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1 Introduction

The identification of binding sites for regulatory proteins in the up-stream region of genes is an im-

portant ingredient towards the understanding of transcription regulation. In recent years, novel ex-

perimental techniques, as gene expression arrays, and the availability of entire genome sequences

have opened the possibility for more detailed investigations in this domain. Traditionally, the re-

construction of the profile of a binding site and the localization of all its occurrences in a sequence

are treated as separate problems. The first is tackled using a small group of sequences, known or

suspected to contain the binding site, but with neither position or pattern known. One success-

ful approach to such reconstruction problem is based on a probabilistic model of the sequence,

represented as concatenation of background and motif stochastic words. Maximum likelihood or

maximum a-posteriori estimates are obtained with EM or Gibbs-sampler algorithms [13, 14].

The second problem is approached considering one or multiple sequences of variable length;

the pattern characterizing the motif is assumed known. Possible locations are identified on the

base of scoring functions that highlight the similarity of the motif with the sequence portions. Cut

off values for such similarity scores are hard to determine: ad hoc solutions or estimations on a

training set are often adopted [17, 18]. Typically these techniques are used to scan one sequence of

interest against a data-base of known binding sites. While there are historical and practical reasons

to consider these two problems as separate, the current post-genomic era, where we are confronted

with large abundance of sequence, calls for a different approach. Consider the problem, tackled in

[18], of identifying all the the binding sites of the known regulatory proteins in the genome of E.

Coli. While formally similar to blasting a small sequence of interest against a data-base of known

regulatory proteins, there are substantial differences in these genome-wide search. On the one

hand, as one scans through the genome for binding sites of LexA—to take one example—and finds

a substantial number of them, it seems appropriate one should use the information in the identified

locations to update the current pattern description. On the other hand, given that the output is not
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going to include a small number of sites, that can be further investigated, but a large collection of

them, the assessment of significance cut-off should be based on proper probabilistic statements. To

address these issues, one would need a probability model for the entire genome sequence, that can

lead to evaluation of specific a-posteriori probabilities of appearance of a binding site in any given

location, and whose parameters can be estimated on the base of data. At the same time, given the

scale of the problem, the model should be suitable for rapid computation. In an attempt to address

such need we introduce here the Vocabulon model.

Section 2 gives a description of the probability model we employ; its differences from others in

the literature; and its current implementation. We then present the results of multiple investigations

on E. Coli sequence. Given that genome-wide information on the location of binding sites is not

available, we used results of gene expression array experiments to corroborate our results, arguing

in favor of a novel perspective in array analysis.

2 Methods

The first suggestion of a dictionary-oriented probabilistic model for DNA sequence is due to Busse-

maker et al. [4]. These authors propose conceiving the genome as a concatenation of words se-

lected from a dictionary independently from each other, and with word-specific probabilities. In

this framework, a word of length one represents meaningless background, or a “space filler”, while

longer words identify functional sites. There are three points worth noting on the characteristics

of this model. Firstly, the hypothesis of independence across consecutive words is certainly inade-

quate to account for some specific regulatory proteins interactions described in the literature [10].

However, it provides a very significant speed-up from a computational stand point, that is difficult

to do with out. A second important advantage of Bussemaker’s dictionary [4] is that its probability

model for the entire DNA sequence provides a framework where the decision on the presence of

a binding site in a given location can be based on well defined conditional probabilities. Unfortu-
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nately, [4] contains slightly imprecise i calculations, so that the original algorithm would not lead

to exact evaluations of the probability of interest. A third crucial aspect of this dictionary model is

that it relies on deterministic words—that is words that admit only one spelling. This simplifica-

tion allowed the authors to attempt to reconstruct the DNA dictionary starting from no other data

then a sequence, but represents a serious limitation if we want to use such models for binding site

reconstruction.

The limitations/strengths of the original dictionary model [4] have prompted further investiga-

tions. In one direction, we [20] describe in detail a dictionary-style model that, overcoming some

of the computational difficulties in [4], allows exact computation of conditional probabilities. In

an other domain, while deterministic words are the only one considered by Bussemaker et al., their

same notion of DNA as concatenation of independently selected semantic units can be extended to

encompass motifs or fuzzy words with variable spellings. Such extension can be found originally

in the theoretical papers by Sabatti and Lange [20], andGupta and Liu [9] (These two extensions

were developed independently and their computational algorithm differ: [20] uses a deterministic

one, while [9] propose a MCMC approach) We hence obtain the model at the core ofVocabulon,

with the same macroscopic features as Bussemaker’s dictionary, but, at a finer scale, similar to the

one used in motif finding analysis [13]. Vocabulon is a generic name for a french society game

based on word guessing and recognition, which we though fit well the nature of our problem.

Following is a description of the main characteristics of the model.

The building blocks of a sequence are words, intended as irreducible semantic units, or in the

genetic context, motifs. Each word may admit more than one spelling. Thus, in English, “theater”

and “theatre” represent the same word. Two different words may share a spelling. In our model,

a wordw always has the same number of letters|w|. Hence, alternative spellings such as “night”

and “nite,” with different number of letters, are disallowed. The letters of a word are independently

sampled from different multinomial distributions. This is known as product multinomial sampling.

It is convenient to group words according to their lengths and to impose a maximum word length
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kmax on our dictionary. In summary, the Vocabulon model requires a static dictionary with a list

of alternative spellings and probability distributions determining which words and spellings are

selected. The parameters of the model can, then, be grouped as follows:

1. The probability of choosing a word of lengthk is qk. Herek ranges from1 to kmax, and∑kmax

k=1 qk = 1. If there are no words of lengthk, thenqk = 0.

2. Conditional on choosing a word of lengthk, a particular wordw with |w| = k is selected

with probabilityrw. Hence,
∑

|w|=k rw = 1.

3. The letters of a wordw follow a product multinomial distribution with success probabilities

`wi = (`wiA, `wiC , `wiG, `wiT )

for the letters A, C, T, and G at positioni of w.

A randomly chosen word of lengthk, then, exhibits the spellings = (s1, . . . , sk) with probability

p(s) =
∑
|w|=k

rw

k∏
i=1

`wisi
. (1)

To be robust to the presence of missing data, we represent missing letters by question marks and

introduce the additional letter probability`wi? = 1 for each wordw and positioni within w. A ran-

dom sequenceS is constructed from left to right by concatenating random words, with each word

and each spelling selected independently. In the Vocabulon model, we assume that the stretch

of DNA observed is a fragment of text from an infinitely long sequence (a detailed description

of the implications of this assumption and its difference from the dictionary model proposed by

Bussemarker et al. [4] can be found in [20]). When we observe a DNA sequence, we do not have

information on where the boundaries between words lie. We will call the portion of a sequence

between two consecutive word boundaries a “segment” and the set of word boundaries dividing a

sequence an “ordered partition” of the sequence. We use the symbolπ to indicate a such partition
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π = (π1, . . . , π|π|), with πi the set of indices corresponding to one word. Withs[πi]) we indi-

cate the portion of the sequence corresponding to the indexes inπi. With the above notation and

assumptions, the likelihood of a sequence is

L(s) = Pr(S = s) =
1∑kmax

i=1 qi

∑
π∈E

|π|∏
i=1

q|πi|p(s[πi]).

In Sabatti and Lange (2002) we discuss in detail the definition of such likelihood. We also give

algorithms for likelihood computation that resemble Baum’s forward and backward algorithms

from the theory of hidden Markov chains [2, 8].

For estimation purposes, we adopt a Bayesian framework, attractive because it allows the

incorporation of prior information on experimentally identified binding sites. We use independent

priors onq, r, and`. It is convenient to choose Dirichlet distributions, as they are conjugate priors

for multinomial densities. In the case ofq, for example, this implies choosing a prior distribution

of the following form:

Γ(
∑kmax

k=1 αk)∏kmax

k=1 Γ(αk)

k∏
k=1

qαk−1
k .

In selecting the prior parametersα1, . . . , αkmax , is helpful to imagine a prior experiment and inter-

pretαk−1 as the number of successes of typek in that experiment. The sum
∑kmax

k=1 αk−kmax gives

the number of trials in the prior experiment, and hence determines the strength of the prior. Note

that the special case where allαk = 1 yields a posterior density that coincides with the likelihood.

It should be clear, at this point, how information on binding sites contained in various databases can

be used to define the prior counts of the appropriate Dirichelet distribution. Maximum a posteriori

estimates are obtained with a M-M gradient algorithm [12] described in [20].

The current implementation of Vocabulon is in Fortran 95. It requires two input files: the first

contains the sequences to be searched in FASTA format; the second lists the dictionary structure

(list of words with given length) and prior information on the spelling. The algorithm can be run in

two modes: the default one estimates the value of all the parametersq, r, `. The no-spelling option
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fixes the matrix of multinomial probabilities. The output of the program includes a list of all the

locations in the analyzed sequences where a motif was detected (posterior probability higher than

a given threshold); the expected counts of each motifs for each sequence; and the estimated values

of the parameters.

3 Results

3.1 The Crp binding site

For uniformity with the rest of the literature, we started considering the classical benchmark case

of the reconstruction of Crp binding site from a collection of 18 microbial sequences. The specific

sequences used are the same as in [14] and were kindly provided by these authors. No prior

information on the DNA pattern corresponding to the Crp binding site was given. We used 0.80 as

a cut-off for the posterior probability of motif. We identified 19 locations that are also presented

by [14]. We did not identify the 5 remaining reconstructed by those authors and we individuated

an additional 23 putative sites. The reconstructed spelling matrix corresponds well with the one

known to characterize Crp.

This first test case was the occasion to note that—like other related motif finding algorithm—

Vocabulon is subject to the problem of local modes. In particular, we noticed that Vocabulon can

be trapped in non optimal local patterns that are a shifted form of the optimal one, as described

in [14]. We have been able to overcome this difficulty by using multiple runs in cases as Crp

and thank to the prior information in the larger problems. In the future, we plan to augment our

algorithm with “shift moves” like the ones described in [14].
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3.2 The lexA binding site

Both to consider a problem that is closer to the reality faced by investigators and to appreciate

the specific features of our algorithm, we turned to the study of the binding site for LexA. We

considered a set of published microarray experiments on E. Coli: Courcelle et al. [7] investigated

the dynamic effects of UV irradiation of E. coli using microarray technology for 4290 genes. They

collected two different time-courses, one where they exposed wild type to UV and one where

they exposed a lexA- strain to the same treatment. In each time course they collected 5 time

points, 5, 10, 20, 40 and 60 min. It is well known that exposure to UV should activate the LexA

regulon. We analyzed the gene expression values with a very conservative procedure to identify

a set of genes that may be regulated by LexA. In a first pass, we isolated all genes that where

either up regulated or down regulated 2 fold or more at all time points in the wild type and in

the lexA- strain shown neither up or down regulation. A total of 87 genes fitted this criterion.

The selected genes were clustered with an agglomerative hierarchical method based on correlation

and complete linkage. The genes from the highest conserved sub-cluster were selected: sulA

(b0958), dinI (b1061), umuD (b1183), ruvA (b1861), recN (b2616) and recA (b2699). These are

indeed genes that are known to be regulated by LexA and whose LexA binding sites have been

experimentally determined. Using the genome of E. Coli as in [3] we extracted 600 base pairs

prior to and 100 after the start codon for these genes. We run our algorithm on these sequences,

hypothesizing a dictionary with a background word and a word of length 20. We found a total of

8 sites for LexA, corresponding perfectly to the ones identified experimentally in these sequences.

The reconstructed LexA pattern can be seen in figure 1. The identified motif is palindromic (even

if no prior information was used to this effect). There are 6 sites almost perfectly conserved. This

may be due to the selection procedure for the input sequences: our stringent criteria may have led

us to isolate those sequences that have the most exclusive and efficient binding sites. Once this first

description of the site was obtained, we used our algorithm to search for all other possible binding
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sites for the same regulatory protein in E. Coli. For this purpose, we compiled a list of the 700

bp in the promoter regions of 3277 genes in E. Coli. These were selected, out of the 4290 total

genes, to take into account operon structure. Indeed, a considerable number of genes in E. Coli

are transcribed as an operon: that is, they are adjacent, in the same direction of transcription, and

all regulated by the promoter region up-stream the first one. When searching for binding sites of

regulatory proteins, then, one can eliminate the up-stream regions of genes that are in an operon,

but not in the first position. Unfortunately, the entire operon structure in E. Coli is not known, but

we used the predictions described in [21], with a cut-off of posterior probability of being in an

operon equal to 0.9.

To check the effectiveness of our algorithm, we had at our disposal 19 known binding sites for

LexA (eleven more than the 8 ones reconstructed in the previous experiment). We run our algo-

rithm using as prior information the reconstructed pattern and a) the no-spelling option, and b) the

standard procedure, with a strong contribution from the prior. The procedure a) is the most similar

to scoring function searches, in that the pattern describing the motif remains untouched. Notice,

however, that we are still estimating the parametersq andr, and obtaining a specific probabilistic

description of the sequence. Procedure a) led to the identification of 12 of the known binding sites,

and a total of 25 imputed ones. Procedure b), where the pattern describing the motif was allowed

to adapt, led to the identification of 15 of the known binding sites, and a total of 35 imputed ones.

Clearly, being able to refine the motif description, as more locations were identified, represented

a benefit for the algorithm. As we are searching for a weak signal through a large number of se-

quences, however, it would not make sense to discount much the prior information—that is why

we used the strong prior.

So far, we have based our evaluation of the algorithm on the comparison with the 19 known

binding sites, but this information in typically not available when searching for novel sites. One

instrument that is, instead, quite generally available to refine the results of a motif search is the

comparison with gene expression array data. We considered the second time-point of the UV
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experiment described before. The histograms of the expression values for the genes, divided in

groups with respect to their LexA status, is given in Figure 2. Clearly, there is a shift in expression

values between the genes that are estimated not to have a binding site for LexA and those that

appear to have one, which offers a generic validation of our results. More specifically, one can

look at the expression value for each single gene and compare it with the posterior estimated

probability for a binding site in its upstream region. Such comparison is carried out in Figure 3

with a scatter plot of probabilities of a binding site versus Log10 of the p-value for a null hypothesis

of no expression change in the second time point of the UV series of microarray experiments.

Such plots can be used to determine adaptively a cut-off for significance of the binding site. For

example, the results presented so far are based on a 0.5 cut off. However, in light of Figure 3 one

might decide that 0.8 is a more appropriate cut off, (as starting from such value we record the first

gene expression changes which are significantly different from zero). From figure 3, where points

corresponding to experimentally verified binding sites are in red, we can also gather that, while

some of the imputed sites appear spurious, there are at least 6 that have expression values similar

to the known LexA regulated genes, so that their prediction receives some corroboration.

3.3 A dictionary of motifs

The experiments illustrated so far have shown how our algorithm can reconstruct the pattern of an

unknown binding site and estimate all its occurrences in a genome—with a comparative advantage

over other procedures, due to the fact that the pattern description can be refined as more occurrences

are encountered.

Another substantial strength of our method is in its ability to deal with a large number of

binding sites—we will explore now this feature. When dealing with a large number of sequences

and a large dictionary of words, with variable spellings, one has to pay attention to identifiability

issues. Unless some form of constraint is introduced, for example, it is very plausible that two
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formally different words in the dictionary end up describing the same real-life motif. Similarly,

to select the appropriate size of the dictionary one would need to define appropriate complexity

penalties. We have not thoroughly investigated this problem. In the E. Coli case study presented in

what follows, we opted for the use of a pre-defined dictionary, with a fix number of words of known

length and with strong prior information on their spelling. This makes it possible to monitor the

identity of the reconstructed binding sites, and still provides a scientifically challenging problem,

as testified by the work of Robinson et al. [18].

To compile the dictionary and define prior information, we referred initially to the similar

study by [18]. We then modified the original list of binding sites according to the following criteria:

(1) we added some proteins that have been studied in greater detail since [18]; (2) we eliminated

words that were by definition overlapping with others in the dictionary; (3) we eliminated proteins

whose binding site has very low information content. According to criteria (1), we included in the

dictionary fliA and creB [16, 1]. An example of (2) is the case of phoB and phoB3. The latter

consisting in three overlapping instances of the first. Since our model does not admit overlapping

words, such definition is clearly inconsistent. In such cases, we included in the dictionary only the

smaller, modular, word. According to (3), we eliminated from our dictionary binding sites such as

ihf, lrp and hns, which has been proven not to be effectively recognizable on the base of sequence

pattern alone. A total of 17 words were deleted because their binding sites only occur less than

4 times in the prior. RpoD was also delete due to low information in the whole word. RpoS and

rpoH were divided up into two different words each in order to better represent the binding site.

We compiled then a dictionary of 41 binding sites and a background word reported in table 3.

Initially, we tested the performance of our algorithm on the set of 233 sequences, each 700 bp

long, that contain the experimentally identified binding sites used in the definition of the priors on

motifs. The performance of our algorithm is illustrated in table 3 and in figures 4, 5, 6, and 7. Using

a cut-off of 0.5 for the posterior probability of a word, we reconstruct 80% of the known binding

sites. A summary of how this overall percentage breaks down by sequence and motif is given in
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Figure 4. The proportion of recovered sites raises above 90% if the cut-off is 0.2, as illustrated in

Figure 6, which provides specificity and sensitivity as a function of the posterior probability cutoff.

In the following, when analyzing the performance of the algorithm in detail, we will consider

recovered any site that has posterior probability greater than 0.2—which is considerably greater

than the average value of zero.

A substantial portion (1/3) of the missed motifs can be explained considering that the unde-

tected motif is overlapping with a detected one—an example is given in Figure 5. As described

in the method section, the Vocabulon model for DNA sequence consists in the concatenation of

non-overlapping words. Since the output of our algorithm is not a single segmentation of the DNA

sequence, but gives, for each position, the posterior probability that a given word appears there, it

is possible that overlapping motifs may be detected; indeed, this happens in roughly 1/2 of the in-

stances. However, given the fact that two words offer a plausible explanation for the same portion

of sequence, both their posterior probabilities are reduced with respect to the value that they might

had in absence of overlap. This translates sometimes in one of the motifs going undetected. Which

motif is detected depends on the length of the motifs and their degree of conservation.

The influence of the information content of a motif on its chance of being recovered is illus-

trated in Figure 7. For each position in the motif, following [22] we define as information the

quantity2−
∑

i pi log pi, with i = A, C,G, T . As an index of degree of conservation of the entire

motif we consider the total information across position (known as Rsequence). From Figure 7 it

seams to appear that the cumulative information offers a reasonable predictor of the chance for a

motif to be detected.

After having explored the performance of our algorithm on the test set above, we analyzed

3277 up-streams regions for E. Coli genes (see description in the previous section) with the goal

of identifying all the binding sites for the regulatory proteins in our dictionary. This is a real

scientific challenge, rather than a test problem, and we cannot compare our results to the “correct”

answer. In order to assess, however, how reasonable our predictions might be, we (1) reassessed
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the percentage of recovered motifs in the test set; (2) compared our counts with the ones obtained

for the same problem in [18]; (3) checked our results against gene expression data.

The fact that the signal to noise ratio decreases substantially in this problem (only 7.5% of

the sequences have known binding sites), did not affect dramatically our performance on the test

set: the percentage of recovered sites is 70% with a 0.5 posterior probability cut-off (see table

2). Figures 8 and 9 illustrate the correspondence between the estimated number of binding sites

obtained with our algorithm and in Robinson et al. (1989). Those authors actually propose two

criteria to identify possible binding sites, one more conservative than the other. The counts in

Figure 8 are according the most stringent criteria. Our estimated counts appear to be somewhat in

the middle of the two obtained by Robinson et al. (1989), while following the same general trend.

Perhaps the most interesting validation for our method relies in its comparison with the results

from micro-array experiments, described in the following section.

4 Interpreting gene expression results in the light of motif im-

putation

Since the advent of gene expression arrays, there has been a substantial interest in analyzing their

results in connection with the presence of regulatory-protein binding motifs in the up-stream se-

quence of the studied genes (see [19] for a review). The main goal of researchers has been the

identification of novel regulatory motifs. Two approaches have been successful so far. The first

starts from the analysis of expression data, identifies few genes that exhibit a very similar expres-

sion pattern and searches for shared motifs in their up-stream region with algorithm like the one

described in [13]. The second approach starts by creating a long collection of putative motifs by

searching for small deterministic words that appear with sizeable frequency in the promoter regions

of the genes studied. Linear regression of the results of one array experiment against the collection
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of putative motifs is used to weed out the spurious ones (see [5, 11, 6]). As outlined, both these

strategies see the identification of motifs as the ultimate goal and the analysis of gene expression

array data as a tool. We here propose a different perspective. We consider the interpretation of

the results of a micro-array experiment as our final goal, and suggest using the available motif

information as supporting evidence. To clarify our viewpoint, consider what can be achieved in E.

Coli, using literature information on binding site positions. Relying on the information reviewed in

[18], for example, one can determine, for each gene in the array experiment, if it has a binding site

for each regulatory protein under consideration. Using these binding sites presence/absence scores

as regressors, one can easily obtain information on which regulatory proteins are activated in the

experiment analyzed with gene expression arrays. Indeed, if we apply this strategy to the analysis

of the second time-point of the UV experiment described before, we obtain that LexA is the most

significant regressor (p-value in the order of10−16, with the next most significant p-value of the or-

der10−3). Had we not known that UV activates the LexA regulon, we would have learn it. A more

sophisticated and powerful method of analysis for array data that exploits the same principle as

above is given in [15]. However, using only information available through the literature and based

on experimentally verified binding sites, has a clear limitation: the number of genes whose ex-

pression can be explained is fairly modest. The Vocabulon model offers an important contribution

at this level: by providing expected locations of binding sites across the genome, it significantly

increases the amount of information that can generally be extracted from array experiments. We

can more effectively learn which regulatory proteins are involved, and, at the same time, which

genes are affected by such changes. To illustrate these possibilities, we analyzed again the expres-

sion values of the second time point of the UV experiment series, using as regressors the expected

number of binding sites for each regulatory protein in the dictionary and each gene. The results

are in table 3, and in Figure 10. Again, lexA appears as the most significant explanatory variable.

The plot of change in expression vs expected number of binding sites for LexA, Figure 10, illus-

trates the additional information that Vocabulon gathered. Points corresponding to experimentally
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verified binding sites for LexA are in red. There are quite a number of genes that are not known in

the literature to have a binding site for LexA that both have an affinity for LexA in their promoter

region sequence, and an expression value comparable to the one of known LexA-regulated genes.

Considering at the same time these two pieces of information allows us to place them more confi-

dently in the LexA regulon. Notice that an analysis based on expression values only may not lead

to the identification of such genes, whose expression changes are not very significant.

4.1 Conclusion

Bussemaker et al. [4] proposed the use of language parsing algorithm to study DNA sequence.

Extensions of such model and description of algorithmic procedures for estimating it can be found

in [20, 9], where the discussion is, however, limited to simple tests or benchmark examples. This

paper describes the challenges encountered and the results of the first genome-wide investigation

of regulatory protein binding sites conducted with such models. The results are encouraging. The

feature of our algorithm that allows refining of the prior information on binding sites, while rapidly

scanning a genome for its presence, proved useful. The total expected counts of binding sites per

regulatory proteins correspond to scientific expectations. It also appears how the outcome of the

Vocabulon model can be effectively used in a novel analysis of gene expression arrays.
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Figure 1: Profile of the binding site for LexA as reconstructed by Vocabulon starting from 6 E. Coli

sequences. Sequence logo was depicted using the serverhttp://weblogo.berkeley.edu/
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Word recovered missed imputed

sites sites sites

araC 6 0 6

arcA 8 5 28

argR 15 2 24

cpxR 11 1 29

creB 8 0 9

crp 36 13 131

cspA 4 0 4

cytR 2 3 7

dnaA 7 1 41

fadR 7 0 8

fis 8 7 36

fliA 12 0 14

fnr 12 0 14

fruR 12 0 18

fur 8 1 18

galR 7 0 10

gcvA 4 0 4

glpR 7 6 20

hipB 2 2 2

lexA 19 0 24

malT 4 6 6

metJ 6 3 8

metR 5 3 10

nagC 6 0 9

narL 7 3 9

narP 8 0 4

ntrC 4 1 4

ompR 5 4 28

oxyR 4 0 4

phoB 10 2 12

purR 21 1 25

rpoH2 6 1 6

rpoH3 8 0 8

rpoN 6 1 11

rpoS17 5 10 9

rpoS18 4 3 8

soxS 11 6 22

torR 3 1 5

trpR 4 0 4

tus 5 0 5

tyrR 13 4 19

340 90 663

Table 1:
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Word recovered missed imputed

sites sites sites

araC 6 0 9

arcA 6 7 60

argR 15 2 108

cpxR 7 5 99

creB 8 0 19

crp 34 15 610

cspA 3 1 12

cytR 1 4 55

dnaA 6 2 96

fadR 6 1 21

fis 8 7 200

fliA 12 0 25

fnr 11 1 43

fruR 11 1 43

fur 8 1 69

galR 5 2 10

gcvA 4 0 6

glpR 6 7 71

hipB 0 4 2

lexA 19 0 46

malT 0 10 0

metJ 5 4 13

metR 4 4 44

nagC 6 0 22

narL 4 6 18

narP 8 0 7

ntrC 4 1 6

ompR 4 5 238

oxyR 4 0 4

phoB 9 3 35

purR 17 5 47

rpoH2 6 1 9

rpoH3 8 0 13

rpoN 6 1 22

rpoS17 1 14 4

rpoS18 3 4 5

soxS 9 8 61

torR 3 1 14

trpR 4 0 6

tus 5 0 5

tyrR 10 7 54

296 134 2231

Table 2:
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Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -2.021e-02 7.223e-03 -2.798 0.00518 **

malT 2.201e-01 3.320e-01 0.663 0.50737

torR 3.703e-04 1.692e-01 0.002 0.99825

dnaA 4.662e-02 5.521e-02 0.844 0.39851

metR -5.957e-02 9.084e-02 -0.656 0.51204

arcA -6.376e-02 7.604e-02 -0.839 0.40181

cpxR -4.336e-02 6.356e-02 -0.682 0.49521

creB 1.419e-01 1.274e-01 1.113 0.26560

metJ 1.074e-01 1.501e-01 0.715 0.47451

rpoN 4.535e-02 1.372e-01 0.330 0.74109

fruR -7.020e-03 6.206e-02 -0.113 0.90995

narL -4.918e-02 1.565e-01 -0.314 0.75334

narP -9.861e-02 1.726e-01 -0.571 0.56788

galR -5.055e-02 1.060e-01 -0.477 0.63348

fadR -1.570e-01 1.075e-01 -1.461 0.14417

ntrC 4.059e-02 1.691e-01 0.240 0.81035

fur -8.345e-02 6.062e-02 -1.377 0.16875

argR 4.024e-02 3.695e-02 1.089 0.27625

cytR -2.131e-02 8.390e-02 -0.254 0.79955

soxS 1.803e-01 7.741e-02 2.329 0.01994 *

gcvA -3.036e-01 1.533e-01 -1.981 0.04771 *

ompR 5.058e-02 3.729e-02 1.357 0.17504

glpR -1.230e-02 5.249e-02 -0.234 0.81477

cspA 5.521e-02 1.176e-01 0.469 0.63889

lexA 3.841e-01 4.572e-02 8.401 < 2e-16 ***

tyrR 8.268e-03 4.717e-02 0.175 0.86089

fnr 3.284e-02 7.832e-02 0.419 0.67501

crp -6.978e-03 1.521e-02 -0.459 0.64648

phoB 1.522e-01 8.682e-02 1.753 0.07964 .

nagC 1.815e-01 9.739e-02 1.864 0.06244 .

tus 7.899e-02 2.519e-01 0.314 0.75384

trpR -3.488e-01 2.234e-01 -1.561 0.11867

purR 1.278e-01 5.306e-02 2.409 0.01604 *

fliA -8.639e-02 1.031e-01 -0.838 0.40230

rpoS17 3.678e-01 1.796e-01 2.049 0.04060 *

rpoS18 -3.606e-02 2.856e-01 -0.126 0.89955

hipB 4.159e-01 2.494e-01 1.668 0.09552 .

fis 1.428e-01 3.312e-02 4.313 1.67e-05 ***

oxyR 4.259e-02 2.878e-01 0.148 0.88236

araC 4.065e-05 1.293e-01 0.000314 0.99975

rpoH3 4.380e-01 1.444e-01 3.034 0.00244 **

rpoH2 4.005e-01 1.772e-01 2.260 0.02387 *

Table 3:
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Figure 2: Histograms of the gene expression values in the second timepoint of the UV experiment.

From left to right: genes that do not have a binding site for lexA according to the Vocabulon

reconstruction; genes that do have a binding site for LexA according to Vocabulon; and genes that

are known to have a binding site for LexA in the literature.
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Figure 3: Scatter plot of significance of expression changes vs probability of binding site for LexA.

Each circle represents a gene. Red circles represent genes that are known in the literature to have

a binding site for LexA. On thex axis, the posterior probability of a LexA site as reconstructed by

Vocabulon. On they axis, the logarithm base 10 of the p-value of a test for the null hypothesis of

no expression change in time point 2 of the UV experiment.
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Figure 4: On the left, histogram of the percentage of recovered sites, for each of the 42 motifs. On

the right, histogram of the percentage of recovered sites for each of the 233 sequences.
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Figure 5: Graphical illustration of part of the Vocabulon output for the up-stream sequence of

gene b0411. On thex axis position in base pairs, on they axes value of the posterior probability

reconstructed for binding sites (values above one are used to displayed known binding sites). This

is an example of overlapping motifs, where only one of the motifs is reconstructed (crp).
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Figure 6: Sensitivity (left) and specificity (right) of the motif reconstruction on the 233 sequence

set as a function of the cut-off value for the posterior probability.
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Figure 7: Fraction of recovered motif and number of imputed motif as a function of cumulative

information.
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Figure 8: Scatter plot of the total number of predicted sites for the 42 motifs in our dictionary

with Vocabulon (y axis) and with the strict criteria in [18] (x axis). Note that numbers are in the

log-scale.
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Figure 9: Comparison of predicted counts per motif. In red predictions of [18], in green stringent

predictions of [18]. In blue expected counts with Vocabulon, and in cyan, number of sites with

posterior probability greater than .05 with Vocabulon.
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Figure 10: Scatter plot of the expression values in time point 2 of the UV experiment vs the

predicted probability of binding site for LexA. Genes with known binding site for LexA are in red.
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