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Abstract: The high clinical mortality and economic burden posed by invasive fungal infections
(IFIs), along with significant agricultural crop loss caused by various fungal species, has resulted in
the widespread use of antifungal agents. Selective drug pressure, fungal attributes, and host- and
drug-related factors have counteracted the efficacy of the limited systemic antifungal drugs and
changed the epidemiological landscape of IFIs. Species belonging to Candida, Aspergillus, Cryptococcus,
and Pneumocystis are among the fungal pathogens showing notable rates of antifungal resistance.
Drug-resistant fungi from the environment are increasingly identified in clinical settings. Furthermore,
we have a limited understanding of drug class-specific resistance mechanisms in emerging Candida
species. The establishment of antifungal stewardship programs in both clinical and agricultural fields
and the inclusion of species identification, antifungal susceptibility testing, and therapeutic drug
monitoring practices in the clinic can minimize the emergence of drug-resistant fungi. New antifungal
drugs featuring promising therapeutic profiles have great promise to treat drug-resistant fungi
in the clinical setting. Mitigating antifungal tolerance, a prelude to the emergence of resistance,
also requires the development of effective and fungal-specific adjuvants to be used in combination
with systemic antifungals.

Keywords: antifungal resistance; azole; echinocandin; antifungal susceptibility testing; whole-genome
sequencing; therapeutic drug monitoring; identification
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1. Introduction

Fungi are among the most impactful eukaryotic microorganisms living on earth and are associated
with enormous crop loss and also to the extinction of various life forms [1]. Apart from being ubiquitously
found in the environment, numerous fungal species are considered as part of the normal flora found in
different anatomical sites including skin, lung, genitourinary, oral and gastrointestinal tract, where they
play an important role in human health [2]. When the immune system is impaired, commensal fungal
species can turn into invasive pathogens, translocating systematically to develop invasive fungal
infections (IFIs), which affect multiple organs and organ systems [3]. Although underestimated as a
cause of infection in humans, fungi are associated with approximately 1.5 million deaths and 1.7 billion
superficial infections yearly, resulting in an enormous economic burden [4]. The impacts of fungi
on human health go beyond acute and chronic infections, and new lines of study have linked some
fungal species colonization to pancreatic cancer progression [5] and alcoholic cirrhosis [6], and we
anticipate that future studies using new technologies will unravel unimaginable involvement of fungi
in human health.

Fungal species belonging to Candida, Aspergillus, Cryptococcus, and Pneumocystis genera are the most
clinically relevant pathogens causing IFIs [4]. Unlike the numerous classes of antibiotics used to treat
bacterial infections, antifungals are limited in number and belong to three main classes, including azoles
(fluconazole, itraconazole, voriconazole, posaconazole, etc.), echinocandins (caspofungin, micafungin,
and anidulafungin), and polyenes, such as amphotericin B (AMB) [7]. Azoles bind to Erg11 in Candida
and Cyp51A in Aspergillus species and interrupt the production of ergosterol, a critical sterol component
of the fungal cell membrane, while echinocandins target the catalytic subunit ofβ-1,3-D-glucan synthase,
encoded by FKS genes and interfere with β-1,3-D-glucan production, a major cell wall structural
component [7]. Lastly, polyenes bind to ergosterol in the cell membrane and cause cell death through
the formation of large pores on the cell membrane, which leads to interruption of osmotic pressure [7].
Antifungals can be either fungicidal, where the antifungal agent causes fungal cell death, or fungistatic,
where the antifungal drug arrests cell proliferation but does not kill the fungal cell, such as fluconazole
against Candida and echinocandins against Aspergillus species. Currently, mold-active triazoles,
including voriconazole, posaconazole, and isavuconazole, and echinocandins, especially micafungin
and caspofungin, are recommended first-line antifungals used to treat invasive Aspergillus and Candida
infections, respectively [8,9]. Polyenes are used with caution due to the potential for nephrotoxicity
and hepatotoxicity and are used more commonly to treat refractory Candida and Aspergillus infections.
Echinocandins are insensitive against Cryptococcus neoformans [10]. Therefore cryptococcal infection
treatment often involves amphotericin B, 5-fluorocytosine, and fluconazole [11]. Azoles are not the drug
of choice for the treatment of Pneumocystis pneumonia (PCP), and alternative treatments include dapsone
plus trimethoprim, clindamycin plus primaquine, atovaquone, pentamidine, or caspofungin [12].
Moreover, chemoprophylaxis and treatment with trimethoprim–sulfamethoxazole (TMP–SMX) have
been associated with a significant reduction of mortality rate among HIV-infected and non-HIV-infected
immunocompromised host suffering from PCP [12,13]. Considering the involvement of host- and
drug-related factors affecting the antifungal therapeutic failure [14], the emergence of resistance to one
antifungal agent can be devastating and severely limit the number of antifungals available to treat
IFIs [15].

Prior to the extensive use of antifungals in the clinic (and fungicidal azoles in the environment),
epidemiological studies showed the predominance of fungal species almost entirely susceptible to
all classes of antifungals. Widespread use of antifungals has altered the epidemiological landscape
of IFIs, where fungal species showing resistance to one and/or multiple classes of antifungals are
increasingly identified in clinical settings and associated with therapeutic failure [16–19]. The most
notable examples are the worldwide emergence of triazole-resistant Aspergillus fumigatus [16,19,20],
Candida tropicalis, Candida parapsilosis [18], and multidrug-resistant (MDR) Candida auris [21] and
the increasing prevalence of MDR Candida glabrata, especially in the U.S. [22]. Beyond Candida and
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Aspergillus, a growing body of evidence for Pneumocystis indicates that resistance develops in patients
receiving sulfa prophylaxis and trimethoprim–sulfamethoxazole [23].

Finally, azole therapeutic failure has been recorded among patients with cryptococcal meningitis
during the course of azole therapy [24,25]. Antifungal therapeutic failure can be due to host-, drug-,
and fungal-related attributes [26]. For instance, various host underlying conditions, such as abdominal
and liver abscesses, prevent the favorable penetration and distribution of antifungal drugs to the
site of infection and the resultant suboptimal exposure to antifungal agents promotes survival and
emergence of antifungal-resistant fungi [27,28]. Similarly, fungistatic drugs allow fungi to survive
in the presence of an antifungal agent, which provides a window for fungi to acquire resistance [7].
Lastly, fungal attributes, such as, but not limited to, acquisition of resistance mutations in the drug
target and biofilm formation, allow the fungi to thrive regardless of being exposed to antifungal
drugs [7,15]. Of note, resistance to antifungals can be either acquired, where the fungi become resistant
during antifungal therapy, or intrinsic, such as Candida krusei, which is intrinsically resistant to azoles
like fluconazole.

In this review, we summarize the burden of antifungal resistance in the major fungal species
associated with IFIs, define the cellular mechanisms underlying antifungal resistance, discuss the
phenotypic methods used to distinguish susceptible and resistant fungal isolates, and explore how the
application of new technologies, such as whole-genome sequencing, can impact the current paradigms
of clinical practice and further of our understanding of antifungal resistance mechanisms. Finally, we
address the clinical importance of therapeutic drug monitoring and new antifungal agents in late-stage
clinical development and their role to potentially overcome clinical drug resistance. Of note, biofilms,
which play an important role in drug resistance, have been extensively reviewed [29–33] and will not
be discussed here.

2. Epidemiology and Burden of Antifungal Resistance in Clinically Important Fungi

The epidemiology of candidemia and invasive candidiasis, as well as aspergillosis, has been
the subject of numerous studies over the years looking to define the scope of fungal burden and
antifungal resistance on a global scale. In this context, different studies have investigated the
epidemiological trends in Candida species infections in which only five species account for 92% of
cases of candidemia–Candida albicans, C. glabrata, C. tropicalis, C. parapsilosis, and C. krusei. However,
their distribution varies in population-based studies performed depending on the geographical areas
(Table 1 and Figure 1) [34]. In a recent work, more than 15,000 invasive Candida isolates collected from
39 different countries throughout 20 years were included in a prospective antifungal susceptibility
study to analyze the rate of echinocandin and azole resistance. As in the majority of the studies,
C. glabrata was the most commonly detected non-C. albicans (NAC) species, except in Latin American
and some Asian countries, where the NAC predominant species are C. parapsilosis and C. tropicalis [18].
The most recent ARTEMIS study revealed an increasing trend with respect to the prevalence of
C. glabrata and C. parapsilosis. The third and fourth species more commonly isolated, C. tropicalis and
C. krusei, maintained more steady numbers during the time period studied. Finally, the frequency of
other Candida species showed an increase of almost 6% [18]. Interestingly, despite being identified
as a new agent of candidiasis within the decade, MDR C. auris has become increasingly identified
as a cause of candidiasis in numerous countries. Shockingly, countries [35] such as India [36] and
South Africa [37] have shown a dramatic increase in the prevalence of candidemia due to this MDR
Candida species. Of particular concern is the tendency of this species to cause clonal outbreaks in
clinical settings [38–41], which likely reflects its resilience on the skin and hospital surfaces, possibly
due to biofilm production [42]. These findings support the results obtained in other reports in terms of
species prevalence and antifungal resistance [43–46]. High rates of fluconazole-resistant C. glabrata
(2.8–6.8%) have been reported, together with an increase in C. parapsilosis (0.6–4.6%), and C. tropicalis
(1.1–9.2%) fluconazole-resistant isolates, apart from the intrinsically fluconazole-resistant species, such
as C. krusei and C. auris [18]. It is noteworthy that although the worldwide azole resistance rate
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seems low, such data are extremely worrisome at the institutional level, and not all countries are
represented in the ARTEMIS study. Examples are the high level of fluconazole-resistant C. parapsilosis
isolates in Turkey [47] and South Africa [48], C. tropicalis in Taiwan [49], C. auris in South Africa [37],
and A. fumigatus in the Netherlands [50].

Figure 1. Worldwide prevalence of non-albicans Candida species causing candidemia.

The in vitro susceptibility of Cryptococcus can vary according to serotype, geographical origin
and population being studied. Increasingly there are reports of Cryptococcus isolates with high
azole MIC values, although the correlation of high MICs on clinical outcome is uncertain [51,52].
Clinical breakpoints have not been established for Cryptococcus species, although epidemiological
cut-off (ECOFF) values have been proposed for some antifungal drugs to differentiate wild-type (WT)
from non-wild-type (non-WT) isolates [51], which may result in clinical failure [53].

A systematic review of fluconazole resistance, including a total of 4995 Cryptococcus isolates from
3210 patients, showed a mean fluconazole resistance of 10.6% (95% CI: 5.5–15.6) [54]. Relapse isolates
showed higher rates of resistance by up to 24%. The vast majority of studies included in the systematic
review (28 of 29 studies) defined an ECOFF value of at least ≥16 µg/mL as fluconazole-resistant.
MICs above the ECOFF value were reported in 936 of 4995 (18.7%) isolates. Rates of resistance to
5-fluorocytosine among clinical isolates are lower compared to fluconazole [55,56].

Since P. jirovecii does not grow in vitro, studies investigating the prevalence of resistance from
respiratory samples in HIV-infected and non-HIV-infected immunocompromised patients have mostly
employed sequencing and mutation screening in genes involved in drug resistance, including MT85,
SOD, DHFR and DHPS [57]. The most frequent ones are DHFR312, DHPS165 and DHPS171, but the
prevalence of DHPS and DHFR mutations varies significantly, ranging from 0% up to 50% depending
on HIV-status and geographical region [58,59]. Most sequence data are coming from single-centers with
a limited number of P. jirovecii samples. However, the vast majority of data indicate a low prevalence
of DHPS and DHFR mutations between 0% and 6% [60,61].
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Table 1. The epidemiology of candidemia and invasive aspergillosis and antifungal resistance rates
determined for selected Candida species and Aspergillus fumigatus.

Species Prevalence
(%)

Azole Resistance
Rate (%)

Echinocandin
Resistance Rate (%) References

C. albicans >20.9–70 0–7.8 0–7 [43,44,46,48,62–87]

C. glabrata <15 0–21 0–23.1 [48,62,67,69,70,74–76,78,84]

15–38 0–76 0–100 [43,44,46,63,66,68,71,73,77,79–83,85–87]

C. tropicalis <10 0.6–31.5 0–8 [62–67,69–71,82,83]

10–49 0–66.6 0–10 [43,44,46,48,68,72–81,84–87]

C. parapsilosis <15 0–8.3 0–10.8 [46,62,63,77–82,85]

15–37 0–53 0–1.6 [43,44,48,65,71,73–76,83,84,86,87]

C. auris 0–14 >90–100 0–40 [38,62,88–91]

A. fumigatus 33.2–92 <2–30 0 [92–102]

Acquired echinocandin resistance was found to have increased as well [34,103,104]. In the most
updated report, the overall resistance rate to one or more echinocandins was lower for most of the
Candida species, except for C. glabrata and C. tropicalis [18]. In contrast to the increasing resistance
trend for azoles and echinocandins, several reports showed a broad activity for amphotericin B and no
indication of acquired resistance in the species aforementioned [46,105].

Regarding antifungal resistance in Aspergillus species, the global emergence of triazole resistance
among both clinical and environmental isolates has been increasingly encountered worldwide in the
past two decades. In this context, A. fumigatus is the main etiologic agent of aspergillosis [100,101,106].
The resistance rate for azole-resistant A. fumigatus varies dramatically by both geographic region
and patient cohort and is more prevalent among certain high-risk patient populations [93,107,108],
ranging from less than 2% in most of the cases to 30% in some studies which just include hematology
and ICU patients [92–95]. Finally, other human pathogens species of the Aspergillus section Fumigati also
show azole resistance, such as A. lentulus, A. viridinutans, A. fumigatiaffinis and Neosartorya pseudofischeri,
but due to its prevalence, they do not represent as a notorious global threat as A. fumigatus
infections [103,109]. Therefore, the epidemiological changes and the increased incidence of fungal
species exhibiting intrinsic and acquired resistance emphasize the importance of continued surveillance;
thus, the proper management of these infections will ultimately lead to improving patient quality of
life and survival [18,46].

3. Mechanisms of Antifungal Resistance

3.1. Antifungal Tolerance

Before discussing the mechanisms employed by fungi to counteract the inhibitory functions of
antifungal agents, it is important to distinguish the concepts of antifungal tolerance and resistance.

Antifungal resistance refers to stable genetic changes of a fungal pathogen for a specific class
of antifungal drug that results in an increased probability for therapeutic failure. Standardized
in vitro antifungal susceptibility testing (AFST) provides a surrogate measure for this potential with
drug and organism-specific resistance breakpoints, which take into account mechanism of action,
pharmacodynamic responses in animal model systems and clinical response [7]. Antifungal tolerance
typically refers to non-heritable cellular adaptations that enable a subpopulation of cells exposed
to drugs to persist. Tolerance involves a complex circuitry of signal transduction pathways leading
to a rapid and coordinated response to an exogenic agent threatening the cellular integrity and
refers to fungal growth higher than susceptible minimum inhibitory concentration (MIC) range in
standardized testing. Unlike antifungal resistance, tolerance is a reversible phenomenon meaning that
antifungal tolerant cells return to the susceptible MIC range when re-cultured [7]. Pathways involved
in tolerance vary depending on the antifungal agents used. For instance, high osmolarity glycerol
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(HOG), protein kinase C (PKC), and calcineurin are involved in tolerance against echinocandins,
which is referred to as cell wall integrity pathway, while PKC and calcineurin are involved in
tolerance against azoles, which is defined as membrane integrity pathway [7]. Of particular importance
in antifungal tolerance is the heat-shock protein 90 (HSP90), which plays an important role by
stabilizing key components of the tolerance, i.e., PKC and calcineurin [110,111]. Therefore, utilization of
fungal-specific HSP90 inhibitors in combination with antifungal drugs may have a role as an alternative
strategy to effectively combat against the drug-resistant isolates in both molds and Candida [110–112].
Similarly, combination calmodulin inhibition (fluphenazine) and caspofungin against C. glabrata strains
carrying F659del in hotspot1 of Fks2p decreased caspofungin MICs, thermotolerance, and the biofilm
formation of the strains tested [113]. Similarly, a recent study identified a new protein kinase inhibitor,
2,3-aruyl-pyroazolopyridine, which can abrogate echinocandin resistance of C. albicans strains when
used in combination with caspofungin [114]. The combination of an echinocandin with an inhibitor of
the main components of stress regulatory points to an important route to help overcome and prevent
emergence. Although once regarded as an azole AFST artifact, “trailing edges” provide insights into
drug tolerance. Newer studies have highlighted the importance of antifungal tolerance and have
linked tolerance to both antifungal therapeutic failure and mortality [115,116]. It is now considered a
window to drug resistance emergence [117].

When the fungus is exposed to antifungals, tolerance pathways allow cells to persist. The cell’s
DNA repair system leads to the occurrence of genetic mutations throughout the genome, especially the
drug-target, which is under high selection pressure permits the establishment of stable drug-resistant
fungal isolates [22]. Recently, it was observed that almost 35% of C. tropicalis blood isolates showed
a high-level of fluconazole tolerance (≥ 50% of drug-free control), among which almost one-third
of infected patients showed therapeutic failure when treated with fluconazole [118]. Moreover,
significant variation in tolerance observed among clinical isolates has been associated with a difference
in genetic backgrounds [119], which may reflect the mutagenesis potential of a given isolate to
induce resistance [22]. Indeed, it was found that some microsatellite clusters contained a significantly
higher number of high fluconazole-tolerant C. tropicalis isolates and vice versa [118]. Unfortunately,
despite that there is extensive knowledge about antibiotic tolerance in clinically important bacterial
species, our current understanding of antifungal tolerance is still in its infancy. These studies emphasize
the clinical significance of antifungal tolerance, and it is recommended to consider the level of tolerance
observed (≥50–75% of drug-free control) when choosing an antifungal agent in the clinic [116,118].
It is noteworthy that the existing inhibitory compounds used against stress pathways employed by
human fungal pathogens are already used in the clinic and have a profound impact on the host by
impairing immune functions [112,120].

3.2. Azole Resistance

3.2.1. Azole Resistance in the Candida Genus

Antifungal resistance mechanisms vary depending on the species and the antifungal agents.
Generally, changes in drug affinity at the drug target for azoles and echinocandins and overexpression
of the drug target and efflux pumps are the major determinants of azole resistance. Considering that
azoles are the main drug used to treat invasive candidiasis in developing countries [63,91,121–123],
having a clear understanding of resistance mechanisms is of paramount importance (Figure 2).
Although modification of the drug target, ERG11, is an important azole resistance mechanism
in species belonging to CTG (C. albicans, C. parapsilosis, C. tropicalis) and Metschnikowia clades
(C. auris) [47,124–126], it does not play a prominent role in C. glabrata [121,127], which is phylogenetically
located within the whole-genome duplication (WGD) clade. Heterologous expression and comparative
sequencing studies have identified Y132F, K143R, G458S (similar to G464S) as the most prevalent amino
acid substitution profoundly impacting the azole susceptibility profiles in CTG and Metschnikowia
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clades [47,124–126]. Of note, there also seems to exist a link between specific mutations in ERG3 and
azole resistance in C. parapsilosis [128].

Figure 2. General mechanisms of azole resistance mechanisms employed by Candida and Aspergillus
species covered in this study. The drug-target modulating and overexpression of efflux pumps and
drug target are the most common strategies counteracting the azole efficacy used by these species.

Overexpression of drug target and efflux pumps, on the other hand, appears to be a conserved
response to azole drugs among species within the three aforementioned clades. Overexpression
of ERG11, which is controlled by a zinc cluster transcription factor (UPC2), results in a higher
functional copy number of the drug target and a higher concentration of ergosterol to keep up with
the overwhelming concentration of azole drugs [124]. The occurrence of gain-of-function (GOF)
mutations, especially in the C-terminal domain of Upc2, results in its structural changes in the
ligand-binding domain and its constitutive hyperactivity, followed by nuclear translocation, where it
binds to the binding motifs upstream of ERG11, subsequently leading to ERG11 overexpression and
overproduction of ergosterol [124,129]. Although its role remains to be elucidated in C. auris, C. tropicalis,
and C. parapsilosis, Upc2 can bind to the promoter of PDR1 and CDR1 in C. glabrata [130]. Furthermore,
a recent study unveiled a new transcription factor, CgRpn4, which through the overexpression
of genes involved in ergosterol biosynthesis pathways, especially ERG11, plays an important
role in membrane homeostasis, ergosterol biosynthesis, and azole resistance in C. glabrata [131].
Chromatin immunoprecipitation assay revealed that CgRpn4 directly binds to the TTGCAAA binding
motif located upstream of ERG11 [131].

Overexpression of efflux pumps is a common response when fungi are stressed with azoles [124].
Major efflux pumps implicated in azole resistance belong to two major categories, ATP-binding
cassette (ABC) transporters (CDR1 and CDR2) and major facilitator superfamily (MFS) transporters
(MDR1 and MDR2) [132], mainly regulated by transcription factors Tac1 and Mrr1, respectively [124].
Despite being common in C. albicans [124], the association between GOF mutations in TAC1 and MRR1
and the resultant overexpression of CDR1 and MDR1 are poorly studied in C. parapsilosis, C. tropicalis,
and C. krusei. Therefore, comprehensive cataloging of UPC2, TAC1, and MRR1 in these Candida
species, followed by their assessment in azole resistance, seems to be a missing knowledge gap in these
Candida species [133]. Recently, a number of studies cataloged mutations occurring in UPC2, TAC1,
and MRR1 in azole-resistant C. tropicalis and C. parapsilosis isolates [47,118,122,134–136], which could
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serve as a basis to broaden our understanding of azole resistance mechanisms in C. parapsilosis
and C. tropicalis. New lines of studies identified a prominent role of GOF mutations in TAC1B for
azole resistance in C. auris [111,137]. As for C. glabrata, several studies have identified specific GOF
mutations throughout the PDR1 gene in clinical isolates of C. glabrata resistant to azoles [27,127,138,139].
Importantly, the occurrence of such mutations is not only associated with an overexpression of efflux
pumps and azole resistance but also a higher virulence due to immunoevasion of C. glabrata during
infection [140,141]. Interestingly, it has been shown that some genes implicated in adhesion, EPA3,
also play roles in azole resistance by indirectly reducing the intracellular concentration of azole drugs in
serially collected clinical isolates of C. glabrata [139]. Collectively, these studies suggest that mechanisms
of azole resistance are complicated and also poorly addressed in some Candida species. In light of
the increasing prevalence of azole-resistant C. parapsilosis and C. tropicalis in numerous countries [18],
addressing these mechanisms will have significant implications in drug discovery and the efficacious
management of infected patients.

3.2.2. Azole Resistance in A. fumigatus

Azole resistance in A. fumigatus is also a multifactorial phenomenon involving the modification and
overexpression of the azole drug target, Cyp51A, and overexpression of efflux pumps, mainly Cdr1B
and AtrF [142]. Most prominently, azole resistance results from the occurrence of 34 and 46 bps tandem
repeats (TR34 and TR46) upstream of Cyp51A, which appear to serve as extra binding sites for sterol
regulatory element-binding element protein (SrbA) and ABC transporter-regulating transcription
factor A (AtrRA) [142]. TR duplications are thought to have an environmental origin and are typically
accompanied by mutations in Cyp51A open reading frame, such as TR34/L98H and TR46/Y121F/T289A,
which are also the most prevalent mutations found in azole-resistant clinical and environmental
A. fumigatus isolates [142]. Recent studies have suggested that azole resistance implicated by SrbA
and AtrR occurs via overexpression of Cyp51A and Cyp51A and Cdr1B, respectively [143,144].
CCAAT-binding elements, including HapB, HapC, and HapE, bind downstream of the AtrR and SrbA
binding sites and negatively regulate Cyp51A expression. Strains containing HapEP88L were shown to
be associated with azole resistance in A. fumigatus clinical isolates lacking Cyp51A mutations [145,146].
A recent study showed that a laboratory-generated voriconazole-resistant Aspergillus flavus isolate
carried an amino acid substitution in Yap1L558T, which was associated with an overexpression of
AtrF and voriconazole resistance [147]. New studies implicating various cellular components and
pathways involved in azole resistance resulted in significant advances on the topic of azole resistance
in A. fumigatus [148–151].

3.3. Echinocandin Resistance

Unlike complicated resistance mechanisms for azoles involving numerous components,
echinocandin resistance is dominated by a single mechanism of action involving mutations in
hotspots (HS) regions of FKS genes encoding amino acid substitutions within the catalytic subunits
of β-1,3-D-glucan synthase [152,153]. As discussed above, echinocandin resistance is relatively rare
(<1–2%) in C. albicans clinical isolates [18,124]. However, more significant echinocandin resistance
(2–10%) occurs in C. glabrata, C. tropicalis, and C. auris [18,21]. Epidemiological studies have shown
that S629P/T and S663P/F/A are the most observed amino acid substitutions in HS1 of Fks1 and
Fks2, respectively, and they are linked to high echinocandin MIC values in clinical isolates of
C. glabrata [133,154]. Among C. albicans isolates, S456P/F and Ser641P/F are the most prevalent
resistance-associated mutations, although other HS1 and HS2 mutations do occur [155]. S645P
and S639P/F/Y seem to be the most predominant amino acid substitutions observed in HS1 of Fks1
in echinocandin-resistant clinical isolates of C. tropicalis and C. auris, respectively [133]. Clinical
isolates of C. parapsilosis intrinsically have higher MIC values against echinocandins when compared
to the other Candida species, which is due to a polymorphism P660A in the HS1 of Fks1 [156].
Since bona fide echinocandin-resistant C. parapsilosis isolates are rarely reported in clinical isolates [18],
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the respective resistance mechanism remains obscure. Interestingly, a recent report identified four
micafungin-resistant C. parapsilosis blood isolates in Turkey, which harbored a novel amino acid
substitution R658G in HS1-Fks1. These isolates were genetically related and resulted in caspofungin
therapeutic failure in a patient infected with one of those isolates [157].

The fungistatic action of echinocandins on Aspergillus has deterred its broader use on invasive
aspergillosis or chronic pulmonary aspergillosis, except for salvage therapy, often in combination
with mold-active triazoles [158]. Therefore, echinocandin resistance is quite rare in clinical
isolates of A. fumigatus, but the increasing prevalence of triazole-resistant A. fumigatus isolates
have prompted enhanced use of echinocandin therapy with an expectation for the emergence of
resistant isolates. As such, it was documented that F675S in HS1-Fks1 of a clinical A. fumigatus
isolate was acquired following micafungin therapy, which subsequently resulted in therapeutic
failure [153]. Interestingly, a new study identified echinocandin-resistant A. fumigatus isolates
that did not harbor any mutations in the FKS gene. Authors found a reduction in sensitivity of
β-1,3-D-glucan synthase to echinocandins, which was due to prominent lipid changes in the enzyme
microenvironment mainly by dihydrosphingosine and phytosphingosine [159]. It is noteworthy that
in some cases, mutations just outside of the HS regions can cause echinocandin resistance [160] and
also occasionally, echinocandin-susceptible isolates harbor a weak mutation in HS regions that results
in therapeutic failure [27]. Therefore, a combination of both FKS sequencing and AFST provides the
most accurate results.

3.4. Antifungal Resistance in Cryptococcus and Pneumocystis

Azole resistance in Cryptococcus has been associated with ERG11 mutations and/ or overexpression
of ERG11 and an ATP-binding cassette (ABC) transporter (AFR1). Combination of an efflux blocker
(FK506, calcineurin inhibitor) with voriconazole showed four to eight times lower MICs than compared
to voriconazole mono in C. neoformans multi-azole-resistant strains [161]. In multi-azole-resistant
strains, the triazole ravuconazole (named BMS-207147 and ER-30346) showed efficacy against strains
that encode a protein with a G344S substitution in ERG11 [162]. In C. neoformans, a small (~1%)
heteroresistant subpopulation exists, which, when exposed to drugs, leads to selection and clonal
expansion of resistant variants leading to fluconazole resistance [163]. Heteroresistant subpopulations
are often not captured in standardized (CLSI or EUCAST) susceptibility procedures. Duplications of
chromosome 1 (disomy) are often observed in this resistant subpopulation [164], although Cryptococcus
undergoes dynamic ploidy changes in response to drug exposure leading to the selection of resistant
variants. Resistance occurs due to increases in expression of resistance determinants on Chr1,
including ERG11 and AFR1, encoding a major drug efflux transporter. Resistance emergence is
related to drug exposure and occurs with the use of clinically relevant regimens but may be potentially
overcome by dosage escalation or the use of combination therapy [165].

5-fluorocytosine resistance, on the other hand, is associated with mutations in the UXS1, FUR1 and
FCY2 gens and alterations in capsule biosynthesis in C. neoformans [166,167]. The intrinsic echinocandin
resistance of Cryptococcus is not FKS-related [168]. While the mechanism of resistance is not fully
elucidated, it appears to involve the concerted involvement of CRM1 and CDC50 by maintaining
cellular calcium homeostasis influencing a mechanosensitive lipid flippase [10], as well as melanin
within the capsule, which may act by the complexing drug [169].

As explained above, azoles are not effective in PCP, which was primarily thought to be
due to the uptake of sterol from the host lung [170]. However, new lines of studies showed
that the ergosterol biosynthetic pathway is active, and ergosterol is also produced by P. jirovecii
itself. Moreover, the presence of mutations in ERG11 has been linked to azole resistance in this
species [171]. Furthermore, mutations inside two fungus-related genes, namely dihydrofolate
reductase (DHFR) and dihydropteroate synthase (DHPS), result in enzyme active site structural
changes, which are predicted to interfere with the substrate binding capacity, consequently
leading to sulfa resistance [172,173]. Resistance evolves during therapy and can be acquired by
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person-to-person transmission [11,174]. DHPS mutation can affect clinical outcomes, including a longer
duration of mechanical ventilation and increased mortality compared to patients with a wild-type
genotype [59,175,176]. Moreover, higher frequencies of treatment-limiting adverse reactions were
reported in patients with DHPS [59,175,176]. Therefore, DHPS and DHFR mutational analyses could
represent a promising opportunity for optimal patient management, avoiding treatment failure,
and finally, death due to PCP. However, more evidence is needed on the frequency of DHPS and
DHFR in different patient cohorts and its real impact on clinical outcomes. In a recent pediatric study,
phylogenetic analysis revealed 13 unique sequence types (ST), including STs in DHFR and DHPS,
that were associated with treatment failures among PCP-positive patients [177]. Yet, this is not universal
as a study evaluating a German patient cohort reported a low frequency of such mutations [60].

4. Antifungal Susceptibility Testing: Current Paradigm, Challenges, and Solutions

The need for antifungal susceptibility testing (AFST) reflects the increased number of patients
having risk factors for invasive fungal infection, the widespread use of antifungals, the rise of
acquired resistance, and finally, the emergence of new fungal pathogens [178]. The major goal of
AFST is to provide MIC values to guide optimal antifungal therapy and to monitor the emergence
and epidemiology of antifungal drug resistance, locally or internationally. However, the drug of
choice may be empirically assumed by the proper identification of the fungus and its inherent drug
susceptibility profile; hence AFST is recommended when the underlying infection is invasive, and
antifungal drug resistance is suspected, or when therapy is failing [179]. The implementation of
antifungal stewardship programs is highly recommended, and the current standards in patient care
comprise species identification and the performance AFST in isolates collected from sterile body sites,
such as blood [180].

Standardized reference methods, the broth microdilution according to the Clinical and
Laboratory Standards Institute (CLSI) and the European Committee on Antimicrobial Susceptibility
Testing (EUCAST) represent the gold standards for AFST, but they are time-consuming and
labor-intensive [179,181–184]. Alternative tests or commercial products include disk diffusion,
epsilometer tests, colorimetric broth microdilution, and automated spectrophotometric systems [178].
Recently, a new low-cost four-well plate agar method is suitable for echinocandin susceptibility screening
of Aspergillus species and can be used to detect echinocandin non-WT isolates [185]. Moreover, MIC test
strip and Sensititre YeastOne showed an overall agreement of >72% and >94% at ±1 and ±2 dilutions
when compared to CLSI and EUCAST broth microdilution methods, respectively [186].

All these AFST methods display a variety of specific advantages and disadvantages. In general,
AFST is time-consuming as providing MICs usually takes 24–48 h from the time point culture is available.
In addition, the interpretation of results may be difficult for fungi where clinical breakpoints are lacking.
The lack of interpretive criteria for various fungus-antifungal combinations raises the question of how
to deal with such data and implement them in clinical practice [181]. Besides these practical issues,
it should be noted that technical (aerobic environment, high glucose, planktonic cells, growth media),
as well as fungal factors (a mixture of hyphae, conidia and fungal biofilms, fungal virulence and
fitness) may influence MIC readings [187]. Of note, P. jirovecii does not grow on culture media in vitro,
which precludes the utility of AFST for PCP.

New approaches to aid AFST target culture-independent techniques, such as MALDI-TOF MS
technology and molecular-based resistance detection. The call for molecular-based susceptibility
testing is growing, which aims to detect validated genetic resistance mechanisms. Such analyses may
provide results within a few hours, but various limitations (detailed in Section 5) may complicate
interpretation [178]. Some MALDI-TOF MS assisted AFST methods have been evaluated for a limited
number of fungal species and drugs [188,189]. The MALDI-TOF MS is promising but needs a simplified,
automated method for testing a broad range of fungi and antifungals.
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5. Emerging Molecular Approaches to Diagnose Resistance, Current State and Challenges

The ability of a fungal cell to stably resist drug exposure and transfer it to its progeny is encoded
in its genome [190]. This fact implies that, if the genetic determinants of resistance are known, a genetic
test can be developed to detect the presence of such a trait. This is the norm for assessing drug
susceptibility in viruses and many bacteria. Similarly, for medical mycology, this is a very promising
approach given the significant investment of time necessary to perform standard drug susceptibility
testing (discussed in Section 4). In addition, the availability of molecular approaches to amplify or probe
specific DNA sequences, as well the continuous developments in next-generation sequencing (NGS),
are paving the way for more specific, accurate, and cost-effective approaches [191]. Despite much
progress, these approaches have achieved limited implementation in clinical mycology [191–193].

A major limitation of molecular approaches for the diagnosis of resistance is that the same resistance
phenotype can be caused by mutations at different loci [27,123,140]. Thus, previous knowledge of the
resistance-causing mutations is a prerequisite for developing an accurate technique. Once a set of
resistance-conferring mutations is known, specific tests for their presence can be developed based on
PCR amplification of nucleic acid hybridization approaches, or whole-genome sequencing data can be
compared to a database of known mutations [191]. All these approaches have been successfully used for
different Candida and Aspergillus pathogens [194–198]. Along the same line, commercial real-time PCR
assays have been developed for the identification of DHPS mutations [199]. As discussed in Section 3,
this knowledge is highly limited for fungal pathogens such as C. parapsilosis and C. tropicalis [133],
but, as research progresses, this gap is expected to be closed, at least for the most common pathogens.
Probe-based approaches have higher specificity and are thus promising for direct resistance screening
of clinical specimens. However, they require a catalog of known resistance-conferring mutations,
which is only partially available even for the best-studied species. The more incomplete that catalog of
resistance-conferring mutations is, the more false-negatives will this test produce. Direct sequencing
approaches allow the discovery of novel mutations–although they still require independent validation
linking a genetic change to the resistance phenotype for application. Whole-genome sequencing can
provide very accurate results in organisms for which the resistance-conferring mechanisms are well
understood. For instance, a genomic survey of bacterial isolates recovered from clinical samples has
shown an excellent categorical agreement with standard antimicrobial susceptibility testing [200,201].
Using this standard, echinocandin resistance among Candida species is ideally suited for resistance
assessment, as is azole resistance among Aspergillus, as there is a strong correlation between clinical
resistance, MIC and specific mutations in target genes [133]. Once a comparable level of knowledge is
achieved for the different fungal pathogens and drugs, it is envisaged that a similar level of accuracy
could be obtained.

Most applications explored so far have been focused on target sequencing of specific regions
or whole-genome sequencing of isolates. However, emerging NGS applications include the direct
sequencing of entire communities from clinical samples using a whole-genome shotgun approach
coupled to a computer-based reconstruction of complete or partial genome sequences of the organisms
present in the sample–, i.e., metagenomics [202,203]. For instance, independent of resistance, a recent
study successfully employed a high-resolution metagenomics approach to a fecal sample using internal
transcribed spacer 1 to predict candidemia [3]. Although more expensive and involving steeper
requirements for downstream analyses, a metagenomics approach has several advantages. First, it is
entirely unbiased and does not require a prior hypothesis on the infecting organism, whose identity
and resistance potential can be diagnosed from the analysis of the sequencing reads. Second, as it is
not based on a single isolate, it can inform on the genetic diversity of the infecting population at the
sampled sites. Lastly, in addition to the information on the infecting agent, it can provide information
on the host and the entire microbial community present in the sample site, which can also have
clinical relevance [204]. Increasing throughput and cost-effectiveness of sequencing machines and the
emergence of long-read sequencing technologies, such as oxford nanopore, are making metagenomics
approaches more affordable and informative. One could envision a metagenomic approach being used
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in a prognostic manner, surveying stool, blood, or saliva samples from patients in order to monitor the
presence of drug-resistant microbes and thereby anticipate treatment failure and allowing or preparing
for therapy adjustments before a systemic infection with a resistant strain appears.

All these promising developments notwithstanding, the implementation of NGS technologies
in a clinical setting is still very far from being routine. There are many challenges that need to be
overcome, including cost, time, equipment and expertise [159]. Although sequencing costs and even
sequencing equipment is decreasing, the bulk of the cost for NGS applications is related to both
sample preparation (DNA extraction, library preparation) or to bioinformatics analysis of the data.
Both procedures require either highly trained personnel or costly automated alternatives. In addition,
the amount of time elapsed from sample collection to specific information needs to be minimal (<24 h)
to facilitate clinical value. This (and possibly some ethical considerations) limits outsourcing analyses
to most external providers. Finally, although NGS provides a wide array of interesting information
that could be exploited in the future, in the clinic, this information needs to be highly focused and
processed to provide direct answers to specific clinical questions so that clinicians can quickly react to
the data instead of being overwhelmed. Ideally, a clinical-grade NGS system should be encapsulated
in the form of a fully or semi-automated device that processes a sample and outputs actionable data in
the most direct and rapid way. Such devices, like the Cepheid Xpert MTB/RIF, have revolutionized the
management of Mycobacterium tuberculosis (MTB) infections by providing faster and more accurate
MTB diagnosis that detects MTB and rifampicin (RIF) resistance simultaneously [205]. The push for
personalized medicine in other clinical fields such as cancer or rare diseases is driving the penetration
of genomics in the clinic, and it is likely that current limitations, at least in terms of costs and resources,
will eventually be overcome. In sum, as our knowledge of the genetic basis of antifungal resistance
grows and matures, and as new molecular tools enter a mainstream microbial diagnosis, it is anticipated
that the molecular detection of antifungal resistance will be an important component of clinical care.

6. Therapeutic Drug Monitoring and Drug Dose Optimization

The treatment of invasive fungal infections is often complex and complicated by multiple
factors that may affect the absorption, distribution, and metabolism of antifungal agents, including
predisposing factors for infection and the site and severity of the infection. Therapeutic drug monitoring
(TDM) is utilized to measure antifungal drug levels to prevent inadequate dosing that may lead
to the emergence of resistance and/or treatment failure or excessive dosing that may lead to drug
toxicity. The major guidelines recommend TDM once a steady-state has been reached for triazole-based
treatment for invasive aspergillosis (IA) and when extended courses of prophylaxis are used, including
by the Infectious Diseases Society of America [9], European Society for Clinical Microbiology and
Infectious Diseases (ESCMID) and the European Confederation of Medical Mycology (ECMM) [206],
and the European Conference on Infections in Leukemia (ECIL) [207]. The European Respiratory
Society (ERS) and ESCMID also recommend TDM for triazole-based treatment for chronic pulmonary
aspergillosis [208]. The IDSA also recommends TDM with voriconazole during the treatment of invasive
candidiasis (IC) [8], as does the ESCMID when 5-fluorocytosine, voriconazole, and posaconazole are
used [209].

In vitro studies and animal modeling have shown that the area under the concentration-time curve
and minimum inhibitor concentration (AUC/MIC) ratio is the pharmacokinetic/pharmacodynamics
(PK/PD) index that is most predictive of posaconazole efficacy against yeasts [210]. In invasive
mold infections, the time above the MIC (T>MIC) and the AUC/MIC ratio are particularly important
with posaconazole antifungal therapy [211] and other triazoles [212], as well as for echinocandins.
In an analysis of 6 of 10 clinical trials of patients receiving voriconazole, there was no association
between voriconazole levels and treatment efficacy, though, because antifungal exposure far exceeded
the MICs of most pathogens [213]. The peak concentration (Cmax) and MIC are particularly important
PK/PD indices for amphotericin B and the echinocandins [214]. Lastly, the T>MIC is the most relevant
PK/PD indices for flucytosine [214].
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While sub-therapeutic drug levels increase the risk for treatment failure, they also can increase the
risk for resistance emergence with invasive fungal infections for patients on antifungal prophylaxis
or extended treatment durations. For example, multiple studies have shown that sub-therapeutic
trough concentrations during posaconazole prophylaxis in patients with hematologic malignancies are
associated with breakthrough invasive fungal infections [215–217]. Studies of lung transplant recipients
on prophylactic voriconazole have found higher rates of fungal colonization and breakthrough fungal
infections [218] in those with sub-therapeutic voriconazole drug levels. In addition, higher rates of
breakthrough fungal infections have been observed in patients with sub-therapeutic voriconazole
levels following allogeneic stem cell transplantation in patients [219].

As stated above, acquired azole-resistance in A. fumigatus is becoming increasingly
problematic [220–223], partly driven by the use of triazoles as environmental fungicides [224,225].
In addition to sub-therapeutic drug levels, increasing the risk of breakthrough invasive fungal infections,
there is also a risk of causing increased antifungal resistance. In one study of patients with cystic
fibrosis of an azole therapy, primarily being used for the treatment of allergic bronchopulmonary
aspergillosis (ABPA), persistently positive fungal culture, or Aspergillus bronchitis, azole levels were
sub-therapeutic in half of the patients, with an association between sub-therapeutic drug levels and
increased antimicrobial resistance [226]. Even in the treatment of azole-resistant infections, using higher
doses of voriconazole [227,228] and posaconazole [229] has been shown to be effective in the treatment
of these infections. Thus, the effective use of TDM may help prevent the emergence of drug-resistant
fungal infections and facilitate the treatment of azole-resistant infections, possibly with higher doses of
a given antifungal, although more investigation of this strategy is needed.

7. Optimizing Therapy by Species Identification

As discussed, fungal species respond differently to various antifungal agents; therefore,
species identification plays a pivotal role in drug-decision-making practices, which is endorsed
by standardized clinical treatment practices [8]. The most notable example is the stark azole
susceptibility pattern observed between the highly susceptible C. albicans and inherently resistant
C. krusei. Unfortunately, accurate and rapid identification tools, such as matrix-assisted laser desorption
ionization time-of-flight and Sanger sequencing, which are common in Western countries, are largely
unaffordable for most clinical laboratories of developing countries, and most of the identifications
are performed by inaccurate and expensive phenotypic tools [123]. To help overcome this issue,
a comprehensive multiplex PCR was introduced [230], which can identify the most clinically
important yeast species causing infection in humans and numerous studies afterward showed
its reproducibility in various epidemiological studies [92,231,232]. Although such techniques are
far from ideal, their application can significantly shorten the turnaround time and improve the
species identification accuracy. We hope that the future advances in technology and materials used in
MALDI-TOF MS and Sanger sequencing offer affordable options to be used in developing countries.

8. Therapeutic Challenges and how to Overcome Them

New antifungal drugs have been scarce over the last decade, and only one new antifungal
(a member of the class of triazoles) has been approved for clinical use. The urgency for new antifungal
classes is growing as cases have increased, and as detailed above, once-treatable fungi are becoming
resistant. Furthermore, only one approved class of antifungal drugs, the azoles, can be taken orally.
Due to increasing resistance rates against azoles and echinocandins, invasive Candida infections have
become more difficult to treat, given the limited number of classes of antifungals currently available.
This limitation in antifungal treatment options was prominently highlighted by the emergence of
C. auris, a multidrug-resistant species, which has been associated with outbreaks worldwide and
led to clinical alerts to U.S. and European healthcare facilities [233,234]. In the U.S., 90% of C. auris
isolates appear resistant to fluconazole, about 30% have been resistant to amphotericin B, and less
than 5% have been resistant to echinocandins, while about one-quarter of recent Indian isolates of
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C. auris were resistant to two or more classes of antifungals [233–235]. For the treatment of these
highly resistant Candida species, approval of ibrexafungerp, a member of a new antifungal class, which,
like the echinocandins, attacks the fungal cell wall, but does so by latching onto another part of glucan
synthase, is eagerly awaited. Ibrexafungerp is currently evaluated in a clinical phase III trial [236] and
shows excellent oral bioavailability, making the drug potentially very valuable for the longer-term
or ambulant treatment of yeast infections resistant to azoles or in patients with contraindications
against azoles. Rezafungin is a novel echinocandin, for which phase III clinical trials are about to
start, which has a much longer half-life than other echinocandins, allowing it to be given via a once
a week injection instead of daily [237,238]. Most importantly, it can be delivered at high dosages,
which overcome certain types of echinocandin resistance. Rezafungin has improved activity against
Aspergillus species compared to the other echinocandins and may, therefore, become an alternative
option for treating azole-resistant aspergillosis [237].

The emergence of triazole resistance complicates the selection of appropriate antifungal treatment
for invasive aspergillosis, where triazoles are considered the first-line treatment option [239–243].
Given that more areas may be burdened with high rates of environmental triazole resistance,
triazoles may not be universally recommended as primary antifungal treatment, but instead,
treatment choice may depend on the local epidemiology of azole-resistant A. fumigatus. While triazole
resistance is considered an emerging threat for patients infected by A. fumigatus [244], leaving very
limited treatment options for those patients, triazole resistance in Aspergillus terreus [245] may be
even more threatening because A. terreus can be non-susceptible to amphotericin B. Liposomal
amphotericin B is the primary alternative option to azoles for treatment of IPA, and therefore the
drug of choice for treatment of azole-resistant aspergillosis, but as stated above nephrotoxicity may
occur [9]. Alternative options for second-line treatment of azole-resistant aspergillosis are echinocandins,
which show, however, reduced activity against Aspergillus when used as monotherapy [236]. In regions
where environmental triazole resistance rates of Aspergillus exceed 10%, primary treatment of all
invasive aspergillosis cases with either liposomal amphotericin B or echinocandin-voriconazole
combination has been recommended, with a later step down to voriconazole should the isolate
show voriconazole susceptibility [183]. New antifungal classes currently under clinical development,
including fosmanogepix, also known as APX001 is a first-in-class and orally available broad-spectrum
antifungal agent, which targets the highly conserved Gwt1 fungal enzyme, and olorofim, which belongs
to a new class of antifungals called the orotomides and targets dihydroorotate dehydrogenase in the
de novo pyrimidine biosynthesis pathway) [246], have high potency against A. fumigatus without the
same burden of drug–drug interactions and toxicity [247], and may therefore overcome the limitations
of currently available antifungals for azole-resistant aspergillosis and become the preferred treatment
options in the near future. Moreover, to accelerate drug development and accelerate regulatory
approvals (e.g., Food and Drug Administration (FDA)), investigators are looking to repurpose existing
FDA-approved compounds developed against other diseases with the hope of identifying efficacious
new antifungal agents that can be rapidly deployed [248,249]. Interestingly, some of these compounds
not only proved to be efficacious against drug-susceptible fungal species [248,249] but also some showed
desired efficacy when tested on MDR Candida and mold species [250,251]. Therefore, the future battle
against the drug-resistant fungal species in the clinic may benefit from comprehensive repurposing of
FDA-approved compounds.

9. Future Directions

The increasing frequency of drug resistance in Candida and Aspergillus poses a serious threat to
human health as there remains a limited number of systemic antifungal drugs available to treat IFIs.
The increasing prevalence of azole resistance among invasive NAC species, especially C. parapsilosis
and C. tropicalis, highlights a pressing need to better understand the underlying resistance mechanisms
involved. Minimizing the global emergence of azole-resistant A. fumigatus isolates requires
serious measures regarding antifungal stewardship in both agriculture and the clinic. Accordingly,
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the application of AFST, TDM, and accurate species identification is recommended as a part of routine
antifungal drug decision-making. Finally, limited antifungal drug classes and the increasing presence of
drug-resistant fungi should direct our efforts to continuously identify new drug classes with promising
in vivo activities, preferably acting on cellular mechanisms apart from current systemic antifungals.
New agents with novel mechanisms of action in late-stage clinical development will be welcome to help
address this need. Furthermore, adjuvant drugs targeting HSP90-, PKC-, and calcineurin-inhibitors
have the potential to limit drug tolerance to slow resistance emergence, and their development
is encouraged.
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