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Disoriented Chiral Condensates
in High-Energy Nuclear Collisions

Jgrgen Randrup

Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

Abstract. This brief lecture series discusses how our current understanding of chiral
symmetry may be tested more globally in high-energy nuclear collisions by suitable
extraction of pionic observables. After briefly recalling the general features of chiral
symmetry, we focus on the SU(2) linear o model and show how a semi-classical mean-
field treatment makes it possible to calculate its statistical properties, including the
chiral phase diagram. Subsequently, we consider scenarios of relevance to high-energy
collisions and discuss the features of the ensuing non-equilibrium dynamics and the
associated characteristic signals. Finally, we illustrate how the presence of vacuum
fluctuations or the inclusion of strangenesss may affect the results quantitatively.

INTRODUCTION

The advent of ever more powerful heavy-ion accelerators has made it possible
to study strongly interacting matter over a wide range of physical conditions. In
particular, at the unprecedented energy densities now within reach at RHIC two
fundamental phase changes are expected to occur. One is the dissolution of ordi-
nary hadrons into a deconfined quark-gluon plasma phase, which has long been a
principal research objective. The other, on which the present lectures are focussed,
is the approximate restoration of chiral symmetry. This topic has gained increasing
interest in recent years because of the recognition that the rapid non-equilibrium
dynamics may produce coherent oscillations of the pion field with observable con-
sequences. Reviews of this phenomenon, commonly referred to as disoriented chiral
condensates (DCC), are given in Refs. [1-3].

Since the u and d quark masses are fairly small, the basic QCD Lagrangian
is approximately invariant with respect to chiral transformations and it is there-
fore expected that matter at high energy density will display approximate chiral
symmetry. However, due to the self-interaction of the fields, this symmetry is spon-
taneously broken at lower energy. In particular, the ordinary vaccum exhibits a
finite value of the order parameter, (¢q) = f,, and the associated pionic excitations
are approximately massless on the hadronic scale. A pedagogical introduction to
the basic concepts of chiral symmetry in nuclear physics is given in Ref. [4].



The most popular theoretical tool for studies of DCC phenomena has been the
linear o model [5] which describes the O(4) chiral field ¢ = (o, ) by means of a
simple effective quartic interaction (see Refs. [6-14] for some examples),

L=30po d"p— 2(¢"—v*)’+Ho = [O+A¢*—2"))¢ =Hs. (1)
The three model parameters, A, v, and H, can be fixed by specifying the pion decay
constant, f, = 92 MeV, the free pion mass, m, = 138 MeV, and the mass of the
nominal ¢ meson (which is rather uncertain), m, = 600 MeV. In vacuum, the
chiral field is aligned with the o direction, ¢,,. = (fr,0), and at low temperatures
the agitations of the field represent nearly free ¢ and m mesons. This simplest
version of the model is appropriate only in a baryon-free environment, such as the
central rapidity region at RHIC, and it needs to be appropriately extended when
baryons are present (for an example of this, see Ref. [8]).

Within this conceptually simple framework, the basic mechanism of DCC forma-
tion is readily depicted, as illustrated in Fig. 1: The early violent part of a collision
event produces an extended region of space within which the energy density is so
high that chiral symmetry is temporarily nearly restored. As the collision evolves
further, the energy density drops so rapidly that the chiral degrees of freedom
fall out of equilibrium, leading to large-amplitude long-wavelength isospin-directed
oscillations of the pion field. This unique phenomenon would have a number of
specific observational consequences, including anomalous multiplicity distributions
of the soft pions and a significant enhancement of dilepton production.

This lecture series reviews efforts to address the phenomenon quantitatively
within the framework of the linear o model.

STATISTICAL EQUILIBRIUM

In order to understand the key features of DCC formation, which is inherently
a non-equilibrium phenomenon, it is useful to know the equilibrium properties of
the system. In this section we discuss how statistical equilibrium may be addressed
quantitatively within a semi-classical framework that is readily extendable to arbi-
trary time-dependent scenarios. We follow Ref. [15] where more details are given.

Mean-Field Treatment of the Linear ¢ Model

The present considerations are restricted to systems confined within a cubic box
of volume 2 = L3; the continuum limit is then approached (rapidly) as L — oo.
A given microscopic state of the system is characterized by the field ¢(r) and its
time derivative ¥ (7), both of which are real functions and have periodic boundary
conditions. (The separate notation for the time derivative of the field emphasizes
that it represents independent information; it is also notationally advantageous.)



Idealized illustration of DCC formation:

The system starts at high
temperature where chiral
symmetry is nearly restored:

b

Rapid expansion causes a quench
that renders the symmetric state
unstable:

T[l The order parameter quickly
grows in some chiral direction,
breaking the chiral symmetry:

The later relaxation displays
large-amplitude isospin-directed
oscillations of the pion field:

FIGURE 1. The mechanism leading to DCC formation is illustrated for the simplified worlds in
which the isospin space has only two (left-hand side) or one (right-hand side) dimension. In the
originally conceived DCC quench scenario, the system is initially so highly agitated that the O(4)
order parameter (o, ) is situated at the single minimum of the effective potential near the origin.
The system then expands and/or cools so rapidly that the effective potential quickly reverts to
its low-temperature form, in which a nearly degenerate minimum appears as a trough on the
surface of the 4-hypersphere with radius f., 0® + 72 ~ f2. Since the early rapid growth of the
order parameter is primarily in the radial direction, the generated vector current 7 x 7 is very
small and the subsequent oscillatory relaxation towards the ground state is therefore well directed
in isospace (lower left illustration). The emitted pion radiation is then correspondingly isospin
polarized, resulting in a very broad distribution of the neutral fraction f = No/(N—_ + No + N3).



It is useful to separate the field into two parts, ¢(r) = ¢ + d¢(r). The spa-
tial average of the field, ¢ = (¢(r)) is identified with the O(4) order parameter
associated with that particular field configuration. The components of the field
fluctuation d¢p(r) along the O(4) direction of the order parameter is denoted by
d¢)(r) and d¢, (r) is its component perpendicular to ¢. A similar decomposition
can be made for the time derivative, ¥(r) = 1 + d1p(r). This separation makes
it possible to interpret the field fluctuations as quasiparticle excitations relative to
the environment (or “effective vacuum”) characterized by the temperature 7" and
the magnitude of order parameter, ¢q.

Moreover, the separation of the field invites the application of the Hartree fac-
torization technique. The first step, taking the spatial average of the full equation
of motion (1), leads to an equation of motion for the order parameter ¢ [16],

(02 + 3] ¢ = He, . (2)
The associated effective mass jy for the order parameter is given by
,u%=A[¢§+<5¢2>+2<5¢ﬁ>—02]. (3)

Here ¢y = |¢| is the magnitude of the order parameter. Moreover, < dqﬁﬁ >~ is the
thermal average of the field fluctuation along ¢, while < §¢* === d¢f = +3 <
§¢* = is the total field fluctuation (the three perpendicular fluctuation components
have the same thermal average and < J¢? > denotes just one of them). Terms
vanishing in thermal equilibrium have been ignored, namely correlations between
field fluctuations in different O(4) directions, < d¢;0¢, = 0, and averages of odd
powers of field fluctuations, < d¢?d¢ == 0.

The above result can be used to determine the phase diagram, since the order
parameter experiences no forces in equilibrium, 9?¢ = 0. Thus, at a given temper-
ature T, the stationary points of ¢ are determined by uip = He,, which implies
that the equilibria are located on the o axis. If xq is the angle between ¢ and the o
direction, the aligned component of the order parameter is given by g = ¢ cos Xo
and the equilibrium condition then amounts to the relation pgoo = H. When the
free pion mass vanishes, so does H. The condition for obtaining an equilibrium
for a finite magnitude of the order parameter, ¢y > 0 (in which chiral symmetry
is thus spontaneously broken), then amounts to the requirement that py be zero.
This feature is a manifestation of the Goldstone theorem [17].

In order to calculate the field fluctuations entering in the expression (3) for p2,
it is necessary to know the quasiparticle masses. Subtracting the above equation
of motion (2) from the complete equation (1) and applying a suitable Hartree-type
factorization, approximate Klein-Gordon equations of motion can be obtained for
the field fluctuations d¢p = (6¢, d¢p, ) [15],

[O+uf]dgy=0, [O+ut]d¢p, =0. (4)

The effective quasi-particle masses | and p are determined by the gap equations,



i = A3dg + < 66° = + 2 < 3¢} - — 7], (5)
pE= X ¢p + < 68% = +2 <62 = —v7], (6)

and the corresponding quasiparticle dispersion relations are (wL') = k? + ,uﬁ and
(wih)? = k?+p2 . Finally, the thermal fluctuations are given by the usual expressions
for bosonic fields,

1 T Wn
1 1 1 T 1 npy
<62 = = — — = — K (= 8
¢J_ 0 ; Ié_ J_/T 1 272 nz>0n 1( T )7 ( )

where the last relations hold in the continuum limit (L — oo). We note that
po < pi < pf, with the equalities holding for ¢y = 0. Moreover, the gap equations
do not contain the parameter H, so the resulting effective masses are independent
of the disorientation angle xj.

Utilizing the expressions (7-8), the coupled equations (5-6) for the effective
masses can be solved for specified values of the temperature 7' and the magni-
tude of the order parameter, ¢y, provided that these quantities are sufficiently
large. The critical boundary on a ¢y — 7" diagram inside which no solution exist, is
determined by the vanishing of the transverse mass, u; = 0 (see Eq. 9 below).

Figure 2 shows the resulting effective masses y and p, as functions of ¢, for
temperatures 7" up to well above critical. At any temperature, there is always
a physical solution to the coupled equations (5-6) for the effective masses when
¢o > v. This is easy to see from Eq. (6): At 7 = 0, when the fluctuations vanish,
we have p? = \(¢2 — v?) and so p? vanishes at ¢y = v and is positive for larger
¢o; an increase of T will always increase the fluctuations, and hence the mass.
Moreover, we always have p > .

Since the field fluctuations and the magnitude of the order parameter contribute
to the effective masses in qualitatively similar ways, an increase of the temperature
(and thus the fluctuations) will permit a further decrease of ¢y, so that the point
at which p, vanishes is moved to ever smaller values of ¢y. The appearance of
1y, considered as a function of ¢, is nearly independent of temperature, except
that each curve terminates at the point where the corresponding yp;, vanishes. This
limiting curve is indicated by the dotted curve on the interval (0,v) and it is
elementary to calculate,

T2
— (B +e /M), uit = A(20" = T?). (9)

5
2——T2—<(5¢ﬁ>zv2 15

pi=0: ¢5=uv B

This behavior continues until the temperature reaches the value 7, the lowest
temperature for which there is a solution to eqgs. (5-6) for all values of ¢y. For this
particular temperature both effective masses vanish for ¢y = 0. Consequently, we
have < 0¢% == T /12 and so Tg = 2v?, i.e. Ty = 122.63 MeV with the adopted
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FIGURE 2. Solution to the gap equations. The effective masses | (solid) and p, (dashed), as
functions of the magnitude of the order parameter, ¢, for a range of temperatures: 7" = 0, 40,
80, 100, 122.63 (=Tp), 160, 200, 240, 300, 400, 500 MeV, calculated in the thermodynamic limit
where the box size is large, L — co. For a temperature above Ty, the two effective-mass curves
start out at ¢g = 0 with degenerate values, whereas below Ty they only exist if ¢q is sufficiently
large. The corresponding starting points for y are connected by the dotted curve and, since y
is then nearly independent of T, only the curve for T' = 0 has been shown. The vertical arrow
points to the vacuum value of the order parameter, ¢vae = fr = 92 MeV, and the free mass
values p = m, = 600 MeV and py = m, = 138 MeV are indicated by the horizontal arrows.
The locations of the corresponding points in the diagram are shown by the two solid symbols.
Since the field fluctuations are rather insensitive to the box size, except near the critical point,
the effective masses exhibit only very little size dependence.

parameter values. [T} is here used to denote that unique value of T" for which the
effective masses are zero when the order parameter vanishes. It is occasionally
referred to as the “critical temperature” and denoted 7, but we find this nomen-
clature unfortunate, since the transition from approximate chiral symmetry to a
broken phase generally occurs at significantly higher temperatures, as we shall illus-
trate later on.] The degeneracy in the masses, 1 = p., is a general consequence of
the O(4) rotational symmetry that emerges for ¢o = 0 and it therefore remains as T
is further increased, with the common mass value p increasing steadily. Since the
effective mass at ¢ = 0 is given by u§ = A(6<d¢3 > —v?), it becomes proportional
to T at high temperatures, puoc? ~ 1.59 T for T > v.



Partition Function

The statistical properties of the chiral field are governed by the partition function
which, in the semi-classical treatment, is given by

2 = [Dlg(r), p(r)] o FHOMV@IL (10)

The functional integral is over all possible field configurations and E' is the mean
energy density of any such state of the system,

Elp(r),¥(r)] = Gv* +3(V9)* + 3(¢* —v*)* — Ho) = Ey+ Eqp +6V , (11)

with 1o = [tp|. In the last relation, the energy has been decomposed into terms
having instructive physical interpretations [15]. The first term in this decomposition
is the energy density that would result if all the field fluctuations were put to zero,

By = 0§ + 3(05—v")" — Hoocosxo = Ko + Vo (12)

It consists of the bare kinetic energy density Ky = %@bg and the bare interaction
energy density Vj.

The second term in FE is the energy associated with the gas of independent
quasiparticles described by the above Klein-Gordon equations of motion (4),

Eyp = H6podp + VépoVégp + 6o Modg), (13)

where M is the O(4) quasiparticle mass tensor. In thermal equilibrium its major
principal axis is oriented along the order parameter, the corresponding eigenvalue
is uf, and the other three eigenvalues are equal to u.

The last term in E corrects for the fact that the interaction is non-linear,

8V = 3(00") = 368" ¢ ~ —3(00")a = (66°)" +2 Tr((6d0) o (680)) (14)
r =N [ O8] -7 + 2 < 0o =< 6% - + 5 <691 -] = 6V (15)

Here ()¢ denotes the gaussian approximation to the evaluation of the average.
The last line arises if the spatial averages are approximated by the corresponding
thermal averages, as is expected to be accurate when L exceeds the correlation
length. The resulting quantity, 6V, then depends on the particular state only
through the magnitude of its order parameter, ¢;.

With the above preparations, we are now in a position to simplify the expression
(10) for the partition function. We first note that the functional integral factorizes
into a regular (8-dimensional) integral over the O(4) order parameter ¢ and its

time derivative ¢ and a functional integral over the field fluctuation d¢(r) and its
time derivative d1(r),

Q

Zr = / diep o= HEo0 / diep e~ B (V0+oVr) / D(6p(r), 59p(r)] e FEw . (16)



The integration over 4 yields the factor (277/$)? which depends only on temper-
ature. The integral over the quasiparticle degrees of freedom yields the conditional
quasiparticle partition function Z,,. Using the Bose-Einstein values for the mode

occupancies ny, we find In Z, = In 2]l + 31n 2L where

ap’
an = > lnn = —> In[l - _“’l(cj)/T] (17)
k;éO k#£0
Z wk nk ) + > [n In n,(c) (J) In nm] (18)
T o k#£0
__ 0 v — 7g0) 19
- ( ap qp) (19)

for each chiral component j (with n(J )=1+ nfcj )). The total energy density of the
quasiparticles is then Vg, = Vq”p+3V($ and their entropy density is S = S‘up + 3S$).

Consequently, we may write the overall partition function on a simple form,

2T 2 o) 21T\ 2 o0 g 2
Zr = (%) /d4¢ e = (%) 47?/ o d¢0/ sin® xo dxo €777, (20)
hud 0 0

where Fr = Vr(¢o, x0) — T'St(do) is the effective free energy density, with the
effective potential energy density being Vi = Vo(do, Xo0) + Vip (o) + 0Vir(do)-

It should be noted that the xo dependence of the free energy is only through the
term — H ¢ cos X in the bare potential V. For H > 0 this term has its minimum
value for yo = 0 and it increases steadily until reaching its maximum for x, = .
All stationary points of Fr are therefore located on the o axis and occur where

(0Fr /00y)T vanishes.

Phase Structure

Once the expression for the partition function has been derived, it is possible to
discuss the statistical properties of the chiral order parameter ¢. The structure of
the free energy density is illustrated in Fig. 3 in the thermodynamic limit (L —
oo) for both the O(4) symmetric case (vanishing m,) and the realistic case. The
equilibrium points can be identified as those where the free energy density Fr is
stationary. Using the expression for the free energy derived above, together with
the self-consistent dispersion relations, it is elementary to show that

oFr\
(%)T = ,U,O (o) H . (21)

Comparing this relation with Eq. (2), we see that statistical equilibrium (stationary
free energy) and dynamical equilibrium (no acceleration of the order parameter)
indeed occur simultaneously, as required by thermodynamic consistency. Therefore,
the phase diagram can be determined already on the basis of Eq. (2).
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FIGURE 3. Left panel (3a): The free energy density Fr as a function of the order parameter o
for various values temperatures 7', for the idealized O(4) symmetric case (m,=0). At each T, the
solid (or open) dots indicate the favored (or unfavored) equilibria. The result for T = Ty = v/2v
is indicated by a dashed curve. For T' < T}, the order parameter must exceed a certain minimum
value before all quasiparticle modes are stable and the corresponding end points are connected
by the dotted curve. The top dashed curve shows the bare potential V; that arises when 7' = 0.
Right panel (3b): The corresponding result for the realistic case (m,=138 MeV).

The resulting equilibria are traced out in Fig. 4a for four different values of the
free pion mass. In the idealized case of vanishing pion mass, the ground-state
minimum in Fi is located at g = f,, where Fr vanishes, F;* = 0. The minimum
in Fr moves inwards as 7" is increased, at first very slowly and then progressively
faster, until a certain temperature is reached, T' = T7. At this temperature, the
stationary points in F7r turn from minima to maxima as the tracing curve continues
downwards towards the critical point.

Once the temperature exceeds the critical value T}, a solution to the gap equa-
tions exist for all values of ¢y, and the free energy has a minimum at ¢, = 0.
Thus, in the temperature range between 7 and 7T}, there are two minima in Fr,
separated by a maximum that is only slightly higher than the symmetric minimum.
The outer minimum generally carries a larger statistical weight (the value of Fr
is lower). Consequently, it represents the thermodynamcially preferred state and
the symmetric configuration is merely metastable (with the maximum representing
an unstable equilibrium). We therefore refer to 77 as the transition temperature.
Above Ti there the only stationary point is the minimum at symmety, ¢, = 0.

This general structure of the free energy, as obtained with the semi-classical
treatment, implies that the system will display a first-order phase transition at
T = T, with the preferred magnitude of the order parameter dropping abruptly
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FIGURE 4. Left panel (4a): The stable and unstable (dotted) equilibrium values of the chiral
order parameter oo = ¢ cos xo at a given quasiparticle temperature 7', as traced on the chiral
phase diagram for the indicated four values of the pion mass m, . For m, = 0 the high-temperature
0O(4) symmetric equilibrium branch extends upwards along the vertical axis from the critical point
marked by the diamond. The critical boundary defined by u; = 0 (within which the field is
supercritical) is delineated for m, = 0 and 138 MeV. The solid dot is located at the common
ground state, o9 = fr = 92 MeV. Right panel (4b): The equilibrium values of the effective masses
| (top) and p (bottom) for o-like and =-like quasiparticles, respectively, as functions of the
temperature T', for the same four different pion masses m,; the values at the unstable equilibria
are traced by the dotted curves. In addition, the top panel shows the value of g along the critical
boundary for m, = 0 (dotted curve on far left).

from a fairly large finite value to zero. However, as is evident from Fig. 3a, the
metastable minimum at ¢q = 0 is very shallow and a finite system would therefore
display large fluctuations in ¢, (see Fig. 5). Moreover, the use of a finite pion mass
will erode this phase structure, as the free-energy curves will be tilted towards the
positive o direction (Fig. 3b). The outer minimum will then occur only on o axis
(at o9 = fr), while there will be a saddle point situated in the opposite direction.
As seen in Fig. 4a, when m, exceeds about half the physical value, the resulting
tilting suffices to eliminate the symmetric minimum altogether and there is then
only a single minimum at any temperature (located on the positive part of the o
axis). From that value on, the system displays a smooth crossover from a strongly
broken to a weakly broken phase, with the most rapid change in order parameter
occurring at temperatures somewhat above 200 MeV.



The phase structure discussed above is reflected in the behavior of the equilibrium
values of the effective quasiparticle masses, as shown in Fig. 4b. When the specified
value of m, is sufficiently small, the associated phase transition causes a backbend
in the mass curves, as the system is traced through the unstable equilibrium branch.
For perfect O(4) symmetry (m, = 0), the backbend reaches all the way to the
critical point where all the effective masses vanish, po = p1 = g = 0, and from
there on they are exactly degenerate and grow approximately linearly with 7. As
noted above, the branch with the large masses is generally the thermodynamically
preferred one. For the case of m, = 0, Fig. 4b also shows the evolution of 1 along
the critical path where p, vanishes. It drops approximately quadratically from its
free value at 1" = 0 to zero at 1j.

For the larger values of m,, the evolution is smooth, but the basic two-phase
structure of the system remains visible as a distinct minimum in the ¢ mass. (The
location of this minimum may be used as an indicator for the effective transition
temperature [15].) At higher temperatures, the masses become nearly degenerate
as chiral symmetry is approached.

Finite Size

Since the systems available for actual experimental study have a rather limited
spatial extension, it is important to assess the importance of finite-size effects. As
it turns out [15], the free energy density Fr depends very little on the actual volume
2, once the side length L is above 5 fm or so, and it makes no practical difference
whether it is calculated in terms of the quantized modes, as indicated above, or in
the continuum limit. Thus the size dependence of the statistical properties arises
primarily through the volume © multiplying Fr in the integrand in (20).

When the system is small, the integrand in the partition function is no longer
narrowly peaked at the minima in F. Rather, it represents a probability density in
the O(4) space of the order parameter ¢. Since Fr depends only on the magnitude
of the order parameter, ¢, and its angle of disorientation, xo, it is instructive to
project onto the plane of those two state variables,

Zp o~ /0047r¢3 deo /Wsin2 Xo dxo e TFr(%ox0) — /oodcﬁo /WdXO Wr(¢o, x0) , (22)
0 0 0 0

where Wy is the statistical weight for finding the system with an order parameter
having the specified magnitude and disorientation.

Generally speaking, the statistical fluctuations in a finite system tends to wash
out the sharp phase structure characteristic of infinite matter. The importance
of this effect on the temperature dependence of the order parameter is brought
out in Fig. 5. The changes are most significant in the idealized O(4) symmetric
scenario. In particular, it can be seen that the first-order transition obtained for
m,=0 becomes less prominent as the volume is decreased to realistic sizes and it
has disappeared altogether for the smallest volume considered (L & 6 fm).
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FIGURE 5. The most probable value of the magnitude of order parameter, ¢g, as a function of
the temperature T, for various values of the side length L of the cubic volume considered, with
either m,=0 (left panel: 5a) or m,=138 MeV (right panel: 5b).

Such qualitative change does not occur when a realistic value of m, is employed,
since the behavior is then already smooth for large systems. In fact, the finite-size
effect is hardly visible until rather small volumes are reached. Furthermore, for such
small volumes the difference between the results obtained for the various specified
values of m is less noticeable. This finding suggests that a quantitative extraction
of the matter equation of state from analysis of the small finite systems involved in
actual experiments depends heavily on the availability of reliable models.

Another important finite-size effect is the fluctuation in the O(4) orientation of
the order parameter ¢p. However, because of the large entropy carried by the quasi-
particles, even a relatively modest change in the disalignment angle x, leads to a
strong reduction in the statistical weight. As a result, the equilibrium distribution
P(¢) remains fairly confined around the positive o direction, as is illustrated in
Fig. 6. Thus, the idealized “sombrero” picture in which the order parameter has a
fairly isotropic distribution at high temperatures may be somewhat misleading.

Sampling of Thermal Field Configurations

For actual numerical computations, it is often of interest to sample the field from
a suitably characterized ensemble and we outline how it is possible to devise a fast,
efficient, and robust method for sampling from the thermal ensemble [15].

The first task is to sample the order parameter in accordance with the statistical
weight Wr (¢, ). Since the time derivative 9 is governed by a four-dimensional
normal distribution which is isotropic and entirely decoupled from the other degrees
of freedom (see Eq. (16)), it is elementary to sample this quantity.
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FIGURE 6. The projected equilibrium distribution of the chiral order parameter,
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continuum results down to the appropriate finite volume Q = L3.

It is more complicated to sample the magnitude ¢g, due to the intricate structure
of its probability distribution, as discussed above. However, the numerical effort
required is quite modest. The most efficient method utilizes a precalculation of
the effective masses as functions of ¢y, for the particular 7" of interest. The x,-
independent part of the effective potential, V7 (¢, 0), can then be obtained together
with the corresponding entropy St (o). Since the dependence on xq is simple, an
exact integration over Yy is possible, and so, in effect, the probability distribution
for ¢y can be pretabulated. It is then a numerically trivial task to sample ¢y.

Once the magnitude ¢y has been selected, it is straightforward to sample the
disalignment angle x, (using either its exact form or its Gaussian approximation).
In order to orient ¢ in the 7 subspace, there remains the task of selecting the
remaining O(3) spherical angles 1, and ¢,, upon which the order parameter is given
by ¢ = (¢o cos Xo, ¢osin xosinJg cos pg, @p sin xo sin g sin g, @gsin xo cos Jy).

Since the different quasi-particle modes can be regarded as effectively decoupled,
their sampling is best done by making an expansion into the elementary modes,

so(r.1) = (o ) Sl cos(ir—wht— ), (23)

k£0

and similarly for the three transverse chiral components d¢  (r,t). The phase
M is random in the interval (0,27) and is thus trivial to sample. Furthermore,
the real (and positive) amplitude Cx can be related to the number of quanta ny
by considering the energy carried by the mode, Ex = mwy = wiCg. By this
token, the problem has been reduced to sampling the number of quanta ny which is
elementary. [In fact, ny can be regarded as counting the number of successive times



the sampling of a standard random number yields a value below exp(—e;/T')).] The
thermal average of ny is equal to the occupancy f; employed in the calculation of the
entropy, < nx >= fx. It may be noted that while the energy relation employed is
the classical one (which omits the zero-point contribution), the occupation number
is properly quantized and sampled in accordance with quantum statistics. This
method eliminates divergencies while retaining the essential quantum fluctuations.

Once the quasiparticle amplitudes and phases have been selected, the expansion
(23) readily yields the value of the field fluctuations, d¢(r) at a specified time 2.
The corresponding conjugate momentum dv = 0,0¢ readily follows,

50 (r, 1) = (é)% S w0l sinfle-r — wlt —n)) . (24)

k#0

When the equations of motion are propagated by a leap-frog method, the field
strength d¢(r) is calculated at ¢ty = NAt while the momentum §4(r) is obtained
at the mid points. The appropriate initial d¢(r) can then easily be obtained by
evaluating (24) at t = to + %At after Cy and 7 have been selected at .

Finally, the system in which the sampling has been done is aligned with the order
parameter ¢ whose O(4) direction is (xo, 7o, ¢o) (the mass tensor is diagonal in this
system). Therefore a corresponding rotation is required to express the sampled field
configuration with respect to the chiral reference frame (6, 71, 7o, 73)-

Correlation Function

It is interesting to calculate the correlation function of the chiral field since this
quantity determines the spectral distribution of the emitted field quanta. The
density matrix for the quasi-particle field is a 4x4 tensor,

C(T‘lg,tlg) =< 6¢(7’1,t1) 5¢(T‘2,t2) -, (25)

where the average is over the thermal ensemble held at the temperature 7. Since
an ensemble in equilibrium is invariant in time, the correlation function depends
only on the time difference t15 = t; — t5. Moreover, translational symmetry implies
that the spatial dependence is via the separation 75 = r — ro and invariance
under spatial rotations ensures that only the magnitude r15 = |75| enters.

Utilizing the expansion (23), it is elementary to show that the correlation tensor
C is diagonal with the elements C} and C'\, where

1 1 cos(k-r—wjt 1 oo ink
Cy(r,t) = EZ—COS( r = wt) < /“ dwﬂcoswﬂt, (26)

k£0 wL! ew}l/T _ 1 27-‘-271 " ew/T _ 1

and similarly for C (7,t). Since fj/wg is equal to the thermal average < CZ >, we
recognize the familiar result (see Eq. (146.10) in Ref. [18], for example).
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The usual correlation function is the trace of C,
C =< (5¢(7’1,t1) . 6¢(’l"2, t2) == trC = C||(7‘12,t12) + 3CJ_(7'12,t12) . (27)

Its overall magnitude is set by its value at zero, which is simply the corresponding
variance in the field strength, C(0,0) =< 6¢? =. It is instructive to consider the
reduced function Cjy = C(r12,0)/ < §¢? = which is unity for r; = r,. In general,
Cia ~ (1/r12) exp(—pri2) in the limit of large separations, r13 — 00, so that 1/uc
provides a simple measure of the correlation length. In the special case when the
effective mass vanishes, the reduced equal-time correlation function is given on
analytical form, C5 < (3/()(coth( —1/(), where ( = 7Tr15. In this extreme case,
the correlation function falls off only as ~ 1/rq,.

Figure 7a shows how the reduced correlation function evolves with temperature
in equilibrium. At high 7" we have u ~ T, so then the correlation length tends
to zero. For temperatures below critical, the field fluctuations are predominantly
associated with the transverse modes, since those have the smallest effective mass,
p1 < py, and the correlation length grows ever larger.

It is convenient to characterize Cio by its full width at half maximum, T'yo,
since this quantity is always possible to extract, even when the mass vanishes.
Figure 7b shows this measure of the correlation length as a function of tempera-
ture, using again the most probable value of ¢y. For temperatures near and below
T =~ 200 MeV the dominant fluctuations are perpendicular to the order parameter
since the corresponding effective mass is relatively small. For higher temperatures
the asymptotic regime is approached where the chiral symmetry is approximately
restored and the fluctuations are similar in all four chiral directions.



DYNAMICS AND OBSERVABLES

The equilibrium properties of the system discussed above provide a useful refer-
ence for understanding the key features of its dynamics, since the system generally
seeks to reestablish equilibrium in response to an external disturbance. The en-
vironment produced in a high-energy collision is characterized by a rapid cooling,
driven primarily by the explosive expansion, and this forces the system away from
equilibrium. The overall evolution is then the combined result of those two opposite
effects. it is then a delicate task to predict the outcome and one must generally
resort to dynamical calculations.

Since the evolving system is in a non-equilibrium state, it is harder to analyze.
Fortunately, it is possible to depict a general field configuration on a equal footing
with the equilibrium configurations by employing a modified phase diagram in
which the degree of agitation is represented by the the average field fluctuation,
A¢ = (6¢pod¢p)'/?, rather than the quasiparticle temperature T (as in Figs. 4a and
5). Since A¢ is meaningful for any individual field configuration, it is thus possible
to project an arbitrary state onto the generalized diagram (which is occasionally
referred to as the “chiral road map”). The standard phase diagram (the curves in
Fig. 4a obtained for m, = 138 MeV) then appears as shown in Fig. 8a below.
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FIGURE 8. Left panel (8a): The equilibrium path on the “chiral road map” in which the field
configuration is projected onto a single point, ¢(r) — (¢o, Ad). The adiabatic path of equilibrium
points (dashed curve), which represents the major “highway”, exhibits a gradual cross over from
the broken phase at low temperature to the nearly restored phase at high temperature. The
shaded area covers the classically forbidden region within which the quasipions are subject to a
supercirtical effective field. Right panel (8b): The dynamical paths of systems that have been
prepared in equilibrium at 7; = 400 MeV and then subjected to a Rayleigh cooling with strengths
D adjusted to emulate scaling expansions (D=1 emulates a longitudinal Bjorken expansion). [9]



Emulation of Scaling Expansions

It is expected that the early parton dynamics causes the chiral field to be in
a state of rapid expansion. The subsequent evolution may then lead to a super-
cooled configuration situated inside the unstable region, thus effectively producing
a “quench”. A number of quenched scenarios have been considered [6,19-21,7,22,23]
but they were imposed by fiat, thereby reducing the predictive power of the dy-
namcial calculations (essentially any degree of magnification can be achieved by
suitable adjustment of the initial conditions). The degree of arbitrariness can be
reduced by elucidating under which conditions a quench-like early scenario may
develop dynamically from plausible initial configurations.

Bjorken-like scaling expansions [24] provide especially simple expansion scenar-
ios. Both purely longitudinal [19,7,22,23,13] and fully isotropic scaling expansions
[20,25] have been treated. In order to achieve a global impression of the influence
of expansion, it suffices to augment the equation of motion (1) by a term emulating
a scaling expansion in D dimensions, —(D/t)0;¢. This term has a form akin to the
Rayleigh dissipation function in classical mechanics and it acts as a time-dependent
damping that reduces the field fluctuations in the course of time. In order to exam-
ine its effect, one may ignore the spatial geometry and consider a macroscopically
uniform configuration within a large box. The discussion is then simplified and
the resulting scenarios can be regarded as idealized representations of chiral matter
subjected to an externally prescribed cooling rate, and so the results will have a
corresponding general applicability.

Figure 8b shows dynamical trajectories obtained in this manner for D =1 — 3.
The effect increases with D, since the dimensionality of the expansion effectively
acts as the strength of the damping term. The isotropic expansion (D=3) leads to
a significant incursion into the unstable region, while the longitudinal expansion
(D=1) keeps the system well within the stable region.

Utilizing Egs. (5-6) it is possible to extract the time dependence of the effective
masses and their evolution will reflect the behavior exhibit by the dynamical paths
depicted in Fig. 8b. In particular, the incursions into the supercritical region leads
to negative values of p? and a corresponding exponential growth of those modes
for which p% + k? < 0. In fact, the most important effects of the dynamics can be
well understood on the basis of the behavior of the quaisparticle mass tensor [9],
as will be illustrated later.

It is instructive to see how the various cooling scenarios affect the pion observ-
ables. For this purpose, a Fourier decomposition of the pion field is useful,

w(r,t) = zk:ﬂ'k(t) etkr (28)

Due to the presence of the cooling term, the amplitudes tend towards zero as
mi(t) ~ t7P/2 at late times. Consequently, the field decouples into free modes and
it is then meaningful to extract the asymptotic values of the observables.



Of particular interest is the spectral distribution of the pions and Fig. 9a shows
their asymptotic power spectrum as a function of their kinetic energy wy — m,,

w T .
Py(Bun) ~ 3wy "/Ek”k + ﬁwkﬁ (Brin + My — wy). (29)
k

It is clear that the incursions into the supercritical region for D = 2,3 lead to
dramatic enhancements of the yield in the lowest energy bin, Ey, < 200 MeV,
whereas there is hardly any visible effect for D = 1.

The dynamically induced enhancement of the soft pion modes is also reflected
in their resulting correlation function C;(r12), as shown in Fig. 9b. While the cor-
relation function approximately retains its initial thermal form for D=1, it widens
steadily for the larger cooling rates, as the increased strength of the softest pion
modes causes it to acquire a pronounced tail.

Such analyses show that the occurrence of instabilities and the associated am-
plification of pionic modes depend sensitively on the cooling rate, which in turn
is intimately related to the character of the expansion. The idealized scenario
for D=3 corresponds closely to the isotropic expansion considered in Refs. [20,25]
and the results corroborate the conclusion in Ref. [20] that such a scenario leads
to amplification. Furthermore, the analysis suggest that a longitudinal expansion
alone is insufficient to cause a quench, if the initial fluctuations are of thermal
magnitude. This is consistent with what was found in Refs. [19,23] for effectively
one-dimensional expansions. This qualitative sensitivity to the collision dynamics
underscores the importance of employing physically reasonable initial conditions
for the dynamical simulations of DCC formation.
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FIGURE 9. Left panel (9a): The power spectrum of the pions emerging asymptotically as
a result of propagating 100 field configurations (sampled from the thermal distribution at
T; = 400 MeV) with the equation of motion (1) augmented with a Rayleigh dissipation term
of strength D = 1,2, 3. Right panel (9b): The corresponding pion correlation function normalized
to Cr =1 at 715 = 0. (These results are from Ref. [26].)



Neutral Pion Fraction

It was noted early on that isospin-directed oscillations of the pion field will result
in an anomalous behavior of the neutral pion fraction f = n,,/n, [27-31]. Indeed,
the distribution would be given by P(f) = 1/(2v/f) in the idealized scenario where
all the pions observed arise from a fully aligned source. In practice, the observed
pions may originate from unrelated regions and the anomaly is then attenuated.
This is illustrated in Fig. 10a which shows the result of combining pions from N
independent sources. A Poisson-like distribution peaked near f = % emerges when
there are many independent sources, or equivalently, when the distance between
emission points is large in comparison with the correlation length.

In order to give a quantitative feeling for what this inherent feature amounts to in
practice, we show in Fig. 10b the distribution P(f) extracted from an ensemble of
100 events that have been cooled with D=2, as explained above. When all the pions
are used for the calculation of f, the resulting distribution looks fairly normal, but
when only pions with a kinetic energy below 200 MeV are considered, then P(f)
broadens significantly and attains an anomalous form. However, its appearance
still differs significantly from the ideal form, which is only reached if all the pions
arise from a single mode, such as the one having £=0.

This important feature can also be brought out by viewing a given source at
different scales, as illustrated in Fig. 11a where the total source is divided into
ever smaller sources, each one leading to a separate value of f. As the source size
shrinks, its pion field is increasingly well aligned and the associated P(f) grows
correspondingly more anomalous. It has therefore been proposed that wavelet-type
analyses may provide a useful tool for the extraction of DCC domain structure from
the experimental data [32-34].
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FIGURE 10. Left panel (10a): The distribution of the neutral pion fraction, P(f), resulting
from combining N similar but independent idealized pion sources with perfect isospin alignments.
Rigt panel (10b): The distribution P(f) obtained when various energy cuts are applied to events
obtained by subjecting field configurations prepared at T; = 400 MeV to a cooling with D=2. [26]
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The key quantity determining the form of the extracted P(f) is the pion cor-
relation length. In the examples above, the growth of the correlation length was
caused by the non-equilibrium evolution following a quench. However, a large cor-
relation length can also exist in thermal equilibrium, since it grows steadily as T'
is reduced, and thus similar results can be produced by a thermal source, as is
illustrated in Fig. 11b. Therefore, the appearance of an anomalous neutral pion
fraction distribution is not a unique signal of the DCC phenomenon.

Dilepton Production

Electromagnetic observables, namely dileptons [35,36] and photons [37], may
provide additional information on the chiral dynamics. It is possible to extend the
semi-classical treatment of the linear ¢ model to the calculation of electromagnetic
production processes as well, as illustrated below for the production of dileptons.

The numerical solution of the equations of motion of the chiral fields yields the
evolution of the Cartesian components of the pion field, 7w (7, t), in addition to the
sigma field o(r,t). The electromagnetic current density coincides with the third
component of the isovector current density, J,(x) = m(2)0,m2(z) — mo(z)0,m1 (),
where the complex fields representing the charged pions are related to the Cartesian
components by 7. (z) = [m(x) £ im(2)]/V2.

The invariant differential dilepton yield may be calculated (to leading order in
the fine structure constant o = €?/4r), by use of the following expression [36],

AN _ 2 (W‘ﬂ) [t [dty Ju@) 1= a0) G0)
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This expression ignores the final-state Bose enhancement factors 14+ny which is
justified when the occupation number ny is small, as is typically the case in equi-
librium. It may be noted that if the calculated pion field w(7,t) is assumed to
represent a standard coherent state, then the quantal evaluation of the dilepton
radiation rate would lead to the above expression (30) when the commutator terms
are ignored; if those commutator terms were retained, then the final-state Bose
enhancement factors would be recovered.

In general, we consider an entire sample of N individual evolutions, {qﬁ(") (r,t)},
where the label n enumerates the individual “events” in the sample. The resulting
ensemble-average dilepton yield is then

d*N 1 M diNm
) — 2
diq ” ./\/'nz::1 diq (32)

where d*N™ /d*q is the contribution from the particular event n, obtained as de-
scribed above. Since we consider ensembles that have translational symmetry, the
current-current correlation function, < J,(x)J, (y) >, will depend only on the spatial
separation. Moreover, in the special case of an equilibrium ensemble, its temporal
dependence in equilibrium is only via the time difference.

In order to verify that the adopted method indeed leads to physically reasonable
results, consider the production of back-to-back dileptons from a thermal gas of
free pions. In that special case the four-momentum of the dilepton is of the form
g = (M,0) and we are interested in masses M above 2m;. The current-current
contraction in (30) is then especially simple and its ensemble average is given by

< Ju(a) (ngu _ g“”) J(y) = = < J(z) - J(y) = = 2VC]—2CAC,  (33)

where we have employed the thermal correlation function of the charged pion fields,

< m(z)m(y) = = < m(z)m(y) = = C(r,t) = _Zw_k cos(k -r — wit) , (34)

with 7y being the thermal occupancy, 1y = 1/(exp(wy/T) — 1), and (r,t) denoting
the difference z-y. [The adopted sampling procedure ensures that the numerically
extracted correlation function indeed yields this expression [15].] Since the back-
to-back dileptons have vanishing momentum, q = 0, the Fourier transform over
the separation r reduces to a spatial average and we readily find

. _ 2 _ 2T
/er < J(@) - J(y) - = 4/er VO(r, )2 = Q;(dzk [+ cos 2wit] . (35)



The remaining Fourier transformation over the temporal difference then restricts
the contributions in the sum to those modes that have frequencies wy near half the
dilepton mass, M/2. Thus, in the continuum limit, when both the box and the
time interval are large, we recover exactly the usual expression for production of
dileptons by pion annihilation,

3
d*Nh 4 o, [ dk ng k? : o® nl 4m2 >
= (= dt %11 Qwgt] €Mt = — 01— T

d*qd*z 37T(27r) /(27r)3/ w2 M? [+ cos Zuxf] e 3 (2m)* M2 )7

where ny denotes the occupancy of pion states having the matching frequency
wp = M /2. Thus, at the formal level, the semi-classical method is indeed physically
reasonable.

Figure 12a shows the dilepton production rate in a source in thermal equilibrium
at T=140 MeV, together with the corresponding result obtained when the system
is prepared in a quenched configuration where nearly all the thermal energy (about
40 MeV /fm®) has been converted into potential energy of the displaced order pa-
rameter [36]. As is shown in Fig. 12b, the release of the system causes the order
parameter to execute large oscillations around its equilibrium value leading to a
significant enhancement of the dileptons. In addition to the amplification that oc-
curs whenever the system is inside the unstable region, as discussed above, there is
an additional enhancement resulting from the parametric amplification caused by
the approximately regular oscillation of the order parameter with a frequency near
the o mass [36,37].
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FIGURE 12. Left (12a): The dilepton production rate d*N/(d*qV At) as a function of the
magnitude of the dilepton momentum, for dilepton masses near M =300 MeV from either a
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panel [36]. Right (12b): The dynamical path after the same system has been quenched: (the field
fluctuations have been nearly eliminated and the order parameter has been placed the supercirtical
region with a value that ensures that the energy is the same as in the thermal source [38].



Bjorken Rods

We now turn to the study of a more refined scenario that exhibits some of the
most important features expected in real collision events, namely rapid longitudi-
nal expansion and finite transverse extension [13]. Specifically, we shall explore
a socalled Bjorken rod: a rod-like geometry endowed with a longitudinal scaling
expansion (not merely experiencing a Rayleigh cooling). Such systems have a fi-
nite (circular) extension in the transverse plane, and the local environment changes
smoothly from hot longitudinally expanding matter in the bulk to vacuum outside.

Generally, the numerical propagation of fields exhibiting significant flow patterns,
such as rapid expansion, is practically difficult due to the phase oscillations caused
by the local boost. However, for idealized scaling expansions this complication can
be eliminated by suitable variable transformations. For the longitudinal scaling
expansion considered here, it is convenient to replace the usual fixed-frame space-
time variables (z,y, z,t) with the comoving variables (z,y,n, 7) [24],

t=7coshn, z=7sinhn. (36)

Thus, 7 = (t*—22 )1/ 2 is the proper time experienced in a system boosted along the z
axis with the local rapidity y equal to the value of n = 1 ln(t“) The corresponding
form of the field equation of motion is then obtalned from the transformation of
the d’Alembert operator,
1
mzaf—ai—aj—agz;aTraT—ag—aj—ﬁag. (37)
The equation of motion can be readily solved numerically by application of the
leapfrog method, once the initial field ¢p(7) and its time derivative (r) are specified
(see next page).
When analyzing the asymptotic field for the Bjorken rod, it is natural to perform
a Fourier transformation in the transverse plane,
d*p ik d*p ik
¢k(77) = Q—J_ (pa T’) € tep 3 '(»bk(n) = Q (pa 77) Hep ) (38)

where 2, = L,L, denotes the transverse area of the spatial lattice. Furthermore,
the position in the transverse plane is denoted by p = (z, y) and the transverse wave
number is k = (kg, k). For large times the longitudinal velocity of a given part of
the system is given by v, — z/t = tanh(n). Thus, in that limit, the coordinate 7
equals the rapidity, n — y = tanh™*(v,).

At present, we are only interested in observables based on the pion component
of the chiral field, which are expressed in terms of the spherical components, 7w =
(m_,mo,my). The mean number of pions (a given charge state j) emerging with
transverse wave vector k and a rapidity y in the interval (yi,ys) is then given by

i) = @ [ dn |/ b+ i) (39)



Preparation of the Rod

In order to prepare the initial field configuration for the rod, we proceed at first
in the same manner as for the preparation of the matter scenario addressed above
and sample the field configuration (¢, ¥po) from a thermal ensemble describing
macroscopically uniform matter within the overall box containing the calculational
lattice. This field configuration can be uniquely decomposed into its spatial average,
the order parameter, and the remainder, the fluctuating part of the field,

Do () = @ + dD(p,1) , Yoox(pn) = Y + 6% (p,7) - (40)

In order to obtain the field configuration describing the initial state of the rod,
(r0q> Yroq), We rescale the two parts based on a specified local temperature T'(p)
and then recombine them into the desired initial conditions,

Groa(P:1,70) = 9(p)[@ — @] + by + h(p)o[dd(p,n) — }] + ¢
Yr0a(P,1,70) = ()Y — Yyl + g + h(p)o[d%(p,n) — Y]+, (42)

where ¢, = (fr,0) and 9, = (0, 0) are the vacuum values. The scaling coefficients
for the order parameter and the fluctuations, g(p) and h(p), are obtained by using
the corresponding equilibrium values for the specified local temperature 7'(p),

o) = DL ) = (fai)  help) = (;Tﬂ) R

By proceeding in this manner we ensure that the local environment, as charac-
terized by the order parameter and the field fluctuations, reflects approximately
thermal equilibrium in matter held at the local temperature 7T, which decreases
from its bulk value Ty to zero according to the prescribed radial profile T'(p).

The initial system is illustrated in Fig. 13 for T, = 240 MeV. Since the local
temperature drops steadily as a function of the transverse distance p, moving out
along the abscissa corresponds to reducing the temperature (though not at a steady
rate). As one moves out through the surface, the order parameter increases steadily
from its reduced value (= 27 MeV) in the hot bulk region towards its vacuum value
fx (=92 MeV), and the local thermal fluctuations drop correspondingly towards
zero. (Since generally p, > p,, the fluctuations along a pion direction exceed those
in the o direction.) The resulting profiles of the effective masses also reflect their
temperature dependencies: Starting from nearly degenerate values (=~ 300 MeV)
in the hot interior, where chiral symmetry is approximately restored, u, and pu,
diverge steadily towards their free values of 138 MeV and 600 MeV, respectively.
For higher values of the central temperature 7}, the central value of the order
parameter is smaller and the effective masses are larger (and even closer in value)
and p, will in fact exhibit a dip in the surface region as the local temperature
passes through the critical region.



Initial transverse profile of Bjorken rod
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FIGURE 13. Initial transverse profiles of key quantities for a Bjorken rod prepared with a
radius of Ry = 6 fm and a central temperature of Ty = 240 MeV: the specified local temperature
T(p), the order parameter ¢g(p), the mean fluctuation of the field in a given O(4) direction, do(p)
and d7(p), and the corresponding effective quasiparticle masses, u,(p) and u,(p) (from Ref [13]).



Rod Dynamics

After preparing the field configuration of the rod, the dynamical propagation
is readily obtained by solving the field equation (1) in the usual manner. Since
the system is no longer macroscopically uniform, it is more complicated to dis-
cuss. but it is especially instructive to see how the bulk region develops. For this
purpose, we compare with uniform matter prepared at the bulk temperature T
and endowed with a corresponding longitudinal expansion. Such a system may be
denoted Bjorken matter and represents the environment that would be obtained in
interior of a rod with a very large radius, Ry — oo.

The resulting evolution of the order parameter and the field fluctuations is illus-
trated in Fig. 14 for a rod with 75 = 240 MeV and Ry = 6 fm. The corresponding
quantities for Bjorken matter prepared with the same value of T are also shown.
It is seen that the environment in the interior of the rod evolves in a manner quan-
titatively very similar to that of the corresponding matter scenario throughout the
first complete oscillation of the the order parameter, which takes about 4 fm/c. At
around that point in time, the decompression wave has arrived from the rod sur-
face and the self-generated transverse expansion now extends over the entire cross
section of the rod. As a consequence, the relaxation progresses faster than it would
in matter where this effect is absent.
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FIGURE 14. Left (14a): The time dependence of ¢g, the magnitude of the order parameter
(increasing curves), and d¢, the associated dispersion of the field fluctuations (decreasing curves),
in both Bjorken matter prepared with Ty = 240 MeV (solid curves) and the corresponding Bjorken
rod with Ry = 6 fm (dashed curves). The information for the rod has been obtained by averaging
over a hollow cylindrical volume, 1 < p(fm) < 3. Right (14b): The corresponding phase evolution
of the interior of the Bjorken rod (dashed path, filled diamonds), and the associated Bjorken
matter (solid path, open circles). The equilibrium path is shown by the short-dashed curve while
the dotted curve delineates the region of instability within which the field is supercritical. The
symbols give the path locations at successive proper times 7(fm/c) = 1,2, 3,4, 5,10, 20, 30. [13]
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Right panel (15b): The ratio between the final transverse pion spectrum, d®*N/d?*p , dy, and the
associated equilibrium spectrum obtained by fitting the dynamical result with a Bose-Einstein
form within the energy interval 200-1000 MeV, for the longitudinally expanding rod having an
initial radius of Rg = 6 fm and with an initial bulk temperature of Ty = 240 MeV (dashed curve),
as well as the corresponding result for Bjorken matter. (These illustrations are from [13].)

The quicker relaxation of the field for the rod is also reflected in the behavior of
the effective pion mass, as illustrated in Fig. 15a for the same case. Again we see
that through the first several time units the effective mass in the interior of the rod
follows closely the evolution of the effective mass extracted for the corresponding
matter scenario, but it then drops much faster towards the free value. Furthermore,
the oscillations in the effective mass persist for quite a long time, thus making it
possible to achieve a significant degree of parametric amplification.

Observables

We now consider a few specific observables that are practically accessible in the
analysis of actual experimental data. First we consider the transverse spectra of
the emerging pions, Ed*N/d*p = d*N/d*kdy. As it turns out, the transverse spec-
tral shape is well approximated by an equilibrium form above kinetic energies of
200 MeV or so and one may thus extract an spectral effective temperature. More-
over, it is instructive to divide by that overall shape. The resulting ratio between
the dynamical spectrum and the corresponding Bose-Einstein form is displayed in
Fig. 15b together with the corresponding matter result. Clearly, there is a signifi-
cant enhancement of soft pions, although the effect is considerably smaller in the
rod due to the presence of the surface.
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By invoking the relation (39), it is straightforward to calculate the expected
number of pions in a given rapidity interval and within a specified transverse energy
bin. This result varies from event to event, since the field configurations vary at
the microscopic level as a result of the fluctuations in the ensemble of initial states.
Moreover, for a given value of the expected number n, the actual number of particles
emerging is a stochastic variable n, since the state described by a given field has
no well-defined particle number. For an exploratory study it may suffice to employ
a Poisson form, P;(n) = n" exp(—n)/n!. Figure 16a shows both the expected and
the actual multiplicity (7 and n, respectively), as obtained for a single event.

In order to investigate whether the resulting multiplicity distributions contain
deviations from Poisson statistics, it is useful to extract the factorial moments.

My =<NN-1)---(N-=m+1) >, (44)

where N is the number of pions emitted in a given rapidity interval and the average
is over all such intervals and events. They are shown in Fig. 16b. While the hard
pions appear to be perfectly consistent with pure Poisson statistics, the soft pions
exhibit a significant non-poissonian behavior. The character of the deviation of
the soft factorial moments suggests that the source occasionally emits anomalously
many pions, as one would expect if some modes are especially amplified. This
feature is consistent with the enhancement of the soft spectrum and it can also be
explored by other means of analyzing the data for anomalous fluctuations. Fur-
thermore, standard event generators (UrQMD and HIJING) do not produce any
such difference between soft and hard multiplicity fluctuations [39].



CONCLUDING REMARKS

In this brief lecture series, we have tried to give an impression of current efforts
towards exploiting high-energy nuclear collisions to elucidate our understanding
of chiral symmetry in strongly interacting systems. We have especially discussed
certain key aspects of the treatment (while others had to be left out), hoping
thereby to make the rapidly growing literature on the subject more accessible. We
have also made contact with experiment by illustrating how certain observables
may carry signals of the expected non-equilibrium DCC dynamics.

Our discussion has been carried out within the framework of the linear o model
which was treated in a semi-classical manner. Comparisons with more sophisticated
approaches (such as that of Ref. [41]) as well as dynamical self-consistency tests [15]
have suggested that this simple treatment is in fact semi-quantitatively reasonable.
Nevertheless, refinements would be desirable in a number of respects.

One obvious challenge is to go beyond the semi-classical level and invoke actual
quantum field theory. The practical treatment of real-time quantum field theory
in an environment that is neither uniform nor thermal presents an interesting but
formidable challenge. Fortunately, it appears possible to incorporate the quanti-
tatively most important effects into the numerical DCC simulations, as is briefly
illustrated in Appendix A. The principal lesson is that the ever present vacuum
fluctuations act on an equal footing with the statistical fluctuations as seeds for
dynamical amplification and, in this regard, they appear to be at least as important.

Another direction of desirable improvement concerns the incorporation af ad-
ditional degrees of freedom, since the limitation to the (o, ) space is a drastic
simplification, especially at the high energy densities occuring at the early stage.
Particularly important is the inclusion of strangeness, as is briefly illustrated in
Appendix B. This extension leads to significant modifications of the results but it
also enriches the dynamics and offers additional possible signals.

Thus, many theoretical challenges remain, with regard to both the formal refine-
ment of the treatment and the implementation of the theory into a practical tool
that can provide specific guidance for the design and analysis of the experiments.
With the recently completed RHIC facility now beginning to yield data, the need
for further advances has intensified.

This work was supported by the Director, Office of Energy Research, Office of High
Energy and Nuclear Physics, Nuclear Physics Division of the U.S. Department of
Energy under Contract No. DE-AC03-76SF00098.



A: QUANTUM FIELD EFFECTS

A full quantum-field treatment of the chiral dynamics is beyond current reach and
the dynamical simulation studies have therefore employed classical fields. Although
much valuable insight can been gained in this manner, it is important to recognize
that such treatments are not always quantitatively accurate. This is perhaps best
illustrated by considering a free pionic mode k with a time-dependent frequency,
wi(t) = k? + p?(t), where p?(t) has a given form. The equation of motion for
the corresponding field operator is [0 + w2(t)]¢y (t) = 0, and the associated time-
evolution operator can be determined (see Ref. [40]).

If the initial occupancy of the mode is ni™, then the final occupancy becomes

pinal — X, [ni?it + %] — 1> X, (45)
after averaging over the initial state phase. This exceeds the classical result X;nit,
since the amplification coefficient is generally larger than unity, X > 1. The above
expression brings out the fact that the quantum fluctuations and the statistical
fluctuations combine in a democratic fashion as seeds for the parametric amplifi-
cation. A quantitative impression of their relative importance can be gained from
Fig. 17a. It is evident that the thermal occupancies are never large compared to
one half. Consequently, the vacuum fluctuations are never negligible.

Efforts to develop a suitable quantum-field treatment are underway [42] and
an illustration is given in Fig. 17b. It is seen that pions with momenta around
200 MeV/c are produced, even if the initial state contained no quasiparticles at
all (the initial presence of thermal excitations will then increase the yield further).
This spectral shape reflects the regular temporal modulation of the pion mass.
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FIGURE 17. Left panel (17a): The temperature dependence of the thermal occupanices of the
quasipions as obtained with either a semi-classicial treatment [15] or an optimized perturbation
method [41]. Right panel (17b): The final pion spectrum arising solely from amplification of the
vacuum fluctuations in one-dimensional systems with given effective mass functions u2(z,t) of
forms similar to those obtained for Bjorken rods (see fig. 15a) [42].



B: INCLUSION OF STRANGENESS

Since the temperatures of interest easily exceed the mass of the s quark, it is ex-
pected that the strange degrees of freedom are agitated as well and thus strangeness
should be incorporated into the description. The extension from ud to uds enlarges
the meson group from SU(2) to SU(3), which contains a total of 18 fields,

0 . — + K*. K*t K*O R’*O.
svelad {5 b 0 KR e ke o
In equilibrium, both the ¢ and the ( fields have finite values, and so the order
parameter acquires a strange component, ¢ — (o, (), where ( = (3s). It is possible
to apply the semi-classical treatment to this more complicated case as well [43].

As is evident from Fig. 18 (left), the inclusion of strangeness severely impedes the
restoration of chiral symmetry as the temperature is raised, thus casting doubt on
the standard scenario in which approximate restoration is assumed to occur once
T exceeds a few hundred MeV.

On the other hand, as illustrated in Fig. 18 (right), the dynamics of the or-
der parameter becomes more intricate. As a result, the kaon modes may ex-
perience parametric amplification in analogy to what happens for the pions.
For an idealized source, the neutral pion fraction f, = 7°/(7" + 7~ + 7%) re-
tains its SU(2) distribution, Pr(fr) = 1/2v/fx, and the neutral kaon fraction
fx=(K°+ K%/(K* + K~ + K° + K°) has a uniform distribution, Px(fx) = 1.
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FIGURE 18. Left panel (18a): The thermal path of the two order parameter (o, () for various
cases of interest, as indicated. The solid dots are plotted in temperature steps of 100 MeV. All
paths start from the vacuum point at the upper-right corner and the points for 7=100 MeV are
still very close to the vacuum point. Right panel (18b): The dynamical path of the order parameter
(0,¢) as a result of a pseudoexpansion in one and three dimensions, starting from equilibrium
at T=400 MeV. Equidistant time steps with A7=0.2 fm/c are indicated. The thermal path is
shown by the long-dashed curve, while the cross indicates the vacuum point, towards which all
trajectories converge in time. (These illustrations are from Ref. [43].)
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