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As software systems grow sophisticated, complex APIs are widely used to accelerate

program development. However, effectively using these APIs can be challenging due to poor

documentation that fails to sufficiently explain API behaviors. This issue highlights the necessity

for automating the combination of APIs into programs that satisfy given high-level specifications,

thereby reducing the burden on engineers.

This dissertation proposes to use type-directed program synthesis as a method for au-

tomating API navigation. In this process, the synthesizer must systematically search through

APIs to construct programs that adhere strictly to the provided specifications. This task presents

two primary challenges: the effective representation of these specifications and the efficient
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propagation of relevant information during search. To overcome these challenges, type-directed

synthesis leverages compact, type-represented search spaces that enhance the propagation of

type information throughout the search process. Although traditional type systems facilitate

compact search space representation, they are often too coarse-grained to express user intent

precisely. To address this, a semantic type system is introduced to express more advanced

constraints on function signatures, effectively ruling out programs that deviate from conventional

human-written code.

This dissertation provides a comprehensive analysis of type-directed program synthesis,

emphasizing its advantages in handling complex API-driven environments. Through theoretical

frameworks and empirical studies, it shows that type-directed synthesis techniques can solve real-

world programming tasks within a reasonable time limit. The experimental results demonstrate

that the developed synthesis tools significantly improve the feasibility and accuracy of synthesized

programs, contributing to more efficient and reliable software development.
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Introduction

Application programming interfaces (APIs) have become crucial components of modern

software systems due to their ability to manage the increasing complexity of software develop-

ment. For example, Amazon Web Services offers over two hundred products and services, each

with tens or hundreds of API methods. APIs boost software development by providing a library

of encapsulated implementations for common functionalities, enabling developers to reuse code

across different scenarios. They also promote the modular design of software systems, which

facilitates the interchangeability of APIs and allows developers to seamlessly transition between

API providers.

As APIs evolve, the number of available methods grows drastically, making it increasingly

challenging for developers to quickly grasp the usability of APIs, especially when comprehensive

documentation is lacking. This presents engineers with the daunting task of API discovery: given

a library of methods, how can they efficiently determine which methods to call and how to call

them to achieve their desired goals?

Traditional approaches [14, 66] address this challenge with intelligent code suggestion

tools. Typically, these tools first learns statistical information on API or code snippet frequencies

from web code corpra or local repositories. Suggestions are then displayed to users in the order

of their scores computed from the statistical data and the context. Therefore, these tools can

only produce function names or code snippets that appeared in their training corpus, and they are

unable to invent unseen expressions during runtime.

Recent research proposes a more advanced technique called component-based program

synthesis [54], where the algorithm automatically combines methods in the given library and finds
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programs that satisfy the given specification. This technique has been used to assist programmers

to navigate APIs in Java [27] and Scala [47]. The input to a component-based synthesizer can be

a type signature or several input-output examples, depending on which information is easier for

users to obtain and propagate during the search process.

This dissertation explores the potential of types as input for component-based synthesizers.

Prior work [27, 47] has shown the capability of types in component-based synthesis. They build

type transition graphs (TTGs) for all component, where each component represents a transition

from input types to the output type. Subsequently, they reduce the synthesis problem into a

graph reachability problem, as each path in the type transition graph corresponds to a set of

programs. However, this graph-based search space representation is limited to components with

monomorphic types. In practical scenarios, component types are often more diverse. In this

dissertation, we extend prior work to support types that are more general than monomorphic

types. The main contributions are summarized as follows:

Abstract Types and Type-Guided Abstraction Refinement. (chapter 1) Polymorphic datatypes

such as List, Map, etc. are ubiquitous in API methods, particularly in functional programming

languages. These types contain type variables, allowing them to be instantiated into an infinite

number of concrete types. This leads to an explosion in the number of transitions in TTGs. We

introduce abstract types that overapproximate the infinite set of types. Then an abstract TTG

is built and the same graph reachability algorithm is applied to search for programs. Due to

the overapproximation, the reachable path may not correspond to well-typed programs in the

concrete type system. To overcome this issue, we propose type-guided abstraction refinement

(TYGAR) to refine the type abstraction and rule out such spurious programs. Experimental

results demonstrate that this algorithm successfully finds well-typed programs for 98% of collect

benchmarks within an average of 1.4 seconds.

Equality-Constrained Tree Automata. (chapter 2) The previously mentioned type transition

graph lacks the ability to support polymorphic types without abstraction, but type-guided abstrac-
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tion refinement is costly as the abstract type transition graph must be reconstructed after each

refinement step. Alternatively, we propose a novel data structure called equality-constrained tree

automata (ECTA) to compactly represent connections between components with polymorphic

types. ECTAs are tree automata annotated with equality constraints, and support recursive nodes

that allows representation of type variables in polymorphic types. Additionally, we introduce a

fast enumeration algorithm that efficiently extracts terms from the search space, corresponding

to the program synthesis step. The experiments show that with ECTAs, the synthesizer solves

tasks 7× faster than TYGAR, while the implementation is only a tenth of the size.

Semantic Types for Program Synthesis. (chapter 3) Although types may not always be native

properties for components in all situations, they can serve as good summaries of component

behaviors if the type system has the appropriate granularity. To verify this idea, we focus on

REST APIs as a case study. In the domain of REST APIs, we develop a semantic type system

from their OpenAPI specification, and automatically infer semantic types from execution traces

of these APIs. With semantic types in hand, we apply the component-based synthesis algorithm

from prior work [42] to generate programs. Our experiments prove that semantic types are

helpful and effective in solving real-world benchmarks, successfully finding the desired solution

for 23 out of 29 benchmarks collected from online resources.
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Chapter 1

Program Synthesis By Type Guided Ab-
straction Refinement

1.1 Introduction

Consider the task of implementing a function firstJust def mbs, which extracts the

first non-empty value from a list of options mbs, and if none exists, returns a default value def.

Rather than writing a recursive function, you suspect you can implement it more concisely and

idiomatically using components from a standard library. If you are a Haskell programmer, at this

point you will likely fire up Hoogle [68], the Haskell’s API search engine, and query it with the

intended type of firstJust, i.e. a → [Maybe a] → a. The search results will be disappointing,

however, since no single API function matches this type1. In fact, to implement firstJust you

need a snippet that composes three library functions from the standard Data.Maybe library, like

so: \def mbs → fromMaybe def (listToMaybe (catMaybes mbs)). Wouldn’t you like a tool that

could automatically synthesize such snippets from type queries?

Scalable Synthesis via Graph Reachability. In general, our problem of type-directed component-

based synthesis, reduces to that of finding inhabitants for a given query type [98]. Consequently,

one approach is to develop synthesizers based on proof search in intuitionistic logics [5]. However,

search becomes intractable in the presence of libraries with hundreds or thousands of components.

Several papers address the issue of scalability by rephrasing the problem as one of reachability

1We tested this query at the time of writing with the default Hoogle configuration (Hoogle 4).
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in a type transition network (TTN), i.e. a graph that encodes the library of components. Each

type is represented as a state, and each component is represented as a directed transition from

the component’s input type to its output type. The synthesis problem then reduces to finding a

path in the network that begins at the query’s input type and ends at the output type [64]. To

model components (functions) that take multiple inputs, we need only generalize the network to

a Petri net which has hyper-transitions that link multiple input states with a single output. With

this generalization, the synthesis problem can, once again, be solved by finding a path from the

query’s input types to the desired output yielding a scalable synthesis method for Java [27].

Challenge: Polymorphic Data and Components. Graph-based approaches crucially rely on the

assumption that the size of the TTN is finite (and manageable). This assumption breaks down in

the presence of polymorphic components that are ubiquitous in libraries for modern functional

languages. (a) With polymorphic datatypes the set of types that might appear in a program is

unbounded: for example, two type constructors [] and Int give rise to an infinite set of types

(Int, [Int], [[Int]], etc). (b) Even if we bound the set of types, polymorphic components lead

to a combinatorial explosion in the number of transitions: for example, the pair constructor with

the type a → b → (a,b) creates a transition from every pair of types in the system. In other

words, polymorphic data and components explode the size of the graph that must be searched,

rendering synthesis intractable.

Type-Guided Abstraction Refinement. In this work we introduce type-guided abstraction

refinement (TYGAR), a new approach to scalable type-directed synthesis over polymorphic

datatypes and components. A high-level view of TYGAR is depicted in Fig. 1.1. The algorithm

maintains an abstract transition network (ATN) that finitely overapproximates the infinite

network comprising all monomorphic instances of the polymorphic data and components. We use

existing SMT-based techniques to find a suitable path in the compact ATN, which corresponds

to a candidate term. If the term is well-typed, it is returned as the solution. Due to the

overapproximation, however, the ATN can contain spurious paths, which correspond to ill-typed
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Figure 1.1. Overview of the TYGAR synthesis algorithm.

terms. In this case, the ATN is refined in order to exclude this spurious path, along with similar

ones. We then repeat the search with the refined ATN until a well-typed solution is found. As

such, TYGAR extends synthesis using abstraction refinement (SYNGAR) [103], from the domain

of values to the domain of types. TYGAR’s support for polymorphism also allows us to handle

higher-order components, which take functions as input, by representing functions (arrows) as

a binary type constructor. Similarly, TYGAR can handle Haskell’s ubiquitous type classes, by

following the dictionary-passing translation [100], which again, relies crucially on support for

parametric polymorphism.

Contributions. In summary, this chapter makes the following contributions:

1. Abstract Typing. Our first contribution is a novel notion of abstract typing grounded in

the framework of abstract interpretation [19]. Our abstract domain is parameterized by a finite

collection of polymorphic types, each of which abstracts a potentially infinite set of ground

instances. Given an abstract domain, we automatically derive an over-approximate type system,

which we use to build the ATN. This is inspired by predicate abstraction [38], where the abstract

domain is parameterized by a set of predicates, and abstract program semantics at different levels

of detail can be derived automatically from the domain.

2. Type Refinement. Our second contribution is a new algorithm that, given a spurious program,

refines the abstract domain so that the program no longer type-checks abstractly. To this end, the
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algorithm constructs a compact proof of untypeability of the program: it annotates each subterm

with a type that is just precise enough to refute the program.

3. H+. Our third contribution is an implementation of TYGAR in H+, a tool that takes as input a

set of Haskell libraries and a type, and returns a ranked list of straight-line programs that have the

desired type and can use any function from the provided libraries. To keep in line with HOOGLE’s

user interaction model familiar to Haskell programmers, H+ does not require any user input

beyond the query type; this is in contrast to prior work on component-based synthesis [27, 89],

where the programmer provides input-output examples to disambiguate their intent. This setting

poses an interesting challenge: given that there might be hundreds of programs of a given type

(including nonsensical ones like head []), how do we select just the relevant programs, likely

to be useful to the programmer? We propose a novel mechanism for filtering out irrelevant

programs using GHC’s demand analysis [88] to eliminate terms where some of the inputs are

unused.

We have evaluated H+ on a set of 44 queries collected from different sources (including

HOOGLE and STACKOVERFLOW), using a set of popular Haskell libraries with a total of 291

components. Our evaluation shows that H+ is able to find a well-typed program for 43 out of 44

queries within the timeout of 60 seconds. It finds the first well-typed program within 1.4 seconds

on average. In 32 out of 44 queries, the top five results contains a useful solution2. Further, our

evaluation demonstrates that both abstraction and refinement are important for efficient synthesis.

A naive approach that does not use abstraction and instead instantiates all polymorphic datatypes

up to even a small depth of 1 yields a massive transition network, and is unable to solve any

benchmarks within the timeout. On the other hand, an approach that uses a fixed small ATN but

no refinement works well on simple queries, but fails to scale as the solutions get larger. Instead,

the best performing search algorithm uses TYGAR to start with a small initial ATN and gradually

extend it, up to a given size bound, with instances that are relevant for a given synthesis query.

2Unfortunately, ground truth solutions are not available for HOOGLE benchmarks; we judge usefulness by
manual inspection.
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-- | Value stored in the option

-- or default if the option is empty

fromMaybe :: α → Maybe α → α

-- | All values from a list of options

catMaybes :: List (Maybe α) → List α

-- | Head of the list

-- or empty option if the list is empty

listToMaybe :: List α → Maybe α

M a

L a aL (M a)

M (M a)

f<a>

f<M a>

l<a>l<M a>

c

Figure 1.2. (left) A tiny component library. (right) A Type Transition Net for this library and
query a → List (Maybe a) → a. The transitions l<a>, f<a> (resp. l<M a>, f<M a>) correspond
to the polymorphic instances of the components listToMaybe, fromMaybe at type a (resp. M a).

1.2 Background and Overview

We start with some examples that illustrate the prior work on component-based synthesis

that H+ builds on (Sec. 1.2.1), the challenges posed by polymorphic components, and our novel

techniques for addressing those challenges.

1.2.1 Synthesis via Type Transition Nets

The starting point of our work is SYPET [27], a component-based synthesizer for

Java. Let us see how SYPET works by using the example query from the introduction:

a → [Maybe a] → a. For the sake of exposition, we assume that our library only contains

three components listed in Fig. 1.2 (left). Hereafter, we will use Greek letters α,β , . . . to denote

existential type variables—i.e. the type variables of components, which have to be instantiated

by the synthesizer—as opposed to a,b, . . . for universal type variables found in the query, which,

as far as the synthesizer is concerned, are just nullary type constructors. Since SYPET does not

support polymorphic components, let us assume for now that an oracle provided us with a small

set of monomorphic types that suffice to answer this query, namely, a, Maybe a, Maybe (Maybe a),

[a], and [Maybe a]. For the rest of this section, we abbreviate the names of components and type

constructors to their first letter (for example, we will write L (M a) for [Maybe a]) and refer to

the query arguments as x1, x2.
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Components as Petri Nets. SYPET uses a Petri-net representation of the search space, which

we refer to as the type transition net (TTN). The TTN for our running example is shown

in Fig. 1.2 (right). Here places (circles) correspond to types, transitions (rectangles) correspond to

components, and edges connect components with their input and output types. Since a component

might require multiple inputs of the same type, edges can be annotated with multiplicities (the

default multiplicity is 1). A marking of a TTN assigns a non-negative number of tokens to every

place. The TTN can step from one marking to the next by firing a transition: if the input places of

a transition have sufficiently many tokens, the transition can fire, consuming those input tokens

and producing a token in the output place. For example, given the marking in Fig. 1.2, transition

c can fire, consuming the token in L (M a) and producing one in L a; however transition f<a>

cannot fire as there is no token in M a.

Synthesis via Petri-Net Reachability. Given a synthesis query T1→ . . .→ Tn→ T , we set the

initial marking of the TTN to contain one token for each input type Ti, and the final marking to

contain a single token in the type T . The synthesis problem then reduces to finding a valid path,

i.e. a sequence of fired transitions that gets the net from the initial marking to the final marking.

Fig. 1.2 shows the initial marking for our query, and also indicates the final marking with a

double border around the return type a (recall that the final marking of a TTN always contains a

single token in a given place). The final marking is reachable via the path [c,l,f], marked with

thick arrows, which corresponds to a well-typed program f x1 (l (c x2)). In general, a path

might correspond to multiple programs—if several tokens end up in the same place at any point

along the path—of which at least one is guaranteed to be well-typed; the synthesizer can then

find the well-typed program using explicit or symbolic enumeration.

1.2.2 Polymorphic Synthesis via Abstract Type Transition Nets

Libraries for modern languages like Haskell provide highly polymorphic components

that can be used at various different instances. For example, our universe contains three type

constructors—a, L, and M—which can give rise to infinitely many types, so creating a place for
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each type is out of question. Even if we limit ourselves to those constructors that are reachable

from the query types by following the components, we might still end up with an infinite set of

types: for example, following head :: List α → α backwards from a yields L a, L (L a), and

so on. This poses a challenge for Petri-net based synthesis: which finite set of (monomorphic)

instances do we include in the TTN?

On the one hand, we have to be careful not to include too many instances. In the presence

of polymorphic components, these instances can explode the number of transitions. Fig. 1.2

illustrates this for the f and l components, each giving rise to two transitions, by instantiating their

type variable α with two different TTN places, a and Maybe a. This proliferation of transitions is

especially severe for components with multiple type variables. On the other hand, we have to

be careful not to include too few instances. We cannot, for example, just limit ourselves to the

monomorphic types that are explicitly present in the query (a and L (M a)), as this will preclude

the synthesis of terms that generate intermediate values of some other type, e.g. L a as returned

by the component c, thereby preventing the synthesizer from finding solutions.

Abstract Types. To solve this problem, we introduce the notion of an abstract type3, which stands

for (infinitely) many monomorphic instances. We represent abstract types simply as polymorphic

types, i.e. types with free type variables. For example, the abstract type τ stands for the set of all

types, while L τ stands for the set {L t | t ∈ Type}. This representation supports different levels

of detail: for example, the type L (M a) can be abstracted into itself, L (M τ), L τ, or τ.

Abstract Transition Nets. A Petri net constructed out of abstract types, which we dub an abstract

transition net (ATN), can finitely represent all types in our universe, and hence all possible

solutions to the synthesis problem. The ATN construction is grounded in the theory of abstract

interpretation and ensures that the net soundly over-approximates the concrete type system, i.e.

that every well-typed program corresponds to some valid path through the ATN. Fig. 1.3 (2)

shows the ATN for our running example with places τ, L τ and a. In this ATN, the rightmost

3Not to be confused with existing notions of abstract data type and abstract class. We use “abstract” here is the
sense of abstract interpretation [19], i.e. an abstraction of a set of concrete types.
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f transition takes a and τ as inputs and returns a as output. This transition represents the set

of monomophic types {a→ t→ a | t ∈ Type} and over-approximates the set of instances of f

where the first argument unifies with a and the second argument unifies with τ (which in this case

is a singleton set {a → M a → a}). Due to the over-approximation, some of the ATN’s paths

yield spurious ill-typed solutions. For example, via the highlighted path, this ATN produces the

term f x1 (l x2), which is ill-typed since the arguments to f have the types a and M (M a).

How do we pick the right level of detail for the ATN? If the places are too abstract, there

are too many spurious solutions, leading, in the limit, to a brute-force enumeration of programs.

If the places are too concrete, the net becomes too large, and the search for valid paths is too

slow. Ideally, we would like to pick a minimal set of abstract types that only make distinctions

pertinent to the query at hand.

Type-Guided Abstraction Refinement. H+ solves this problem using an iterative process we call

type-guided abstraction refinement (TYGAR) where an initial coarse abstraction is incrementally

refined using the information from the type errors found in spurious solutions. Next, we illustrate

TYGAR using the running example from Fig. 1.3.

Iteration 1. We start with the coarsest possible abstraction, where all types are abstracted

to τ, yielding the ATN in Fig. 1.3 (1). The shortest valid path is just [f], which corresponds to two

programs: f x1 x2 and f x2 x1. Next, we type-check these programs to determine whether they

are valid or spurious. During type checking, we compute the principal type of each sub-term and

propagate this information bottom-up through the AST; the resulting concrete typing is shown in

red at the bottom of Fig. 1.3 (1). Since both candidate programs are ill-typed (as indicated by the

annotation ⊥ at the root of either AST), the current path is spurious. Although we could simply

enumerate more valid paths until we find a well-typed program, such brute-force enumeration

does not scale with the number of components. Instead, we refine the abstraction so that this

path (and hopefully many similar ones) becomes invalid.

Our refinement uses the type error information obtained while type-checking the spurious
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Figure 1.3. Three iterations of abstraction refinement: ATNs (above) and corresponding solutions
(below). Some irrelevant transitions are omitted from the ATNs for clarity. Solutions 1 and 2 are
spurious, solution 3 is valid. Each solution is annotated with its concrete typing (in red); each
spurious solution is additionally annotated with its proof of untypeability (in blue). These blue
types are added to the ATN in the next iteration.
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programs. Consider f x1 x2: the program is ill-typed because the concrete type of x2, L (M a),

does not unify with the second argument of f, M α. To avoid making this type error in the future,

we need to make sure that the abstraction of L (M a) also fails to unify with M α. To this end,

we need to extend our ATN with new abstract types, that suffice to reject the program f x1 x2.

These new types will update the ATN with new places that will reroute the transitions so that

the path that led to the term f x1 x2 is no longer feasible. We call this set of abstract types a

proof of untypeability of the program. We could use x2’s concrete type L (M a) as the proof, but

we want the proof to be as general as possible, so that it can reject more programs. To compute

a better proof, the TYGAR algorithm generalizes the concrete typing of the spurious program,

repeatedly weakening concrete types with fresh variables while still preserving untypeability.

In our example, the generalization step yields τ and L τ (see blue annotations in Fig. 1.3). This

general proof also rejects other programs that use a list as the second argument to f, such as

f x1 (c x2). Adding the types from the untypeability proofs of both spurious programs to the

ATN results in a refined net shown in Fig. 1.3 (2).

Iteration 2. The new ATN in Fig. 1.3 (2) has no valid paths of length one, but has the

(highlighted) path [l,f] of length two, which corresponds to a single program f x1 (l x2) (since

the two tokens never cross paths). This program is ill-typed, so we refine the abstraction based on

its untypeability, as depicted at the bottom of Fig. 1.3 (2). To compute the proof of untypeability,

we start by generalizing the concrete types of f’s arguments as much as possible as long as the

application remains ill-typed, arriving at the types a and M (M τ). Generalization then propagates

top-down through the AST: in the next step, we compute the most general abstraction for the

type of x2 such that l x2 has type M (M τ). The generalization process stops at the leaves of the

AST (or alternatively when the type of some node cannot be generalized). Adding the types

M (M τ) and L (M τ) from the untypeability proof to the ATN leads to the net in Fig. 1.3 (3).

Iteration 3. The shortest valid path in the third ATN is [c,l,f], corresponding to a

well-typed program f x1 (l (c x2)) (bottom of Fig. 1.3 (3)), which we return as the solution.
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1.2.3 Pruning Irrelevant Solutions via Demand Analysis

Using a query type as the sole input to synthesis has its pros and cons. On the one hand,

types are programmer-friendly: unlike input-output examples, which often become verbose and

cumbersome for data other than lists, types are concise and versatile, and their popularity with

Haskell programmers is time-tested by the HOOGLE API search engine. On the other hand, a

query type only partially captures the programmer’s intent; in other words, not all well-typed

programs are equally desirable. In our running example, the program \x1 x2 → x1 has the right

type, but it is clearly uninteresting. Hence, the important challenge for H+ is: how do we filter

out uninteresting solutions without requiring additional input from the user?

Relevant Typing. SYPET offers an interesting approach to this problem: they observe that a

programmer is unlikely to include an argument in a query if this argument is not required for the

solution. To leverage this observation, they propose to use a relevant type system [78], which

requires each variable to be used at least once, making programs like \x1 x2 → x1 ill-typed.

TTNs naturally enforce relevancy during search: in fact, TTN reachability as described so far

encodes a stricter linear type system, where all arguments must be used exactly once. This

requirement can be relaxed by adding special “copy” transitions that consume one token from a

place and produce two token in the same place.

Demand Analysis. Unfortunately, with expressive polymorphic components the synthesizer

discovers ingenious ways to circumvent the relevancy requirement. For example, the terms

fst (x1, x2), const x1 x2, and fromLeft x1 (Right x2) are all functionally equivalent to x1,

even though they satisfy the letter of relevant typing. To filter out these solutions, we use GHC’s

demand analysis [88] to post-process solutions returned by the ATN and filter out those with

unused variables. Demand analysis is a whole-program analysis that peeks inside the component

implementation, and hence is able to infer in all three cases above that the variable x2 is unused.

As we show in Sec. 1.6, demand analysis significantly improves the quality of solutions.
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-- | Function application

($) :: (α → β) → α → β

-- | List with n copies of a value

replicate :: Int → α → [α]

-- | Fold a list

foldr :: (α → β → β) → β → [α] → β

-- | Value stored in the option

fromJust :: Maybe α → α

-- | Lookup element by key

lookup :: Eq α => α → [(α, β)] → Maybe β

Int a

F τ τ L τ

foldrrep

’$

$

a L (P a b)

EqD a M b b

l fJ

Figure 1.4. (left) A library with higher-order functions and type-class constraints. (center)
Fragment of an ATN for the query (a → a) → a → Int → a. (right) Fragment of an ATN for
the query Eq a => [(a,b)] → a → b.

1.2.4 Higher-Order Functions

Next we illustrate how ATNs scale up to account for higher-order functions and type

classes, using the component library in Fig. 1.4 (left), which uses both of these features.

Example: Iteration. Suppose the user poses a query (a → a) → a → Int → a, with the

intention to apply a function g to an initial value x some number of times n. Perhaps surprisingly,

this query can be solved using components in Fig. 1.4 by creating a list with n copies of

g, and then folding function application over that list with the seed x – that is, via the term

\g x n → foldr ($) x (replicate n g).

Can we generate this solution using an ATN? As described so far, ATNs only assign

places to base (non-arrow) types, and hence cannot synthesize terms that use higher-order

components, such as the application of foldr to the function ($) above. Initially, we feared that

supporting higher-order components would require generating lambda terms within the Petri

net (to serve as their arguments) which would be beyond the scope of this work. However, in

common cases like our example, the higher-order argument can be written as a single variable

(or component). Hence, the full power of lambda terms is not required.

HOF Arguments via Nullary Components. We support the common use case — where higher-

order arguments are just components or applications of components — simply by desugaring
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a higher-order library into a first-order library supported by ATN-based synthesis. To this

end, we (1) introduce a binary type constructor F α β to represent arrow types as if they were

base types; and (2) for each component c :: B1 → ... → Bn → B in the original library, we

add a nullary component ’c :: F B1 (... F Bn B). Intuitively, an ATN distinguishes between

functions it calls (represented as transitions) and functions it uses as arguments to other functions

(represented as tokens in corresponding F places).

Fig. 1.4 (center) depicts a fragment of an ATN for our example. Note that the ($)

component gives rise both to a binary transition $, which we would take if we were to apply this

component, and a nullary transition ’$, which is taken by our solution, since ($) is used as an

argument to foldr. Since F is just an ordinary type constructor as far as the ATN is concerned, all

existing abstraction and refinement mechanisms apply to it unchanged: for example, in Fig. 1.4

both a → a and (a → a) → a → a are abstracted into the same place F τ τ.

Completeness via Point-Free Style. While our method was inspired by the common use case

where the higher-order arguments were themselves components, note that with a sufficiently rich

component library, e.g. one that has representations of the S, K and I combinators, our method is

complete as every term that requires an explicit lambda-subterm for a function argument can

now be written in a point-free style, only using variables, components and their applications.

1.2.5 Type Classes

Type classes are widely used in Haskell to support ad-hoc polymorphism [100]. For

example, consider the type of component lookup in Fig. 1.4: this function takes as input a key k

of typeα and a list of key-value pairs of type [(α, β)], and returns the value that corresponds to

k, if one exists. In order to look up k, the function has to compare keys for equality; to this end,

its signature imposes a bound Eq α on the type of keys, enforcing that any concrete key type be

an instance of the type class Eq and therefore be equipped with a definition of equality.

Type classes are implemented by a translation to parametric polymorphism called dictio-

nary passing, where each class is translated into a record whose fields implement the different
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functions supported by the type class. Happily, H+ can use dictionary passing to desugar synthe-

sis with type classes into a synthesis problem supported by ATNs. For example, the type of lookup

is desugared into an unbounded type with an extra argument: EqD α → α → [(α,β)] → β. Here

EqD α, is a dictionary: a record datatype that stores the implementation of equality onα; the exact

definition of this datatype is unimportant, we only care whether EqD α for a givenα is inhabited.

Example: Key-Value Lookup. As a concrete example, suppose the user wants to perform

the lookup operation in a key-value list assuming the key is present. This task can be ex-

pressed as the type query Eq a => [(a,b)] → a → b. The intended solution to this query is

\xs k → fromJust (lookup k xs), i.e. look up the key and then extract the value from the

option, assuming it is nonempty. A fragment of an ATN for this query is shown in Fig. 1.4 (right).

Note that the transition l—the instance of lookup with α ↦→ a,β ↦→ b—has EqD a as one of its

incoming edges. This corresponds to our intuition about type classes: in order to fire l, the ATN

first has to prove that a satisfies Eq, or in other words, that EqD a is inhabited. In this case, the

proof is trivial: because the query type is also desugared in the same way, the initial marking

contains a token in EqD a4. A welcome side-effect of relevant typing is that any solution must use

the token in EqD a, which matches our intuition that the user would not specify the bound Eq a if

they did not mean to compare keys for equality. This example illustrates that the combination of

(bounded) polymorphism and relevant typing gives users a surprisingly powerful mechanism to

disambiguate their intent. Given the query above (and a library of 291 components), H+ returns

the intended solution as the first result. In contrast, given a monomorphic variant of this query

[(Int, b)] → Int → b (where the key type is just an Int) H+ produces a flurry of irrelevant

results, such as \xs k → snd (xs !! k), which uses k as an index into the list, and not as a key

as we intended.
4As we explain in Sec. 1.5.1, dictionaries can also be inhabited via instances and functional dependencies.
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1.3 Abstract Type Checking

Next, we formally define the syntax of our target language λH and its type system, and

use the framework of abstract interpretation to develop an algorithmic abstract type system for

λH . This framework allows us to parameterize the checker by the desired level of detail, crucially

enabling our novel TYGAR synthesis algorithm formalized in Sec. 1.4.

1.3.1 The λH Language

λH is a simple first-order language with a prenex-polymorphic type system, whose syntax

and typing rules are shown in Fig. 1.5. We stratify the terms into application terms which

comprise variables x, library components c and applications; and normal-form terms which are

lambda-abstractions over application terms.

The base types B include type variables τ , as well as applications of a type constructor

to zero or more base types C B. We write X to denote zero or more occurrences of a syntactic

element X . Types T include base types and first-order function types (with base-typed arguments).

Syntactic categories b and t are the ground counterparts to B and T (i.e. they contain no type

variables). A component library Λ is a finite map from a set of components c to the components’

poly-types. A typing environment Γ is a map from variables x to their ground base types. A

substitution σ = [τ1 ↦→ B1, . . . ,τn ↦→ Bn] is a mapping from type variables to base types that maps

each τi to Bi and is identity elsewhere. We write σT to denote the application of σ to type T ,

which is defined in a standard way.

A typing judgment Λ;Γ ⊢ E :: t is only defined for ground types t. Polymorphic com-

ponents are instantiated into ground monotypes by the COMP rule, which angelically picks

ground base types to substitute for all the universally-quantified type variables in the component

signature (the rule implicitly requires that σT be ground).
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Syntax

e ::= x | c | e e Application Terms
E ::= e | λx.E Normal-Form Terms
b ::=C b Ground Base Types
t ::= b | b→ t Ground Types
B ::= τ |C B Base Types
T ::= B | B→ T Types
P ::= ∀τ.T Polytypes
Γ ::= · | x : b,Γ Environments
σ ::= [τ ↦→ B] Substitutions

Typing Λ;Γ ⊢ E :: t

T-VAR
Γ(x) = b

Λ;Γ ⊢ x :: b

T-COMP
Λ(c) = ∀τ.T
Λ;Γ ⊢ c :: σT

T-APP
Λ;Γ ⊢ e1 :: b→ t Λ;Γ ⊢ e2 :: b

Λ;Γ ⊢ e1 e2 :: t

T-FUN
Λ;Γ,x : b ⊢ E :: t

Λ;Γ ⊢ λx.E :: b→ t

Figure 1.5. λH : syntax and declarative type system.

1.3.2 Type Checking as Abstract Interpretation

Type subsumption lattice. We say that type T ′ is more specific than type T (or alternatively, that

T is more general than or subsumes T ′) written T ′ ⊑ T , iff there exists σ such that T ′ = σT .

The relation ⊑ is a partial order on types. For example, in a library with two nullary type

constructors A and B, and a binary type constructor P, we have P A B⊑ P α B⊑ P α β ⊑ τ . This

partial order induces an equivalence relation T1 ≡ T2 ≜ T1 ⊑ T2∧T2 ⊑ T1 (equivalence up to

variable renaming). The order (and equivalence) relation extends to substitutions in a standard

way: σ ′ ⊑ σ ≜ ∃ρ.∀τ.σ ′τ = ρστ .

We augment the set of types with a special bottom type⊥ that is strictly more specific than

every other base type; we also consider a bottom substitution σ⊥ and define σ⊥B =⊥ for any B.

A unifier of B1 and B2 is a substitution σ such that σB1 = σB2; note that σ⊥ is a unifier for any

two types. The most general unifier (MGU) is unique up to≡, and so, by slight abuse of notation,

we write it as a function mgu(B1,B2). We write mgu(B1,B2) for the MGU of a sequence of type

pairs, where the MGU of an empty sequence is the identity substitution (mgu(·) = []). The meet

of two base types is defined as B1⊓B2 = σB1(= σB2), where σ =mgu(B1,B2). For example,

P α B⊓ P A β = P A B while P α B⊓ P β A=⊥. The join of two base types can be defined as

their anti-unifier, but we elide a detailed discussion as joins are not required for our purposes.

We write B⊥ = B ∪ {⊥} for the set of base types augmented with ⊥. Note that
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⟨B⊥,⊑,⊔,⊓⟩ is a lattice with bottom element ⊥ and top element τ and is isomorphic to [80]’s

subsumption lattice on first-order logic terms.

Type Transformers. A component signature can be interpreted as a partial function that maps

(tuples of) ground types to ground types. For example, a component l :: ∀ β.L β → M β maps

L A to M A, L (M A) to M (M A), and A to ⊥. This gives rise to type transformer semantics for

components, which is similar to predicate transformer semantics in predicate abstraction and

SYNGAR [103], but instead of being designed by a domain expert can be derived automatically

from the component signatures.

More formally, we define a fresh instance of a polytype fresh(∀τ.T )≜ [τ ↦→ τ ′]T , where

τ ′ are fresh type variables. Let c be a component and fresh(Λ(c)) = B′i → B′; then a type

transformer for c is a function JcKΛ : B⊥→ B⊥ defined as follows:

JcKΛ(Bi) = σB′ where σ =mgu(Bi,B′i)

We omit the subscript Λ where the library is clear from the context. For example, for the

component l above: JlK(L (M τ)) = M (M τ), JlK(τ) = M τ1 (where τ1 is a fresh type variable),

and JlK(A)=⊥ (because mgu(L τ2,A)=σ⊥). We can show that this type transformer is monotone:

applying it to more specific types yield a more specific type. The transformer is also sound in

the sense that in any concrete type derivation where the argument to l is more specific than some

B, its result is guaranteed to be more specific than JlK(B).

Lemma 1.3.1 (Monotonicity of Substitution). If σ ′ ⊑ σ then σ ′B⊑ σB.

Lemma 1.3.2 (Monotonicity of Unification). If B1 ⊑ B2 then mgu(B,B1)⊑mgu(B,B2)

Lemma 1.3.3 (Monotonicity of Type Transformers). For any component c and any types B1
i and

B2
i , such that B1

i ⊑ B2
i , we have JcK(B1

i )⊑ JcK(B2
i ).
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Proof. Let fresh(Λ(c)) = Bi→ B. By the definition of type transformers, we have

JcK(B1
i ) = σ1B σ1 =mgu(Bi,B1

i )

JcK(B2
i ) = σ2B σ2 =mgu(Bi,B2

i )

Since B1
i ⊑ B2

i , we have σ1 ⊑ σ2 by Lemma 1.3.2, and hence σ1B⊑ σ2B by Lemma 1.3.1.

Lemma 1.3.4 (Soundness of Type Transformers). If fresh(Λ(c)) = Bi→ B and σBi ⊑ B′i then

σB⊑ JcK(B′i).

Proof. By Lemma 1.3.3, since σBi ⊑ B′i, we have JcK(σBi) ⊑ JcK(B′i). But JcK(σBi) = σB,

because mgu(B,σB)≡ σ . Hence σB⊑ JcK(B′i) as desired.

Bidirectional Typing. We can use type transformers to define algorithmic type checking for

λH , as shown in Fig. 1.6. For now, ignore the parts of the rules highlighted in red, or, in other

words, assume that αA is the identity function; the true meaning of this function is explained in

the next section. As is standard in bidirectional type checking [79], the type system is defined

using two judgments: the inference judgment Λ;Γ ⊢ e =⇒ B generates the (base) type B from

the term e, while the checking judgment Λ;Γ ⊢ E ⇐= t checks E against a known (ground)

type t. Algorithmic typing assumes that the term is in η-long form, i.e. there are no partial

applications. During type checking, the outer λ -abstractions are handled by the checking rule

C-FUN, and then the type of inner application term is inferred and compared with the given type

b in C-BASE.

The only interesting case is the inference rule I-APP, which handles (uncurried) compo-

nent applications using their corresponding type transformers. Nullary components are handled

by the same rule (note that in this case JcK = fresh(Λ(c))). This type system is algorithmic,

because we have eliminated the angelic choice of polymorphic component instantiations (recall

the T-COMP rule in the declarative type system). Moreover, type inference for application terms

can be thought of as abstract interpretation, where the abstract domain is the type subsumption
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(Abstract) Type Inference Λ;Γ ⊢A e =⇒ B

I-VAR
Γ(x) = b

Λ;Γ ⊢A x =⇒ αA(b)
I-APP

Λ;Γ ⊢A ei =⇒ Bi

Λ;Γ ⊢A c ei =⇒ αA
(
JcK(Bi)

)
(Abstract) Type Checking Λ;Γ ⊢A E⇐= t

C-FUN
Λ;Γ,x : b ⊢A E⇐= t

Λ;Γ ⊢A λx.E⇐= b→ t
C-BASE

Λ;Γ ⊢A e =⇒ B b⊑ B
Λ;Γ ⊢A e⇐= b

Figure 1.6. Abstract type checking for λH . Treating αA as the identity function yields concrete
type checking.

lattice: for any application term e, the inference computes its “abstract value” B (known in type

inference literature as its principal type). We can show that the algorithmic system is sound and

complete with respect to the declarative one.

Theorem 1.3.5 (Type Checking is Sound and Complete). Λ; · ⊢ E :: t iff Λ; · ⊢ E⇐= t.

1.3.3 Abstract Typing

The algorithmic typing presented so far is just a simplified version of Hindley-Milner

type inference. However, casting type inference as abstract interpretation gives us the flexibility

to tune the precision of the type system by restricting the abstract domain to a sub-lattice of the

full type subsumption lattice. This is similar to predicate abstraction, where precision is tuned by

restricting the abstract domain to boolean combinations of a finite set of predicates.

Abstract Cover. An abstract cover A = {A1, . . . ,An} is a set of base types Ai ∈ B⊥ that contains

τ and ⊥, and is a sub-lattice of the type subsumption lattice (importantly, it is closed under

⊓). For example, in a library with a nullary constructor A and two unary constructors L and M,

A0 = {τ,⊥}, A1 = {τ,A,L τ,⊥}, and A2 = {τ,A,L τ,L (M τ),M (M τ),⊥} are abstract covers.

Note that in a cover, the scope of a type variable is each individual base type, so the different
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instances of τ above are unrelated. We say that an abstract cover A ′ refines a cover A (A ′ ⪯ A) if

A is a sub-lattice of A ′. In the example above, A2 ⪯ A1 ⪯ A0.

Abstraction function. Given an abstract cover A , the abstraction αA : B⊥→ B⊥ of a base type

B is defined as the most specific type in A that subsumes B:

αA(B) = A ∈ A such that B⊑ A and ∀A′ ∈ A.B⊑ A′⇒ A⊑ A′

We can show that αA(B) is unique, because A is closed under meet. In abstract interpretation,

it is customary to define a dual concretization function. In our case, the abstract domain A is

a sub-lattice of the concrete domain B⊥, and hence our concretization function is the identity

function id. It is easy to show that αA and id form a Galois insertion, because B⊑ id(αA(B))

and A = αA(id(A)) both hold by definition of αA .

Abstract Type Checking. Armed with the definition of abstraction function, let us now revisit

Fig. 1.6 and consider the highlighted parts we omitted previously. The two abstract typing

judgments—for checking and inference—are parameterized by the abstract cover. The only

interesting changes are in the abstract type inference judgment Λ;Γ ⊢A e =⇒ B, which applies

the abstraction function to the inferred type at every step. For example, recall the covers A1 and

A2 defined above, and consider a term l xs where Λ(l) = ∀β .L β → M β and Γ(xs) = L (M A).

Then in A1 we infer Λ;Γ ⊢A1 l xs=⇒ τ , since αA1(L (M A)) = L τ and JlK(L τ) = M τ, but M τ

is abstracted to τ . However, in A2 we infer Λ;Γ ⊢A2 l xs =⇒ M (M τ), since αA2(L (M A)) =

L (M τ), and JlK(L (M τ)) = M (M τ), which is abstracted to itself.

We can show that abstraction preserves typing: i.e. E has type t in an abstraction A

whenever it has type t in a more refined abstraction A ′ ⪯ A:

Theorem 1.3.6 (Typing Preservation). If A ′ ⪯ A and Λ;Γ ⊢A ′ E⇐= t then Λ;Γ ⊢A E⇐= t.

As B⊥⪯A for any A , the above Theorem 1.3.6 implies that abstract typing conservatively

over-approximates concrete typing:
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Corollary 1.3.7. If Λ; · ⊢ E⇐= t then Λ; · ⊢A E⇐= t.

1.4 Synthesis

Next, we formalize the concrete and abstract synthesis problems, and use the notion of

abstract type checking from Sec. 1.3 to develop the TYGAR synthesis algorithm, which solves

the (concrete) synthesis problem by solving a sequence of abstract synthesis problems with

increasing detail.

Synthesis Problem. A synthesis problem (Λ, t) is a pair of a component library and query

type. A solution to the synthesis problem is a normal-form term E such that Λ; · ⊢ E :: t. Note

that the normal-form requirement does not restrict the solution space: λH has no higher-order

functions or recursion, hence any well-typed program has an equivalent η-long β -normal form.

We treat the query type as a monotype without loss of generality: any query polytype ∀τ.T is

equivalent to [τ ↦→C]T where C are fresh nullary type constructors. The synthesis problem in λH

is semi-decidable: if a solution E exists, it can be found by enumerating programs of increasing

size. Undecidability follows from a reduction from Post’s Correspondence Problem (see [43]).

Abstract Synthesis Problem. An abstract synthesis problem (Λ, t,A) is a triple of a component

library, query type, and abstract cover. A solution to the abstract synthesis problem is a program

term E such that Λ; · ⊢A E⇐= t. We can use Corollary 1.3.7 and Theorem 1.3.5, to show that

any solution to a concrete synthesis problem is also a solution to any of its abstractions:

Theorem 1.4.1. If E is a solution to (Λ, t), then E is also a solution to (Λ, t,A).

1.4.1 Abstract Transition Nets

Next we discuss how to construct an abstract transition net (ATN) for a given abstract

synthesis problem (Λ, t,A), and use ATN reachability to find a solution to this synthesis problem.

Petri Nets. A Petri net N is a triple (P,T,E), where P is a set of places, T is a set of transitions,

E : (P×T )∪ (T ×P)→ N is a matrix of edge multiplicities (absence of an edge is represented
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by a zero entry). A marking of a Petri net is a mapping M : P→ N that assigns a non-negative

number of tokens to every place. A transition firing is a triple M1
t−→M2, such that for all places

p: M1(p)≥ E(p, t)∧M2(p) = M1(p)−E(p, t)+E(t, p). A sequence of transitions t1, . . . , tn is

a path between M and M′ if M
t1−→M1 . . .Mn−1

tn−→M′ is a sequence of transition firings.

ATN Construction. Consider an abstract synthesis problem (Λ, t,A), where t = b1→ . . .→

bn→ b. An abstract transition net N (Λ, t,A) is a 5-tuple (P,T,E, I,F), where (P,T,E) is a Petri

net, I : P→ N is a multiset of initial places and F ⊆ P is a set of final places defined as:

1. the set of places P = A ∖{⊥};

2. initial places are abstractions of query arguments: for every i ∈ [1,n], add 1 to I(αA(bi));

3. final places are all places that subsume the query result: F = {A ∈ P | b⊑ A}.

4. for each component c ∈ Λ and for each tuple A,A1, . . . ,Am ∈ P, where m is the arity of c,

add a transition t to T iff αA (JcK(A1, . . . ,Am))≡ A; set E(t,A) = 1 and add 1 to E(A j, t)

for every j ∈ [1,m];

5. for each initial place {p ∈ P | I(p) > 0}, add a self-loop copy transition κ to T , setting

E(p,κ) = 1 and E(κ, p) = 2, and a self-loop delete transition δ to T , setting E(p,δ ) = 1

and E(δ , p) = 0.

Given an ATN N = (P,T,E, I,F), MF is a valid final marking if it assigns exactly one token to

some final place: ∃ f ∈ F.MF( f ) = 1∧∀p ∈ P.p ̸= f ⇒MF(p) = 0. A path π = [t1, . . . , tn] is a

valid path of the ATN (π |= N ), if it is a path in the Petri net (P,T,E) from the marking I to

some valid final marking MF .

From Paths to Programs. Any valid path π corresponds to a set of normal-form terms terms(π).

The mapping from paths to programs has been defined in prior work on SYPET, so we do not

formalize it here. Intuitively, multiple programs arise because a path does not distinguish between

different tokens in one place and has no notion of order of incoming edges of a transition.
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Input: Abstract synthesis problem (Λ, t,A)
Output: Solution e or ⊥ if no solution

1: function SYNABSTRACT(Λ, t,A)
2: N ← N (Λ, t,A)
3: π ← SHORTESTVALIDPATH(N )
4: if π =⊥ then
5: return ⊥
6: else
7: for E ∈ terms(π) do
8: if Λ; · ⊢A E⇐= t then
9: return E

Input: Synthesis problem (Λ, t), initial cover A0
Output: Solution E or ⊥ if no solution

1: function SYNTHESIZE(Λ, t,A0)
2: A ← A0
3: while true do
4: E ← SYNABSTRACT(Λ, t,A)
5: if E =⊥ then
6: return ⊥
7: else if Λ; · ⊢ E⇐= t then
8: return E
9: else

10: A ← REFINE(A,E, t)

Figure 1.7. (left) Algorithm for the abstract synthesis problem. (right) The TYGAR algorithm.

Guarantees. ATN reachability is both sound and complete with respect to (abstract) typing:

Theorem 1.4.2 (ATN Completeness). If Λ; · ⊢A E⇐= t and E ∈ terms(π) then π |= N (Λ, t,A).

Theorem 1.4.3 (ATN Soundness). If π |= N (Λ, t,A), then ∃E ∈ terms(π) s.t. Λ; · ⊢A E⇐= t.

Abstract Synthesis Algorithm. Fig. 1.7 (left) presents an algorithm for solving an abstract

synthesis problem (Λ, t,A). The algorithm first constructs the ATN N (Λ, t,A). Next, the

function SHORTESTVALIDPATH uses a constraint solver to find a shortest valid path π |= N 5.

From Theorem 1.4.2, we know that if no valid path exists (no final marking is reachable from

any initial marking), then the abstract synthesis problem has no solution, so the algorithm returns

⊥. Otherwise, it enumerates all programs E ∈ terms(π) and type-checks them abstractly, until it

encounters an E that is abstractly well-typed (such an E must exists per Theorem 1.4.3).

ATN versus TTN. Our ATN construction is inspired by but different from the TTN construction

in SYPET [27]. In the monomorphic setting of SYPET, it suffices to add a single transition per

component. To account for our polymorphic components, we need a transition for every abstract

instance of the component’s polytype. To compute the set of abstract instances, we consider all

possible m-tuples of places, and for each, we compute the result of the abstract type transformer

5Sec. 1.5.3 details our encoding of ATN reachability into constraints.

26



αA (JcK(A1, . . . ,Am)). This result is either⊥, in which case no transition is added, or some A ∈ P,

in which case we add a transition from A1, . . . ,Am to A.

Due to abstraction, unlike SYPET, where the final marking contains a single token in the

result type b, we must allow for several possible final markings. Specifically, we allow the token

to end up in any place A that subsumes b, not just in its most precise abstraction αA(b). This

is because, like any abstract interpretation, abstract type inference might lose precision, and so

requiring that it infer the most precise type αA(b) for the solution would lead to incompleteness.

Enforcing Relevance. Finally, consider copy transitions κ and delete transitions δ : in this

section, we describe an ATN that implements a simple, structural type system, where each

function argument can be used zero or more times. Hence we allow the ATN to duplicate

tokens using κ transitions and discard them using δ transitions. We can easily adapt the ATN

definition to implement a relevant type system by eliminating the δ transitions (this is what our

implementation does, see Sec. 1.5.3); a linear type system can be supported by eliminating both.

1.4.2 The TYGAR Algorithm

The abstract synthesis algorithm from Fig. 1.7 either returns ⊥, indicating that there is no

solution to the synthesis problem, or a term E that is abstractly well-typed. However, this term

may not be concretely well-typed, and hence, may not be a solution to the synthesis problem.

We now turn to the core of our technique: the type-guided abstraction refinement (TYGAR)

algorithm which iteratively refines an abstract cover A until it is specific enough that a solution

to an abstract synthesis problem is also well-typed in the concrete type system.

Fig. 1.7 (right) describes the pseudocode for the TYGAR procedure which takes as input

a (concrete) synthesis problem (Λ, t) and an initial abstract cover A0, and either returns a solution

E to the synthesis problem or ⊥ if t cannot be inhabited using the components in Λ. In every

iteration, TYGAR first solves the abstract synthesis problem at the current level of abstraction A ,

using the previously defined algorithm SYNABSTRACT. If the abstract problem has no solution,

then neither does the concrete one (by Theorem 1.4.1), so the algorithm returns ⊥. Otherwise,
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the algorithm type-checks the term E against the concrete query type. If it is well-typed, then E

is a solution to the synthesis problem (Λ, t); otherwise E is spurious.

Refinement. The key step in the TYGAR algorithm is the procedure REFINE, which takes as

input the current cover A and a spurious program E and returns a refinement A ′ of the current

cover (A ′ ⪯ A) such that E is abstractly ill-typed in A ′ (Λ; · ̸⊢A ′ E ⇐= t). Procedure REFINE

is detailed in Sec. 1.4.3, but the declarative description above suffices to see how it helps the

synthesis algorithm make progress: in the next iteration, SYNABSTRACT cannot return the same

spurious program E, as it no longer type-checks abstractly. Moreover, the intuition is that along

with E the refinement rules out other spurious programs that are ill-typed “for a similar reason”.

Initial Cover. The choice of initial cover A0 has no influence on the correctness of the algorithm.

A natural choice is the most general cover A⊤ = {τ,⊥}. In our experiments (Sec. 1.6) we found

that synthesis is more efficient if we pick the initial cover AQ(bi→ b) = close({τ,bi,b,⊥})6,

which represents the query type t = bi→ b concretely. Intuitively, the reason is that the distinc-

tions between the types in t are very likely to be important for solving the synthesis problem, so

there is no need to make the algorithm re-discover them from scratch.

Soundness and Completeness. SYNTHESIZE is a semi-algorithm for the synthesis problem in

λH .

Theorem 1.4.4 (Soundness). If SYNTHESIZE(Λ, t,A0) returns E then Λ; · ⊢ E :: t.

Proof Sketch. This follows trivially from the type check in line 7 of the algorithm.

Theorem 1.4.5 (Completeness). If ∃E. Λ; · ⊢ E :: t then SYNTHESIZE(Λ, t,A0) returns some

E ′ ̸=⊥.

Proof Sketch. Let E0 be some shortest solution to (Λ, t) and let k be the number of all syntac-

tically valid programs of the same or smaller size than E0 (here, the size of the program is the

number of component applications). Line 4 cannot return ⊥ or a program E that is larger than

6Here close(A) closes the cover under meet, as required by the definition of sublattice.
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Input: A,E, t s.t. Λ; · ̸⊢ E⇐= t
Output: A ′ ⪯ A s.t. Λ; · ̸⊢A ′ E⇐= t

1: function REFINE(A,λxi.ebody,bi→ b)
2: Λ← Λ∪ (r :: b→ b)
3: e*← r ebody
4: for e j ∈ subterms(e*) do
5: Λ;xi : bi ⊢ e j =⇒U [e j]

6: U ← GENERALIZE(U,e*)
7: return close(A ∪ range(U))

Input: U,e s.t. I1∧ I2∧ I3
Output: U ′ s.t. I1∧ I2∧ I3

1: function GENERALIZE(U,e)
2: if e = x then
3: return U
4: else if e = c e j then
5: B j ← weaken U [e j] while JcK(B j)⊑U [e]
6: U ′←U [e j ↦→ B j]
7: for e j do GENERALIZE(U ′,e j)

Figure 1.8. Refinement algorithm.

E0, since E0 is abstractly well-typed at any A by Corollary 1.3.7, and SYNABSTRACT always

returns a shortest abstractly well-typed program, when one exists by Theorem 1.4.2. Line 4 also

cannot return the same solution twice by the property of REFINE. Hence the algorithm must find

a solution in at most k iterations.

When there is no solution, our algorithm might not terminate. This is unavoidable, since

the synthesis problem is only semi-decidable, as we discussed at the beginning of this section. In

practice, we impose an upper bound on the length of the solution, which guarantees termination.

1.4.3 Refining the Abstract Cover

This section details the refinement step of the TYGAR algorithm. The pseudocode is

given in Fig. 1.8. The top-level function REFINE(A,E, t) takes as inputs an abstract cover A ,

a term E, and a goal type t, such that E is ill-typed concretely (Λ; · ̸⊢ E⇐= t), but well-typed

abstractly (Λ; · ⊢A E⇐= t). It produces a refinement of the cover A ′ ⪯ A , such that E is ill-typed

abstractly in that new cover (Λ; · ̸⊢A ′ E⇐= t).

Proof of untypeability. At a high-level, REFINE works by constructing a proof of untypeability

of E, i.e. a mapping U : e→ B⊥ from subterms of E to types, such that if range(U)⊆ A ′ then

Λ; · ̸⊢A ′ E⇐= t (in other words, the types in U contain enough information to reject E). Once U

is constructed, line 7 adds its range to A , and then closes the resulting set under meet.

Let us now explain how U is constructed. Let E .
= λxi.ebody, t .

= bi→ b, and Γ
.
= xi : bi.
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There are two reasons why E might not type-check against t: either ebody on its own is ill-typed

or it has a non-bottom type that nevertheless does not subsume b. To unify these two cases,

REFINE constructs a new application term e* = r ebody, where r is a dedicated component of type

b→ b; such e* is guaranteed to be ill-typed on its own: Λ;Γ ⊢ e* =⇒⊥. Lines 4–5 initialize

U for each subterm of e* with the result of concrete type inference. At this point U already

constitutes a valid proof of untypeability, but it contains too much information; in line 6 the call

to GENERALIZE removes as much information from U as possible while maintaining enough to

prove that e* is ill-typed. More precisely, GENERALIZE maintains three crucial invariants that

together guarantee that U is a proof of untypeability:

I1: (U subsumes concrete typing) For any e ∈ subterms(e*), if Λ;Γ ⊢ e =⇒ B, then B⊑U [e];

I2: (U abstracts type transformers) For any application subterm e = c e j, JcK(U [e j])⊑U [e];

I3: (U proves untypeability) U [e*] =⊥.

Lemma 1.4.6. If I1∧ I2∧ I3 then U is a proof of untypeability: if range(U)⊆ A ′ then Λ; · ̸⊢A ′

E⇐= t.

Proof Sketch. We can show by induction on the derivation that for any A ′⊇ range(U) and node e,

Λ;Γ ⊢A ′ e =⇒ B⊑U [e] (base case follows from I1, and inductive case follows from I2). Hence,

Λ;Γ ⊢A ′ e* =⇒ B⊑U [e*] =⊥ (by I3), so Λ;Γ ⊢A ′ ebody =⇒ B ̸⊑ b, and Λ; · ̸⊢A ′ E⇐= t.

Correctness of GENERALIZE. Now that we know that invariants I1–I3 are sufficient for

correctness, let us turn to the inner workings of GENERALIZE. This function starts with the

initial proof U (concrete typing), and recursively traverses the term e* top-down. At each

application node e = c e j it weakens the argument labels U [e j] (lines 4–7). The weakening step

performs lattice search to find more general values for U [e j] allowed by I2. More concretely,

each new value B j starts out as the initial value of U [e j]; at each step, weakening picks one

B j ̸= ⊥ and moves it upward in the lattice by replacing a ground subterm of B j with a type
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Figure 1.10. SYNTHESIZE on an unsatisfiable problem.

variable; the step is accepted as long as JcK(B j)⊑U [e]. The search terminates when there is no

more B j that can be weakened. Note that in general there is no unique most general value for B j,

we simply pick the first value we find that cannot be weakened any further. The correctness of the

algorithm does not depend on the choice of B j, and only rests on two properties: (1) U [e j]⊑ B j

and (2) JcK(B j)⊑U [e].

We can show that GENERALIZE maintains the invariants I1–I3. I1 is maintained by

property (1) of weakening (we start from concrete types and only move up in the lattice). I2 is

maintained between e and its children e j by property (2) of weakening, and between each e j and

its children because the label of e j only goes up. Finally, I3 is trivially maintained since we never

update U [e*].

Example 1. Let us walk through the refinement step in iteration 2 of our running example from

Sec. 1.2.2. As a reminder, Λ(f) = ∀α.α → M α → α and Λ(l) = ∀β .L β → M β . Consider a call

to REFINE(A,E, t), where A = {τ,A,L τ,⊥}, E = λx1 x2.f x1 (l x2) and t = A → L (M A) → A.

Let us denote Γ = x1 : A,x2 : L (M A). It is easy to see that E is ill-typed concretely but well-typed

abstractly, since, as explained above, Λ;Γ ⊢A l x2 =⇒ τ , and hence Λ;Γ ⊢A f x1 (l x2) =⇒ A.

REFINE first constructs e* = r ebody; the AST for this term is shown on Fig. 1.9 (left). It then

initializes the mapping U with concrete inferred types, depicted as red labels; as expected

U [e*] =⊥. The blue labels show U ′ obtained by calling GENERALIZE through the following

31



series of recursive calls:

• In the initial call to GENERALIZE, the term e is r ebody; although it is an application, we

do not weaken the label for ebody since its concrete type is ⊥, which cannot be weakened.

• We move on to ebody = f x1 l with U [x1] = A and U [l] = M (M A). The former type cannot

be weakened: an attempt to replace A with τ causes JfK to produce M A ̸⊑ ⊥. The latter

type can be weakened by replacing A with τ (since JfK(A,M (M τ)) =⊥), but no further.

• The first child of f, x1, is a variable so U remains unchanged.

• For the second child of f, l = l x2, l’s signature allows us to weaken U [x2] to L (M τ) but

no further, since JlK(L (M τ)) = M (M τ) but JlK(L τ) = M τ ̸⊑ M (M τ).

• Since x2 is a variable, GENERALIZE terminates.

Example 2. We conclude this section with an end-to-end application of TYGAR to a very small

but illustrative example. Consider a library Λ with three type constructors, Z, U, and B (with

arities 0, 1, and 2, respectively), and two components, f and g, such that: Λ(f) = ∀α.B α α

and Λ(g) = ∀β .B (U β ) β → Z. Consider the synthesis problem (Λ,Z), which has no solutions:

the only way to obtain a Z is from g, which requires a B with distinct parameters, but we can

only construct a B with equal parameters (using f). Assume that the initial abstract cover is

A0 = {τ,⊥}, as shown in the upper left of Fig. 1.10. SYNABSTRACT(Λ,Z,A0) returns a program

f, which is spurious, hence we invoke REFINE(A0,f,Z). The results of concrete type inference

are shown as red labels in Fig. 1.10; in particular, note that because f is a nullary component, JfK

is simply a fresh instance of its type, here B τ τ, which can be generalized to B α β: the root

cause of the type error is that r does not accept a B. In the second iteration, A0 = {τ,B α β,⊥} and

SYNABSTRACT(Λ,Z,A1) returns g f, which is also spurious. In this call to REFINE, however,

the concrete type of f can no longer be generalized: the root cause of the type error is that g

accepts a B with distinct parameters. Adding B τ τ to the cover, results in the ATN on the right,

which does not have a valid path (SYNABSTRACT returns ⊥).
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There are three interesting points to note about this example. (1) In general, even concrete

type inference may produce non-ground types, for example: Λ; · ⊢ f=⇒ B τ τ . (2) SYNTHESIZE

can sometimes detect that there is no solution, even when the space of all possible ground base

types is infinite. (3) To prove untypeability of g f, our abstract domain must be able to express

non-linear type-level terms (i.e. types with repeated variables, like B τ τ); we could not, for

example, replace type variables with a single construct ?, as in gradual typing [91].

1.5 Implementation

We have implemented the TYGAR synthesis algorithm in Haskell, in a tool called H+. The

tool relies on the Z3 SMT solver [22] to find paths in the ATN. This section focuses on interesting

implementation details, such as desugaring Haskell libraries into first-order components accepted

by TYGAR, an efficient and incremental algorithm for ATN construction, and the SMT encoding

of ATN reachability.

1.5.1 Desugaring Haskell Types

The Haskell type system is significantly more expressive than that of our core language

λH , and many of its advanced features are not supported by H+. However, two type system

features are ubiquitous in Haskell: higher-order functions and type classes. As we illustrated

in Sec. 1.2.4 and Sec. 1.2.5, H+ handles both features by desugaring them into λH . Next, we

give more detail on how H+ translates a Haskell synthesis problem (Λ̃, t̃) into a λH synthesis

problem (Λ, t):

1. Λ includes a fresh binary type constructor F α β (used to represent function types).

2. Every declaration of type class C τ with methods mi :: ∀τ.Ti in Λ̃ gives rise to a type

constructor CD τ (the dictionary type) and components mi :: ∀τ.CD τ → Ti in Λ. For

example, a type class declaration class Eq α where (==) :: a → a → Bool creates a

fresh type constructor EqD α and a component (==) :: EqD α → α → α → Bool.
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3. Every instance declaration C B in Λ̃ produces a component that returns a dictionary CD B.

So instance Eq Int creates a component eqInt :: EqD Int, while a subclass instance

like instance Eq a => Eq [a] creates a component eqList :: EqD a → EqD [a]. Note

that the exact implementation of the type class methods inside the instance is irrelevant;

all we care about is that the instance inhabits the type class dictionary.

4. For every component c in Λ̃, we add a component c to Λ and define Λ(c) = desugar
(
Λ̃(c)

)
,

where the translation function desugar, which eliminates type class constraints and higher-

order types, is defined as follows:

desugar (∀τ.(C1 τ1, . . . ,Cn τn)⇒ T ) = ∀τ.CD1 τ1→ . . .→ CDn τn→ desugar(T )

desugar(T1→ T2) = base(T1)→ desugar(T2) desugar(B) = B

base(T1→ T2) = F base(T1) base(T2) base(B) = B

For example, Haskell components on the left are translated into λH components on the right:

member :: Eq α => α → [α] → Bool member :: EqD α → α → [α] → Bool

any :: (α → Bool) → [α] → Bool any :: F α Bool → [α] → Bool

5. For every non-nullary component and type class method c in Λ̃, we add a nullary component

c′ to Λ and define Λ(c′)= base(Λ(c)). For example: any’ :: F (F α Bool) (F [α] Bool).

6. Finally, the λH query type t is defined as desugar(t̃).

Limitations. Firstly, in modern Haskell, type classes often constrain higher-kinded type variables;

for example, the Monad type class in the signature return :: Monad m => a → m a is a constraint

on type constructors rather than types. Support for higher-kinded type variables is beyond the

scope of this work. Secondly, in theory our encoding of higher-order functions (Sec. 1.2.4) is

complete, as any program can be re-written in point-free style, i.e. without lambda terms, using

an appropriate set of components [7] including an apply component ($) :: F α β → α → β

that enables synthesizing terms containing partially applied functions. However, in practice we
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found that adding a nullary version for every component significantly increases the size of the

search space and is infeasible for component libraries of nontrivial size. Hence, in our evaluation

we only generate nullary variants of a selected subset of popular components.

1.5.2 ATN Construction

Incremental updates. Sec. 1.4.1 shows how to construct an ATN given an abstract synthesis

problem (Λ, t,A). However, computing the set of ATN transitions and edges from scratch in

each refinement iteration is expensive. We observe that each iteration only makes small changes

to the abstract cover, which translate to small changes in the ATN.

Let A be the old abstract cover and A ′ = A ∪{Anew} be the new abstract cover (if a

refinement step adds multiple types to A , we can consider them one by one). Let parents

be the direct successors of Anew in the ⊑ partial order; for example, in the abstract cover

{τ,P α β,P A β,P α B,P A B,⊥}, the parents of P A B are {P A β,P α B}. Intuitively, adding

Anew to the cover can add new transitions and re-route some existing transitions. A transition

is re-routed if a component c returns a more precise type under A ′ than it did under A , given

the same types as arguments. Our insight is that the only candidates for re-routing are those

transitions that return one of the types in parents. Similarly, all new transitions can be derived

from those that take one of the types in parents as an argument. More precisely, starting from

the old ATN, we update its transitions T and edges E as follows:

1. Consider a transition t ∈ T that represents the abstract instance αA
(
JcK(Ai)

)
= A such that

A ∈ parents; if αA ′
(
JcK(Ai)

)
= Anew, set E(t,A) = 0 and E(t,Anew) = 1.

2. Consider a transition t ∈ T that represents the abstract instance αA
(
JcK(Ai)

)
= A such

that at least one Ai ∈ parents; consider A′i obtained from Ai by substituting at least one

Ai ∈ parents with Anew; if αA ′
(
JcK(A′i)

)
= A′ ̸= ⊥, add a new transition t ′ to T , set

E(t ′,A′) = 1 and add 1 to E(A′i, t
′) for each A′i.

Transition coalescing. The ATN construction algorithm in Sec. 1.4.1 adds a separate transition
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for each abstract instance of each component in the library. Observe, however, that different

components may share the same abstract instance: for example in Fig. 1.3 (1), both c and l

have the type τ → τ. Our implementation coalesces equivalent transitions: an optimization

known in the literature as observational equivalence reduction [103, 2]. More precisely, we do

not add a new transition if one already exists in the net with the same incoming and outgoing

edges. Instead, we keep track of a mapping from each transition to a set of components. Once a

valid path [t1, . . . , tn] is found, where each transition ti represents a set of components, we select

an arbitrary component from each set to construct the candidate program. In each refinement

iteration, the transition mapping changes as follows:

1. new component instances are coalesced into new groups and added to the map, each new

group is added as a new ATN transition;

2. if a component instance is re-routed, it is removed from the corresponding group;

3. transitions with empty groups are removed from the ATN.

1.5.3 SMT Encoding of ATN Reachability

Our encoding differs slightly from that in prior work on SYPET. Most notably, we use

an SMT (as opposed to SAT) encoding, in particular, representing transition firings as integer

variables (instead of Boolean variables). This makes our encoding more compact, which is

important in our setting, since, unlike SYPET, we cannot pre-compute the constraints for a

component library and use them for all queries.

ATN Encoding. Given a ATN N = (P,T,E, I,F), we show how to build an SMT formula φ that

encodes all valid paths of a given length ℓ; the overall search will then proceed by iteratively

increasing the length ℓ. We encode the number of tokens in each place p ∈ P at each time step

k ∈ [0, ℓ] as an integer variable tok
p
k . We encode the transition firing at each time step k ∈ [0, ℓ)

as an integer variable firek so that firek = t indicates that the transition t is fired at time step
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k. For any x ∈ {P∪T}, let the pre-image of x be pre(x) = {y ∈ P∪T | E(y,x) > 0} and the

post-image of x be post(x) = {y ∈ P∪T | E(x,y)> 0}.

The formula φ is a conjunction of the following constraints:

1. At each time step, a valid transition is fired:
∧ℓ−1

k=0 1≤ firek ≤ |T |

2. If a transition t is fired at time step k then all places p ∈ pre(t) have sufficiently many

tokens:
∧ℓ−1

k=0
∧|T |

t=1 firek = t =⇒
∧

p∈pre(t) tok
p
k ≥ E(p, t)

3. If a transition t is fired at time step k then all places p ∈ pre(t)∪ post(t) will have their

markings updated at time step k+1:
∧ℓ−1

k=0
∧|T |

t=1 firek = t =⇒
∧

p∈pre(t)∪post(t) tok
p
k+1 =

tok
p
k −E(p, t)+E(t, p)

4. If none of the outgoing or incoming transitions of a place p are fired at time step k, then the

marking in p does not change:
∧ℓ−1

k=0
∧

p∈P(
∧

t∈pre(p)∪post(p) firek ̸= t) =⇒ tok
p
k+1 = tok

p
k

5. The initial marking is I:
∧

p∈P tok
p
0 = I(p).

6. The final marking is valid:
∨

f∈F

(
tok

f
ℓ = 1∧

∧
p∈P∖{ f} tok

p
ℓ = 0

)
.

Optimizations. Although the validity of the final marking can be encoded as in (6) above, we

found that quality of solutions improves if we enumerate f ∈ F in the order from most to least

precise; in each iteration we enforce tok
f
ℓ = 1 (and tok

p
ℓ = 0 for p ̸= f ), and move to the next

place if no solution exists. Intuitively, this works because paths that end in a more precise place

lose less information, and hence are more likely to produce concretely well-typed programs.

As we mentioned in Sec. 1.4, our implementation adds copy transitions but not delete

transitions to the ATN, thereby enforcing relevant typing. We have also tried an alternative

encoding of relevant typing, which forgoes copy transitions, and instead allows the initial marking

to contain extra tokens in initial places:
∧

p∈{P|I(p)>0} tok
p
0 ≥ I(p) and

∧
p∈{P|I(p)=0} tok

p
0 = 0.

Although this alternative encoding often produces solutions faster (due to shorter paths), we

found that the quality of solutions suffers. We conjecture that the original encoding works well,
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because it biases the search towards linear consumption of resources, which is common for

desirable programs.

1.6 Evaluation

Next, we describe an empirical evaluation of two research questions of H+:

• Efficiency: Is TYGAR able to find well-typed programs quickly?

• Quality of Solutions: Are the synthesized code snippets interesting?

Component library. We use the same set of 291 components in all experiments. To create this

set, we started with all components from 12 popular Haskell library modules,7 and excluded

seven components8 that are highly-polymorphic yet redundant (and hence slowed down the

search with no added benefit).

Query Selection. We collected 44 benchmark queries from three sources:

1. HOOGLE. We started with all queries made to HOOGLE between 1/2015 and 2/2019.

Among the 3.8M raw queries, 71K were syntactically unique, and only 60K could not

be exactly solved by HOOGLE. Among these, many were syntactically ill-formed (e.g.

FromJSON a → Parser a →) or unrealizable (e.g. a → b). We wanted to discard such

invalid queries, but had no way to identify unrealizable queries automatically. Instead

we decided to reduce the number of queries by selecting only popular ones (those asked

at least five times), leaving us with 1750 queries, and then we pruned invalid queries

manually, leaving us with 180 queries. Finally, out of the 180 remaining queries, only 24

were realizable with our selected component set.

7Data.Maybe, Data.Either, Data.Int, Data.Bool, Data.Tuple, GHC.List, Text.Show, GHC.Char, Data.Int,
Data.Function, Data.ByteString.Lazy, Data.ByteString.Lazy.Builder.

8id, const, fix, on, flip, &, (.).
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2. STACKOVERFLOW. We first collected all Haskell-related questions from STACKOVER-

FLOW, ranked them by their view counts, and examined the first 500. Out of 15 queries

with implementations, we selected 6 that were realizable with our component set.

3. Curated. Since we were unable to find many API-related Haskell questions on STACK-

OVERFLOW, and HOOGLE queries do not come with expected solutions and also tend to

be easy, we supplemented the benchmark set with 17 queries from our own experience as

Haskell programmers.

The resulting benchmark set can be found in Fig. 1.11.

Experiment Platform. We ran all experiments on a machine with an Intel Core i7-3770 running

at 3.4Ghz with 32Gb of RAM. The platform ran Debian 10, GHC 8.4.3, and Z3 4.7.1.

1.6.1 Efficiency

Setup. To evaluate the efficiency of H+, we run it on each of the 44 queries, and report the time

to synthesize the first well-typed solution that passes the demand analyzer (Sec. 1.2.3). We set

the timeout to 60 seconds and take the median time over three runs to reduce the uncertainty

generated by using an SMT solver. To assess the importance of TYGAR, we compare five variants

of H+:

1. BASELINE : we monomorphise the component library by instantiating all type constructors

with all types up to an unfolding depth of one and do not use refinement.

2. NOGAR : we build the ATN from the abstract cover AQ, which precisely represents types

from the query (defined in Sec. 1.4.2). We do not use refinement, and instead enumerate

solutions to the abstract synthesis problem until one type checks concretely. Hence, this

variant uses our abstract typing but does not use TYGAR.

3. TYGAR-0, which uses TYGAR with the initial cover A⊤ = {τ,⊥}.

4. TYGAR-Q, which uses TYGAR with the initial cover AQ.
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N Name Query
Time: Total Time: SMT Solver Time: Type Checking # Interesting / All

QB10 Q 0 NO QB10 Q 0 NO QB10 0 NO H+ H-D H-R
1 firstRight [Either a b] -> Either a b 0.3 0.3 0.6 0.3 0.0 0.0 0.1 0.0 0.2 0.2 0.2 2/5 2/5 2/5
2 firstKey [(a,b)] -> a 3.9 21.2 58.4 2.4 17.2 52.2 0.8 0.2 0/2 0/4 0/3
3 flatten [[[a]]] -> [a] 1.7 5.5 1.1 0.5 0.9 2.5 0.3 0.1 0.3 0.2 0.4 5/5 5/5 0/5
4 repl-funcs (a->b)->Int->[a->b] 0.4 0.4 0.7 0.5 0.0 0.0 0.1 0.0 0.3 0.3 0.4 2/5 2/5 1/5
5 containsEdge [Int] -> (Int,Int) -> Bool 15.4 14.4 19.0 5.1 13.2 12.1 15.9 0.8 1.8 0.4 4.1 0/5 0/5 0/5
6 multiApp (a -> b -> c) -> (a -> b) -> a -> c 1.2 2.4 1.2 0.5 0.4 0.9 0.5 0.2 0.3 0.2 0.2 1/5 1/5 1/5
7 appendN Int -> [a] -> [a] 0.3 0.3 0.3 0.3 0.0 0.0 0.0 0.0 0.2 0.3 0.2 2/5 2/5 0/5
8 pipe [(a -> a)] -> (a -> a) 0.7 0.6 2.1 0.7 0.1 0.1 0.6 0.1 0.2 0.7 0.6 1/5 1/5 0/5
9 intToBS Int64 -> ByteString 0.6 0.6 1.6 0.3 0.1 0.1 0.5 0.0 0.3 0.3 0.2 3/5 3/5 0/5

10 cartProduct [a] -> [b] -> [[(a,b)]] 1.5 8.8 1.3 1.3 0.6 5.5 0.4 0.5 0.3 0.2 0.6 0/5 0/5 0/5
11 applyNtimes (a->a) -> a -> Int -> a 6.4 23.5 0.6 1.0 4.9 19.8 0.2 0.3 1.2 0.3 0.6 0/5 0/5 0/5
12 firstMatch [a] -> (a -> Bool) -> a 1.5 1.4 2.4 0.5 0.7 0.6 1.3 0.2 0.2 0.2 0.3 5/5 5/5 5/5
13 mbElem Eq a => a -> [a] -> Maybe a 46.8 5.6 45.5 4.0 0.8 0.3 0/3 0/3 0/5
14 mapEither (a -> Either b c) -> [a] -> ([b], [c]) 2.6 43.7 55.4 3.5 1.7 37.6 49.8 0.5 0.3 0.2 1.7 1/4 1/5 1/1
15 hoogle01 (a -> b) -> [a] -> b 0.5 0.5 1.1 0.3 0.1 0.1 0.3 0.0 0.3 0.3 0.2 2/5 2/5 2/5
16 zipWithResult (a->b)->[a]->[(a,b)] 11.1 9.2 0.7 1/2 1/2 0/5
17 splitStr String -> Char -> [String] 0.7 0.7 1.0 0.4 0.2 0.1 0.3 0.1 0.3 0.3 0.2 0/5 0/5 0/5
18 lookup Eq a => [(a,b)] -> a -> b 0.7 0.7 0.7 0.8 0.2 0.2 0.2 0.3 0.3 0.3 0.3 1/5 1/3 1/4
19 fromFirstMaybes a -> [Maybe a] -> a 1.4 3.0 3.4 0.7 0.3 0.9 1.2 0.1 0.7 0.8 0.5 2/5 2/5 0/5
20 map (a->b)->[a]->[b] 0.3 0.3 0.4 0.4 0.0 0.0 0.1 0.0 0.2 0.2 0.3 5/5 5/5 0/5
21 maybe Maybe a -> a -> Maybe a 0.3 0.4 0.4 0.6 0.1 0.0 0.1 0.1 0.2 0.2 0.5 2/5 1/5 0/5
22 rights [Either a b] -> Either a [b] 1.5 31.9 11.9 0.8 0.6 20.4 5.7 0.1 0.4 0.3 0.6 1/2 1/2 1/5
23 mbAppFirst b -> (a -> b) -> [a] -> b 2.0 1.3 2.0 0.4 1.2 0.4 0.9 0.1 0.3 0.3 0.3 1/3 1/5 0/5
24 mergeEither Either a (Either a b) -> Either a b 2.8 1.0 1.7 0.1 0.6 0.7 0/3 0/3 0/5
25 test Bool -> a -> Maybe a 1.4 8.8 26.4 0.7 0.7 7.1 24.3 0.3 0.2 0.3 0.3 2/5 2/5 0/5
26 multiAppPair (a -> b, a -> c) -> a -> (b, c) 2.0 1.5 1.2 0.3 0.5 1.0 1/2 1/4 0/5
27 splitAtFirst a -> [a] -> ([a], [a]) 0.6 0.6 2.3 0.4 0.1 0.1 1.1 0.1 0.3 0.3 0.2 2/5 2/5 0/5
28 2partApp (a->b)->(b->c)->[a]->[c] 2.3 2.2 22.9 1.5 1.2 1.2 18.7 0.5 0.2 0.3 0.3 1/5 1/5 0/5
29 areEq Eq a => a -> a -> Maybe a 44.9 40.3 3.8 0/2 0/5 0/5
30 eitherTriple Either a b -> Either a b -> Either a b 5.3 3.2 1.9 0.1 2.8 2.9 0/5 0/5 0/5
31 mapMaybes (a -> Maybe b) -> [a] -> Maybe b 0.5 0.5 1.1 0.3 0.1 0.1 0.3 0.0 0.3 0.2 0.2 2/5 2/5 2/5
32 head-rest [a] -> (a, [a]) 1.4 51.1 1.0 0.8 0.7 40.6 0.3 0.1 0.2 0.3 0.6 3/5 3/5 2/5
33 appBoth (a -> b) -> (a -> c) -> a -> (b, c) 2.1 2.8 51.1 1.3 1.5 44.3 0.3 0.3 1/5 1/5 1/1
34 applyPair (a -> b, a) -> b 1.2 1.1 3.6 0.6 0.4 0.4 1.6 0.1 0.2 0.3 0.4 2/3 2/5 1/5
35 resolveEither Either a b -> (a->b) -> b 1.0 1.3 1.5 0.5 0.4 0.5 0.6 0.2 0.2 0.2 0.2 1/5 1/2 1/5
36 head-tail [a] -> (a,a) 2.2 20.2 1.5 0.4 0.3 18.8 0/5 0/5 0/5
37 indexesOf ([(a,Int)] -> [(a,Int)]) -> [a] -> [Int] -> [Int]
38 app3 (a -> b -> c -> d) -> a -> c -> b -> d 0.3 0.3 0.3 0.3 0.0 0.0 0.0 0.0 0.2 0.3 0.2 1/5 1/5 1/5
39 both (a -> b) -> (a, a) -> (b, b) 1.1 1.3 0.5 0.2 0.3 1.0 1/1 1/1 0/5
40 takeNdropM Int -> Int -> [a] -> ([a], [a]) 0.4 0.4 1.3 0.4 0.0 0.0 0.4 0.0 0.3 0.3 0.3 5/5 5/5 0/5
41 firstMaybe [Maybe a] -> a 1.2 1.6 1.4 0.7 0.5 0.6 0.4 0.1 0.2 0.2 0.5 4/5 4/5 2/5
42 mbToEither Maybe a -> b -> Either a b 47.4 21.7 24.2 0/2 0/5 0/5
43 pred-match [a] -> (a -> Bool) -> Int 1.1 1.1 3.6 0.4 0.4 0.4 2.0 0.1 0.3 0.3 0.2 3/5 3/5 3/5
44 singleList Int -> [Int] 0.3 0.3 0.4 0.3 0.0 0.0 0.0 0.0 0.2 0.2 0.3 1/5 1/5 0/5

Figure 1.11. H+ synthesis times and solution quality on 44 benchmarks. We report the total
time to first solution, time spend in the SMT solver, and time spent type checking (including
demand analysis). ‘QB10’, ‘Q’, ‘0’, ‘NO’ correspond to four variants of the search algorithm:
TYGAR-QB [10], TYGAR-Q, TYGAR-0, and NOGAR . All times are in seconds. Absence
indicates no solution found within the timeout of 60 seconds. Last three columns report the
number of interesting solutions among the first five (or fewer, if fewer solutions were found
within the timeout of 100 seconds). ‘H+’, ‘H-D‘, and ‘H-R‘ correspond, respectively, to the
default configuration of H+, disabling the demand analyzer, and using structural typing over
relevant typing.
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Figure 1.12. Queries solved over time for our
initial variants as well as the best refinement
bound.

Figure 1.13. Queries solved over time for vary-
ing refinement bounds. The variant’s number
indicates the boundary of refinement steps.

5. TYGAR-QB [N], which is like TYGAR-Q, but the size of the abstract cover is bounded:

once the cover reaches size N, it stops further refinement and reverts to NOGAR -style

enumeration.

Results. Fig. 1.11 reports total synthesis time for four out of the five variants. BASELINE did

not complete any benchmark within 60 seconds: it spent all this time creating the TTN, and is

thus is omitted from tables and graphs. Fig. 1.12 plots the number of successfully completed

benchmarks against time taken for the remaining four variants (higher and weighted to the left is

better). As you can see, NOGAR is quite fast on easy problems, but then it plateaus, and can

only solve 37 out of 44 queries. On the other hand, TYGAR-0 and TYGAR-Q are slower, and

only manage to solve 35 and 34 queries, respectively. After several refinement iterations, the

ATNs grow too large, and these two variants spend a lot of time in the SMT solver, as shown in

columns st-Q and st-0 in Fig. 1.11. Other than BASELINE , no other variant spent any meaningful

amount of time building the ATN.

Bounded Refinement. We observe that NOGAR and TYGAR-Q have complimentary strengths

and weaknesses: although NOGAR is usually faster, TYGAR-Q was able to find some solutions

that NOGAR could not (for example, query 33: appBoth). We conclude that refinement is able
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to discover interesting abstractions, but because it is forced to make a new distinction between

types in every iteration, after a while it is bound to start making irrelevant distinctions, and

the ATN grows too large for the solver to efficiently navigate. To combine the strengths of the

two approaches, we consider TYGAR-QB, which first uses refinement, and then switches to

enumeration once the ATN reaches a certain bound on its number of places. To determine the

optimal bound, we run the experiment with bounds 5, 10, 15, and 20.

Fig. 1.13 plots the results. As you can see, for easy queries, a bound of 5 performs the

best: this correspond to our intuition that when the solution is easily reachable, it is faster to

simply enumerate more candidates than spend time on refinement. However, as benchmarks get

harder, having more places at ones disposal renders searches faster: the bounds of 10 and 15

seem to offer a sweet spot. Our best variant—TYGAR-QB [10]—solves 43 out of 44 queries with

the median synthesis time of 1.4 seconds; in the rest of this section we use TYGAR-QB [10] as

the default H+ configuration.

TYGAR-QB [10] solves all queries that were solved by NOGAR plus six additional

queries on which NOGAR times out. A closer look at these six queries indicates that they

tend to be more complex. For example, recall that NOGAR times out on the query appBoth,

while TYGAR-QB [10] finds a solution of size four in two seconds. Generally, our benchmark

set is favorable for NOGAR : most HOOGLE queries are easy, both because of programmers’

expectations of what HOOGLE can do and also because we do not know the desired solution, and

hence consider any (relevantly) well-typed solution correct. The benefits of refinement are more

pronounced on queries with solution size four and higher: TYGAR-QB [10] solves 6 out of 7,

while NOGAR solves only 2.

1.6.2 Quality of Solutions

Setup. To evaluate the quality of the solutions, we ask H+ to return, for each query, at most

five well-typed results within a timeout of 100 seconds. Complete results are available in [43].

We then manually inspect the solutions and for each one determine whether it is interesting,
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i.e. whether it is something a programmer might find useful, based on our own experience as

Haskell programmers9. Fig. 1.11 reports for each query, the number of interesting solutions,

divided by the number of total solutions found within the timeout. To evaluate the effects of

relevant typing and demand analysis (Sec. 1.2.3), we compare three variants of H+: (1) H+ with

all features enabled, based on TYGAR-QB, labeled H+. (2) Our tool without the demand analyzer

filter, labeled H-D. (3) Our tool with structural typing in place of the relevant typing, labeled H-R

(in this variant, the SMT solver is free to choose any non-negative number of tokens to assign to

each query argument).

Analysis. First of all, we observe that whenever an interesting solution was found by H-D or H-R,

it was also found by H+, indicating that our filters are not overly conservative. We also observe

that on easy queries—taking less than a second—demand analysis and relevant typing did little

to help: if an interesting solution were found, then all three variants would find it and give it a

high rank. However, on medium and hard queries—taking longer than a second—the demand

analyzer and relevant typing helped promote interesting solutions higher in rank. Overall, 66/179

solutions produces by H+ were interesting (37%), compared with 65/189 for H-D (34%) and

26/199 for H-R (13%). As you can see, relevant typing is essential to ensure that interesting

solutions even get to the top five, whereas demand analysis is more useful to reduce the total

number of solutions the programmer has to sift through. This is not surprising, since relevant

typing mainly filters out short programs while demand analysis is left to deal with longer ones.

In our experience, demand analysis was most useful when queries involved types like Either a b,

where one could produce a value of type a from a value of type b by constructing and destructing

the Either. One final observation is that in benchmarks 14, 18, 33, and 35, H-R found fewer

results in total that the other two versions; we attribute this to the SMT solver struggling with

determining the appropriate token multiplicities for the initial marking.

Noteworthy solutions. We presented three illustrative solutions generated by H+ as examples

9Unfortunately, we do not have ground truth solutions for most of our queries, so we have to resort to subjective
analysis.
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throughout Sec. 1.2:

• a → [Maybe a] → a corresponds to benchmark 19 (fromFirstMaybes); the solution from

Sec. 1.2 is generated at rank 18.

• (a → a) → a → Int → a corresponds to benchmark 11 (applyNTimes); the solution

from Sec. 1.2 is generated at rank 10.

• Eq a => [(a,b)] → a → b corresponds to benchmark 18 (lookup); the solution from

Sec. 1.2 is generated at rank 1.

H+ has also produced code snippets that surprised us, and one example of them is the query

(a → b, a) → b. On this query, the authors’ intuition was to destruct the pair then apply the

function. Instead H+ produces \x → uncurry ($) x or alternatively \x → uncurry id x, both

of which, contrary to our intuition, are not only well-typed, but also are functionally equivalent

to our intended solution. It was welcome to see a synthesis tool write more succinct code that its

authors.

1.7 Related Work

Finally, we situate our work with other research into ways of synthesizing code that

meets a given specification. For brevity, we restrict ourselves to the (considerable) literature that

focuses on using types as specifications, and omit discussing methods that use e.g. input-output

examples or tests [39, 55, 62, 75], logical specifications [95, 31] or program sketches [94].

API Search. Modern IDEs support various forms of code-completion, based on at the very

least common prefixes of names (e.g. completing In into Integer or fo into foldl’) and so on.

Many tools use type information to only return completions that are well-typed at the point of

completion. This approach is generalized by search based tools like HOOGLE [68] that search

for type isomorphisms [24] to find functions that “match” a given type signature (query). The
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above can be viewed as returning single-component results, as opposed to our goal of searching

for terms that combine components in order to satisfy a given type query.

Search using Statistical Models. Several groups have looked into using statistical methods

to improve search-based code-completion. One approach is to analyze large code bases to

precompute statistical models that can be used to predict the most likely sequences of method calls

at a given point or that yield values of a given (first order) type [86]. It is possible to generalize

the above to train probabilistic models (grammars) that generate the most likely programs that

must contain certain properties like method names, types, or keywords [69]. We conjecture that

while the above methods are very useful for effectively searching for commonly occurring code

snippets, they are less useful in functional languages, where higher-order components offer high

degree of compositionality and lead to less code repetition.

Type Inhabitation. The work most directly related to ours are methods based on finding terms

that inhabit a (query) type [98]. One approach is to use the correspondence between types and

logics, to reduce the inhabitation question to that of validity of a logical formula (encoding the

type). A classic example is DJINN [5] which implements a decision procedure for intuitionistic

propositional calculus [25] to synthesize terms that have a given type. Recent work by Rehof

et al. extends the notion of inhabitation to support object oriented frameworks whose components

behaviors can be specified via intersection types [48]. However, both these approaches lack a

relevancy requirement of its snippets, and hence return undesirable results. For example, when

queried with a type a → [a], DJINN would yield a function that always returns the empty list.

One way to avoid undesirable results is to use dependent or refinement types to capture the

semantics of the desired terms more precisely. SYNQUID [81] and MYTH2 [30] use different

flavors of refinement types to synthesize recursive functions, while AGDA [74] makes heavy use

of proof search to enable type- or hole-driven development. However, unlike H+, methods based

on classical proof search do not scale up to large component libraries.

Scalable Proof Search. One way to scale search is explored by [77] which uses a very restricted

45



form of inhabitation queries to synthesize local “auto-completion” terms corresponding to

method names, parameters, field lookups and so on, but over massive component libraries

(e.g. the .NET framework). In contrast, the INSYNTH system [47] addresses the problem of

scalability by extending proof search with a notion of succinctness that collapses types into

equivalence classes, thereby abstracting the space over which proof search must be performed.

Further, INSYNTH uses weights derived from empirical analysis of library usage to bias the

search to more likely results. However, INSYNTH is limited to simple types i.e. does not support

parametric polymorphism which is the focus of our work.

Graph Reachability. Our approach is directly inspired by methods that reduce the synthesis

problem to some form of reachability. PROSPECTOR [64] is an early exemplar where the

components are unary functions that take a single input. Consequently, the component library

can be represented as a directed graph of edges between input and output types, and synthesis

is reduced to finding a path from the query’s input type to its output type. SYPET [27], which

forms the basis of our work, is a generalization of PROSPECTOR to account for general first-order

functions which can take multiple inputs, thereby generalizing synthesis to reachability on

Petri nets. The key contribution of our work is the notion of TYGAR that generalizes SYPET’s

approach to polymorphic and higher-order components.

Counterexample-Guided Abstraction Refinement. While the notion of counterexample-guided

abstraction refinement (CEGAR) is classical at this point [17], there are two lines of work in

particular closely related to ours. First, [32, 56] describe an iterative abstraction-refinement

process for verifying Petri nets, using SMT [26]. However, in their setting, the refinement loop is

used to perform unbounded verification of the (infinite-state) Petri net. In contrast, H+ performs

a bounded search on each Petri net, but uses TYGAR to refine the net itself with new type

instantiations that eliminate the construction of ill-typed terms. Second, BLAZE [103] describes

a CEGAR approach for synthesizing programs from input-output examples, by iteratively

refining finite tree-automata whose states correspond to values in a predicate-abstraction domain.
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Programs that do not satisfy the input-output tests are used to iteratively refine the domain until

a suitable correct program is found. Our approach differs in that we aim to synthesize terms

of a given type. Consequently, although our refinement mechanism is inspired by BLAZE, we

develop a novel abstract domain—a finite sub-lattice of the type subsumption lattice—and show

how to use proofs of untypeability to refine this domain. Moreover, we show how CEGAR can

be combined with Petri nets (as opposed to tree automata) in order to enforce relevancy.

Types and Abstract Interpretation. The connection between types and abstract interpretation

(AI) was first introduced in [18]. The goal of their work, however, was to cast existing type

systems in the framework of AI, while we use this framework to systematically construct new

type systems that further abstract an existing one. More recently, [33] used the AI framework to

formalize gradual typing. Like that work, we use AI to derive an abstract type system for our

language, but otherwise the goals of the two techniques are very different. Moreover, as we hint

in Sec. 1.4.3, our abstract domain is subtly but crucially different from traditional gradual typing,

because our refinement algorithm relies on non-linear terms (i.e. types with repeated variables).
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Chapter 2

Type-Directed Program Synthesis Using
Equality-Constrained Tree Automata

2.1 Introduction

From program synthesis to theorem proving and compiler optimizations, a range of

problem domains make use of data structures that compactly represent large spaces of terms. In

program synthesis, the most well-known example is version space algebras (VSAs) [61, 83], the

data structure behind the successful spreadsheet-by-example tool FLASHFILL [40]. Although

there may be over 10100 programs matching an input/output example, FLASHFILL is able to

represent all of them as a compact VSA, efficiently run functions over every program in the

space, and then extract the best concrete solution.

To illustrate the idea behind VSAs, consider the space of nine terms T = {f(t1)+ f(t2)}

where t1, t2 ∈ {a,b,c}. Fig. 2.1a shows a VSA that represents this space. In a VSA a union node,

marked with ∪, represents a union of all its children, while a join node, marked with ▷◁, applies

a function symbol to every combination of terms represented by its children. You can see how,

by exploiting the shared top-level structure of the terms in T , this VSA is able to compactly

represent nine terms, each of size five, using only six nodes.

Another data structure that exploits sharing in a similar way is e-graphs, which enjoy

a wide range of applications, including theorem proving [23], rewrite-based optimization [97],

domain-specific synthesis [70, 71], and semantic code search [85]. Both VSAs and e-graphs
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Figure 2.1. Representations of T = {f(t1) + f(t2)} and U = {f(t) + f(t)}, where t, t1, t2 ∈
{a,b,c}.

are now known [82, 58] to be equivalent to special cases of finite tree automata (FTAs), which

have independently experienced a surge of interest in recent years [1, 102, 104]. Fig. 2.1b

shows an FTA that represents the same term space as the VSA in Fig. 2.1a. An FTA consists

of states (circles) and transitions (rectangles), with each transition connecting zero or more

states to a single state. Intuitively, FTA transitions correspond to VSA’s join nodes, and FTA

states correspond to VSA’s union nodes (although in a VSA, union nodes with a single child

are omitted). Importantly, all three data structures1 thrive on spaces where terms share some

top-level structure, while their divergent sub-terms can be chosen independently of each other.

Challenge: Dependent Joins. Consider now the term space U = {f(t)+ f(t)}, where t ∈ {a,b,c},

that is, a sub-space of T where both arguments to f must be the same term. Such “entangled” term

1We omit e-graphs from Fig. 2.1 for space reasons, but also because e-graphs are typically used to represent
congruence relations rather than arbitrary sets of terms, which makes them less relevant to our setting, as we discuss
in Sec. 2.9.
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spaces arise naturally in many domains. For example, in term rewriting or logic programming,

we might want to represent the subset of T that matches the non-linear pattern X +X . Similarly,

in type-driven API search [68, 35], we might want to represent the space of all types of library

functions that unify with a given query type, such as List α → List α .

Existing data structures are incapable of fully exploiting shared structure in such entangled

spaces. Fig. 2.1c shows a VSA representing U: here, the node +▷◁ cannot be reused because VSA

joins are independent, whereas our example requires a dependency between the two children

of +. This limitation is well-known: for example, the seminal work on VSAs [61] notes that

“efficient representation of non-independent joins remains an item for future work.”

Solution: ECTA. To address this limitation, we propose a new data structure we dub equality-

constrained tree automata (ECTAs). ECTAs are tree automata whose transitions can be annotated

with equality constraints.2 For example, Fig. 2.1d shows an ECTA that represents the term space

U. It is identical to the FTA in Fig. 2.1b save for the constraint 0.0 = 1.0 on its + transition.

This constraint restricts the set of terms accepted by the automaton to those where the sub-term

at path 0.0 (the first child of the first child of +) equals the sub-term at path 1.0 (the first child of

the second child of +). The constraint enables this ECTA to represent a dependent join while

still fully exploiting shared structure, unlike the VSA in Fig. 2.1c.

Challenge: Enumeration. Being able to represent a term space is not particularly useful unless

we also can efficiently extract a concrete inhabitant of this space—or, more generally, enumerate

some number of its inhabitants. Unsurprisingly, equality constraints make enumeration harder,

since the terms must now comply with those constraints (in fact, as we demonstrate in Sec. 2.7.1,

extracting a term for an ECTA is at least as hard as SAT solving). A naïve fix is to filter

out spurious (constraint-violating) terms after the fact, but such “rejection sampling” can be

extremely inefficient.

Solution: Dynamic and Static Reduction. Our first insight for how to speed up enumeration is

2This might remind some readers of Dauchet’s reduction automata; we postpone a detailed comparison to related
work (Sec. 2.9).

50



inspired by constraint-based type inference. Instead of making an eager choice at a constrained

state, such as q1 in Fig. 2.1d, our enumeration technique postpones this choice, instead introduc-

ing a “unification variable” V1 to stand for the chosen term. This variable gets reused the second

time q1 is visited. At the end, V1 is reified into a concrete term, thereby making a simultaneous

choice at the two constrained states, which is guaranteed by construction to satisfy all equality

constraints. We dub this mechanism dynamic reduction, where “dynamic” refers to operating

during the enumeration process. As we illustrate in Sec. 2.2, dynamic reduction becomes more

involved when equality constraints relate different states: in that case the term space associated

with a unification variable gets refined during enumeration.

Our second insight is that enumeration can often be made even more efficient by trans-

forming the ECTA statically—that is, before the enumeration starts—so that some of its con-

straints are “folded” into the structure of the underlying FTA. We will present examples in

Sec. 2.2 of using static reduction to “prune” away states that cannot be part of any term that

satisfies the constraints.

Contributions. In summary, this chapter makes the following contributions:

1. We introduce the ECTA data structure (Sec. 2.3), which supports compact representation

of program spaces with dependent joins, as well as efficient enumeration (Sec. 2.4) via

static and dynamic reduction. We first formalize the simpler acyclic ECTAs, and then

show how to add cycles in order to support infinite term spaces (Sec. 2.5).

2. We develop ECTA encodings for two diverse domains: Boolean satisfiability and type-

driven program synthesis (Sec. 2.7). These encodings illustrate that ECTAs are expressive

and versatile, and that ECTA enumeration can effectively be used as a general-purpose

constraint solver.

3. We implement the data structure and its operations in a performant Haskell library, ECTA.

We evaluate the ECTA library on the domain of type-driven program synthesis (Sec. 2.8).
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The experiments show that our ECTA-based synthesizer HECTARE significantly outperforms

its state-of-the-art competitor HOOGLE+ [44], despite our implementation being only a tenth

of the size. Specifically, HECTARE is able to solve 88% of synthesis problems in the combined

benchmark suite compared to only 64% by HOOGLE+, and on commonly solved benchmarks

HECTARE is 7× faster on average. Further, our evaluation demonstrates that static and dynamic

reduction are critical for performance: ablating either of those mechanisms reduces the number

of benchmarks solved, while a naïve baseline that uses “rejection sampling” enumeration is

unable to solve any benchmarks.

2.2 ECTA by Example

In this section we illustrate the ECTA data structure and its two major features—static

and dynamic reduction—using the problem of type-driven program synthesis as a motivating

example. We give a simple encoding of the space of well-typed small programs into ECTAs,

and then show how the general-purpose ECTA operations are used to efficiently enumerate

the well-typed terms. We will present the full encoding, which also handles arbitrary prenex

polymorphism and higher-order functions, in Sec. 2.7, along an with ECTA encoding of another

problem domain.

2.2.1 Representing Spaces of Well-Typed Terms

Consider a typing environment Γ1 = {x : Int,y : Char, f : Bool→ Bool,g : Int→ Bool,h :

Char→ Int}. Suppose we are interested in enumerating all application terms that are well-typed

in Γ1; for now let us restrict our attention to terms of size two—that is, applications of variables

to variables. The space of all such terms can be compactly represented with an ECTA, as shown

in Fig. 2.2a.

This ECTA has a transition for each variable in Γ1; scalar variables (x and y) are annotated

with their type, while functions ( f , g, and h) are annotated with an argument type targ and

a return type tret. The node (state) unary represents the space of all unary variables, while
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app fun.targ=arg.type

unary scalar

fun arg

f g h x y

Bool

targ tret

Bool Int

targ tret

Bool Char

targ tret

Int Int Char

type type

(a) Initial ECTA.

app fun.targ=arg.type

unary scalar

fun arg

g h x y

Int

targ tret

Bool Char

targ tret

Int Int Char

type type

(b) Reduced ECTA.

Figure 2.2. ECTAs representing all well-typed size-two terms in the environment Γ1.

the node scalar represents the space of all scalars. The accepting node has a single incoming

transition app, which represents an application of a unary fun to a scalar arg, fulfilling the

restriction to size-two terms.3

While the underlying tree automaton of this ECTA (its skeleton) accepts all terms of

the form A B where A ∈ { f ,g,h} and B ∈ {x,y}; most of these terms, such as f x are ill-typed.

In order to restrict the set of represented terms to only well-typed ones, there is an equality

constraint fun.targ = arg.type attached to the app transition, which demands that the types of

the formal and the actual arguments coincide. Thanks to this constraint, the full ECTA accepts

only the two well-typed terms, g x and h y. (Note that in this presentation, we give names to the

incoming edges of each transition to make the constraints more readable; in the formalization,

we instead use indices to refer to the edges.)

2.2.2 Static Reduction

How would one go about enumerating the terms represented by the ECTA in Fig. 2.2a?

A naïve approach is to (1) enumerate all terms represented by its skeleton and (2) filter out those

terms that violate the constraint. Step 1 is easily accomplished via depth-first search, starting

from the root (the accepting node) and picking a single incoming transition for every node. This

3In our full encoding in Sec. 2.7 we remove the distinction between the terms of different arity in order to
support higher-order and partial applications.
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approach is, however, inefficient: it ends up constructing six terms, only to filter out four of

them. In ECTA terminology, the skeleton admits six runs, four of which are spurious (violate the

constraints).

Our first key insight is that enumeration can often be made more efficient by transforming

the ECTA’s skeleton so as to reduce the number of spurious runs. We refer to this transformation

as static reduction (because it happens once, before the enumeration starts). The reduced ECTA

for our example is given in Fig. 2.2b. Intuitively, we were able to eliminate the f transition

entirely because there are no scalar variables that match its formal argument type Bool; as a

result the reduced ECTA contains only two spurious runs instead of four.

More formally, static reduction works via automata intersection. For the ECTA in

Fig. 2.2a, reducing the constraint fun.targ = arg.type involves constructing an automaton that

accepts all terms reachable via the path arg.type—namely Int and Char—and intersecting it

with each node at the path fun.targ. Since the child node of f labeled targ represents only Bool,

the intersection for that child is empty, meaning the f transition can never be used to satisfy the

constraint, and hence can be eliminated. The reduction algorithm performs a similar intersection

for g and h, as well as (in the other direction) x and y, but finds that each of these other choices

could be part of a satisfying run, and eliminates no further transitions.

2.2.3 Type-Driven Program Synthesis with ECTAs

In type-driven program synthesis, we are typically not interested in all well-typed terms,

but rather terms of a given query type. The ECTA in Fig. 2.3 (left) represents a type-driven

synthesis problem with the same environment Γ1 as before and query type Bool. The main

difference between this automaton and the one in Fig. 2.2b is the new transition query, whose

type edge encodes the given query type and whose term edge connects to the node representing

all well-typed terms in the search space. To filter out the terms of undesired types, constraint 1○

prescribes that the term’s type be equal to the query type. In order for this constraint to make

sense, we also add a type annotation to the app transition; the type of an application is initially
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query

qtype

Bool

type

term2

term

type=term.type1

app

unary scalar

fun arg

g h x y

Int

targ tret

Bool Char

targ tret

Int Int Char

base

Bool Char Int

type

type type

type=fun.tret2
fun.targ=arg.type3

query

term2

term

type=term.type1

app

unary scalar

fun arg

g h x y

Int

targ tret

Bool Char

targ tret

Int Int Char

base

Bool Char Int

type

type type

type=fun.tret2
fun.targ=arg.type3

1

2 3

qtype

Bool

type

Figure 2.3. ECTAs representing size-two terms of type Bool. The diagram on the right shows
how a sequence of static reductions on the constraints 1○, 2○, and 3○ eliminates the grayed-out
transitions and nodes.

undetermined (can be any base type), but is restricted by a new constraint 2○ to coincide with the

return type of the function.

Fig. 2.3 (right) demonstrates a sequence of static reductions that happens to eliminate all

spurious run of this ECTA, until its skeleton represents the sole solution to the synthesis problem:

the term g x. First, reducing constraint 1○ eliminates all possible types of the application except

Bool; next, reducing 2○ eliminates the function h as it has a wrong return type; finally, reducing

3○ eliminates the argument y, since it is incompatible with the only remaining function g.

2.2.4 Dynamic Reduction

In the previous example, static reduction was able to eliminate all spurious runs of the

ECTA before enumeration. so that no spurious runs remained. This is not always possible.

Consider a slightly more involved version of type-driven synthesis where functions can be

polymorphic. Specifically let Γ2 = {x : Int,y : Char,g : ∀α.α → α,h : Char → Bool}, and

suppose we are interested in all size-two terms of types Int or Bool. This problem can be

represented by the ECTA in Fig. 2.4, which is similar to the one in Fig. 2.3. The only interesting

difference is how the polymorphic type of g is represented: the type variable α is encoded as a
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query

Bool

type

term2

term

type=term.type1

app

unary scalar

fun arg

g h x y

targ tret

Char

targ tret

Bool Int Char

base

Bool Char Int

type

type type

type=fun.tret2
fun.targ=arg.type3

Int

targ=tret4

base

Bool Char Int

qtype query
type

term

app

scalar
fun arg

g

x y

targ tret

Int Char

type

type type

Bool Int

V0

V1

V1

V1

V1

(.type=       )V1

Figure 2.4. Type-driven synthesis with polymorphic functions. Left: ECTA representing all
terms of types Bool or Int in Γ2. Grayed-out transitions are eliminated by static reduction. Right:
Intermediate state during enumeration. The choice of the query type has been suspended into an
auxiliary automaton V1.

union of all types it can unify with—here Bool, Char, and Int.4 Crucially, the constraint 4○ on g

guarantees that the same type is used to instantiate both occurrences of α .

Although static reduction can eliminate some of the transitions in this ECTA (shown in

gray), a fair number of spurious runs remain. For example, a naïve left-to-right enumeration

would first pick Bool as the query type and g as the function (forcing the selection of Bool→ Bool

as the type of g), only to discover later that there is no argument of type Bool. More generally, in

the presence of constraints, the choices made for constrained nodes are not independent, and

making a wrong combination of choices early on (such as Bool and g in our example) may lead

to expensive backtracking further down the line.

Our second key insight is that such backtracking can be avoided by deferring the

enumeration of constrained nodes until more information is available. Fig. 2.4 (right) illustrates

this idea. It depicts a partially enumerated term from the ECTA on the left. You can think of a

partially enumerated term as a tree fragment at the top with yet-to-be-enumerated ECTAs among

4Here we consider a limited form of polymorphism, where type variables can be instantiated only with base
types; this restriction is relaxed in Sec. 2.7.
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the branches. Importantly, because the node qtype is constrained (by 1○), it is not enumerated

eagerly, but instead suspended into a named sub-automaton V1. As the enumeration encounters

each other node n constrained to be equal to qtype (via 1○, 2○, and 4○), n is replaced by a

reference to V1, while V1 is updated to V1⊓n. Thus, to arrive at Fig. 2.4 (right), the enumeration

has made a single decision—picking g over h—whereas all the other choices have been deferred.

Finally, the enumeration picks x among the two scalars. The type state of x—let’s call

it nx—represent a singleton {Int} and is constrained to equal V1 (by 3○). As a result, V1 gets

intersected with nx, eliminating its Bool alternative. Now when it comes time to “unsuspend” V1,

it only contains a single alternative, Int, which is already guaranteed to be consistent with all

constraints. In other words, we have found the solution g x5 without having to explicitly search

over all possible query types, result types of the application, or instantiations of g; instead all

these three choices were made simultaneously and consistency. We refer to this mechanism as

dynamic reduction because it reduces the number of explored spurious runs during enumeration.

2.3 Acyclic ECTA

This section formalizes the ECTA data structure and its core algorithms. We begin by

presenting the special case of ECTAs without cycles, which simplifies both the theory and

implementation. Proofs of all theorems omitted from this and the following sections can be

found in [59].

2.3.1 Preliminaries

We first present standard definitions of terms, paths, and the prefix-free property from

the term-rewriting literature.

Terms. A signature Σ is a set of function symbols, each associated with a natural number by the

arity function. T (Σ) denotes the set of terms over Σ, defined as the smallest set containing all

5The only other solution to this synthesis problem is h y, which is discovered after backtracking and picking h
over g.
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s(t0, . . . , tk−1) where s ∈ Σ, k = arity(s), and t0, . . . , tk−1 ∈ T (Σ). We abbreviate nullary terms of

the form s() as s.

Paths. Paths are used to denote locations inside terms. Formally, a path p is a list of natural

numbers i1.i2. . . . .ik ∈ N*. The empty path is denoted ε , and p1.p2 denotes the concatenation of

paths p1 and p2. We write p1 ⊑ p2 if p1 is a prefix of p2 (and p1 ⊏ p2 if it is a proper prefix). A

set P of paths is prefix-free if there are no p1, p2 ∈ P such that p1 ⊏ p2.

Given a term t ∈ T (Σ), a subterm of t at path p, written t|p, is inductively defined

as follows: (i) t|ε = t (ii) s(t0, . . . , tk−1)|i.p = ti|p if i < k and ⊥ otherwise. For example, for

t =+( f (a), f (b)): t|0.0 = a, t|1.0 = b and t|2.0 =⊥.

2.3.2 Path Constraints and Consistency

The difference between ECTAs and conventional tree automata is the presence of path

equalities, such as 0.0 = 1.0 in Fig. 2.1d. We now formalize the semantics of these path

equalities over terms, before using them to define the ECTA data structure. In the following, we

are interested in equalities between an arbitrary number n > 0 of paths rather than just two paths;

we refer to such n-ary constraints as path equivalence classes (PECs).

Definition 2.3.1 (Path Equivalence Classes). A path equivalence class (PEC) c, is a set of paths.

We write a PEC {p1, p2, . . . , pn} as {p1 = p2 = · · ·= pn}.

Intuitively, the constraint 0.0 = 1.0 is satisfied on a term t if t|0.0 = t|1.0; this notion generalizes

straightforwardly to non-binary PECs:

Definition 2.3.2 (Satisfaction of a PEC, Value at a PEC). A path equivalence class c = {p1 =

· · ·= pn} is satisfied on a term t if there is some t ′ such that, ∀pi ∈ c, t|pi = t ′. We write t |= c if

this condition holds, and t|c to denote this unique t ′.

Finally, we discuss sets of PECs, called path constraint sets (PCSs):
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Definition 2.3.3 (Path Constraint Sets, Satisfaction, Consistency). A path constraint set C =

{c1, . . . ,cm} is a set of disjoint path equivalence classes. A term t satisfies C, written t |=C, if

∀c ∈C, t |= c. If there exists a t such that t |=C, then C is consistent; otherwise, it is inconsistent.

Note that any set of PECs can be normalized into a PCS by merging non-disjoint PECs; for

example, the set {{0 = 1},{1 = 2}} can be normalized into {{0 = 1 = 2}}. In the following,

we assume that the results of all PCS operations (e.g. C1∪C2) are always implicitly normalized.

We are interested in detecting inconsistent PCSs because ECTA operations can use this

property to prune empty subautomata. For a single PEC c, consistency is rather straightforward:

c is consistent iff it is prefix-free.6 A non-prefix-free PEC, such as 1.0.0 = 1, requires a term

to be equal to its subterm, which is impossible since terms are finite trees. For a PCS, however,

the story is more complicated: in particular, it is not sufficient that each of its member PECs is

prefix-free, because two PECs may reference subterms of each other. For example, consider the

PCS C = {c1,c2}= {{0 = 1.0},{0.0 = 1}}. Although c1 and c2 are prefix-free, together they

imply an inconsistent constraint 1.0.0 = 1, which can be obtained by substituting 1.0 for 0 in c2,

as justified by c1.

For more intuition, consider two patterns f (A,g(A)) and f (g(B),B); it is easy to see that

the terms matching these patterns satisfy the PECs c1 and c2, respectively. The conjunction of

the two PECs corresponds to the unification of the two patterns, which produces unification

constraints A = g(B) and g(A) = B, and eventually the contradictory constraint B = g(g(B))—

which corresponds exactly to the 1 = 1.0.0 PEC above. In unification parlance, we say that this

constraint fails an occurs check. Checking consistency of a PCS is the name-free analogue of the

occurs check.

Checking Consistency via Congruence Closure. These observations suggest an algorithm for

checking PCS consistency: (1) saturate the PCS with all implied equalities (such as 1.0.0 = 1

above), and (2) check if any of them is non-prefix-free. To formalize (1), we first declaratively

6Technically, we must also ensure that ∀i ∈ c.i < maxs∈Σ arity(s), but this is trivially maintained by all ECTA
operations.
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define the closure operation on PCSs, and then discuss how to implement it efficiently.

Definition 2.3.4 (Closure). A PCS C is closed if the following holds for any c1,c2 ∈C: for any

paths p, p′, p′′, if p′, p′′ ∈ c1 and p′.p ∈ c2, then p′′.p ∈ c2. In other words, whenever c2 contains

an extension of a path in c1, it also contains the same extension of all paths in c1. The closure of

C, denoted cl(C), is the smallest closed PCS that contains C.

For example, the PCS C = {c1,c2} = {{0 = 1.0},{0.0 = 1}} is not closed: if we set p′ =

0, p′′ = 1.0, and p = 0, then 0 ∈ c1, 1.0 ∈ c1, and 0.0 ∈ c2, but 1.0.0 /∈ c2. The closure of this

PCS cl(C) = {c′1,c′2}, where c′1 and c′2 are infinite PECs of the form c′1 = {0 = 1.0 = 0.0.0 =

1.0.0.0 = . . .} and c′2 = {1 = 0.0 = 1.0.0 = 0.0.0.0 = . . .}.

Theorem 2.3.5 (Correctness of Closure). For any term t ∈ T (Σ), t |=C⇔ t |= cl(C).

Theorem 2.3.6 (Consistency of a Closed PCS). Let C be a closed PCS. Then C is inconsistent iff

one of the ci ∈C is not prefix-free.

Together Theorem 2.3.5 and Theorem 2.3.6 ensure the correctness of our consistency

checking procedure; what is left is to implement the closure computation efficiently. It turns out

this can be done using the well-known congruence closure algorithm for the first-order theory of

equality and uninterpreted functions [72]. This algorithm finitely represents a possibly infinite set

0

.0

.0

1

of equalities using an e-graph. Hence, to check consistency of

a PCS C, we can simply (1) add each path of C into an e-graph,

interpreting path prefixes as subterms (i.e. 1.0 is .0 applied to

1); (2) merge all paths from the same PEC into one e-class and

run congruence closure on the e-graph; (3) check if the resulting

e-graph has cycles; if so, then C is inconsistent. The figure on

the right shows the (cyclic) e-graph obtained by running this

algorithm on our example {{0 = 1.0},{0.0 = 1}}.
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Syntax

c ::= {p1 = · · ·= pn} path equivalence classes
C ::= {c1, . . . ,cm} path constraint sets
n ::= U(e) nodes (states)
e ::= ΠΠΠ(s,n,C) |ΠΠΠ⊥ transitions

Denotation

JU(e)KN =
⋃

iJeiKE

JΠΠΠ(s,n,C)KE =
{

s(t)
∣∣∣ t i ∈ JniKN ,s(t) |=C

}
Figure 2.5. Acyclic ECTAs: syntax and semantics. Here s ∈ Σ and p is a path.

2.3.3 Acyclic ECTAs: Core Definition

Like string automata, tree automata are usually formalized as graphs, defined by a set

of states and a transition function. For our purposes, it is more convenient to formalize ECTAs

using a recursive grammar, in the same style VSAs are typically presented [83].

Syntax. Fig. 2.5 (top) shows the grammar for acyclic ECTAs, consisting of mutually recursive

definitions for nodes (states) n ∈ N and transitions e ∈ E; an ECTA then is identified with its

root node, which represents the final state.7 In a transition ΠΠΠ(s,n,C),8 the number of child nodes

|n| must equal arity(s); both n and C can be omitted when empty. As is common for VSAs,

we assume implicit sharing of sub-trees: that is, an acyclic ECTA is a DAG with no duplicate

sub-graphs.

The special symbol ΠΠΠ⊥denotes an “empty transition”, which is used in intermediate

results of ECTA operations. For symmetry, we also abbreviate the empty node, U(), as U⊥. A nor-

malized ECTA contains no occurrences of ΠΠΠ⊥or U⊥, unless the root is itself U⊥. Any ECTA can

be normalized by iteratively replacing any transition containing a U⊥child with ΠΠΠ⊥, and removing

all instances of ΠΠΠ⊥from the children of each node. For instance, U(ΠΠΠ(a),ΠΠΠ(+, [U(ΠΠΠ(b)),U⊥]))

7Although this representation is restricted to ECTAs with a single final state (the root node), this is not an
important restriction: any acyclic tree automaton is equivalent to the same automaton with all its final states merged
into one.

8Hereafter we write x to denote a sequence of xs, with xi referring to the i-th element of that sequence.
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normalizes to U(ΠΠΠ(a)). We assume henceforth that all ECTAs are implicitly normalized after

every operation.

Semantics and Spurious Runs. The denotation of an acyclic ECTA, i.e. the set of terms it

accepts, is defined in Fig. 2.5 (bottom) as a pair of mutually-recursive functions: J·KN : N →

P(T (Σ)) and J·KE : E→ P(T (Σ)). We define a partial order ≺ on ECTAs as the subset order on

their denotations: n1 ≺ n2 iff Jn1KN ⊆ Jn2KN . The skeleton of an ECTA, sk(n), is obtained by

recursively removing all path constraints from its transitions. A spurious run of n is a term t,

that is rejected by n but accepted by its skeleton: t /∈ JnKN ∧ t ∈ Jsk(n)KN .

2.3.4 Basic Operation: Union and Intersection

We now present algorithms for two basic operations on ECTAs, union and intersection.

They serve as building blocks for our two core contributions: static and dynamic reduction.

Union. The union of two ECTAs, n1⊔n2, simply merges the transition of their root nodes:

Definition 2.3.7 (Union). Let n1 = U(e1),n2 = U(e2) be two nodes. Then n1⊔n2 = U(e1∪ e2).

Fig. 2.6 gives an example of ECTA union nu = n1⊔n2.

Theorem 2.3.8 (Correctness of ECTA Union). Jn1⊔n2KN = Jn1KN ∪ Jn2KN .

Intersection. The intersection of two ECTAs is more involved. Intersecting two nodes, n1⊓n2,

involves intersecting all pairs of their transitions; intersecting two transitions, e1⊓ e2, in turn,

involves intersecting their child nodes point-wise, and is only well-defined if the symbols and

PCSs of e1 and e2 are compatible:

Definition 2.3.9 (Intersection). Let n1 = U(e1),n2 = U(e2) be two nodes, then:

n1⊓n2 = U
({

ei
1⊓ e j

2

∣∣∣ ei
1 ∈ e1,e

j
2 ∈ e2

})
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Figure 2.6. Two ECTAs n1 and n2, their union nu and intersection ni.

Let e1 = ΠΠΠ(s1, [n0
1 . . .n

k−1
1 ],C1), e2 = ΠΠΠ(s2, [n0

2 . . .n
l−1
2 ],C2) be two transitions, then:

e1⊓ e2 =


ΠΠΠ(s1, [n0

1⊓n0
2, . . . ,n

k−1
1 ⊓nk−1

2 ],C1∪C2) if s1 = s2 and C1∪C2 is consistent

ΠΠΠ⊥ otherwise

Consider the example of ECTA intersection ni = n1⊓ n2 in Fig. 2.6. To compute the

intersection at the top level, we intersect all pairs of transitions—( f ,g), ( f ,h), (g,g), and (g,h)—

but the three pairs with incompatible function symbols simpy yield ΠΠΠ⊥ and are discarded. To

intersect the two g-transitions, we recursively intersect their targ and tret nodes; the resulting

g-transition also inherits its constraint from n2.

Theorem 2.3.10 (Correctness of ECTA Intersection). Jn1⊓n2KN = Jn1KN ∩ Jn2KN .

Proposition 2.3.11. U⊥⊓n = n⊓U⊥ = U⊥

Corollary 2.3.12. Define n1 ∼= n2 if Jn1KN = Jn2KN . Then, with respect to (∼=), the (⊓) and (⊔)

operations form a distributive lattice, with U⊥ as the bottom element, and (≺) as the order.

2.3.5 Static Reduction

We are now ready to present static reduction, the first of the two core algorithms that

enable efficient extraction of terms satisfying ECTA constraints. Consider the example in Fig. 2.2.

Intuitively, the constraint fun.targ = arg.type has been reduced in Fig. 2.2b, because with f

elimitated, every possible formal parameter type at path fun.targ matches some actual parameter

type at path arg.type. More generally, a binary constraint p1 = p2 is reduced if everything at
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path p1 matches something at path p2; this definition extends naturally to non-binary constraints.

We now define the machinery to state this formally, and then provide a simple algorithm for

reducing a constraint, which builds upon ECTA intersection.

Subautomaton at a Path. First, we generalize the definition of a subterm at a path, t|p, to ECTAs:

Definition 2.3.13 (Nodes at path, Subautomaton at a path). The set nodes(n, p) of nodes reach-

able from n = U(e) via path p is defined as:

nodes(n,ε) = {n} nodes(n, j.p) =
⋃

i

nodes(ei, j.p)

The set nodes(e, p) of nodes reachable from a transition e = ΠΠΠ(s,n,C) is defined as:

nodes(e, j.p) =


nodes(n j, p) j < arity(s)

/0 otherwise

Finally, the subautomaton of n at path p is defined as n|p =
⊔
nodes(n, p); similarly, the subau-

tomaton of e is defined as e|p =
⊔
nodes(e, p).

In Fig. 2.2a, if n is the root node, then nodes(n,arg.type) = {U(ΠΠΠ(Int)),U(ΠΠΠ(Char))} and

n|arg.type = U([ΠΠΠ(Int),ΠΠΠ(Char)]). The reader might be wondering why define nodes(e, j.p) = /0

for an out-of-bounds index j instead of restricting these and following definitions to “well-formed”

paths. The rationale is to enable ECTAs to have “cousin” transitions with different arities, and

be able to navigate to nodes and subautomata at higher arities, by simply discarding branches

with lower arities; this flexibility is required, for instance, in our full encoding of type-driven

synthesis in Sec. 2.7.2.

Without equality constraints, the denotation of n|p would simply be the set of subterms

t|p of all terms t represented by n. With equality constraints, n|p is an overapproximation of that

set, since the equality constraints on the topmost layers get ignored.
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Lemma 2.3.14 (Correctness of subautomaton at a path). For any n, p, Jn|pKN ⊇
{

t|p
∣∣∣ t ∈ JnKN

}
.

Similarly, for any e, Je|pKE ⊇
{

t|p
∣∣∣ t ∈ JeKE

}
.

This lemma can be used to prove that a term is present in Jn|pKN but not that it is

absent. Fortunately, we only need to show presence when proving soundness of static reduction

(Theorem 2.3.20).

Reduction Criterion. We can now formally state what it means for a constraint to be reduced:

Definition 2.3.15 (Reduction Criterion). Let e = ΠΠΠ(s,n,C) be a transition and let c = {p1 =

· · ·= pk} ∈C. We say that e satisfies the reduction criterion for c (alternatively, c is reduced at

e) if, for each pi, p j ∈ c and each n ∈ nodes(e, pi), n⊓ e|p j ̸= U⊥.

The reduction criterion suggests an algorithm for reducing a path constraint: given a constraint

p1 = p2 on transition e, replace every node n reachable via p1 with n⊓ e|p2 . As a result, every

node in nodes(e, p1) will match some node in nodes(e, p2). For example, to reduce the constraint

fun.targ = arg.type at the transition app in Fig. 2.2, the algorithm first computes app|arg.type, the

automaton representing all possible actual parameter types; the result is na = U(ΠΠΠ(Int),ΠΠΠ(Char)).

Next, it intersects na it with each of the three nodes reachable via fun.targ, that is, Int, Char,

and Bool. This has no effect on the targ children of g and h, but the targ child of f becomes U⊥,

leading to the removal of the f transition upon normalizatoin and resulting in Fig. 2.2b.

Intersection at a Path. In order to formalize the reduction algorithm outlined above, we introduce

the notion of intersection at a path.

Definition 2.3.16 (Intersection at a Path). Intersecting node n with node n′ at path p, denoted

n|⊓n′
p , replaces all nodes reachable from n via p with their intersection with n′. More formally, if

n = U(e):

n|⊓n′
ε = n⊓n′ n|⊓n′

j.p = U(ei|⊓n′
j.p )
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where intersecting a transition e = ΠΠΠ(s, [n0, . . . ,nk−1],C) at a non-empty path p is defined as:

e|⊓n′
j.p =


ΠΠΠ(s, [n0, . . . ,n j|⊓n′

p , . . . ,nk−1],C) j < arity(s)

ΠΠΠ⊥ otherwise

For example, in Fig. 2.2a, intersecting the root node n at path fun.targ with the node na from

our previous example (na = U(ΠΠΠ(Int),ΠΠΠ(Char))) yields the ECTA in Fig. 2.2b.

Lemma 2.3.17. t ∈ J
(

n|⊓n′
p

)
|pKN if and only if t ∈ Jn|pKN and t ∈ Jn′KN . Similarly, t ∈

J
(

e|⊓n′
p

)
|pKE if and only if t ∈ Je|pKN and t ∈ Jn′KN .

Reduction Algorithm. With this new terminology, we can recast our previous explanation of how

the constraint fun.targ = arg.type in Fig. 2.2 gets reduced: once we have obtained the “actual

parameter automaton” na = app|arg.type, we can simply return n|⊓na
fun.targ (where n is the root node).

This explanation needs one final tweak: in this example, the information only propagates in one

direction—from arg.type to fun.targ—because the types of the actuals happen to be a subset

of the types of the formals; in general, though, reduction needs to propagate information both

ways. Hence a more accurate recipe for how to perform the reduction in Fig. 2.2 is: (1) compute

the automaton n* = (n|fun.targ)⊓ (n|arg.type), capturing all shared formal and actual parameter

types; (2) intersects the root with n* at both paths involved in the constraint:
(
n|⊓n*

fun.targ

)
|⊓n*
arg.type.

We extrapolate this description into a general algorithm for static reduction:

Definition 2.3.18 (Static Reduction). Let c = {p1 = · · ·= pk} be a prefix-free PEC; then

reduce(e,c) = e|⊓n*
p1

. . . |⊓n*
pk

where n* =
l

pi∈c

e|pi

Theorem 2.3.19 (Completeness of Reduction). reduce(e,c) satisfies the reduction criterion for

c.
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Theorem 2.3.20 (Soundness of Reduction). Let e = ΠΠΠ(s,n,C) be a transition and c ∈C; then:

Jreduce(e,c)KE = JeKE

2.4 Fast Enumeration with Dynamic Reduction

We now turn to our second core contribution: the algorithm for efficiently extracting (or

enumerating) terms represented by an ECTA. As we have outlined in Sec. 2.2.4, the main idea

behind the algorithm is to avoid eager enumeration of constrained nodes, instead replacing them

with “unification” variables—the mechanism we dub dynamic reduction.

Inspired by presentations of DPLL(T) and Knuth-Bendix completion [6, 73], we for-

malize the enumeration algorithm as a non-deterministic transition system. Configurations of

this system are called enumeration states and steps are governed by two rules, CHOOSE and

SUSPEND. Intuitively, CHOOSE handles unconstrained ECTA nodes, making a non-deterministic

choice between their incoming transitions; SUSPEND handles constrained nodes, suspending

them into variables. Fig. 2.7, which serves as the running example for this section, shows an

example sequence of CHOOSE and SUSPEND steps applied to a simplified version of the ECTA

from Fig. 2.4 (the simplified ECTA encodes all well-typed size-two terms in the environment

Γ = {x : Int,y : Char,g : α → α,h : Char→ Bool}).

2.4.1 Enumeration State

The syntax of enumeration states is shown in Fig. 2.8. Var is a countably infinite set of

variables, with a dedicated “root” variable v⊤ ∈ Var. An enumeration state σ is a mapping from

variables to partially-enumerated terms (or p-terms for short). With the exception of v⊤, which

stores the top-level enumeration result, each variable captures a set of ECTA nodes that are

constrained to be equal. For example, in Fig. 2.7 (g), the variable v1 captures the nodes g.targ

and x.type, which are equated by the constraint on app, and also g.tret, equated to the former

by the constraint on g.
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Figure 2.7. An example sequence of steps through enumeration states. The focus node of each
step is highlighted in blue and constraint fragments are highlighted in green. The final state is
fully enumerated.
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Enumeration States

s ∈ Σ,v ∈ Var,c ∈ PEC

φ ::= ⟨c = v⟩ Constraint fragments
Φ ::= φ Cons. fragment sets
τ ::= P-terms

| v | s(τ) variable, application
|□(n,Φ) unenumerated node

σ ::= [v ↦→ τ] Enumeration states
C [·] ::= Contexts

| ·
| s(τ,C [·],τ)

Figure 2.8. Enumeration states.

A p-term τ is a term that might contain variables and unenumerated nodes (u-nodes for

short). A u-node □(n,Φ) is an ECTA node n annotated with zero or more constraint fragments

φ , each consisting of a PEC and a variable. Intuitively, a constraint fragment is a constraint

propagated downward from an ECTA transition. For example, in Fig. 2.7 (b), when the original

constraint fun.targ = arg.type on app is propagated down to unary and scalar, it is split into

two fragments: ⟨targ= v1⟩ and ⟨type= v1⟩. The splitting is necessary because for each of the

child u-nodes one of the sides of this constraint is “out of scope”; hence a fresh variable v1 is

introduced to refer to the common value at both sides. A variable v is solved in σ iff it is not

mentioned in any of the constraint fragments; for example, v1 is unsolved in Fig. 2.7 (b)–(f) and

solved in Fig. 2.7 (g).

A u-node is restricted iff its Φ is non-empty; an unrestricted u-node is written □(n). An

enumeration state σ is called fully enumerated if there are no restricted u-nodes anywhere inside

σ . The reader might be surprised that a fully enumerated state is allowed to have u-nodes at

all; as we explain in Sec. 2.4.4, this enables compact representation of enumeration results with

“trivial differences.”

Denotation. The denotation of an enumeration state JσKS is a set of substitutions ρ : Var⇀ T (Σ),

which is compatible with the constraint fragments and subterm relations imposed by variables
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Enumeration step τ−→ τ
′,

σ−→ σ
′

CHOOSE-□

⟨ε = _⟩ /∈Φ ΠΠΠ(s, [n0, . . . ,nk−1],C) ∈ e
C′ = {⟨c j = v j⟩ | c j ∈C,v j is fresh}

τ i =□(ni,project(C′∪Φ, i))
□(U(e),Φ)−−−−−→ s(τ0, . . . ,τk−1)

CHOOSE
σ [v] = C [τ] τ−→ τ ′ v is solved

σ−→ σ [v ↦→ C [τ ′]]

SUSPEND-1
σ [v] = C [□(n,⟨ε = v′⟩∪Φ)] v′ /∈ dom(σ)

σ−→ σ [v ↦→ C [v′],v′ ↦→□(n,Φ)]

SUSPEND-2
σ [v] = C [□(n,⟨ε = v′⟩∪Φ)] σ [v′] =□(n′,Φ′)

σ−→ σ [v ↦→ C [v′],v′ ↦→□(n⊓n′,Φ∪Φ′)]

Figure 2.9. Enumeration rules.

inside p-terms. Because of the circular dependencies between a p-term and its enclosing σ , the

formal definition is somewhat technical and therefore relegated to the extended version.

2.4.2 Enumeration Rules

Fig. 2.9 formalizes the above-mentioned CHOOSE and SUSPEND rules as a step relation
σ−→ σ over enumeration states and an auxiliary step relation τ−→ τ ′ over p-terms.

CHOOSE. We first formalize the auxiliary rule CHOOSE-□ for p-terms. This rule takes a u-node,

non-deterministically selects one of its transitions e, and steps to a p-term that has e’s function

symbol at the root and new u-nodes as children. Step 5○ in Fig. 2.7 is an example application of

this rule: here the original u-node scalar turns into one of its two incoming transitions, x; step 1○

is also an instance of this rule, albeit with no alternatives.

The tricky aspect of CHOOSE-□ is propagating constraints—either C from the transition e

or Φ from the original u-node—to the newly minted u-nodes. The former scenario is illustrated in

step 1○: here the PEC c= {fun.targ= arg.type} on the app transition is split into two fragments,

⟨targ = v1⟩ and ⟨type = v1⟩, attached to the new u-nodes unary and scalar, respectively. To

this end, CHOOSE-□ first creates a fresh variable v1 and forms a constraint fragment ⟨c = v1⟩
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using the original PEC c; next it projects this fragment down to each i-th child, retaining only

those paths of c that start with i and chopping off their heads. The project function is defined in

Fig. 2.10. Note how the two new fragments together completely capture the original constraint.

The latter scenario—propagating existing constraint fragments—is illustrated in step 5○.

Here the u-node scalar is restricted by the fragment ⟨type= v1⟩; in this case, there is no need to

create new variables: the existing fragment is simply projected down to the child tx and becomes

⟨ε = v1⟩. In the general case, both new and existing constraint fragments should be combined;

this is the case in step 2○, where the u-node targ inherits the fragment ⟨ε = v1⟩ from unary, and

also acquires a new fragment ⟨ε = v2⟩ by splitting the constraint on g.

Finally, consider the rule CHOOSE, which lifts CHOOSE-□ to whole enumeration states.

This rule allows making a step inside any component of σ , as long as its variable is solved. For

example, in Fig. 2.7 (e) we are not allowed to make a step inside v1 (say, choosing Bool among

the three types), because v1 still appears in the constraint fragment ⟨type= v1⟩ inside v⊤. The

rationale for this restriction is to avoid making premature choices for constrained nodes: in our

example, picking Bool would be a mistake, which is entirely avoidable by simply waiting until

all constraints are resolved (such as the state in Fig. 2.7 (g)).

SUSPEND. The SUSPEND rules handle u-nodes with ε-fragments, i.e. constraint fragments

of the form ⟨ε = v⟩.9 Intuitively, an ε-fragment indicates that this node is the target of a

constraint captured by v. In response, the SUSPEND rules simply “move” the target u-node to the

v-component of the state, replacing it with v in the original p-term.

The two SUSPEND rules differ in whether the current state σ already has a mapping for

v: if it does not, SUSPEND-1 initializes this mapping with its target u-node □(n,Φ); if it does,

SUSPEND-2 updates this mapping, combining the old u-node □(n′,Φ′) and the new one □(n,Φ)

by intersecting their ECTAs and merging their constraint fragments. Note that the old value of v

must be a u-node, because CHOOSE is not allowed to operate under unsolved variables.
9CHOOSE-□ does not apply to these nodes thanks to its first premise. Note also that because all PECs in the

original ECTA are prefix-free and this property is maintained by project, any fragment that contains ε , must only
contain ε .
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An example application of SUSPEND-1 is step 3○ of Fig. 2.7. The target node tret has an

ε-fragment ⟨ε = v2⟩; since v2 is uninitialized, SUSPEND-1 creates a new mapping [v2 ↦→ tret].

Step 6○, on the other hand, is an example of SUSPEND-2: the target node tx is restricted by

⟨ε = v1⟩; since v1 already maps to tg, SUSPEND-2 updates it with tx⊓ tg. As a result of this

intersection, v1 now contains only those types (in this case, the sole type Int) that make the term

represented by v⊤ well-typed.

Eliminating Redundant Variables. Finally, let us demystify the transformation 4○ in Fig. 2.7,

which consists of three atomic steps. The first step suspends targ, which has not one but two

ε-fragments—⟨ε = v1⟩ and ⟨ε = v2⟩—either of which can be targeted by a SUSPEND. Suppose

that the second one is chosen (both choices lead to equivalent results, up to variable renaming).

Since v2 is already initialized, SUSPEND-2 fires, merging tret and targ into a single u-node tg’

under v2; importantly, tg’ inherits the other constraint fragment from targ, namely ⟨ε = v1⟩.

Because of that, SUSPEND-1 can now fire on tg’, creating the state [v⊤ ↦→ . . . ,v2 ↦→ v1,v1 ↦→ tg],

where tg is tg’ stripped of its constraint fragment. This new state is a bit awkward, since it

contains a “redundant” variable v2, which simply stores another variable, v1. To get rid of such

redundant variables, we introduce an auxiliary rule SUBST, which simply replaces all occurrences

of v2 with v1 and removes the unused mapping from σ (see Fig. 2.10). After applying SUBST,

we arrive at the state in Fig. 2.7 (e).

2.4.3 Enumeration Algorithm

We are now ready to describe the top-level algorithm ENUMERATE. The algorithm

takes as input an ECTA n and produces a stream of fully-enumerated states. To this end, it first

creates an initial state σ0 = [v⊤ ↦→□(n)], and then enumerates derivations of σ0 −→* σ∙ where

σ∙ is fully enumerated and −→* is the reflexive-transitive closure of −→. In each step, the

algorithm has the freedom to select (i) which u-node to target, and (ii) in the case of CHOOSE,

which transition to choose. The enumeration rules are designed in such a way that the former

selection constitutes “don’t care non-determinism” (i.e. any target node can be selected without
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Projecting constraint fragments

project(Φ, i) =
⋃

φ∈Φ project(φ , i)

project(⟨c = v⟩, i) =

{
{⟨c′ = v⟩} if c′ ̸= /0
/0 otherwise

where c′ =
⋃

p∈c project(p, i)

project(p, i) =


⊥ if p = ε

{p′} if p = i.p′

/0 otherwise

Enumeration step (cont.) σ−→ σ
′

SUBST
σ [v2] = v1

σ−→ [v1/v2] (σ ∖ [v2 ↦→ v1])

Figure 2.10. Auxiliary definitions

loss of completeness); this is in contrast to the latter selection, which constitutes “don’t know

non-determinism” and must be backtracked. At the same time, different schedules of rule

applications might lead to significantly different performance. The ECTA library provides a

default schedule—depth-first, left to right—but enables the user to specify a domain-specific

schedule in order to optimize performance.

Theorem 2.4.1 (Termination of Enumeration). There is no infinite sequence σ0 −→ σ1 −→ . . . .

Theorem 2.4.2 (Correctness of Enumeration). Let n be an ECTA, σ0 be the initial enumeration

state, and consider all finite sequences σ0 −→* σ∙, such that σ∙ is fully enumerated; then:

JnKN =
{

ρ(v⊤)
∣∣∣ σ0 −→* σ∙,ρ ∈ Jσ∙KS

}
2.4.4 Compact Fully Enumerated States

We now return to the design decision to allow (unrestricted) u-nodes in fully enumerated

states. Our running example in Fig. 2.7 does not motivate this decision very well: the fully
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Figure 2.11. (a) An ECTA representing all perfect trees of depth three, whose leaves are either
all x or all y (b) The ECTA fully enumerated, in logarithmic space

enumerated state in Fig. 2.7 (g) encodes a single term anyway, so it seems only natural to

let CHOOSE loose on the last remaining u-node. For other ECTAs, however, a single fully-

enumerated state might represent exponentially many10 terms, or the terms might be exponentially

larger, or both. For an example, consider Fig. 2.11a. This ECTA represents the set of all perfect

binary trees of depth three, whose leaves are either all x or all y. A moment’s thought reveals that

this set contains two trees, each of size 15. Instead of returning these two large trees explicitly,

the fully-enumerated state σ∙ in Fig. 2.11b represents them as a hierarchy of unconstrained tree

automata, from which the concrete trees may be trivially generated. It is straightforward to see

that the sizes of the two perfect trees grow exponentially with their depth, while the size of σ∙

grows only linearly.

The main benefit of this design, however, is that, depending on the problem domain,

some nodes need not be enumerated at all, as long as we know their denotation is non-empty.

For example, to determine whether a propositional formula is satisfiable (Sec. 2.7.1), it is often

enough to provide a partial satisfying assignment, because the values of the unassigned variables

are irrelevant; such a partial assignment can be represented by a σ∙, where irrelevant variables

are left unenumerated. Similarly, in type-driven synthesis, the polymorphic type of a component

10Or, with the cyclic ECTAs of Sec. 2.5, infinitely many.
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Syntax

n ::= U(e) | µx.U(e) | x nodes (states)
e ::= ΠΠΠ(s,n,C) |ΠΠΠ⊥ transitions

Unfolding Recursive Nodes

unfold(µx.n) = [µx.n
/

x]n
unfold(U(e)) = U(e)

Denotation

JU(e)KN =
⋃

iJeiKE

Jµx.nKN = Junfold(µx.n)KN

JΠΠΠ(s,n,C)KE =
{

s(t)
∣∣∣ t i ∈ JniKN ,s(t) |=C

}

Figure 2.12. Cyclic ECTAs: syntax and semantics. Here s ∈ Σ, C is a PCS, and x is a bound
variable.

need not always be fully instantiated, as long as we know that a compatible instantiation exists. In

fact, as we explain in Sec. 2.7.2, cyclic ECTAs can encode infinitely many possible polymorphic

instantiations, and enumerating them all would be simply impossible.

2.5 Cyclic ECTA

We now present the formalism for fully general ECTAs, which may contain cycles. With

cycles, an ECTA node can now represent an infinite space of terms, such as an arbitrary term in

some context-free language, including (as in Sec. 2.7.2) the language of arbitrary Haskell types.

While this requires an extension to the syntax of ECTAs to allow recursion, shockingly, none of

the algorithms require substantial modification.

2.5.1 Cyclic ECTAs: Core Definition

We extend acyclic ECTAs to cyclic by adding “recursive nodes” µx.U(e). Within this

node, x is a variable bound to U(e). In diagrams, we depict any use of x as a back-edge to U(e)

and keep the µ binding itself implicit. Semantically, x can be replaced with a copy of the node

it is bound to, so that an ECTA n is equivalent to [U(e)/x]n—or rather, to [µx.U(e)/x]n, since

U(e) contains further uses of x. Fig. 2.13a shows an cyclic example ECTA, with a recursive node

Nat representing arbitrary natural numbers defined by the grammar Nat ::= S(Nat) | Z. Fig. 2.12

gives the syntax and semantics of cyclic ECTAs. The recursive definition of JnKN should be

interpreted with least-fixed-point semantics (as it may unfold arbitrarily many times). Note that
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Figure 2.13. (a) ECTA representing an environment with two arbitrary natural numbers x and y,
where y = x+2. The Nat node is represented µx.U(ΠΠΠ(S,x),ΠΠΠ(Z)). (b) The ECTA unfolded into
lasso form. The grayed-out transitions will be removed by static reduction.

this grammar excludes nodes like µx.x or µx.µy.x, which would be meaningless. We again

assume implicit sharing of sub-trees.11

Cyclic ECTAs become unwieldy when constraints are allowed inside cycles. As a

recursive node µx.n is repeatedly unfolded and its constraints duplicated, it can yield an arbitrarily

large constraint system whose smallest solution may be arbitrarily large. In fact, in this general

case, ECTA emptiness is undecidable:

Theorem 2.5.1 (Undecidability of EMPTINESS). Determining whether JnKN = /0 is undecidable.

Proof. By reduction from the Post Correspondence Problem (see extended version).

This motivates a restriction barring constraints on cycles, which guarantees that the constraint

system remains finite and efficient algorithms remain possible. More formally:

Definition 2.5.2 (Finitely-constrained ECTA). An ECTA n is finitely-constrained if, for all

recursive nodes µx.m reachable from n, m = sk(m).

We assume henceforth that all ECTAs are finitely-constrained. What makes such ECTAs tractable

is that, after sufficient unfolding, they enter what we call lasso form:
11However, this pseudo-tree representation precludes sharing of some nodes which would be shared in a true

graph representation.
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Nodes at Path

nodes(µx.n, p) = nodes(unfold(µx.n), p)

Intersection at a Path

(µx.n)|⊓p
n′ = unfold(µx.n)|⊓p

n′

Enumeration step τ−→ τ
′

CHOOSE-µ
Φ ̸= /0

□(µx.n,Φ)−−−−−−→□(unfold(µx.n),Φ)

Figure 2.14. Extensions to prior algorithms to account for recursive nodes

Definition 2.5.3 (Lasso form). An ECTA n is in lasso form if it contains no constrained recursive

nodes (i.e., no path constraint references a recursive node).

An ECTA in lasso form is split into a top portion, which contains constraints but no cycles, and a

bottom portion, which contains cycles but no constraints. The top portion permits only finitely

many choices, while the bottom portion can be enumerated and intersected as in classic tree

automata theory. While they may perform intersection on entire subautomata, neither static nor

dynamic reduction directly inspect nodes beneath the deepest constraint. Hence, with an updated

definition of intersection, our definitions for both static and dynamic reduction work unmodified

on ECTAs in lasso form. An example ECTA in lasso form is in Fig. 2.13b.

2.5.2 Algorithms for Cyclic ECTAs

Intersection. One formulation of intersection for classic string automata is a depth-first search

that begins from a pair of initial or final states and finds all reachable pairs of states. We use this

idea to extend our previous definition of intersection to cyclic ECTAs: the algorithm tracks all

previous visited node pairs, and creates a recursive reference upon seeing the same pair twice.

More formally, we define n1⊓ n2 in terms of a helper operation, n1 ⊓
S

n2 (intersection

tracking the set of previously-visited pairs); which in turn invokes the helper n1 ⊓̃
S

n2. We assume

a function var({n1,n2}) mapping an unordered pair of nodes to a unique named variable for that

pair. We use the notation n1 ∈ n2 to mean that some descendant of n1 is equal to n2.

Let n1,n2 ∈ N be two ECTAs, S⊆
(N

2

)
be a set of unordered pairs of ECTAs, and define
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S′ = S∪{{n1,n2}}. Then define:

n1 ⊓
S

n2 =



var(n1,n2) {n1,n2} ∈ S

µz.n1 ⊓̃
S′

n2 z = var({n1,n2})∧ z ∈ (n1 ⊓̃
S′

n2)

n1 ⊓̃
S′

n2 otherwise

The remainder of the definition is almost identical to the definition for acyclic ECTAs, except

that recursive nodes are first unfolded. Let unfold(n1) = U(e1) and unfold(n2) = U(e2). Then:

n1 ⊓̃
S

n2 = U

({
ei

1 ⊓S e j
2

∣∣∣ ei
1 ∈ e1,e

j
2 ∈ e2

})

Let e1 = ΠΠΠ(s1, [n0
1 . . .n

k−1
1 ],C1), e2 = ΠΠΠ(s2, [n0

2 . . .n
l−1
2 ],C2) be two transitions, then:

e1 ⊓
S

e2 =


ΠΠΠ(s1, [n0

1 ⊓S n0
2, . . . ,n

k−1
1 ⊓

S
nk−1

2 ,C1∪C2) if s1 = s2 and C1∪C2 is consistent

ΠΠΠ⊥ otherwise

Now, define n1⊓n2 = n1 ⊓
/0

n2.

Static Reduction. Recall from Sec. 2.3.5 that static reduction is defined in terms of intersection at

a path, which in turn relies on the definition of nodes at path. Fig. 2.14 extends these operations

to unfold recursive nodes until the ECTA enters lasso form, at least with regards to the PEC

under consideration. Then the rest of the static reduction algorithm remains unchanged.

Enumeration. Adapting enumeration to cyclic ECTAs requires a single change: the new

CHOOSE-µ rule in Fig. 2.14 unfolds recursive nodes referenced by some ancestor’s constraint.

This rule continues unfolding such nodes so long as they are referenced by a parent’s constraint,

at which point it is a fully enumerated node. Note that a fully-enumerated state will necessarily

be in lasso form.
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assignment

a
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b

b
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(a) Variable assignment

val

∧

cl1 cl2

a b ¬a ¬b

true

assn

assn val

true

assn

assn val

false

assn

assn val

false

assn

assn

cl1.assn.a=cl2.assn.a

cl1 cl2

assn.a=
val

assn.b=
val

assn.a=
val

assn.b=
val

cl1.assn.b=cl2.assn.b

(b) CNF formula

Figure 2.15. ECTA encoding of a CNF formula (a∨b)∧ (¬a∨¬b)

2.6 Implementation

We have implemented ECTAs in a library called ECTA (pronounced as in “nectarine”).

ECTA is implemented in 3000 lines of Haskell, with an additional 660 lines of tests. ECTA has

been carefully optimized, and features heavy memoization based on a mutable hashtable library.

2.7 Applications

This section gives two examples of problem domains that can be reduced to ECTA enu-

meration: boolean satisfiability (SAT; Sec. 2.7.1) and type-driven program synthesis (Sec. 2.7.2).

The second domain has already been introduced informally in Sec. 2.2; here we present its

encoding in full generality, and in Sec. 2.8 we evaluate our encoding against a state-of-the-art

synthesizer HOOGLE+. The purpose of presenting the first domain is to demonstrate the versatil-

ity of ECTAs, not to compete with highly-engineered industrial SAT solvers; hence we leave the

SAT domain out of empirical evaluation.

2.7.1 Boolean Satisfiability

Problem Statement. Given a propositional formula in conjunctive normal form (CNF), the SAT

problem is to find a satisfying assignment to its variables. A CNF formula is a conjunction of

clauses, where each clause is a disjunction of literals, and each literal is either a variable or its
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negation. For example, the CNF formula (a∨b)∧ (¬a∨¬b) has two satisfying assignments:

{a,¬b} and {¬a,b}.

Encoding. Fig. 2.15 illustrates our ECTA encoding for the above formula. The sub-automaton

assn in Fig. 2.15a represents the set of all possible variable assignments. The assignment

transition has one child per variable, and each variable node has two alternatives: true and false;

hence, to extract a term from assn one must pick a value for each variable.

The ECTA for the entire CNF formula is shown in Fig. 2.15b; this ECTA has a single

top-level conjunction transition ∧, with one child per clause. Each clause node has one alternative

per literal in that clause: the choice between these alternatives corresponds to picking which

literal is responsible for making the clause true. Each literal transition—such as a or ¬a—has two

children: assn is its local copy of the assignment sub-automaton and val is the Boolean value that

this literal assigns to its variable. The constraint on the literal—such as assn.a = val—restricts

its local assignment in such a way that the literal evaluates to true. Finally, the constraints on the

∧ transition force all local assignments to coincide. Note that, while the various assn nodes are

shared in memory, each occurrence of this node is an independent choice unless so constrained.

The reader might be wondering why we chose to split these constraints per-variable instead

of simply writing cl1.assn = cl2.assn; as we explain next, this helps enumeration discover

inconsistent assignments quickly.

SAT Solving as ECTA Enumeration. With this encoding, the general-purpose ECTA enumer-

ation algorithm from Sec. 2.4 turns into a SAT solver.12 Specifically, once ENUMERATE has

found a fully enumerated state, the satisfying assignment can be read off the children of any

assignment symbol in that state; note that if we let ENUMERATE run past the first result, it will

enumerate all satisfying assignments, modulo irrelevant variables (see Sec. 2.4.4).

The overall solving procedure amounts to choosing a literal from each clause and back-

tracking whenever the assignment becomes inconsistent. For example, suppose ENUMERATE

12A curious reader might be wondering why don’t we go the other direction: encode an ECTA into a SAT formula
and use a SAT solver for ECTA enumeration; this is not possible in general, as we discuss in more detail in Sec. 2.10.
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has chosen a from cl1; the enumeration state σ now contains variables va and vb, which store

assignments for a and b consistent with the current choices (that is, va is restricted to true, while

vb still allows both choices). If the algorithm now attempts to make an inconsistent choice of ¬a

from cl2, this inconsistency is discovered immediately when ¬a.val is suspended and intersected

with va.

2.7.2 Type-Driven Program Synthesis

Problem Statement. We are interested in the following type-driven program synthesis problem:13

given a type T , called the query type, and a components library Λ, which maps component names

to their types, enumerate terms of type T built out of compositions of components from Λ. For

example, a Haskell programmer might be interested in a code snippet that, given a list of optional

values, finds the first element that is not Nothing (and returns a default value if such an element

does not exist). The programmer might pose this as a type-driven synthesis problem, where Λ

is the Haskell standard library, and the query T is a→ [Maybe a]→ a. Given this problem, the

state-of-the-art type-driven synthesizer HOOGLE+ [44, 51] returns a list of candidate programs

that includes the desired solution: λdef mbs→ fromMaybe def (listToMaybe (catMaybes mbs)).

In this section we adopt the setting of HOOGLE+, where components can be both

polymorphic and higher-order, both of which make the synthesis problem significantly harder.

On the other hand, also following HOOGLE+, we do not consider synthesis of inner lambda

abstractions: i.e. arguments to higher-order functions can be partial applications but not lambdas.

HOOGLE+ Limitations. HOOGLE+ works by encoding a synthesis problem into a data structure

called type-transition net: a Petri net, where places (nodes) correspond to types, and transitions

correspond to components; the synthesis problem then reduces to finding a path from the input

types to the output type of the query. This encoding has two major limitations:

1. No native support for polymorphic components. In the presence of polymorphism, the

space of types that can appear in a well-typed program becomes infinite. Because types
13This problem is also known as type inhabitation [98] and composition synthesis [48].
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arrow
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(c) Size-two terms

Figure 2.16. Encoding of variables, types, and fixed-size terms in HECTARE.

are encoded as places, a finite Petri net cannot represent all candidate programs. Instead,

HOOGLE+ employs a sophisticated abstraction-refinement loop to build a series of Petri

nets that encode increasingly precise approximations of the set of types of interest.

2. No native support for higher-order components. Because components are encoded as

transitions with a fixed arity—they transform a fixed number of types into a single type—

all components must always be fully applied. This precludes the use of higher-order

components: for example, in foldr (+) 0 xs, the binary component (+) is not fully

applied. To circumvent this limitation, HOOGLE+ must add a separate nullary copy of

the (+) component to the library. Since these duplicate components bloat the library and

slow down synthesis, in practice only a few popular components are duplicated, thereby

limiting the practicality of the synthesizer.

In this section we present HECTARE (HOOGLE+: ECTA REvision), our encoding of type-

driven synthesis as ECTA enumeration. This encoding has native support for both polymorphic

and higher-order components, without the need for an expensive refinement loop or duplicate

components.
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Encoding Types. Recall that Sec. 2.2 (Fig. 2.4) introduced an encoding for a limited form of

polymorphism, where the type variable α in a type like α → α could be instantiated only with

base types. We now generalize this encoding so that α can be instantiated with any type, with

arbitrarily nested applications of type constructors. The infinite space of all types can be finitely

encoded as a recursive node any, as shown in Fig. 2.16b. The any node has one child per type

constructor in Λ, with non-nullary type constructors looping back to any. Now the type α → α

can be represented as a→ transition, whose children are both any (and are constrained to equal

each other).

Encoding Components. The simplified encoding in Sec. 2.2 splits components into different

nodes by their arity (e.g. the nodes scalar and unary in Fig. 2.2); this was necessary given our

simplified encoding of function types, but as we mentioned above, such arity-specific encoding

precludes partial applications. Fig. 2.16a illustrates the generalized encoding of components in

HECTARE. Here all components, regardless of arity, are gathered in single node term1 (“terms

of size one”). Each component is annotated with its type; function types are represented using

the→ transition with two child types, in and out (for now, ignore the grayed out edges labeled

tag, we explain those below). Fig. 2.16a showcases the type encoding for two polymorphic

components: listToMaybe :: [α]→ Maybe α and map :: (α → β )→ [α]→ [β ]; as before, all

occurrences of the same type variable are related by equality constraints, shown in green.

Encoding Applications. Fig. 2.16c illustrates the HECTARE encoding of size-two terms. As

before, the application transition app has two children fun and arg, but now they are both

represented by the same node term1; hence this encoding supports partial applications, such as

map listToMaybe.

We now explain the purpose of the grayed-out parts of Fig. 2.16. The app node must

ensure that its fun child has an arrow type. The mere presence of fun.type.in and fun.type.out

in its first two constraints does not suffice: recall that the actual ECTA library refers to children

by index instead of by name, and hence any other binary type constructor (such as Either) could
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satisfy those two constraints. This would lead to accepting ill-typed programs, such as Left x y.

To circumvent this issue, we introduce a special tag transition (→), which occurs nowhere else

but as a first child of every→ transition; by constraining the first child of fun to be (→), app

effectively ensures that it is indeed a function (see the last constraint on app).14

This encoding of application terms generalizes from size-two terms to terms of arbitrary

fixed size n as follows: the node termn has n− 1 incoming app transitions, where the i-th

transition (i ∈ 1 . .n−1) has children termi and termn−i.

Synthesis Algorithm. So far we have discussed how to encode the space of all well-typed terms

of size n. Let us now proceed to the top-level synthesis algorithm of HECTARE. Given a query

type, such as a→ [Maybe a]→ a, HECTARE first adds the inputs of the query (here def :: a and

mbs :: [Maybe a]) to the node term1, as if they were components. The algorithm then iterates over

program sizes n≥ 1; for each size n, it constructs the ECTA termn and restricts its top-level type

to the return type of the query (here a), following the recipe illustrated in Fig. 2.3. The algorithm

then statically reduces all constraints in the restricted ECTA and enumerates all terms accepted

by the resulting reduced ECTA, before moving on to the next size n. Note that the type variables

of the query (here a) are represented as type constructors and not as the any node, since those

type variables are universally quantified.

Enforcing Relevancy. Existing type-driven synthesizers [27, 44] restrict synthesis results to

relevantly typed terms—that is, terms that use all the inputs of the query. Without such relevancy

restriction, any synthesis algorithm gets bogged down by short but meaningless programs.

HECTARE enforces relevancy via a slight modification to the simple synthesis algorithm outlined

above: it splits every termn node into 2k nodes, where k is the number of inputs in the query.

14Stepping back, tags are required in this encoding because the space of types in the HECTARE ECTA is a sum of
two distinct variants: Type ::= (→)(Type,Type) | c(Type*). The tags exist to discriminate between the→ variant
and the variant c(Type,Type), where c is any other binary type constructor, such as Either. One might ask: why
not build the ability to discriminate between variants of a sum directly into the ECTA? One way to do this is by
referencing children by name instead of by index, as in Sec. 2.2. This is a viable alternative approach, but it is less
efficient: an implementation based on names needs to compare them at every access, whereas one based on indices
only needs to do so at sites where confusion is possible.
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In our example, there are four nodes at each term size: term{def,mbs}n , term{def}n , term{mbs}n , term /0
n,

each representing terms that must mention the corresponding set of inputs. When constructing a

new term node, say term{def}2 , HECTARE considers all applications of termP
1 to termQ

1 such that

P∪Q = {def}. At the top level, only term{def,mbs}n is connected to the accepting node. Although

the number of term-nodes in this encoding grows exponentially with the number of inputs, this

is not a problem in practice, since the number of inputs is typically small; note also that due to

hash consing in ECTA, the overlapping component sets are not actually duplicated.

2.8 Evaluation

As we explained in Sec. 2.7.2, we used the ECTA library to implement HECTARE, a type-

driven component-based synthesizer for Haskell. In this section, we evaluate the performance

of HECTARE and compare it with the state-of-the-art synthesizer HOOGLE+, based on an SMT

encoding of Petri-net reachability [44]. Both tools are written in Haskell, but the HOOGLE+

implementation (excluding tests and parsing) contains a whopping 4000 LOC, while HECTARE

only contains 400. Although code size is an imperfect measure of development effort, these

numbers suggest that the ECTA library has the potential to significantly simplify the development

of program synthesizers.

We designed our evaluation to answer the following research questions:

(RQ1) How does HECTARE compare against HOOGLE+ on existing and new benchmarks?

(RQ2) How significant are the benefits of static and dynamic reduction in program synthesis?

All experiments were conducted on an Intel Core i9-10850K CPU with 32 GB memory.

2.8.1 Comparison on HOOGLE+ Benchmarks

Experiment Setup. For our main experiment, we compare the two synthesizers on the benchmark

suite from the latest HOOGLE+ publication [51]. This suite includes 45 synthesis queries, and a

85



Table 2.1. Three sample queries and corresponding solutions from two benchmark suites.

Suite Name Query Expected solution

H
O

O
G

L
E

+ mergeEither Either a (Either a b) → Either a b \e → either Left id e

headLast [a] → (a, a) \xs → (head xs, last xs)

both (a → b) → (a, a) → (b, b) \f p → (f (fst p), f (snd p))

S
TA

C
K

-
O

V
E

R
FL

O
W multiIndex [a] → [Int] → [a] \xs is → map ((!!) xs) is

splitOn Eq a => a → [a] → [[a]] \x xs → groupBy (on (&&) (/= x)) xs

matchedKeys (b → Bool) → [(a, b)] → [a] \p xs → map fst (filter (p . snd) xs)

library of 291 components from 12 popular Haskell modules. These benchmarks are non-trivial:

the expected solutions range in size from 3 to 9, with the average size of 4.7; 40% of the

components are polymorphic, and 44% of the queries require using a higher-order component.

Three sample queries from this suite are listed at the top of Tab. 2.1. The solutions to these

queries have sizes 4, 5, and 7 respectively, and mergeEither uses a higher-order component

either.

Both HOOGLE+ and HECTARE yield candidate programs one at a time, gradually increas-

ing the size of the programs they consider. For both tools, our test harness terminates the search

once the expected solution has been found (or the timeout of 300 seconds has been reached).

We report the average time to expected solution over three runs. We configured HECTARE to

perform static reduction on all constraints prior to running the fast enumeration procedure of

Sec. 2.4.3, repeating this operation up to 30 rounds or until the automaton converges.

Results. Fig. 2.17 plots the number of benchmarks solved vs. time for both synthesizers. Within

the timeout, HECTARE solves 43 out of 45 benchmarks, whereas HOOGLE+ only solves 39.

Importantly, as we show in Fig. 2.18, on commonly solved benchmarks HECTARE is significantly

faster: it achieves an average speedup (geometric mean) of 7× on this suite, solving all but two

tasks faster than HOOGLE+. Fast synthesis times are especially important if a synthesizer is to
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Figure 2.17. Benchmarks solved vs time
for HECTARE and HOOGLE+ on HOOGLE+
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Figure 2.18. Synthesis times of HECTARE

against HOOGLE+ on HOOGLE+ bench-
marks.

be used interactively. As shown in the zoomed-in scatter plot in Fig. 2.18 (right), HECTARE also

vastly outperforms HOOGLE+ if we consider a shorter timeout of 7 seconds, commonly used for

interactive synthesizers [28]; in fact, HECTARE solves 84% of the benchmarks within 7 seconds.

The poor performance of HOOGLE+ can be mainly attributed to the brittleness of the

abstraction-refinement loop it uses to support polymorphic components (Sec. 2.7.2). For example,

the headLast benchmark from Tab. 2.1 is one of the queries where HOOGLE+ times out, while

HECTARE only takes 2.5 seconds. Upon closer inspection, HOOGLE+ is unable to create an

accurate type abstraction for this query and ends up wasting a lot of time enumerating ill-typed

terms. HECTARE, in contrast, natively supports polymorphic components via recursive nodes,

which leads to more predictable performance. On the other hand, the two benchmarks where

HECTARE is slower than HOOGLE+ both involve deconstructing a Pair and using both of its

fields (both from Tab. 2.1 is one of these benchmarks). HOOGLE+ solves these queries using a

special treatment of Pairs: it introduces a single component that projects both fields of a pair

simultaneously, which makes the solutions to these queries much shorter; in HECTARE, we did

not find a straightforward way to add this trick.

In general, we conclude that HECTARE is effective in solving type-driven synthesis tasks

and outperforms a state-of-the-art tool on 89% of their benchmarks with 7× speedup on average.
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2.8.2 Comparison on STACKOVERFLOW Benchmarks

Benchmark Selection. Recall that another limitation of HOOGLE+ we discussed in Sec. 2.7.2 is

its restricted support for higher-order functions. In fact, the original HOOGLE+ configuration

contains only nine components whose nullary versions are added to the Petri net (and which

consequently can appear in arguments to higher-order functions). In order to push the limits

of both tools and demonstrate the benefits of HECTARE’s native encoding, we assembled an

additional benchmark suite focusing on higher-order functions. To this end, we searched

STACKOVERFLOW for Haskell programming questions; for each question, we attempted to

construct an expected solution using only applications of library components; we excluded

tasks that can be solved without higher-order functions or require unsupported features (such

as higher-kinded type variables and inner lambda abstractions). This left us with 19 synthesis

queries. The new benchmark suite is generally more complex than the original HOOGLE+ suite:

expected solutions range in size from 4 to 9, with the average of 6.2; all of these programs

include partial applications as arguments to higher-order components. Three sample queries are

shown at the bottom of Tab. 2.1.

Experiment Setup. To run the newly collected benchmarks, we augmented the original compo-

nent set from HOOGLE+ with seven components required in these benchmarks. We also created

a variant of HOOGLE+ called HPLUSALL, in which we added nullary copies of all components

into the Petri net (HPLUSALL thus has the same expressiveness as HECTARE). As before, we

record the time to expected solution, repeat the measurement three times, and report the average

time; to accommodate the increased benchmark complexity, we use a longer timeout of 600

seconds.

Results. Unsurprisingly, the original HOOGLE+ cannot solve any of the new benchmarks: most

of them require using new components in higher-order arguments (and the rest are simply too

large). The results for HPLUSALL and HECTARE are shown in Fig. 2.19. Although the search

space of HPLUSALL does include all the new benchmarks, it still fares poorly, solving only

88



0 100 200 300 400 500 600
Time (s)

0

5

10

15

19

# 
Be

nc
hm

ar
ks

 S
ol

ve
d

Hectare
HplusAll
Total # of benchmarks

Figure 2.19. Synthesis time comparison on
higher-order benchmarks between HECTARE

and HPLUSALL.

0 50 100 150 200 250 300
Time (s)

0

5

10

15

20

25

30

35

40

45

# 
Be

nc
hm

ar
ks

 S
ol

ve
d

Hectare
Hectare-StaticOnly
Hectare-DynamicOnly
Total # of benchmarks

Figure 2.20. Comparison of synthesis perfor-
mance between HECTARE and its two vari-
ants.

3 out of 19. The reason is that adding nullary versions of all components blows up the Petri

net and makes the reachability problem intractable. In contrast, HECTARE’s native support for

partial applications enables it to solve 13 out of 19 tasks in this challenging suite, achieving 40×

speedup on the three commonly solved benchmarks. We therefore conclude that the benefits of

ECTA-based synthesis are even more pronounced on larger benchmarks focused on higher-order

functions.

2.8.3 Benefits of Static and Dynamic Reduction

Experiment Setup. To isolate the contributions of static and dynamic reduction, we compare

HECTARE with its three variants: HECTARE-STATICONLY, HECTARE-DYNAMICONLY, and

HECTARE-NAÏVE, which forgo one or both kinds of reduction, respectively. Specifically, both

HECTARE-STATICONLY and HECTARE-NAÏVE, use a naïve “rejection-sampling” enumeration.

Note that in the presence of recursive nodes, such as the any type, the naïve enumeration tends

to get “stuck”, constructing infinitely many spurious terms and never finding one that satisfies

the constraints. To prevent this behavior, we limit the unfolding depth of recursive nodes to

three, which is sufficient to solve all the benchmarks. We run the three variants on the HOOGLE+

benchmarks with a timeout of 300 seconds and report the average time to expected solution over
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three runs.

Results. Fig. 2.20 plots the number of benchmarks solved vs. time for HECTARE and its variants.

HECTARE-NAÏVE is omitted from the plot because it cannot solve any benchmarks: it spends

most of its time unfolding the recursive any node, or in other words, blindly going through all

possible instantiations of every polymorphic component. The other two variants fare significantly

better: HECTARE-STATICONLY and HECTARE-DYNAMICONLY are able to solve 34 and 36

tasks, respectively. That said, as the tasks get harder, HECTARE still outperforms these variants

drastically: in particular, the variants cannot solve any benchmarks of size six or larger.

A closer look at Fig. 2.20 reveals a curious difference: HECTARE-STATICONLY is

“all-or-nothing”: it performs as well as HECTARE on easy benchmarks, but then completely

falls flat; HECTARE-DYNAMICONLY, in contrast, demonstrates a more gradual degradation of

performance. To understand why, recall that the biggest time sink during enumeration is blindly

unfolding the recursive any nodes. Static reduction can sometimes get rid of any nodes entirely,

making the resulting ECTA small enough that any enumeration algorithm would do; when it

fails to do so, however, naïve enumeration spends all its time in any nodes. Dynamic reduction,

on the other hand, provides a more gradual yet robust approach to dealing with any nodes, via

SUSPEND. In summary, we find that both static and dynamic reduction individually are critical

to the performance of ECTA-based programs synthesis, and moreover, they complement each

other’s strengths.

2.9 Related Work

Constrained Tree Automata. Tree automata have long been used to represent sets of terms in

term rewriting [20, 29, 34], and we are not the first to consider adding equality constraints to

handle nonlinear rewrites. In fact, in 1995, Dauchet introduced a data structure very similar to

our ECTAs, called reduction automata [21]. In fact, reduction automata are more expressive than

ECTAs, as they also allow disequality constraints, including disequalities (but not equalities) on
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cycles. Unfortunately, allowing disequalities—or other classes of constraints for that matter—

precludes efficient static and dynamic reduction based on automata intersection. For that reason,

we consider ECTAs to be a sweet spot: expressive enough to encode a variety of interesting

problems, yet restricted enough to enable fast enumeration.

Other prior work on constrained tree automata [11, 12, 8, 9, 87] similarly focuses on

theoretical aspects, such as worst-case complexity and decidability results, and we have found

no reference to these data structures being used in a practical system in the 30 years since their

introduction.

Attribute grammars [57, 76, 99] augment context-free grammars with a number of

equations of the form ⟨attribute⟩= ⟨expression⟩. This notation resembles a constraint system

over trees, but those equations are actually unidirectional assignments; attribute grammars

compute values over trues, but do not constrain them.

Unconstrainted FTAs, VSAs, and E-Graphs. In contrast to the purely theoretical work on

constrained tree automata, their unconstrained counterparts, as well as VSAs and e-graphs, have

enjoyed practical applications in program synthesis [102, 104, 40, 83, 70, 71, 105] and related

areas, such as theorem proving [23], superoptimization [107], and semantic code search [85].

One important feature of these data structures, which ECTAs currently lack, is the ability extract

an optimal term according to a user-defined cost function. It is not surprising that ECTAs have a

slightly different focus, since in the presence of constraints extracting terms regardless of cost

becomes hard—at least as hard as SAT solving. Extracting optimal terms would be akin to

MaxSAT solving [60]; we leave this non-trivial extension to future work.

Finally note that unlike FTAs and VSAs, e-graphs are used to represent a congruence

relation over terms, as opposed to an arbitrary term space; hence adding equality constraints to

an e-graph is less meaningful. Returning to our introductory example in Fig. 2.1, an e-graph

equivalent to the FTA in Fig. 2.1b would actually encode that a, b, and c, are all equivalent to

each other; hence it is hard to imagine why one would want to represent only the terms of the
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form +( f (X), f (X)) but not +( f (X), f (Y )), because all these terms are equivalent.

2.10 Conclusions and Future Work

This chapter has introduced equality-constrained tree automata (ECTAs) and contributed

an efficient implementation of this new data structure in the ECTA library. We think of ECTAs

as a general-purpose language for expressing constraints over terms, and the ECTA library as a

solver for these constraints. Although in this work we only discussed two concrete examples

of properties that can be encoded with ECTAs—boolean satisfiability and well-typing—in the

future we hope to see many fruitful applications in a wide range of domains.

ECTA vs. SMT. Instead of developing a custom solver for ECTAs, wouldn’t it be better to simply

translate ECTAs into SAT or SMT constraints, and use existing, well-engineered solvers? A

natural idea is to introduce a variable per ECTA node, whose value represents the choice of

incoming transition, and to translate ECTA constraints into equalities between these variables.

This simple idea, however, does not work: because the choice is made independently every time

a node is visited, this encoding would require unfolding the ECTA into a tree. This is a complete

non-starter for cyclic ECTAs (like the HECTARE encoding of Sec. 2.7.2), since the corresponding

tree is infinite. For acyclic ECTAs, the tree is finite but might be exponential in the size of the

ECTA (since we need to “un-share” all the shared paths in the DAG).

More generally, the problem of finding an ECTA inhabitant is not in NP, because the

smallest tree represented by an ECTA can be exponential in the size of the ECTA (as we illustrated

in Fig. 2.11); hence a general and efficient SAT encoding is not possible. Although future work

might develop a clever SMT encoding using advanced theories, we believe this problem is far

from trivial. After all, HOOGLE+ uses an SMT encoding that is specifically tailored to the

type inhabitation problem (i.e. it is less general than ECTA), and yet it is less efficient. As we

discussed in Sec. 2.7.2, the main source of this inefficiency is polymorphism, which makes the

search space of types infinite and precludes a “one-shot” SMT encoding, requiring HOOGLE+ to
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go through a series of finite approximations of the space of types to consider. Instead, a cyclic

ECTA is able to represent the entire infinite space of types at once, and ECTA enumeration

is able to explore this space efficiently, as our experiments show. We anticipate that ECTAs

will outperform SMT solvers on other similar problems that require searching an infinite yet

constrained space of terms.

Future Work. One avenue for extension is to enrich the constraint language supported by ECTAs.

The key ingredient for efficiency is that there exists a constraint-propagation mechanism that can

be interleaved with CHOOSE. Intersection is this constraint-propagation mechanism for equality,

but there may be others. For example, disequality constraints could be processed by creating an

alternative rule to SUSPEND which tracks both sides of a disequality, and modifying CHOOSE to

discharge disequality constraints or propagate them into subterms as symbols are selected.

Another path for extension is to relax the requirement for no constraints on cycles. A

careful reader may notice that Theorem 2.5.1 only impedes emptiness-checking; enumerating all

satisfying terms up to a fixed size is trivially decidable. Currently HECTARE creates many ECTA

nodes for different term sizes, using a meta-program to iterate through successive ECTAs. With

constraints on cycles, this meta-program could be internalized, further shortening the HECTARE

implementation.
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Chapter 3

Type-Directed Progrom Synthesis for
REST APIs

3.1 Introduction

Software-as-a-service has emerged as a widely-used means for developers to leverage

third-party software. Developers might send requests to STRIPE to handle payments or integrate

with SLACK to publish notifications, all while making use of cloud providers to provision

various form of storage and compute. According to recent industry surveys, more than 80%

of respondents’ services offer RESTful APIs [93, 84], and these APIs are extensive. SLACK,

for example, has 174 API methods as of version 1.5.0. Amazon Web Services offers over

two hundred products and services, each with tens or hundreds of API methods. Even with

comprehensive documentation—which is by no means guaranteed—using a new service can be

a daunting proposition.

As an example, consider a question posed on STACKOVERFLOW about the SLACK API:

How do I retrieve all member emails from a SLACK channel with a given name? The answer is

surprisingly complicated:

1. First, call conversations_list1 to retrieve the array of all channel objects, and then search

for a channel object with a given name and get its ID;

1We shorten method names for brevity and elide the distinction between REST methods and endpoints, irrelevant
in this context.
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Figure 3.1. Overview of APIPHANY

2. Next, call conversations_members on the channel ID to get all user IDs of its members;

3. Finally, for each user ID, call users_info to retrieve a user object u, and then access the

user’s email via u.profile.email.

To come up with this solution, one must be familiar with channel objects, user objects, and three

different API methods.

Component-based program synthesis [64, 47, 27, 52] has been previously used to help

programmers navigate APIs in Java, Scala, and Haskell. Component-based synthesizers take

as input a type signature and (in most cases) a set of input-output examples, and return a list of

program snippets that compose API calls and have the desired type and input-output behavior.

This is a powerful approach for navigating APIs, because it allows developers to start with

information easily at hand—the types of inputs they have and the outputs they desire—and

requires no knowledge of which API methods to apply.

Challenges. Unfortunately, there are three significant challenges in applying component-based

synthesis to RESTful APIs. First, component-based synthesis relies on types both for expressing

user intent and for efficient search, but types in REST APIs are quite shallow. For example, in

the SLACK API specification, both channel names and emails have type String, so our example,

which transforms a channel name into an array of emails, would have a very imprecise type

signature String→ [String].
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Second, RESTful APIs commonly transmit semi-structured data, i.e. arrays of objects,

which may themselves contain nested objects and arrays. As a result, using an API is often not

as simple as sequencing together a handful of method calls; instead, the calls must be interleaved

with “data wrangling” operations such as projections, maps, and filters. These data wrangling

operations are challenging for component-based synthesis: they are extremely generic, and hence

significantly expand the search space.

Finally, to compensate for the inherent ambiguity of types, component-based synthesis

typically relies on executing candidate program snippets and matching them against user-provided

input-output examples. In a software-as-a-service environment, this is a complete non-starter: not

only is the user generally unaware of the internal state of the service and hence unable to provide

accurate examples, but executing API calls during synthesis can also be prohibitively expensive

due to rate limits imposed by the services and, even more importantly, can have unrecoverable

side effects, such as deleting accounts or publishing messages.

APIPHANY: synthesis with semantic types. Our core insight is that type-based specifications

are actually a good fit for REST APIs, as long as the types are more fine-grained. In our example,

if the SLACK API had dedicated types for Channel.name and Profile.email, the programmer could

specify their intent as the type Channel.name→ [Profile.email]. Although this specification is

still somewhat ambiguous, intuitively it has enough information to narrow down the synthesis

results to a manageable number such that the programmer can manually inspect the remaining

solutions. We refer to such fine-grained types as semantic types.

In this work, we present APIPHANY, a component-based synthesizer for REST APIs

guided by semantic types. Fig. 3.1 shows a high-level overview of our approach, which is

structured into two phases: (1) the analysis phase infers semantic type annotations for a given API;

(2) the synthesis phase uses these type annotations to perform component-based synthesis. For the

SLACK API, APIPHANY is able to infer, for example, that the method conversations_members has

the semantic type Channel.id→ [User.id]. At synthesis time, given the type query Channel.name→
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1 \channel_name → {

2 c ← conversations_list()

3 if c.name = channel_name

4 uid ← conversations_members(channel=c.id)

5 let u = users_info(user=uid)

6 return u.profile.email

7 }

Figure 3.2. Solution for retrieving all member emails from a SLACK channel in APIPHANY

DSL.

[Profile.email], APIPHANY returns a ranked list of programs of this type, where the desired

solution (shown in Fig. 3.2) appears among the top ten. APIPHANY’s output is expressed in a

compact DSL inspired by Haskell’s monadic do-notation and Scala’s for-comprehensions, which,

however, can be easily translated into the user’s language of choice for communicating with the

API.

Contributions. We present the design, implementation, and evaluation of APIPHANY, including:

1. Type mining (Sec. 3.4), a technique that infers semantic types from a set of witnesses

(observed invocations of API methods). Witnesses can be generated in a sandbox or by

tapping live production traffic; in either case, they are collected ahead of time, once per

API, which avoids inducing side effects during synthesis.

2. Efficient synthesis of wrangling operations for semi-structured data via array-oblivious

search (Sec. 3.5), which omits challenging array operations during search, and recovers

them later via type-directed lifting.

3. Ranking synthesis results with the help of retrospective execution (Sec. 3.6), a type of

simulated execution using previously collected witnesses. Retrospective execution helps

APIPHANY weed out uninteresting programs (e.g. programs that always return an empty

array), reducing the number of synthesis results the user has to inspect to find their expected

solution.
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Figure 3.3. Fragment of the Slack API’s OpenAPI specification. (left) Definitions of user,
profile and channel objects. (right) Parameters and responses of the methods users_info and
conversations_list.

We evaluate APIPHANY on three real-world APIs, and 32 tasks extracted from GITHUB

repositories and STACKOVERFLOW (Sec. 3.7). Our evaluation shows that APIPHANY can find

solutions to the majority of tasks (29/32) within 150 seconds. Moreover, semantic types are

crucial to its effectiveness: without type mining, APIPHANY can only solve four tasks. Finally,

ranking significantly improves the quality of reported solutions, increasing the number of correct

solutions appearing in top ten results from 12/29 to 23/29.

3.2 APIPHANY by Example

In this section we use the task of retrieving all member emails in a SLACK channel as a

running example to illustrate the APIPHANY workflow depicted in Fig. 3.1.

3.2.1 API Analysis by Example

API analysis is performed once per API. It takes as input a spec in the popular OpenAPI

format2 and a set of witnesses (successful API method calls); it produces a spec annotated with

semantic types. OpenAPI specs are publicly available for most popular APIs.3 Witnesses can be

generated in a number of ways, for example, by running an integration test suite in a sandbox or

by passively listening to production API traffic. We envision witness collection and API analysis

2https://swagger.io/. APIPHANY supports both OpenAPI v2 and v3.
3SLACK OpenAPI spec is available at: https://raw.githubusercontent.com/slackapi/slack-api-specs/master/

web-api/slack_web_openapi_v2.json
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Figure 3.4. Witnesses for two SLACK API methods. Arrows connect equal values observed at
different locations. Type mining ascribes the type User.id to all the boxed locations.

being performed by the API maintainer (or another interested party), not by regular users of the

APIPHANY synthesizer.

OpenAPI specs. Fig. 3.3 shows a fragment of the OpenAPI spec provided by SLACK. An

OpenAPI spec consists of object definitions and method definitions. We show definitions of three

objects, user, profile and channel, and two methods, users_info and conversations_list, relevant

to our example. As you can see, the spec does provide precise type information for some of

the locations: for example, the response of users_info clearly has type User (it is annotated with

a reference to the corresponding object definition). The bulk of the locations, however, such

as the field user.id or the parameter of users_info, are simply annotated with String, which is

not very helpful for the purposes of type-directed synthesis. Our goal is to replace these String

annotations with more fine-grained types.

Mining types from witnesses. To this end, we build upon an algorithm first proposed in [3]

that infers types by mining them from execution traces, based on the insight that equal values

observed at different locations likely have the same type. More specifically, our type mining

algorithm starts by ascribing a unique semantic type to each String location and then merges

locations that share a value anywhere in the witness set. As an illustration, consider Fig. 3.4,

which lists two witnesses for the API methods from our running example. In this witness set we

100



observe the same value "UJ5RHEG4S" in three locations: (1) the parameter of users_info, (2) the

id field of a User object (we know from the spec that users_info returns a User), and (3) the

creator field of a Channel object (we know from the spec that conversations_list returns an array

of Channels). Hence we merge all three locations into the same semantic type. For presentation

purposes, we assign the name User.id to this type, which is derived from location (2) above. The

choice of name is not important, however: the user is free to refer to this semantic type via any

of its representative locations; for example, Channel.creator also denotes the same type.

3.2.2 Program Synthesis by Example

The program synthesis phase of APIPHANY is meant to be used by regular programmers,

any time they need help accomplishing a task with one of the supported APIs. The programmer

queries APIPHANY with a type signature built from semantic types. Although the UI for

constructing queries is beyond the scope of this work, we envision the programmer browsing

object definitions and selecting relevant fields as semantic types. For our running example, the

programmer knows that they need to go from a channel name to an array of user emails; they

might first look through the channel object definition and find the name field; they might then

search globally for a field called email and find it inside the profile object; hence they settle on

the type query Channel.name→ [Profile.email].

The program synthesis phase itself comprises two steps, beginning with a program search

step to generate a list of candidate programs with a given type, followed by a ranking step to

identify promising candidates (described in Sec. 3.2.3).

Challenge: components meet control flow. Given the type query Channel.name→ [Profile.email],

how would APIPHANY go about enumerating all programs of this type? This task presents a

challenge to existing synthesis techniques because our candidate programs have both a large

component library to choose from—from dozens to hundreds of methods—and non-trivial

control flow—e.g. the solution to our running example has to loop over the members of a channel.

One line of prior work that scales to large component libraries is graph-based search using
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type-transition nets (TTNs) [27, 45]; unfortunately, this approach can only generate sequences

of method calls, and does not support loops.

The APIPHANY DSL. We observe that the loops we need for manipulating semi-structured

data are restricted to iterating over (possibly nested) arrays of objects. To capture this restricted

class of programs we have designed a DSL inspired by Scala’s for-comprehensions, Haskell’s

monadic do-notation, and LINQ [65]. The solution to our running example in this DSL is given in

Fig. 3.2. In this language, iteration over an array is expressed using the monadic bind operation

(written←). For example, the second bind in Fig. 3.2 has the effect of performing the subsequent

computation for every element uid of the array returned in line 4:

4 uid ← conversations_members(channel=c.id);

5 let u = users_info(user=uid);

6 return u.profile.email

Array-oblivious search. The main idea behind APIPHANY’s search is that although we cannot

directly synthesize the program above using existing TTN-based techniques, we can synthesize

an array-oblivious version of this program, where we pretend that conversations_members returns

a single User.id instead of an array, and hence we can simply sequence the two method calls,

without monadic binding:

4 let uid = conversations_members(channel=c.id);

5 let u = users_info(user=uid);

6 u.profile.email

To transform an array-oblivious program into the final solution, APIPHANY lifts it into

a comprehension by replacing each let binding that causes a type mismatch with a monadic

bind. In our example, the let in line 4 causes a type error (because conversations_members returns

[User.id], while users_info expects a single User.id), while the let in line 5 does not (since

users_info returns a single User); hence lifting replaces the first let-binding with← but not the

second.
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\channel_name → {

c ← conversations_list()

if c.name = channel_name

let uid = c.creator

let u = users_info(user=uid)

return u.profile.email

}

\channel_name → {

c ← conversations_open()

if c.name = channel_name

let uid = c.creator

let u = users_info(user=uid)

return u.profile.email

}

Figure 3.5. A sample of incorrect candidate solutions.

3.2.3 Ranking via Retrospective Execution

Although semantic types are less ambiguous than primitive types for expressing user

intent, they are still not precise enough to exactly identify the desired program. For example,

our synthesizer generates more than 1000 candidates for the type signature Channel.name→

[Profile.email]; clearly, it is infeasible for the user to manually go through all of them. Hence,

APIPHANY must be able to rank the candidates in order to show the user a small number of

likely solutions.

Fortunately, most of the 1000 candidates are easy to weed out because they produce

uninteresting results. Consider two of the candidates depicted in Fig. 3.5, which differ from our

desired solution (Fig. 3.2) in the highlighted fragments: the first program returns the email of the

channel’s creator (as opposed to all of its members), and the second one gets the list of channels

from conversations_open, which is intended for opening a direct message channel. It turns out

that the second program always fails at run time, because a successful call to conversations_open

requires providing exactly one of its two optional arguments (a channel ID or a list of users).

The first program executes successfully, but it always returns a single email, while the user

asked for an array of emails. For these reasons, both of these programs are less likely to be the

intended solution than the program in Fig. 3.2, which successfully returns multiple emails at

least sometimes.

A natural idea is to test all candidate programs on random inputs and rank them based

on the results they produce. Unfortunately, as we have hinted above, there are several barriers

to systematically executing many candidate programs that make calls to REST APIs. First,

103



most REST APIs set a rate limit on how frequently a user can make method calls or how many

calls a user can make in a day. Second, many REST API methods are side-effecting. Unlike a

self-contained binary, a remotely-hosted service cannot be restarted from a clean state for each

execution.

Retrospective execution. We propose retrospective execution (RE) as an efficient, non-side

effecting alternative to program execution. The main idea is to simulate execution by “replaying”

witnesses collected for the API analysis phase. When evaluating a candidate program, rather than

executing an API call, RE instead searches for a matching witness and substitutes its response

at the call site. If done naively, however, this process almost always yields failure or an empty

array; so making RE useful for ranking purposes requires explicitly biasing execution towards

meaningful results.

As an illustration, consider executing the program in Fig. 3.2 using the witnesses

in Fig. 3.4. As the first step, we simulate the call to conversations_list using the first wit-

ness; the response is an array of channels with names "general", "private-test", and "team". The

second step is to filter this array, retaining only those channels whose name is equal to the input

parameter channel_name. If we had sampled the value for channel_name eagerly, before running

the program, we could scarcely have chosen one of the three names actually present in the array,

so the filtering step (and hence the whole program) would almost always return an empty array.

Instead we sample the value for channel_name lazily, once we encounter the filter, picking one of

the names present in the array.

Assume that we picked channel_name = "general", and hence the filter returns the first

channel. Next, we simulate the call to conversations_members on this channel’s ID. Because our

witness set is sparse, we may or may not find an exact match for this call; in the latter case, we

sample the response from the set of approximate matches, i.e. witnesses with the same method

names and argument names,4 but not necessarily the same argument values. Due to approximate

4Because in REST some arguments are optional, the same method can be called with different subsets of
arguments.
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matching, RE results do not always equal the results of a real execution, but they are still useful

for estimating whether a program candidate is able to produce meaningful outputs. For each

candidate, we run RE multiple times (with different random seeds) and use the outputs to assign

a rank to each candidate.

3.3 The Core Language

In this section, we formalize the core of APIPHANY’s DSL as λA, a functional language

specialized for manipulating semi-structured data. The syntax of λA is summarized in Fig. 3.6.

Types. The types of λA include syntactic types t (those used in the OpenAPI spec) and semantic

types t̂, which we infer. Both categories of types have named objects o, arrays [t], and records

{ℓi : ti}.5 Records are mappings from field labels to types; some fields are optional, indicated

with a ? before its label. For example, the record type {id : String,?time_zone : String}, has a

required field id and an optional field time_zone. The two categories of types differ in their base

types: the sole primitive syntactic type is String,6 while the sole primitive semantic type is a

loc-set, i.e. a set of locations.

A location is an object or method name followed by a sequence of labels, such as User.id.

Apart from field labels that correspond to object fields in the OpenAPI spec, we introduce three

reserved labels—in, out, and 0—for addressing method parameters and responses, and array

elements, respectively. For example, c_list.out.0 refers to an element type of the response array

of the method c_list.

Function types are written t → t, and multiple arguments are represented as a record

whose fields encode argument names (with optional fields encoding optional arguments).

A library Λ models an OpenAPI spec. It contains object definitions, which bind object

identifiers to (record) types, and method definitions, which bind method names to function

5We write X to denote zero or more occurrences of a syntactic element X .
6In practice, REST APIs also include integers and booleans; these types are handled slightly differently in

APIPHANY, as discussed in Sec. 3.7.4.
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o ::= User | Channel | . . . object names
f ::= u_info | . . . method names
l ::= in | out | 0 | id | name | . . . field labels
ℓ ::= l |?l record fields

loc ::= o.l | f .l locations

Terms

e ::= Expressions
| x | e.l variable, projection
| f (li = ei) | let x = e;e method call, pure binding
| if e = e;e | x← e;e guard, monadic binding
| return e pure value lifting

E ::= λx.e Top Level Programs

Values

v ::= "..." | [v] | {li = vi} strings, arrays, objects

Types

t ::= Syntactic types
| String strings
| o | [t] | {ℓi : ti} named objects, arrays, records

s ::= t→ t function types
t̂ ::= Semantic types

| {loc} loc-sets
| o | [t̂] | {ℓi : t̂i} named objects, arrays, records

ŝ ::= t̂→ t̂ function types

Libraries

Λ ::= o : t; f : s object and method definitions
Λ̂ ::= o : t̂; f : ŝ semantic definitions

Figure 3.6. Syntax of the language λA
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Syntactic library Λ Semantic library Λ̂

O
bj

ec
ts

Channel: { id: String,

name: String,

creator: String }

User: { id: String,

name: String,

profile: Profile }

Channel: { id: Channel.id ,

name: Channel.name ,

creator: User.id }

User: { id: User.id ,

name: User.name ,

profile: Profile }

M
et

ho
ds

c_list:

{} → [Channel]

u_info:

{user: String} → User

c_members:

{channel: String} → [String]

c_list:

{} → [Channel]

u_info:

{user: User.id } → User

c_members:

{channel: Channel.id } → [ User.id ]

Figure 3.7. Library Λ that models a portion of the SLACK OpenAPI spec and the corresponding
semantic library Λ̂. Each gray box is a loc-set type inferred by type mining, depicted for brevity
using a single representative location from the set.

Input: A library Λ and witnesses W
Output: A semantic library Λ̂

1: function MINETYPES(Λ,W )
2: DS← empty disjoint-set
3: for ⟨ f ,vin,vout⟩ ∈W do
4: ADDWITNESS(DS, f , in,vin)
5: ADDWITNESS(DS, f ,out,vout)
6: Λ̂← ADDDEFINITIONS(Λ,DS)
7: return Λ̂

1: function ADDWITNESS(DS, loc,v)
2: match v
3: case "...":
4: Λ; loc ⊢ {loc′}=⇒
5: DS← insert(DS, loc′,v)
6: case [vi]:
7: forall i : ADDWITNESS(DS, loc.0,vi)
8: case {li = vi}:
9: forall i : ADDWITNESS(DS, loc.li,vi)

Figure 3.8. Type mining algorithm.

types. A semantic library Λ̂, which is the output of type mining, binds object identifiers and

method names to semantic types. As an example, Fig. 3.7 shows Λ definitions that correspond

to a portion of the SLACK OpenAPI spec (with method names shortened for brevity), and their

corresponding definitions in the semantic library Λ̂.

Terms. Values of λA include string literals, arrays, and objects; objects are mappings from field

labels to values. Similarly to Haskell’s do-notation, return e returns an array with a single

element e, and the monadic binding x← e1;e2 evaluates e2 for each element x of the array e1,

and concatenates all resulting arrays. In contrast, the pure binding let x = e1;e2 binds x to the
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entire result of e1 and then evaluates e2. The guard expression if e1 = e2;e evaluates e if the

guard holds and returns an empty array otherwise; guards are restricted to equalities, since these

are the only guards generated by APIPHANY. At the top level, a program E is an abstraction

with a list of arguments x and body e.

3.4 Type Mining

In this section we detail APIPHANY’s type mining algorithm, using the library Λ in

Fig. 3.7 and the witnesses in Fig. 3.4 as a running example. Informally, the idea is to first assign

every String location loc in Λ a unique type {loc}, and then merge the types of some locations

based on the witnesses.

Assigning location-based types. We formalize the first step as a judgement Λ; loc ⊢ t̂ =⇒, which

assigns a semantic type t̂ to location loc based only on the information present in the syntactic

library Λ. The reader might be wondering why isn’t the assigned type t̂ always simply {loc}.

This is indeed the case for String-annotated locations explicitly present in Λ, such as User.id or

u_info.in.user. But in other cases, location-based type assignment is more involved; for example:

• Λ;u_info.out ⊢ User=⇒ because this location is annotated with a named object type.

• Λ;c_members.out ⊢ [{c_members.out.0}] =⇒ because array types do not themselves get

replaced with loc-sets; instead, we recursively assign a location-based type to an array’s

element.

• Λ;u_info.out.id ⊢ {User.id}=⇒ because type assignment canonicalizes locations inside

types to make sure they explicitly appear in Λ; to this end, we recursively assign a type to

location’s prefix, Λ;u_info.out ⊢ User=⇒, and then follow the field id of the User object.

The formalization of location-based type assignment is mostly straightforward and relegated to

the technical report [41].

Merging types via a disjoint-set. Type mining relies on a variant of the disjoint-set data structure

(also known as union-find [96]). Our disjoint-set DS stores disjoint groups of pairs (loc,v),
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where loc is a location and v is a string value. When two pairs are in the same group, their

corresponding locations have the same semantic type.

DS supports two efficient operations: insert and find. insert takes a pair (loc,v) and

checks whether either of its components already appears in DS; if so, it merges the new pair into

the corresponding group, and otherwise puts it into a new group. find takes a location loc and

returns a semantic type t̂; internally, find locates the group to which the pair (loc,_) belongs in

DS and returns the loc-set {loc, loc1, . . .} that contains all locations in that group.

Type mining algorithm. Fig. 3.8 presents the top-level algorithm MINETYPES, which takes as

input a syntactic library Λ and a set of witnesses W , and returns a semantic library Λ̂. A witness

W is a triple ⟨ f ,vin,vout⟩, where f is a method name and vin, vout are its argument and response

value (multiple arguments are represented as an object). MINETYPES operates in two phases: in

lines 2–5 it builds the disjoint-set DS from W and in line 6 it build Λ̂ from DS.

In the first phase, the algorithm iterates over the witnesses, registering the input value vin at

the location f .in and the output value vout at the location f .out. To this end, we call a helper func-

tion ADDWITNESS, which drills down into composite values (arrays and objects) to get to string

literals, and then inserts each string into DS with its location-based type. For example, when pro-

cessing the response from the first witness in Fig. 3.4, ADDWITNESS iterates over all channel ob-

jects in the array, and over all fields of each channel object; once it reaches the value "UJ5RHEG4S",

it computes the type of its location as Λ;c_list.out.0.creator ⊢ {Channel.creator}=⇒, and in-

serts (Channel.creator,"UJ...") into DS. Processing the second witness results in inserting the

pairs (u_info.in.user,"UJ...") and (User.id,"UJ..."), which share the same string value, and

hence all three pairs get merged into the same group. Once all the witnesses are added to DS, its

groups represent the final set of semantic types.

In the second phase, the algorithm calls ADDDEFINITIONS to iterate over all object

and method definitions in Λ, and add corresponding definitions to Λ̂, relying on find to re-

trieve the semantic type for each location. For example, when adding the method u_info, we
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query find(DS,u_info.in.user), which finds the group mentioned above and returns its loc-set:

{User.id,Channel.creator, . . .}. If the requested location is not in DS—because W has no wit-

nesses for the enclosing method or object—it is annotated with the unmerged location-based

type.

3.5 Type-Directed Synthesis

In this section, we discuss how APIPHANY generates a set of well-typed programs given

a query type, using the same running example as in previous sections.

Synthesis problem. Formally, our synthesis problem is defined by a semantic library Λ̂ and

a semantic query type ŝ. For our running example, we use the semantic library from Fig. 3.7

and the query type Channel.name→ [Profile.email].7 A candidate solution is any program E that

type-checks against ŝ. To formalize this notion, we introduce the program typing judgment

Λ̂ ⊢ E :: ŝ, which is mostly straightforward. We note only that in a monadic binding x← e1;e2,

both e1 and e2 must have array types; in a guard if e1 = e2;e, e must have an array type, while

e1 and e2 must have (the same) loc-set type, since equality is only supported over string values.

Full definition can be found in the technical report [41].

Type transition nets. To efficiently enumerate well-typed programs we follow prior work [27, 45]

and encode the search space as a special kind of Petri net, called type-transition net (TTN).

Intuitively, a TTN encodes how each API method transforms values of one semantic type into

another; e.g. u_info transforms a User.id into a User. Fig. 3.9 shows a TTN for our running

example. Places (circles) correspond to semantic types, transitions (rectangles) correspond to

methods, and edges connect methods with their input and output types. In addition to API

methods, the TTN contains transitions that correspond to λA projections (e.g. projUser.profile and

projProfile.email) and guards (e.g. filterChannel.name).

Array-oblivious search. For our search space encoding to be useful, we need to make sure that

7Here and throughout this section, we write loc-set types using an arbitrarily chosen representative; the user can
query APIPHANY using any locations of their choosing, and the tool interprets them as the loc-sets they belong to.
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Figure 3.9. A fragment of the type-transition net (TTN) for SLACK. Places (circles) are
semantic types; transitions (rectangles) are API methods and data transformations. The bold path
represents the solution to our running example.

every well-typed λA program corresponds to a path in the TTN. This is where we encounter

a challenge: there is no straightforward way to encode λA’s monadic bind operation into the

TTN. Although prior work on HOOGLE+ [45] supports higher-order functions, the arguments to

those functions are syntactically restricted to variables (i.e. inner lambda abstractions are not

supported), which is insufficient for our purposes. To address this problem, we introduce a new,

array-oblivious TTN encoding, which does not distinguish between array types and types of their

elements, and hence does not require monadic binds. For example, in Fig. 3.9 c_members returns

User instead of [User], and hence its output can be passed directly to u_info, without iterating

over it.

Search in the TTN. Once the TTN is built, we enumerate paths from the input to the output type

(or rather, array-oblivious versions thereof). In our example, we place a token in the input type

Channel.name and search for a path (a sequence of transitions) that would get this token to the

output type Profile.email, possibly generating and consuming extra tokens along the way. The

bold path in Fig. 3.9 corresponds to our desired solution from Fig. 3.2. On this path, we first fire

the transition c_list (which does not consume any tokens) to produce an extra token in Channel.

Next, we fire filterChannel.name, which consumes the two tokens in Channel and Channel.name, and
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Input: Semantic library Λ̂ query type ŝ
Output: Set of candidate solutions E

1: function SYNTHESIZE(Λ̂, ŝ)
2: N ← BUILDTTN(Λ̂)
3: I,F ← PLACETOKENS(ŝ)
4: for π ∈ PATHS(N , I,F) do
5: for E ∈ PROGS(π) do
6: yield LIFT(Λ̂, ŝ,E)

Figure 3.10. Synthesis algorithm

produces a single token in Channel. The remaining five transitions on the bold path simply move

this one token along until it reaches Profile.email.

Like in prior work [27, 45], a path is only considered valid if the final state contains

exactly one token in the output type (and no tokens in any other types); this condition ensures

that the generated programs use all their inputs.

Synthesis algorithm. APIPHANY’s top-level synthesis algorithm is depicted in Fig. 3.10. The

algorithm first constructs a TTN N and encodes the query type ŝ as an initial and final token

placement, I and F; it then enumerates all paths from I to F in N in the order of length (until

timeout). For each path π , the algorithm iterates over the corresponding array-oblivious programs

E and lifts them into well-typed λA programs. The reason π might yield multiple programs is

that the TTN does not distinguish different arguments of the same type, and hence we must try

all their combinations.

Because TTN construction and search for valid paths is similar to prior work, we omit

their detailed description and refer an interested reader to our technical report [41].

One difference worth mentioning, however, is that we use an integer linear programming

(ILP) solver to find paths in the TTN, unlike prior approaches, which relied on SAT/SMT solvers.

We found that although both solvers are equally quick at finding one valid path, when it comes

to computing all valid paths of a given length, the ILP solver is much more efficient, as it has

native support for enumerating multiple solutions.

112



1 \channel_name →
2 let x1 = c_list({});

3

4 let x2 = x1.name;

5 if x2 = channel_name;

6 let x3 = x1.id;

7 let x4 = c_members(channel=x3);

8

9 let x5 = u_info(user=x4);

10 let x6 = x5.profile;

11 let x7 = x6.email;

12

13 x7

\channel_name →
let x1 = c_list({});

x1’ ← x1;

let x2 = x1’.name;

if x2 = channel_name;

let x3 = x1’.id;

let x4 = c_members(channel=x3);

x4’ ← x4;

let x5 = u_info(user=x4’);

let x6 = x5.profile;

let x7 = x6.email;

let x7’ = return x7

x7’

Figure 3.11. Array-oblivious program built from the bold path in Fig. 3.9 (left) and its lifted
version (right).

Lifting array-oblivious programs. The function PROGS(π) (line 5 in Fig. 3.10) converts a TTN

path π into a set of array-oblivious programs in A-Normal Form (ANF). Fig. 3.11 (left) shows

the full array-oblivious program extracted from the bold path in Fig. 3.9. As you can see from

this example, array-oblivious programs can be ill-typed: for example, the projection x1.name in

line 4 does not type-check since x1 actually has an array type [Channel]. What we really want

this program to do is to project name (and execute the remaining steps in the program) for each

channel in x1. This can be accomplished by inserting a monadic binding x′1← x1 and using x′1

instead of x1 in line 4 (and elsewhere in the program where a non-array version of x1 is required,

such as line 6). We refer to this process of repairing type errors by inserting monadic bindings

and returns as lifting.8

The function LIFT (line 6 in Fig. 3.10) takes as input a semantic library Λ̂, a query

type ŝ, and an array-oblivious program E , and produces a program E ′ that is well-typed at ŝ.

Fig. 3.11 (right) depicts the result of lifting the program in Fig. 3.11 (left) to the query type

Channel.name→ [Profile.email] with Λ̂ from Fig. 3.7. The full definition of lifting can be found

in the technical report [41]. Informally, lifting type-checks the program “line by line”, and

whenever it encounters a type mismatch (in a projection, guard, or a method argument), it inserts

8A reader familiar with monads might think of the array-oblivious program as written in the identity monad
instead of the list monad, and lifting as lifting the program back into the list monad.
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the appropriate number of monadic bindings or returns in order to fix the mismatch. This is

always possible because the only kind of type mismatch we can encounter is between an actual

type [..[t̂]..] and the expected type t̂, or vice versa. One thing worth noting is that we assume that

the top-level return type of the program is an array type: since the lifted programs have top-level

monadic bindings, they can only return arrays. If the user requests a scalar return type, we take

this into account at the ranking stage by prioritizing programs that always return singleton arrays.

Completeness. Strictly speaking, array-oblivious search is incomplete: there are multiple

programs that map to the same array-oblivious program, but lifting only returns a single, canonical

representative. For example, consider the program in Fig. 3.11 (right), where we iterate over

the array x1 only once (line 3), and reuse the same “iterator" variable x1’ in lines 4 and 6. An

alternative would be to iterate over x1 the second time before line 6, effectively retrieving names

and IDs from all pairs of channels (instead of the name and the ID belonging to the same

channel). We consider this a benign incompleteness because it is much less likely that the user

intended to loop twice over the same array. If they did, we believe they would be able to repair

the program by hand, as we discuss in Sec. 3.7.4.

3.6 Ranking

As we mentioned in Sec. 3.2, the algorithm SYNTHESIZE may generate hundreds or even

thousands of well-typed candidate solutions, most of which, however, are uninteresting. We now

formalize how APIPHANY ranks these candidates with the help of retrospective execution (RE).

Cost computation. To rank the programs, we assign them a positive cost, and then order them

from lowest to highest cost. To compute the cost of a program E , we retrospectively execute

it multiple times, accumulating execution results in a set res; retrospective execution is non-

deterministic, and executing a program more times lead to more precise cost estimates. We then

compute the cost of E based on its result set res and the return type t̂ of the query as follows:

1. The base cost is the size of E in AST nodes.
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Retrospective Execution ⟨W ;Γ;Σ | e⟩ ⇒ v

E-IF-TRUE-L

x1 ∈ Σ x2 ̸∈ Σ Σ(x1) = v1
⟨W ;Γ;x2 ↦→ v1,Σ | e⟩ ⇒ v
⟨W ;Γ;Σ | if x1 = x2;e⟩ ⇒ v

E-IF-TRUE-R

x1 ̸∈ Σ ⟨W ;Γ;Σ | x2⟩ ⇒ v2
⟨W ;Γ;x1 ↦→ v2,x2 ↦→ v2,Σ | e⟩ ⇒ v
⟨W ;Γ;Σ | if x1 = x2;e⟩ ⇒ v

E-METHOD-VAL
( f , li = vi,vout) ∈W

⟨W ;Γ;Σ | f (li = vi)⟩ ⇒ vout

E-METHOD-NAME

∀( f , li = v′i,vout) ∈W . ∃i : v′i ̸= vi

( f , li = v′i,vout) ∈W

⟨W ;Γ;Σ | f (li = vi)⟩ ⇒ vout

Figure 3.12. Retrospective execution.

2. If res = /0 (all executions have failed), the candidate receives a large penalty.

3. If res = {[]} (all executions return an empty array), the candidate receives a medium

penalty.

4. Finally, we compare the values v∈ res with the desired result type t̂; recall that λA programs

always return an array, while t̂ might or might not be an array type. We assign a small

penalty for a multiplicity mismatch, i.e. if either t̂ is a scalar type and any value v has more

than one element, or t̂ is an array type and all values v have a single element.

Retrospective execution. We formalize RE as a judgement ⟨W ;Γ;Σ | e⟩ ⇒ v, stating that v is a

valid result for executing the expression e in the environment Σ (which maps variables to values).

The judgment is also parameterized by a type context Γ and witness set W , used to replay method

calls and sample program inputs. To run a candidate solution E , we execute its body in an empty

environment Σ = · and with Γ storing the types of E’s arguments. As we explain in more detail

below, program inputs are selected lazily, during execution, in order to maximize its chances of

producing meaningful results.

Replaying method calls. Most of the rules for the RE judgement describe standard big-step
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operational semantics (they can be found in the technical report [41]), but two groups of rules,

shown in Fig. 3.12, deserve more attention. The first group of interest includes E-METHOD-

VAL and E-METHOD-NAME, which replay a method call by looking it up in W . The rule

E-METHOD-VAL applies when W contains an exact match for the current call, i.e. we have

previously observed a call to the same method, with the same parameter names and parameter

values. The rule E-METHOD-NAME applies when an exact match cannot be found (see first

premise); in this case we pick an approximate match, where only the method name and parameter

names match. Matching parameter names is important because many REST API methods

admit optional parameters, and behave very differently based on which pattern of optional

parameters is provided. If an approximate match cannot be found either, RE fails. Note that

for a given call f (li = vi), there might be multiple approximate matches in W , which makes

RE non-deterministic (in fact, there can even be multiple precise matches because services are

stateful). Due to hidden state and approximate matches, the results of RE are not guaranteed to

match actual execution, but our experiments show that they are precise enough for the purposes

of ranking.

Lazy sampling of program inputs. The remaining two rules in Fig. 3.12 are responsible for

choosing program inputs so as to bias guard expressions to evaluate to true. We observe that

when inputs are sampled eagerly ahead of time, guard expressions almost always evaluate to

false, causing RE to return an empty array; as a result, our ranking heuristic cannot distinguish

meaningful candidates from those that return an empty array regardless of the input. To address

this issue, we postpone adding program inputs to the environment Σ until they are used. If the

first usage of a program input is in a guard, the rules E-IF-TRUE-L and E-IF-TRUE-R pick its

value to make the guard true: E-IF-TRUE-L applies when only the right-hand side of a guard is

undefined, and E-IF-TRUE-R applies when the left-hand side or both are undefined. If the first

usage of an input is in a method call or a projection, we instead randomly sample from all values

of the same type observed in W .
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Table 3.1. APIs used in our experiments. For each API we report the number of methods |Λ. f |,
min/max number of arguments per method narg, the number of objects |Λ.o|, and min/max size
of the objects sobj. We also report the number of witnesses |W | we collected for type mining and
the number of methods covered by those witnesses ncov.

API size API Analysis

API |Λ. f | narg |Λ.o| sobj |W | ncov

SLACK 174 0 - 15 79 1 - 70 3834 60
STRIPE 300 0 - 145 399 1 - 66 25402 124
SQUARE 175 0 - 20 716 1 - 34 1749 67

3.7 Evaluation

We implemented APIPHANY in Python, except for retrospective execution, where we

used Rust for performance reasons. We used the Gurobi ILP solver [46] v9.1 as the back-end for

TTN search. We ran all the experiments on a machine with an Intel Core i9-10850K CPU and

32GB of memory.

We designed our empirical evaluation to answer the following research questions:

(RQ1) Can APIPHANY find solutions for a wide range of realistic tasks across multiple popular

APIs?

(RQ2) Is type mining effective and necessary for enabling type-directed synthesis?

(RQ3) Is retrospective execution effective and necessary for prioritizing relevant synthesis results?

API selection. For our evaluation, we selected three popular REST APIs: the SLACK com-

munication platform and two online payment platforms, STRIPE and SQUARE. We selected

these APIs because they are widely used and have both an OpenAPI specification and a web

interface, which allowed us to set up the test environment and collect witnesses easily. As shown

in Tab. 3.1, these APIs are quite complex: each has over a hundred methods with up to 145

arguments; all three feature optional arguments. The three APIs also contain a large number of

object definitions, with up to 70 fields.
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Experiment setup: type mining. Recall that type mining relies on a witness set W . Witnesses are

straightforward to collect for API owners, or when an integration test suite is publicly available;

neither was the case in our setting. Instead, we collected witnesses by observing traffic from the

services’s web interface, and then enhancing this initial (very sparse) witness set via random

testing; this process is described in more detail in our technical report [41]. As shown in Tab. 3.1,

we collected between 1.7K and 25K witnesses per API, which covered 30–40% of all methods.

It is hard to obtain full coverage for these closed source APIs as an outsider, for instance,

because many methods are only available to paid accounts; our experiments show, however, that

APIPHANY performs well with this witness set.

Benchmark selection. For each API, we extracted programming tasks from STACKOVERFLOW

questions that mention this API as well as GITHUB repositories that use the API. After excluding

the tasks that were out of scope of our DSL, we manually translated each of the remaining

tasks from a natural-language description or a code snippet into a type query, resulting in 32

benchmarks (see Tab. 3.2). Apart from our running example (benchmark 1.1), these include, for

instance: “Send a message to a user given their email” in SLACK (1.2), “Create a product and

invoice a customer” in STRIPE (2.3), and “Delete catalog items with given names” in SQUARE

(3.10). As noted in Tab. 3.2, many of these tasks are effectful: they require creating, modifying,

or deleting objects.

Each benchmark comes with a “gold standard” solution: the accepted solution on STACK-

OVERFLOW or the snippet we found on GITHUB. We manually translated these solutions into

APIPHANY’s DSL. As shown in the “Solution Size” portion of Tab. 3.2, these solutions range in

complexity from 7 to 22 AST nodes, containing up to three method calls and guards and up to

seven projections, which makes them non-trivial for programmers to solve manually. A complete

list of tasks, type queries, and solutions can be found in [41].

Experiment setup: program synthesis. For each of the 32 benchmarks, we ran the synthesizer

with a timeout of 150 seconds. For each new candidate generated, we estimated its cost using
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Table 3.2. Synthesis benchmarks and results. Benchmarks marked with † are effectful. For each
benchmark we report the size of the desired solution: AST, n f , np and ng correspond to number
of AST nodes, method calls, projections and guards, respectively. We also report the time to find
the correct solution (in seconds), its rank without RE (rorig), and the lower and upper bound on
its rank with RE (rRE and rTO

RE). ‘-’ means no solution is found in 150 seconds.

API ID
Solution Size Time Rank

AST n f np ng (sec) rorig rRE rTO
RE

S
L

A
C

K

1.1 17 3 6 1 83.5 25230 5 5
1.2† 12 3 5 0 5.6 2224 10 10
1.3 16 3 7 0 - - - -
1.4 14 2 4 1 1.3 489 24 31
1.5† 10 2 3 0 3.4 788 5 5
1.6† 9 2 2 0 1.7 573 8 19
1.7† 12 2 4 1 1.3 757 8 9
1.8 9 2 3 0 42.0 16438 29 30

S
T

R
IP

E

2.1† 9 2 2 0 95.4 4952 3 3
2.2† 10 2 2 0 92.4 4854 4 4
2.3† 12 3 2 0 121.2 6363 1 1
2.4 8 1 2 1 0.5 3 1 1
2.5 8 2 2 0 1.0 10 4 4
2.6† 9 3 2 0 12.2 270 3 3
2.7 5 1 2 0 0.6 4 2 2
2.8 16 2 7 1 20.2 679 17 17
2.9 6 1 2 0 0.5 2 1 1
2.10† 10 2 3 0 7.8 187 6 6
2.11† 7 2 1 0 17.2 490 6 6
2.12† 11 3 2 0 - - - -
2.13† 10 3 2 0 - - - -

S
Q

U
A

R
E

3.1 4 1 1 0 0.2 2 1 1
3.2 16 1 4 3 0.5 10 4 4
3.3 10 1 3 1 0.4 6 1 1
3.4 5 1 2 0 0.7 2 1 1
3.5† 14 2 3 0 2.2 99 2 2
3.6 5 1 2 0 0.2 1 1 1
3.7 6 1 2 0 0.3 7 4 4
3.8 9 1 3 0 0.7 1 1 1
3.9 8 1 2 1 0.2 3 2 2
3.10† 16 2 5 1 1.9 174 10 12
3.11† 8 2 3 0 1.0 68 16 16
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Figure 3.13. Comparison of synthesis performance between APIPHANY and its two variants
that do not use type mining.

15 rounds of RE and recorded the synthesis time (including both TTN search and RE time).

After the timeout, we checked whether the gold standard solution appears among the generated

candidates and compared its RE-based rank vs the original rank at which it was generated (based

on path length). Below we report average time and median rank over three runs to reduce the

impact of randomness.

3.7.1 RQ1: Overall Effectiveness

The last four columns of Tab. 3.2 detail APIPHANY’s performance on the 32 synthesis

benchmarks. APIPHANY finds the correct solution for 29 benchmarks. The remaining three

benchmarks fail with a timeout because their type queries are too ambiguous; for example, in

benchmark 1.3 (“Get unread messages of a user”) the type query has no means to specify that

we are only interested in unread messages; as a result, the solution is drowned among thousands

of other programs that map a user ID to messages.

We plot the number of benchmarks solved as a function of time (including RE) in
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Fig. 3.13. As the plot shows, majority of benchmarks (19/32) can be solved within five seconds.

On average APIPHANY takes 17.8 seconds to find the desired solution (median time 1.3 seconds).

Takeaway: APIPHANY is able to solve 91% of tasks from three real-world APIs.

3.7.2 RQ2: Type Mining

Recall that type mining involves replacing primitive syntactic types in the spec with

unique location-based types, and then merging those based on the witness set to obtain semantic

types. The merging process is not perfect: it might fail to merge two location that should have

the same type because the witness set lacks evidence to justify the merge; or it might spuriously

merge two locations if they share a value by chance. It is hard to measure the accuracy of inferred

types directly, since we do not have an oracle for semantic types. Instead, we evaluate type

mining indirectly in two ways: 1) we run an ablation study to measure its impact on the overall

performance of the synthesizer, and 2) we perform a small-scale qualitative analysis of inferred

types.

Ablation study. For this experiment, we compare the performance of APIPHANY and its

two variants: (a) APIPHANY-SYN, which builds the TTN directly from syntactic types, and

(b) APIPHANY-LOC, which builds the TTN from (unmerged) location-based types. We plot the

number of benchmarks solved by each variant as the function of time in Fig. 3.13.

As expected, both variants perform poorly: APIPHANY-SYN only solves 4/32 bench-

marks and APIPHANY-LOC solves 5. All these benchmarks are “easy” (solved by APIPHANY in

under a second). Intuitively, the two variants represent two extremes in terms of type granularity.

Syntactic types are too coarse-grained (all String locations have the same type), which leads

TTN search to return too many well-typed candidates. As a result, APIPHANY-SYN struggles

to solve all but the simplest tasks, with many benchmarks running out of memory. Location-

based types, on the other hand, are too fine-grained (each String location has a unique type),

which leads to most desired solutions simply being ill-typed, because there is no way for one
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method to use values returned by another. The solutions to all of the five benchmarks solved by

APIPHANY-LOC have only one method call with no parameters, followed by several projections

or filters.

As you can see from Fig. 3.13, APIPHANY drastically outperforms both variants. This

result indicates that type mining strikes a good balance between coarse- and fine-grained types:

all 32 benchmarks have a well-typed solution in terms of the mined types, and APIPHANY is

able to find most of them within a reasonable time.

Qualitative analysis. To give a more direct account of the quality of inferred semantic types, we

randomly sampled five methods from each API (among the methods covered by the collected

witnesses), and manually inspected the inferred types to check if they match our expectations.

More specifically, for each String location in a method spec, we pick a location type loc*, which

we deem most natural for a programmer to use in a type query (for example, for the parameter

to users_info, loc* = User.id); we consider the inferred loc-set type sufficient if it contains loc*.

The detailed results appear in the technical report [41].

In the methods we examined, type mining was able to infer a sufficient semantic type

for all responses, required parameters, and about half of optional parameters. The remaining

optional parameters were assigned unmerged location types, because they were never used in

our witness set. This is almost unavoidable, because of the sheer number of obscure optional

parameters in real-world APIs (which, fortunately, are rarely needed to solve programmer’s

tasks).

Recall that the other failure mode of type mining is spuriously merging unrelated lo-

cations. We did not observe any spurious merges among the randomly sampled methods, but

anecdotally we did encounter one such merge elsewhere in the Slack API: between Channel.name

and Message.name. Note that spurious merges might slow down the search and produce some

“semantically ill-typed” solutions, but they do not prevent APIPHANY from finding the desired

solution.
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Figure 3.14. Number of benchmarks whose solution is reported within a given rank. The filled
blue area is the range of ranks one might get depending on when they inspect the candidates.
The shaded area is the 95% confidence interval.

Takeaway: Type mining increases the percentage of solved benchmarks from 12% to 91%.

3.7.3 RQ3: Ranking

To measure the effectiveness of RE-based ranking, we compare the last three columns

of Tab. 3.2: rorig denotes the rank of the desired solution in the order it was generated by TTN

search (which is based on path length, and hence correlated with solution size); rRE denotes the

RE-based rank of the solution at the time it was generated, and rTO
RE denotes its RE-based rank by

the timeout (which can be lower than rRE as other candidates generated later might end up being

ranked higher). We report both of these RE-based ranks because we envision an APIPHANY user

inspecting the candidate solutions some time between they are generated and the timeout, and

hence the relevant rank value is between rRE and rTO
RE . We plot the number of benchmarks whose

solutions lie at or below each rank in Fig. 3.14, with the range between rRE and rTO
RE represented

as a filled area.
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As you can see from Fig. 3.14, RE-based ranking significantly increases the chances that

the desired solution makes the short-list of candidates. In particular, without RE-based ranking

only 8 benchmarks (28% of solved) return the correct solution in top five, and only 12 (41%)

return it in top ten; in contrast, with RE-based ranking, 19 (65%) benchmarks return the correct

solution in top five (after timeout), and 23 (79%) in top ten. Moreover, as we can see from

Tab. 3.2, the solution’s rank never gets worse after RE, in all but two cases it strictly improves,

and for all long-running benchmarks it improves drastically (the average rank improves from

2230.5 to 7.0).

A closer look at the six benchmarks that do not land in top ten after RE reveals two

main reasons for these suboptimal rankings. In most cases the solution is simply large, and

there are many smaller candidates that are still meaningful. For example, the query “Delete all

catalog items" (3.11) takes no arguments and returns an array of all deleted items; there are many

valid and simple ways to construct an array of catalog items without deleting them. In a few

cases, APIphany fails to throw out meaningless programs due to the imprecision of retrospective

execution. For example, in 1.6 it reports a solution that posts an update to a given channel with a

given timestamp, even though this timestamp might be invalid for this channel; APIphany instead

thinks that this call always succeeds by relying on approximate matches during retrospective

execution.

We also recorded the time APIPHANY takes to compute the cost for all generated

candidates (which involves executing each candidate 15 times). Although APIPHANY generates

thousands of well-typed candidates for most benchmarks, cost computation only takes about 1%

of total synthesis time.

Takeaway: RE-based ranking takes a negligible amount of time and increases the

percentage of correct solutions reported in top ten from 41% to 79%.
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3.7.4 Discussion and Limitations

Witness generation. One threat to validity of our evaluation is that the results of type minings

(and therefore synthesis) depend heavily on the witness set. In particular, if our benchmarks

required methods that are not covered by the witness set, APIPHANY most likely would not

be able to solve them, since they would be ill-typed with inferred semantic types. We ran our

experiments using a particular witness set, which we collected using one methodology (described

in the technical report [41]); our findings might not generalize to using APIPHANY with witness

sets collected by other means.

Effectful methods. We observe that effectful methods in REST APIs have an interesting property:

they make the effect explicit in their response. For example, the method for posting a message on

SLACK also returns the message object, and the method for deleting a catalog item in SQUARE

returns the ID of the deleted item (instead of just returning void). This property makes REST

APIs particularly suitable for type-directed synthesis and expressing user intent with types: for

example, the query “Send a message to a user with a given email” can be expressed as the

type Profile.email→ Message instead of a much less informative type Profile.email→ void. The

downside, of course, is that the return type of an effectful method might not be obvious to the

user (for example, does deleting a catalog item return an object or its ID?) One way to overcome

this limitation is to let the user specify the name of the last method they want to call (e.g.

catalog_object_delete) instead of the output type; this kind of specification is straightforward to

integrate into TTN search.

DSL restrictions. In our search for benchmarks, we encountered (very few) snippets that were

inexpressible in our DSL because they required functional transformations on primitive values, as

opposed to just structural transformations on objects and arrays, for example: “Get all members of

a channel and concatenate them together". We consider such functional transformations beyond

the scope of APIPHANY because its type-based specifications are too coarse to distinguish

between different functional transformations. This is also the reasoning behind our design
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decision to only support equality inside guards, as opposed to more general predicates: if the

specification cannot distinguish between, say, = and ≤, there is little use in generating programs

with both. More generally, we view programs synthesized by APIPHANY as a starting point,

which helps the programmer figure out how to plumb data through a set of API calls; we envision

the user building on top of those programs to add functional modifications and more expressive

predicates. This interaction model motivates both our DSL restrictions and our type-based

specifications.

Value-based location merging. Value-based merging works well for strings, since their large

domain makes it unlikely that two String locations share a value by chance. It works less

well for other primitive types, such as integers and booleans. To reduce the risk of spurious

merges, our implementation performs value-based merging only for strings and large integers

(> 1000), but not for booleans or small integers. In the future, we plan to investigate more

sophisticated approaches to location merging. One idea is to use probabilistic reasoning to

estimate the likelihood of two locations having the same type based on (1) how common a

value is across locations and (2) what proportion of values is shared between the two locations.

Another approach is to cluster locations using NLP techniques, such as sentiment analysis of

object and field names, as well as documentation.

User interface. Another important direction for future work is to investigate usable ways of

specifying semantic type queries and comprehending synthesis results. In particular, existing

work from the HCI community [36, 37] might help users quickly explore a large space of related

candidate solutions, thereby mitigating the limitations of ranking.

3.8 Related Work

APIPHANY is a component-based synthesizer and primarily compares with related work

in this space. It also draws on techniques from specification mining and type inference.

Type-directed component-based synthesis. The goal of component-based synthesis is to find a
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composition of components (library functions) that implements a given task. In type-directed

component-based synthesis both the task and the components are specified using types. The

traditional approach to this problem based on proof search [5, 74, 48] scales poorly with the size

of the component library. An alternative, more scalable graph-based approach was introduced in

PROSPECTOR [64] for unary components, and generalized to n-ary components in SYPET [27],

by replacing graphs with Petri nets. TYGAR [45] further extends SYPET’s search to polymorphic

components using the idea of abstract types, which are inspired by succinct types from another

component-based synthesizer, INSYNTH [47]. APIPHANY’s program search phase is using

the Petri net encoding from SYPET and TYGAR with minor adaptations (support for optional

arguments and ILP encoding). Our array-oblivious encoding is related to abstract and succinct

types in that it helps make the Petri net smaller, but it is also substantially different in that,

unlike prior work, it can efficiently encode a certain class of higher-order programs (array

comprehensions) into the Petri net.

API navigation. Beyond type-directed synthesis, other work focuses on auto-completion [77,

86, 63] but relies on static analysis and mining client code, which APIPHANY does not require.

Among tools that leverage dynamic analysis, EDSYNTH [108] uses test executions to generate

snippets that involve both API calls and control structures. MATCHMAKER [110] and DEMO-

MATCH [109] are similar to APIPHANY in that they rely on observed program traces to suggest

code that uses complex APIs (the former from types and the latter from demonstrations). All

these techniques work in the context of Java, and hence assume that sufficiently precise types are

already present.

SQL synthesis. The problem of generating projections and filters is related to synthesis of SQL

queries [101, 106]. Existing SQL synthesis techniques are not directly applicable to our problem

domain, because (1) our programs also contain arbitrary API method invocations, and (2) we

manipulate semi-structured data instead of relational data.

API discovery and specification mining. A complimentary approach to API navigation using
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program synthesis is to infer specifications [3, 90, 67] or example usages [50, 15, 10] to help the

user understand the API better. APIPHANY’s type mining is inspired by [3], where they build

probabilistic finite state automata representing data and temporal dependencies between API

methods. APIPHANY implements a simpler form of their algorithm, which discovers data flows

(but not temporal dependencies), but the novelty lies in using this information to drive program

synthesis.

Type mining is also related to prior work on inferring type annotations for dynamically

typed languages from executions [16, 4, 13]. However, this work is for structural types, whereas

we infer domain-specific nominal types.

Simulated execution. An alternative to our retrospective execution is to synthesize a model of

the API, and evaluate program candidates against that model. Previous work [49, 53] synthesizes

models for complex frameworks and opaque code; our retrospective execution is simpler: it skips

the extra step of model synthesis.

Ranking solutions. Specifications in program synthesis are often ambiguous, so synthesizers

have to rank their candidate solutions and return the top result(s). Existing tools most commonly

rely on hand-crafted [39] or learned [47, 86, 92] ranking functions based on syntactic features of

generated programs. HOOGLE+ [52] is most similar to APIPHANY in that it ranks programs

based on the results of their execution, using heuristics like whether the program always fails,

and how similar it is to other candidates.
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Conclusion

This dissertation has introduced type-directed techniques applied to component-based

synthesis, tackling the API discovery challenge in the context of polymorphic types and more

general types.

For polymorphic types in functional programming languages, this dissertation pro-

poses two approaches. The first approach involves applying overapproximation to polymorphic

datatypes. Based on abstract types, we construct an abstract type transition graph and use the

graph reachability algorithm to find programs. It is important to note that while these programs

are guaranteed to type check in the abstract type system, there is no assurance of type check-

ing in the concrete type system. If the algorithm yields an ill-typed term in the concrete type

system, refinement of the type abstraction is necessary to exclude such terms. This refinement

process continues until the generated program is well-typed in both the abstract and concrete

type systems. However, with each change in type abstraction, the abstract type transition graph

needs to be reconstructed. Compared to previous methods, this algorithm loses the advantage

of precomputing the type transition graph, and the reconstruction of the abstract type transition

graph introduces significant overhead to the overall synthesis time.

As a solution to such significant overhead time, this dissertation proposes equality-

constrained tree automata (ECTAs) as a novel representation of the search space. ECTAs

augment tree automata with equality constraints, enhancing the expressiveness of tree automata

to compactly represent entangled terms. Alongside this representation, an enumeration algorithm

is introduced to efficiently retrieve terms from the compact representation. ECTAs successfully

reduce the implementation size of a type-directed synthesizer and accelerate the search speed
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compared with prior work. It is worth noting that type-directed synthesis is just one of the

potential applications of this data structure. More interesting applications such as SAT solvers,

specification mining, database optimization, etc can be studied. As part of the contributions of

this dissertation, we have published this data structure as a Haskell library online.

In addition to polymorphic types, this dissertation investigates type-directed synthesis

in the context of more general types such as int, string, etc. These general types are too

coarse-grained for effective program synthesis, as they allow for a large number of well-typed

programs. To address this issue, this work proposes a semantic type system along with a type

inference algorithm, allowing expressing user intent more precisely while ruling out unreasonable

programs. The inference algorithm automatically discovers semantic types for components from

their execution traces based on value coincidances. This type system is proven to be effective in

assigning semantic types to components and the inferred types successfully guide the synthesizer

to find desired programs.

Although the proposed techniques can effectively solve real-world tasks, they are typically

limited to relatively small-sized tasks. They suffer from the notorious scalability problem and

struggle to tackle tasks that require solutions consisting of a large number of lines of code. With

the emergence of large language models (LLMs), which excel at finding large-scale program

sketches but often have difficulty in filling in details, an interesting future direction could be to

integrate type-directed techniques with LLMs. LLMs address the scalability issue, while type-

directed search ensures the correctness of detailed program implementations. This integration

could lead to more robust and scalable solutions for complex programming tasks.
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