Title
Methane sources and sinks in Lake Kivu

Permalink
https://escholarship.org/uc/item/95b6s4wq

Journal
Journal of Geophysical Research, 116(G3)

ISSN
0148-0227

Authors
Pasche, Natacha
Schmid, Martin
Vazquez, Francisco
et al.

Publication Date
2011

DOI
10.1029/2011jg001690

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed
Methane sources and sinks in Lake Kivu

Received 17 February 2011; revised 8 April 2011; accepted 21 April 2011; published 22 July 2011.

[1] Unique worldwide, Lake Kivu stores enormous amounts of CH$_4$ and CO$_2$. A recent study reported that CH$_4$ concentrations in the lake have increased by up to 15% in the last 30 years and that accumulation at this rate could lead to catastrophic outgassing by ~2100. This study investigates the present-day CH$_4$ formation and oxidation in Lake Kivu. Analyses of 13C and 14C in CH$_4$ and potential carbon sources revealed that below 260 m, an unusually high ~65% of the CH$_4$ originates either from reduction of geogenic CO$_2$ with mostly geogenic H$_2$ or from direct inflows of geogenic CH$_4$. Aerobic CH$_4$ oxidation, performed by close relatives of type X CH$_4$-oxidizing bacteria, is the main process preventing CH$_4$ from escaping to the atmosphere. Anaerobic CH$_4$ oxidation, carried out by CH$_4$-oxidizing archaea in the SO$_4^{2-}$-reducing zone, was also detected but is limited by the availability of sulfate. Changes in 14C$_{CH_4}$ and 13C$_{CH_4}$ since the 1970s suggest that the amount of CH$_4$ produced from degrading organic material has increased due to higher accumulation of organic matter. This, as well as the sudden onset of carbonates in the 1960s, has previously been explained by three environmental changes: (1) introduction of nonnative fish, (2) amplified subaquatic inflows following hydrological changes, and (3) increased external inputs due to the fast growing population. The resulting enhancement of primary production and organic matter sedimentation likely caused CH$_4$ to increase. However, given the large proportion of old CH$_4$ carbon, we cannot exclude an increased inflow of geogenic H$_2$ or CH$_4$.

1. Introduction

[2] Methane (CH$_4$) and carbon dioxide (CO$_2$) are major end products of organic matter decomposition in water bodies. In lacustrine sediments, the most important CH$_4$-producing pathways are acetoclastic methanogenesis and CO$_2$ reduction [Conrad, 2005]:

\[
\text{CH}_3\text{COOH} \rightarrow \text{CO}_2 + \text{CH}_4 \quad (1)
\]

\[
\text{CO}_2 + 4\text{H}_2 \rightarrow \text{CH}_4 + 2\text{H}_2\text{O}. \quad (2)
\]

Once produced, CH$_4$ can be oxidized either in the sediment, at the sediment–water interface, or in the open water, depending on the availability of oxidants. Two different biological processes are currently considered to be the main contributors to CH$_4$ oxidation in aquatic systems: oxidation by aerobic methanotrophic bacteria and anaerobic CH$_4$ oxidation by syntrophic consortia of CH$_4$-oxidizing archaea and SO$_4^{2-}$-reducing bacteria [Hinrichs and Boetius, 2002; Schubert et al., 2010]. CH$_4$ that is not consumed is eventually transported to shallower waters and can be released to the atmosphere where it acts as a potent greenhouse gas. It has been estimated that lakes contribute 6 to 16% to global CH$_4$ emissions to the atmosphere [Bastviken et al., 2004]. CH$_4$ oxidation therefore plays an important role in controlling lacustrine CH$_4$ emissions.

[3] Lake Kivu is an African Rift lake (Figure 1) with a permanently stratified hypolimnion that contains an estimated 60 km3 of CH$_4$ and 300 km3 of CO$_2$ (gas volume at 0°C and 1 atm [Schmid et al., 2005]). CH$_4$ accumulation in the lake bears the risk of catastrophic outgassing similar to the limnic eruptions in Lakes Nyos [Kling et al., 1987] and Monoun [Sigurdsson et al., 1987]. Conversely, extraction of the lake’s CH$_4$ could provide enough energy to supply the lake’s bordering countries with electricity for a decade [Jones, 2003]. The origin of these gases, however, has been a matter of controversy [Deuser et al., 1973; Tietze et al., 1980]. Most authors agree that the CO$_2$ has a primarily geogenic origin, whereas the CH$_4$ is biogenic [Schoell et al., 1980].
of CH₄ formation and consumption. Further, the CH₄ formation rate is of practical interest for planning the forthcoming exploitation of CH₄.

This study is part of a larger project that assessed the nutrient cycling and its relation to CH₄ in Lake Kivu. Analyses of the external inputs [Muvundja et al., 2009] and the internal loading [Pasche et al., 2009] of nutrients highlighted the importance of the lake internal processes for the nutrient cycling in the lake. Observations from sediment cores indicated recent changes in the nutrient cycling that might be related to the observed increase in CH₄ concentrations [Pasche et al., 2010]. In the present study, the lessons learned from the analysis of the nutrient fluxes are combined with (1) measurements of the isotopic composition of different carbon pools and (2) the analysis of the microbial community in the water column, for the following three objectives: (1) to assess the rates of CH₄ formation through acetoclastic methanogenesis and CO₂ reduction; (2) to determine aerobic and anaerobic CH₄ oxidation rates and the organisms involved; and (3) to detect changes in the carbon fluxes which could explain the recent CH₄ increase.

2. Site Description

Lake Kivu is located in the East African Rift Valley, between the Republic of Rwanda and the Democratic Republic of the Congo. At an elevation of 1463 m, it has an area of 2370 km², a volume of 580 km³ and a maximum depth of 485 m [Schmid et al., 2004; Tietze, 1978]. The lake is meromictic and the mesotrophic euphotic zone is permanently separated from the anoxic nutrient-rich deep waters. The depth of the oxycline varies seasonally from 30 m during the rainy season (October to May) to 60–65 m in the windy dry season (June to September). The permanently stratified deep water is further characterized by a major chemocline extending from 255 to 262 m. Subaqueous springs enter the permanently stratified deep water at different depths, with an estimated total inflow of ~1.3 km³ yr⁻¹ [Schmid et al., 2005]. More than 127 rivers with a total flow of ~2.4 km³ yr⁻¹ enter the lake from the catchment (5097 km²), and 3.6 km³ yr⁻¹ flow out with the Ruzizi River [Muvundja et al., 2009]. Precipitation (3.3 km³ yr⁻¹) is nearly equal to lake surface evaporation (3.4 km³ yr⁻¹) [Muvundja et al., 2009].

Water residence times in the permanently stratified deep water are two to three orders of magnitude longer than time scales for horizontal mixing. Physical and chemical properties are therefore horizontally homogeneous throughout the lake, except for the separate basins of Kabuno Bay and Bukavu Bay. Energy supply from the wind to the deep water is limited by the strong density stratification in the lake. Consequently vertical exchange by turbulent diffusivity is weak, as evidenced by the presence of double-diffusive staircases [Schmid et al., 2010]. Vertical transport is therefore dominated by the upwelling caused by the inflows of the subaqueous springs. Water below the major chemocline has a residence time of 800 to 1,000 years, which has led to an enormous accumulation of dissolved gases and nutrients [Schmid et al., 2005].

Nutrients for primary production are supplied to the productive surface layer mainly by internal recycling by upwelling from the nutrient-rich deep waters [Pasche et al., 2009]. Contrary to many other large lakes, such as Tanganyika, where
nutrient supply by upwelling at the southern end leads to horizontal gradients in primary production [Bergamino et al., 2010], the internal recycling in Lake Kivu is homogeneous, as indicated by the perfectly horizontal layering. Consequently, low spatial variability of primary production and chlorophyll concentrations have been observed in the surface waters of the lake [Kneibühler et al., 2007; Sarmento et al., 2009].

3. Material and Methods

3.1. Sampling

[9] Sampling was conducted during five field campaigns in November 2003, February 2004 (site Goma 03/04), May 2006 (Kibuye 06), May 2007 (Gisenyi 07) and October 2008 (Gisenyi 08) at three different locations in the main basin (Figure 1). In May 2006 and 2007 samples were taken in the Ishungu Basin (site Ishungu 06/07, Figure 1). Water samples were collected using 5 L Niskin bottles. For depths below 200 m, the open top valve was capped with a balloon to prevent sample loss due to vigorous outgassing during bottle ascent.

[10] Gas samples were obtained using a new device consisting of a 500 mL metal cylinder for water sampling and an evacuated 250 mL metal cylinder to collect the gases. These collected gases were subsampled into evacuated 120 mL airtight glass vials.

[11] The sampling of sediment traps and cores has been described in detail by Pasche et al. [2010]. In May 2007, a sediment core for gas analysis was taken near Gisenyi (1°46.416′S, 29°15.796′E, 125 m depth) using an Uwitec gravity corer. Thirteen sediment samples (2 mL) were extracted between 0 and 16 cm through side ports using plastic syringes. They were transferred to 25 mL glass vials. An aliquot of CO2‐13C analyses of the OC.

[12] A sediment trap mooring was set in Ishungu Basin from May 2006 to January 2008 (Ishungu 06/07). Sediment traps consisting of two plastic cylinders (diameter 9.2 cm, length 100 cm) were placed at four different depths (50, 90, 130 and 172 m). Trap material without any poisoning was collected monthly with overlying water in 250 mL bottles, frozen and transported to Switzerland.

3.2. Chemical Parameters

[13] In October 2008, water samples for the analyses of organic anions were taken at site Gisenyi 08 (Figure 1). Samples were preserved in the field by adding 10 M NaOH to adjust the pH to 12. Organic anions (lactate, acetate, propionate, formate, butyrate, pyruvate) were measured with a Dionex DX‐320 ion chromatography system with a detection limit of 5 μmol L−1. For TOC measurements, water samples were collected in 200 mL glass vials and acidified to pH 3 to remove inorganic carbon. TOC was measured within 6 days with a Total Organic Carbon Analyzer (Shimadzu TOC‐V CPH).

[14] For CH4 concentrations and isotopic ratio analyses, water samples were taken in 2006 and 2007 at sites Kibuye 06, Ishungu 06/07 and Gisenyi 07 (Figure 1) and for CO2 isotopic ratio analyses in 2003 at site Goma 03/04. Samples were transferred to 120 mL glass vials and poisoned with cupric chloride (CuCl2). All samples were measured within five weeks of collection. CH4 concentrations were measured by a headspace (30 mL N2) technique similar to that of McAluliffe [1971]. CH4 concentrations were determined on a gas chromatograph (Agilent, 6890) equipped with a Carboxen 1010 column (30 m, Supelco) using a flame ionization detector. In order to dilute samples from below 70 m depth into the calibration range of the GC, 300 μL of headspace were transferred into 58.5 mL serum vials prefilled with N2. Dissolved gas concentrations were calculated after Wiesenburg and Guinasso [1979], including the effects of salinity.

[15] Methane carbon isotopes (13CCH4) were determined using the method of Sansone et al. [1997]. Duplicate measurements were processed with an IsoPrime mass spectrometer connected to a trace gas preconcentrator (GV Instruments). Results are noted in the standard δ notation relative to Vienna Pee Dee Belemnite.

[16] Carbon isotopes on carbon dioxide (13C CO2) were determined using an IsoPrime mass spectrometer connected to a trace gas preconcentrator (GV Instruments). Results are noted in the standard δ notation relative to Vienna Pee Dee Belemnite.

[17] Methane radiocarbon (14C CH4), deuterium (2HCH4), and stable carbon isotope (13C CH4) analyses were performed on samples taken in 2007, at site Gisenyi 07. The methods are outlined in Kessler and Reeburgh [2005]. Briefly, CH4 was extracted from samples, purified, and combusted to CO2 and water. An aliquot of CO2 was converted to elemental carbon by iron-catalyzed hydrogen reduction and analyzed with 14C Accelerator Mass Spectrometer (AMS) at the Keck Carbon Cycle AMS Facility. 14C concentrations are given as percent of the modern standard (percent modern carbon, pMC) following the conventions of Stuiver and Polach [1977]. A second aliquot of CO2 was analyzed for 13C by dual‐inlet isotope ratio mass spectrometry at the University of California Irvine (UCI) Stable Isotope Facility. The water produced from CH4 combustion was reduced to hydrogen with activated zinc and the 13CH4 was measured on a Finnigan MAT 252 Mass Spectrometer at UCI and is reported in delta notation relative to Standard Mean Ocean Water. The 13C content of the organic matter in three samples from the Kibuye sediment core (0–0.5 cm, 0–5 cm, 15–37 cm), was measured in the Laboratory of Ion Beam Physics at the Swiss Federal Institute of Technology (ETH) in Zurich using the method described by Hajdas et al. [1993].

[18] For TOC in sediment, total carbon (TC) was measured using a combustion CNS elemental analyzer (VARIO Co and EuroVector Co). Total inorganic carbon (TIC) was analyzed as CO2 by coulometry (ULC Coulometers) after acidification with 3M hydrochloric acid (HCl). TOC was calculated as the difference between TC and TIC.

3.3. Methane Oxidation Measurements

[19] To experimentally verify CH4 oxidation, CH4 concentrations were monitored in vials over 5 days in 2007. At site Gisenyi 07, water from 20, 40, 60, 80, and 100 m depth
was sampled in five 120 mL airtight vials for each depth (Table 1). One bottle was poisoned with HgCl₂ immediately after sampling and then for the following four days one vial per day was poisoned and analyzed as above. For the samples from 20, 40, and 60 m depth CH₄ was further analyzed for ¹³C on day one and day five.

3.4. Microbial Community Analysis

3.4.1. Molecular Analyses

[20] During May 2007, water samples (380 to 750 mL) from 14 depths collected at Gisenyi 07 were filtered through polycarbonate filters (0.2 μm, 47 mm). DNA was extracted from the filters as described by Lirós et al. [2008]. The bacterial community structure was investigated by Polymerase Chain Reaction (PCR) amplification of the partial 16S ribosomal RNA gene with primers 341F-GC and 534r (Table 1) followed by denaturing gradient gel electrophoresis (DGGE) [Muyzer et al., 1993]. Selected bands were cut from the gel, reamplified, and sequenced. The particulate CH₄ monoxygenase gene (*pmoA*) served as a molecular marker for aerobic methanotrophs; *pmoA* was detected by PCR amplification with *pmoA*-specific primers A189f and A650r (Table 1) as described by Bourne et al. [2001] with minor modifications. As a marker for anaerobic methanotrophs (ANME) as well as methanogens, the gene for methyl coenzyme M reductase (*mcrA*) was amplified using *mcrA*-specific primers Me1f and Me2r [Hales et al., 1996] (Table 1); *mcrA* genetic diversity was characterized by restriction fragment length polymorphism analysis (RFLP) [Earl et al., 2003]. Clone libraries were created from amplions from seven depths for *mcrA* and three depths for *pmoA*. Clones were screened using DGGE (*pmoA*) and RFLP (*mcrA*) and selected clones were commercially sequenced (Microsynth, Balgach, Switzerland). Sequences were submitted to the GenBank nucleotide sequence database with the following accession numbers: 16S rRNA, FJ952083 to FJ952140; *pmoA*, FJ952083 to FJ952102; *mcrA*, FJ952103 to FJ952140. Detailed protocols are presented in Text S1 in the auxiliary material.

3.4.2. Analysis of Sequenced Data

[21] Sequences were screened, trimmed, aligned (using Clustal W [Larkin et al., 2007]) and analyzed using Mega 4.1 software [Tamura et al., 2007]. Reference sequences were retrieved using the BLAST nucleotide search service [Altschul et al., 1990] and keyword queries of the nucleotide database at the National Center for Biotechnology Information using the Entrez Database Query Tool (http://www.ncbi.nlm.nih.gov/nuccore). General bacterial 16S rRNA sequences from DGGE bands were classified using the Classifier Tool on the Ribosomal Database Project 2 Web site (http://rdp.cme.msu.edu; release 10 [Wang et al., 2007]). Phylogenetic trees for *mcrA* and *pmoA* were constructed based on translated amino acid sequences using the unweighted pair group method with arithmetic mean (UPGMA) hierarchical clustering method [Nei and Kumar, 2000] and the PAM distance metric [Schwarz and Dayhoff, 1979] as implemented in Mega 4.1, with pairwise elimination of gaps and 1000 bootstrap resamplings for tree testing.

4. Results

4.1. Chemistry of the Water Column

[22] Lake Kivu is characterized by high amounts of dissolved gases, with CO₂ concentrations five times higher than CH₄ (Figure 2a). Gas concentrations rise gradually with depth down to the major chemocline (255 to 262 m) where they abruptly increase. Gas concentrations measured in water samples compare well with published data [Schmid et al., 2005] above 140 m (Figure 3c). However, below 140 m, part of the CH₄ was lost due to vigorous outgassing during sampling.

[23] The profiles of the main electron acceptors (O₂, SO₄²⁻, and NO₃⁻) indicated a typical succession of redox zones for stratified water bodies (Figure 2b) and were described in detail by Pasche et al. [2009]. The oxycline extended to a depth of 50 m in May 2006 and 2007. Below the oxycline, SO₄²⁻ decreased with a sharp gradient to 80 m and dropped below detection (0.05 mmol L⁻¹) at 100 m depth. In contrast, H₂S was absent above the oxycline, increased sharply between 50 and 80 m depth, and more gradually to 150 m. Below 150 m H₂S remained constant at ~0.27 mmol L⁻¹ (data not shown). Other electron acceptors, namely NO₃⁻, manganese (see the reduced product Mn²⁺, Figure 2b) and Fe (III) (not shown) were present only in very low concentrations.

[24] TOC concentrations increased from 1.8 mg L⁻¹ at 40 m to 4.2 mg L⁻¹ at 360 m depth. Acetate and other short-chain organic anions were below the detection limit of 5 μmol L⁻¹.

4.2. Methane and Carbon Isotopic Signature

4.2.1. Water Column

[25] Above 90 m, δ¹³C_CH₄ increased from −59.8‰ to −43‰ at the surface, with a high variability within and above the oxycline (Figure 3a). Below 90 m, δ¹³C_CH₄ was constant at −59.8 ± 1‰. δ²H_CH₄ below 140 m averaged at −215‰, with a considerable error margin. Values decreased in excess of the error between 140 m and 255 m. The decrease in the water column above the chemocline is supported by two separate measurements analyzed in a different laboratory (Figure 3b, open circles). A sharp increase in excess of the error was observed at the main chemocline. Below the
chemocline, δ^{13}CH$_4$ decreased again to an average of -220‰ (Figure 3b). pMC decreased from 15.7% at 140 m depth to 12.9% at 250 m depth. Across the chemocline it decreased steeply to 11.9% at 255 m and 11.1% at 270 m. Below the chemocline pMC increased slightly to 11.6% at 440 m. Conversion to 14C age \cite{Stuiver and Polach, 1977} indicates an average age of 17,000 years for CH$_4$ (Figure 3b). In comparison, the residence time of water below 250 m has been estimated to be ~ 800 years \cite{Schmid et al., 2005}, indicating the strong influence of geogenic CO$_2$ with a dead radiocarbon signal.

4.2.2. Sediment

[26] The δ^{13}C$_{CH4}$ measured in the Gisenyi core decreased slightly from the surface (-66‰) to a minimum of -68‰ at 15 cm depth (Figure 4).

[27] In the Kibuye core, representing the last 300 years \cite{Pasche et al., 2010}, isotope signatures of OC (δ^{13}C$_{OC}$) varied slightly around -24.1‰ (-22.6 to -25.1‰). The 14C content of OC (14C$_{OC}$) in this core varied with depth. In the top layer (0–0.5 cm, last 2–3 years) it was 34 pMC (carbon age 8,670 years), a mixed sample of the section including the bomb peak (0.5–5 cm, last 20 years) had 43 pMC (6,780 years), while a mixed sample from before the bomb peak (15 to 37 cm, approximately representing the time between 300 and 100 years before present) was 28 pMC (10,200 years). The latter sample was assumed to be representative for the source organic matter in the sediment before the impact of bomb tests.

4.3. Estimating CH$_4$, CO$_2$, and Organic Carbon Fluxes

[28] In this section, the knowledge gained from previous studies is combined with the results of our measurements and model simulations described in the auxiliary material to create an overview of CH$_4$, CO$_2$, and OC fluxes in Lake Kivu. Error margins are calculated based on estimated error ranges for the measured quantities and standard formulas for error propagation. The fluxes estimated in the following sections are summarized in Figure 5.

4.3.1. Primary Production and CO$_2$ Fluxes

[29] Annual primary production (averaged over 2.5 years) was determined to be $PP = 228$ g C m$^{-2}$ yr$^{-1}$, by Sarmento et al. [2009]. The total upward fluxes of CO$_2$ (internal loading, IL) and dissolved inorganic carbon (DIC) through the chemocline were previously estimated at $IL_{CO2} = 126 \pm 25$ g C m$^{-2}$ yr$^{-1}$ and $IL_{DIC} = 335 \pm 67$ g C m$^{-2}$ yr$^{-1}$ \cite{Pasche et al., 2009}. Since $PP < IL_{DIC}$, the lake is a net source of CO$_2$. The 14C content of the sediment (Section 4.2.2) suggests that primary production uses only approximately one third to one fourth of atmospheric CO$_2$ as a carbon source.

4.3.2. Organic Carbon Fluxes

[30] OC analyses from sediment traps deployed at three different depths in the Ishungu Basin over two years revealed
a homogeneous average gross sedimentation of $S_{OC_{gross}} = 41 \pm 2 \text{ g C m}^{-2} \text{ yr}^{-1}$ from 90 to 172 m depth [Pasche et al., 2010]. However, comparisons with nutrient loading data and observations of phytoplankton abundance have shown that the observed gross sedimentation was approximately $60 \pm 10\%$ below the long-term average [Pasche et al., 2010]. Thus, we estimate the long-term average of $S_{OC_{gross}}$ to $110 \pm 27 \text{ g C m}^{-2} \text{ yr}^{-1}$.

A sediment core taken at the same location revealed a net sedimentation of $7 \text{ g C m}^{-2} \text{ yr}^{-1}$ (top 10 cm, approx. 40 years). Higher values were found at Gisenyi (17 g C m$^{-2}$ yr$^{-1}$) and Kibuye (13 g C m$^{-2}$ yr$^{-1}$), providing a range of $S_{OC_{net}} = 12 \pm 5 \text{ g C m}^{-2} \text{ yr}^{-1}$ [Pasche et al., 2010]. The mineralization rate of OC in the sediment was therefore estimated as

$$M_{OC_{sed}} = S_{OC_{gross}} - S_{OC_{net}} = 98 \pm 28 \text{ g C m}^{-2} \text{ yr}^{-1}.$$
the chemocline a large fraction of CH$_4$ ($f_{CO2} = 65 \pm 5\%$) is produced with old carbon probably originating from geogenic CO$_2$. Above the chemocline, CH$_4$ formation from recently settled OC with a maximum of 33% CO$_2$ reduction [Conrad, 1999] can explain the observed radiocarbon ages. The model also reproduced the finer structure of the vertical $^1^3$CH$_{4}$ profile (Figure 3b and Figure S1 in Text S1), indicating that it correctly represents the interplay between CH$_4$ formation from the sediment and the residence times due to the vertical transport in the lake.

[34] An independent estimate of the partitioning between the two pathways below the chemocline was made from the available $^1^3$C data. In this zone, CH$_4$ oxidation processes are absent (see sections 4.3.6 and 4.4 for detail). Following the calculations described by Itoh et al. [2008], the fraction of CH$_4$ produced by acetoclastic methanogenesis (F_{Ac}) is calculated by

$$F_{Ac} = \frac{\delta^{1^3}C_{CH4} - \delta^{1^3}C_{CH4(CO2)}}{\delta^{1^3}C_{CH4(Ac)} - \delta^{1^3}C_{CH4(CO2)}}. \tag{3}$$

The isotope ratio of CH$_4$ from CO$_2$ reduction ($\delta^{1^3}C_{CH4(CO2)}$) is estimated by equation (4) from the average of measured δ^{1^3}CO$_2$ (~4.9‰, Figure 3d) and using reported ranges of fractionation coefficients for CO$_2$ reduction from natural bogs and lakes ($\alpha_{mc} = 1.06$ to 1.073 [Conrad, 2005]):

$$\delta^{1^3}C_{CH4(CO2)} = \frac{(\delta^{1^3}C_{CO2} - 1000) - (\alpha_{mc} \cdot 1000)}{\alpha_{mc}} = -61 \text{ to } -70\%_{oa}.$$ \tag{4}

Acetoclastic methanogenesis from organic matter comprises two steps potentially contributing to fractionation: fractionation during the formation of acetate, and fractionation during the actual acetoclastic methanogenesis. We assume that acetate is produced by fermentation and that fractionation between OC and acetate-methyl is negligible ($\alpha_{ao} = 1.0$ [Conrad, 2005]); therefore,

$$\delta^{1^3}C_{Ac-methyl} = \delta^{1^3}C_{OC_sed} = -24\%_{oa}.$$

The isotope ratio of acetoclastic CH$_4$ ($\delta^{1^3}C_{CH4(Ac)}$) can then be estimated using reported ranges of fractionation coefficients for acetoclastic methanogenesis ($\alpha_{ma} = 1.007$ to 1.027 [Conrad, 2005]) analogous to equation (4):

$$\delta^{1^3}C_{CH4(Ac)} = -31\text{to } -50\%_{oa}.$$
only a nonsignificant correlation between \(\delta^{13}C_{AC-methyl} \) and \(\delta^{13}C_{OC-sed} \) and observed \(\delta^{13}C_{AC-methyl} \) to be between 4 and 44% more negative than \(\delta^{13}C_{OC-sed} \). While a slightly more negative \(\delta^{13}C_{AC-methyl} \) would not substantially affect the above estimate, strongly negative values would make it impossible to distinguish acetoclastic methanogenesis from \(CO_2 \) reduction by the isotope signature of \(CH_4 \). In general, acetogenesis seems to be favored over methanogenesis primarily at low temperatures and high \(H_2 \) concentrations [Heuer et al., 2010]. Deep water temperatures in Lake Kivu are 25°C to 26°C [Schmid et al., 2005]. The hydrogen \((H_2) \) concentrations occurring in the sediments are unknown. Acetate in the sediments has not been measured, but in the water column acetate was below detection. Therefore we have no indication that high rates of acetogenesis occur in Lake Kivu. In any case, the net fractionation resulting from homoacetogenesis (using the fractionation factor of 1.06 reported by Gelwicks et al. [1989]) and subsequent acetoclastic methanogenesis, is very similar to that resulting from direct reduction of \(CO_2 \) by \(H_2 \). The occurrence of significant homoacetogenesis would therefore not challenge our conclusions about the fraction of \(CH_4 \) derived from \(CO_2 \) but only about the pathways for the conversion of \(CO_2 \) to \(CH_4 \).

Generally, for \(CH_4 \) produced only from the degradation of organic matter in the sediment no more than 33% can derive from \(CO_2 \) reduction, due to limited amount of \(H_2 \) that can form during anaerobic OC degradation [Conrad, 1999]:

\[
P_{CH_4,CO_2red,sed} = \frac{1}{3} P_{CH_4,sed} = 16 \pm 5 \text{ g C m}^{-2} \text{yr}^{-1}
\]

\[
P_{CH_4,Ac,sed} = \frac{2}{3} P_{CH_4,sed} = 33 \pm 9 \text{ g C m}^{-2} \text{yr}^{-1}.
\]

Below the main chemocline, we assume that 35 ± 5% of \(CH_4 \) \((f_{Ac} = 1 - f_{CO_2} = 0.35 \pm 0.05) \) is derived from acetoclastic methanogenesis and the remainder from \(CO_2 \) reduction. The total flux of \(CH_4 \) into the compartment below the chemocline is then

\[
P_{CH_4,deep} = P_{CH_4,Ac,sed}/f_{Ac} = 93 \pm 30 \text{ g C m}^{-2} \text{yr}^{-1}.
\]

And the total \(CH_4 \) formation from \(CO_2 \) reduction is

\[
P_{CH_4,CO_2red,deep} = P_{CH_4,Ac,sed}(1/f_{Ac} - 1) = 61 \pm 22 \text{ g C m}^{-2} \text{yr}^{-1}.
\]
The difference between $P_{\text{CH}_4\text{-CO}_2\text{red}_\text{deep}}$ and $P_{\text{CH}_4\text{-CO}_2\text{red}_\text{sed}}$ must be produced by an additional pathway that uses old carbon. Here we assume that this pathway is CO$_2$ reduction with a geogenic H$_2$ source ($P_{\text{CH}_4\text{-CO}_2\text{red}_\text{geo}}$), although geogenic CH$_4$ is an alternative possibility:

$$P_{\text{CH}_4\text{-CO}_2\text{red}_\text{geo}} = P_{\text{CH}_4\text{-CO}_2\text{red}_\text{deep}} - P_{\text{CH}_4\text{-CO}_2\text{red}_\text{sed}} = \frac{2}{3} (1/I_{\text{Ac}} - 1) - \frac{1}{3} P_{\text{CH}_4\text{-sed}}$$

$$= 44 \pm 18 \text{ g C m}^{-2} \text{ yr}^{-1}.$$

For steady state, the flux of geogenic CO$_2$ into the lake water column can now be estimated from internal loading, subtracting CO$_2$ from mineralization of OC in the sediment ($P_{\text{CO}_2\text{-sed}}$), and adding the amount of CO$_2$ reduced by methanogenesis ($P_{\text{CH}_4\text{-CO}_2\text{red}_\text{deep}}$):

$$F_{\text{CO}_2\text{-geo}} = IL_{\text{CO}_2} - P_{\text{CO}_2\text{-sed}} + P_{\text{CH}_4\text{-CO}_2\text{red}_\text{deep}} = 138 \pm 30 \text{ g C m}^{-2} \text{ yr}^{-1}.$$

This parameter might be underestimated given that the lake is probably not at steady state and primary production probably increased since the 1960s [Pasche et al., 2010].

4.3.5. Total Vertical Methane Fluxes

[37] For the sediment area located above the major chemocline we assume, according to our 14C based model, that degradation of organic material ($P_{\text{CH}_4\text{-sed}}$) is the only CH$_4$ source.
source. Therefore, the total CH$_4$ formation averaged over the lake area is

\[
P_{\text{CH}_4}^{\text{tot}} = a_{\text{shallow}} \cdot P_{\text{CH}_4}^{\text{sed}} + a_{\text{deep}} \cdot P_{\text{CH}_4}^{\text{deep}} = 69 \pm 21 \text{ g C m}^{-2} \text{ yr}^{-1},
\]

where $a_{\text{shallow}} = 0.56$ and $a_{\text{deep}} = 0.44$ are the sediment area fractions located at depths <260 m and >260 m, respectively \[Lahmeyer \text{ International}, 1998\].

\[38\] CH$_4$ internal loading, i.e., the total upward flux of CH$_4$ in the anoxic water column, was independently determined from flux analysis \[Pasche \text{ et al.}, 2009\]:

\[
F_{\text{CH}_4} = 35 \pm 5 \text{ g C m}^{-2} \text{ yr}^{-1}.
\]

4.3.6. Methane Sinks

\[39\] Based on model calculation and CH$_4$ surface concentrations, the loss of CH$_4$ to the atmosphere was estimated to approximately 1 g C m$^{-2}$ yr$^{-1}$. A recent thorough analysis by Borges et al. [2011] found the loss to the atmosphere to be 0.16 g C m$^{-2}$ yr$^{-1}$, indicating that we slightly overestimated this flux:

\[
L_{\text{atm}} = 1 \pm 0.5 \text{ g C m}^{-2} \text{ yr}^{-1}.
\]

The difference between internal loading and loss to the atmosphere comprises the sum of aerobic and anaerobic CH$_4$ oxidation. The maximum anaerobic CH$_4$ oxidation with SO$_4^{2-}$ can be calculated from the SO$_4^{2-}$ flux \[Pasche \text{ et al.}, 2009\]:

\[
L_{\text{ox SO}_4} = 1 \pm 0.5 \text{ g C m}^{-2} \text{ yr}^{-1}.
\]

Most of the CH$_4$ is therefore oxidized aerobically:

\[
L_{\text{ox O}_2} = F_{\text{CH}_4} - L_{\text{atm}} - L_{\text{ox SO}_4} = 33 \pm 5 \text{ g C m}^{-2} \text{ yr}^{-1}.
\]

The excess of CH$_4$ formation, which is currently accumulating in the lake, can be estimated as the difference between CH$_4$ formation and upward flux:

\[
E_{\text{CH}_4} = P_{\text{CH}_4}^{\text{tot}} - F_{\text{CH}_4} = 34 \pm 22 \text{ g C m}^{-2} \text{ yr}^{-1}.
\]

4.4. Methane Oxidation Incubation Experiment

\[40\] CH$_4$ oxidation was verified experimentally with incubation experiments. Significant (p < 0.05) decrease of CH$_4$ over time was only determined at depths 40 and 60 m (Table 2). At 40 m depth, a large proportion of the CH$_4$ was oxidized during incubation, resulting in a shift of δ^{13}C$_{\text{CH}_4}$
Figure 8. Phylogenetic relationships of McrA sequences from 90 to 440 m depth (circles) and reference sequences using the UPGMA hierarchical clustering method [Nei and Kumar, 2000] and the PAM distance matrix [Schwarz and Dayhoff, 1979] as implemented in Mega 4.1, with pairwise gap elimination and 1000 bootstrap resamplings for tree testing. Clone sequences had a length of 252 amino acid residues. Kivu groups 1 and 2 appeared closely related to the Methanomicrobiales. Group 3 was related to ANME group ab. Scale is number of amino acid substitutions per site.
from \(-54\) to \(-32\%\). A small increase of \(\delta^{13}C_{CH_4}\) was also observed at 20 m, but was within the error of measurement (\(\pm2\%\)). At 60 m depth, oxygen was depleted at the time of sampling, thus the measured decrease in CH concentration is likely due to anaerobic CH\(_4\) oxidation. Based on published fractionation factors [Holler et al., 2009], a corresponding shift of \(+1\) to \(+3\%\) to a less negative \(\delta^{13}C_{CH_4}\) would have been expected, which is, however, close to the measurement error, and was not observed. In addition, anaerobic CH\(_4\) oxidation is a process for which low apparent fractionation factors have been reported for environmental samples [Holler et al., 2009]. In summary, results demonstrate active CH\(_4\) oxidation in the 40 m sample, and possibly anaerobic oxidation of CH\(_4\) at 60 m depth. Due to relatively large variations of initial CH\(_4\) concentrations resulting from CH\(_4\) outgassing during filling of the bottles, especially for deep water samples, low rates of CH\(_4\) oxidation would have been undetectable at greater depths.

4.5. Characterization of Microbial Communities

4.5.1. General Microbial Characterization

[41] The bacterial community was characterized using DGGE analysis from amplified 16S rRNA gene fragments (Figure 6a). The community in the oxic (20 and 40 m depth) and in the SO\(_2^-\)‐reducing (60 and 90 m depth) zones differed strongly from each other and from the deep water community. Between 100 and 260 m depth the community changed little. However, some bands disappeared and some new bands appeared and there were gradual changes in relative band intensity with depth, indicating a slow succession of microbial species in this zone. Below the main chemocline, the community again changed considerably and the number of bands decreased with depth.

[42] Sequencing of excised intense bands (Table S1 in Text S1) revealed typical freshwater bacterial clades in the 20 and 40 m depth samples, e.g., *Actinobacteria* sequences (bands 22, 35, 36). In the hypolimnion several phylotypes closely matched environmental clones from Lake Tanganyika (bands 1, 14, 20), indicating that these are typical components of stratified lakes in the region. An intense band in the SO\(_2^-\)‐reducing zone (90 m depth, band 18) yielded a \(\delta^4\)‐Proteobacterial sequence with high similarity to SO\(_2^-\)‐reducing *Desulfocapsa*. Band 4, occurring from 90 to 270 m depth was related to *Lactococcus*, and band 2, occurring from 160 to 400 m depth was classified as belonging to the *Clostridia*, demonstrating the presence of fermenting bacteria among the dominant phylotypes in the hypolimnion.

4.5.2. Aerobic and Anaerobic Methanotrophs

[43] The *pmoA* gene, a marker for aerobic methanotrophs, was readily amplified only from the 40 and 60 m depth samples and weakly from the 90 m sample. Screening and phylogenetic analysis of the clone library created from these amplicons revealed a considerable microdiversity, but all sequenced clones were most closely related to *Methylcococcus* and likely represent type X gammaproteobacterial CH\(_4\) oxidizers (Figure 7).

[44] The *mcrA* gene, indicative for methanogenic or anaerobic methanotrophic archaea, was absent from surface waters, but could be PCR‐amplified in samples from 90 m depth and below (data not shown). However, RFLP analysis revealed that the 90 m sample (within the SO\(_2^-\)‐reducing zone) had a community distinct from deeper samples (Figure 6b). Screening of the *mcrA* clone libraries revealed 14 distinct RFLP patterns, and most sequenced clones belonged to three clusters (Kivu groups 1, 2 and 3, Figure 8). Kivu group 1 dominated the 90 m sample library (7 out of 11 clones, 64\%) and the most frequent clone RFLP, type (A), is evident as intense bands in the 90 m community RFLP pattern (Figure 6b). Only one representative of this group was found in a library from a greater depth (180 m). Kivu group 2 (Figure 8) was found in libraries from depths 90, 180, 240 and 260 m (1 to 2 clones or \(<20\%\) per library) and its frequent clone types C and F were readily apparent in the community fingerprint (Figure 6b). Both Kivu groups 1 and 2 were most closely related to the *Methanomicrobiales*. Kivu group 3 (with subgroups a and b) was most closely related to the *mcrA* sequences of the ANME‐ab clade (associated with ANME 1 [Hallam et al., 2003]) and clearly dominated all clone libraries (60 to 100\%) and the community RFLP patterns (Type 1 and N) in all samples below 90 m depth. The clone RFLP type M was associated with subgroup 3b and appeared to become more abundant below the chemocline according to the community fingerprints. In the 90 m sample, we found no sequences related to group 3, and the clone RFLP patterns associated with this group were not evident in the community fingerprint.

5. Discussion

5.1. Spatial and Temporal Homogeneity of Lake Kivu

[45] By combining data obtained from different sites over a period of five years, we are making assumptions regarding the spatial and temporal homogeneity of Lake Kivu. The chemical and physical data taken over several years and at different locations show that the permanently stratified water column (>60 m depth) is completely homogenous in the horizontal dimension [Pasche et al., 2009]. Chlorophyll and thus primary production is also uniform across the lake, although slightly higher chlorophyll concentrations were found close to the shore [Kneubühl et al., 2007]. This behavior is to be expected, as most of the nutrients stem from the deep water [Pasche et al., 2009], which eliminates any horizontal gradients over the several 100 years of residence. Consistently, sediment cores taken in different parts of the lake reflected the same global changes in lake chemistry [Pasche et al., 2010]. Sedimentation rates and organic matter fluxes however were more variable, e.g., sedimentation rate and TOC flux were 55\% and 130\% higher in the Gisenyi core compared to the Ishungu core, respectively [Pasche et al., 2010].

[46] Temporal changes in the deep water are notable in the lake, but are slow. The increase in methane concentrations by up to 15\% within 30 years [Schmid et al., 2005] corresponds to a change of \(<0.5\%\) yr\(^{-1}\). All measurements performed within this study were made within a time frame of less than five years. There is no reason to expect changes of more than 2\% in the chemical or physical properties of the deep water within this time frame. The only exception from this statement are measurements that are directly related to processes in the surface waters, such as the measured gross sedimentation, which we have corrected for the long‐term mean based on available primary productivity data.
5.2. Methanogenesis

5.2.1. Carbon Sources for Methanogenesis

[47] CH₄ in Lake Kivu could be produced by acetoclastic methanogenesis, using acetate produced from OC, or from CO₂ reduction using either geogenic or OC-derived CO₂. Throughout the anoxic water column the CO₂ produced byorganic matter fermentation (P₃CO₂, 45 ± 14 g C m⁻² yr⁻¹) is small compared to the total upward flux of DIC (335 ± 67 g C m⁻² yr⁻¹) or CO₂ (126 ± 25 g C m⁻² yr⁻¹) [Pasche et al., 2009]. Geogenic CO₂ (F₃CO₂,geo = 138 ± 30 g C m⁻² yr⁻¹) is thus far more abundant than CO₂ from mineralization of OC and will be the main substrate for CO₂ reduction. Furthermore, the OC flux observed in sediment traps did not decrease with depth, indicating that mineralization in the anoxic water column is minor [Pasche et al., 2010]. We therefore conclude that acetoclastic methanogenesis in the anoxic water column is limited, although analysis of the mcrA gene indicated the presence of a methanogenic population in the water column.

5.2.2. Partitioning Between Methanogenic Pathways

[48] The old age of geogenic CO₂ results in a dead ¹⁴C signal (0 pMC). Since Lake Kivu is heavily influenced by geogenic CO₂ this dead radiocarbon strongly influences the apparent ¹⁴C ages. This signature can be used to trace the impact of geogenic CO₂ in the system. We observed ¹⁴C signals of 28 (15 to 37 cm), 34 (0 to 0.5 cm) and 43 (0.5 to 5 cm) pMC in the sediment OC, while previous measurements resulted in 27 pMC [Tietze et al., 1980]. The observed variability in ¹⁴COC cannot be completely explained by the bomb peak [Manning and Melhuish, 1994] and might reflect variation in the relative contribution of atmospheric and internally recycled CO₂ to the carbon uptake by primary producers. Modeling of the ¹⁴CCH₄ vertical profile in the water column (see section 4.3.4 and Text S1) showed that below 260 m, a large fraction of CH₄ (65 ± 5%) is produced from old carbon. The ¹⁴C increase above 260 m results from a combination of the shorter residence time, and a higher proportion (>60%) of CH₄ produced from recently settled OC. The independent estimates of the fraction of CH₄ produced from CO₂ (43 to 94%) based on δ¹³C data for CO₂, CH₄, and sediment OC confirmed that this is a realistic estimate. We conclude that below 260 m depth a large fraction (∼65%) of CH₄ is produced by reduction of CO₂ with a dead ¹⁴C signal, while above 260 m CH₄ is mainly produced from comparatively young OC originating from primary production in the surface mixed layer.

[49] The constant δ¹³CCH₄ and the absence of electron acceptors that could be used for CH₄ oxidation below 100 m, indicated that mcrA sequences found in these depths must originate from methanogens, despite the phylogenetic similarity of group Kivu 3 to ANME-ab sequences. The methanogenic archaea in the sediment were not studied, but the presence of unusual mcrA groups in the methanogenic zone of the water column indicates that Lake Kivu may harbor an unusual methanogenic community deserving further study.

5.2.3. Origin of Hydrogen

[50] Previous studies have postulated that H₂ used for CO₂ reduction originates from the decomposition of organic matter [Schoell, 1980], or from free geogenic H₂ [Conrad, 1999; Deuser et al., 1973]. In Lake Kivu we found that below 260 m, only approximately 35% of CH₄ derive from acetoclastic methanogenesis. The δ²HCH₄ values of −220‰ in the bottom water are in the range that is typical for carbonate reduction (−250 to −150‰) [Whiticar, 1999], supporting the notion that CO₂ reduction is a dominant process in the deep water. A considerable amount of H₂ is required to account for the formation of the remaining 65% (FCH₄,CO₂,red,geo = 144 ± 18 g C m⁻² yr⁻¹) of CH₄ through CO₂ reduction. An additional source of H₂ is therefore necessary to explain our findings.

[51] At the moment we can only speculate on the source of this additional H₂. The gases from Nyiragongo volcano north of Lake Kivu contained only low amounts of H₂ (<2 vol %), also relative to CO₂ (≤1% of CO₂ [Gerlach, 1980; Le Guern, 1987; Tedesco et al., 2007]). Applying this ratio to the geogenic CO₂ influx (138 ± 30 g C m⁻² yr⁻¹), this H₂ could only account for <1.4 g CCH₄ m⁻² yr⁻¹. Considerably higher H₂ concentrations (23% of CO₂) have been observed in gas bubbles collected in the lake near the lava front of the 2002 Nyiragongo eruption. The source of these gases remains unclear [Tedesco et al., 2007], but nevertheless this may indicate that inflows of groundwater that has been in contact with juvenile gases could be a significant source of H₂. H₂ could also be formed by chemical processes, e.g., pyrite precipitation [Rickard, 1997]. An alternative explanation for our observations would be a direct inflow of geogenic CH₄, formed during the cooling of magmatic gases at depth in the absence of oxygen [Gerlach, 1980], which would likewise have a dead ¹⁴C signal and high δ²HCH₄ [Whiticar, 1999].

5.2.4. Methane Fluxes

[52] The CH₄ release estimated from the Gisenyi sediment core ranged between 60 and 100 g CCH₄ m⁻² yr⁻¹ (Figure 5). The upper flux estimate is too high to be explained by the available sedimenting OC but the lower estimate falls within the range calculated from OC gross and net sedimentation (P₃CH₄,sed = 49 ± 14 g CCH₄ m⁻² yr⁻¹) after correcting for the unusually low primary productivity during the two years of our sediment trap deployment [Pasche et al., 2010]. Based on the considerations in sections 4.3.4 and 5.2.2, we propose that this flux represents the total CH₄ formation above 260 m but only ~53% of the CH₄ formation below 260 m. Below 260 m, the additional geogenic CH₄ leads to a total formation of 93 ± 30 g CCH₄ m⁻² yr⁻¹ (P₃CH₄,deep).

5.2.5. Methane Budget and Accumulation

[53] CH₄ concentrations seem to have increased by up to 15% based on measurements made in 1975 and 2004. Our estimate of CH₄ accumulation (E₃CH₄ = 34 ± 22 g CCH₄ m⁻² yr⁻¹) is still imprecise, but strongly indicates that CH₄ currently accumulates in the lake. Several observations further support the hypothesis of a recent increase in CH₄ concentrations in Lake Kivu. The ¹⁴C signal in dissolved CH₄ (11.4 pMC) has increased since 1975 (9 pMC [Tietze, 1978]). In the same time span, δ¹³CCH₄ decreased from −57‰ [Tietze et al., 1980] to −59.8‰. These differences in the CH₄ isotopic values are not significant, as they are within the uncertainty range of a comparison of the historic and recent measurements, but they are both consistent with an increased formation of CH₄ with isotopic signatures observed in the surface sediment (34 pMC, δ¹³C = −65‰). Furthermore, OC mass accumulation in the sediment has increased by 20% since the 1960s, when carbonates suddenly started to precipitate [Pasche et al., 2010]. However, the calculated range of E₃CH₄ (34 ± 22 g CCH₄ m⁻² yr⁻¹) does not allow for the
excess required (∼75 g C\textsubscript{CH\textsubscript{4}} m-2 yr-1) to explain the observed CH\textsubscript{4} increase over the last decades [Schmid et al., 2005]. In summary, the analysis supports the hypothesis that CH\textsubscript{4} concentrations in Lake Kivu are currently increasing, but probably at a lower rate than previously assumed.

[54] We propose that several concurrent environmental changes might have increased OC sedimentation [Pasche et al., 2010]. First, an increase of the subaerial inflows [Schmid et al., 2010], potentially caused by higher rainfall observed during 1961 to 1990 in eastern Africa [Nicholson and Yin, 2001], might have led to stronger uplift and consequently greater supply of nutrients. Second, recent external P and N inputs might have increased due to the fast growing population [Muvundja et al., 2009]. Third, the introduction of Limnothrissa miodon strongly altered the food web, which might have modified the exported OC [Isumbisho et al., 2006]. As a large proportion of CH\textsubscript{4} seems to be produced from geogenic H\textsubscript{2}, we cannot exclude that geogenic inputs have also increased, especially in this geologically active region.

5.3. Methane Oxidation

[55] CH\textsubscript{4} oxidation was confirmed by incubation experiments, the heaver 13C\textsubscript{CH\textsubscript{4}} in the water layers above 90 m depth, and the presence of specific microbial communities. The determined rates (618 ± 173 and 1096 ± 287 nM d-1) were an order of magnitude higher than those observed in marine environments with relatively high CH\textsubscript{4} concentrations [Kelley, 2003] (up to 57 nM d-1) but in the same range as reported for Lake Tanganyika [Rudd, 1980] (up to 1920 nM d-1). Comparing 13C\textsubscript{CH\textsubscript{4}} to electron acceptor depth profiles indicates two major zones for CH\textsubscript{4} oxidation: the oxic layer (0 to 50 m); and the SO\textsubscript{4}2--reducing zone (60 to 90 m). Concentrations of other potential electron acceptors for anaerobic CH\textsubscript{4} oxidation, i.e., nitrate [Ettwig et al., 2010] and oxidized iron and manganese ions [Beal et al., 2009] were too low to significantly oxidize CH\textsubscript{4}. At 90 m depth, near the lower end of the SO\textsubscript{4}2--reducing zone, we detected a dominant distinct clade of mcrA genes with closest matches to the Methanobacteria, which could potentially represent a new ANME group. A potential SO\textsubscript{4}2--reducing partner related to Desulfo capsps was identified from the general bacterial DGGE (band 18). Flux analyses [Pasche et al., 2009] showed that the SO\textsubscript{4}2- flux can oxidize a maximum of 3% (1 ± 0.5 g C m-2 yr-1) of the CH\textsubscript{4} upward flux (35 ± 5 g C m-2 yr-1). The 3% is probably overestimated, as sulfate reducers can also use organic matter or H\textsubscript{2} as electron donors. In conclusion, anaerobic CH\textsubscript{4} oxidation takes place in Lake Kivu and may involve unique microbial populations but represents only a minor CH\textsubscript{4} sink. This is in contrast to neighboring Lake Tanganyika, where anaerobic CH\textsubscript{4} oxidation consumes about half of the CH\textsubscript{4} transported upwards from the deep waters [Durisch-Kaiser et al., 2011]. The reason for the higher importance of anaerobic CH\textsubscript{4} oxidation is the much higher relative occurrence of SO\textsubscript{4}2- to CH\textsubscript{4} in Lake Tanganyika (maximum concentrations 40 μM SO\textsubscript{4}2- to 150 μM CH\textsubscript{4}) compared to Lake Kivu (150 μM SO\textsubscript{4}2- to 20,000 μM CH\textsubscript{4}).

[56] Conversely, aerobic CH\textsubscript{4} oxidation is the main sink for CH\textsubscript{4} in Lake Kivu. In addition to the experimental verification of CH\textsubscript{4} oxidation at 40 and 60 m depth we also observed that the 13C\textsubscript{CH\textsubscript{4}} isotopic signal showed marked (10%) enrichment at the oxycline (Figure 3). The pmoA gene, a marker for aerobic methanotrophs, was also detected in the oxycline in the 40 and 60 m depth samples. The cloned sequences were most closely related to Methylococcus capsulatus (type X). However, a more diverse community of CH\textsubscript{4} oxidizers could be present, as the used primer set was reported to have a potential bias toward type X methanotrophs [McDonald et al., 2008; Rahalkar and Schink, 2007]. Flux analyses revealed that the O\textsubscript{2} flux (oxidation potential 57 g C m-2 yr-1) was higher than the CH\textsubscript{4} upward flux (35 ± 5 g C m-2 yr-1) and has the potential to oxidize most of the CH\textsubscript{4} present, even if O\textsubscript{2} is shared to oxidize other electron donors [Pasche et al., 2009]. We estimate an oxidation rate of 33 ± 5 g C m-2 yr-1 (section 4.3.6), as the CH\textsubscript{4} release to the atmosphere is low. The oxidation rate agrees well with a previous estimate (31 g C m-2 yr-1) for Lake Kivu [Jannasch, 1975]. Aerobic CH\textsubscript{4} oxidation has been estimated to 37 g C m-2 yr-1 for Lake Tanganyika [Rudd, 1980], which is, however, not supported by the estimated areal CH\textsubscript{4} formation of 6 g C m-2 yr-1 [Durisch-Kaiser et al., 2011].

6. Conclusion

[57] Lake Kivu is a unique ecosystem with extremely high CH\textsubscript{4} concentrations. The lake’s volcanic setting provides high quantities of geogenic CO\textsubscript{2}. In the deep water, about 65% of the CH\textsubscript{4} originates from dead carbon, suggesting the input of geogenic H\textsubscript{2} or CH\textsubscript{4}. The flux analysis as well as several changes in the hydrological and ecological dynamics of Lake Kivu qualitatively support the previously observed CH\textsubscript{4} increase [Schmid et al., 2005]. CH\textsubscript{4} is mainly oxidized by type X CH\textsubscript{4}-oxidizing bacteria at the oxycline, while anaerobic CH\textsubscript{4} oxidation plays a minor role, but may involve a novel cluster of ANME.

[58] Acknowledgments. We are grateful to Michael Schurter, Christian Dinkel, Georges Alunga, and Fabrice Muvundja for water and gas sampling; to Torsten Diem and Oliver Scheidegger for their support on gas and isotopes measurements; to Katrin Knittel for providing ANME mcrA reference clones, to Päivi Rinta and Martin Schroth for the measurement of gas and isotopes gas; and to Eawag’s AUA laboratory for determining TOC concentrations. We are especially thankful to Bernhard Wehrli and the anonymous reviewers of previous versions of the manuscript for instructive discussions and comments. The project was supported by the Swiss National Science Foundation, internal Eawag funds, and the Swiss Agency for Development and Cooperation under grant 207021-109710 (Nutrient cycling in Lake Kivu).

References

H. Bürgmann, M. Schmid, C. J. Schubert, F. Vazquez, and A. Wüest, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Surface Waters—Research and Management, CH-6047 Kastanienbaum, Switzerland. (Helmut.Buergmann@eawag.ch)

J. D. Kessler, Department of Oceanography, Texas A&M University, College Station, TX 77843-3146, USA.

M. A. Pack and W. S. Reeburgh, Department of Earth System Science, University of California, Irvine, CA 92697-3100, USA.

N. Pasche, Lake Kivu Monitoring Program, Ministry of Infrastructure, Gisenyi, Rwanda.