

Methods 

Description of Individuals in the Study Household 

Individuals 1–5 lived together in the same residence, where they ate, slept, and socialized 

with one another in an unmasked setting. Individual 6 lived separately but frequented the home of 

Individuals 1–5. Together, these individuals also attended weekly community events, such as 

religious services, together as 1 large group. Each individual was thus exposed to one another 

either through co-residence or frequent visitation. 

Individual 1 is an 80-year-old man with diabetes and asthma who received the 

BNT162b2/Pfizer vaccine on 20 April and 10 May 2021. On 13 May, malaise, myalgia, and 

diarrhea developed. On 19 May, a SARS-CoV-2 polymerase chain reaction (PCR) test was 

positive, and on 20 May, he presented to a local hospital, had hypoxia, and was admitted for 

inpatient management. Due to severe COVID-19, acute respiratory distress syndrome (ARDS), 

and respiratory failure, he required mechanical ventilation. He received remdesivir, 



 

 46 

dexamethasone, and tociluzimab and improved, was weaned from the ventilator, and was 

discharged home on 2 June. 

Individual 2 is a 36-year-old woman who received the JNJ-78436735/Janssen vaccine on 

10 April 2021. On 16 May, she had onset of fever, cough, rhinorrhea, and headache. On 19 May, 

a PCR test was positive. On 23 May, a BinaxNOW (Abbott) rapid antigen test was positive. She 

did not require care at a health facility and improved with self-monitoring at home. 

Individual 3 is a 60-year-old woman who received the mRNA-1273/Moderna vaccine on 

9 March and 6 April 2021. On 19 May, she had onset of fever, chills, cough, and rhinorrhea. On 

20 May, a SARS-CoV-2 PCR test was positive, and on 23 May, a BinaxNOW test was positive. 

She also did not require care at a health facility and improved with self-monitoring at home. 

Individual 4 is an 84-year-old woman who received the mRNA-1273/Moderna vaccine on 

25 February and 26 March 2021. After members of her family tested positive for COVID-19, she 

began home-based quarantine on 20 May. On 23 May, a BinaxNOW test was negative. 

Individual 5 is a 40-year-old man who had tested positive for SARS-CoV-2 the previous 

year on 24 July 2020. At that time, he isolated with Individual 6. Individual 5 received the JNJ-

78436735/Janssen vaccine on 10 April 2021. Although he did not quarantine separately from 

family members who tested positive, a SARS-CoV-2 PCR test on 22 May was negative. 

Individual 6 is a 60-year-old woman who directly cared for Individual 5 when he tested 

positive for SARS-CoV-2 in July 2020. Despite being unable to quarantine, she tested negative for 

SARS-CoV-2 and did not develop any COVID-like symptoms. On 17 May 2021, she received the 

first dose of BNT162b2/Pfizer vaccine. Although she lived apart from Individuals 1–5, she visited 

their home frequently and attended community events with them. When her BinaxNOW test was 

negative on 23 May, she had not yet received a second dose of the vaccine. 
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Timelines of vaccination, COVID-19 symptom onset, and testing history are summarized 

in Figure 4.1A and Supplementary Table 1. 

 

Results 

SARS-CoV-2 positivity as determined by quantitative PCR (qPCR) amplification of the 

nasal swab samples corroborated the BinaxNOW results for each household member. Viral 

genome sequences were recovered from the 3 individuals who tested positive. Sequences 

consistent with the Gamma variant were recovered from Individual 2 (90% genome coverage; 

GISAID: EPI_ISL_2508365) and Individual 3 (98% genome coverage; GISAID: 

EPI_ISL_2508366) (Figure 4.2, BioProject PRJNA790937). Despite incomplete recovery, the 

partial sequence from Individual 1 (17%) contained mutations consistent with the Gamma variant 

(Supplementary Table 2). Characteristic mutations of concern (K417T, E484K, and N501Y) were 

observed [4, 5]. Analysis of the consensus genomes from Individuals 2 and 3 revealed only a single 

nucleotide difference (G17122T, leading to a ORF1b:A1219S amino acid substitution). 

Serum samples from the 5 household members were analyzed for SARS-CoV-2 

neutralizing antibodies using a pseudo-virus neutralization assay [9]. Sera from members of this 

household demonstrated a wide range of neutralization (Figure 4.1B). Individual 1 had a much 

lower neutralizing antibody titer compared with the fully vaccinated individuals (D614G 50% 

neutralization titer [NT50] = 4.4× lower, Gamma NT50 = 6.3× lower), despite being measured 14 

days post–symptom onset and 17 days after his second vaccine dose. Conversely, despite only 

partial vaccination, Individual 6 had a very high neutralizing antibody titer (D614G NT50 = 4.5× 

higher, Gamma NT50 = 5.0× higher) versus the healthy vaccinated cohort. Although this may have 

been related to caring for Individual 5 a year prior, Individual 6 had negative serology on the anti–
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SARS-CoV-2-N immunoglobulin G (IgG) Abbott Architect test. Finally, while Individuals 2, 3, 

and 4 had neutralizing antibody titers in the typical range of fully vaccinated individuals, 

Individuals 2 and 3 ultimately tested positive for COVID-19. Taken together, our observations 

indicate that fully vaccinated individuals may be at risk of breakthrough infection when living in 

households with sustained close contact with infected individuals. 

The neutralization efficacy of patients’ sera against the Gamma variant pseudo-type was 

approximately 2-fold lower than the measured NT50 against wild-type virus (D614G spike 

mutation only). This observation is consistent with previously described decreases in 

neutralization against variants, especially those harboring mutations at E484K [4, 5, 7]. 

Additionally, we tested for anti–interferon (IFN)-α2 autoantibodies, a marker correlated 

with severe COVID-19 and poor patient outcomes [10, 11]. Using serum from patients with 

autoimmune polyglandular syndrome type 1 (APS1), an autoimmune syndrome where patients 

frequently develop an abundance of anti–IFN-α2 antibodies, as a benchmark for verified IFN 

autoimmunity, we measured for anti–IFN-α2 antibody presence using a radioligand binding assay 

(RLBA) [10]. Serum from Individual 1, who had the most severe response to infection, exhibited 

positive anti–IFN-α2 antibody signal while the other family members had negative titers (Figure 

4.1C). 

 

Discussion 

We describe a family of mixed vaccination statuses who experienced various clinical 

trajectories after a Gamma variant COVID-19 exposure in the household. Although coverage of 

the recovered SARS-CoV-2 genome from Individual 1 is incomplete, and Individuals 2 and 3 

differ by 1 amino acid substitution, the rarity of the Gamma variant (6.5% of all sequences 
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submitted to GISAID from San Francisco County from April to June) supports the conjecture that 

infection of this household is derived from a common source. Furthermore, all other Gamma 

variant sequences from this time period had 3–32 (mean = 13, median = 14) nucleotide 

substitutions compared with this household, strongly suggesting direct transmission between 

household individuals as opposed to coincidental, simultaneous infection outside the home. 

Clinical trajectories experienced by household individuals ranged from severe illness 

requiring hospitalization, to mild symptomatic illness, to avoiding COVID-19 infection altogether. 

Individual 1, who had low titers of neutralizing antibodies following vaccination, still developed 

severe COVID-19 infection. Testing for anti–IFN-α2 autoantibodies revealed that serum from 

Individual 1 contained high levels of antibodies against IFN-α2, a trait enriched among patients 

with life-threatening COVID-19 pneumonia [11]. Although the presence of such autoantibodies 

can be clinically silent, they appear to play an influential role in patient outcomes for SARS-CoV-

2 infection [12]. 

Comorbidities such as autoimmune disease caused by anti-IFN autoantibodies can lead to 

decreased protection against circulating variants with spike mutations conferring neutralization 

escape and thus raise the risk of breakthrough infections [11]. With household exposure to 

COVID-19, even fully vaccinated individuals with typical levels of neutralizing antibodies are at 

risk of infection. These data are strongly consistent with intrahousehold transmission among 3 

vaccinated household members in this study, and these data highlight the inherent complexities of 

individuals, including unrealized underlying autoimmunity, that may contribute to transmission 

dynamics. These data support the urgency for continued vaccination, boosters, and next-generation 

vaccines that contain mutations known to confer immune escape potential. 
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Supplementary Data 

Supplementary materials are available at Clinical Infectious Diseases online. Consisting of 

data provided by the authors to benefit the reader, the posted materials are not copyedited and are 

the sole responsibility of the authors, so questions or comments should be addressed to the 

corresponding author. 
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Figure 4.1. Serum samples from household individuals reveal diverse neutralization 

capabilities as well as presence of anti–IFN-α2 auto-antibodies in Individual 1. (A) Timeline 
illustrating the order of events experienced by individuals in the study household, including 
vaccination, symptom onset, and test results. Additional details are available in Supplementary 
Table 1. (B) Plot of 50% pseudo-virus neutralization titers (NT50) of serum samples from healthy 
vaccinated controls (n = 11) collected 12–60 days post–second dose (average = 26.4 days; details 
of serum collection timing relative to vaccination and positive COVID-19 tests are described in 
Supplementary Table 3). For the healthy vaccinated donor cohort, geometric mean titer (dashed 
lines), interquartile range (boxes), and full range (shaded region) are shown for D614G (black) 
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and Gamma (red) pseudo-viruses. NT50 values for Gamma variant pseudo-virus were 
approximately 2-fold lower than D614G pseudo-virus for the healthy vaccinated cohort and most 
household members sera, apart from Individual 2. All household member serum neutralization 
titers were within or above the range of healthy donor titers, except for Individual 1, whose 
neutralization titers for D614G and Gamma were 4.4-fold and 6.3-fold lower than those in healthy 
controls, respectively. (C) Detection by radioligand binding assay reveals that anti–IFN-α2 
autoantibodies are absent from all assayed prepandemic healthy controls (n = 42) and vaccinated 
healthy controls (n = 11) [7]. In this household, only Individual 1 demonstrated the presence of 
anti–IFN-α2 auto-antibodies. Autoimmune polyglandular syndrome type 1 (APS1) patient sera are 
used as positive controls [8]; negative controls are from pre-COVID healthy blood donor plasma 
or the healthy vaccinated donor cohort. Abbreviations: COVID-19, coronavirus disease 2019; F, 
female; IFN, interferon; M, male; PCR, polymerase chain reaction. 
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Figure 4.2. Sequencing depth and coverage of recovered SARS-CoV-2 genomes. Genome 
depth and coverage of SARS-CoV-2 Gamma variant recovered from (A) Individual 1, (B) 
Individual 2, and (C) Individual 3. 
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Abstract 

The wide spectrum of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants 

with phenotypes impacting transmission and antibody sensitivity necessitates investigation of 

immune responses to different spike protein versions. Here, we compare neutralization of variants 

of concern, including B.1.617.2 (delta) and B.1.1.529 (omicron), in sera from individuals exposed 

to variant infection, vaccination, or both. We demonstrate that neutralizing antibody responses are 

strongest against variants sharing certain spike mutations with the immunizing exposure, and 

exposure to multiple spike variants increases breadth of variant cross-neutralization. These 

findings contribute to understanding relationships between exposures and antibody responses and 

may inform booster vaccination strategies. 

 

Main Text 

Genomic surveillance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 

continues to identify a diverse spectrum of emerging variants possessing mutations in the spike 

gene, the main viral determinant of cellular entry and primary target of neutralizing antibodies [1]. 

Many spike mutations likely result from selective pressure that improves viral fitness through 

increased transmissibility or evasion of host immunity [2, 3]. Studies have demonstrated that sera 

from vaccinated and naturally infected individuals yield diminished neutralizing activity against 

certain variants, including the globally dominant delta variant [4]. Because serum neutralization 

titer is an important correlate of real-world protective immunity, these findings suggest that 

antibody responses elicited by exposure to ancestral spike versions (Wuhan or D614G) will be less 

effective at preventing future infection by certain variants [5]. However, the diversity and 

prevalence of variants have fluctuated greatly throughout the pandemic, creating a complex 
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population of individuals that may have inherently different capacity to neutralize certain variants 

depending on the specific genotype of their previous exposures, including vaccination [6]. 

In this study, we address the question of variant-elicited immune specificity by determining 

the breadth of neutralizing activity elicited by exposure to specific SARS-CoV-2 variants, 

vaccines, or both. To accomplish this, we collected serum from subjects with prior infections by 

variants B.1 (D614G mutation only), B.1.429 (epsilon), P.2 (zeta), B.1.1.519, and B.1.617.2 

(delta), which were identified by viral sequencing. We also collected serum from mRNA vaccine 

recipients who were infected with the B.1 ancestral spike lineage prior to vaccination, infected 

with B.1.429 prior to vaccination, or had no prior infection. We measured and compared the 

neutralization titer of each serum cohort against a panel of pseudoviruses representing each 

different exposure variant plus the variants of concern B.1.351 (beta), P.1 (gamma), B.1.617, 

B.1.617.2 (delta), and B.1.1.529 (omicron), which have 1 or more spike mutations of interest in 

common with 1 of the exposure variants. Our results provide a quantitative comparison of the 

degree of neutralization specificity produced by different exposures. We also demonstrate the 

effect of serial exposure to different spike versions in broadening the cross-reactivity of 

neutralizing antibody responses. Together, these findings describe correlates of protective 

immunity within the rapidly evolving landscape of SARS-CoV-2 variants and are highly relevant 

to the design of future vaccination strategies targeting spike antigens. 

 

Methods 

Serum Collection 

Samples for laboratory studies were obtained under informed consent from participants in 

an ongoing community program Unidos en Salud, which provides SARS-CoV-2 testing, genomic 
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surveillance, and vaccination services in San Francisco, California [7]. Subjects with and without 

symptoms of coronavirus disease 2019 (COVID-19) were screened with the BinaxNOW rapid 

antigen assay (supplied by California Department of Public Health). Positive rapid tests were 

followed by immediate disclosure and outreach to household members for testing, supportive 

community services, and academic partnership for research studies. All samples were sequenced 

using ARTIC Network V3 primers on an Illumina NovaSeq platform and consensus genomes 

generated from the resulting raw.fastq files using IDseq [8]. 

Convalescent serum donors were selected based on sequence-confirmed infection with the 

following variants of interest: B.1 (D614G mutation only; n = 10 donors), B.1.429 (epsilon; n = 

15), B.1.1.519 (n = 6), P.2 (zeta; n = 1), B.1.526 (iota; n = 1), B.1.617.2 (delta; n = 3), D614G 

infection with subsequent BNT162b2 vaccination (n = 8), and B.1.429 infection with subsequent 

BNT162b2 vaccination (n = 17). Serum was also collected from healthy recipients of 2 (n = 11) 

or 3 (n = 7) doses of BNT162b2 or mRNA-1273 vaccines who were confirmed to have no prior 

SARS-CoV-2 infection by anti–SARS-CoV-2 nucleocapsid IgG assay [9]. All serum was collected 

from donors an average of 34 days (standard deviation 16.6 days) after exposure to either SARS-

CoV-2 or the most recent dose of mRNA vaccine. For pooled serum experiments, samples from 

the same exposure group were pooled at equal volumes. Serum samples from the closely related 

exposures P.2 and B.1.526 were pooled together for the E484K exposure pool, and samples from 

BNT162b2 and mRNA-1273 exposures were pooled together for the vaccine exposure pool 

because of the very similar neutralization specificity observed in individual tests of these sera. 

Serum samples were heat inactivated at 56°C for 30 minutes prior to experimentation. Relevant 

serum sample metadata and exposure grouping is shown in Supplementary Table 1. 
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Pseudovirus Production 

SARS-CoV-2 pseudoviruses bearing spike proteins of variants of interest were generated 

using a recombinant vesicular stomatitis virus (VSV) expressing green fluorescent protein (GFP) 

in place of the VSV glycoprotein (rVSV ∆ G-GFP) described previously [10]. The following 

mutations representative of specific spike variants were cloned in a cytomegalovirus enhancer-

driven expression vector and used to produce SARS-CoV-2 spike pseudoviruses: B.1 (D614G), 

B.1.429/epsilon (S13I, W152C, L452R, D614G), P.2/zeta (E484K, D614G), B.1.351/beta (D80A, 

D215G, ∆242-244, K417N, E484K, N501Y, D614G, A701V), P.1/gamma (L18F, T20N, P26S, 

D138Y, R190S, K417T, E484K, N501Y, D614G, H655Y, T1027I, V1176F), B.1.1.519 (T478K, 

D614G, P681H, T732A), B.1.617 (L452R, E484Q, D614G, P681R), B.1.617.2/delta (T19R, T95I, 

G142D, ∆157-158, L452R, T478K, P681R, D614G, D950N), and B.1.1.529/omicron (32 spike 

mutations). All pseudovirus spike mutations are listed in Supplementary Table 2. Pseudoviruses 

were titered on Huh7.5.1 cells overexpressing ACE2 and TMPRSS2 (gift of Andreas Puschnik) 

using GFP expression to measure the concentration of focus forming units (ffu). 

 

Pseudovirus Neutralization Experiments 

Huh7.5.1-ACE2-TMPRSS2 cells were seeded in 96-well plates at a density of 7000 

cells/well 1 day prior to pseudovirus inoculation. Serum samples were diluted into complete 

culture media (Dulbecco’s Modified Eagle’s Medium with 10% fetal bovine serum, 10mM 

HEPES, 1 × Pen-Strep-Glutamine) using the LabCyte Echo 525 liquid handler and 1500 ffu of 

each pseudovirus was added to the diluted serum to reach final dilutions ranging from 1:40 to 

1:5120, including no-serum and no-pseudovirus controls. Serum/pseudovirus mixtures were 

incubated at 37°C for 1 hour before being added directly to cells. Cells inoculated with 
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serum/pseudovirus mixtures were incubated at 37°C and 5% CO2 for 24 hours, resuspended using 

10 x TrypLE Select (Gibco), and cells were assessed with the BD Celesta flow cytometer. The 

World Health Organization International Reference Standard 20/150 was used to validate the 

pseudovirus assay and compare serum neutralization titers (Supplementary Table 3) [11]. All 

neutralization assays were repeated in a total of 3 independent experiments with each experiment 

containing 2 technical replicates for each condition. Cells were verified to be free of mycoplasma 

contamination with the MycoAlert Mycoplasma detection kit (Lonza). 

 

Data Analysis 

Pseudovirus flow cytometry data were analyzed with FlowJo to determine the percentage 

of GFP-positive cells, indicating pseudovirus transduction. Percent neutralization for each 

condition was calculated by normalizing GFP-positive cell percentage to no-serum control wells. 

The 50% and 90% neutralization titers (NT50 and NT90) were calculated from 8-point response 

curves generated in GraphPad Prism 7 using 4-parameter logistic regression. The fold-change in 

pseudovirus neutralization titer in each serum group was calculated by normalizing each variant 

NT50 and NT90 value to D614G pseudovirus NT50 and NT90 values in the same serum group. To 

compare neutralization titer across a panel of different pseudoviruses and serum groups, the 

log2 fold-change compared to D614G pseudovirus was reported. 

 

Results 

We compared NT50 and NT90 of D614G and B.1.429 (epsilon) pseudoviruses in individual 

serum samples from subjects exposed to D614G infection, B.1.429 infection, mRNA vaccination, 

D614G infection with subsequent mRNA vaccination, and B.1.429 infection with subsequent 
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mRNA vaccination (Figure 5.1). Fold-changes in both NT50 and NT90 are reported because these 

values often differ in magnitude due to differences in neutralization curve slope between different 

variants and sera. In D614G-exposed and vaccine-exposed serum, we observed approximately 2- 

to 3-fold decreases in average neutralization titer against B.1.429 pseudovirus compared to D614G 

pseudovirus. As expected, B.1.429-exposed serum neutralized B.1.429 pseudovirus more 

efficiently than D614G pseudovirus. Of note, previous infection with either D614G or B.1.429 

followed by vaccination led to substantially higher neutralization titers against both pseudoviruses. 

In contrast to other exposure groups, serum from vaccine recipients previously infected by B.1.429 

neutralized D614G and B.1.429 at similar titers, with only a 1.3-fold difference in NT90, indicating 

that exposure to multiple spike variants elicits a potent response with specificity toward the breadth 

of prior exposures. 

We next investigated how exposure impacts neutralization specificity by crossing a panel 

of 8 different spike variants against serum pools elicited by 9 different prior exposures (Figure 

5.2 and Supplementary Table 3). A range of reductions in neutralization titer relative to D614G 

pseudovirus were observed, with B.1.617.2 (delta), B.1.351 (beta), and B.1.1.529 (omicron) 

exhibiting the greatest resistance to neutralization in serum from vaccinated or D614G-exposed 

individuals with up to 4-fold, 12-fold, and 65-fold reductions in NT90, respectively. However, for 

most variants, reductions in neutralization titer were considerably smaller or absent in serum from 

subjects previously exposed to a variant bearing some or all of the same spike mutations as the 

variant being tested. Specifically, prior exposure to the E484K mutation in the spike receptor 

binding domain (RBD) produced the greatest neutralization of 4 tested variants with mutations at 

the E484 position: B.1.617, P.1 (gamma), P.2 (zeta), and B.1.351 (beta). Similarly, B.1.617.2 

(delta) was neutralized more effectively by serum elicited by partially homologous exposures 
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B.1.1.519 and B.1.429, and was neutralized most effectively by serum elicited by fully 

homologous B.1.617.2 exposure. Conversely, in B.1.617.2-exposed serum we observed the least 

efficient neutralization of the highly divergent spike variants P.1 and B.1.351. Interestingly, 

although B.1.1.529 (omicron) substantially escaped neutralization in all convalescent sera and 

serum from recipients of 2 vaccine doses, a much more modest 4- to 8-fold reduction in 

neutralization titer was observed in sera from individuals with previous infection plus vaccination 

or three vaccine doses. 

 

Discussion 

In this study, we observe that vaccination and natural SARS-CoV-2 infection elicit 

neutralizing antibody responses that are most potent against variants that bear spike mutations 

present in the immunizing exposure. This trend is exemplified by variants with mutations at the 

spike E484 position, which were neutralized more effectively by E484K-exposed serum than other 

serum types. Importantly, we also show that B.1.617.2 (delta) is neutralized more effectively by 

serum elicited by prior exposure to 3 different variants—B.1.429, B.1.1.519, and B.1.617.2—

which have separate sets of spike mutations partially or fully overlapping with mutations in 

B.1.617.2. These effects are presumably due to the shared L452R RBD mutation in B.1.429 and 

B.1.617.2, and the shared T478K RBD mutation and P681 furin cleavage site mutation found in 

both B.1.1.519 and B.1.617.2. The poor neutralization of P.1 and B.1.351 by delta-exposed serum 

further reinforces the notion that cross-neutralization is heavily impacted by antigenic distance 

between variants [12]. Together, these results demonstrate that serum neutralization specificity is 

strongest against variants fully homologous to the exposure, but even single shared spike 
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mutations, particularly those in highly antigenic regions such as the RBD, can enhance cross-

neutralization as supported in other studies [3, 6, 13]. 

This study also demonstrates the effect of serial exposure to repeated or novel versions of 

spike on neutralizing antibody response. Infection with B.1.429 (epsilon) followed by vaccination 

led to greater cross-neutralization of B.1.429 and B.1.617.2 (delta) compared to vaccination alone 

or D614G infection plus vaccination, supporting the notion that exposure to multiple spike variants 

expands neutralization breadth. Repeated immunizing exposures from infection plus vaccination 

or booster vaccination led to both an overall increase in neutralization titers and generally 

broadened neutralization specificity, particularly towards B.1.1.529 (omicron), which was 

neutralized most effectively by serum from recipients of 3 vaccine doses. A limitation of this study 

is the relatively small number of serum samples; however, the shift in neutralization titer between 

D614G and variant pseudoviruses shows strong consistency between samples. 

These serology data leverage human exposures to an array of naturally occurring spike mutations, 

including those relevant to the globally dominant B.1.617.2 and recently ascendant B.1.1.529 

variants, providing a real-world complement to previous animal studies investigating heterologous 

boosting or multivalent vaccination strategies [14, 15]. Our findings suggest that immunity 

acquired through natural infection will differ significantly between populations in different regions 

of the world due to highly variable prevalence of different SARS-CoV-2 variants throughout the 

course of the ongoing pandemic. These results also reinforce the urgent need for widespread 

booster vaccination and contribute additional evidence suggesting that heterologous or multivalent 

boosting strategies may be important and effective measures to address newly emergent variants 

such as the highly immune evasive B.1.1.529 (omicron). Future studies investigating immune 
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responses to additional emerging variants in vaccinated and unvaccinated individuals will 

contribute to identifying spike antigen versions that elicit broadly neutralizing antibody responses. 

 

Supplementary Data 

Supplementary materials are available at The Journal of Infectious Diseases online. 

Supplementary materials consist of data provided by the author that are published to benefit the 

reader. The posted materials are not copyedited. The contents of all supplementary data are the 

sole responsibility of the authors. Questions or messages regarding errors should be addressed to 

the author. 
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Figure 5.1. Neutralization of D614G and B.1.429 pseudoviruses by serum from individuals 
with different exposures. Plot of 50% and 90% pseudovirus neutralization titers (NT50 and NT90) 
of serum samples obtained from donors with the indicated infection and/or vaccination exposures. 
Grey lines connect neutralization titer values for D614G (black dots) and B.1.429 (blue dots) 
pseudoviruses within each individual serum sample. Geometric mean neutralization titers for each 
serum group are marked with red lines and fold-change in NT50 and NT90 between D614G and 
B.1.429 pseudoviruses is shown along with P value. Dark grey shading marks the interquartile 
range of titer values in each group and light grey shading marks the 10th–90th percentile of the 
range. P values were calculated with a Wilcoxon matched-pairs signed-rank test. 
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Figure 5.2. Change in variant pseudovirus neutralization titer relative to D614G. Matrix of 
normalized neutralization titers for 8 different variant pseudoviruses (rows) neutralized by 9 
different pools of individual sera grouped by exposure (columns). Data are represented as a heat 
map of the log2 fold-change in NT50 (top left of each box) and NT90 (bottom right of each box) of 
each variant relative to D614G pseudovirus. All serum samples were collected at least 14 days 
after the date of the subject’s positive COVID-19 test or date of most recent vaccine dose. All titer 
measurements are the mean of at least 3 independent experiments, each performed with 2 technical 
replicates. Positive log2 fold-change (blue) indicates an increase in neutralization titer for that 
variant relative to D614G pseudovirus, while negative log2 fold-change (red) indicates a decrease 
relative to D614G. Statistical significance was determined with unpaired t tests. All values are 
statistically significant (P value < .05) except where noted with ns to indicate the difference in 
variant neutralization titer is not significantly different from D614G pseudovirus neutralization 
titer in that serum pool. Abbreviations: COVID-19, coronavirus disease 2019; NT50 and NT90, 50% 
and 90% neutralization titer. 
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Abstract 

Genomic and proteomic screens have identified numerous host factors of SARS-CoV-2, but 

efficient delineation of their molecular roles during infection remains a challenge. Here we use 

Perturb-seq, a single-cell CRISPR screening approach, to investigate how inactivation of host 

factors changes the course of SARS-CoV-2 infection and the host response in human lung 

epithelial cells. Our high-dimensional data resolve complex phenotypes such as shifts in the stages 

of infection and modulations of the interferon response. However, only a small percentage of host 

factors showed such phenotypes upon perturbation. We further identified the NF-κB inhibitor IκBα 

(NFKBIA), as well as the translation factors EIF4E2 and EIF4H as strong host dependency factors 

acting early in infection. Overall, our study provides massively parallel functional characterization 

of host factors of SARS-CoV-2 and quantitatively defines their roles both in virus-infected and 

bystander cells. 

 

Introduction 

The coronavirus disease 2019 (COVID-19) pandemic, caused by SARS-CoV-2, has 

claimed millions of lives and remains a global health burden. Despite the success of rapid vaccine 

developments, barriers including vaccine access and uptake, as well as breakthrough infections 

make it imperative to develop both effective antivirals, and therapies targeting an overactive host 

immune response. A detailed understanding of the host determinants of infection, and the host 

response throughout infection will broadly inform efforts to develop novel antiviral agents. 

Many studies have identified candidate host factors by an array of high-throughput 

methods, including protein-protein and protein-RNA interaction mapping, as well as CRISPR-

based genetic screening [1–10]. Additionally, the host response to SARS-CoV-2 infection has been 
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investigated in single-cell transcriptional studies of blood, bronchial lavage, and tracheal aspirate 

from COVID-19 patients, human and animal (non-human primate, hamster, ferret) models of 

infection, and in cell lines infected in tissue culture [11–18]. However, it remains a challenge to 

validate individual candidate host factors, delineate their specific roles during infection, and 

evaluate their suitability as targets for interventions. 

Here, we use Perturb-seq, a single-cell CRISPR screening approach [19–22], to understand 

how host genetic perturbations alter the course of SARS-CoV-2 infection and host transcriptional 

response in human lung epithelial cells. We designed a Perturb-seq library targeting 183 known 

coronavirus host factors. Those factors were either identified as host proteins interacting with viral 

factors, as protective hits in coronaviral genetic screens or for their known roles in antiviral host 

defense pathways [1,2,4–9,23–29]. We performed a CRISPR interference (CRISPRi) [30] screen 

in human lung carcinoma (Calu-3) cells, infected with a clinical isolate of SARS-CoV-2 collected 

in late 2020 (PANGO lineage B.1.503), and subsequently performed single-cell RNA sequencing, 

capturing both infected and uninfected bystander cells. Our results identify transcriptionally 

distinct clusters of infected and bystander cells, uncover new roles of genetic perturbations in 

interferon signaling, and functionally validate specific SARS-CoV-2 host dependency factors.                                                                                                                                                                                                                                                                                              

 

Results 

Functional genomics of coronavirus host factors with a single-cell readout  

To characterize the single-cell transcriptional response to SARS-CoV-2 infection and 

simultaneously test the effect of host genetic perturbations on viral RNA production and host 

response, we used Perturb-seq [19–22]. Perturb-seq combines CRISPR-based genetic 

perturbations with a rich, single-cell transcriptomics readout that is capable of capturing high-



 

 73 

dimensional phenotypes, making it well-suited for studying virus-host systems [31]. Viral 

infection leads to a heterogeneous response in a cell population, characterized, for instance, by 

cells being in different stages of infection and showing varying levels of activity of antiviral 

pathways [17,32,33]. Targeting critical host factors can cause shifts in the distribution of cellular 

states, which delivers insight into the function of any given host factor. 

We performed our experiments in Calu-3 cells, a human respiratory epithelial cell line that 

endogenously expresses the entry receptor of SARS-CoV-2, ACE2, and has been previously used 

for several CRISPR screening and single-cell studies of SARS-CoV-2 [17,34]. We employed 

Calu-3 cells engineered to stably express the machinery for CRISPR interference (see Methods) 

[30,35,36]. CRISPRi is highly efficient at suppressing gene expression of selected targets without 

introducing double-strand breaks, with minimal off-target effects. On-target activity can be 

maximized by using two single-guide RNAs (sgRNAs) per target, expressed from one lentiviral 

vector [37,38]. 

We compiled a list of host factors from the literature on SARS-CoV-2 and other 

coronaviruses, mainly genes identified as protective hits in genetic screens for modifiers of SARS-

CoV-2 or related coronavirus infections, and host proteins that were found to interact with viral 

proteins. We prioritized candidates with multiple lines of evidence supporting their roles in 

coronavirus biology. Additionally, we curated a list of factors involved in the innate immune 

response. Overall, we designed and cloned a library containing 239 elements, of which 195 target 

a single gene, 22 target combinations of two genes (typically paralogs or members of the same 

pathway, e.g. ACE2 + TMPRSS2 or IFNAR1 + IFNAR2), and 22 non-targeting controls (Table 

S1). We packaged the library into lentivirus and delivered it into the engineered Calu-3 cells at a 

low multiplicity of infection, followed by selection for cells with successful lentivirus integration. 
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We infected the resulting population for 24 h with a late-2020 clinical isolate of SARS-

CoV-2 featuring only a single spike mutation, D614G, and 10 non-synonymous mutations in other 

genes relative to the ancestral isolate (PANGO lineage B.1.503, complete genome available at 

GISAID accession ID: EPI_ISL_13689582). Single-cell transcriptomes were then captured using 

a droplet-based microfluidic workflow (10x Genomics) with direct capture of sgRNAs to reveal 

which gene or gene pair was targeted in each cell [37] (Fig. 6.1A). After quality control filtering 

(Methods), we profiled the transcriptomes of 27,882 single cells which had exactly one Perturb-

seq library element unambiguously assigned to them. 

 

Transcriptional heterogeneity in SARS-CoV-2 infected cells 

As a baseline for our subsequent Perturb-seq analysis, we first profiled the transcriptional 

response in the cell population upon infection, characterizing the spectrum of cellular states 

irrespective of the genetic perturbations present in the population. The heterogeneity of cellular 

states was primarily driven by the fraction of viral transcripts (Fig. 6.1B), which reached levels of 

up to 95% in some cells. 

In order to compare infected and uninfected cells, we developed a classifier that determines 

the infection state of each cell based on the read counts of individual viral transcripts (Methods, 

Fig. 6.1C-D). Due to the presence of ‘ambient’ viral RNA, almost all cells have nonzero viral 

reads. To separate cells with true infection from those with spurious reads, the baseline of ambient 

viral RNA per cell was determined based on a spike-in of uninfected wild-type cells, which were 

identified by the absence of lentivirus-derived transcripts. 

We sought to design an experimental strategy that captures single-cell transcriptomes of 

SARS-CoV-2 infected cells in a way that resolves both host and viral transcripts. Coronaviruses 
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have a unique transcript architecture [39], consisting of the (+)strand viral genome, numerous 

subgenomic mRNAs (sgmRNAs), and matching (-)sense counterparts. Importantly, all (+)sense 

transcripts start with the same ~72nt leader sequence at the 5′ end, followed by a junction to the 

body of the sgmRNAs. All (+)sense transcripts also share the same 3′ end and are polyadenylated. 

We reasoned that 3′ sequencing would not be able to resolve individual viral transcripts and 

therefore used the 10x Genomics 5′ workflow with a modified sequencing strategy that extends 

read1 to sequence from the 5′ end into the transcript, spanning the leader-body junction (Fig. 6.6A). 

A recent report found the same conceptual approach to maximize unambiguous detection of the 

different viral sgmRNAs [40]. 

Utilizing this 5′ sequencing strategy (see Methods), we resolved individual viral sgmRNAs 

and observed distinct patterns of viral transcript abundances in infected cells (Fig. 6.6B). The 3′-

proximal Nucleocapsid (N) transcript was by far the most abundant viral RNA. Cell-by-cell 

correlation of the abundances of individual viral sgmRNAs was largely a function of genomic 

location: the abundances of the sgmRNAs proximal to N, encoding ORF3A, E, M, ORF6, 

ORF7ab, ORF8 showed the highest correlation with N. Conversely, the abundances of Spike and 

ORF1ab (i.e. whole genome) were much less correlated on a cell-by-cell basis. Additionally, we 

mapped the positions of leader-body junctions in sgmRNAs from our extended read1 data and 

found both the positions as well as their relative frequencies of individual junctions to be in 

agreement with measurements derived from bulk, whole-transcript sequencing data [39] (Fig. 

6.6C).  

Next, using our infection state classification, we observed the cell cycle phase as a major 

contributor to the heterogeneity among uninfected cells, with subclusters often representing cells 

within one predominant phase. Conversely, infected cells showed a pronounced, general shift in 
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their cell cycle phases: we observe far fewer infected cells in S phase and the proportion of G1 

cells increased approximately two-fold (Fig. 6.1E-F), suggesting that cell cycle arrest occurs upon 

infection. Furthermore, infected and uninfected bystander cells differed dramatically in the total 

amount of detectable cellular RNA, quantified by the number of unique molecular identifiers 

(UMIs) per cell, indicating a pronounced shutoff of host gene expression in infected cells (Fig. 

6.1G). This observation is consistent with a recent study showing that SARS-CoV-2 NSP1 

specifically degrades transcripts lacking the viral 5′ leader sequence, enabling the virus to 

dominate the cellular mRNA pool [41]. 

To further characterize the heterogeneity within the infected and bystander populations, 

different cell states were delineated using Leiden clustering, defining 12 clusters of bystander cells 

(clusters A–L) and 7 clusters of infected cells (clusters M–S) (Fig. 6.2A). 

To identify transcriptional patterns within these different clusters, we evaluated gene 

expression within each cluster. (Fig. 6.2B). Bystander cells (clusters A–L) varied in their 

expression of genes associated with antigen presentation, chemokines, and interferon-stimulated 

genes (ISGs). ISGs including IFI6, IFI27, and ISG15 (Fig. 6.7A) were prominently more abundant 

in bystander cells compared to infected cells. This suggests active suppression of the interferon 

response in infected cells, a phenomenon that has been observed for many different viruses 

[31,33,41,42].  

We identified a small but prominent subset of cells (bystander cluster L and infected cluster 

M) expressing interferon β (IFNB1) and λ (IFNL1/2/3) (Fig. 6.7B) and a number of chemokines 

(CXCL1/2/3/10/11, CCL5, IL6, CXCL8/IL8). This observation is consistent with prior single-cell 

work showing a subset of interferon-producing cells after SARS-CoV-2 infection [17], and studies 

that assessed interferon production in bulk [43]. Notably, all interferon-producing cells exhibited 
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pronounced expression of both NF-κB pathway genes and ISGs. Additionally, this population 

expressed genes associated with antigen presentation and translation regulation/stress response 

(e.g. PPP1R15A). These features were reminiscent of subpopulations of abortively infected cells 

which have been characterized for the herpesviruses HSV-1 and HCMV [31,33]. However, only 

approximately 20% of the interferon-producing cells in our dataset were classified as infected 

based on the abundances of viral transcripts (cluster M). 

Infected cells (clusters M–S) varied not only in their fractions of viral transcripts, but also 

showed a concomitant shift in cell cycle distribution (Fig. 6.2A), and subtle host transcriptional 

patterns (Fig. 6.2B). A number of host transcripts were generally upregulated in infected cells, 

including genes associated with NF-κB signaling such as NFKBIA (Fig. 6.7C), NFKBIE/Z, EGR1, 

REL and RELB (Fig. 6.2E). In addition, genes related to cell stress (ATF3, FOS, JUN) were 

upregulated in most infected clusters.  

It is conceivable that the apparent downregulation of some transcripts in infected cells 

(such as ISGs) is an artifact caused by the global host shutoff. Therefore, we repeated gene 

expression and cell cycle analyses on cells that were downsampled to the read depth of infected 

cells (bottom 2% of the UMI distribution). These data recapitulate our prior findings and suggest 

that despite host shutoff, we were able to detect transcriptional changes in infected and bystander 

cells (Fig. 6.7D-I). 

 

Host perturbations alter infection dynamics 

To determine how the activity of host factors affects the response of a cell population to 

SARS-CoV-2 infection, we next evaluated how each genetic perturbation in our CRISPRi library 

altered viral load and bystander activation. To ensure sufficient representation of our 239 library 



 

 78 

elements, we assessed the distribution of captured cells for these elements and determined the peak 

of that distribution (mode) to be at 138 cells (Fig. 6.8A). 48 library elements had less than 55 cells 

each, forming a distinct lower mode in the distribution of cell numbers, suggesting that they target 

genes essential for the growth of Calu-3 cells.  As these elements lacked appropriate coverage for 

proper evaluation of infection dynamics, they were removed, resulting in 25,835 remaining cells, 

on which we based all downstream analyses (Table S2). Among well-represented targets, the 

median knockdown efficiency was 91%, and 90% of our library showed greater than 75% 

knockdown of their respective target transcripts in uninfected cells confirming the efficacy of 

CRISPRi targeting in Calu-3 cells (Fig. 6.8B). 

To test which host factors confer protection from infection upon perturbation, we compared 

the distributions of viral loads in cells with any given CRISPRi target against the population of 

cells with non-targeting controls (Fig. 6.3A). Knockdown of only one factor, SEC62, resulted in 

increased viral loads. This was unexpected in light of genetic screens that identified SEC62 

knockout as protective against human coronavirus (HCoV) OC43 infection [9]. SEC62 is involved 

in the post-translational targeting of proteins across the endoplasmic reticulum, acts as an 

autophagy receptor in the ER, and is a known interactor of SEC61B [44,45].. On the other hand, 

knockdown of the known entry factors ACE2 and TMPRSS2, both alone and in combination, led 

to strongly reduced viral loads. Similarly, TMPRSS2 in combination with either Furin, Cathepsin 

B, or L (but notably not Furin or either Cathepsin alone) resulted in substantially reduced fractions 

of viral RNA, suggesting partial redundancy of those entry factors. Knockdown of BRD2 also 

reduced viral loads considerably, which is consistent with the recent finding that BRD2 is required 

for efficient transcription of ACE2 [35]. 
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Aside from those known factors involved in viral entry, we identified a number of 

additional,  strongly protective factors such as: the autophagy factor ATG14 [46], as well as 

translation factors EIF4E2 (4EHP) and EIF4H. Translation factors EIF4E2 and EIF4H were 

previously found to interact with the viral proteins NSP2 and NSP9, respectively [1,2]. EIF4E2 

represses translation initiation by binding to the mRNA cap and can be ISGylated to enhance this 

cap-binding activity [47]. In the setting of SARS-CoV-2, EIF4E2 surfaced as an unvalidated 

protective host factor in one genetic screen [5]. The second translation factor that conferred 

protection from infection upon knockdown, EIF4H, binds to and stimulates RNA helicase activity 

of EIF4A [48,49]. Additionally, EIF4H is reported to interact with SARS-CoV-2 RNA [1,5,50]. 

Notably, the protective phenotypes when targeting EIF4E2 and EIF4H do not appear to reflect a 

general effect of perturbing translation factors, as EIF4B did not significantly alter infection 

dynamics.   

Additionally, knockdown of VMP1 and MPP5 conferred protection from infection. VMP1 

is involved in cytoplasmic vacuole formation and autophagosome assembly, when it interacts with 

TMEM41B [51], a known pan-coronavirus host dependency factor [5,9]. MPP5 is involved in tight 

junction formation and was similarly identified as a protective hit in a genome-wide CRISPR 

survival screen [9], and as interactor of the E protein of SARS-CoV-1 [52]. Our data validate those 

proteins as protective host factors. 

Lastly, we observed that knockdown of the NF-κB inhibitor IκBα (encoded by NFKBIA) 

significantly reduced viral loads. The NF-κB pathway is well-known to be activated in the setting 

of viral infections [53], and its activity was reported to be important for SARS-CoV-2 replication 

[54]. While NFKBIA is transcriptionally upregulated in SARS-CoV-2 infected cells as shown in 
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our data (Fig. 6.7C) and by others [17,54,55], it has not appeared in any genetic screen to our 

knowledge as a protective factor. 

At baseline, IκBα inhibits the NF-κB pathway by binding to and retaining p65/RELA-

containing complexes in the cytosol [56]. Canonical pathway activation induces proteasomal 

degradation of IκBα/NFKBIA, leading to p65/RELA nuclear translocation and subsequent 

transcription of NF-κB target genes (including NFKBIA, forming a negative feedback loop). Prior 

studies have shown that the papain-like proteases (PLPro) of both SARS-CoV-1 and SARS-CoV-

2 can deubiquitylate and thereby stabilize IκBɑ, thus decreasing p65/RELA nuclear translocation 

and suppressing NF-κB pathway activation [55,57]. 

However, our data show that knockdown of NFKBIA does not lead to transcriptional 

activation of the NF-κB pathway in bystander cells (Fig. 6.9A), arguing against constitutive 

activation as a phenotypic outcome. Knocking down RELA or RELB, both individually or in 

combination, did not result in a protective phenotype. Our data suggest a dependency of SARS-

CoV-2 on NFKBIA, which may be independent of its inhibitory role in the NF-κB pathway.  

To further investigate the phenotypic response of NFKBIA perturbation, we utilized the 

OpenCell collection of HEK293T cell lines expressing split mNeonGreen (mNG)-tagged proteins 

from their endogenous loci [45]. First, we confirmed that the NF-κB pathway was functional in 

cells expressing mNG-tagged RELA. Using live-cell fluorescent microscopy, we observed the 

expected p65/RELA translocation to the nucleus after TNF-α stimulation (Fig. 6.9B). We then 

generated polyclonal NFKBIA knockout lines in the background of the mNG-RELA line. Without 

stimulation, there was no constitutive p65/RELA translocation to the nucleus in NFKBIA KO 

cells. After treatment with TNF-α, we observed a blunted response with delayed and incomplete 

p65/RELA nuclear translocation in NFKBIA KO cells compared to control cells (Fig. 6.9B). These 
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data are in agreement with prior studies that show a delayed response to NF-κB pathway 

stimulation in the setting of an NFKBIA knockout [58], and suggest a compensatory mechanism 

that prevents both constitutive and acute pathway activation.  

Next, we orthogonally validated the observed protective phenotypes of inactivated 

NFKBIA, EIF4E2 and EIF4H by generating knockout lines from Huh-7.5.1 (hepatocellular 

carcinoma) cells ectopically expressing ACE2 and TMPRSS2 (Fig. 6.3B). This cell line is 

permissive for SARS-CoV-2 infection and has been used for pooled CRISPR screening [9]. We 

infected polyclonal pools of knockout cells with SARS-CoV-2 and quantified the fraction of 

infected cells by fluorescence microscopy, staining for the viral nucleocapsid protein. Compared 

to non-targeting controls, ACE2, NFKBIA, EIF4E2, and EIF4H knockout cell lines showed a 

substantial decrease in infection (Fig 3C-D). NFKBIA knockout cells displayed a 31.8% decrease 

in infection, 85.5% in EIF4E2 KO, and 33.2% in EIF4H KO cells compared to non-targeting 

control cells. This confirms the findings from our Perturb-seq data and implicates that all those 

factors play a role in SARS-CoV-2 infection in different cell types. 

 

Systematic classification of host factor phenotypes 

Changes in the viral load distribution is only one manifestation of the multitude of cellular 

phenotypes resulting from host factor perturbation. To achieve a systematic and unbiased 

characterization of host factor perturbation phenotypes, beyond viral protection/sensitization, we 

monitored how different perturbations shift the proportion of cells in distinct cellular states. 

Qualitatively, this can be assessed by looking the distribution of cells with a given genetic 

perturbation on the UMAP projection. More quantitatively, one can count cells in the different 

Leiden clusters and determine how a given host factor perturbation changes the relative numbers 
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of cells by cluster (see Fig. 6.2A). This approach not only identifies host factor perturbations that 

alter cellular states and sorts them by similarity, but also narrows down the underlying mechanism 

by directly pinpointing the cellular states that are affected by the perturbation [31]. 

Cells with non-targeting control sgRNAs were uniformly distributed across the UMAP 

representation of the cell population (Fig. 6.4A). In comparison, cells with certain genetic 

perturbations deviated from this pattern in specific ways. First, cells with sgRNAs targeting known 

entry factors were specifically excluded from all infected clusters in UMAP space (Fig. 6.4A). The 

same was also true for cells with NFKBIA-targeting sgRNAs. Moreover, those cells were similarly 

excluded from two clusters (bystander clusters F and L, the latter being one of the interferon-

producing clusters). These clusters border infected clusters and were classified as uninfected based 

on viral transcripts in quantities below noise level. Based on the observation that entry factor 

inactivation excludes cells from these clusters, we speculate that these two clusters represent cells 

that are in the earliest stage of infection, have been infected with a defective viral particle, or are 

in a state where transcription of viral genes is effectively suppressed by an antiviral host response.  

We systematically quantified the under/overrepresentation of cells with a given host factor 

perturbation in individual clusters (Fig. 6.4B), compared to cells with non-targeting control 

sgRNAs. The results can be visualized as a heatmap of the odds-ratio of how targeting a certain 

host factor changes the occupancy of each cluster (Fig. 6.4C, Fig. 6.10A), which can further be 

projected onto a UMAP of host factor phenotypes (Fig. 6.4D, Fig. 6.10B). 

This analysis re-confirmed the group of proviral factors, which are strongly protective 

when inactivated (Fig. 6.4D, 6.10B, blue highlight). A second group of perturbations which caused 

a distinct re-distribution of cells across the individual clusters were cells with inactivated members 

of the interferon pathway (Fig. 6.4A, 4D, 6.10B, orange highlight). Those cells were shifted from 
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bystander clusters representing cells with high expression of ISGs (clusters B, D, E, F) to the 

cluster with a low degree of interferon response (cluster A) (see Fig. 6.10A, 2B). 

The group of interferon signaling factors contained not only expected genes (IFNAR2, 

STAT2, IRF3, IRF9), but also genes not routinely implicated in the interferon response such as 

SPNS1, KEAP1 and GPR89A/B. To evaluate these in more detail, we scored the extent of 

interferon response in single cells based on a previously established list of ISGs that are readily 

detected by single cell RNA sequencing [31]. We subsequently tested for statistically significant 

shifts in this interferon score for each perturbation compared to non-targeting controls (Fig. 6.5A, 

B). To rule out the effect of viral antagonism of this pathway, we limited this analysis to bystander 

cells.  

Knockdown of GPR89A/B, KEAP1, SPNS1 and BRD2 significantly decreased bystander 

activation as measured by our ISG scores, confirming these proteins as regulators of the interferon 

signaling pathway. GPR89A and GPR89B are sequence-identical paralogs, encoding a G protein 

coupled receptor, and proteomic studies report interactions of this protein with multiple SARS-

CoV-2 proteins (M, NSP6 and ORF7B) [4]. Notably, GPR89A/B overexpression is reported to 

activate the NF-κB signaling pathway [59], and this protein is thought to be important for Golgi 

acidification and glycosylation [60]. KEAP1 is a repressor of NRF2, which acts as a regulator of 

the inflammatory response [61]. Our findings for KEAP1 are consistent with prior work that 

showed repression of inflammatory genes in Keap1 deficient murine cells [62]. SPNS1 is involved 

in lipid and transmembrane transport, and Wang et al. reported that genetic knockout of this gene 

protects from hCoV-229E and hCoV-OC43 infections in vitro [9]. Both KEAP1 and SPNS1 were 

shown to interact with SARS-CoV-2 ORF3 and ORF7b, respectively [1,4]. Furthermore, CRISPRi 

knockdown of BRD2 decreased the overall sensitivity of bystander cells in our study, which aligns 
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with prior reports that perturbation of BRD2 reduces interferon signaling [35]. Taken together, our 

analytical framework identified genes not routinely implicated in bystander activation, and proved 

to be very sensitive to identify factors with subtle phenotypes beyond strong protection from 

infection.  

 

Discussion 

In this study, we measured the dynamics of SARS-CoV-2 infection in tissue culture, and 

simultaneously validated and functionally characterized host factors of infection. Perturb-seq 

delivers a high-dimensional, phenotypic single-cell readout, characterizing both the intrinsic 

heterogeneity of a SARS-CoV-2 infected population, and the response to many host factor 

perturbations. We captured different functional outcomes and simultaneously classified host 

factors by the similarities of their roles during infection and bystander activation. Our study 

thereby complements and greatly expands upon the genomic and proteomic screens which initially 

informed our selection of host factors included in our Perturb-seq library [1,2,4–6]. 

Our transcriptional analysis revealed upregulation of key NF-κB pathway members, 

including NFKBIA, in SARS-CoV-2 infected cells. This is consistent with findings of earlier 

studies [17,18,54]. Considering the prominent transcriptional host shutoff, we speculate that viral 

factors trigger the upregulation of NFKBIA and/or protect the transcript from degradation. 

Moreover, our study demonstrates that IκBɑ/NFKBIA can be targeted genetically to confer strong 

protection from SARS-CoV-2 infection. Our data suggest blunting of NF-κB pathway activation 

as one underlying mechanism to explain this phenotype. While somewhat counterintuitive in light 

of IκBɑ/NFKBIA’s role as an NF-κB inhibitor, this result is in line with data from previous high-

throughput optical imaging screens [58]. Furthermore, we suspect that independent from IκBɑ’s 
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canonical inhibitory role in NF-κB signaling, IκBɑ may additionally be co-opted in another way 

that benefits viral proliferation. This is corroborated by a recent report that overexpression of a 

dominant-negative IκBɑ mutant enhances SARS-CoV-2 infection in A549 cells, while 

simultaneously reducing p65/RELA nuclear translocation [82]. 

Our data further establishes that two translation factors, EIF4E2 and EIF4H, are required 

for SARS-CoV-2 infection. While prior studies report that both factors interact with viral proteins 

[1], here, we show that knockdown and knockout of these factors decreases infection. The 

4EHP(EIF4E2)-GIGYF2 complex is involved in ribosome-associated quality control by 

preventing translation initiation of faulty mRNA [63–65], and its interaction with NSP2 is 

conserved across SARS-CoV-1, SARS-CoV-2 and MERS-CoV [2]. Others have proposed that 

viral NSP2 interacts with the 4EHP(EIF4E2)-GIGYF2 complex to inhibit host translation 

initiation [66]. However, the strongly protective knockdown phenotype of EIF4E2 observed in our 

data leads us to instead hypothesize that binding of viral NSP2 to EIF4E2 drives preferential 

translation of viral RNA. In this manner, the virus may subvert what is normally a defense 

mechanism for its exclusive use within the cell. Further investigation to determine which 

transcripts EIF4E2 binds to in the setting of infection will aid our understanding of the underlying 

mechanism of EIF4E2 utilization by coronaviruses. 

EIF4H directly binds to and stimulates the DEAD box RNA helicase EIF4A [49]. A 

pharmacological inhibitor of EIF4A, Zotatafin, decreases SARS-CoV-2 infection in vitro, and 

clinical trials (NCT04632381) are underway to evaluate its safety and efficacy in humans [1,67]. 

Our experiments reveal a viral dependency on the EIF4A binding partner EIF4H, suggesting a 

complementary, and possibly synergistic point for additional therapeutic intervention. 
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Finally, our systematic characterization of each genetic perturbation revealed regulators of 

bystander activation. KEAP1, GPR89A/B, and SPNS1, which were previously found to be 

protective when knocked out [5,7,9], did not alter infection dynamics within our study. We 

speculate that knockout of these genes was identified as protective in survival screens due to their 

lack of interferon sensitivity, leading to protection from interferon-induced death [5,9]. 

Conversely, it is possible that these contrary phenotypes are representative of the different 

timeframes of our Perturb-seq experiments (24 hours) compared to genetic survival screens (7+ 

days). While knockdown of KEAP1, GPR89A/B, and SPNS1 initially decreased interferon 

stimulation in our experiments, it is conceivable that these factors have a secondary role in 

protecting the population from infection in long-term cultures. 

While our Perturb-seq library was designed to include genes with experimental evidence 

of roles in coronavirus biology, only ~13% of these factors ultimately showed significant 

phenotypes during the first 24 hours of infection in our cell culture model. This underscores the 

necessity for high-throughput orthogonal validation and characterization of host factors in different 

cell types. We do expect that specific host factor perturbation phenotypes, in particular of factors 

acting at the later stages of the viral life cycle such as virion assembly and egress, cannot be 

resolved by Perturb-seq. Similarly, host factors that are active only in rare subsets of cells, such as 

the interferon-producing subpopulation, may be difficult for Perturb-seq to dissect without 

increasing the scale of these experiments.  

In summary, our study presents comprehensive transcriptional profiling of SARS-CoV-2 

infection dynamics, tests the effect of 183 host factor perturbations on infection, and characterizes 

the host response of each perturbation. Key advances of this work include the identification of 

genes involved in bystander activation and functional validation of host dependencies factors of 
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SARS-CoV-2. Our study highlights the utility of Perturb-seq for large-scale systematic 

characterization of host factors essential for pathogen infections and establishes the groundwork 

for future mechanistic studies to investigate how SARS-CoV-2 modulates both the NF-κB 

pathway and translation.  
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Methods 

Establishment and propagation of SARS-CoV-2 clinical isolate 

SARS-CoV-2 (SARS-CoV-2/human/USA/CA-UCSF-0001H/2020) was isolated, 

propagated, and plaqued on Huh7.5.1 cells overexpressing ACE2 and TMPRSS2 [9]. Viral titer 

was determined using standard plaque assay with Avicel [68] on Huh7.5.1-ACE2-TMPRSS2 cells. 

Isolated virus was sequence-verified, lineage identified using PANGO [69], and deposited onto 

GISAID (accession ID: EPI_ISL_13689582). Additionally, SARS-CoV-2 was mycoplasma 

negative (Lonza MycoAlert Mycoplasma Detection Kit). All experiments in this study that utilized 

cultured SARS-CoV-2 were conducted in a biosafety-level 3 laboratory. 

 

Cell Culture 

The CRISPRi Calu-3 cell line was generated by lentiviral delivery of pMH0001 (UCOE-

SFFV-dCas9-BFP-KRAB) [19] (Addgene #85969) into Calu-3 cells, followed by FACS sorting 

of BFP positive cells [19,35]. These cells were grown in DMEM/F12 supplemented with 10% 

FCS, penicillin, streptomycin, glutamine and non-essential amino acids. Huh7.5.1 cells 

overexpressing ACE2-TMPRSS2 and HEK293Ts cells were grown in DMEM supplemented with 

10% FCS, penicillin, streptomycin, and glutamine. All cell types were maintained at 37°C and 5% 

CO2. 

 

Library design and lentivirus generation 

Our Perturb-seq library was designed to target coronavirus host factors which were 

compiled from the literature, primarily from proteins physically interacting with coronavirus 

proteins, and from genes that came up as hits in CRISPR screens for host factors. All targets, 
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sgRNA sequences, and host factor annotations are listed in Table S1. Guide selection and library 

cloning followed the design introduced by Replogle et al [37,38]. We used a lentiviral backbone 

(pJR101, a variant of pJR85, Addgene #140095, with a GFP instead of  BFP marker) which carries 

an additional Puromycin marker and allows the expression of two separate sgRNAs from different 

U6 promoters (human and mouse, respectively) with two distinct sgRNA constant regions (CR1 

and CR3, respectively) to remove homologous regions in order to minimize recombination during 

lentiviral packaging. CR1/3 are further engineered with ‘capture sequence 1’ to be compatible with 

10x’s direct guide capture technology of the non-polyadenylated sgRNAs [37].  

Guide oligos containing sets of two sgRNA sequences, separated by a spacer region, were 

ordered from Twist Bioscience, PCR-amplified, and cloned into pJR101 by ligation into the 

BstXI/BlpI restriction sites. The BsmBI-flanked spacer was then replaced by a fragment amplified 

from pJR98 (Addgene #140096), carrying the constant region of the first sgRNA and the promoter 

for the second one. The resulting library was sequenced to confirm proper guide sequences and 

abundance distribution.  

After initial library cloning was completed, we obtained new screening data and designed 

an additional 24 sgRNAs, targeting 12 factors with 2 sgRNAs each. Those were cloned in array 

into the same pJR101 background as one-guide vectors (without the pJR89 drop-in). We then 

pooled the individually cloned sgRNA vectors with the initial library at equimolar amounts of all 

library elements at the DNA level. We used this combined library for lentiviral production as 

described [37]. While analyzing our single-cell datasets, we observed that the individually cloned 

library elements were overrepresented roughly 3-fold, which we attribute to higher lentiviral 

packaging efficiency due to their slightly smaller size. 
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Perturb-seq 

Calu-3 CRISPRi cells were transduced with our Perturb-seq library at an MOI of ~0.1. 

Cells were puromycin-selected for 7 days, after which they had plateaued at ~93% GFP+ cells, 

followed by two more days of culture without selection markers. Cells were seeded into a 12-well 

plate at 400,000 cells/well and on the following day infected with SARS-CoV-2 at an MOI of 4. 

Infection was performed either for 1h, followed by a media change (‘pulsed infection’) or without 

removal of the inoculum (‘non-pulse’). After 24 hours, cells were washed with PBS, dissociated 

with TrypLE Select Enzyme (10x, Thermofisher Scientific), washed, and resuspended in 1x PBS 

with 0.04% BSA. Wild-type, uninfected Calu-3 cells were spiked at ~1% into the dissociated Calu-

3 CRISPRi cells to allow for analysis of ambient viral RNA.  Manufacturer's instructions for the 

Chromium NextGEM Single Cell V(D)J Reagents Kit v1.1 (10x Genomics) were followed for 

preparation of gene expression libraries. Modifications to the 10x single-cell sequencing protocol 

were made for direct guide capturing and library preparation as previously described [37]. Gene 

expression and guide libraries were subsequently quantified on the Bioanalyer (Agilent) using the 

High Sensitivity DNA kit, pooled, and sequenced on the Illumina NovaSeq 6000 (read 1: 150 bp, 

read 2: 150 bp, index length: 8 bp). 

 

Data analysis 

Gene expression libraries were aligned using the 10x Genomics CellRanger v3.1.0 with 

default settings and aligned the hg38 reference genome concatenated with the SARS-CoV-2 

genome. For viral alignments, STARsolo (version 2.7.8a) was used to capture viral junction sites. 

Cell barcode and UMI were identified for guide libraries using CellRanger. Guides identity was 

assigned to single cells following the Replogle et al. mixed model approach. Infection conditions 
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were combined for downstream analyses since there was not a statistically significant different 

distribution in guides between the conditions. 

Scanpy was used for downstream cell filtering and analyses [70]. Cell filtering was done 

to include only cells that have one guide set per cell and at least 55 cells per guide. Additionally, 

low quality cells characterized as the bottom 2% of cells in total counts and cells with greater than 

20% mitochondrial RNA were excluded. 

We found the two populations with pulsed vs non-pulsed infection to exhibit very similar 

characteristics and combined them for all downstream bioinformatic analyses. 

For assessing the effect of the host transcriptome in the setting of vastly different library 

distributions, we performed experiments with and without viral sequences, and subsequently 

downsampled to the level of infected cells and re-analyzed the data. 

For clear identification of infected cells, ambient viral RNA was evaluated in wild-type 

Calu-3 cells packaged into droplets. These WT control cells were identified by selecting cells that 

lack Cas9, lentiviral, and guide transcripts. We additionally selected cells that have at least 10,000 

UMIs, which yielded 1082 cells for this analysis. In those cells, we determined the mean and 

standard deviation of the read counts of all individual viral genes. Other cells were considered 

infected if they had at least 6 viral transcripts at 2 standard deviations above the mean of WT cells, 

as well as more than twice the total viral transcript reads per cell. Conversely, cells were considered 

uninfected if no viral gene exceeded the 2 standard deviation threshold. A small proportion of cells 

could not be clearly determined as infected or uninfected, therefore we classified these cells as the 

borderline population (designated cluster T in UMAP space).  

Guide knockdown percentages were determined by calculating the normalized count of 

target gene / nontargeting control. This analysis was limited to bystander cells to remove the effects 
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of viral antagonism, and was subset to genes with at least 0.5 UMI per cell after normalization to 

remove low abundance or undetectable genes. Cell cycle phases were determined following 

scanpy’s tutorial. Similarly, single cells were also scored for interferon stimulation (ISG score) 

using scanpy’s sc.tl.score_gene function. Differential expression was performed by exporting 

scanpy’s count matrix to R, and subsequently performing MAST following Seurat’s tutorials. 

 

Orthogonal Validation   

For targeted follow-up, published protocols for guide design and cloning into the 

lentiCRISPR v2 plasmid were followed [71]. The following sgRNA sequences were used: 

ACE2: CACCGCAGGATCCTTATGTGCACAA 

NFKBIA: CACCGAGGCTAAGTGTAGACACGTG (Huh7.5.1),  

CACCGCTGGACGACCGCCACGACAG (HEK293T) 

EIF4H: CACCGCCCCCCTACACAGCATACGT 

EIF4E2:CACCGTCATAGCTCTGTGAGCTCGT 

Lentivirus was produced in HEK293Ts by co-transfecting pMD2.G, DR8.91, and the 

lentiCRISPR v2 plasmid with the guide of interest using TransIT-Lenti (Mirus Bio). Lentivirus-

containing supernatant was collected 48 hours after transfection, filtered, and frozen.  

For orthogonal validation of host factors that alter viral infection, Huh7.5.1-ACE2-

TMPRSS2 cells were transduced with lentivirus in the presence of polybrene. We next selected 

transduced cells for 72 hours with puromycin. After 1 week, knockout cell lines were infected with 

SARS-CoV-2 at an MOI of 3 for 20 hours in biological duplicates. Cells were subsequently fixed 

in 4% paraformaldehyde for 30 minutes, permeabilized with 0.2% Triton X, blocked with 5% BSA 

stained with primary anti-NP (Sino Biological 40143-R001), and secondary goat anti-rabbit IgG 
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conjugated to Alexa Fluor 488 (Thermo Fisher Scientific A-11034). Slides were mounted with 

DAPI Fluoromount-G (SouthernBiotech 0100-20) and imaged on a Nikon Ti inverted fluorescence 

microscope (4X). Quantification of images was performed using CellProfiler 4 [72]. 

To investigate the effect of NFKBIA knockout on NF-κB induction, we generated 

NFKBIA knockout lines and controls in a background of HEK293T cells expressing N-terminally 

mNG11-tagged RELA [45]. RELA-tagged cell lines were transduced with lentivirus carrying Cas9 

and NFKBIA-targeting sgRNA and puromycin-selected for 1 week. Cells were stimulated with 

recombinant TNF-ɑ (50 ng/ml; Abcam ab9642) and imaged using confocal microscopy 25 and 45 

minutes after stimulation. The imaging volume per field of view was 21 µm depth with 0.25 µm 

z-sectioning. During imaging, cells were maintained in a stage-top incubator (Okolab, H201-K-

Frame) at 37°C and 5% CO2. The imaging was performed using a DMI-8 inverted microscope 

(Leica) with a Dragonfly spinning-disk confocal (Andor) with a 63x 1.47 NA oil objective (Leica). 

Images were acquired using a Prime BSI sCMOS camera (Photometrics, pixel size = 6.5 µm x 

µm). Microscope control was achieved with Micromanager version 2.0.0 [73]. Image visualization 

was via napari v0.4.16 [74].  
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Figure 6.1: Perturb-seq for single-cell transcriptional analysis and functional validation of 

SARS-CoV-2 host factors. A. Experimental design for the Perturb-seq experiment in Calu-3 cells 
engineered to express CRISPRi machinery. We perturbed 183 different host factors (individually 
or in combination) using a lentivirally-delivered library, infected the cells with SARS-CoV-2 for 
24 hours, and performed droplet-based single-cell RNA sequencing, reading out host and viral 
transcripts as well as the sgRNA, indicating the perturbed host factor. B. Single-cell transcriptomes 
were projected into UMAP space and colored by viral RNA fraction per cell. C, D. Density of 
cells identified as either uninfected/bystander (C) or infected (D) by our classifier, overlaid onto 
all cells in gray. E. Cells color-coded by their cell cycle phase. F. Fraction of bystander and 
infected cells assigned to each cell cycle phase. G. Cells color-coded by the number of detected 
UMIs per cell. 
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Figure 6.2: Transcriptional heterogeneity in SARS-CoV-2 infection. A. Single-cell 
transcriptomes were projected in UMAP space and colored by Leiden cluster. Leiden clusters were 
subsequently characterized by the mean viral fraction, the number of cells, and the cell cycle 
composition per cluster. Cluster T are all cells that could not be assigned an unambiguous infection 
state. B. Differential expression of Leiden clusters revealed transcriptionally distinct subclusters 
of bystander cells, infected cells, and a small subset of interferon-producing cells. The color of 
each dot is pseudobulk gene expression of each gene per cluster, and the size of each dot is the 
expression normalized to the cluster with maximum expression of that gene. 
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Figure 6.3: Host perturbations alter SARS-CoV-2 infection dynamics. A. The effect of how 
each CRISPRi perturbation altered viral load was displayed as the change in mean viral load by 
KS p-value of viral load distribution change. Color code indicates CRISPRi targets, non-targeting 
controls and targets in which knockdown significantly altered viral loads. B. To orthogonally 
validate CRISPRi targets, we transduced Huh7.5.1 cells overexpressing ACE2 and TMPRSS2 
with lentivirus targeting control and test genes. Cells were subsequently infected with SARS-CoV-
2, and percent infection was calculated (C) by immunofluorescence and microscopy (D). Scale = 
100 µm. 
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Figure 6.4: Host perturbations alter localization of cells in UMAP space and Leiden cluster 
membership. A. Library elements for non-targeting controls, factors that alter SARS-CoV-2 



 

 110 

infection, and interferon signaling are highlighted in UMAP space. B. Library element 
representation by cluster was calculated, normalized and visualized on a heatmap (C). D. 

Subsequent dimensionality reduction of this odds-ratio was projected into UMAP space and 
revealed subclusters by biological function. 
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Figure 6.5: Host perturbations alter interferon signaling in bystander-activated cells. 

A. We scored bystander cells based on their ability to respond to interferon (ISG score) and  tested 
which perturbations significantly altered the ISG score distribution by perturbation. This is 
represented by the mean change in ISG score when compared to non-targeting controls by the KS 
p-value per perturbation. B. Expression heatmap of select targeting and non-targeting library 
elements showing the mean z-score for a subset of interferon-stimulated genes. 
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Figure 6.6: Characterization of viral transcripts. A. Schematic representing the structure of 
SARS-CoV-2 viral RNA, and the expected sequence that captures the lead-body junction 
(represented with orange bar) using the 10x Genomics 5’ workflow. B. Pearson correlation matrix 
of all viral RNA transcripts. C. Viral reads from infected cells were extracted and junction sites 
were mapped to the viral genome. 
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Figure 6.7: Host gene expression and downsampling show similar transcriptional 
phenotypes. Host transcriptional analysis revealed heterogeneity in infected and bystander 
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populations, including differential gene expression in UMAP space of:  A. ISG15; B. IFNL1 and; 
C. NFKBIA. To confirm that transcriptional differences are not exclusively due to host shutoff, 
we downsampled host and viral transcripts and confirmed similar D. transcriptional patterns and; 
E-F. cell cycle phase patterns. Additionally, we removed viral transcripts and performed the same 
analysis to confirm observed phenotypes are not an artifact of including viral reads in analyses (G-
I). 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6.8: CRISPRi library element representation and knockdown efficiency. A. We 
evaluated the distribution of captured cells for our 239 library elements and plotted the kernel 
density estimate. B. Knockdown percentage for each element was calculated relative to non-
targeting controls and ranked by percent knockdown. 
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Figure 6.9: Effect of NFKBIA perturbation on transcription and p65/RELA localization. A. 
To evaluate if NFKBIA knockdown transcriptionally alters NF-κB signaling in bystander cells, 
we looked at gene expression (log1p) of NF-κB target genes (CXCL2) as well as the pathway 
members themselves, which are on a negative feedback loop (RELA/B, NFKBIA) in cells with 
guides targeting NFKBIA, as well as RELA, RELB, both RELA and RELB, and non-targeting 
controls. B. To further investigate the effect of NFKBIA perturbation on p65/RELA localization, 
we utilized split mNeonGreen (mNG)-tagged RELA cells, generated polyclonal CRISPR 
NFKBIA knockout cells, and monitored p65/RELA localization at baseline. Additionally, we 
stimulated genetically unperturbed and NFKBIA KO cells with TNF-ɑ and performed live-cell 
imaging at 25 and 45 minutes after stimulation (scale = 20 µm). 
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Figure 6.10: Localization of CRISPRi library elements in Leiden clusters (expanded Figure 
6.4). Expanded version of heatmap and UMAP with all CRISPRi elements labeled in A. and B. 
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Chapter 7: Identification of Host Factors and Characterization of the Antiviral Response to 

RSV Infection 

 

The work in this chapter includes contributions from: 

Dr. Andreas Puschnik, Dr. Hanna Retallack, Dr. Matthew Laurie, Dr. Jamin Liu, Dr. Duo Peng, 

Dr. Kristeene Knopp, Dr. Matthew Zinter, Dr. Chun Jimmie Ye and Dr. Joseph DeRisi. 
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Abstract 
Respiratory syncytial virus (RSV) is a prevalent pathogen globally, and remains the leading 

cause of bronchiolitis and pneumonia in the United States for children during their first year of life 

[1]. Despite its prevalence worldwide, there remains no efficacious therapeutic for infected 

patients. To facilitate investigation of the host response to this common respiratory pathogen, and 

to aid in the discovery of host determinants of RSV infection, we leveraged two unbiased 

technologies: single-cell RNA sequencing and whole genome CRISPR/Cas9 knockout screening. 

Our unique data complement prior studies that investigate the proinflammatory response to RSV 

infection, and provide a rich resource to aid in future hypothesis testing. 

 

Introduction 
Respiratory Syncytial Virus (RSV) is a ubiquitous respiratory virus that infects most 

children by two years of age, and reinfections are common throughout life [2].  RSV can lead to 

both upper  and lower respiratory tract symptoms for all age groups, but remains a salient cause of 

infant mortality. Despite numerous clinical trials, there remains no RSV-specific therapeutic for 

infected patients. Due to the global health burden of RSV infection and lack of efficacious 

therapeutics, it remains essential to continue investigating the fundamental molecular virology of 

infection and the host response to RSV. 

RSV is a negative-sense, single-stranded RNA virus, and a member of the 

Paramyxoviridae family [3]. It primarily infects respiratory epithelial cells, and a multitude of bulk 

transcriptional and proteomic studies have investigated the host response to RSV infection [4–7]. 

Upon infection, these respiratory epithelial cells sense viral RNA (RIG-I, MDA-5, TLRs) and 

initiate proinflammatory signaling cascades (interferon and NF-κB signaling) [8]. The strength 
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and timing of the innate immune response in the respiratory epithelium is crucial for effective viral 

clearance. Notably, to evade the host antiviral response, RSV encodes two nonstructural proteins 

(NS1 and NS2) that inhibit both interferon induction and signaling [6,9,10]. A detailed 

understanding of critical host pathways activated and repressed during infection, and pathways 

altered by RSV antagonism remains critical for novel therapeutic discovery. 

While the host response to RSV infection has been investigated in vitro, ex vivo and in vivo 

using transcriptomics and proteomics [4–7], it has remained challenging to understand the 

complexity of the host response using these bulk methods. Over the last decade, single-cell 

resolution has led to the appreciation of the heterogeneous response to many viral infections [11–

15], and has revealed that both infected and bystander activated cells contribute to the 

proinflammatory response. In the setting of RSV infection, the relative contribution of infected 

and bystander cells to the proinflammatory response remains undetermined. 

In addition to investigating the transcriptional response to viral infections, perturbation 

based screens are commonly used to identify host dependency factors of viral infection. While 

both RNAi [16] and haploid [17] screens have effectively unveiled host dependencies of RSV 

infection, CRISPR/Cas9 screening may further complement these studies by genetically knocking 

out all host genes in respiratory epithelial cell lines. 

Here, we utilized two unbiased approaches to investigate pathways altered by and 

necessary for RSV infection in a respiratory epithelial cell line: droplet-based single-cell RNA 

sequencing and whole genome CRISPR/Cas9 screening. Our results identified host factors and 

pathways that are differentially expressed in infected and bystander activated cells, and revealed 

host dependencies factors of RSV. 
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Results 
Single-cell transcriptomics reveals varying cellular states of RSV infection 

To characterize the transcriptional response of RSV infected and bystander activated cells 

over the viral life cycle, we performed temporal single-cell RNA sequencing. We infected a human 

adenocarcinoma lung epithelial cell line (A549 cells) with RSV (subtype A2), and performed 

droplet based single-cell RNA sequencing (10x Genomics) at four time points: 0 hrs, 4 hrs, 8 hrs 

and 12 hrs post infection (Figure 7.1A). Additionally, to investigate differences between cells that 

underwent true infection compared to cells that came into extracellular contact with viral proteins 

and RNA, we treated A549 cells with heat inactivated RSV for each of the specified time points. 

First, we created a classifier for identifying infected and bystander activated cells as 

described in Sunshine et al. [18]. In brief, to assess the presence of ambient viral RNA from the 

cellular supernatant, we included a spike-in of murine 3T3 cells prior to single-cell RNA 

sequencing to allow for computational identification of infected versus bystander cells. With this 

classifier, we were able to identify RSV infected populations and calculated the percent infection 

by condition and time point (Figure 7.1B). With an MOI 0.3, we observed 28.6% infection by 12 

hours post inoculation. Both uninfected and heat-inactivated controls remained uninfected for the 

duration of our experiments, therefore we are confident with both the experimental protocol and 

classifier utilized in these experiments. 

We next sought to understand the transcriptional characteristics of the infected population. 

Across all infected cells, we observed a mean viral fraction per cell of 8.1% and maximum of 

40.3%. We subsequently investigated how the viral fraction per cell changed over time, and by 

condition (Figure 7.1C). Over our time course, we saw a steady increase in the number of cells 
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with a higher viral fraction, suggesting a steady increase in viral load per cell over this 12 hour 

time course. 

Additionally, we observed that cells with a higher fraction of viral RNA had more total 

RNA counts (UMIs) than cells with less or no viral RNA (Figure 7.1D). Upon removal of viral 

reads, this distribution shifts down near the uninfected/lowly infected population (Figure 7.1E). 

This indicates that unlike other viral infections (i.e. SARS-CoV-2), RSV does not lead to host 

shutdown during infection. 

To further understand transcriptional patterns within our infected population, we next 

tested the correlation of every host gene with the most abundant viral transcript, NS1. Pearson’s 

correlation revealed 8 human genes that correlated (r >0.3) with viral NS1 (Table 7.1): HERPUD1, 

HSPA5, MANF, SDF2L1, HSPA1A, DDIT3, DNAJB9, HSPE. Notably, many of these host 

factors are involved in regulation of endoplasmic reticulum stress and the unfolded protein 

response.   

To initially characterize the transcriptional heterogeneity of RSV infection, we subsetted 

our data to the time point that had the highest abundance of infected cells (12 hours). At this time 

point, our analysis revealed close overlap in UMAP space of our cells treated with the vehicle 

control and heat inactivated RSV (Figure 7.2A). On the contrary, cells that were treated with live 

RSV are distributed throughout UMAP space with the highest density in two major clusters. 

Further investigation of these clusters revealed a cluster of infected cells, with varying fraction of 

viral RNA and viral transcripts (Figure 7.2B-D). Both correlation analysis and differential 

expression revealed an upregulation of ER stress genes HERPUD1 and DDIT3 within infected 

cells (Figure 7.2E-F). The second major cluster identified cells lacked viral RNA, have an 
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increased abundance of ISG15 (Figure 7.2G) and other interferon stimulated genes (ISGs) such as 

MX1, IFIT1, and NT5C3A. 

ISG15 is a well described ISG with known antiviral functionality [19]. Along with being 

upregulated in our bystander population, it is additionally upregulated in bystander activated cells 

in the setting of SARS-CoV-2, HCMV and influenza infections [11,14,18]. To further identify 

other genes that are co-expressed with ISG15 in our bystander population, we subsequently 

performed Pearson’s correlation of ISG15 with all other host genes (Table 7.2). This analysis 

confirmed co-expression of validated ISGs within our bystander activated population, and 

complements prior studies [14] in describing ISGs that are detectable by single-cell RNA 

sequencing. 

To further investigate gene expression differences between each condition and time point, 

we next performed differential expression for A549 cells treated with RSV and heat inactivated 

virus, compared to uninfected controls. There is not a detectable difference in signal at early time 

points between heat inactivated and vehicle treated controls. We observed few genes differentially 

expressed at early time points, and began to see an upregulation of ISGs by 8 hours post 

infection.  Differential expression (MAST [20]) of infected versus bystander activated cells 

revealed a number of pathways 12 hours post infection (Figure 7.2H). We observe a 

downregulation of multiple ISGs (ISG15, IFIT1, IFI6, STAT1, MX1) and CYP24A1 (cytochrome 

P450 enzyme family), in infected cells compared to the bystander activated cells. Furthermore, we 

see an upregulation in ER related (HERPUD1, SELENOS, SDF2L1, MANF) and plasminogen 

related (PLAU, PLAUR) genes. We additionally see an upregulation of apoptotic factor, 

TNFRSF12A, and lysosomal protease, CTSL in RSV infected cells. 
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Genome-wide CRISPR Screen Identifies Host Dependency Factors of RSV Infection 

To identify host determinants of RSV infection, we performed whole-genome 

CRISPR/Cas9 knockout screening. First, A549 cells were transduced with the GeCKOv2 library, 

and infected with RSV-EGFP for 24 hours. To enrich for host dependency factors, we performed 

two different iterations of the screen. For the first iteration, EGFP negative cells were sorted and 

cultured for 1 week, thus enriching for cells that were not infected at the time of the sort and 

remained viable after one week in culture. For the second iteration of the screen, EGFP negative 

and EGFP-low cells were harvested immediately after the sort (24 hours post infection). For both 

screens, sgRNAs that provided protection from RSV infection were PCR amplified and sequenced. 

We subsequently performed enrichment analysis using the MAGeCK algorithm [21] to rank genes 

and calculate the MAGeCK enrichment score for each screen (Figure 7.3A-C) .  

Our viability screen (Screen #1) identified genes involved in heparan sulfate biosynthesis, 

the COG Complex and retrograde transport at the trans-golgi network (Fig 7.3B). Notably, the top 

hit for both screens was TMEM165 (Transmembrane Protein 165). This protein is localized to the 

Golgi apparatus (Human Protein Atlas [22]), and is functionally thought to play a role in protein 

glycosylation.  

For the second iteration of our screen, along with heparan sulfate and COG complex related 

genes, we identified host factors related to the Golgi (ARFRP1, SYS1), V-ATPase (ATP6V1B2), 

vesicle trafficking (TRAPPC1) and membrane trafficking (RAB4A) (Fig 7.3B). We subsequently 

compared the two screens and saw substantial concordance in our top ranked genes (Fig 7.4A). 

We suspect the observed differences between the two screens is due to the viability screen (#1) 

enriching for sgRNAs that prevent infection and prolong cell life/proliferation, while our second 
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sort screen only enriches for sgRNAs that prevent infection within the first 24 hours. Overall, these 

screens highlight the importance of performing screens under different technical conditions. 

Next, to assess if our top enriched genes are specific to RSV, we concatenated the top 

twenty genes of each screen, removed redundancy, and compared our findings to hits from prior 

RSV haploid and RNAi screens [16,17]. Additionally, we compared our findings to the hits of 

other viral genome-wide CRISPR knockout screens [23,24]. We observed 70% of our top genes 

had been described as proviral factors in these other viral studies (Fig 7.4B). This suggests that 

while many of these host factors altered RSV infection dynamics within these two screens, they 

may have pan-viral activity.  

To further identify pathways and protein interaction networks for our list of enriched genes, 

we subsequently performed gene ontology, pathway and process enrichment analysis using 

Metascape [25]. Significantly enriched pathways include heparan sulfate and glycosaminoglycan 

biosynthesis, cytosolic transport, retrograde transport at the transit-golgi-network and endoplasmic 

reticulum to Golgi vesicle-mediated transport (Fig 7.5A). Furthermore, Metascape protein-protein 

interaction enrichment analysis identified two networks using the Molecular Complex Detection 

(MCODE) algorithm encompassing retrograde transport and heparan sulfate proteoglycan biosynthesis (Fig 

7.5A). 

 

Discussion/Future Directions 
 In this study, we used two unbiased approaches to investigate the single-cell response to 

RSV infection and uncover host determinants of infection. Our single-cell transcriptional analyses 

revealed upregulation of ISGs in bystander actuated cells, and this signature is largely absent 

within the infected population. We additionally observed an upregulation of genes associated with 
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ER stress in RSV infected cells. Notably, the signatures observed in the infected population do not 

mirror that of SARS-CoV-2 infected cells described in Chapter 6. We do not detect robust 

activation of the NF-κB inhibitors (NFKBIA/E/Z) within the RSV infected population, nor do we 

see host shutoff. Future directions include a deeper investigation into the dynamics and spatial 

landscape of interferon stimulation during RSV infection. More specifically, generation of ISRE-

mCherry reporter lines, infection with RSV-EGFP and temporal live microscopy would allow for 

a spatial understanding of infection and the host response. Furthermore, a secondary question that 

comes from this work: how does perturbation of bystander activation alter infection dynamics? 

Future studies that investigate the functional consequences of impaired bystander activation may 

include: 1) mixing wild-type cells and IFNAR1/2 knockout cells at varying proportions; 2) 

infecting with EGFP; 3) performing temporal live microscopy. I hypothesize that perturbation of 

bystander activation will accelerate RSV infection. 

We further sought to complement this rich transcriptional dataset and identify host 

determinants of RSV infection with genome-wide CRISPR screening. These analyses revealed 

multiple factors involved in heparan sulfate biosynthesis and golgi transport. Future directions 

include curating a list of genes from both the transcriptional and screening data, and similar to 

Chapter 6, performing Perturb-seq to functionally characterize and validate each gene’s role in 

infected and bystander cells.  

In summary, these datasets provide a resource for the broader RSV community, and lay the 

groundwork for further investigation of the host response and host determinants of RSV infection. 
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Figure 7.1: Experimental design and infection characterization. A. Schematic of 
experimental design. B. Percent infected broken down by time point and condition; C.  Viral 
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percentage per cell for each condition and time point. All cells were binned by viral percentage 
per cell and each plot represents the density for (D) total counts and (E) human counts per cell. 
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Figure 7.2: Single-cell transcriptome characterization at 12 hour time point. A. Density plot 
of different treatments. B. Viral fraction per cell. Viral transcript counts (log1p) of C. RSV NS1, 
D. RSV NS2, E. HERPUD1, F. DDIT3, G. ISG15. H. Volcano plot that highlights differentially 
expressed genes when comparing infected and bystander activated cells at 12 hours post 
infection. 

Figure 7.3: Genome-wide CRISPR/Cas9 genetic knockout screen in human A549 cells for 
identification of proviral host factors. A. Schematic of CRISPR/Cas9 screen; B-C. Gene 
enrichment analysis for Screen # 1 (sorted population with viability selection) and Screen # 2 
(cells were harvested directly after sorting). Cells are colored by biological process/cellular 
location. The top hit for both screens, TMEM165, is highlighted in brown. 
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Figure 7.4: RSV Screen comparisons. A. Scatter plot comparing the results of Screen 1 and 
Screen 2. The -log10 MAGeCK enrichment score for each screen is plotted. B. Comparison of 
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the top hits from RSV CRISPR/Cas9 screens to previously published RSV haploid [17] and 
RNAi screens [16], as well as CRISPR genetic screens for LCMV, SARS-CoV-2, 229E and 
OC43 [23,24]. Each gene was evaluated for enrichment in RSV and other viral screens, and the 
color purple indicates the presence within each screen. 
 

 
 
Figure 7.4: Metascape pathway and protein-protein interaction networks. A. Significantly 
enriched pathway clusters using Pathway and Process Enrichment Analysis (Metascape). Each 
circle represents a different pathway/process enrichment cluster. B. Protein-protein interaction 
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enrichment analysis (Metascape) reveals two clusters of networks, with each node representing a 
different host factor. 
 
 
 

Table 7.1: Pearson’s correlation with RSV NS1 in RSV infected cells. 

 
Host gene Pearson's r p_val p_val_adj 

HERPUD1 0.46375971 4.34E-97 7.34E-93 

HSPA5 0.39095692 4.26E-67 7.21E-63 

MANF 0.3581509 7.62E-56 1.29E-51 

SDF2L1 0.32867945 8.34E-47 1.41E-42 

HSPA1A 0.31419291 1.03E-42 1.75E-38 

DDIT3 0.30764286 6.18E-41 1.05E-36 

DNAJB9 0.30162635 2.42E-39 4.10E-35 

HSPE1 0.30140799 2.76E-39 4.67E-35 

 
Table 7.2: Pearson’s correlation with ISG15 in bystander cells. 

 
Host gene Pearson's 

r 
p_val p_val_adj 

ISG15 1 0 0 

MX1 0.75728932 0 0 

IFIT1 0.74957469 0 0 

IFI6 0.83264065 0 0 

OAS1 0.72837121 1.0573e-
320 

2.38156934e-
316 

B2M 0.7076672 7.79E-
295 

1.75E-290 
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Host gene Pearson's 
r 

p_val p_val_adj 

IFI35 0.67444419 9.16E-
258 

2.06E-253 

IFIT3 0.6728961 3.72E-
256 

8.39E-252 

PLSCR1 0.65871691 7.30E-
242 

1.64E-237 

IRF7 0.65747378 1.20E-
240 

2.70E-236 

OASL 0.64631661 5.48E-
230 

1.23E-225 

USP18 0.63992213 4.46E-
224 

1.00E-219 

SP110 0.60596078 6.47E-
195 

1.46E-190 

STAT1 0.60326795 9.41E-
193 

2.12E-188 

UBE2L6 0.60044319 1.66E-
190 

3.74E-186 

TAP1 0.58380912 1.02E-
177 

2.29E-173 

HLA-C 0.58251939 9.29E-
177 

2.09E-172 

SP100 0.57565582 1.02E-
171 

2.30E-167 

EIF2AK2 0.57448826 7.16E-
171 

1.61E-166 

PARP14 0.57436903 8.73E-
171 

1.97E-166 

NT5C3A 0.57005606 1.08E-
167 

2.44E-163 
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Host gene Pearson's 
r 

p_val p_val_adj 

PSMB9 0.56978146 1.70E-
167 

3.82E-163 

PSME2 0.56691698 1.81E-
165 

4.07E-161 

IFI27 0.55268234 1.10E-
155 

2.48E-151 

PNPT1 0.54918823 2.36E-
153 

5.31E-149 

PARP9 0.54305024 2.51E-
149 

5.65E-145 

OAS3 0.54267556 4.39E-
149 

9.90E-145 

DDX58 0.54250017 5.71E-
149 

1.29E-144 

PSMB8 0.53890336 1.19E-
146 

2.67E-142 

HERC5 0.53610657 7.18E-
145 

1.62E-140 

IFITM3 0.53443759 8.17E-
144 

1.84E-139 
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Methods 
Cell Culture 

HEp-2 (ATCC CCL-23) and A549 (ATCC CCL-185) cells were ordered from ATCC and 

cultured in DMEM supplemented with 10% FCS, penicillin, streptomycin, and glutamine. Cells 

were maintained at 37°C and 5% CO2. Cells were mycoplasma negative using the MycoAlert 

Mycoplasma detection kit (Lonza). 

 
RSV Propagation 

For single-cell sequencing experiments, we used a genetically unmodified virus:  Human 

respiratory syncytial virus (ATCC® VR-1540). For CRISPR/Cas9 screening experiments, we used 

Respiratory Syncytial Virus with EGFP (RSV-GFP5, ViraTree). Both isolates of RSV were 

amplified on HEp-2 cells, PEG precipitated, pelleted through a sucrose cushion during 

ultracentrifugation, resuspended and stored at -80°C. Viruses were titered on HEp-2 cells using 

the standard TCID50 assay. Both viral isolates were mycoplasma negative using the MycoAlert 

Mycoplasma detection kit (Lonza). 

 
Single Cell RNA sequencing 

A549 cells were infected with RSV at an MOI of 0.3 in serum-free media. After a two hour 

incubation, cells were washed with serum-free media, and fresh media with serum was 

replenished. To reduce batch effects, cells were sequentially infected and harvested at the same 

time point for single cell sequencing. Cells were trypsinized, murine NIH/3T3 (ATCC CRL-1658) 

were spiked in, and Multiseq sample barcoding was performed following McGinnis et al. protocol 

[26]. Cells were subsequently counted and the manufacturer's protocol for 10x Genomics 3’ 

sequencing were performed. McGinnis et al. protocol was followed for Multiseq library 
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preparation. Samples were subsequently sequenced on the NovaSeq and aligned using 10x 

Genomics CellRanger v3.1.0 with default settings to hg38 reference genome concatenated with 

the RSV genome. Sample barcodes were demultiplexed following previously published protocols 

(McGinnis et al.). Downstream cell and gene filtering, log normalization, PCA and UMAP 

projection were performed using Scanpy v1.6.1 [27]. Differential expression was performed using 

MAST, and only included genes expressed in at least 10% of each population. 

 
Genome-wide CRISPR/Cas9 Screen 

A549 cells were lentivirally transduced with Cas9-BLAST (Addgene 52962; gift from 

Feng Zhang) and blasticidin selected. These A549-Cas9 lines were subsequently  transduced with 

the human GeCKO v2 library (Addgene 1000000049; gift from Feng Zhang) and puromycin 

selected. This library was subsequently infected with RSV-EGFP. EGFP negative or low cells 

were sorted on the Sony SH800 cell sorter. For the first iteration of the screen with a viability 

selection, cells were cultured for 1 week and surviving cells were collected for downstream 

analysis. For the second screen, cells collected from the sorter were directly used for downstream 

analysis. We subsequently extracted genomic DNA, amplified guide sequences, performed library 

prep and sequenced on the Illumina NextSeq as described in Wang et al. [24]. 
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