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Diminishing seasonality of subtropical water
availability in a warmer world dominated
by soil moisture–atmosphere feedbacks

Sha Zhou 1,2 , A. Park Williams 3, Benjamin R. Lintner 4,
Kirsten L. Findell 5, Trevor F. Keenan 6,7, Yao Zhang 8 & Pierre Gentine 9

Globalwarming is expected to causewet seasons to getwetter anddry seasons
to get drier, which would have broad social and ecological implications.
However, the extent to which this seasonal paradigm holds over land remains
unclear. Here we examine seasonal changes in surface water availability (pre-
cipitation minus evaporation, P–E) from CMIP5 and CMIP6 projections. While
the P–E seasonal cycle does broadly intensify over much of the land surface,
~20% of land area experiences a diminished seasonal cycle, mostly over sub-
tropical regions and the Amazon. Using land–atmosphere coupling experi-
ments, we demonstrate that 63% of the seasonality reduction is driven by
seasonally varying soil moisture (SM) feedbacks on P–E. Declining SM reduces
evapotranspiration and modulates circulation to enhance moisture con-
vergence and increase P–E in the dry season but not in the wet season. Our
results underscore the importance of SM–atmosphere feedbacks for seasonal
water availability changes in a warmer climate.

Changes in surface water availability (defined as precipitation minus
evapotranspiration, P–E) over land have widespread consequences for
human and natural systems in a warmer climate1,2. For example,
alterations in the seasonal patterns of precipitation and evapo-
transpiration may enhance flood and drought risks3,4, and pose great
challenges to local populations, food security, and sustainable man-
agement of water resources. Global warming increases water vapor in
the atmosphere. This increase is generally expected to amplify the
existing spatial as well as seasonal patterns of P–E, leading to wet
regions/seasons getting wetter, and dry regions/seasons getting drier,
which is referred to as “wet get wetter, dry get drier” (WWDD)
mechanism5–8. While evidence for the seasonal pattern of WWDD,
reflected in both precipitation and P–E, has been found at global
and regional scales, mainly over extratropical regions6,9–11, over some

subtropical dry regions, observations and model projections point to
the opposing pattern of seasonal change, with wet seasons becoming
drier and dry seasons becoming wetter (WDDW)9,11. This unexpected
WDDW pattern, if demonstrated to be mechanistically plausible,
would have important implications for the reliability of water resour-
ces and the sustainability of terrestrial ecosystems, particularly in dry
regions. It is therefore crucial to identify the extent to which the
WDDW pattern is robust over land and determine the underlying
mechanisms involved.

In this work, we examine projected seasonal pattern of P–E
changes from the Coupled Model Intercomparison Project Phase 5
(CMIP5)12 and Phase 6 (CMIP6)13 and identify the thermodynamic
and dynamic mechanisms responsible for seasonal P–E changes
using land–atmosphere coupling sensitivity experiments from
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CMIP6. We find a robust pattern of increasing dry–season P–E
and decreasing wet–season P–E over subtropical regions and
the Amazon, which is dominated by seasonally varying soil
moisture–atmosphere feedbacks, as drying of the soil reduces eva-
potranspiration and modulates atmospheric circulation to enhance
moisture convergence and increase water availability in the dry
season but not in the wet season. These results advance our under-
standing of seasonal shifts in water availability and underscore the
need for more in–depth assessments of hydrological changes over
subtropical dry regions.

Results
Projected seasonal pattern of water availability changes
Weusemulti–model simulations fromCMIP5 andCMIP6 to investigate
seasonal changes in P–E between historical (1971–2000) and future
(2071–2100, high–end forcing) periods (Methods). For eachmodel, we
define the dry and wet seasons as the three consecutive months with
the lowest and highest climatological mean P–E in the historical per-
iod, respectively (Supplementary Fig. 1). The spatial patterns of

seasonal changes in P–E between CMIP5 and CMIP6, as shown in Fig. 1,
are highly correlated (r >0.83). Over many extratropical regions, both
CMIP5 and CMIP6 project increasing wet–season P–E and decreasing
dry–season P–E, thereby leading to enhanced P–E seasonality
(Fig. 1a–f). The seasonality of P–E is also enhanced over tropical Africa
and Southeast Asia, mainly due to wet–season P–E increases, with a
larger amplitude evident in CMIP6 relative to CMIP5. The enhance-
ment of the annual P–E range is consistent with previous studies
indicating that global warming increases water vapor in the atmo-
sphere and amplifies horizontal water vapor transport to strengthen
the seasonal cycle of water availability5,11,14, while changes in atmo-
spheric dynamics may also modify seasonal shifts in P–E6,9. However,
CMIP5 and CMIP6 also project some regions with wet–season P–E
decreases and dry–season P–E increases, mostly over the subtropics
and the Amazon. Although the magnitudes of seasonal P–E changes
are uncertain andmodel dependent, the signature of the drying of wet
seasons and the wetting of dry seasons (i.e., WDDW) is significant
(p value < 0.05, see Methods) for ~20% of global land area (excluding
Antarctica and Greenland), leading to reduced seasonality of P–E

Fig. 1 | Multi–model mean seasonal changes in water availability in CMIP5 and
CMIP6. a–d Changes in water availability (Δ(P–E)) in the wet season (a, b) and dry
season (c, d) between historical (1971–2000) and future (2071–2100, RCP8.5 or
SSP585) periods (futureminus historical). e, f The same as (a–d) but for changes in
the annual range of P–E between wet and dry seasons. The dry/wet season is
defined as three consecutivemonthswith lowest/highestmean P–E in the historical
period in each model. Stippling denotes regions where the sign of Δ(P–E) is sig-
nificantly robust (p value < 0.05), i.e., the sign is consistent with the sign of
multi–model means (as shown in the figure) for more than 65% of the 35 CMIP5
models and of the 30 CMIP6 models (see Methods). The pie chart insets show

proportions of land area with (stippling) and without robust P–E changes. Ant-
arctica and Greenland are excluded. DD (DW) represents dry season showing
robust P–E decreases (increases), while WW (WD) represents wet season showing
robust P–E increases (decreases). RS (ES) represents reduced (enhanced) season-
ality of P–E, assessed as robust decreases (increases) in the annual range of P–E.
“NA” represents insignificant changes in P–E (p value >0.05). g, h Mean seasonal
cycle of P–E for RS and ES regions in the historical (HIST) and future (FUTU) peri-
ods. The sequence of months is organized to start from the first month of dry
season. The shading ing,h shows the standarddeviation of P–E across the assessed
models.
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(Fig. 1a–f). Further, comparison of seasonal cycles of P–E between
historical and future periods also demonstrates opposing seasonal
shifts in P–E over the reduced and enhanced seasonality regions
(Fig. 1g, h).We have also tested the sensitivity of our results to defining
the dry and wet seasons as the three consecutive months with lowest
and highest climatological mean P–E in each of the historical and
future periods for each model (Supplementary Fig. 1). Overall, while
this method yields a smaller percentage (~10% of global land area) of
reduced seasonality regions (Supplementary Fig. 2), the spatial pat-
terns of the recalculated seasonal changes of P–E are similar to those in
Fig. 1, with spatial correlations of 0.94 and 0.98 for the dry and wet
seasons, respectively.

Mechanisms of seasonal water availability changes
Long–term P–E changes are driven by both thermodynamic and
dynamic processes, which have been widely investigated15–17. Global
warming, from a thermodynamic perspective, is expected to increase
atmosphericwater vapor andhorizontalmoisture transport, favoring
increased P-E over wet regions of the tropics and extratropics and
reduced P-E over subtropical dry regions5,17,18. This thermodynamic
effect should also apply for seasonal changes in water availability,
with wet seasons getting wetter and dry seasons getting drier6,9,11.
On the other hand, atmospheric dynamic processes driven by ocean
and land region warming (and their contrasts) may also drive
P-E change. For example, the potential expansion of the Hadley cell
shifts the descending branches poleward and causes subtropical
drying19–22. This dynamic effect may contribute to the drying of wet
seasons, particularly to the extent that associated poleward dis-
placements of storm tracks shift the locus of rain-producing synoptic
disturbances poleward, although it is unclear that this should
account for the wetting of dry seasons. Overall, the existing ther-
modynamic and dynamic mechanisms appear to be insufficient to
explain the projected WDDW pattern over subtropical regions and
the Amazon.

A recent study indicates that soil moisture (SM) also plays an
important role in regulating long-termP-E changes23. Over subtropical
regions and the Amazon, SM is projected to decrease (Fig. 2), which
strongly limits evapotranspiration and reduces moisture recycling
for precipitation24,25. However, by shifting the surface turbulent
flux partitioning toward sensible heating, i.e., increasing the surface
Bowen ratio, reduced SM may enhance low-level flow convergence
and associated moisture convergence, thereby contributing to
weaker declines in precipitation than in evapotranspiration, resulting
in an increase in P-E and a negative SM feedback on P-E23. This implies
that increasing dry-season P-E may be associated with local drying of
the soil.

To examine whether SM-atmosphere feedbacks can explain the
WDDW pattern, we first compare future minus historical SM changes
between the wet and dry seasons. In both CMIP5 and CMIP6, we find
declining SM in theWDDW regions for both wet and dry seasons, with
small inter-seasonal differences (Fig. 2). This indicates that the WDDW
pattern is not due to seasonally asymmetric SM changes. On the other
hand, it has been demonstrated that the SM limitation on evapo-
transpiration is stronger under drier conditions24, and the SM regula-
tion of precipitation is also intrinsically linked to the SM effect on
evapotranspiration26. We thus hypothesize that the SM effects on
evapotranspiration, and hence P-E, may vary seasonally, contributing
to the seasonal P-E changes and the WDDW pattern over subtropical
regions and the Amazon.

Seasonally varying soil moisture effects on water availability
To investigate the hypothesized SM effect on evapotranspiration and
seasonal P-E changes, we take advantage of a multi-model CMIP6
ensemble from the Land Feedback Model Intercomparison Project
with prescribed Land Conditions (LFMIP-pdLC)27. LFMIP-pdLC is
identical to the historical and future (SSP585) simulations throughout
the simulation period 1980–2100, except that SM is prescribed as the
mean seasonal cycle over 1980–2014 from the historical simulation in

Fig. 2 | Multi-model mean seasonal changes in soil moisture in CMIP5 and
CMIP6. The percent change in soilmoisture (ΔSM) is assessed between 1971–2000
(historical simulation) and 2071–2100 (RCP8.5 or SSP585 simulation) in 35 CMIP5
models (a–c) and 30 CMIP6 models (d–f), and between 1980–2000 (historical

simulation) and 2080–2100 (SSP585 simulation) in the five CMIP6 models which
also participated in the LFMIP-pdLC experiment (g–i). Stippling denotes reduced
seasonality regions in Fig. 1e (35 CMIP5models, first row), Fig. 1f (30 CMIP6models,
second row), and Fig. 3c (5 CMIP6 models, third row).
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eachof thefiveparticipatingmodels (CESM2,CNRM-CM6-1, EC-Earth3,
IPSL-CM6A-LR, MPI-ESM1-2-LR; seeMethods).We isolate the SM effect
on seasonal P-E changes between the historical (1980–2000) and
future (2080–2100) periods as the five-model mean difference
between CMIP6 and LFMIP-pdLC.

Our comparison of the CMIP6 and LFMIP-pdLC simulations
reveals distinct SM effects on evapotranspiration and P-E between wet
and dry seasons (Fig. 3 and Supplementary Fig. 3). As expected, the SM
limitation on evapotranspiration is stronger in the dry season than the
wet season over subtropical regions and the Amazon (Supplementary
Fig. 3d, e). In thewet season, P-E changes inCMIP6 and LFMIP-pdLC are
comparable over most land area (Fig. 3a, d), and the SM effect on P-E
changes is relatively small (Fig. 3g), especially in the Northern Hemi-
sphere, compared to P-E changes induced by other processes, such as
anthropogenic climate change, in LFMIP-pdLC (collectively, we term
these the non-SM effect). The drying of the wet season over sub-
tropical regions and the Amazon is therefore mainly caused by the
non-SM effect (Fig. 3a, d, g), as anthropogenic warming reduces pre-
cipitation but enhances evapotranspiration with prescribed SM in
LFMIP-pdLC (Supplementary Fig. 4a, d). However, the SM effect is
opposite, and of similar magnitude, to the non-SM effect on P-E
changes in the dry season (Fig. 3e, h). Over subtropical regions and the
Amazon, the non-SM effect reduces P-E and SM in both seasons
(Figs. 3d, e, 2g, h). SM drying and associated land-atmosphere pro-
cesses strongly increase dry-season P-E, which cancels out P-E reduc-
tions induced by the non-SM effect, resulting in an increase in the net
P-E and the wetting of the dry season (Fig. 3b, e, h). Although the
magnitude of SM drying is similar in both seasons (Fig. 2g, h), the
negative SM feedback on P-E is much weaker in the wet season
than the dry season (Fig. 3g, h), contributing to the WDDW pattern
and reduced seasonality of P-E over 18% of land area in CMIP6

coupled simulations (Fig. 3c). Without the SM effect in LFMIP-pdLC,
only 9% of land area experiences reduced seasonality of P-E (Fig. 3f).
In the reduced seasonality regions, 80% of wet-season P-E reductions
(−0.50±0.24mm/day) are caused by the non-SM effect, with the
remaining 20% from the SM effect. In contrast, the positive SM effect
on dry-season P-E (0.29 ±0.11mm/day) is roughly twice themagnitude
of non-SM induced P-E reductions (−0.16 ±0.13mm/day) (Fig. 3j, k).
Overall, the distinct SM effects between wet and dry seasons
(−0.39 ± 0.16mm/day) are responsible for 63% of the reduced annual
range of P-E, while the non-SM effect (−0.24 ±0.25mm/day) accounts
for the remaining 37% (Fig. 3l).

The above SM effect on seasonal P-E changes highlights the sea-
sonally varying nature of SM-(P-E) feedbacks, but also includes the
effect of changes in SM climatology (i.e., mean seasonal cycle of SM,
Fig. 2g–i). To directly compare the SM-(P-E) feedbacks between dry
and wet seasons, we apply an empirical statistical method (Methods)
to CMIP6 models and observationally constrained reanalysis products
(Modern-Era Retrospective analysis for Research and Applications
(MERRA-2)28 and European Center for Medium-Range Weather Fore-
casts (ERA5)). The five CMIP6 models and two reanalysis products
consistently showstrongnegative SM-(P-E) feedbacks over subtropical
regions in the dry season, when the positive SM effect on evapo-
transpiration exceeds that on precipitation (Fig. 4a–c, g–i). However,
the negative SM-(P-E) feedback is weak in the wet season, when SM
limitation on evapotranspiration is negligible (Fig. 4d–f, j–l). These
results support the conclusion from Fig. 3 of the presence in sub-
tropical regions of a strong effect of SM drying on P-E increases in the
dry season but a weak SM effect in the wet season. Over the Amazon,
the SM-(P-E) feedbacks are mostly positive (though not statistically
significant) in the wet season and negative in the dry season (Fig. 4a, d,
g, j), consistent with wet-season P-E decreases and dry-season P-E

Fig. 3 | Soil moisture effects on water availability in the wet and dry seasons in
CMIP6. a–c Multi-model mean seasonal changes in water availability (Δ(P-E))
between 1980–2000 (historical simulation) and 2080–2100 (SSP585 simulation) in
the five CMIP6 models which participate in the LFMIP-pdLC experiment. d–f The
same as (a–c) but for Δ(P-E) in LFMIP-pdLC (without soil moisture effect). g–i Soil
moisture (SM) effects on Δ(P-E) assessed as CMIP6 minus LFMIP-pdLC results.

Stippling denotes regions where the sign of Δ(P-E) is consistent with the sign of
multi-model means (as shown in the figure) for at least four of the five models. The
pie chart insets show proportions of land area with (stippling) and without robust
P-E changes, similar to those in Fig. 1. j–l Total area-weighted Δ(P-E) in enhanced
seasonality (ES) regions and reduced seasonality (RS) regions in CMIP6 (c). The
error bars show the standard deviation of Δ(P-E) across the five models.
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increases in response to SM drying (Fig. 3g, h). Based on this empirical
assessment, we again conclude that seasonally varying SM effects
dominate the reduced seasonality of P-E over subtropical regions and
the Amazon.

Mechanisms of the SM-atmosphere feedbacks in thewet anddry
seasons
For furthermechanistic insight, we perform an atmosphericmoisture
budget diagnosis of the SM effect between thewet and dry seasons in
CMIP6 and LFMIP-pdLC. In the reduced seasonality regions, SM
drying exerts seasonally varying effects on the atmosphericmoisture
budget (Fig. 5b, d, f). Dry-season evapotranspiration reductions are
largely offset by increased moisture convergence (or decreased
moisture divergence due to reduced supply of water vapor through
evapotranspiration), resulting in only small decreases in precipita-
tion (Fig. 5d). In the wet season, the SM effect reduces both evapo-
transpiration and moisture convergence, and induces large
reductions in precipitation (Fig. 5b). However, the SM effect on the
atmospheric moisture budget is small over the enhanced seasonality
regions (Fig. 5a, c, e), consistent with the weak SM effects on eva-
potranspiration, precipitation, and P-E from reanalysis products
(Figs. 3, 4).

At the seasonal scale, the change in atmospheric moisture
storage is relatively small; thus P-E approximately equals moisture

convergence. The SM effects on P-E and moisture convergence
are therefore spatially congruent (Fig. 3g–i and Supplementary
Fig. 3g–i), with spatial correlations greater than 0.85 in both seasons.
By decomposing moisture convergence changes into thermodynamic
and dynamic terms (Methods), we find the difference in the SM effects
on moisture convergence (and P-E) between wet and dry seasons is
mainly associated with the dynamic effect in the reduced seasonality
regions (Fig. 5b, d, f). In the dry season, the drying of land surface
reduces evaporative cooling and strongly enhances land warming,
thereby reducing air pressure over subtropical land and the Amazon
relative to the ocean and many moist land regions (Supplementary
Fig. 5b, d, f). The strengthened surface pressure gradient favors low-
level flow convergence and vertical ascent (represented by negative
pressure velocity) throughout the troposphere over subtropical land
and the Amazon (Fig. 5h and Supplementary Fig. 6e–h). However, the
SM effects on land surface warming and atmospheric vertical motion
are weaker in the wet season, with the negative pressure velocity
slightly enhanced in the low-level troposphere but suppressed in the
mid- and high-level troposphere (Fig. 5g and Supplementary
Fig. 6a–d). Enhanced/suppressed vertical ascent is associated with
enhanced/suppressed net moisture flux from the ocean to land, as
inferred by the strong spatial correlation between changes in
the negative pressure velocity and changes in moisture convergence
(or P-E) over land (Supplementary Fig. 6i–l).

Fig. 4 | Soilmoisture feedbacks onwater availability in thewet anddry seasons.
a–f Mean sensitivity coefficients for soil moisture (SM)→precipitation minus eva-
potranspiration (P-E), SM→P, and SM→E identified based on historical and
SSP585 simulations (1980–2100) of the five CMIP6models which participate in the
LFMIP-pdLCexperiment.g–lThe sameas (a–f), but formean sensitivity coefficients
from reanalysis products ERA5 (1979–2019) and MERRA-2 (1980–2019) (d–f). The
sensitivity coefficient for X→Y denotes the partial derivative of Y in the wet/dry

seasons to X in the prior month. In each model/reanalysis product, the seasonal
cycles and long-term trends in X and Y are removed and the remaining variations of
X and Y are standardized in the wet and dry seasons individually. Stippling denotes
regionswhere the sensitivity coefficient is significant at the 95% level according to a
bootstrap test and the sign of the sensitivity coefficient is consistentwith the signof
multi-model means (as shown in the figure) in all models/reanalysis products.
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Discussion
This study demonstrates a robust pattern of wet seasons getting drier
and dry seasons getting wetter, from the perspective of P-E, over a
significant fraction of subtropical land regions and the Amazon in both
CMIP5 and CMIP6 projections. Further analyses of CMIP6 land-
atmosphere coupling sensitivity experiments provide evidence that
the drying of the wet season is mainly caused by anthropogenic cli-
mate change, while the wetting of the dry season in terms of increased
P-E is driven by the negative SM feedback on P-E. We have also found
that the reduced seasonality of P-E is predominantly caused by the
seasonally varying SM effects on P-E, while anthropogenic climate
change reduces P-E in both dry and wet seasons, and the net effect on
P-E seasonality is small over the subtropics and Amazon. The resultant
drying of the soil in turn reduces evapotranspiration and recycling of
evaporated moisture for subsequent precipitation24,25. Reduced eva-
porative cooling further amplifies land surface warming, and the
associated land-ocean warming contrast strengthens surface pressure
differences between ocean and land, which drives anomalous ocean-
to-land moisture transport and enhances moisture convergence over
land. Such an increase in SM-induced moisture convergence offsets
the decrease in precipitation driven by reduced moisture recycling of
evapotranspiration, resulting in a more muted precipitation response
than the evapotranspiration response to SM drying and a negative SM
feedback on P-E. The SM limitation on evapotranspiration and asso-
ciated SM-atmosphere feedbacks, especially those related to atmo-
spheric dynamics, are strong in the dry season but weak in the wet
season, contributing to large P-E increases in the dry season and slight

P-E decreases in the wet season. The seasonally varying nature of SM-
atmosphere feedbacks therefore leads to reduced seasonality of P-E
over subtropical regions and the Amazon.

While the SM effect on long-term P-E changes in subtropical
dry regions has been recognized23, our modeling and empirical
assessments further show that the negative SM-(P-E) feedback occurs
mainly in thedry season. Thenegative SM-(P-E) feedback causedby the
SM regulation of atmospheric dynamics and moisture convergence is
also expected from observational evidence that the SM limitation on
evapotranspiration is strong in the dry season, when precipitation is
relatively low and cannot decrease as much as evapotranspiration
could in response to SM drying24. On the other hand, reduced evapo-
transpiration leads to reduced terrestrial supply of water vapor for
moisture divergence and therefore curbs the reduction of P-E in the
dry season. The projected SM declines combined with the negative
SM-(P-E) feedback explains the positive SM effect on dry-season P-E
increases isolated using modeling experiments over subtropical
regions and the Amazon. While the negative sign of the SM-(P-E)
feedback is supported by both reanalysis products andCMIP6models,
the feedback strength and the magnitude of SM-induced P-E changes
vary across models and products (Figs. 3, 4), which may result from
uncertainties in the representation of SM-atmosphere feedbacks.

Seasonal variations in P-E are closely related to extreme hydro-
climate conditions, such as droughts and floods, which are projected
to increase in many regions under climate change3,4,29. Future drought
risks and associated carbon loss are likely to be especially strong over
the subtropics and the Amazon29,30. Increased dry-season P-E due to

Fig. 5 | Mechanisms of the soil moisture effects on water availability in the wet
and dry seasons. a–f Soil moisture (SM) effects on changes in precipitation, eva-
potranspiration, moisture convergence, and the thermodynamic, dynamic, and
nonlinear terms of moisture convergence between 1980–2000 and 2080–2100 in
enhanced seasonality (ES) regions and reduced seasonality (RS) regions shown in

Fig. 3c. The SMeffect is assessed as the five-modelmeandifference betweenCMIP6
and LFMIP-pdLC (similar to Fig. 3g–i). g, h SM effects on negative pressure velocity
(−4ω) over ES andRS regions. The error bars in a–f and the shading ing,h show the
standard deviation of each variable across the five models. The upward and
downward arrows in g, h show vertical ascent and descent, respectively.
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SM feedbacks may somewhat attenuate the potential increase of
drought risk expected from the thermodynamic hydrological
changes. In the absence of the negative SM feedbacks, the projected
extreme hydroclimate events would likely becomemore frequent and
more extreme than coupled climate projections23, whichwould reduce
the capacity of terrestrial ecosystems to absorb CO2 and mitigate
climate change in the future.

Our findings underscore the importance of soil moisture-
atmosphere feedbacks in modulating seasonal water availability
changes. In particular, while warming-driven oceanic and atmospheric
changes point to declining dry-season water availability in the future,
soil moisture feedbacks can be viewed as offsetting the decline over
subtropical dry regions that would be realized in the absence of such
feedbacks. Given the widespread opposite effects of soil moisture and
other climate factors on water availability in the dry season (Fig. 3e, h),
soilmoisture-atmosphere feedbacksmayalleviate thenegative climate
change implications for regional water resources management. It is
worth noting that while soil moisture-atmosphere feedbacks lead to
increases in surface water availability in the dry season, reduced soil
moisture itself and associated declining evapotranspiration also indi-
cate an overall drying trend of the land surface system driven by cli-
mate change over subtropical dry regions and the Amazon. As the soil
moisture feedback on surface water availability is stronger in drier
conditions, human activities like irrigation may weaken the negative
soil moisture feedback and magnify water scarcity in dry regions, but
the scale at which this effect might be detected need to be identified.
Our study enables a mechanistic understanding of the role of soil
moisture-atmosphere feedbacks in regulating the seasonal pattern of
water availability in coupled climate models, while a more in-depth
assessment of regional hydrological changes and associated hydro-
climate extremes and vegetation activities based on observations and
model projections is needed. As subtropical ecosystemsare among the
most vulnerable to climate change31, it is crucial to continue to assess
seasonal variations in the freshwater resources and terrestrial ecosys-
tems and refine projections of the coupled climate-hydrology-
ecosystem to promote effective conservation actions.

Methods
CMIP5 and CMIP6 model simulations
We used output from 35 CMIP5 models (Supplementary Table 1) and
30 CMIP6 models (Supplementary Table 2) covering the historical
(1971–2000) and future (2071–2100) periods. The high-end forcing
scenarios (RCP8.5 in CMIP5 and SSP585 in CMIP6) were used in future
simulations. We used these models because they provide the monthly
total soil moisture content (“mrso”), precipitation (“pr”), and latent
heat flux (“hfls”) as required for our analyses. For each model, one
ensemble member was used (see Supplementary Tables 1, 2 for
details). We calculated evapotranspiration from latent heat flux which
was available in more CMIP6 models than evapotranspiration
(“evspsbl”), and obtained precipitationminus evapotranspiration (P-E)
in each model. In CMIP5 and CMIP6, we defined the wet and dry sea-
sons as the three consecutive months with the highest and lowest
climatological mean P-E, respectively, using data from the historical
simulation (1971–2000) in each model. Multi-model mean seasonal
changes in soil moisture, evapotranspiration, precipitation, and P-E
between the historical and future periods were calculated.

Soil moisture-atmosphere feedback experiments
We used a new multi-model experiment from the Land Feedback
Model Intercomparison Project with prescribed Land Conditions
(LFMIP-pdLC), which was designed to assess land surface feedbacks
on climate change in CMIP627. LFMIP-pdLC performed transient
coupled atmosphere-ocean simulations driven by the same forcing,
including sea surface temperature and sea ice, from corresponding
CMIP6 simulations (the historical simulation during 1980–2014 and

the SSP585 scenario during 2015–2100), except that soil moisture
(SM) was prescribed as the mean seasonal cycle of 1980–2014 from
the historical simulation in each model (https://wiki.c2sm.ethz.ch/
LS3MIP/Tier1Experiments). LFMIP-pdLC is currently available for five
models (CESM2, CNRM-CM6-1, EC-Earth3, IPSL-CM6A-LR, MPI-ESM1-
2-LR). Comparing the fully coupled historical and future (SSP585)
simulations in CMIP6 (expressed as CMIP6 simulations below) and
LFMIP-pdLC, we could assess the SM effect on P-E in each model.

We used monthly total soil moisture content, precipitation, and
latent heat flux from these simulations. We assessed seasonal changes
in the variables (SM, precipitation, evapotranspiration, and P-E)
between 1980–2000 and 2080–2100 in CMIP6 and LFMIP-pdLC, the
latter only covers 1980–2100. Correspondingly, the wet and dry sea-
sons are defined using historical data from 1980 to 2000 in CMIP6.
Although long-term hydrological changes are usually assessed at 30-
year time scales (Fig. 1), we compared seasonal changes in precipita-
tion, evapotranspiration, and P-E between 1971–2000 and 2071–2100
and between 1980–2000 and 2080–2100 in CMIP6, and found the
results are very close (Supplementary Fig. 7).

We used pressure level data from CMIP6 and LFMIP-pdLC to
assess the thermodynamic and dynamic mechanisms of the SM effect
on seasonal P-E changes.We usedmonthly specific humidity, eastward
and northward wind on pressure levels, and surface pressure to cal-
culate moisture convergence and decompose it into thermodynamic
and dynamic terms (see “Moisture budget decomposition”). We also
used near-surface (2m) air temperature, pressure velocity on pressure
levels, and sea level pressure in the fivemodels that participate in both
CMIP6 and LFMIP-pdLC for the mechanistic analyses.

Reanalysis datasets
To support the modeling feedback analyses, we identified the SM-
atmosphere feedbacks using two state-of-the-art reanalysis products:
the Modern-Era Retrospective analysis for Research and Applications,
version 2 (MERRA-2)28 and the European Center for Medium-Range
Weather Forecasts (ERA5). MERRA-2 and ERA5 are constrained by
in situ and satellite remote sensing observations, and reasonably
capture the relationship between SM and P-E23. We usedmonthly root-
zone (0–100 cm) SM, precipitation, evapotranspiration fromMERRA-2
(1980–2019) and ERA5 (1979–2019) to assess the SM-atmosphere
feedbacks in the wet and dry seasons (see “Soil moisture-atmosphere
feedbacks”).

Robustness of the seasonal changes in P-E
We made use of ensembles of CMIP5 and CMIP6 models to test the
robustness of the seasonal changes in P-E (Δ(P-E)). As the sign and
magnitude ofΔ(P-E) vary acrossmodels, we used themulti-modelmean
Δ(P-E) as the best estimate and tested whether the sign of multi-model
means is statistically robust. For each grid cell, if the multi-model mean
Δ(P-E) is positive, we tested the following hypothesis:
1. The null hypothesis is that the sign of Δ(P-E) is random, so the

probability of a positive Δ(P-E) is 0.5 (p = 0:5);
2. The alternative hypothesis is p>0:5;
3. To test the null hypothesis, we construct a test statistic: the

number of models of all models (n) that show positive Δ(P-E);
4. As the sign of Δ(P-E) is independent across different models, the

number of models with positive Δ(P-E) follows the binomial dis-
tribution, and the probability of positive Δ(P-E) simulated in
exactly m models is given by

Pm =
n!

m! n � mð Þ!p
mqn�m,p = 0:5, q = 0:5 ð1Þ

5. According to the probability density function of binomial dis-
tribution, if positive Δ(P-E) occurs in 23 of 35 (66%) CMIP5models
or 20 of 30 (67%) CMIP6models, we can reject the null hypothesis
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(p value < 0.05), and the positive sign of multi-model meanΔ(P-E)
is significantly robust.

PCMIP5 m ≥ 23ð Þ =
X35

m = 23

35!
m! 35 � mð Þ!0:5

m × 0:535�m <0:05 ð2Þ

PCMIP6 m ≥ 20ð Þ =
X30

m = 20

30!
m! 30 � mð Þ!0:5

m × 0:530�m <0:05

ð3Þ

The similar hypothesis testing was also applied for grid cells with
negative multi-model mean Δ(P-E). In general, if the sign of Δ(P-E) is
consistent with the sign of multi-model means for more than 65% of
the 35 CMIP5 models and of the 30 CMIP6 models, the sign of multi-
model mean Δ(P-E) is deemed to be statistically significant at the 95%
confidence level.

Soil moisture-atmosphere feedbacks
We applied an empirical statistical method to assess the SM-(P-E)
feedbacks in the wet and dry seasons using the two reanalysis pro-
ducts and CMIP6 models. This method establishes a multiple linear
regression model between P-E and one-month lagged SM to identify
the sign and strength of the SM-(P-E) feedback23. As the SM effect
on P-E may persist for weeks to months, the regression model
between P-E and 1-month lagged SM therefore can isolate the SM
feedback on P-E from the direct P-E effect on SM23. In the regression
model, the multi-year mean seasonal cycles and the linear trends of
SM and P-E are removed to focus on the feedback of SM variations on
P-E variations. The regression model also takes into account the
prior-month P-E to overcome the potential effect of P-E auto-
correlation.

P � Eð Þd tð Þ=n0 +n1 � SMd t � 1ð Þ+n2 � P � Eð Þd t � 1ð Þ ð4Þ

where the subscript d indicates that the seasonal cycle and linear trend
of the variable are removed, and the indicator t represents monthly
steps in the wet or dry season. The regression coefficient n1 represents
the partial derivative of P-E variations to SM variations in the prior-
month ∂ P�Eð Þd tð Þ

∂SMd t�1ð Þ

� �
, and was used to capture the SM feedback on P-E in

the wet and dry seasons.
We identified the SM feedback on P-E as the standardized n1, or

sensitivity coefficient for SM!(P-E), which corresponds to standar-
dized P � Eð Þd and SMd of zero mean and unit variance in the wet or
dry season. In thisway,we couldbetter compare the SM-(P-E) feedback
between wet and dry seasons and across different regions/datasets/
models. Alternatively, we standardized the entire time series of
P � Eð Þd and SMd to zero mean and unit variance and then applied the
regression model to obtain the regression coefficient n1. The spatial
patterns of the identified sensitivity coefficients for SM!(P-E) from
the two standardization methods are identical (Fig. 4 and Supple-
mentary Fig. 8).

We used a bootstrap test to determine the significance of the
sensitivity coefficients in case the identified SM-(P-E) feedback may
be sensitive to natural variability. In the bootstrap analysis, the
time series of the variables are randomly resampled to perform
the multiple linear regression and obtain the 95% confidence inter-
vals of the sensitivity coefficients for the wet and dry seasons.
According to the bootstrap confidence intervals, the sensitivity
coefficients are deemed statistically significant if the 95% confidence
intervals do not overlap with zero. The multiple linear regression
method and the bootstrap test were also used to obtain the sensi-
tivity coefficients for the SM effects on evapotranspiration and
precipitation.

Moisture budget decomposition
According to atmospheric moisture budget, P-E equals to moisture
convergence (MC), which is defined as the negative divergence of
vertically integratedmoisturefluxover thepressure (p) from the topof
the atmosphere (p = 0) to the surface (p = ps).

P � E = MC ð5Þ

MC = � 1
ρwg

∇ �
Z ps

0
uqð Þdp ð6Þ

where ρw is the density of water, g is the acceleration due to gravity, ∇
is the horizontal divergence operator, u is the horizontal vector wind,
and q is specific humidity.

As we focused on climatological seasonal changes of P-E, we used
monthly data to approximately calculate MC differences between the
historical and future periods.

MC ≈ � 1
ρwg

∇ �
Z ps

0
�u � �qð Þdp ð7Þ

where overbars indicate monthly mean values. The change in MC
(4MC) can be decomposed as

4MC ≈ � 1
ρwg

∇ �
Z ps

0
�u0 � 4�q + �q0 � 4�u+4�u � 4�q

� �
dp ð8Þ

where the subscript 0 represents the historical period, and the delta
operator represents changes from the historical to future periods.
On the right side of Eq. (8),4MC is decomposed into a thermodynamic
term due to specific humidity changes (� 1

ρwg
∇ � R ps

0
�u0 � 4�q

� �
dp),

a dynamic term due to horizontal wind changes (� 1
ρwg

∇ �R ps
0

�q0 � 4�u
� �

dp), and a nonlinear term due to the product of specific
humidity and wind changes (� 1

ρwg
∇ � R ps

0 4�u � 4�qð Þdp)15,23,32.
We used monthly specific humidity and zonal and meridional

wind velocity on pressure levels, and surface pressure fromCMIP6 and
LFMIP-pdLC to calculate the change in MC between the historical
(1980–2000) and future (2080–2100) periods, and its three compo-
nents (Eq. 8) in thewet and dry seasons. The SMeffects onMCchanges
and the thermodynamic, dynamic, and nonlinear terms were calcu-
lated as their differences between CMIP6 and LFMIP-pdLC. As the
dynamic term (� 1

ρwg
∇ � R ps

0
�q0 � 4�u
� �

dp) is approximately equal to
� 1

ρwg

R ps
0 4�ω∂q=∂p
� �

dp, where ω is the pressure vertical velocity,
according to the mass continuity equation33, we identify the dynamic
effect by analyzing the SM effects on both the horizontal wind velocity
and the pressure vertical velocity throughout the troposphere.

Data availability
All data used in this study are available online. The CMIP5 model
simulations were downloaded from https://esgf-node.llnl.gov/search/
cmip5/, and the CMIP6 (including LFMIP-pdLC) model simulations are
available from https://esgf-node.llnl.gov/search/cmip6/. The ERA5
reanalysis data are fromhttps://www.ecmwf.int/en/forecasts/datasets/
archive-datasets/reanalysis-datasets/era5. The MERRA-2 reanalysis
data are from https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/data_
access/.

Code availability
The R code used for modeling and reanalysis data analyses is publicly
available (https://doi.org/10.5281/zenodo.6802965).
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