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Abstract

We consider states of holographic conformal field theories constructed by adding

sources for local operators in the Euclidean path integral, with the aim of investigating

the extent to which arbitrary bulk coherent states can be represented by such Euclidean

path-integrals in the CFT. We construct the associated dual Lorentzian spacetimes per-

turbatively in the sources. Extending earlier work, we provide explicit formulae for the

Lorentzian fields to first order in the sources for general scalar field and metric pertur-

bations in arbitrary dimensions. We check the results by holographically computing

the Lorentzian one-point functions for the sourced operators and comparing with a di-

rect CFT calculation. We present evidence that at the linearized level, arbitrary bulk

initial data profiles can be generated by an appropriate choice of Euclidean sources.

However, in order to produce initial data that is very localized, the amplitude must be

taken small at the same time otherwise the required sources diverge, invalidating the

perturbative approach.
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1 Introduction

According to the AdS/CFT correspondence [1, 2, 3], certain conformal field theories pro-

vide a nonperturbative description of quantum gravitational theories describing physics in

spacetimes that are asymptotically anti-de-Sitter. Different states of the conformal field
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theory correspond to different states of the gravitational theory, but only some of these

states will have gravity dual descriptions well-represented by simple classical spacetimes.

For example, other states might correspond to quantum superpositions of macroscopically

different geometries. It is interesting to understand better the CFT characterization of the

holographic/geometric states.

A related question is the following: given a spacetime geometry which is solution to the

classical gravitational equations for some theory of gravity dual to a holographic CFT, can

we explicitly describe the field theory state (or family of states) that are dual to this ge-

ometry, i.e. whose observables can be computed by gravity methods by perturbing about

this geometry? Understanding these questions is important in order to improve our under-

standing of how gravitational physics emerges in holographic conformal field theories. For

example, in trying to derive classical gravitational equations directly from the CFT, it should

be important to work with states for which these equations are relevant.

In this paper, following various earlier works [4, 5, 6, 7], we consider a large class of states in

a holographic conformal field theory obtained by adding sources for local, primary operators

(dual to classical bulk fields) to the Euclidean path integral defining the vacuum state of the

CFT. Explicitly, we consider states with wavefunctionals defined as

〈φ0|Ψλ〉 =
∫ φ(τ=0)=φ0

τ<0

[dφ(τ)]e−SE−
∫ 0

−∞ dτλα(x,τ)Oα(x,τ) , (1)

where Oα are operators dual to light fields in the bulk. In [4, 5], it was noted that this

construction defines states whose Lorentzian correlation functions can be computed via a

dual gravity calculation. In [6], it was argued that these states define coherent states of the

(nearly free) bulk fields, as we would expect for states describing classical field configurations.

Recently, it was shown [8] that for states of the form (1) in a large class of CFTs, there is

always an associated classical geometry (defined to second order in perturbation theory)

which captures the entanglement entropies of ball-shaped regions via the Ryu-Takayanagi

formula [9, 10] and which satisfies Einstein’s equations perturbatively to second order. To

obtain a classical bulk, here and below we take λ to be parametrically of the same magnitude

as the CFT action in the holographic large N limt; e.g. λ is of order the central charge c for

d = 2 CFTs and of order N2 for N = 4 super Yang-Mills in d = 4.

In light of these results, it is clearly of interest to understand in more detail the map between

Euclidean path-integral states (1) and Lorentzian spacetimes, provide additional checks that

the states (1) are indeed holographic, and investigate to what extent an arbitrary classical

bulk solution can be described by a state of the form (1). This will be the aim of the present

paper.
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We begin in section 2 by reviewing the motivations for identifying these path integral states as

holographic states. We start with a heuristic argument, that states of this form correspond

to coherent states of the bulk mode operators, as we would expect for states describing

classical field configurations in the weakly coupled bulk theory. This was emphasized in [6].

We then review the concrete prescription of Skenderis and van Rees [4, 5] for determining

the Lorentzian geometry associated with a given state of the form (1). This involves finding

a Euclidean solution associated with a CFT perturbed by sources λ(x, τ) as in (1) for τ < 0

and λ∗(x,−τ) for τ > 0, then slicing this solution open on a bulk spacelike slice that ends

at τ = 0, reading off Lorentzian initial data from the slice, and finally finding a Lorentzian

solution with this initial data.

Given this construction, we would like to understand better what class of spacetimes we can

describe using states of this form. Can we associate a path-integral state to an arbitrary

Lorentzian geometry? Are there multiple path-integral states which correspond to the same

geometry? Are there some CFT states with a good classical gravity description that cannot

be described or well-approximated in this way?

The prescription to associate a Lorentzian geometry with a given path integral state is gen-

erally a complicated nonlinear classical gravity problem. However, we can ask our questions

already at a perturbative level where everything can be calculated explicitly. We perform

this linearized study in section 3, generalizing work in [6, 7]. For a CFT on Minkowski

space, states defined by (1) are expected to describe geometries which are perturbations of

Poincaré-AdS spacetime. We compute explicitly to first order in the sources the bulk initial

data that defines the Lorentzian spacetime dual to the CFT state; we consider arbitrary

sources for scalar operators or the stress-energy tensor in arbitrary dimensions. Using this

solution and the usual holographic dictionary, we deduce the Lorentzian one-point function

of CFT operators used in the definition of the state. We compare this with the one-point

function computed from the sources by a direct CFT calculation and find complete agree-

ment, providing a detailed check of the proposed mapping between states (1) and Lorentzian

geometries.

Our results give an explicit identification between Fourier modes of the sources and modes

of the bulk fields. Formally, we can invert the mapping to find (at the linearized level)

the sources corresponding to an arbitrary Lorentzian solution (still working perturbatively).

However, there is a subtlety: in section 4, we show that if we try to construct a sequence of

bulk initial data functions that approaches a delta function, the sources diverge in the limit

where the initial data becomes infinitely localized. Thus, from the bulk point of view, the

validity of perturbation theory depends not only on the magnitude of the fields but also on
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how localized their features are. The conclusion is that while it is possible to generate any

smooth field profile in the initial data, in order to ensure the validity of the perturbative

approach, we need to make the amplitude smaller depending on how fine the features are.

An interesting result of our perturbative analysis is that the the one-point functions we

calculate perturbatively are always functions whose Fourier modes obey ω ≥ |k|. In section

5, we show that this property holds non-perturbatively for the one-point function of any

local scalar operator of fixed scaling dimension in any state of a CFT created by arbitrary

insertions of scalar quasi-primary operators in the Euclidean path integral. Qualitatively

this means that the time-variation of the one-point functions must be faster than the spatial

variation. For example, while it is possible to have a one-point function which is localized in

time but homogeneous in space, it is impossible for a one-point function to be localized in

space but constant in time - the inhomogeneity necessarily spreads out. This property has

of course been noted for holographic theories at leading order in 1/N before [11, 12] - it is

related to the condition that the bulk fields are constructed from modes that do not diverge

as we move into the bulk.

We conclude in section 6 with a discussion of possible future directions. Finally, in appendix

A we comment on the perturbative map between CFT one-point functions and the sources

required to produce them at higher orders in perturbation theory. This may be useful in

extending our work beyond the linearized order.

2 Bulk geometries from path integral states

We consider conformal field theories in d spacetime dimensions. We assume that the field

theories are holographic, and that the classical limit of the dual gravitational description

is Einstein gravity coupled to scalar matter fields. Then for each matter field φα in this

gravitational theory, there is a low-dimension primary operator Oα in the CFT such that

the asymptotic behaviour of φα in a given spacetime is related to the one-point function of

Oα in the dual CFT state.

Our focus will be the particular class of states (1); we will now review some general arguments

that these states of the CFT should be dual to spacetimes with a good classical description.
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Motivation: path integral states as bulk coherent states

We start by considering the CFT on a spatial Sd−1 and recalling that the vacuum state can

be constructed using a Euclidean path integral over Sd−1 × R
− as

〈φ0|vac〉 =
∫ φ(τ=0)=φ0

τ<0

[dφ(τ)]e−SE . (2)

where τ is the Euclidean time. By a conformal transformation, the half-cylinder Sd−1 × R
−

can be mapped to a ball Bd with the sphere at τ = −∞ mapping to the origin. According

to the state-operator correspondence in CFTs, any state in the CFT Hilbert space on Sd−1

can be defined by a similar Euclidean path integral on the Euclidean ball Bd by inserting a

local operator into the Euclidian path integral at the center of this ball (i.e. at τ = −∞ in

the original coordinates),

〈φ0|ΨO〉 =
∫ φ(∂B)=φ0

Bd

[dφ]e−SEO(0) . (3)

Here, operators of fixed scaling dimension give rise to states with energy (measured in units of

the inverse sphere radius) equal to this dimension. General states are produced by inserting

linear combinations of these operators.

For a holographic CFT, consider the low-dimension primary operator Oα associated with

some bulk field φα. Inserting this operator at the origin into the path integral (3) produces a

state corresponding to adding a single quantum to the lowest-energy mode of the field φα in

AdS [13]. Exciting other modes of this field corresponds to inserting conformal descendants

of Oα, which are derivative operators [Pi1, [Pi2 , · · · , [Pin,Oα] · · · ]] = ∂i1 · · ·∂inOα(0). We can

denote the corresponding bulk creation operators by a†αi1···in . In radial quantization, the

corresponding annihilation operators are given by aα;i1···in ∼
[

Ki1,
[

Ki2, · · · ,
[

Kin,O†
α

]

· · ·
]]

.

In order to describe classical bulk field configurations, weak coupling intuition would suggest

that we want to consider coherent states of the various bulk modes. In a free field theory,

the coherent state associated with commuting modes a†α is

ezαa
†
α−z∗αaα |0〉 = Nze

zαa
†
α |0〉 = Nz

(

|0〉+ zαa
†
α|0〉+

1

2
zα1

zα1
a†α1

a†α2
|0〉+ . . .

)

(4)

where Nz is a normalization factor. Thus, the coherent state “exponentiates” the infinitesi-

mal transformation that adds a general linear combination of modes zαa
†
α|0〉 to the vacuum.2

2Mathematically, this is precisely the exponential map applied to the tangent vector on state space defined

by δ|ψ〉 =∑α zαa
†
α|vac〉.
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Since the bulk description for a large N , strongly coupled CFT is also weakly coupled, we

expect that bulk classical field configurations can be described roughly as coherent states

built from the bulk mode operators (we have left the sum over α, i1, i2 · · · implicit below):

N ezαi1···in
a†αi1···in |0〉 = N

(

|0〉+ zαii···ina
†
αi1···in|0〉+

1

2
zαi1···inzα′i′i···i′na

†
αi1···ina

†
α′i′1···i′n

|0〉 . . .
)

. (5)

We will now see that precisely such an expression arises when we consider states

〈φ0|Ψλ〉 =
∫ φ(∂B)=φ0

Bd

[dφ]e−SE−
∫
Bd d

dxλα(x)Oα(x) , (6)

obtained by adding sources for the low-dimension primaries Oα to the path integral. In the

path integral exponent, we can expand3

∫

Bd

λα(x)Oα(x) =

∫

Bd

ddxλα(x)
1

n!
xi1 · · ·xin∂i1 · · ·∂inOα(0)

≡ λi1···inα ∂i1 · · ·∂inOα(0) (7)

where λi1···inα are the multipole moments of the sources on the ball.

At the linear order in λ, we have that

|Ψλ〉Sd−1 =

∫

Bd

[dφα]e
−SE

(

1− λi1···inα ∂i1 · · ·∂inOα(0) +O(λ2)
)

. (8)

As above, insertions of the conformal descendant operators ∂i1 · · ·∂inOα add quanta of the

various modes of the bulk field φα. Thus, we can roughly rewrite the state as4

|Ψλ〉Sd−1 = |0〉 − λi1···inα a†α;i1···in |0〉+O(λ2); . (9)

which agrees with the leading order terms in (5). Furthermore, the higher order terms in

(5) are defined by exponentiating the first order perturbation, and this is precisely what

happens in the path integral expression (6). The higher order terms correspond to inserting

multitrace operators at the origin, and these multitrace operators correspond to acting with

multiple bulk creation operators as in the expansion of the coherent state.

Of course, in field theory, we have to be careful when dealing with operator products and

introduce some type of regularization to define exactly what we mean by inserting multiple

operators at a point. But this is precisely what our original expression (6) does for us:

3Here and below, a sum over n is implied.
4We could also split the operator ∂i1 · · · ∂inOα into traceless and trace parts, and define creation operators

corresponding to the various states in each of the irreducible representations of SO(d).
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we can view it as a particular regularization of the naive expression that we would get by

trying to translate bulk coherent states to a path integral expression using the operator/state

correspondence. The discussion here is somewhat qualitative and meant primarily to provide

intuition for why states (6) are related to classical spacetimes. One point that is not clear

from this discussion is that the sources in (6) should vanish sufficiently rapidly at the edges

of the ball in order to define a finite-energy state of the original theory. We will discuss this

further below.

Semi-classical Schwinger-Keldysh

We will now describe an explicit procedure, based on the work [5, 4] by Skenderis and van

Rees, to determine the Lorentzian space time associated to a holographic CFT state of the

form (1).

In the CFT, if we would like to calculate real time correlators

〈Ψλ|O1(t1) · · ·On(tn)|Ψλ〉 = 〈Ψλ|e−iHt1O1e
iHt1 · · · e−iHtnOeiHtn |Ψλ〉 (10)

we can use the Schwinger-Keldysh formalism: we define a path integral that includes a

Euclidean part (1) to define the state, the complex conjugate of this to define the ket, and

Lorentzian parts corresponding to the real-time evolution operators that take us between the

various times corresponding to the operator insertions. We include sources in the Lorentzian

parts in order to define the generating functional for Lorentzian correlation functions. The

correlations functions are calculated by taking derivatives with respect to these sources and

then setting the sources to zero.

This path integral can be calculated holographically via a gravity problem in which we

find a saddle-point geometry obtained by patching together Euclidean and Lorentzian parts

corresponding to the various parts of the field theory contour. The geometry must satisfy

Einstein’s equations appropriate to the various parts, have asymptotic behaviour for the

bulk fields consistent with the various sources, and satisfy certain matching conditions that

ensure a smooth connection between the Euclidean and Lorentzian parts.

If we would only like to know what geometry is dual to the state (1), we can set the Lorentzian

sources to zero. Then the Lorentzian geometry is obtained by time-evolving the initial data

on the interface between the initial Euclidian part and the initial Lorentzian part with

source-free boundary conditions. This initial data will be the same regardless of how large

or small our Lorentzian contours are, so if our goal is just to determine the initial data, we
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can do away with the Lorentzian part altogether and consider the gravity dual of a Euclidian

path integral with sources λα(τ, x
i) for τ < 0 and λ∗

α(−τ, xi) for τ > 0. The corresponding

geometry is the solution to the bulk equations with asymptotic behavior corresponding to

these sources. To define the Lorentzian initial data, we slice the geometry at τ = 0 to read

of φα and ∂τφα; this gives the Lorentzian initial data after adding an overall i in the time

derivative. For general asymptotically AdS spacetimes, we need to specify more precisely

how this slicing and analytic continuation should be performed (going back to the detailed

discussion in [5, 4]), since there are many ways to extend the boundary τ = 0 surface into

the bulk. However, in this paper, we will work perturbatively in the sources, so that the

cutting surface can be unambiguously chosen as the τ = 0 slice of the unperturbed bulk AdS

spacetime.

In order to define the most general real Lorentzian spacetimes in this way, we will need to

consider complex sources and thus complex Euclidean geometries. Again, this may lead to

interesting conceptual issues when dealing with general states, but is straightforward so long

as we are working perturbatively.

3 Initial data and one-point functions to first order

In this section, starting from a general path-integral state with sources, we perform a holo-

graphic calculation as outlined in the previous section to determine explicitly the dual

Lorentzian solution to first order in the sources. For simplicity, we first consider the case

of scalar fields; analogous results for metric perturbations appear at the end of the section.

Since we continue to treat the scalar fields as free and to ignore gravitational back-reaction,

our results represent first-order perturbation theory in λ. Recall in particular that we take

λ large at large N so that large N itself does not suffice to suppress non-linear corrections.

We start by considering the state (1) defined by adding a source λ(τ, ~x) for some scalar

operator O of dimension ∆.5 For a holographic CFT, this operator is associated with a bulk

scalar field φ with mass m2ℓ2 = ∆(∆ − d), where ℓ is the AdS radius. To understand the

Lorentzian spacetime dual to this state, our first step is to find the Euclidean asymptotically

AdS spacetime with boundary conditions for fields determined by sources λ, extended to the

full boundary via

λ(τ, ~x) = λ∗(−τ, ~x) . (11)

5Since we will be working at linear order in the sources, we can consider the sources for each field

individually.
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Using standard Poincaré coordinates

ds2 =
ℓ2

z2
(dz2 + dxidxi + dτ 2) , (12)

we have that the field φ satisfies

∂2
τφ

E + ∂2
i φ

E + ∂2
zφ

E − (d− 1)
1

z
∂zφ

E −
(

mℓ

z

)2

φE = 0 . (13)

Using the standard Euclidean AdS/CFT dictionary [13], we have boundary conditions

lim
z→0

zd−∆φE(τ, x, z) = λ(τ, x) . (14)

We have used φE to indicate that we are considering a Euclidean solution. At first order in

the sources, we can write the solution as

φE(z, τ, ~x) =

∫ ∞

−∞
dτ ′
∫

dd−1~x′ KB∂(z, τ, ~x|τ ′, ~x′) λ(τ ′, ~x′). (15)

whereKB∂ is the bulk-to boundary propagator associated with the field φE. The requirement

that the solution not diverge in the interior fixes the propagator uniquely; it is given most

easily as a Fourier decomposition:

KB∂(z, τ, ~x|τ ′, ~x′) =

∫

dd−1kdωE
(2π)d

e−iωEτ
′−i~k·~x′K(z, τ, ~x|~k, ωE) (16)

where

K(z, τ, ~x|~k, ωE) =
(k2 + ω2

E)
ν
2

2ν−1Γ(ν)
z

d
2Kν(

√

k2 + ω2
E z)eiωEτ+i~k·~x . (17)

Here, Kν is a Bessel function that decays exponentially for large z, and we have defined

ν =

√

m2 +
d2

4
= ∆− d

2
. (18)

To determine the Euclidean “initial data”, we can then evaluate this bulk solution on the

constant time slice at τ = 0:

φE(z, τ = 0, ~x) =

∫ ∞

−∞
dτ ′
∫

dd−1~x′ KB∂(z, 0, ~x|τ ′, ~x′) λ(τ ′, ~x′) (19)

∂τφ
E(z, τ = 0, ~x) =

∫ ∞

−∞
dτ ′
∫

dd−1~x′ ∂τKB∂(z, 0, ~x|τ ′, ~x′) λ(τ ′, ~x′) (20)

Next, we analytically continue the initial data to real time

φ(z, x, t = 0) = φE(z, x, τ = 0) ∂tφ(z, x, t = 0) = i∂τφ
E(z, x, τ = 0) ; (21)

9



τ

t

z

Figure 1: We prepare a state by turning on sources in Euclidean time τ . This gives us some

initial data on the τ = t = 0 surface in the bulk, which we can obtain from the bulk to boundary

propagator (blue) and it’s time derivative. Then, we can further evolve this data in real-time t

using the Lorentzian propagator (red) to obtain the real-time asymptotics, from which we read off

the CFT one-point functions. Spatial directions in the CFT are supressed.

using the explicit form of the propagator, this gives

φ(x, z, t = 0) =
1

2ν−1Γ(ν)

∫

dd−1~kdωE
(2π)d

λωE ,~k
z

d
2 (k2 + ω2

E)
ν
2Kν(

√

k2 + ω2
E z)ei

~k·~x (22)

∂tφ(x, z, t = 0) = − 1

2ν−1Γ(ν)

∫

dd−1~kdωE
(2π)d

ωEλωE ,~k
z

d
2 (k2 + ω2

E)
ν
2Kν(

√

k2 + ω2
E z)ei

~k·~x

as the explicit result for the Lorentzian initial data in terms of the Fourier modes of the

sources. We wish to use these as initial data to evolve forward in real time using the

Lorentzian bulk equations, setting the non-normalizable modes to zero at the AdS boundary

(i.e. we assume there are no sources in real time).

We will proceed by writing a general solution to the linearized equations for the field φ and

then matching to the initial data. It is convenient to express this in a basis of Fourier modes

in the directions parallel to the boundary. Writing the basis functions as

zd/2φω,~k(z)e
i~k·~x−iωt , (23)

the Lorentzian version of the equations of motion (13) require that the functions φω,~k satisfy

a Bessel equation

z2∂2
zφω,~k + z∂zφω,~k + z2(ω2 − ~k2)φω,~k −

(

m2 +
d2

4

)

φω,~k = 0 . (24)

Requiring that the solutions not diverge for large z and also that they have the correct

asymptotic behavior zd/2φω,~k ∼ z∆ consistent with the absence of non-normalizable modes,

10



we obtain solutions

φω,~k(z) =
2νΓ(ν + 1)

(ω2 − ~k2)ν/2
Jν(

√

ω2 − ~k2z) (25)

with the restriction ω > |k|. We have normalized by requiring that

lim
z→0

z−∆+ d
2φω,~k = 1 . (26)

The Lorentzian solution arising from the initial data (22) must be a linear combination of

the modes (23), so we can write that

φλ(z, x, t) =

∫

dd−1kdω

(2π)d
Cω,~kz

d/2φω,~k(z)e
i~k·~x−iωt . (27)

Now, using the initial data conditions and making use of the Bessel functions completeness

relations
∫ ∞

0

dz z Jν(kz)Jν(pz) =
δ(k − p)

k
, (28)

and the result
∫ ∞

0

dz z Jν(kz)Kν(pz) =

(

k
p

)ν

k2 + p2
, (29)

we find that

Cω,~k = sgn(ω)θ(ω2 − ~k2)
(ω2 − k2)ν

22νΓ(ν)Γ(ν + 1)

∫

dωE
λωE ,~k

ω + iωE
. (30)

where θ(x) is the usual step function vanishing for x < 0.

We can simplify the result further by writing it in terms of a Laplace transform for the

time-dependence of the sources rather than a Fourier transform. Using the definition

λωE ,~k
=

∫ ∞

−∞
dτ e−iωEτλ~k(τ) , (31)

we can perform the ωE integral in (30) by Cauchy’s theorem to obtain

Cω,~k = − 2πθ(ω2 − ~k2)
(ω2 − ~k2)ν

22νΓ(ν)Γ(ν + 1)

(

θ(ω)Lλ~k,ω + θ(−ω)Lλ∗
~k,−ω

)

(32)

where we define the Laplace transform

Lλ~k,s =
∫ ∞

0

dτλ~k(−τ)e−sτ . (33)

The final result for the Lorentzian solution in terms of the sources is then given by (27),

using (25) for the basis functions and either (30) or (32) for the coefficients.
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Making use of our final expression for the Lorentzian solution, we can write a simpler result

for the relation between sources and initial data. Defining the Bessel transform

fµ =

∫ ∞

0

dzzJν(µz)f(z) (34)

we can use (32) in (27) to write

φ~k,µ(t = 0) =
µν

Γ(ν)2ν
1

√

~k2 + µ2

(

Lλ~k,√~k2+µ2
+ Lλ∗

~k,
√
~k2+µ2

)

∂tφ~k,µ(t = 0) = i
µν

Γ(ν)2ν

(

Lλ~k,√~k2+µ2
−Lλ∗

~k,
√
~k2+µ2

)

(35)

Thus, the Bessel transform of the spatial Fourier modes of the initial data functions are

proportional to the Laplace transform of the spatial Fourier modes of the sources.

We can rearrange this to obtain

Lλ~k,√~k2+µ2
=

Γ(ν)2ν

µν

(
√

~k2 + µ2φ~k,µ(t = 0)− i∂tφ~k,µ(t = 0)

)

. (36)

Using the definition (33), we can formally invert the Laplace transform to obtain a formula

for the sources in terms of the initial data:

λ~k(τ) =

∫ c+i∞

c−i∞
ds e−sτ

Γ(ν)2ν

(s2 − ~k2)ν/2

(

sφ
~k,
√
s2−~k2

(t = 0)− i∂tφ~k,
√
s2−~k2

(t = 0)
)

. (37)

where c ∈ R is to be chosen greater than the real part of the singularities of the integrand.

When this gives a well-defined result, we can Fourier transform to deduce the position-

space sources in terms of the initial data functions. Thus, for any initial data functions

whose analyticity properties permit the inverse Laplace transform, we can find appropriate

sources in the Euclidean path integral to produce this initial data and the corresponding

Lorentzian solution. Unfortunately, it is not immediately clear which real initial data func-

tions φ(~x, z, t = 0),∂tφ(~x, z, t = 0) we can obtain from functions with these analyticity

properties. Thus, while we have a formal expression for the sources in terms of initial data,

we will need additional analysis to understand whether essentially any Lorentzian solution

at first order can be represented via Euclidian path-integral states as in (1). We will return

to this analysis in section 4.

Holographic calculation of CFT one point functions in terms of sources.

From our Lorentzian solution φλ, we can read off the Lorentzian CFT one-point functions

in the state (1) using the standard holographic dictionary.

12



The one-point function are determined holographically in terms of the normalizible modes

of the asymptotic fields via [14]

lim
z→0

z−∆φ(z, t, ~x) =
1

2∆− d
〈O(t, ~x)〉ψ . (38)

so making use of (26) in (27), we find that the Fourier modes of the one-point functions are

precisely

〈Oω,~k〉 = (2∆− d) Cω,~k

= sgn(ω)θ(ω2 − ~k2)
(2∆− d)(ω2 − k2)ν

22νΓ(ν)Γ(ν + 1)

∫

dωE
λωE ,~k

ω + iωE
(39)

where the coefficients Cω,~k are given by (30) or (32).

This is the result to first order in λ for large N holographic CFTs. In part to check on

the holographic prescription, we will compare it to a direct first-order calculation for general

CFTs in the next section. In particular, we will reproduce the fact that all Fourier coefficients

vanish for modes with ω < |~k| vanish. In section 5, we will show that this continues to hold

non-perturbatively, at least for a large class of states defined via the Euclidean path integral

with arbitrary scalar operator insertions.

3.1 Direct CFT calculation

In the previous section, we have used the holographic Schwinger-Keldysh path integral to

compute the relation between Euclidean sources and the dual Lorentzian solution to first

order in the sources. From the solution, we used the holographic dictionary to read off the

Lorentzian CFT one-point functions. As a check of the prescription and of our calculations,

we will now show that the same results for one-point functions in terms of sources can be

obtained through a direct CFT calculation. Since the CFT calculation will involve only two

point functions, which have a universal form, the leading order result for one-point functions

in terms of Euclidean sources is also universal for all CFTs.

We start again with the path-integral state

〈φ0|Ψ〉 =
∫ φ(τ=0)=φ0

τ<0

[dφ(τ)]e−SE−
∫ 0

−∞ dτλα(x,τ)Oα(x,τ) . (40)

To evaluate the one point function for arbitrary Euclidean or Lorentzian time, we note that

Oβ(x, τ) = eHτOβ(x, 0)e
−Hτ (41)

13



Figure 2: Path integral contours for evaluation of one point functions in Lorentzian time (first

figure) and Euclidean time (second figure). Red contours indicate where sources have been turned

on. To compute one-point functions at Euclidean times in a neighborhood of τ = 0 where the

sources vanish, we can use a single Euclidean contour with τ ∈ (−∞,∞).

We would like to sandwich this operator between the bra and ket for the state (40). The

e−Hτ (or e−iHt for real times) gives an additional part of the path integral contour, as shown

in figure (2)

〈Ψ|Oβ(x̂, t̂)|Ψ〉 = 1

Zλ

∫

C

[dφ(τ)]e±SE/L−
∫
dd−1xdτλα(x,τ)Oα(x,τ)Oβ(x̂, t̂) (42)

where

Zλ =

∫

[dφ(τ)]e−SE−
∫
dd−1xdτλα(x,τ) (43)

and the integral is defined on the appropriate contour C as in figure (2) making the ap-

propriate choices for ± and for Euclidean vs Lorentzian action. In this expression, we have

extended the source to be defined for all real τ by λ(τ, x) = λ∗(−τ, x) for τ > 0.

As shown in the third and fourth pictures in figure (2), if the sources are taken to vanish

in some interval [−τ0, τ0], we can evaluate the one point function for any operator in this

interval simply by inserting it into the simple path integral without any additional parts

to the contour. Assuming that the one point functions are analytic in the time, we can

determine the one point functions for all Euclidean and Lorentzian times by analytically

continuing from this region [−τ0, τ0].

If the sources do not vanish on any interval around τ = 0, we can consider regulated sources,

λǫ defined to vanish in [−ǫ, ǫ] and agree with λ outside. In this case, we can analytically

continue and then take the limit ǫ → 0. We will see below that this produces the correct

results.
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CFT result to first order in λ

We will now use this general approach to write an expression for the one point function to

first order in the sources. We will suppress reference to the spatial coordinates for now.

First, we can rewrite the path integral expression as

|Ψλ〉 =
1

Z
1

2

λ

Te−
∫ 0

−∞
dτ(H+λ(τ)O)|0〉 (44)

Assuming the one point functions vanish in the vacuum state we can then expand this as

|Ψλ〉 = |0〉 −
∫ 0

−∞
dτλα(τ)Oα(τ)|0〉+O(λ2) . (45)

From this, we find to order λ

〈Ψλ|Oβ(τ̂ )|Ψλ〉 = −
∫ 0

−∞
dτλα(τ)〈0|Oβ(τ̂ )Oα(τ)|0〉 (46)

−
∫ ∞

0

dτλα(τ)〈0|Oα(τ)Oα(τ̂)|0〉

= −
∫ ∞

−∞
dτλα(τ)〈0|T {Oα(τ)Oβ(τ̂)} |0〉 −

∫ τ̂

0

dτλα(τ)〈0|[Oα(τ),Oβ(τ̂ )]|0〉

where in the last line, the first term involves the standard two-point function computed via

the Euclidean path integral, while the second term (a consequence of the extra parts of the

contour in figure 2) takes into account the non-time ordered parts.

This second term is absent if the operator lies in a neighborhood of τ = 0 where the sources

vanish. In this case, for a CFT in d dimensions, if Oβ is dimension ∆ and we have chosen a

diagonal basis of operators

〈Oα(x1)Oβ(x2)〉 =
Cαδαβ

|x1 − x2|2∆α
, (47)

we get

〈Ψλ|Oβ(τ̂ , x̂)|Ψλ〉 = −Cβ

∫

dτdd−1xλβ(τ, x)
1

((τ − τ̂ )2 + (x− x̂)2)∆
(48)

Here, Cβ is a normalization constant that we will specify below. Taking τ̂ = 0, we see that

the result for the one-point function diverges unless the sources vanish at τ = 0 unless ∆ < d
2
.

For an operator of dimension ∆ ≥ d
2
, finite one-point functions require that λ vanishes at

τ = 0 as τn for n > 2∆− d.

Starting from this formula, we can analytically continue to find an expression for the Lorentzian

one-point functions. We get

〈Ψλ|Oβ(t, x̂)|Ψλ〉 = −Cβ

∫

dτdd−1xλβ(τ, x)
1

((τ − it)2 + (x− x̂)2)∆
. (49)
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We will argue below that this should be valid as long as the sources vanish sufficiently rapidly

at τ = 0 so that the one-point functions are finite.

One-point functions from sources in Fourier space

In order to compare with our holographic results, we would like to rewrite the general result

(49) in terms of Fourier modes to check whether it matches (39). Defining

O(~k, ω) =

∫

dd−1xdte−i
~k·~xe−iωt〈Ψλ|Oβ(t, x̂)|Ψλ〉 , (50)

and

λ(~k, ω) =

∫

dd−1xdte−i
~k·~xe−iωτλ(τ, ~x) , (51)

we find that

O(~k, ω) =
1

2π

∫

dτ

∫

dω̂λ(~k, ω̂)eiω̂τK∆(~k, ω, τ) (52)

where

K∆(~k, ω, τ) = Cβ

∫

dd−1~xdte−i
~k·~xe−iωt

1

(~x2 + (τ − it)2)∆
. (53)

To evaluate K, we define x to be the spatial coordinate in the direction of ~k and integrate

over the remaining spatial directions to obtain

K∆(~k, ω, τ) =
Cβπ

d
2
−1Γ[∆− d

2
+ 1]

Γ[∆]

∫

dte−iωt
∫

dx
e−i|

~k|x

(x2 + (τ − it)2)∆− d
2
+1

. (54)

The x and t integrals can be performed via contour integration. We will work with integer

ν ≡ ∆ − d
2
and analytically continue at the end. To compute the x integral we close the

contour in the lower-half plane and use

∫ ∞

−∞

e−i|
~k|x

(x2 + (τ − it)2)ν+1
= −2πi

1

Γ[ν + 1]







dν

dxν
e−i|~k|x

(x−iτ−t)ν+1

∣

∣

∣

x=−iτ−t
τ > 0

dν

dxν
e−i|~k|x

(x+iτ+t)ν+1

∣

∣

∣

x=iτ+t
τ < 0

(55)

The derivatives here give rise to ν + 1 terms. For τ > 0, each of these gives a t integral of

the form
∫ ∞

−∞
e−iωt

e−i|k|(−iτ−t)

(−t− iτ)ν+1+l
= (2πi)θ(ω − |k|)e−ωτ (i(ω − |k|))ν+l 1

(ν + l)!
(56)

where we again use contour integration. The result for τ < 0 is

∫ ∞

−∞
e−iωt

e−i|k|(iτ+t)

(t+ iτ)ν+1+l
= (2πi)θ(−ω − |k|)e−ωτ(−i(ω + |k|))ν+l 1

(ν + l)!
. (57)
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With these results, the sum of ν+1 terms is simply a binomial sum that is easily evaluated.

The results for either sign of τ can be written as

K∆(~k, ω, τ) =
Cβπ

d
2
+1

22∆−d−1Γ[∆]Γ[∆− d
2
+ 1]

e−τωθ(sgn(τ)ω − |k|)(ω2 − |k|2)∆− d
2 (58)

Inserting this into the result (52) and performing the integral over τ , we get

O(~k, ω) = Cβ
π

d
2 sgn(ω)θ(ω2 − |k|2)(ω2 − |k|2)∆− d

2

22∆−dΓ[∆]Γ[∆− d
2
+ 1]

∫

dω̂λ(~k, ω̂)
1

ω − iω̂
(59)

This matches precisely with the holographic result (39) as long as

Cβ =
Γ(∆)(2∆− d)

π
d
2Γ(∆− d

2
)

. (60)

We can check (see for example [14]) that this is indeed the normalization of the two-point

function consistent with the standard holographic dictionary (14) and (38). Thus, we have a

detailed check of the prescription for defining holographic excited states, extending the work

in [6, 7].

3.2 Results for metric perturbations

We now consider the case of sources for the stress tensor i.e. metric perturbations on the

Euclidean space where our path integral is defined. We denote the sources as 1
2
γµν(τ, ~x)T

µν .

Here, we have a redundancy in the description, since some metric perturbations are pure-

gauge. Also, since we are dealing with a conformal field theory, two metric perturbations

that describe conformally related boundary geometries should yield the same CFT state.

Equivalently, we can say that since the stress-energy tensor is a conserved and traceless

operator, sources for T µ
µ or ∂µT

µν should have no effect perturbatively. We could choose to

restrict the form of γ in order to avoid these redundancies; however, we will leave the form

of γ general so that our results are applicable to any chosen description of the boundary

geometry.

As before, our first step is to find the Euclidean asymptotically AdS spacetime with boundary

conditions for fields determined by sources γ, extended to the full boundary via

γµν(τ, ~x) = γ∗
µν(−τ, ~x) . (61)

We will describe the bulk metric perturbation using Fefferman-Graham coordinates,

ds2 =
ℓ2

z2
(dz2 + dxidxi + dτ 2 +Hµν(z, x, τ)dx

µdxν) . (62)
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For this choice, the bulk equations give

∂z

(

1

z
∂zH

µ
µ

)

= 0 (63)

∂z (∂µH
µ
ν − ∂νH

α
α) = 0 (64)

zd−1∂z

(

1

zd−1
∂zHµν

)

+ ∂2Hµν = ηµν∂zH
α
α + ∂ν∂αH

α
ν + ∂ν∂αH

α
µ − ∂µ∂νH

α
α (65)

We need to solve these with boundary conditions

lim
z→0

Hµν(z, x, τ) = γµν(τ, ~x) . (66)

From (63) and (64), we have that

Hµ
µ = A+Bz2 ∂µH

µ
ν = Cν + ∂νA+ ∂νBz2 (67)

where A, B, and C depend on x and τ . Here, A and C are determined by our boundary

conditions, and B is determined from C by the trace of equation (65). We end up with

A = γµµ Cν = ∂µγµν − ∂νγα
α B =

1

2(d− 1)
∂2γα

α − 1

2(d− 1)
∂α∂βγαβ (68)

Using these, the terms on the right side of equation (65) can be expressed directly in terms

of the sources γµν . Now, working in momentum space, we can solve (65) with the boundary

condition (66) and the requirement that the solution should not blow up in the interior.

Making use of Lorentz invariance to write the possible tensor structures, we find in the end

that6

Hµν(k
µ, z) = γµν(k)

[

F (kz)
]

+kαk(µγν)α(k)
[

2− 2F (kz)
]

+
kµkν
k2

γα
α(k)

[

− 1

d− 1
− 1

2(d− 1)
k2z2 +

1

d− 1
F (kz)

]

+ηµνγα
α(k)

[ 1

d− 1
− 1

d− 1
F (kz)

]

+
kµkνk

αkβ

k4
γαβ(k)

[

− d− 2

d− 1
+

1

2(d− 1)
k2z2 +

d− 2

d− 1
F (kz)

]

+ηµν
kαkβ

k2
γαβ(k)

[

− 1

d− 1
+

1

d− 1
F (kz)

]

(69)

where kµ = (ωE, ~k), k =

√

ω2
E + ~k2 and F is defined in terms of a Bessel function as

F (x) =
x

d
2

2
d
2
−1Γ

(

d
2

)
K d

2
(x) . (70)

6This expression can be simplified considerably by using the redundancy in the sources described at

the beginning of this section to put γµν in a particular gauge; for example, choosing γ to traceless and

divergenceless eliminates all but the first term.
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This is normalized so that F (x) → 1 as x → 0.

The Lorentzian initial data is obtained by analytic continuation from the Euclidean metric

perturbation at τ = 0:

Htt(k, t = 0, z) = −
∫

dωE
2π

Hττ (k, ωE, z) ∂tHtt(k, t = 0, z) = −i

∫

dωE
2π

∂τHττ (k, ωE, z)

Hti(k, t = 0, z) = i

∫

dωE
2π

Hτi(k, ωE, z) ∂tHti(k, t = 0, z) = −
∫

dωE
2π

∂τHτi(k, ωE, z)

Hij(k, t = 0, z) =

∫

dωE
2π

Hij(k, ωE, z) ∂tHij(k, t = 0, z) = i

∫

dωE
2π

∂τHij(k, ωE, z) (71)

We can now write a general solution to the Lorentzian equations for the metric perturbation

and then match to this initial data. Requiring that the solutions not diverge for large z and

also that they have the correct asymptotic behavior H ∼ zd consistent with the absence of

non-normalizable modes (i.e. Lorentzian sources), we find

Hµν(z,~k, t) =

∫

dω

2π
e−iωt

2
d
2Γ
(

1 + d
2

)

(ω2 − ~k2)
d
4

z
d
2J d

2

(

√

ω2 − ~k2z)tµν(~k, ω) . (72)

Here, the coefficients tµν are determined in terms of the sources γµν by the matching con-

ditions (71). We can extract them using the Bessel function integrals (28) and (29) above,

and the additional relations
∫ ∞

0

dz z1−
d
2 J d

2

(z) =
1

2
d
2
−1

Γ

(

d

2

)
∫ ∞

0

dz z3−
d
2 J d

2

(z) =
1

2
d
2
−3

Γ

(

d

2
− 1

)

. (73)

Following analogous steps as in the scalar case, we could obtain expressions analogous to

(30) and (32) expressing tµν directly as an integral transform of the sources; this is most

straightforward in a gauge where γµν is taken traceless and divergenceless.

Finally, the one-point function of the stress tensor in the CFT can be read off from the

Lorentzian solution as

〈Tµν〉 =
dℓd−3

16πGN
tµν . (74)

4 Can we obtain arbitrary initial data?

In the previous section, we worked out the general relation (35) between path-integral sources

and bulk initial data, working at linear order in the sources. We found a simple algebraic

relation between the mixed Laplace/Fourier transform of the sources and a Bessel/Fourier

transform of the initial data. We formally inverted this relation to express the sources
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directly in terms of the initial data as (37). Thus, naively, for any Lorentzian solution we

wish to generate, we can use this result to find some corresponding initial data. However,

the existence of the inverse Laplace transform appearing in (37) requires that we have an

analytic continuation of the transformed initial data functions and also that this analytic

continuation obeys certain constraints. It is not immediately clear what the implications of

these constraints are for the (real) initial data functions.

A separate concern is whether the sources defined by the inversion formula (37) are suffi-

ciently well behaved to justify our use of perturbation theory. For example, if for some choice

of initial data, the sources defined by (37) diverge (e.g. for τ → −∞), then the restriction

to the linearized bulk equations that we have used is likely not justified. In this case, un-

derstanding whether the given initial data can be obtained from a path-integral state may

require studying the full non-linear gravity equations in the bulk.

In this section, we will try to gain insight on these questions by asking to what extent it is

possible to choose sources in order to approximate a delta function in the initial data. If we

succeed in finding sources that lead to delta function initial data, we can then take linear

combinations of such sources for various locations of the delta function to approximate any

function in the initial data.

4.1 Sources for localized initial data

For our detailed analysis, we will specialize to the particularly simple case where the source

is for a scalar operator with dimensions ∆ = (d+ 1)/2. Here, after a field redefinition

φ(z, x, t) =
z

d−1

2

2π
χ(z, x, t) (75)

the field χ satisfies the ordinary Minkowski-space wave equation

∂µ∂
µχ+ ∂2

zχ = 0 , (76)

and so many of the results simplify. In particular, the expression (22) for the initial data in

terms of the sources can be expressed as

χ~k(z, t = 0) =

∫ ∞

0

dω λω,~k e
−
√
~k2+ω2z

∂tχ~k(z, t = 0) = −
∫ ∞

0

dω ω λω,~k e
−
√
~k2+ω2z (77)

where λω,~k is the Fourier transform of the sources and χ~k(z) represents the Fourier transform

of the initial data along the spatial field theory directions.
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4.1.1 Localizing initial data in the radial direction

Let’s consider first the case of sources and initial data that are translation-invariant in the

field theory directions (i.e. have ~k = 0). In this case,

χ0(z, t = 0) =

∫ ∞

0

dω λω,0 e
−ωz

∂tχ0(z, t = 0) = −
∫ ∞

0

dω ω λω,0 e
−ωz . (78)

If the initial data functions admit an analytic continuation to Euclidean time, we can check

that these expressions are equivalent to

λ(τ) =
1

4π
(χ(z = iτ) + χ(z = −iτ))− i

4π

∫ τ

0

(∂tχ(z = iτ) + ∂tχ(z = −iτ))dτ (79)

Focusing on the case of time-symmetric initial data (corresponding to real sources), we have

simply

λ(τ) =
1

4π
(χ(z = iτ) + χ(z = −iτ)) , (80)

so the sources can be read off directly from an analytic continuation of the initial data.

Since we can approximate any initial data function χ(z) arbitrarily well by analytic functions

(e.g. by taking a linear combination of Gaussians that approximate delta functions), the

formula (80) gives sources for essentially arbitrary initial data. However, as we anticipated

in the introduction to this section, the sources obtained in this way can be poorly behaved.

For example, if the initial data includes a Gaussian, the required sources diverge as ecτ
2

for

τ → −∞. This most likely invalidates our use of perturbation theory.

A more useful question is how well we can approximate arbitrary initial data using sources

that obey some type of boundedness condition. To investigate this, we will ask how well we

can approximate a delta function in the z direction using sources whose L2 norm is fixed to

some specific value.7

7We could have chosen some other boundedness condition, choosing a different norm or requiring that

the maximum value of the source never exceeds some value. We focus on the L2 norm for convenience. We

should note the natural appearance of the Hardy norm: Hn(f) ≡ (
∫

C
|f(z)|ndz) 1

n for a vertical contour C

in the complex plane parallel to the imaginary axis. The H2 norm of the produced initial data function is

related to the L2 norm of the source by a standard result in the theory of Laplace transforms,

∫ ∞

−∞

dz|χ(iz)|2 =
∫ ∞

−∞

dzdωdω′e−i(ω−ω′)zλ∗(ω′)λ(ω) = 2π

∫ ∞

−∞

|λ(ω)|2 .

However, the Hardy norm seems unrelated to the validity of bulk perturbation theory, so we will not consider

it any further.
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4.1.2 Variational calculation

To address this question, we consider the variational problem of minimizing the variance

V =

∫∞
0

dz|χ(z)|2(z − z0)
2

∫∞
0

dz|χ(z)|2 (81)

subject to
∫

dω|λ(ω)|2
∫∞
0

dz|χ(z)|2 = 2π

∫

dτ |λ(τ)|2
∫∞
0

dz|χ(z)|2 = N . (82)

We can either think of N as the norm of the sources with the normalization condition
∫ ∞

0

dz|χ(z)|2 = 1 , (83)

on the initial data, or we can think of N as the inverse norm of the initial data if we set the

L2 norm of the source to be 1.8

Defining a non-increasing function Vmin(N), as the minimum variance that we can obtain

with norm less than or equal to N , we have three possibilities:

1. The variance Vmin(N) goes to zero for some finite N . In this case, we can directly

represent delta function initial data with sources having bounded L2 norm.

2. The variance Vmin(N) approaches 0 as we allow N to ∞. In this case, by taking the

amplitude of the initial data small enough, we can obtain initial data with arbitrarily

small variance about z0 using sources with L2 norm smaller than some bound.

3. The variance Vmin(N) approaches some nonzero constant as N → ∞. In this case,

we would conclude that even by taking the amplitude of the initial data small as the

variance goes to zero, it is not possible to approximate a delta function with bounded

sources.

To determine Vmin(N) we can consider an action9

S =

∫ ∞

0

dzχ2(z)(z − z0)
2 − Λ

∫ ∞

0

dzχ2(z)− β

∫

dωλ2(ω) . (84)

8We could have alternatively considered the quantityN ′ defined as the source norm with the normalization

condition
∫∞

0 dzχ(z) = 1 (as we would have for a delta function). We have checked that the qualitative

behavior of Vmin(N
′) and Vmin(N) is similar.

9We restrict to real sources for simplicity.
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We can consider the extrema of this action as a function of Λ and β. These extremize
∫∞
0

dzχ2(z)(z − z0)
2 for fixed

∫∞
0

dzχ2(z) and
∫

dωλ2(ω); the function that minimizes V for

fixed N will then correspond to some particular values of Λ and β.

Varying the action with respect to λ(ω) and using (78), we get
∫ ∞

0

dzχ(z)((z − z0)
2 − Λ)e−ωz − βλ(ω) = 0 (85)

This gives
∫ ∞

0

dρ(M2(ω, ρ)− ΛM0(ω, ρ))λ(ρ) = βλ(ω) (86)

where

M0(ω, ρ) =

∫

dze−ωze−ρz =
1

ω + ρ
(87)

and

M2(ω, ρ) =

∫

dze−ωz(z − z0)
2e−ρz

= (
d

dρ
+ z0)

2 1

ρ+ ω

=
2

(ω + ρ)3
− 2z0

(ω + ρ)2
+

z20
ω + ρ

(88)

Solutions of equation (86) are eigenfunctions λΛ,β(ω) corresponding to some allowed values

of β. For each allowed β, we can compute

Z(Λ, β) =

∫ ∞

0

dzχ2
Λ,β(z)(z − z0)

2

Nχ(Λ, β) =

∫ ∞

0

dzχ2
Λ,β(z)

Nλ(Λ, β) =

∫

dωλ2
Λ,β(ω) (89)

From these, we have

V (Λ, β) =
Z(Λ, β)

Nχ(Λ, β)
= Λ + β

Nλ(Λ, β)

Nχ(Λ, β)

N(Λ, β) =
Nλ(Λ, β)

Nχ(Λ, β)
. (90)

Finally, we have that Vmin(N) is the minimum of V (Λ, β) over β and Λ subject to N(Λ, β) =

N . We can think of this as the lower bound on the region of the V −N plane covered by a

parametric plot of (V (Λ, β), N(Λ, β)) as a function of Λ and β.

It is straightforward to carry out this analysis numerically. We take λ(ω) to be piecewise

constant on small intervals of size ǫ covering a range [ωmin, ωmax]. In this case, the integral

23



105 1015 1025 1035
N

50

100

150

200

z0
2

Vmin

ωminz0=0

ωminz0=5

ωminz0=10

ωminz0=15

ωminz0=20

Figure 3: Plot of z20 (Vmin)
−1 vs N on a semi-log scale, where Vmin is the minimum variance

of an initial data function and N is the ratio of the L2 norm of sources to the L2 norm of

the initial data function. This figure uses ωmaxz0 = 40 and ǫz0 = 1
5
and plots the results

for values of ωminz0 listed in the legend. The curve suggests that the minimum variance

approaches zero as the norm of the sources is increased for any choice of ωminz0.

equation (86) becomes an ordinary matrix eigenvalue equation for a square matrix of size

ǫ−1 (ωmax − ωmin).

Our discretisation introduces dimensionless parameters ǫz0 ≪ 1, ωmaxz0 ≫ 1 and ωminz0 ≪
1. In the next section we will also consider the case where ωminz0 is held fixed. Our explicit

numerical results for Vmin(N) are plotted in figure 3 suggesting that 1/Vmin is a function

of log(N) that increases roughly linearly at large log(N).10 For use in the next section, we

note that qualitatively similar results are obtained if we keep ωmin fixed, i.e. we restrict the

source to vanish for ω < ωmin.

These results are consistent with possibility 2 above: for any finite value of the L2 norm

for the sources, there is a minimum possible value for the variance and this minimum value

appears to go to zero as the norm is taken to infinity. This suggests that we can produce

arbitrarily localized initial data, but we need to take the amplitude small as the variance

becomes small if we want the L2 norm of the sources to remain smaller than some particular

value.

10Figure 3 uses ǫz0 = 1
5 and ωmaxz0 = 40. Our numerical analysis found that the results in figure 3 were

stable under decreasing ǫz0 or increasing ωmaxz0. The discretisation may seem fairly coarse, but the small

Vmin regime is more sensitive to ωmaxz0 and so a coarser discretisation allows us to reliably access lower

variances while keeping the size of the required matrix under control.
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Recalling from formula (78) that the initial data function in this case is simply a Laplace

transform of the Fourier transformed sources, our results here imply an interesting result for

Laplace transforms: if χ : [0,∞) → R is the Laplace transform of a function λ, then the

variance of χ is bounded below by some decreasing positive function of the L2 norm of λ. It

may be interesting to understand this relationship more precisely.

4.1.3 Fully localizing initial data

Next, we extend the analysis of the previous section to the more general case where trans-

lation invariance in the spatial field theory directions is not assumed. Starting from the

general expression

χ(z, x) =

∫ ∞

−∞

dωdd−1k

(2π)d−1
e−

√
~k2+ω2zei

~k·~xλ(ω,~k) , (91)

we note first that the Fourier modes in the field theory directions of χ may be expressed as

ei
~k·~xFk(z) (92)

where F~k(z) is some linear combination of functions e−αz with α ≥ |k|. That is, the functions
F~k(z) are Laplace transforms of functions F̃~k(ω) with the restriction that ω ≥ |k|.

Applying the same numerical methods as in the previous section, we have found that even

with such a restriction on F̃ , it is still possible to produce a function F~k(z) with arbitrarily

small variance so long as the sources are taken sufficiently large. Thus, for any ~k, we can

generate a function whose x-dependence is ei
~k·~x and whose variance in the z-direction is

arbitrarily small. For our discussion below, let Nωmin
(V ) be the minimum norm necessary

to achieve a variance V with a source whose support is in [ωmin,∞).

We will now show that by taking linear combinations of mode functions constructed in this

way, we can generate functions χ(~x, z) with arbitrarily small variance by choosing sources

λ with sufficiently large (finite) norm. We will argue that this is possible to achieve using

functions of the form χ(x, z) = X(x)Z(z).

Suppose we want to generate a function X(x)Z(z) with variance less than V∗. First, we note

that for large enough k0, it is possible to find a function

X(x) =

∫

|k|<k0
dkA(k)ei

~k·~x (93)

written in terms of Fourier modes with |k| < k0 such that
∫

dxX(x)2 = 1 and
∫

dxX(x)2x2 <
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V∗/2. Next, we can choose a function

Z(z) =

∫ ∞

k0

dωλk0(ω)e
−ωz , (94)

such that the variance is less than V∗/2 and source norm is less than or equal to Nk0(V∗/2),

where λk0(ω) is supported on [k0,∞).

Finally, consider a source defined as

λ(k, ω) =
A(k)ω√
ω2 + k2

λk0(
√
ω2 + k2) . (95)

This gives

χ(z, x) =

∫

dkdω
A(k)ω√
ω2 + k2

λk0(
√
ω2 + k2)ei

~k·~xe−
√
k2+ω2z

=

∫

|k|<k0
dkA(k)ei

~k·~x
∫ ∞

k0

dαλk0(α)e
−αz

= X(x)Z(z) . (96)

The variance for such a function is

V =

∫

dxdzχ(x, z)2(x2 + (z − z0)
2)

∫

dxdzχ(x, z)2

=

∫

dxX(x)2x2

∫

dxX(x)2
+

∫

dzZ(z)2(z − z0)
2

∫

dzZ(z)2

= VZ + VX < V∗ (97)

Finally, the norm of the sources is

N =

∫

dkdω
[

A(k)ω√
ω2+k2

λk0(
√
ω2 + k2)

]2

∫

dxdzχ(x, z)2

=

∫

|k|<k0 dk
∫∞
k0

dα
√
α2−k2
α

A2(k)λ2
k0
(α)

∫

dxdzχ(x, z)2

≤
(∫

|k|<k0 dkA
2(k)

∫

dxX(x)2

)(
∫∞
k0

dαλ2
k0
(α)

∫

dzZ(z)2

)

=
1

2π
Nk0(V∗/2) , (98)

where we have used Plancherel’s theorem. Thus, we have seen that it is possible to obtain

arbitrarily small variance for sufficiently large source norm, so long as this is possible in the

translation-invariant case for sources with support in [ωmin,∞).
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The form of Nωmin
(V∗) is investigated in Figure 3. We see that for a sufficiently small ωmin,

Nωmin
(V∗) asymptotes within the range of our numerics to the roughly linear relationship

seen for N0(V∗) in the translation invariant analysis. The delay with which Nωmin
(V∗) reaches

this asymptotic behaviour increases with ωmin and so our results are consistent with the

conjecture that this is the generic asymptotic behaviour of Nωmin
(V∗) at smaller variances

than our numerics can probe. In any case, figure 3 provides evidence that small variances

can be achieved at the cost of exponentially suppressing the amplitude independent of this

observation.

5 Absence of ω > |k| modes in CFT one-point func-

tions.

An important feature of the perturbative results for the CFT one-point functions in terms

of sources is that the one-point functions have no |ω| < |~k| modes. For holographic theories,

this has been noted before in [11, 12] at leading order in the 1/N expansion, and comes from

the fact that these would correspond to perturbative bulk modes that diverge exponentially

for large z.11 From a CFT perspective, the argument for why spacelike modes decouple in

a large N CFT is that they drop out of the two-point function (as we have already seen

by explicit calculation), and at large N all correlation functions factorize in terms of two-

point functions. In this section, we show the absence of these |ω| < |~k| modes for one-point

functions of CFT scalar quasi-primary operators quite generally, i.e., without assuming a

large N expansion.

We consider states

|Ψ〉 = N
∑

n

cnOn(~xn,−τn)|0〉 (99)

obtained as linear combinations of states obtained by acting with scalar operators On of

some fixed scaling dimension ∆n on the vacuum at spatial position ~xn and Euclidean time

−τn < 0. A state

On(~xn,−τn)|0〉 (100)

11This property leads to the result that CFT one-point functions integrated against certain non-trivial

smearing functions will vanish for states in the “code subspace”. This is related to the “quantum error

correction” property for holographic states [15, 16, 17], i.e. that local bulk operators (which according to

HKLL [18] are equal to smeared local CFT operators at leading order) can be represented in multiple ways

as boundary operators.
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is the same as that obtained by inserting the operator On(~xn,−τn) into the Euclidean path-

integral defining the vacuum state. We recall that any CFT state can be obtained by the

insertion of some linear combination of operators of fixed scaling dimension at τ = −∞;

here, by inserting scalar operators at arbitrary position, we can reproduce states obtained

by inserting any scalar primary operator or any of its conformal descendants at τ = −∞.12

Now, for the general state (99), consider the one-point function of a scalar operator O(x, t)

of dimension ∆ at Lorentzian time t. This is obtained by analytic continuation from the

Euclidean three-point function. Keeping track only of the x and t dependence, we have

〈Ψ|O(x, t)|Ψ〉 =
∑

m,n

Am,n

((~x− ~xm)2 + (τm − it)2)
1
2
(∆+∆m−∆n)((~x− ~xn)2 + (τn − it)2)

1
2
(∆+∆n−∆m)

.

(101)

Using the identity

1

AnBm
=

Γ[m+ n]

Γ[m]Γ[n]

∫ 1

0

ds
sm−1(1− s)n−1

(sA+ (1− s)B)m+n
, (102)

we find that the x and t dependent function in (101) is a linear combination of terms of the

form
1

((~x− ~x0)2 + (τ0 − it)2 + C2)∆
(103)

where

~x0 = s~xm + (1− s)~xn

τ0 = sτm − (1− s)τn

C2 = s(1− s)((~xm − ~xn)
2 + (τm + τn)

2)

For C = 0, the Fourier transform of (103) is the expression K∆(k, ω, τ) defined in (53) and

given explicitly in (58). This contains no |ω| < |k| modes. If this remains true for C 6= 0,

then we would conclude that one-point functions for general states have no |ω| < |k| modes.

Naively, we could expand (103) in powers of C; the Fourier transformation of the C2n term is

proportional toK∆+n and thus contains no |ω| < |k|modes, but it’s not clear that expanding,

integrating, and resumming is justified here. In any case, the result of this procedure is

KC
∆(k, ω, τ) = 2e−i

~k·~x0e−τωθ(τω)θ(ω2 − k2)
π

d
2
+1

Γ[∆]

(

ω2 − k2

4C2

)
∆
2
− d

4

J∆− d
2

[

C
√
ω2 − k2

]

(104)

12To construct a completely general state, we must also include insertions primary operators in other SO(d)

representations and their descendants. We expect that it should be possible to generalize the arguments in

this section to that general case.
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To check this, we evaluate the Fourier transformation directly using contour integration

methods as in section 3. We have (for positive integer ∆),

KC
∆(k, ω, τ) =

∫

dd−1~xdte−i
~k·~xe−iωt

1

(C2 + (~x− ~x0)2 + (τ − it)2)∆
(105)

=
π

d
2
−1Γ[∆− d

2
+ 1]

Γ[∆]
e−i

~k·~x0
∫

dte−iωt
∫

dx
e−i|

~k|x

(C2 + x2 + (τ − it)2)∆− d
2
+1

=
π

d
2
−1e−i

~k·~x0

Γ[∆]
(− d

dC2
)∆− d

2

∫ ∞

−∞
dxe−ikx

∫ ∞

−∞
dte−iωt

1

C2 + x2 + (τ − it)2

=
π

d
2
−1e−ωτe−i

~k·~x0

Γ[∆]
(− d

dC2
)∆− d

2

∫ ∞

−∞
dxe−ikx

∫ ∞+iτ

−∞+iτ

dte−iωt
1

C2 + x2 − t2

=
2π

d
2 e−ωτe−i

~k·~x0θ(ωτ)

Γ[∆]
(− d

dC2
)∆− d

2

∫ ∞

−∞
dxe−ikx

sin(ω
√
C2 + x2)√

C2 + x2

=
2π

d
2
+1e−ωτe−i

~k·~x0θ(ωτ)

Γ[∆]
θ(ω2 − k2)(− d

dC2
)∆− d

2J0(C
√
ω2 − k2)

=
2π

d
2
+1e−ωτe−i

~k·~x0θ(ωτ)

Γ[∆]
θ(ω2 − k2)

(

ω2 − k2

4C2

)
∆
2
− d

4

J∆− d
2

[

C
√
ω2 − k2

]

which reproduces the naive result above in any CFT, the one-point function of any scalar

primary operator is built from Fourier modes with the restriction that |ω|2 > k2. Roughly,

this says that the spatial variation must not be greater than the variation in time. For

example, we can’t have a one-point function that is static and localized in space.

Our discussion above extends the observations in the existing literature [11, 18, 12] about the

absence of spacelike modes from one-point functions to all orders in 1/N , and indeed even

to more general CFTs without a large N expansion. However, as shown in [12], spacelike

modes can be present in non-vanishing higher-point functions, for example in the thermal

two-point function. This is not in contradiction with the result discussed in this section, but

demonstrates the need for care in interpreting our results.

6 Discussion

In this paper, we have investigated in more detail the correspondence between states (1)

defined by adding sources to the Euclidean path integral and the Lorentzian asymptotically

AdS spacetimes that these states are dual to in holographic theories. We have presented

evidence that at first order in perturbation theory, arbitrary perturbations to the background

AdS spacetime can be well-represented by such path integral states. However, an interesting

qualitative feature is that the validity of this perturbative approach depends both on the
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size of the bulk perturbations we wish to produce and on how localized these perturbations

are.

An interesting generalization of this work would be to investigate states for which sources

are added to the Euclidean path integral defining a mixed state – for instance, the thermal

state – instead of the vacuum path integral we considered here. States produced in this

way should correspond to perturbations to the black hole or black brane geometries dual to

the thermal state. Again, it would be interesting to understand the detailed map between

sources and Lorentzian solutions, starting with the linearized analysis. Of course, one could

also cast this problem in terms of the thermofield double, which points to the fact that there

will be multiple different path-integral states which produce the same bulk initial data in

the causal wedge of one side. Similarly, it might be interesting to consider the analogous

calculation for subregions in the vacuum – namely, if we were only to specify initial bulk

data in the causal wedge of some (say, ball-shaped) CFT subregion (i.e. on a Cauchy surface

in the correspondingly dual AdS hyperbolic black hole), then it is clear that several different

path-integral states in the CFT would reproduce the required bulk data.

It would also be interesting to investigate which Lorentzian initial data can be generated via

path integral states to higher orders in perturbation theory or non-perturbatively (e.g. via a

numerical gravity calculation). For example, in a purely gravitational setting or for gravity

coupled to a scalar field, it would be interesting to study numerically which spherically

symmetric or translation-invariant initial data can be produced using sources with the same

symmetry properties by solving the full nonlinear gravitational equations. In this case, we

expect that certain sources will lead to singularities in the bulk Euclidean solution, so there

will not be a one-to-one map between sources and smooth initial data. It is also not at

all clear that we would be able to obtain arbitrary initial data by an appropriate choice of

sources. Ultimately, we would like to understand whether any physical Lorentzian spacetime

with a good classical description in a consistent quantum theory of gravity can be well-

represented by states of the form (1) or if not, whether there is a nice characterization of

which class of spacetimes these states correspond to.
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Appendix

A Higher orders

In section 3, we have obtained at first order in perturbation theory the relation between

Euclidean sources, bulk initial data, and CFT one-point functions. In this appendix, we

point out that there is a relatively simple formula valid at any order in perturbation theory

for the sources required to produce any particular one-point function. This may be useful in

extending the analysis of this paper to higher orders.

Our discussion makes use of the shadow operator formalism [19, 20, 21, 22, 23]. We will work

in Euclidean signature in this section and use the analytic continuations described above to

extract the Lorentzian one-point functions.

We wish to find the sources required to set 〈Ψλ|Oα(x)|Ψλ〉 = ρα(x), where α labels primary

operators.13 Expanding in the source,

ρα(x) = 〈Ψλ|Oα(x)|Ψλ〉 =
∫

[dφ(τ)]e−SE−
∫
dyλβ(y)Oβ(y)Oα(x) (106)

=

∫

dyλβ(y)〈Oα(x)Oβ(y)〉+
1

2

∫

dy1dy2〈Oα(x)Oβ1(y1)Oβ2(y2)〉λβ1(y1)λβ2(y2) (107)

+
1

3!

∫

dy1dy2dy3〈Oα(x)Oβ1(y1)Oβ2(y2)Oβ3(y3)〉λβ1(y1)λβ2(y2)λβ3(y3) +O(λ4),

(108)

where 〈. . .〉 denotes the vacuum correlation function.

13Repeated labels should be summed over the primary operators in the CFT.
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Similarly, the source can be expanded in terms of the target one-point function,

λβ(y) =

∫

dxK
(1)
β,α(y, x)ρα(x) +

1

2

∫

dxK
(2)
β,α1,α2

(y, x1, x2)ρα1
(x1)ρα2

(x2).+O(ρ3) (109)

Plugging into (108) determines the integral kernels K(i):

ρα(x) =

∫

dydx1〈Oα(x)Oβ(y)〉K(1)
β,α1

(y, x1)ρα1
(x1)

0 =
1

2

∫

dx1dx2ρα1
(x1)ρα2

(x2)
[

∫

dy〈Oα(x)Oβ(y)〉K(2)
β,α1,α2

(y, x1, x2)

+

∫

dy1dy2〈Oα(x)Oβ1(y1)Oβ2(y2)〉K(1)
β1,α1

(y1, x1)K
(1)
β2,α2

(y2, x2)
]

0 =
1

3!

∫

dx1dx2ρα1
(x1)ρα2

(x2)ρα3
(x3)

[

∫

dy〈Oα(x)Oβ(y)〉K(3)
β,α1,α2,α3

(y, x1, x2, x3)

+ 3

∫

dy1dy2〈Oα(x)Oβ1(y1)Oβ2(y2)〉K(1)
β1,α1

(y1, x1)K
(2)
β2,α2,α3

(y2, x2, x3)

+

∫

dy1dy2dy3〈Oα(x)Oβ1(y1)Oβ2(y2)Oβ3(y3)〉K(1)
β1,α1

(y1, x1)K
(1)
β2,α2

(y2, x2)K
(1)
β3,α3

(y3, x3)
]

The first equation requires thatK
(1)
β,α(y, x) be the inverse of the two-point function 〈Oα(x)Oβ(y)〉

as an integral kernel. Note that this two-point function is completely fixed by conformal sym-

metry and is diagonal in the α, β labels. Formal shadow operators can be defined by

Õβ(y) =

∫

dxK
(1)
β,α(y, x)Oα(x), (110)

which transform under conformal transformations as an operator of dimension ∆̃α = d−∆α.

This ensures that

〈Oα(x)Õβ(y)〉 = δd(x− y) (111)

〈Õα(x)Õβ(y)〉 = K
(1)
β,α(y, x). (112)

This last equation tells us what K(1) is, since the two-point function is determined by con-

formal symmetry.14 This definition is a bit different in spirit from that used in [23], but can

be checked to agree using results derived in Section 2 of that work.

14Equations in this section involving integral kernels or shadow operators should be understood to hold

when integrated against suitable test functions.
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Higher orders are straightforward:

K
(2)
β,α1,α2

(y, x1, x2) = −〈Õβ(y)Õα1
(x1)Õα2

(x2)〉 (113)

K
(3)
β,α1,α2,α3

(y, x1, x2, x3) = 3

∫

dy2〈Õα(y)Õα1
(x1)Oβ2(y2)〉〈Õβ2(y2)Õα2

(x2)Õα3
(x3)

− 〈Õβ(y)Õα1
(x1)Õα2

(x2)Õα3
(x3)〉. (114)

K(3) involves a new ingredient, which is the main reason to introduce the shadow operator

formalism. The OPE expansion allows us to fuse correlation functions of the form
∫

dx〈O1 . . .OmOα(x)〉〈Õα(x)Om+1 . . .On〉
∣

∣

∣

P
= 〈O1 . . .On〉, (115)

subject to a projection which eliminates the contributions from unphysical “shadow confor-

mal blocks”. This projection can be realised by picking out the part of the resulting integral

with a particular monodromy behaviour for the positions of the operators O1 . . .Om. See

[23] for a detailed discussion of how to do this projection. As noted there, this projection

makes these expressions somewhat formal, but can be carried out in practice. Since this

projection is trivial for m = 1, all the integrals used in defining the source so far can be

redefined to include such projections. Thus,

K
(3)
β,α1,α2,α3

(y, x1, x2, x3) = 2〈Õβ(y)Õα1
(x1)Õα2

(x2)Õα3
(x3)〉. (116)

Using this approach, a formal expression for the source required to reproduce a given target

one-point function to all orders is

λβ(y) =

〈

Õβ(y) log

(

1 +

∫

dx Õα(x)ρα(x)

)〉

, (117)

where this expression should be understood via its series expansion in powers of ρ. It can

be checked by plugging into (106),

〈Ψλ|Oα(x)|Ψλ〉 =
〈

e
∫
dyλβ(x)Oβ(y) Oα(x)

〉

=
〈

e
∫
dyOβ(y)〈Õβ(y) log(1+

∫
dx Õα(x)ρα(x))〉Oα(x)

〉

(118)

=
〈

elog(1+
∫
dx Õα(x)ρα(x))Oα(x)

〉

=

〈(

1 +

∫

dx Õα(x)ρα(x)

)

Oα(x)

〉

= ρα(x).

(119)
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