UC Irvine
ICS Technical Reports

Title

Structuring languages as algebraic specifications : a framework for multilingual system
representation

Permalink
https://escholarship.org/uc/item/95h1t171
Author

Reyes, Arthur Alexander

Publication Date
1995-06-23

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/95h1t17t
https://escholarship.org
http://www.cdlib.org/

Structuring Languages as Algebraic Specifications: A Framework for Multilingual System Representation
Arthur Alexander Reyes

Notice: This Material
may be protected
by Copyright Law

(Title 17 U.S.C.)

Structuring Languages as Algebraic ==
Specifications: A Framework for <
Multilingual System Representation

Arthur Alexander Reyes No. G5-43 |
Department of Information and Computer Science ‘
University of California, Irvine
Irvine, CA 92717-3425 U.S.A.
e-mail: artreyes@ics.uci.edu

Technical Report 95-23
23 June 1995

Abstract

With this paper we would like to introduce what we believe to
be a unifying framework for the investigation of multilingual
system representation phenomena. The framework applies the
body of knowledge on algebraic specifications to the
representation and manipulation of formal languages. In this
framework, a formal language is represented by an algebraic
specification; the language’s syntax is represented by the
algebraic specification’s signature; and the language’s semantics
are represented by the algebraic specification’s axioms. Strings
in the language are represented by terms of the algebraic
specification, or in the more general case by formulas of the
algebraic specification or a definitional extension of the
algebraic specification. Algebraic specification structuring
operations, such as specification morphisms, parameterized
specifications, and colimits are used to construct new languages
from component languages.

We review a number of approaches to multilingual system
representation that have been presented in the research literature.
For each of these approaches, we show how the approach can be
represented in our framework.

Page 1 of 47

Structuring Languages as Algebraic Specifications: A Framework for Multilingual System Representation
Arthur Alexander Reyes

1 Introduction

In software development, the high cost of requirements errors has motivated research in
specification languages. Specification languages possess mathematically precise syntax and
semantics and are accompanied by proof rules that enable rigorous analysis. Representing a
system in a specification language enables the power of mathematical logic to be applied to
reduce requirements errors.

As evidenced by the plethora and long history of system development methodologies that
require the use of different languages, the software development community has long
recognized the need to use more than a single language to represent a complex system. A
significant problem associated with these multilingual system development methodologies is
that the developer has little control or insight into the ways in which the different languages
interface.

With this paper we would like to introduce what we believe to be a unifying framework for
the investigation of multilingual system representation phenomena. The framework applies the
body of knowledge on algebraic specifications to the representation and manipulation of
formal languages. In this framework, a formal language is represented by an algebraic
specification; the language’s syntax is represented by the algebraic specification’s signature;
and the language’s semantics are represented by the algebraic specification’s axioms. Strings
in the language are represented by terms of the algebraic specification, or in the more general
case by formulas of the algebraic specification or a definitional extension of the algebraic
specification. Algebraic specification structuring operations, such as specification morphisms,
parameterized specifications, and colimits are used to construct new languages from
component languages.

In section 2, we review the fundamental issues of requirements errors and reinterpret
requirements phenomena is a model-theoretic framework. This allows us to uniformly
examine several approaches to reducing requirements errors. After demonstrating the
limitations of each approach to reducing requirements errors, we examine how to enhance the
most effective approach by the use of more than one formal language simultaneously. Section
3 presents the fundamentals of our framework, called Structuring Languages as Algebraic
Specifications (SLAS) and how it can be used to represent the different ways in which
languages can be used together. Section 4 reviews a number of approaches to multilingual
system representation and demonstrates how they can be represented in the SLAS framework.
By representing each approach within the framework, the most fundamental similarities and
differences between the approaches are elucidated. Section 5 discusses a number of important
directions in which this research may progress and the key risk area that threaten each
direction. Section 6 presents our conclusions.

Page 2 of 47

Structuring Languages as Algebraic Specifications: A Framework for Multilingual System Representation
Arthur Alexander Reyes

2 Requirements Errors |

In which area of software engineering can formal methods produce the greatest gains? We
believe that applying formal methods to the problems of system requirements definition and
analysis [Davis] will result in the most significant early advances.

Eliminating an error during the requirements development phase of a system can be 1/100 the
cost of eliminating the error during the maintenance phase [Davis, p. 23]. This is because
undiscovered errors cumulatively propagate through system development. The cost of
eliminating a error at a certain stage of development is dependent on the amount of
subsequent work that was built on top of the error and which must be redone. Thus a
requirement error which is not discovered until the maintenance phase requires that a long
history of work be redone: all documentation and system representations related to the
requirement itself along with design decisions which assumed the requirement was correct
along with all implementations which assumed that the design was correct along with all tests
performed which assumed the implementation was correct. Thus if we plan to use a system
development methodology in which requirements specifications significantly influence later
development decisions, it is very important that the requirements be correct.

Non-clerical requirements errors fall into 4 main groups with the following distributions (from
[Davis]):

* incorrect facts 49%,

e omissions 31%,

« inconsistencies 13%, and
» ambiguities 5%.

In this section we will provide a simple mathematical framework within which the different
groups of requirements errors can be represented. These representations will provide insight
into the nature of the errors and will suggest solutions.

2.1 Requirements Phenomena in a Model-Theoretic Framework

We discuss requirements phenomena within the framework of model theory. Please see
[Wirsing] for a full treatment of model theory within the discipline of algebraic specifications.
An algebraic specification is a pair (Z,®) consisting of a signature X and a set of axioms ®. A
signature is a set of sort symbols, S, and a set of operation symbols, Q. Each operation
symbol in £ has a rank consisting of a finite string of sort symbols and a result sort. A
sentence is a sequence of predicates or of equations between terms of the same sort
(constructed using the signature) connected by the operators of the logical system used to
write the axioms. An axiom is a sentence that appears in the definition of an algebraic
specification. The signature provides syntax and the axioms provide semantics.

An algebra is a mathematical structure built on top of a signature. An algebra consists of a set
of sets, each set of which (called a carrier set) corresponds to a sort symbol s in S; and a set
of functions corresponding to the set of operation symbols fin £ such that the rank and result
sort of each operation symbol is preserved. An algebra satisfies a sentence if the sets and
functions of the algebra preserve the meaning of the sentence. An algebra that satisfies a
sentence is said to be a model of the sentence. If we write

A |l=req

it means that A is a model of the sentence req. This is the satisfaction relation. Thus given a
signature (for syntax), we can write a number of sentences, treat each sentence as a
requirement, and attempt to identify a model of the set of requirements (i.e., a system
satisfying the requirements). |

Page 3 of 47

B D O T 0w oe o or g

Structuring Languages as Algebraic Specifications: A Framework for Multilingual System Representation |
Arthur Alexander Reyes i

I=1s an overloaded symbol. We can also write
System-sentences |= new-fact

where System-sentences is a (possibly empty) set of sentences and new-fact is a single

sentence (all sentences are generated from the same signature). This is the logical

consequence relation and it means that every model of System-sentences is also 4 model of

new-fact. The closure of a set of sentences under logical consequence is called a theory. |

If we wish, we could take all of our requirement sentences and place them on the left hand
side of the logical consequence relation and determine what new sentences are logical
consequences of the set of requirements. Note that we could also place on the left side of the
logical consequence relation a set of sentences that represents a system in such a way that
System-sentences does not contain any requirement sentences (but which would be
constructed using the same signature as the requirement sentences) and use the logical
consequence relation to determine if each requirement sentence is a logical consequence. Thus
we would be able to formally verify whether the system representation meets the system’s
requirements.

This framework allows us to identify a number of formal counterparts to the groups of
requirements errors listed earlier:

* Incorrect facts: Incorrect facts are ostensibly the result of inadequate knowledge of the
application domain. Consider the left hand side of the logical consequence relation. In
any application of the logical consequence relation, the set of sentences on the left side
is the hypothesis (i.e., the set of sentences that we assume are true). Incorrect facts
correspond to hypothesis sentences that are not satisfied by the model that is the real
world.

» Omissions: How does a system developer discover that a requirement was omitted? If
we have a system that meets its requirements but displays a behavior which we did not
intend and which may be undesirable, then we discover that a requirement to restrict the

’ system’s behavior was omitted. This can happen because a set of requirement sentences

can have unforeseen logical consequences. This is a logical consequence view of the

phenomenon. There is also a satisfaction relation view of the phenomenon: The set of
models of a set of sentences can range over a broad spectrum. “Initial” models can be
thought of as exhibiting only the behavior allowed by the axioms and nothing else.

“Final” models can be though of exhibiting every behavior except the negation of the

axioms. Thus models must be chosen carefully. Initial and final models of an algebraic

specification will be discussed further in the section on Semantics.

* Inconsistencies: Inconsistent requirements mean that the set of requirement sentences is
unsatisfiable, i.e., there does not exist a model for the set of requirement sentences.
Another way to think about this is that there is a logical contradiction (the sentence
true=false is a logical consequence) among the set of requirement sentences. Because
any sentence and its negation is a logical consequence of a set of unsatisfiable
sentences, systems based upon inconsistent requirements can exhibit unexpected and
contradictory behavior. Thus it is desirable to determine early in the development cycle
whether the set of requirement sentences is satisfiable.

» Ambiguities: Ambiguous requirements are often a result of the imprecision of natural
language. Natural language requirements can often be parsed in more than one way and
therefore can have more than one meaning. An ambiguous requirement can be met by
more than one system (which are possibly inconsistent with each other). A formal

- requirement sentence is not ambiguous in the logical consequence view because its set
of logical consequences is fixed. However, in the satisfaction view, a requirement

Page 4 of 47

B R R L A R 5 e T R e e R, N, i e NI e AR ki e -

Structuring Languages as Algebraic Specifications: A Framework for Multilingual System Representation
Arthur Alexander Reyes

sentence can be satisfied by many algebras. The tasks is to choose only those algebras
that are relevant to the application domain.

A number of solutions exist to minimize requirements errors. The solutions and their relative
contribution to discovering requirements errors (from [Davis]) are given below.

* inspections 65%: These are manual and automated reviews and analyses of static system
representations, such as documents, designs, and code. Kinds of languages used for
these representations are

* Informal languages, such as natural language;

« semiformal languages, which represent system requirements and designs more or
less directly and are supported by a number of simple analyses that can be
performed automatically; and

+ formal languages and calculi, which represent requirements and systems in terms
of algebraic specifications and models and which can directly determine whether
the satisfaction and logical consequence relations hold.

» evaluations 10%: These are simulations to test as-required behavior of a system before it
is implemented.

* unit testing 10%
* integration testing 5%
other 10%

In particular, we will discuss limits to the effectiveness of simulations, semiformal languages,
and formal languages and calculi in discovering requirements errors.

2.2 Simulations

System simulation has been an active area of research and application for over 30 years
[Gould]. In system simulation, a number of “models” (i.e., simplified representations) of the
system and its subsystems and constructed. These models are abstractions of the relevant parts
of the system under examination and are usually constructed in executable languages. A
model is subjected to a number of tests to determine if the simulated behavior of the system
meets the system requirements and the expectations of the developers. Often a developer,
playing the part of a prospective user of the system (or even an actual user) performs test
activities in real-time with the model. Such testing provides fast feedback on the effects of
requirements. Using simulations can narrow the number of major requirements and design
decisions that must be made and focus the development effort on constructing a system that
the user wants. Simulation is supported by a number of sophisticated languages, tools, and
environments to develop and test models quickly. Examples of such languages and
environments include MODSIM II [Belanger], and MATRIXx [Winston].

How well do simulations reduce the number of requirements errors and how are they limited?

Incorrect facts: Because incorrect facts are mostly the result of incorrect or insufficient
domain knowledge, it is important to obtain correct domain knowledge from people who
“know best” i.e., the users. A user may be more likely than a system developer to test a
simulation model in ways that reflect typical usage patterns. While this can illuminate
incorrect fact requirement errors, a simulation model must be developed first. Simulation
models available early in the system development process will be fairly crude abstractions of
what the implemented system could be like, based upon the current requirements. As crude
.abstractions, the number of incorrect facts that can be discovered will be limited. As the
system development progresses, more detailed simulation models will become available and

Page 5 of 47

Structuriné Languages as Algebraic Specifications: A Framework for Multilingual System Representation
Arthur Alexander Reyes

will enable other incorrect facts to be discovered. Hopefully, significant incorrect facts will be
discovered early in the system development.

Omissions: Omitted requirements can be discovered by simulation when the model
implements the requirements and yet manifests a behavior that was not anticipated and/or is
undesired. Models are put through a series of tests that are designed to exercise its behavior in
a number of normal and abnormal operating conditions. Unfortunately, as long as
requirements are stated in informal language, it is difficult to know whether the model
correctly implements the requirements, therefore possibly violating the assumption that must
hold in order for a model to reveal an omission.

Inconsistencies: Inconsistent requirements may be discovered during development of the
simulation model. But as with discovering an inconsistency during development of the actual
system, a decision must be made about which requirement is changed, which is unchanged, or
if both are changed. Any development of the model based upon the changed requirement will
need to be reviewed. Testing the model can reveal inconsistent behaviors, if the test plan is
sure to execute both points needed to reveal the inconsistent behavior.

Ambiguities: Ambiguous requirements must be discovered during model development, or else
they will reveal themselves as inconsistent behavior during model testing. Because simulation
models are abstractions of implementations, models often have model-specific requirements
defined, must be designed, implemented and tested before they are used in any real-time tests
or with prospective users. Also, models can become large and difficult to maintain.

2.3 Semiformal Languages

Semiformal languages allow developers to think about the characteristics of the system under
development more abstractly than simulation languages permit. Many semiformal languages
are used in software development today. Semiformal languages possess formal syntax and
informal semantics. Examples of semiformal languages include Data Flow Diagrams (DFDs)
[Gane & Sarson], Finite Automata [Hopcroft and Ullman], Class/Object Diagrams [Rumbaugh
et al.], and Structure Charts [Jackson]. Many system development methodologies are
distinguished by the different semiformal languages they use. Example system development
methodologies are Object Modeling Technique (OMT) [Rumbaugh et al.], Object-Oriented
Design (OOD) [Booch], and Jackson Structured Design (JSD) [Jackson].

Automated support for a semiformal language usually means a number of simple checks can
be performed by a tool on strings written in the semiformal language. These checks might
include parsing the string to verify syntactic correctness, verifying that inputs and outputs are
consistent with upper and lower levels of the string’s hierarchy, and other consistency checks.
Automated support may also include the generation of source code or simulation models,
provided that sufficient detail is given in the semiformal representations. These generated
models and codes can provide a de facto semantics for the semiformal languages, but details
of this generation are usually defined by the tool developer, not by the developer of the
semiformal language (and especially not by the user of the semiformal language). This means
that a typical user of a semiformal language has little control over the way in which a
semiformal language interacts with the other languages the developer uses and that the
developer has little insight into how a tool uses a semiformal language.

How do semiformal languages reduce requirements errors and how are they limited?

Incorrect facts: Semiformal languages provide a means of recording domain knowledge that is
more abstract than via simulation models, and thus more likely to evolve and be validated.
But because the semantics are informal, it is more difficult to know whether a portion of the
domain knowledge has or has not been validated.

Omissions: The checking provided by some tools for semiformal languages may permit

Page 6 of 47

Arthur Alexander Reyes

certain types of omissions to be discovered, but these tools may only be able to reveal high-
level omissions, such as failure to decompose a DFD process sufficiently. Because some tools
and environments allow executable code or simulations to be produced automatically, testing
of the executable objects may reveal omissions in the same manner as simulation models.
Because executable objects can be generated automatically, there is greater hope that the
objects will correctly meet the requirements.

Inconsistencies: Semiformal languages help reduce inconsistencies by virtue of the
consistency checks that are built into the tools that support the languages. Unfortunately, the
tools do not always give the developer insight into the details of the checks performed and do
not allow new kinds of checks to be used with the tool. Thus inconsistencies which occur in
low-level details of a semiformal representation may not be discovered by the tools. This can
allow the inconsistency to remain undiscovered until later.

Ambiguities: Semiformal languages help reduce ambiguity in requirements by forcing the
developer to represent requirements in a concrete, but abstract way. Because semiformal
languages do not have formally defined semantics, the set of models that satisfy a sentence is
not limited (except by generation tools that define de facto semantics).

Structuring Languages as Algebraic Specifications: A Framework for Multilingual System Representation
|
|
2.4 Formal Languages and Calculi ‘
|
|

A formal language is characterized by both a formally defined syntax and formally defined
semantics. A calculus is a formal language along with a deductive apparatus. The purpose of
the deductive apparatus is to determine whether a sentence in the formal language is a logical
consequence of a set of sentences in the formal language or whether an algebra satisfies a set
of sentences. The deductive apparatus usually takes the form of a set of sound proof rules
used to determine whether the logical consequence or satisfaction relations hold in a certain
case. See [Wordsworth] for the deductive system for the calculus Z. A Specification language
is a kind of calculus which is nonprocedural and more abstract than programming languages.

Specification languages can be used over a wide spectrum of rigor. At one end of the

. spectrum, simply constructing a formal representation of a system (i.e., a formal specification

| of the system) in a specification language causes the developer to think about the system more

abstractly and to focus on the problem to be solved by the system. Many specification
languages are supported by tools that allow syntax and type checking, editing, and proof
checking. Some tools allow formal specifications to be executed and therefore tested. Testing
formal specifications performs a similar task to system simulation. Further rigor can be
achieved by proving properties (determining logical consequences) of formal specifications.
The greatest rigor is achieved by refining implementations of a formal specification using the
deductive apparatus.

How do formal languages and calculi reduce requirements errors and how are they limited?
Note that calculi attempt to reduce requirements errors by directly addressing the issues of
determining requirements satisfiability, desired and undesired logical consequents, and
selection of models.

Incorrect facts: Formal languages allow application domain knowledge to be represented
precisely, evolved and validated. Application domain-oriented approaches to software
development [Prieto-Diaz & Arango] seek to formalize domain knowledge so that it can be
incrementally constructed and validated against the real world. The resulting domain
specification becomes an important asset to the development organization and is a centerpiece
of organizational training and documentation. The resulting domain specification can be used
to automatically derive computer programs [Lowry et al.] that are guaranteed to meet a formal
specification.

- Omissions: Calculi discover requirements omissions in the course of proving properties of the
formal specification. During the course of determining if a formal specification meets a

Page 7 of 47

R N P R

Structuring Languages as Algebraic Specifications: A Framework for Multilingual System Representation
Arthur Alexander Reyes

requirement sentence by proof, it may be discovered that the proof cannot be accomplished.
The attempted proof explicitly shows what sentences were needed in order to make the proof
succeed. Thus omissions are made explicit. There is a similarity with simulation in this
regard: Just as if a test process never exercises simulation model behavior to reveal an
omission, a proof process may not require a proof that if executed would reveal a requirement
omission.

Inconsistencies: Calculi address requirement inconsistencies by executing a proof of
satisfiability. The inconsistencies are made explicit by the attempted proof.

Ambiguities: A formal specification has a fixed set of logical consequents, and is therefore
unambiguous from a syntactic point of view. From a semantic point of view, a formal
specification constrains the set of algebras satisfying it. The task then becomes picking the
most appropriate model of the specification.

2.5 More than One Formal Language Needed

Having been sufficiently impressed with the ability of formal languages and calculi to
minimize requirements errors, we now seek to discover ways in which formal languages and
calculi can be augmented to reduce requirements errors further.

It is unlikely that a single calculus will be sufficient to represent all relevant aspects of a
system with equal perspicuity. Consider a large, complex system implemented using a single
programming language. The chosen programming language will represent some aspects of the
system with greater clarity than others.

A clear shortcoming with the application of a single calculus to the representation of a
complex system is answering the question: How can we deal with requirements that cannot be
described using the single calculus? This problem is of central concern to us. Solving this
problem can be approached in two principal ways:

* Requirements that cannot be represented by the chosen calculus must be represented and
analyzed via simulation, or

+ write the unrepresentable requirements in a language that can represent them.

Analysis via simulation leaves us with the requirements error discovery problems discussed in
the earlier section.

Writing the requirements in a language that can represent them means that the other language
could be

* an informal or semiformal language,

» an extension of the chosen formal language so that the requirement can be represented,
or

» a different formal language better suited to representing the requirements.

Representing the requirement in an informal or semiformal language leads to the associated
problems discussed in the earlier section.

Extending the chosen formal language to represent the requirement is a common solution for
researchers in formal languages. Accomplishing this while keeping the language’s semantics
clean can be challenging. An interim informal semantics may need to be adopted for the
extended language until a clean semantics can be worked out. More commonly used calculi,
such as Z, are frequently the subject of such extension efforts, e.g., [Carrington et al.]. Note
that If all desired extensions for a given language could be accommodated simultaneously,
they would diminish the language’s uniqueness and produce a language that attempts to do all
things for all developers (and perhaps fails to do any particular thing very well).

Page 8 of 47

e

Structuring Languages as Algebraic Specifications: A Framework for Multilingual System Representation
L Arthur Alexander Reyes

We believe that system developers should be given freedom to choose the most suitable
formal language to represent each system requirement and aspects of the system under
development. Thus we seek a situation in which a number of simple, special-purpose
languages are correctly used together to represent a complete system. Thus we seek a
multilingual approach to system representation.

Page 9 of 47

Structuring Languages as Algebraic Specifications: A Framework for Multilingual System Representation
Arthur Alexander Reyes

3 Framework i
We now present a mathematical framework within which to describe multilingual system
representation phenomena. The framework applies the body of knowledge on algebraic
specifications to the definition and manipulation of formal languages. We refer the reader to
[Wirsing] for a comprehensive and concise treatment of the discipline of algebraic
specifications.

Our framework represents each formal language of interest by an algebraic specification,
hence the framework’s name, Structuring Languages as Algebraic Specifications (SLAS).
“Strings” in each language are represented by terms or formulas of the algebraic specification
of each language. Languages are constructed from other, simpler languages by the application
of well-defined algebraic specification structuring operations, such as specification morphism,
parameterization, and colimit. Because an algebraic specification uses a certain logical system
(e.g., equational logic, conditional equational logic, Horne clause logic, first order predicate
logic, etc.) in which to write its axioms, and because each logical system has a deductive
apparatus associated with it, algebraic specifications of languages are automatically calculi.

3.1 Algebraic Specifications of Languages

Algebraic specification languages have been used to represent formal languages in two
principle ways:

 Write an algebraic specification to define the syntax and semantics of a language
directly. This is the approach taken by [Broy et al.] and us.

» Write an algebraic specification for individual strings in a language. This is the
approach taken by [Feijs et al.]. For example, a particular DFD (i.e., a string in the
language of DFDs) can be represented by an algebraic specification in which the
operations define the DFD processes directly.

In general, constructing algebraic specifications of individual strings of a language is simple,
but the ability to reuse these algebraic specification is limited. Constructing an algebraic
specification of a language is challenging, but the resulting algebraic specification also defines
any string in the language, thus reuse of the specification can be much greater. Henceforth, we
will use the terms “language” and “algebraic specification” interchangeably.

With a few simple examples, let us illustrate the use of algebraic specifications to represent
and manipulate languages. We present (currently incomplete) algebraic specifications for two
languages used in software engineering; the language of Finite Automata (which we will refer
to as FA) and Dijkstra’s language of Guarded Commands (which we will refer to as
GUARDED) [Dijkstra]. We will then show a specification morphism to translate from FA to
GUARDED.

The (incomplete) algebraic specification of FA follows:

Page 10 of 47

Structuring Languages as Algebraic Specifications: A Framework for Multilingual System Representation

Arthur Alexander Reyes
spec FA
imports ID -
sorts FA, Q, ARROW, Q-LABEL, ARROW-LABEL
operations
0Q: q0

(Q)FA: new-fa
(FA,ARROW)FA: add-arrow |
(Q-LABEL)Q: make-q |
(OARROW-LABEL: noop
(Q)Q: final
(Q,ARROW-LABEL,Q)ARROW: make-arrow
(Q-LABEL: a,b,...

axioms

/* Syntactic axioms are needed to make the set of finite automaton pictures a carrier of

sort FA of an initial model of this specification.*/

/* Semantic axioms are needed to define the static qualities of finite automata (e.g.,
acceptance of strings). */
end spec. _

An individual finite automaton (i.e., a term in spéc FA; a string in the language FA; a
program written in FA; an instance of the abstract data type FA; etc.) can be represented by a
term of sort FA of this specification. The figure below is an example finite automaton.

Figure 3.1 A Finite Automaton

X

A term in spec FA representing this finite automaton is

Page 11 of 47

R b il o e

Structuring Languages as Algebraic Specifications: A Framework for Multilingual System Representation

Arthur Alexander Reyes
add-arrow(
add-arrow(-
add-arrow(
add-arrow(
add-arrow(
add-arrow(
add-arrow(
new-fa(q0),

make-arrow(q0,s,make-q(q1))),
make-arrow(make-q(q1),y,make-q(q1))),
make-arrow(make-q(q5),t,q0))),
make-arrow(make-q(q5),u,make-q(q1))),
make-arrow(make-q(q5),v,final(make-q(q2)))),
make-arrow(make-q(q3),w,make-q(q6))),
make-arrow(final(make-q(q7)),x,make-q(q4)))

Please note that this term is not a unique representation for the automaton in the figure. A
term records the sequence of operations that were applied to construct the term. The
automaton in the figure could have been constructed in a number of different ways. Another
way to think of this is that the automaton in the figure could be parsed in different ways.
Because we want these different terms to represent the same automaton, spec FA requires
syntactic axioms [Broy et al.] in order to place these terms into the same equivalence class.
Note that common subterms of this term could be replaced by constants and the constants
defined using equations.

An (incomplete) algebraic specification of GUARDED follows:

Page 12 of 47

S

Structuring Languages as Algebraic Specifications: A Framework for Multilingual System Representation
Arthur Alexander Reyes

spec GUARDED
import EXPR,STMNT -
sorts
GSC /* guarded command set */
GC /* guarded command */
G /* guard */
GL /* guarded list */
STMNT /* statement */
AC /* alternate command */
RC /* repetitive command */
operations
(OSTMNT: skip,abort
(GO)GCS: makeGCS
(GC,GO)GC: _[1_
(G,GL)GC: _>_
(BE)G: makeG
(STMNT)GL: makeGL
(STMNT,STMNT)STMNT: _;_
(AC)STMNT: makeACtoSTMNT
(RC)STMNT: makeRCtoSTMNT -
(GCS)RC: do_od
(GCS)AC: if_fi
axioms
/* syntactic axioms */
(gelflge2)[]ge3 = gel[](ge2(]ge3)
(sl ;s2);83=5sl;(s2;s3)

/* semantic axioms */

end spec.

The syntax of GUARDED does not feature a “start symbol.” However the sort STMNT is
used when writing complete GUARDED programs.

The following GUARDED program

k:=0;

ji=1;

do j/=n ->
if f(j)<f(k) > j := j+l1
P fG)>=f(k) >k :=j;j:=j+l
1

od.

can be represented by the following term of sort STMNT:

Page 13 of 47

Structuring Languages as Algebraic Specifications: A Framework for Multilingual System Representation

Arthur Alexander Reyes
k:=0;
G:=1; B
(makeRCtoSTMNT(
do(
makeG(
(/=)
->
(makeGL(
make ACtoSTMNT(
if
makeG(f(j)<f(k)) -> makeGL(j := j+1)
[l
makeG(f(j)>=f(k)) -> makeGL(k :=j; j :=
D
fi))))
0d))))

3.2 Specification Morphisms

A specification morphism between two algebraic specifications enables one algebraic
specification to be mapped into another algebraic specification in such a way that axioms of
the source specification are theorems of the target specification. Specification morphisms play
an important role in our framework for the construction of languages from other languages,
translation of languages, and viewing of a language via another language. Our specification
morphisms are equivalent to “interpretations” in [Turski & Maibaum]. Specification
morphisms are total functions by definition.

For our example, we construct a (unverified) specification morphism from spec FA to
spec GUARDED. We refer to spec FA as the source language and spec GUARDED as the
target language.

FA I-> AC
Q I-> GL
ARROW I-> GC
Q-LABEL I-> ID
ARROW-LABEL |-> BE
q0 I-> makeGL(q := q0)
noop I-> true
new-fa I-> A(gl).if(makeGCS(true->gl))fi
add-arrow I-> A(ac,gc).if(makeGCS(acbody[]gc))fi
IF ac = if(makeGCS(acbody))fi

make-q I-> A(x).makesGL(q := x)
final [-> A(gl).makeGL(s ; abort) IF gl=makeGL(s)
make-arrow I-> A(gl1,be,gl2).(id1=expr1&be)->makeGL(id2 := expr2)

IF ((gl1=makeGL(id1 := exprl) or (gll=makeGL(id1 := exprl ;
s1)))

& ((gl2=makeGL(id2 := expr2) or (gl2=makeGL(id2 := expr2 ;
s2)))

A specification morphism translates terms of spec FA into terms of spec GUARDED. Given
an FA we can convert it into an equivalent term of spec FA:

Page 14 of 47

Structuring Languages as Algebraic Specifications: A Framework for Multilingual System Representation
Arthur Alexander Reyes

Figure 3.2 The FA to be translated

<nput=t
g0
noop
A corresponding term of spec FA is
add-arrow(
add-arrow(
new-fa(q0),
make-arrow(
final(make-q(ql)),
input=t,
q0))
make-arrow(
q0,
noop,

final(make-q(ql)))).

Which via the specification morphism translates into

if(
makeGCS(
true->makeGL(q := q0)
[
q=ql & input=t -> makeGL(q := q0)
(
q=q0 & true -> makeGL(q := q1 ; abort)))
fi.

The GUARDED program corresponding to this term is
if true -> q :=q0
(] q=ql & input =t ->q :=q0
(] q = q0 & true -> q := ql ; abort
8
Using specification morphisms in this way should follow the following process.

 Convert the concrete syntax of the source language LANG-A string to the abstract
syntax of a corresponding term in spec LANG-A.

* Translate the term via the specification morphism.

* Convert the translated term (now a term of spec LANG-B) from its abstract syntax to
the concrete syntax of a string of target language LANG-B.

In general, if given two languages, spec LANG-A and spec LANG-B, between which we wish
to establish a relationship, we should allow ourselves to consider any possible specification
morphism between them (without regard for the direction we may want the specification
morphism to go). In this way we hope to always construct the most natural relationship
possible between the two languages.

Note that a term translated via a specification morphism may not result in a complete term in
the target language. An everyday example of this is the generation of code fragments from a
DFD by a CASE tool.

Page 15 of 47

Structuring Languages as Algebraic Specifications: A Framework for Multilingual System Representation
Arthur Alexander Reyes

In order to make a specification morphism that maps a language to itself in such a way that
terms are restructured, we believe it is also possible to define a kind of specification
morphism that maps sorts to sorts, operations to operations (and possibly to terms of
compatible sort), and terms to terms of compatible sort. We will make use of this idea in this
paper for specify optimizing compilers and code reformatters. We expect to pursue the details
of this concept in future research.]

3.3 Diagrams

Assuming that all languages needed for a desired multilingual representation of a system exist
in the same institution [Goguen & Burstall] (i.e., the same logical system), we can graphically
depict relationships between languages by drawing a diagram in the category [Barr & Wells]
Specy of specifications and specification morphisms associated with institution I.

The figure below shows an enhanced diagram in Specy. A true diagram would have only
specifications and specification morphisms. The diagram shows five languages,

spec LANG-A, spec LANG-B, spec LANG-n, spec BIG-LANG, spec ADA, and

spec MIL-STD-1750A; nine specification morphisms between the languages; and a term or
formula in each language. Terms of each of the source languages are translated into terms of
the target languages via the specification morphisms. Notice that 6 ANG-n—BIG-LANG i$
simply an inclusion specification morphism that maps sorts and operations in spec LANG-n to
themselves in spec BIG-LANG.

1. In general, we doubt that the set of all languages that will be needed to represent a com-
plex system will belong to the same institution. Therefore more powerful means of relating
languages will need to be used, such as institution morphisms [Goguen & Burstall].

Page 16 of 47

Structuring Languages as Algebraic Specifications: A Framework for Multilingual System Representation
Arthur Alexander Reyes

Figure 3.3 An Enhanced Diagram in the Category Specy

ec LANG-A spec LANG-B spec LANG-n
erm-B term-n)
OLANG-B—BIG-LANG
- . OLANG-n—HBIG-LANG

spec BIG-LANG OLANG-n—ADA
a = o(term-A)

& b = o(term-B)

& ¢ = o(term-n)

& d = term-big-lang

OBIG-LANG—MIL-STD-1750A

OBIG-L —ADA

OADA—ADA
OMIL-STD-1750A
spec MIL-STD-1750A % G ADASMIL-STD-1750A spec ADA
h=0(a = o(term-A) e = o(a = o(term>
& b = o(term-B) & b = o(term-B)
& ¢ = o(term-n) & ¢ = o(term-n)
& d = term-big-1 , & d = term-big-1
PRER {hed ol & £ = S(lermay D18-1ang)
& b = o(term-B) & g = term-ada

& ¢ = o(term-n)

% d = tepmebic-1
& f= ol term-big-lang)

& g =term-ada)
& j = term-mil-std-1750a

The diagram shows translated terms conjuncted together with new terms of the target
language via variables and equations. We believe that translated terms could also be
assembled into a single new term in the target language, but we have not discovered the
general mechanism by which this could occur. An operation to accomplish this would work
like an algorithm that takes a number of program fragments and assembles them into a
complete program.

3.4 Semantics

A model of an algebraic specification is used to denote its meaning. Algebraic specifications
give us great freedom in dealing with the models. Every specification spec LANG-A
generates a category of models and homomorphisms between models, denoted

Mod(spec LANG-A). In this category, an initial model is a model from which a unique
homomorphism to every other model can be constructed. A final model is a model to which a
unique homomorphism can be constructed from every other model.

The denotational semantics of an algebraic specification is defined by an initial model which

Page 17 of 47

Structuring Languages as Algebraic Specifications: A Framework for Multilingual System Representation
Arthur Alexander Reyes

defines the sets of equ1valent terms (i.e., the syntax), a model of semantics and the unique
homomorphism M (the “meaning’ fum:tlon) from the initial model to the semantics model.
These relationships are summarized in the figure below. Black dots represent models. An
arrow between black dots represents a homomorphism. Note that non-initial models can have
additional sets that are not carriers of any sort and additional functions that don’t correspond
to an operation symbol in the algebraic specification.

Figure 3.4 Denotational Semantics of an Algebraic Specification

‘ Inifial niedel Final model

T

Semantic model

Mod(spec LANG-A)

Consider a spec LANG-B which has some models in common with spec LANG-A. Imagine
that the semantics model of spec LANG-A happens to be an initial model of spec LANG-B as
shown in the figure below.

Figure 3.5 Models in Common

Initial model Final model

| Semantic model

Mod(spec LANG-A) Mod(spec LANG-B)

The meaning function M may induce a specification morphism from spec LANG-A to

spec LANG-B. Thus given a language spec LANG-A and a desired semantic model, from the
semantic model and M we may be able to reverse engineer a language spec LANG-B that has
the semantic model as an initial model. This process enables us to deal with semantics at the
level of specifications, rather than the level of models.

Given our use of algebraic specifications to define languages, we can now think of
semiformal languages as algebraic specifications which have no semantic axioms. Because of
this, it will be easy to define the semantics of a semiformal language by constructing a

Page 18 of 47

-+

Structuring Languages as Algebraic Specifications: A Framework for Multilingual System Representation
Arthur Alexander Reyes

specification morphism from the semiformal language to the formal language used to
represent the semantics of the (previously) semiformal language. We will look at this again
when we consider [Semmens & Allen].

3.5 Using Languages Together

To prepare for our survey of approaches to multilingual system representation, we will
examine the various ways in which just two languages can be used together to describe a
system. In section 4, we will generalize these concepts to handle more than two languages.

3.5.1 Translation
Consider the diagram below in which 0] ANG-A—LANG-B 1S @ specification morphism.
Figure 3.6 Mapping One Algebraic Specification to Another

spec LANG-A™ GLANG.ALANGB . sPec LANG-B

This diagram can represent several approaches to multilingual system representation. We will
see that within the SLAS framework, multilingual system representation is the norm.

* spec LANG-A could be a programming language and spec LANG-B could be a machine
language. In this case, 0 ANG-A—LANG-B represents the specification of a compiler.

* If spec LANG-B is another programming language, then o1 ANG.A—LANG-B Would
represent the specification of a translator. Recall that in section 3.2 we demonstrated the
use of a specification morphism to translate a term in spec FA to a term in
spec GUARDED.

3.5.1.1 Classical Formal Refinement/Verification

The SLAS framework can represent the monolingual approach to system representation. The
monolingual approach is the one typically used in small-scale applications of formal methods.
In the monolingual approach, at each abstraction “level” of the system, exactly one formal
language is used to represent the system.

In the monolingual approach, the essence of relating levels of abstraction is by constructing a
homomorphism from the representation algebra at a given abstraction level to the
representation algebra at the next abstraction level above. This is summarized by the diagram
below.

Figure 3.7 Classical Correctness Criterion

abstraction level i+1 state;, » State;,;”
A operation; | A
abs;_,j41 abs;_,i;1
abstraction level i state; » state;”
operation;

Page 19 of 47

Structuring Languages as Algebraic Specifications: A Framework for Multilingual System Representation
Arthur Alexander Reyes

It must be proven between every pair of adjacent abstraction levels that
abs;_,;,(operation;(state;)) = operation;, j(abs;_,;,(state;))

for all types that represent state information at level i and for all operations on these types at
level i. abs;_,;,1 maps an equivalence class of states at level i to a state at level i+1. abs;_,;,4
is called an abstraction function for the type of state;.

The SLAS framework represents classical formal verification and formal refinement by
constructing a specification morphism between the language used to represent abstraction
level i+1 and the language used to represent abstraction level i. In which direction the
specification morphism goes depends on the languages.

Because spec LANG-i+1 can abstract spec LANG-i, this implies that spec LANG-i is a
“bigger” language than spec LANG-i+1 (in the sense of the number of sorts in each
specification). If we can construct 0p ANG-j—LANG-i+1, this induces an abstraction function in
the ordinary sense. If we can copstruct an injective O ANG-i+1—LANG-i» then we believe that
its inverse, O ANG-i+1—LANG-i » can be used to induce a different kind of abstraction
function, namely one that may not abstract every object in spec LANG-i. Using
OLANG-i+1—LANG-i -1 in this way may produce only term fragments in spec LANG-i+1. This
is an area requiring further research.

By representing refinement/verification in this way, the SLAS framework enforces that all
decisions about relating representations at different abstraction levels are made at the time the
specification morphism is defined. For example, this could mean that sets in spec LANG-i+1
are always implemented by sequences in spec LANG-i (i.e., the abstraction function between
the two languages is fixed). SLAS does not permit the developer to construct abstraction
functions in an ad hoc manner. If a different abstraction function is desired, the specification
morphism must be modified, which may not be practical or possible.

Monolingual development considers the details of representations at each abstraction level on
a case-by-case basis, but SLAS refinement is a syntactic translation of text. Refinements in
SLAS are correct by definition. Some may argue that one of the advantages of classical
refinement is that it provides the developer with complete freedom to choose the most
appropriate representation at each abstraction level. While this is true, by the same argument
we would conclude that programs should be compiled by hand so that the most appropriate
machine language representation can be constructed for each algorithm in the program. Thus
we must be willing to trade representational freedom for automation.

3.5.1.2 Other Ways to Translate

Imagine that we can construct specification morphisms in both directions, as shown in the
diagram below.
Figure 3.8 Translating Both Ways

OLANG-A—LANG-B
spec LANG-Af > spec LANG-B

OLANG-B—LANG-A

This may suggest that spec LANG-A and spec LANG-B are isomorphic. Translations between
isomorphic languages are useful when we need both graphical and textual representations of a
language. This is the case with Specification and Description Language (SDL) [Olsen et al.].

3.5.2 Views

We can think of “views” is two ways; as translations or as abstractions. As translations, we
think of viewing spec LANG-A terms and formulas as spec LANG-B terms and formulas by

Page 20 of 47

Structuring Languages as Algebraic Specifications: A Framework for Multilingual System Representation
Arthur Alexander Reyes

translating the spec LANG-A terms and formulas into spec LANG-B terms and formulas via a
specification morphism O ANG-A—LANG-B- If OL ANG.A—sLANG-B 1S injective, then we might
be able to use its inverse O] ANG.ALANG.B_ t0 untranslate (another way of viewing)

spec LANG-B terms and formulas into spec LANG-A terms and formulas. As abstractions,
we think of viewing a “concrete” algebra in an “abstract” algebra via an abstraction function.

3.5.3 Combination

When someone states that a language has been “extended” to include new features, what does
this mean? It means that the original language and the language of the “extensions” have been
combined to produce a new language. Within the SLAS framework, we can precisely
represent the ways in which two languages can be combined.

3.5.3.1 Definitional Extension

The simplest way to extend a language is via a definitional (or procedural [Horspool & Levy]
extension. A definitional extension is a new language that includes the original language via
an inclusion specification morphism and which defines new sorts and operations in a way that
preserves all the original sorts and operations. Definitional extensions enable a language to be
“bootstrapped” into existence from a small set of primitive sorts and operations.

3.5.3.2 Assume No Sharing

The simplest way to combine two languages is to assume that they share no parts (i.e., have
nothing in common) and obtain their disjoint union. If we wish to obtain the disjoint union of
spec LANG-A and spec LANG-B, we simply write a new spec LANG-C and copy the texts
of spec LANG-A and spec LANG-B into spec LANG-C. If a name of a sort or operation is
common to both spec LANG-A and spec LANG-B, then one of the copied sorts or operations
must be renamed in spec LANG-C. We do this because we assume that common names are
coincidental and unrelated (we deal with shared sorts and operations later). The resulting
language, spec LANG-C, has only the sorts, operations, and axioms that are in either

spec LANG-A or spec LANG-B. Thus there is no way to relate the two component languages
within spec LANG-C. This is not a commonly used method of extending a language.

3.5.3.3 Sharing Considered

A more useful variation of this approach is to identify the shared parts of the two original
languages (e.g., sorts BOOL, SET, etc.). Think of this as a way of identifying common
concepts or common features of the two languages. Identifying shared components is
represented by the diagram below.

Figure 3.9 Identifying Shared Parts Between spec LANG-A and spec LANG-B
spec BOOLC spec SET

\ # \
spec LANG-A spec LANG-

spec LANG-C can be constructed from this diagram in such a way that the parts common to
spec LANG-A and spec LANG-B will be identified as the same in spec LANG-C and that
spec LANG-C contains exactly the sorts, operations, and axioms needed for the component
languages (spec LANG-A and spec LANG-B) to interface correctly (via their shared
components). We construct spec LANG-C by taking the colimit of the diagram above. The
colimit produces spec LANG-C and a specification morphism to spec LANG-C from every

Page 21 of 47

Structuring Languages as Algebraic Specifications: A Framework for Multilingual System Representation
Arthur Alexander Reyes

other language in the diagram. The language produced by taking the colimit of a diagram will
be referred to as the colimit language (CL). spec LANG-C is the colimit language for the
diagram.

Figure 3.10 Computing the Colimit of a Diagram

spec\]i»OOL(-

spec SET

o

spec /G-C

Notice that the only way for the component languages to interface is via their shared parts.
Thus in the example above, we would be able to construct terms using subterms from both
languages spec LANG-A and spec LANG-B by building up terms of sort BOOL or sort SET.

3.5.3.4 Sharing with Additional Interfaces

We can add to the colimit language additional sorts, operations, and axioms to make the
component languages interface in ways other than just via their shared sorts and operations.
The additional sorts, operations, and axioms added to spec LANG-C will create a definitional
extension to it (spec EXTENDED) as shown in the diagram below.

Figure 3.11 Obtaining a Definitional Extension of a Colimit Language

spec BOOLC_ o spec SET
\,

spec LANG-A
T
\‘

OLANG-C—EXTENDED

spec EXTENDED

When adding the new sorts, operations, and axioms to make spec EXTENDED, we must be
careful to ensure that the morphism from spec LANG-C to spec EXTENDED
(OLANG-C—EXTENDED) remains a specification morphism. This approach represents the most
general way that a language can be extended by another language.

3.54 Combinations Revisited

Another way to think about sharing is to consider two abstraction functions that map
equivalence classes of states in a “concrete” algebra to states in two “abstract” algebras. This

Page 22 of 47

Structuring Languages as Algebraic Specifications: A Framework for Multilingual System Representation
Arthur Alexander Reyes

is simply a generalization of the classical correctness criterion mentioned earlier. The diagram
below summarizes this concept. A DFD algebra and a FA algebra are the abstract algebras.

Figure 3.12 Classical Correctness Criterion Generalized for Multiple Abstractions

DFD abstraction FA abstraction
stateppp 2PD stgteps —PFA o statepa”

abSconcrete™\DFD @bSconcrets—DFD

abs hcrete—FA

Opconcrﬁte ,
State gnereie State gnerete

“concrete” representation

In the SLAS framework, this might be represented by the following diagram.

Figure 3.13 SLAS Representation of the Generalized Correctness Criterion

spec CONCRETE

Assuming that the concrete algebra contains exactly the information for it to be abstracted as
both DFDs and FAs, then we could obtain the diagram above by computing the colimit of the
diagram below. spec CONCRETE would be the colimit language.

Figure 3.14 The Diagram Needed to Obtain the Above Figure via Colimit
spec SHARED

spec DFD spec FA

Assuming that the concrete algebra contains more information than what is necessary for it to
be abstracted only as DFDs and FAs, then we could obtain spec CONCRETE as a definitional
extension to the colimit language obtained from the diagram above.

There are several details to abstracting a system in more than one way that we will now
discuss. Until now, the SLAS framework has treated terms and formulas as atomic objects.
Now we describe how SLAS obtains access to the contents of terms and formulas.

Page 23 of 47

g T

Structurin;,; Languages as Algebraic Specifications: A Framework for Multilingual System Representation
. Arthur Alexander Reyes

Consider two languages with which we wish to represent a system., spec LANG-A and

spec LANG-B. Construct a definitional extension to spec LANG-A (spec LANG-A-SYS) that

introduces a new constant of the sort that will represent the system in spec LANG-A (sort S)

and that introduces an axiom that makes this constant equal to a term of sort S. Do likewise
for spec LANG-B. We will use another algebraic specification to identify the constants in

each definitional extension. This situation is summarized by the diagram below. -

i Figure 3.15 Identifying Shared Constructed Objects

spec LANG-A spec LANG-A-SYS

sorts..., S,... operations

operations... (0S: sys-a

axioms... axioms

end spec. sys-a = (term of sort S)
end spec.

COMMON-OBIJECT I|-> S
thing |-> sys-a

| spec COMMON-OBJECT
| sorts COMMON-OBJECT
operations

()COMMON-OBIJECT: thing
end spec.

COMMON-OBJECT I-> T

thing I-> sys-b
spec LANG-B spec LANG-B-SYS
sorts..., T,... operations
operations... C OT: sys-b
axioms... axioms
end spec. sys-b = (term of sort T)
end spec.

Computing the colimit of this diagram identifies sys-a with sys-b. This is how we expect to
identify that the abstractions are about the same object (the system). Note that name of the
common object need not be global, because we can use renaming via the specification
morphisms from spec COMMON-OBJECT to the definitional extensions.

Notice that now a string in a language can be represented by a term, formula, sentence, or a
definitional extension to an algebraic specification. We believe that definitional extensions can
also be used to assign a name to a term (for when more than one term in an algebraic
specification are being considered at the same time) and to replace common subexpressions
with constants (define the constant to equal the common subexpression). We may also use
definitional extensions to determine if a number of strings in a language are collectively
satisfiable.

3.5.5 Parameterization

~ The last approach to using two languages together that we will discuss is to use one language
as an actual parameter to another language. In the diagram below, spec LANG-FP represents

Page 24 of 47

& ral

Structuring Languages as Algebraic Specifications: A Framework for Multilingual System Representation
' Arthur Alexander Reyes

the formal parameter language of spec LANG-BASE, spec LANG-AP is the actual parameter
language, and spec LANG-RESULT is the instantiated language. The parameterized language
can be defined by a diagram such as the one below.

Figure 3.16 Diagram for Defining a Parameterized Language
spec LANG-FP (» spec LANG-BASE

FP |-> AP

spec LANG-AP

Taking the colimit of the diagram above produces the instantiated language as the colimit
language. This is shown in the diagram below.

Figure 3.17 Instantiating the Language by Taking the Colimit

spec LANG-FP (» spec LANG-BASE
.

FP |I-> AP \\\) FP |-> AP

.
e

R
spec LANG-AP 3 spec LANG-RESULT

Parameterized languages have not been investigated in a general framework such as this
before (but parameterized algebraic specifications have been thoroughly investigated in this
framework, of course [Wirsing]). The work coming closest to parameterized languages has
been performed under the rubric of “heterogeneous refinement” or “Multimodeling” [Fishwick
& Ziegler].

Parameterized languages offer a number of interesting possibilities. For example, we can
consider more than one of the sorts of spec LANG-BASE to be a formal parameter sort (we
do not follow the convention of identifying specific sorts as formal parameter sorts, as is done
in some research on parameterized algebraic specifications). Recall spec FA of finite
automata. Consider sort Q and sort ARROW-LABEL to be formal parameter sorts. We could
instantiate sort Q with

* a simple procedural programming language for when we want states to represent loci of
computation,)
* a language of block diagrams containing derivatives and integrals to solve simultaneous
equations in dynamics (this is the language presented in [Fishwick & Ziegler]), or
» a DFD language, etc.
Simultaneously, we could instantiate sort ARROW-LABEL with

* a language based on first-order predicate logic for when we want state transitions to
represent global conditions, or

» the sort GC (guarded command) of spec GUARDED for when we want transitions to
represent a logical condition followed by a process.

Parameterized languages allow specifiers to customize base languages to best suit the needs of
the system being represented and the developer’s work organization. Parameterized languages
also allow designers of development methodologies, e.g., OMT, to define the methodology
down to the level of the methodology’s base languages, and invite users of the methodology
to instantiate the base languages with the actual parameter languages that the developers find

Page 25 of 47

Structuring Languages as Algebraic Specifications: A Framework for Multilingual System Representation
4 Arthur Alexander Reyes

the most suitable.

3.6 Paradigms

We all agree that several examples of programming paradigms are
* Imperative; exemplified by FORTRAN, Pascal, ALGOL60, and C,
« Functional; exemplified by LISP and ML,
« Relational, exemplified by SQL, and
 Object-Oriented, exemplified by Smalltalk and C++.

What common characteristics do languages of the same paradigm possess? Before we answer
this, we should examine different notions of what a paradigm is.

3.6.1 A Paradigm as a Model of Computation

We might like to think of a paradigm as a model of computation. Assume that a “model of
computation” is any computable algebra. Because every computable algebra can be specified
using axioms in conditional logic with hidden functions [Wirsing], any language defined using
this logical system (or a subsumed logical system) can serve as a model of computation.
Given this, we can conclude that all models of computation can be represented in the SLAS
framework by algebraic specifications using a logical system no more expressive than
conditional logic with hidden functions. Thus in this notion, a paradigm is defined by a set of
logical systems.

3.6.2 A Paradigm as any Language

However, we may not want to limit the notion of a paradigm to a model of computation. We
hypothesize that a paradigm can be represented by any language (an algebraic specification).
This “paradigm language” possesses only those sorts, operations, and axioms needed to define
the paradigm in its most primitive form. A paradigm language need not represent a complete
programming language definition.

Because paradigm languages define only the paradigm and none of the associated constructs
needed for a programming language, we expect that the algebraic specification of a
programming language would need to include at least one paradigm language along with
simple languages defining input/output, statements, and declarations. For this paper, we will
use the notion of a paradigm as any language.

3.6.3 Multiparadigm (a.k.a. Wide-Spectrum) Languages

A multiparadigm language imports more than one paradigm language. The diagram below
provides intuition for these concepts. spec FUNC and spec IMPER are the functional and
imperative paradigm languages, respectively, spec STMNT and spec DECL are languages
defining statements and declarations, respectively. These four languages are mapped via
specification morphisms to spec FUN-IMPER, a multiparadigm programming language.

Page 26 of 47

Structuring Languages as Algebraic Specifications: A Framework for Multilingual System Representation
Arthur Alexander Reyes

Figure 3.18 Constructing a Multiparadigm Language
spec FUNCT spec IMPER spec STMNT spec DECL

After spec FUN-IMPER has been constructed, the developer deals only with (i.e., writes terms
only for) spec FUN-IMPER when writing a system representation. Examples of
multiparadigm languages include REFINE [Kotik & Markosian], RAISE [RAISE], and COLD
[Feijs et al.].

3.7 Common Base Languages

We define a Common Base Language as a language to which a unique specification morphism
can be drawn from every other language in the diagram. The main reason for developing a
common base language is to construct a semantically broad language with a number of useful
properties (theorems). These properties can enforce a certain style in which representations are
constructed. common base languages are often too complicated to be used directly by the
developer (i.e., we do not expect a developer to construct terms of the common base language
directly).

Think of a common base language as defining a semantic model able to represent the
semantics of languages with different paradigms. A language developer might use the
classical denotational semantics model of states and environments to define the semantics of
programming languages. The semantic model of states and environments is especially useful
for defining the semantics of imperative languages. In the same way, we can use a common
base language to define the semantics of logical, functional, and imperative languages
simultaneously.

To use a common base language, a language developer must redefine the semantics of each
language of interest in the common base language. Obviously this can be a significant
undertaking (in the SLAS framework it means that a specification morphism must be
constructed from every language of interest to the common base language).

3.8 Other Frameworks

Other frameworks for describing multilingual system representation phenomena exist. This
section reviews two of them and shows how the SLAS framework represents each.

3.8.1 Wing’s Framework

In [Wing] a framework is presented within with to describe several concepts in multilingual
system representation. In Wing’s framework a specification language is characterized by a
triple (Syn, Sem, Sat), where Syn is the language’s syntactic domain (i.e., the set of all strings
in the language), Sem is the language’s semantic domain (i.e., the set of all behaviors that can
be given to a string in the language), and Sat is the satisfaction relation between individual
strings in the language and a set of behaviors for an individual string. The figure below
summarizes the relationships. Syn LANG-A and Syn LANG-B are the syntactic domains of
LANG-A and LANG-B respectively; S-A and S-B are specifications in Syn LANG-A and
Syn LANG-B respectively; Sem is the common semantic domain; Sat-L-A and Sat-L-B are
the satisfaction relations for LANG-A and LANG-B respectively; and Sat-L-A(S-A) and
Sat-L-B(S-B) are the sets of behaviors of specifications S-A and S-B respectively.

Page 27 of 47

Structuring Languages as Algebraic Specifications: A Framework for Multilingual System Representation
Arthur Alexander Reyes

Figure 3.19 Wing’s Framework

Wing’s framework assumes that all specification languages of interest share a common
semantic domain. From this framework we infer a criterion for using specifications written in
two different languages. It is that the intersection of the sets of behaviors for the two
specifications be nonempty. We can write

S-A comp S-B = Sat-L-A(S-A) N Sat-L-B(S-B)

where “comp” is specification composition in [Zave & Jackson] and also parallel specification
composition in [Abadi & Lamport].

Within the SLAS framework, we can represent Wing’s framework by considering the set of
models of a language. The models of the union of a set of languages is equal to the
intersection of models of each language individually (from [Srinivas]):

IMOd(U i € LANG-SET spec LANG-I)l = ﬁ i € LANG-SET lMod(spec LANG-1)|

where LANG-SET is the collection of all languages of interest to us, Mod() is a function
that returns the category of models and model homomorphism of a specification, and |_|
returns the objects of a category.

This equation requires that the collection of languages be satisfiable, while the inferred
criterion in Wing’s framework requires that a collection of specifications be satisfiable. We
can restrict our equation to be equivalent with Wing’s framework’s criterion by considering a
term (to Wing a specification) in each of the languages. The collection of languages may have
no models in common but there might exist common submodels picked out by each of the
terms (because each term need not use all the sorts and operations of its algebraic
specification).

If we want to represent Wing’s framework at the level of languages, we can construct a
diagram in the category Specy as follows. Wing’s framework’s criterion requires that the
formula of spec SEM be satisfiable.

Page 28 of 47

Structuring Languages as Algebraic Specifications: A Framework for Multilingual System Representation
Arthur Alexander Reyes

Figure 3.20 Wing’s Framework as a Diagram in Category Spec;

spec SYN-A spec SYN-B spec SYN-n
term-n

term= term-B

OSYN-A—SEM OSYN-B—SEM OSYN-n—SEM

spec SEM

a = o(term-A)

& b = o(term-B)...
& ¢ = o(term-n)
& d = term-sem

3.8.2 Formalized Software Architectures

Formalized software architectures (FSA) [Abowd et al.] applies the Z specification language
[Wordsworth] to the definition of languages for software architectures. These languages are
called “architectural styles”. Z schemas are constructed which define an architectural
language’s syntax, semantics, and denotation function. In other words, Z is a metalanguage
used to define architectural languages. We have not yet chosen a specific algebraic
specification language to be the metalanguage of the SLAS framework.

Formalized software architectures is the most similar framework to the SLAS framework that
we have discovered. In effect, Z schemas define languages and these languages are put
together using the Z schema structuring mechanisms.

In the next figure we have drawn a diagram that we believe represents the structuring of Z
schemas and global axioms used in the two main examples of [Abowd et al.]. Nodes represent
schemas (or in the case of the denotation functions, global axioms), arrows represent inclusion
by a definitional extension of the source specification or else inclusion of the source
specification in the target specification by virtue of the fact the source specification is used in
the definition of the target specification’s operations.

Page 29 of 47

Structurin‘g Languages as Algebraic Specifications: A Framework for Multilingual System Representation
Arthur Alexander Reyes

Figure 3.21 Diagram Constructed from Examples in [Abowd et al.]

_spec System

SPechsmbutor

ES_ - ES)
S[y M™comn SB% M SConf sPgMESComp
A Y A Y ES A
spec MESConn spec MEsconf spec M Comp

~LEGEND:

Style semantics :
Style denotation function .
Réstricted Style denotation function

Representing the main examples of [Abowd et al.] in the SLAS framework elucidates a
number of details of the FSA framework. Much of the detailed structure of FSAs is hidden by
the fact that Z makes use of global names. Because nothing is global in the SLAS framework,
all information must be conveyed by specification morphisms.

The FSA'’s strict adherence to the denotational style of semantics tends to complicate matters.
Because FSA does not use powerful structuring mechanisms such as specification morphisms,
FSA relies on denotation functions (in effect a third specification) to relate a specification of

Page 30 of 47

Structuring Languages as Algebraic Specifications: A Framework for Multilingual System Representation
Arthur Alexander Reyes

syntax to a specification of semantics. The SLAS framework does not require denotation
function specifications because denotation functions are encapsulated in specification
morphisms.

Page 31 of 47

Structuring Languages as Algebraic Specifications: A Framework for Multilingual System Representation
Arthur Alexander Reyes

4 Approaches to Multilingual System Representation

In this section we review a number of approaches to multilingual system representation that
have appeared in the research literature. In section 3.5, we examined the different ways in
which two languages can be used together. In this section we will generalize these ways to
use more than two languages together.

4.1 Key Characteristics of Approaches

Within the SLAS framework, the different approaches to multilingual system representation
can be distinguished by answering the following questions (and sub questions):

What is the diagram in the category Specy?
What are the languages?

What languages are related to what languages (i.e., where are the specification
morphisms)?

What is done with terms, formulas and sentences of the languages?

What are the details of the specification morphisms (inclusion, injective, surjective, etc.)?
4.2 Translation-Based Approaches

4.2.1 Horspool & Levy

In [Horspool & Levy], a translation-based approach to multilingual representation is
described. In this approach, two languages, LANG-A and LANG-B, and a specification
morphism from LANG-A to LANG-B is used. The translator must be able to convert
LANG-A code into “functionally equivalent” LANG-B code, thus the translator must be a
specification morphism.

[Horspool & Levy] list a number of observations regarding this approach. Our representation
of these observations in the SLAS framework follows.

* “User-supplied LANG-B code can directly access objects and operations of translated
LANG-A code.” This means that 0] ANG-A—LANG-B(term-a) is combined with terms of
spec LANG-B in such a way that the internal details of 01 ANG.A—LANG-B(term-a) are
accessible by terms of spec LANG-B. This is enabled because names used in term-a are
compatibly translated to recognizable names in spec LANG-B.

» “If LANG-B supports abstract data types (ADTs) and type encapsulation, translated
LANG-A objects and operations can be safely mixed with user-supplied LANG-B
code.” We believe that this means that the sort of 6] ANG.A—LANG-B(term-a) must be
the sort of spec LANG-B ADTs or encapsulated types.

“If LANG-B supports operator overloading and/or syntactic extensibility, it may be
possible to provide access to facilities of the LANG-A language from a LANG-B
program using syntax that is similar to the syntax of the LANG-A language.” We
believe this can be achieved by an interpretation specification morphism that maps a
spec LANG-A operation (to which access from within LANG-B is desired) to the same
operation name in spec LANG-B and which defines the new spec LANG-B operation in
terms of spec LANG-B sorts and operations as well as translated spec LANG-A sorts
and operations.

Page 32 of 47

Structuring Languages as Algebraic Specifications: A Framework for Multilingual System Representation
Arthur Alexander Reyes

* “Access to facilities of the LANG-B language from within LANG-A language code can
be provided by external interface mechanisms built into the LANG-A-to-LANG-B
translator.” We believe this means that LANG-A can be extended by an operation
corresponding to a LANG-B operation, such as extending PROLOG with (C++) stream
operations _<<_ and _>>_. Notice that the new operations in spec LANG-A need not
have any axioms defining their semantics, because the new operations may only have
meaning in spec LANG-B.

 “If LANG-B is a systems implementation language (such as C), there is a reasonable
expectation that the translated LANG-A code will execute efficiently.” Other than by
restricting a language’s logical system to be no more expressive than conditional logic
with hidden functions, we do not yet know how to represent execution efficiency within
the SLAS framework.

* “An application programmed as a mix of LANG-A modules and LANG-B modules is as
portable as an application programmed entirely in LANG-B.” We believe this assumes
all terms of LANG-A module sort are translated into terms of LANG-B module sort and
that the specification morphism from spec LANG-B to spec HARDWARE can be

composed with OLANG-A—LANG-B-

4.2.2 Semmens & Allen

In [Semmens & Allen], a technique for translating Entity-Relation Diagrams (ERDs) and
DFDs into Z is presented. This effectively provides formal semantics for the languages of
ERDs and DFDs and gives development organizations familiar with ERDs and DFDs a
gentler transition into applying formal methods. This approach is represented by a diagram
featuring spec ERD, the algebraic specification of the language of ERDs; spec DFD, the
algebraic specification of the language of DFDs; and spec Z, the algebraic specification of the
Z language. Specification morphisms are constructed from spec ERD to spec Z and from
spec DFD to spec Z.

Figure 4.1 The Approach of [Semmens & Allen]

spec ERD » SPec Z spec DFD

4.3 Combinational Approaches

An example of combining languages together to produce a new language can be found in
[Wood]. There Z and the Refinement Calculus [Morgan] are combined into a new language
R“. The idea behind the combination of languages is to produce a new language with the
strengths of both. Within the SLAS framework, we can represent this particular approach by
constructing a definitional extension to the algebraic specification of the Refinement Calculus
(spec RC) and constructing a partial specification morphism from the algebraic specification
of Z (spec Z) to the extended language, as shown in the diagram below.

Figure 4.2 The Approach of [Wood]
spec RC <5, spec RZ<_|_spec Z,

Representing this approach has raised the issue of whether partial specification morphisms
should be allowed. Because the body of work on algebraic specifications always defines
specification morphisms as total functions, partial specification morphisms will need to be
closely examined in future research. From a utility standpoint partial specification morphism
are attractive because they permit only a portion of a language to be translated. This could be
especially useful if we wish to combine a language with only the most relevant portions of

Page 33 of 47

TEraEE ey

Structuring Languages as Algebraic Specifications: A Framework for Multilingual System Representation
Arthur Alexander Reyes

another language.

4.4 Common Base Language Approaches

In this section we discuss two important common base languages. A more comprehenswe
review of the common base languages can be found in [Meyers].

44.1 Abadi & Lamport

[Abadi & Lamport] defines an algebra in which to investigate the composition of
specifications and the preservation of safety and liveliness properties in composition.
Although the algebra is developed for the purpose of providing the paper’s main theorem, the
authors suggest that the algebra should be used to define the semantics of a variety of
languages. They argue that placing languages on a common semantic representation makes it
possible to analyze and compose different languages together. Theorems of the algebra then
become proof rules for a language whose semantics is defined in the algebra. The algebra
treats a specification as a behavior set (BS), which is akin to a set of paths through a state
space.

To use this common base language, we first need to construct spec BS for the language of
behavior sets. Then, for every source language of interest we must construct a (hopefully
injective) specification morphism from the algebraic specification of the source language to
spec BS.

4.4.2 Meyers

In [Meyers], the language of Semantic Program Graphs (SPG) is proposed as a common base
language that can represent the paradigms of Sequential Control Flow (SCF), Dataflow-based
computation (DFC), and Parallel Control Flow (PCF).

Although the definition of SPG in [Meyers] is informal, we believe it can be represented by
the diagram below. In the diagram, spec CL is a multiparadigm language constructed from
spec SCF, spec DFC, and spec PCF. spec SPG is a definitional extension of spec CL. Smaller
languages, spec PASCAL, spec FA, spec PETRI-NET, spec RUNTIME-STACK,

spec FLOWCHART, spec CALL-GRAPH, and spec BUILD-DIAGRAM are shown with
specification morphisms going to spec SPG.

Page 34 of 47

Structuring Languages as Algebraic Specifications: A Framework for Multilingual System Representation
Arthur Alexander Reyes

Figure 4.3 Construction and Use of Semantic Program Graphs

spec CL

spec PASCAL spec FLOWCHART

spec SPG

/
spec FA \spec RUNTIME-STACK

spec PETRI-NE spec BUILD-DIAGRAM spec CALL-GRAPH

Because the small languages can both produce terms of spec SPG and abstract a spec SPG
term in their own language, we assume that the specification morphisms to spec SPG are
injective. Please note that in [Meyers], all translations to and from an SPG are presented in
pseudocode.

Within the SLAS framework, we do not yet know how to represent dynamism at the
specification level, or if this is even desirable (we currently address dynamism at the level of
models of a specification). Thus we do not know how to represent spec RUNTIME-STACK.

4.5 Multiparadigm Development

In [Meyers] a number of environment integration mechanisms for Multiple View
Development Environments (MVDEs) are described. An MVDE uses several interacting
viewers (tools) to describe a system. Viewers provide a specific abstraction (i.e., a language)
of a system and update each other via different means. Meyers differentiates “multiparadigm
development” from “multiple-view development” by saying that multiparadigm development
approaches have no requirement for their view languages to interact, i.e., information can flow
only from view languages to target languages. In the SLAS framework, we believe that source
(view) languages interact by untranslating target language terms via inverse specification
morphisms. Simply put, multiparadigm development does not require that the specification
morphisms to be injective.

| 4.5.1 Multiparadigm Development via Translation to Common Language

In this approach, view languages are source languages and terms of each source languages are
compiled into a common base language (a common target language). The base language is
usually an executable language and the translated terms are modules that are assembled
together in a manner appropriate for their level of abstraction (i.e., withing for Ada modules,
linking for executable modules). Inconsistencies between terms of the source languages are
revealed by runtime errors of the assembled module. This approach is illustrated in the
diagram below.

Page 35 of 47

peass

Structuring Languages as Algebraic Specifications: A Framework for Multilingual System Representation
Arthur Alexander Reyes

Figure 4.4 Multiparadigm Development via Translation to Common Base Language

spec LANG-A spec LANG-B spec LANG-n
term-n

term> term-B

OLANG-B—BASE-LANG OLANG-n—BASE-LANG

spec BASE-LANG

a = o(term-A)

LINKED WITH b = o(term-B)
LINKED WITH c = o(term-n)
LINKED WITH d = term-base-lang

4.5.1.1 Zave & Jackson

The approach described in [Zave & Jackson] is an example of this approach. The common
base language used is first-order predicate logic with marked sequences to quantify temporal
phenomena. Time is represented as a alternating (i.e., marked) sequence of events and
intervals. Every predicate in the common base language has either an event or an interval as
an argument.

Source languages, such as Z, FA, and Petri-Nets are mapped to the common base language
(via specification morphisms). Because almost every sort in a source language is mapped to
sort BOOL in the common base language, and because almost every operation in a source
language is mapped to a predicate in the common base language, the specification morphisms
are unlikely to be injective. Because of this, it is unlikely that terms in the common base
language can be abstracted back to a source language, thereby preventing interacting views.

Examples of other systems that can be represented this way are Draco [Neighbors] and Ipser
and Wile’s environment [Ipser & Wile].

4.5.2 Multiparadigm Development via Interprocess Communication

Another approach to multiparadigm development is to compile each source language term into
an separate process and let the processes communicate via message passing, remote procedure
calls, sockets, and other interprocess communication mechanisms at run time. This approach
can be generalized to distributed computing, thus allowing for more than one executable
language. Inconsistencies between terms in the source languages are revealed by runtime
failures. This approach is summarized by the diagram below. The dashed lines represent
message exchanges between the processes. Please note that it is the models of the base
languages (the processes) that pass messages, not formulas. An example system that can be
represented this way is Zave’s methodology [Zave].

Page 36 of 47

Structuring Languages as Algebraic Specifications: A Framework for Multilingual System Representation
Arthur Alexander Reyes

Figure 4.5 Multiparadigm Development via Interprocess Communication

spec LANG-A spec LANG-B spec LANG-n
rm-A term-B erm-n
OLANG-A—BASE-LANG-A OLANG-n—»BASE-LANG-B

OLANG/B—-BASE-LANG-A

spec BASE-LANG-A spec BASE-LANG-B
a=o(term-A) w C=o(term-n)
LINKED WITH = «----ssessmmmmmmssmossmosssmmmmnmmnss LINKED WITH
d = term-A-base-lang-A _.-» d = term-base-lang-B
¥
b = o(term-B)
LINKED WITH A5

d = term-B-base-lang-A

4.6 Multiple-View Development Environment Integration Mechanisms

In the SLAS framework, we represent a MVDE as
» a diagram in the category Specy,
« an assignment of tools to sets of arrows in the diagram,
* locations to store and access terms and formulas,

* a mechanism for processing terms and formulas. This includes providing terms and
formulas to specification morphisms, assembling new terms and formulas from a set of
terms or formulas, moving terms and formulas from one location to another.

The diagram below represents an example MVDE in which DFDs, STATECHARTS, Class/ |
Object Diagrams, Ada and LISP source code are used to produce RISC assembly
implementations.

Page 37 of 47

Structuring Languages as Algebraic Specifications: A Framework for Multilingual System Representation
Arthur Alexander Reyes

Figure 4.6 Diagram of the Example Software Development Environment

spec DFD ODFD—STATECHART spec STATECHART

OSTATEGAART—ADA

spe{ CLASS-OBJ-DIAG

o
OPpFD—LISP o
u""l
RNy
...,-""' OLISP—RISC %%%
W
spec LISP » y,
ORISC—RISC
) DFD editor and translator
:STATECHART editor and translator
Class/Object Diagram editor and translator
Ada pretty printer
s - Ada compiler
- LISP compiler
LISP to Ada translator
||||n|m""|||n-

Tools in the SDE are identified by the shade of their arrow as shown in the legend and are
described below.

A DFD editor and translator:
¢ Enables the creation of a DFD from scratch.

* Via Oppp_,STATECHART: translates a DFD into a STATECHART fragment or abstracts
a STATECHART into a DFD.

* Via Opgp_,ADA. translates a DFD into Ada fragments or abstracts Ada code into a DFD.
* Via opgp_,1sp; translates a DFD into LISP fragments or abstracts LISP code into a
FD

A STATECHART editor and translator:

Page 38 of 47

Structuring Languages as Algebraic Specifications: A Framework for Multilingual System Representation
Arthur Alexander Reyes

» Enables the creation of a STATECHART from scratch.

* Via OSTATECHART—ADA. translates a STATECHART into Ada fragments or abstracts
Ada code into a STATECHART.

A Class/Object Diagram editor and translator:

+ Enables the creation of a diagram from scratch.

* Via OCLASS-OBJ-DIAG—STATECHART> translates a diagram into a STATECHART
fragment or abstracts a STATECHART into a diagram.

* Via OC1 ASS-OBJ-DIAG—ADA.- translates a diagram into an Ada fragment or abstracts
Ada code into a diagram.

An Ada pretty printer: Via 6popa_,aDpa» prettifies Ada code.
An Ada compiler for RISC:
* Via 6ppa_srIsc: compiles Ada into RISC assembler.
* Via OoRisc—srisc> optimizes the RISC assembler.

A LISP compiler for RISC:

* Via op 1sp_srisc. compiles LISP into RISC assembler.
* Via ORisc—sRrISC> Optimizes the RISC assembler.

A LISP to Ada translator (via O jsp_sApDA)-

Where and how terms and formulas are stored and accessed depends upon the specific MVDE
integration mechanism used for the environment.

4.6.1 Environment Integration via Shared File System

Under this approach to environment integration, “each tool contains its own internal
representation (format) of the data it uses, and the only way that tools communicate is through
the file system,” [Meyers].

Assume that terms and formulas are stored as files in a file system. The system as a whole is
represented by the union of all the terms and formulas in the environment. Imagine that each
tool represents terms and formulas in its own tool-specific format. Thus if format() is a
function that returns the format type of a term or formula, then for example, we can say

format(oppp_,sTATECHART(term-dfd)) /= format(term-statechart)

for any term term-dfd generated using the DFD tool and for any term term-statechart
generated using the STATECHART tool. This is the case even though
ODFD—STATECHART(term-dfd) is a term in spec STATECHART. In order for tools to work
together, it may be necessary to explicitly convert the format of
ODFD—STATECHART(term-dfd) into the format used by the STATECHART tool via some
dfd2statechart conversion program.

The Unix operating system and associated tools [Unix] is the classic example of this approach
to MVDE integration.

4.6.2 Environment Integration via Message Passing

Under this approach, we start by assuming the same environment structure as in the shared
file system approach. Except now, every time a tool performs an action, the tool sends a
message to a central message server describing the action. The message server examines the
message and determines which other tools need to be informed of the action. When a tool

Page 39 of 47

Structuring Languages as Algebraic Specifications: A Framework for Multilingual System Representation
Arthur Alexander Reyes

receives a message from the message server, the receiving tool may use the information in the
message to update its representation of the system, which will mean modifying the terms and
formulas which it controls.

For example, after a user causes the DFD tool to translate term-dfd into a STATECHART via
ODFD—STATECHART: this tool event would generate a message for the message server.
Assuming the message server is aware that the STATECHART tool is interested in such
changes, the message server would forward the message to the STATECHART tool. Upon
receipt, the STATECHART tool calls the dfd2statechart conversion program on the file
containing Oprp—,STATECHART(term-dfd) and integrates this term into its existing set of
terms.

A MVDE that uses this approach is PRISMA [Niskier et al.].

4.6.3 Environment Integration via Message Passing: Pairwise Mappings

In this approach, mutual function calls between tools are used instead of message passing. The
name given to this approach is something of a misnomer, because every tool need not ever
make a function call to every other tool in the environment. This is easy to see when we
consider the translation-oriented representation of tools within the SLAS framework.

4.6.4 Environment Integration via Simple Database

Using a simple database as the integration mechanism, primitive versions of terms and
formulas for each language are kept in a database, which enforces consistency among the
primitive versions of terms and formulas. When a tool needs to work with a term or formula,
it retrieves the primitive version from the database and rebuilds it into the full representation
format used by the tool. When a tool is finished working on a term or formula, its tool-
specific representation details are removed and a primitive version is placed back into the
database. There is the possibility for information loss in this process. The amount of semantic
detail used in the primitive terms and formulas is dependant on the degree to which the
database can enforce consistency between elements of the database.

4.6.5 Environment Integration via a Canonical Representation

The canonical representation approach to MVDE integration attempts to exploit a single
representation that all tools in the environment can use. The representation, by being
modified, accomplishes the task of informing other tools that a tool has modified a term or
formula. Because the representation is canonical, maintaining consistency is no longer an
issue. Implementing this approach requires a common base language.

Consider our example diagram for a MVDE. Is that a language in the diagram that could be
used as a canonical representation? Ada is almost a suitable choice for a canonical
representation in the given environment, because a unique specification morphism can be
drawn to spec ADA from every other language in the diagram, except spec RISC, and
because the DFD, STATECHART and Class/Object Diagram tools can abstract Ada code.
The reason Ada is not a suitable choice for a canonical representation is because the LISP to
Ada translator cannot abstract Ada code. Using a canonical representation assumes that the
tool-specific format of terms and formulas are automatically converted when using the
specification morphisms.

Examples of MVDEs using a canonical representation are Meyers’s environment [Meyers],
and Harrold and Malloy’s maintenance environment [Harrold & Malloy].

Page 40 of 47

Structuring Languages as Algebraic Specifications: A Framework for Multilingual System Representation
Arthur Alexander Reyes

5 Future Directions

Very few of the concepts in the SLAS framework have been validated. Therefore research is
needed in many areas. What is called for now is to validate the key concepts of SLAS on a
number of examples of increasing complexity. In order to pursue the research in a manner that
attacks the highest risks areas first, we propose the following research plan:

1. Construct algebraic specifications of several simple, complete languages. Discover under
what circumstances strings should be represented by terms, formulas and sentences, or by
definitional extensions. Learn how to work with more than one string at a time. Write more
than one string to describe an object and determine the logical consequences. Finish defining
spec FA and spec GUARDED. Dijkstra’s language is an especially attractive candidate
language because its formal semantics has been defined, and it is frequently used in formal
methods, usually as a design language into which formal specifications are refined
[Wordsworth] and from which programming language implementations are refined [Morgan]
[Gries].

2. With a small set of languages (assumed to use the same logical system), investigate the
details of specification morphisms between the languages. Determine the general
circumstances under which it is possible to construct specification morphisms, what kinds of
specification morphisms are better than others, details of how to use specification morphisms
for refinement and abstraction, etc.

3. Represent a popular multilingual development methodology in the framework. We would
like to represent Object Modeling Technique (OMT) [Rumbaugh et al.] within SLAS. OMT
uses three semiformal languages to represent complex system: Statecharts, Data Flow
Diagrams, and Class/Object Diagrams. In order to represent OMT in SLAS, it will be
necessary to construct an algebraic specification of each of these languages and use
specification morphisms to represent how the methodology makes the languages interface. It
may be possible to construct different diagrams with the OMT languages. Each diagram could
represent how OMT is applied in a certain application domain. The colimit of the diagram
could be the domain specification.

Page 41 of 47

Structuring Languages as Algebraic Specifications: A Framework for Multilingual System Representation
Arthur Alexander Reyes

6 Conclusions _

We presented a framework within with to describe multilingual system representation
phenomena. Because this framework can represent both other frameworks and multilingual
approaches, we consider this to be a unifying framework. Unifying frameworks are desirable
at this point in the discipline of formal methods, because literally hundreds of concepts are
being researched to determine which of them are profitable.

Page 42 of 47

Structuring Languages as Algebraic Specifications: A Framework for Multilingual System Representation
Arthur Alexander Reyes

7 References
[Abadi & Lamport]

Abadi, M.; Lamport, L. Composing specifications. ACM Transactions on Programmzng

Languages and Systems, Jan. 1993, vol.15, (no.1):73-132.
[Abowd et al.]

Abowd, G.; Allen, R.; Garlan, D. Using style to understand descriptions of software

architecture. (SIGSOFT’93. First ACM SIGSOFT Symposium on the Foundations of
Software Engineering, Los Angeles, CA, USA, 7-10 Dec. 1993). SIGSOFT Software
Engineering Notes, Dec. 1993, vol.18, (no0.5):9-20.

[Barr & Wells]

Barr, Michael. Category theory for computing science /| Michael Barr, Charles Wells.
New York: Prentice Hall, 1990. Series title: Prentice-Hall international series in
computer science.

[Belanger]

Belanger, R. MODSIM II-a modular, object-oriented language. IN: 1990 Winter
Simulation Conference Proceedings (Cat. No.90CH2926-4). (1990 Winter Simulation
Conference Proceedings (Cat. No.90CH2926-4), New Orleans, LA, USA, 9-12 Dec.
1990). Edited by: Balci, O.; Sadowski, R.P.; Nance, R.E. New York, NY, USA: IEEE,
1990. p. 118-22.

[Booch]

Booch, Grady. Object-oriented analysis and design with applications /| Grady Booch.
2nd ed. Redwood City, Calif.: Benjamin/Cummings Pub. Co., c1994. Series title: The
Benjamin/Cummings series in object-oriented software engineering.

[Broy et al.]

Broy, M.; Wirsing, M.; Pepper, P. On the algebraic definition of programming
languages ACM Transactlons on Programming Languages and Systems, Jan. 1987,
vol.9, (no.1):54-99.

[Carrington et al.]
Carrington, D.; Duke, D.; Duke, R.; King, P.; and others. Object-Z: an object-oriented

extension to Z. IN: Formal Description Techniques, II. Proceedings of the IFIP TC/IWG

6.1 Second International Conference on Formal Descriptive Techniques for Distributed
Systems and Communications Protocols, FORTE’89. (Formal Description Techniques,
II. Proceedings of the IFIP TC/WG 6.1 Second International Conference on Formal
Descriptive Techniques for Distributed Systems and Communications Protocols,
FORTE’89, Vancouver, BC, Canada, 5-8 Dec. 1989). Edited by: Son T Vuong.
Amsterdam, Netherlands: North-Holland, 1990. p. 281-96.

[Davis]

Davis, Alan M. (Alan Michael), 1949- Software requirements: analysis and specification

/ Alan M. Davis. Englewood Cliffs, N.J.: Prentice Hall, c1990.
[Dijkstra]

Dijkstra, Edsger Wybe. A discipline of programming / Edsger W. Dijkstra. Englewood
Cliffs, N.J.: Prentice-Hall, c1976.

Page 43 of 47

Structuring Languages as Algebraic Specifications: A Framework for Multilingual System Representation
Arthur Alexander Reyes

[Feijs et al.]

Feijs, L. M. G. (Loe M. G.) Notations for software design /| Loe M.G. Feijs, Hans B.M.
Jonkers, and Cornelis A. Middelburg. London; New York: Springer-Verlag, c1994.
Series title: Formal approaches to computing and information technology.

[Fishwick & Zeigler]

Fishwick, P.A.; Zeigler, B.P. A multimodel methodology for qualitative model
engineering. ACM Transactions on Modeling and Computer Simulation, Jan. 1992,
vol.2, (no.1):52-81.

[Gane & Sarson]

Gane, Chris, 1938- Structured systems analysis: tools and techniques /| Chris Gane and
Trish Sarson. Englewood Cliffs, N.J.: Prentice-Hall, c1979. Series title: Prentice-Hall
software series.

[Goguen & Burstall]

Goguen, J.A.; Burstall, R.M. Institutions: abstract model theory for specification and
programming. Journal of the Association for Computing Machinery, Jan. 1992, vol.39,
(no.1):95-146. B

[Gould]

Gould, Harvey, 1938- An introduction to computer simulation methods: applications to
physical systems /| Harvey Gould and Jan Tobochnik. Reading, Mass.: Addison-Wesley,
c1988.

[Gries]
Gries, David, 1939- The science of programming / David Gries. New York:
Springer-Verlag, c1981.

[Harrold & Malloy]

Harrold, M.J.; Malloy, B. A unified interprocedural program representation for a
maintenance environment. /[EEE Transactions on Software Engineering, June 1993,
vol.19, (no.6):584-93.

[Hatley & Pirbhai]

Hatley, Derek J., 1934- Strategies for real-time system specification / by Derek J.
Hatley, Imtiaz A. Pirbhai. New York, NY: Dorset House Pub., c1987.

[Horspool & Levy]

Horspool, R.N.; Levy, M.R. Translator-based multiparadigm programming. Journal of
Systems and Software, Oct. 1993, vol.23, (no.1):39-49.

[Hopcroft & Ullman]

Hopcroft, John E., 1939- Introduction to automata theory, languages, and computation /
John E. Hopcroft, Jeffrey D. Ullman. Reading, Mass.: Addison-Wesley, c1979. Series
title: Addison-Wesley series in computer science.

[Ipser & Wile]

Ipser, E.A., Jr.; Wile, D.S.; Jacobs, D. A multi-formalism specification environment.
(Fourth ACM SIGSOFT Symposium on Software Development Environments, Irvine,
CA, USA, 3-5 Dec. 1990). SIGSOFT Software Engineering Notes, Dec. 1990, vol.15,
(n0.6):94-106.

Page 44 of 47

Structuring Languages as Algebraic Specifications: A Framework for Multilingual System Representation
Arthur Alexander Reyes

[Jackson]

Jackson, M. A. System developn;ent/ M.A. Jackson. Englewood Cliffs, N.J.: Prentice/
Hall, 1983. Series title: Prentice-Hall international series in computer science.

[Kotik & Markosian]

Kotik, G.; Markosian, L. Application of REFINE Language Tools to software quality
assurance. IN: Proceedings. The Ninth Knowledge-Based Software Engineering
Conference (Cat. N0.94TH0664-3). (Proceedings. The Ninth Knowledge-Based Software
Engineering Conference (Cat. N0.94TH0664-3)Proceedings KBSE’94. Ninth
Knowledge-Based Software Engineering Conference, Monterey, CA, USA, 20-23 Sept.
1994). Los Alamitos, CA, USA: IEEE Comput. Soc. Press, 1994. p. 4.

[Lowry et al]

Lowry, M.; Philpot, A.; Pressburger, T.; Underwood, I. A formal approach to
domain-oriented software design environments. IN: Proceedings. The Ninth
Knowledge-Based Software Engineering Conference (Cat. No.94TH0664-3).
(Proceedings. The Ninth Knowledge-Based Software Engineering Conference (Cat.
No0.94TH0664-3)Proceedings KBSE’94. Ninth Knowledge-Based Software Engineering
Conference, Monterey, CA, USA, 20-23 Sept. 1994). Los Alamitos, CA, USA: IEEE
Comput. Soc. Press, 1994. p. 48-57.

[Meyers]

Meyers, S. D. Representing Software Systems in Multiple-View Development
Environments. Department of Computer Science, Brown University, Report CS-93-18,
May 1993.

[Morgan]

Morgan, Carroll, 1952- Programming from specifications /| Carroll Morgan. New York:
Prentice Hall, 1990. Series title: Prentice-Hall international series in computer science.

[Neighbors]

Neighbors, J.M. The Draco approach to constructing software from reusable
components. /[EEE Transactions on Software Engineering, Sept. 1984, vol.SE-10,
(no.5):564-74.

[Niskier et al.]

Niskier, C.; Maibaum, T.; Schwabe, D. A look through PRISMA: towards pluralistic
knowledge-based environments for software specification acquisition. IN: Proceedings
of Fifth International Workshop on Software Specification and Design (Cat.
No0.89CH2717-7). (Proceedings of Fifth International Workshop on Software
Specification and Design (Cat. No.89CH2717-7), Pittsburgh, PA, USA, 19-20 May
1989). Washington, DC, USA: IEEE Comput. Soc. Press, 1989. p. 128-36.

[Olsen et al.]

Systems engineering using SDL-92 / Anders Olsen... [et al.]. Amsterdam; New York:
North-Holland, 1994.

[Prieto-Diaz & Arango]

Prieto-Diaz, Ruben. Domain analysis and software systems modeling / Ruben
Prieto-Diaz and Guillermo Arango. Los Alamitos, Calif.: IEEE Computer Society Press,
c1991. Series title: IEEE Computer Society Press tutorial.

Page 45 of 47

Structuring Languages as Algebraic Specifications: A Framework for Multilingual System Representation
Arthur Alexander Reyes

[RAISE]

The RAISE specification languaée / the RAISE Language Group. New York: Prentice
Hall, 1992. Series title: BCS practitioner series.

[Rumbaugh et al.]

Object-oriented modeling and design / James Rumbaugh... [et al.]. Englewobd Cliffs,
N.J.: Prentice Hall, c1991.

[Semmens & Allen]

Semmens, L.; Allen, P. Using Yourdon and Z: an approach to formal specification. IN:
Z User Workshop, Oxford 1990. Proceedings of the Fifth Annual Z User Meeting. (Z
User Workshop, Oxford 1990. Proceedings of the Fifth Annual Z User Meeting, Oxford,
UK, 17-18 Dec. 1990). Edited by: Nicholls, J.E. Berlin, Germany: Springer-Verlag,
1991. p. 228-53.

[Srinivas]

Srinivas, Yellamraju V. Algebraic specification: syntax, semantics, structure |
Yellamraju V. Srinivas. [Irvine]: Information and Computer Science, University of
California, Irvine, [1990]. Series title: Technical report (University of California, Irvine.
Dept. of Information and Computer Science) 90-15.

[Turski & Maibaum]

Turski, Wladyslaw. The specification of computer programs /| Wladyslaw M. Turski,
Thomas S.E. Maibaum. Wokingham, England; Reading, Mass.: Addison-Wesley, c1987.
Series title: International computer science series.

[Unix]

UNIX software development tools: UNIX SVR4.2. Englewood Cliffs, N.J.: UNIX Press,
c1992.

[Wing]
Wing, J.M. A specifier’s introduction to formal methods. Computer, Sept. 1990, vol.23,
(n0.9):8, 10-22, 24.

[Winston]

Winston, A. The use of Matrix, in teaching and understanding analog/digital systems.
CoED, April-June 1991, vol.1, (no.2):28-32.

[Wirsing]
Wirsing, M. Algebraic specification. In: Handbook of Theoretical Computer Science (J.
van Leeuwen, ed.). North-Holland (1990).

[Wood]

Wood, K.R. A practical approach to software engineering using Z and the refinement
calculus. (SIGSOFT’93. First ACM SIGSOFT Symposium on the Foundations of
Software Engineering, Los Angeles, CA, USA, 7-10 Dec. 1993). SIGSOFT Software
Engineering Notes, Dec. 1993, vol.18, (no.5):79-88.

[Wordsworth]

Wordsworth, J. B. Software development with Z: a practical approach to formal
methods in software engineering / J.B. Wordsworth. Wokingham, England; Reading,
Mass.: Addison-Wesley Pub. Co., 1992. Series title: International computer science
series.

Page 46 of 47

Structuring Languages as Algebraic Specifications: A Framework for Multilingual System Representation
Arthur Alexander Reyes
[Zave]

Zave, P. A compositional approéchr to multiparadigm programming. IEEE Software,
Sept. 1989, vol.6, (no.5):15-25.

[Zave & Jackson]

Zave, P.; Jackson, M. Conjunction as composition. ACM Transactions on Sbftware
Engineering and Methodology, Oct. 1993, vol.2, (no.4):379-411.

Page 47 of 47

