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ABSTRACT OF THE DISSERTATION

Graph Learning for Robust Embedded and Cyber-Physical Systems

By

Shih-Yuan Yu

Doctor of Philosophy in Computer Engineering

University of California, Irvine, 2023

Professor Mohammad Al Faruque, Chair

Since the appearance of microprocessors, miscellaneous categories of computer systems, in-

cluding Embedded and Cyber-Physical Systems (ECPS), have become an integral part of our

modern society. In contrast to general-purpose computers, an ECPS is a computing system

designed to perform a dedicated or narrow range of functions with minimal human interven-

tion. Today, the advanced standards in device networking, ubiquitous access to the Internet,

miniaturization of processors, and reduced power consumption have taken this field to the

next level. However, despite these technological growths, designing a robust ECPS remains

an open research challenge where the goal is to achieve better functionalities, encompass

complex, uncertain, and changing environments, and ensure system security. Minor failures

on ECPS may cause severe collapses or cyberattacks, impeding progress toward increasing

automation and modernizing our computing environments.

To achieve robustness, this dissertation studies the embedding of Computational Intelligence

(CI) into emerging Graph Learning (GL) technologies. The CI paradigms mimic the nature

of humans, aiming at solving complex problems and exhibiting a cognitive ability to learn

or adapt to new situations to generalize, abstract, discover, and associate. As a prerequisite

of this research direction, Machine Learning (ML) has become increasingly ubiquitous, with

existing works exploring various fields, from self-driving vehicles, facial recognition systems,

xi



and real-time language translation to security surveillance, innovative home applications,

and health monitoring. However, conventional ML algorithms typically require appropri-

ate vectorized representations crafted by domain experts to accomplish the desired goals.

Graph-structured data have imposed unprecedented challenges on ML due to their inherent

complexity. Unlike text, audio, and images, graphs are embedded in an irregular dimension,

making some essential operations of ML inapplicable. GL has attracted much attention to

new research ideas in several fields. To date, many researchers have proven the usefulness of

GL in social computing, information retrieval, computer vision, bioinformatics, economics,

and e-commerce. However, its applications in the subfields of ECPS still need to be explored.

In this dissertation, we will cover GL applications for ECPS in robust Integrated Circuit

(IC) design analysis for hardware security, robust binary analysis for enabling software se-

curity, and ultimately how GL brings the scene-understanding capabilities of autonomous

driving systems to the next level. In IC design analysis (Chapter 2), we explore how GL can

be leveraged to resolve challenging problems in hardware security. We propose HW2VEC

and demonstrate how it can be utilized for Hardware Trojan (HT) detection and Intellectual

Property (IP) piracy detection. Next, in the binary analysis (Chapter 3), we demonstrate

how a more advanced GL methodology, called CFG2VEC, can reverse-engineer the semantic

source-level information lost during the compilation process, thus making the binary software

patching tasks more efficient. Then, we describe our novel methodology, SG2VEC, to en-

hance autonomous driving systems’ scene understanding capabilities (Chapter 4). To enable

this cognitive capability, we propose to use scene-graph to encode the surrounding traffic

participants and a pipeline of spatiotemporal scene-graph embedding networks to process

scene-graphs and learn toward goals.
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Chapter 1

Introduction and Background

1.1 Embedded System

An Embedded System (ES) can be broadly defined as a device that contains tightly coupled

hardware and software components to perform a single function [94]. Since the decade

1970, this term has been widely used as we have witnessed the development of the first

microprocessor design, TMS1000, which was used in calculators. Typically, an ES forms a

part of a larger computer system and is designed not to be independently programmable by

the user. Most ES directly interacts with the environments, making decisions in real-time

based on their inputs. Therefore, it has to be reactive, consuming inputs in real-time and

ensuring proper operations given their outputs. Regardless of the function performed, an

ES comprises two components, hardware components (e.g., microcontroller) and software

components (e.g., firmware). The ES takes the system inputs and coordinates the hardware

component and the software component, eventually determining the system outputs sent

back to the human or environment. As time goes on, the complexity of ES grows significantly,

and it has been for a more complicated application purpose where the system has to be broken

1



into several interacting ESs. For example, for a multimedia player, the system includes audio

input/output, a digital camera, a video processing system, a hard drive, a user interface

(keys, a touchscreen, and a graphic display), power management, and digital communication

components where each of these components is supported individually by an ES integrated

into the application system. Modern ES has become ubiquitous in almost every aspect of

our modern lives, including cellular phones, televisions, and automobiles, and even hidden

in some safety-critical systems such as anti-lock brakes, electronic surveillance, and defense

systems.

1.2 Cyber-Physical System and Robustness

More recently, around 2006, the terminology Cyber-Physical System (CPS) emerged, coined

by Helen Gill at the National Science Foundation (NSF). As an advanced version of ES, a

full-fledged CPS is typically designed as a ”network” of interacting elements with physical

input and output instead of as standalone devices [87]. CPS consists of a complex interac-

tion between heterogeneous (different types of computation and communication platforms)

and hybrid (discrete and continuous) components. The goal of CPS is to bridge the cyber-

domain with physical processes where sensing, actuation, computation, and communication

functions are deeply integrated to improve the overall performance, security, and reliability

of physical systems. This deep integration has broadened the potential of CPSs in several

directions, including intervention (e.g., collision avoidance); precision (e.g., robotic surgery

and nano-level manufacturing); operation in dangerous or inaccessible environments (e.g.,

search and rescue, firefighting, and deep-sea exploration); coordination (e.g., air traffic con-

trol, war-fighting); efficiency (e.g., zero-net energy buildings); and augmentation of human

capabilities (e.g., in healthcare monitoring and delivery). Today, the advanced standards in

device networking, ubiquitous access to the Internet, miniaturization of processors, reduc-

2



tion in power consumption, and availability of Simulators and Emulators for system design

have taken this field to a new generation which is called Intelligent Cyber-Physical Systems

(iCPS) [47]. The growing demand for autonomy and the need to reduce both the decision-

making time and the transmission bandwidth are pushing designers to integrate CPSs with

intelligent mechanisms, ultimately reaching real Automation and improving the quality of

human life. However, despite these technological growths, designing an iCPS is challenging

as it has to be robust against complex, uncertain, and changing environments. Minor sys-

tem failures may cause severe collapses or cyberattacks, impeding progress toward increasing

automation and modernizing our computing environments.

As shown in the literature, a robust design of CPS design includes three features (3S) [86],

which stability, security and systematicness. For stability, the CPS system should always

reach a stable decision result eventually, regardless of how the environment generates noise

and uncertain factors. For security, CPSs should be able to detect and countermeasure the

cyber–physical interaction attacks. Lastly, systematicness refers to the fact that the cyber

and physical components should be seamlessly integrated together into a systematic design.

In the past decade, it has been seen that Artificial Intelligence has become increasingly ubiq-

uitous in everyday life, such as self-driving vehicles, facial recognition systems, and real-time

interpretation of different languages to security surveillance, innovative home applications,

and health monitoring. Particularly, Machine Learning has been explored in making CPS

intelligent, aiming at automating the processes as far as possible and achieving autonomy.

One example of such a vision is Industry 4.0, in which emerging technologies such as collabo-

rative robotics, big data, internet of things, artificial intelligence, and virtual and augmented

reality jointly create a new paradigm, offering a more automated and efficient system [103].

In this case, self-X properties are of paramount importance in making these CPSs self-adapt

or self-organize to cope with high dynamism and high changing environments [56], and such

a capability relies on a proper cognition level of the system.
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1.3 Why Graph Learning?

To date, many intelligent systems generally rely on ML algorithms handling various types of

data. However, despite their ubiquity, graph data have imposed unprecedented challenges

on ML due to their inherent complexity. Unlike text, audio, and images, graph data are em-

bedded in an irregular domain, making some essential operations of existing ML algorithms

inapplicable. For this, many research works have focused on this new field of study, Graph

Learning (GL) [176]. Graphs, also called networks, can represent many real-world relations

among various entities. A graph is often defined by two sets, i.e., node set and edge set,

where the node represents the entity in a graph, and the edge stands for the relationship

between a pair of entities. GL refers to ML on graphs where the methods of GL can map

the features of a graph to feature vector(s) with the same dimensions in the embedding

space. The goal of GL models is to extract the desired features of a graph and the output

can be easily used by downstream tasks such as node classification, link prediction, and

graph classification without an explicitly embedding process or feature engineering process.

Many researchers and practitioners have proven the usefulness of GL in different areas, such

as social computing, information retrieval, computer vision, bioinformatics, economics, and

e-commerce.

To increase the robustness of ESs and CPSs, this dissertation studies the embedding of

Computational Intelligence (CI) with the emerging Graph Learning (GL) technologies. Com-

putational Intelligence (CI) paradigms involve adaptive mechanisms to facilitate intelligent

behavior in a complex, uncertain, and changing environment. These paradigms mimic the

nature of solving complex problems and exhibit an ability to learn or adapt to new situa-

tions to generalize, abstract, discover, and associate. Recently, cognitive intelligence (a.k.a.

cognitive computing) [33]has attracted much research attention in various fields originating

from neuroscience. One key in cognitive computing is that the human brain consists of two

parts: the first relates to distinguishment and determination (perception), and the second
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relates to reasoning and explanation. Generally speaking, it aims at understanding the pre-

sented information, interpreting its contextual meaning, and drawing deductions through

correlation analysis or casual analysis. This derives an idea of Intermediate Representation

(IR) where a human also adopts a similar mechanism during the cognitive process as it has

a computational advantage for only considering a modest number of primitives and their

relations and perceptual advantage in viewpoint invariance and robustness to noise based

on qualitative discriminations [21]. However, most of the ML-based approaches implicitly

assume the existence of the first part (in vectorized form) through the proper manual feature

engineering by domain experts, only automating the second part through various types of

ML models and learning processes.

1.4 Research Scope

In this dissertation, we will explore how to utilize GL to automate the first part (e.g.,

perception) and make the system more robust regarding performance, generalization, and

explainability. As shown in Figure 1.1, specifically, we will cover GL applications for ES

and CPS in robust Integrated Circuit (IC) design analysis for hardware security, robust

binary analysis for enabling software security, and ultimately how GL brings the scene-

understanding capabilities of autonomous driving systems to the next level. In IC design

analysis (Chapter 2), we explore how GL can be leveraged to resolve challenging problems

in hardware security. We propose HW2VEC and demonstrate how it can be utilized for

Hardware Trojan (HT) detection and Intellectual Property (IP) piracy detection. Next, in

the binary analysis (Chapter 3), we demonstrate how a more advanced GL methodology,

called CFG2VEC, can reverse-engineer the semantic source-level information lost during the

compilation process, thus making the binary software patching tasks more efficient. Then,

we describe our novel methodology, SG2VEC, to enhance autonomous driving systems’ scene
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understanding capabilities (Chapter 4). To enable this cognitive capability, we propose to use

scene-graph to encode the surrounding traffic participants and a pipeline of spatiotemporal

scene-graph embedding networks to process scene-graphs and learn toward goals. During the

courses of these projects, we have developed many research tools to confront the technical

challenges (mentioned in Appendices). Lastly, we conclude the thesis with key findings and

future steps in Chapter 5.

Figure 1.1: The illustration of the research scope in this dissertation.
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Chapter 2

Graph Learning for Enhancing the

Security of Hardware Designs

The globalized Integrated Circuit (IC) supply chain has brought various security threats in

each phase of the chain. Although the counteracting solutions based on Machine Learning

(ML) exist, most can only achieve the desired performance when security experts define a

robust feature extraction process for IC designs. As the hardware designs are non-Euclidean

data, designing a robust feature extraction process is challenging and requires manual effort.

In this chapter, as a result, I will discuss my proposed research tool HW2VEC that models

these IC designs using Graph Learning to enhance the early phases of the IC supply chain.

2.1 Introduction

In past decades, the growing design complexity and the time-to-market pressure have jointly

contributed to the globalization of the Integrated Circuit (IC) supply chain [146]. Along

this globalized supply chain, IC designers tend to leverage third-party Electronic Design
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Automation (EDA) tools and Intellectual Property (IP) cores or outsource costly services to

reduce their overall expense. This results in a worldwide distribution of IC design, fabrica-

tion, assembly, deployment, and testing [24, 95, 139]. However, such globalization can also

make the IC supply chain vulnerable to various hardware security threats such as Hardware

Trojan Insertion, IP Theft, Overbuilding, Counterfeiting, Reverse Engineering, and Covert

& Side Channel Attacks [143? ].

As the consequences of not promptly addressing these security threats can be severe, counter-

measures and tools have been proposed to mitigate, prevent, or detect security threats [88].

For example, hardware-based primitives, physical unclonable functions (PUFs) [82], true

random number generator (TRNG) [128], and cryptographic hardware can all intrinsically

enhance architectural security. The countermeasures built into hardware design tools are also

critical for securing the hardware in the early phases of the IC supply chain. Some Machine

Learning (ML) based approaches have been proven effective for detecting Hardware Trojans

(HT) from hardware designs in both Register Transfer Level (RTL) and Gate-Level Netlist

(GLN) [73, 77]. Besides, [90] automates the process of identifying the counterfeited ICs

by leveraging Support Vector Machine (SVM) to analyze the sensor readings from on-chip

hardware performance counters (HPCs). However, as indicated in [159], effectively applying

ML models is a non-trivial task as the defenders must first identify an appropriate input

representation based on hardware domain knowledge. Therefore, ML-based approaches can

only achieve the desired performance with a robust feature representation of a circuit (non-

Euclidean data) which is more challenging to acquire than finding the one for Euclidean data

such as images, texts, or signals.

In IC design flow, many fundamental objects such as netlists or layouts are natural graph

representations [110]. These graphs are non-Euclidean data with irregular structures, thus

making it hard to generalize basic mathematical operations and apply them to conventional

Deep Learning (DL) approaches [30]. Also, extracting a feature that captures structural
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Figure 2.1: The illustration of the process that extracts features for hardware analysis.

information requires a non-trivial effort to achieve the desired performance. To overcome

these challenges, many graph learning approaches such as Graph Convolutional Networks

(GCN), Graph Neural Networks (GNN), or Graph Autoencoder (GAE) have been proposed

and applied in various applications such as computer vision, natural language processing,

and program analysis [98, 175]. In the EDA field, some works tackle netlists with GCNs for

test point insertion [111] or with GNNs for fast and accurate power estimation in pre-silicon

simulation [198]. As Figure 2.1 shows, these approaches typically begin with extracting the

graph representation (g) from a hardware design p, then use the graph-based models as an

alternative to the manual feature engineering process. Lastly, by projecting each hardware

design onto the Euclidean space (hg), these designs can be passed to ML models for learning

tasks. However, only a few works have applied GNN-based approaches for securing hardware

during IC design phases due to the lack of supporting tools [187, 188].

To attract more research attention to this field, we propose HW2VEC, an open-source graph

learning tool for enhancing hardware security. HW2VEC provides automated pipelines for

extracting graph representations from hardware designs and leveraging graph learning to

secure hardware in design phases. Besides, HW2VEC automates the processes of engineering

features and modeling hardware designs. To the best of our knowledge, HW2VEC is the

first open-source research tool that supports applying graph learning methods to hardware

designs in different abstraction levels for hardware security. In addition, HW2VEC supports
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transforming hardware designs into various graph representations such as the Data-Flow

Graph (DFG), or the Abstract Syntax Tree (AST). In this paper, we also demonstrate that

HW2VEC can be utilized in resolving two hardware security applications: Hardware Trojan

Detection and IP Piracy Detection and can perform as good as the state-of-the-art GNN-

based approaches.

Research Contribution: for the hardware security research community,

• We propose an automated pipeline to convert a hardware design in RTL or GLN into

various graph representations.

• We propose a GNN-based tool to generate vectorized embeddings that capture the

behavioral features of hardware designs from their graph representations.

• We demonstrate HW2VEC ’s effectiveness by showing that it can perform similarly

compared to state-of-the-art GNN-based approaches for various real-world hardware

security problems, including Hardware Trojan Detection and IP Piracy Detection.

• We open-source HW2VEC as a Python library1 to contribute to the hardware security

research community.

2.2 Related Works

This section depicts hardware security problems in the IC supply chain and countermeasures

against these security threats. Then, it covers the research works related to ML-based

approaches for hardware security. Lastly, we introduce the works that utilize graph learning

methods in both EDA and hardware security.

1The HW2VEC is publicly available at https://github.com/AICPS/hw2vec/. Our readers can refer
to [114] for more information about implementation.
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2.2.1 Hardware Security Threats in IC Supply Chain

In the Integrated Circuit (IC) supply chain, each IC is passed through multiple processes, as

shown in Figure 2.2. First, the specification of a hardware design is turned into a behavioral

description written in a Hardware Design Language (HDL) such as Verilog or VHDL. Then,

it is transformed into a design implementation in terms of logic gates (i.e., netlist) with Logic

Synthesis. Physical Synthesis implements the netlist as a layout design (e.g., a GDSII file).

Lastly, the resulting GDSII file is handed to a foundry to fabricate the actual IC. Once a

foundry produces the IC (Bare Die), several tests are performed to guarantee its correct

behavior. The verified IC is then packaged by the assembly and sent to the market to be

deployed in systems.

For a System-on-Chip (SoC) company, all of the mentioned stages of the IC supply chain

require a vast investment of money and effort. For example, it costs $5 billion in 2015

to develop a new foundry [189]. Therefore, to lower R&D costs and catch up with the

competitive development cycle, an SoC company may choose to outsource the fabrication

to a third-party foundry, purchase third-party IP cores, and use third-party EDA tools.

The use of worldwide distributed third parties makes the IC supply chain susceptible to

various security threats [177] such as Hardware Trojan Insertion, IP Theft, Overbuilding,

Counterfeiting, Reverse Engineering, and Covert & Side Channel Attacks, etc. Not detecting

or preventing these threats can lead to severe outcomes. For example, in 2008, a suspected

nuclear installation in Syria was bombed by Israeli jets because a backdoor in its commercial

off-the-shelf microprocessors disabled Syrian radar [3]. In another instance, the IP-intensive

industries of the USA lose between $225 to $600 billion annually as the companies from

China steal American IPs, mainly in the semiconductor industry [152].

Among the mentioned security threats, the insertion of Hardware Trojan (HT) can cause

the infected hardware to leak sensitive information, degrade its performance, or even trigger
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Figure 2.2: The illustration of the IC supply chain demonstrating the hardware design
flow from a specification to the behavioral description (RTL), logic implementation (GLN),
physical implementation (GDSII), and the actual chip (Bare Die or IC).

a Denial-of-Service (DoS) attack. In SoC or IC designs, IP Theft, the illegal usage and

distribution of an IP core can occur. The third-party foundries responsible for outsourced

fabrication can overbuild extra chips for their benefits without the designer’s permission.

Moreover, selling the Counterfeited designs in the name of its original supplier leads to

financial or safety damage to its producer or even the national security if the target is within

essential infrastructures or military systems. Reverse engineering (RE) recovers the high-

level information from a circuit available in its lower-level abstraction. Although RE can be

helpful in the design and verification process, an attacker can misuse the reconstructed IC

designs for malicious intentions. Covert Channel uses non-traditional communication (e.g.,

shared cache) to leak critical information about a circuit. In contrast, Side Channel exists

among the hardware components that are physically isolated or not even in proximity (e.g.,

power or electromagnetic channel) [199, 17, 5, 60, 40, 36, 39, 38, 35, 42, 44].

2.2.2 The Countermeasures Against Hardware Security Threats

Due to the globalization of the IC supply chain, hardware is susceptible to security threats

such as IP piracy (unlicensed usage of IP), overbuilding (unauthorized manufacturing of

the circuit), counterfeiting (producing a faithful copy of the circuit), reverse engineering,

hardware Trojan (malicious modification of circuit), and side-channel attacks [11]. In the

literature, countermeasures and tools have been proposed to mitigate, prevent, or detect
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security threats [88]. For example, a cryptographic accelerator is a hardware-based counter-

measure that can reinforce the build-in instead of the add-on defense against security threats.

True Random Number Generator (TRNG) and Physical Unclonable Function (PUF) are two

other effective security primitives [82, 128]. These solutions are critical for security proto-

cols and unique IC identification, and they rely on the physical phenomena for randomness,

stability, and uniqueness, such as process variations during fabrication [159]. In addition to

hardware-based solutions, countermeasures enhancing security during the hardware design

process are also present in the literature. For example, side-channel analysis for HT detection

using various models such as hierarchical temporal memory [59, 18] and DL [58] has grabbed

lots of attention recently. However, they postpone the detection to post-silicon stage.

To defend the HT earlier in the pre-silicon stage, most existing detection techniques fall into

one of the following categories. First, as HT typically remains inconspicuous during testing

and only gets triggered by a particular event, the authors of [142] attempt to propose an

automated Test Pattern Generation method to generate effective test vectors and increase

the probability of triggering the HT. However, it is infeasible to cover all the possible test-

ing scenarios. Secondly, Formal Verification (FV) is a pre-silicon algorithmic method that

converts the 3PIP to a proof checking format and checks if the IP satisfies some predefined

security properties [93, 156]. Although FV leverages the predefined security properties in

IP for HT detection, its detection scope is limited to certain types of HTs because they are

not comprehensive enough to cover all kinds of malicious behaviors [132]. Some works em-

ploy model checking but are not scalable to large designs as model checking is NP-complete

and can suffer from state explosion [133]. The third existing category is Code Analysis

(CA), which analyzes the hardware design programs using metrics such as line, statement,

finite state machine, and toggle coverage to ascertain the suspicious signals that imitate the

HT [169, 201]. However, CA requires the designer to manually inspect the suspicious code

regions and localize the HTs. Finally, the last category is the graph-based analysis methods

as the graph is an intuitive representation of a hardware design. The authors of [125] propose
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analyzing the data/control flow graph of the IC design to pinpoint the HTs by referencing a

library of known HTs graphs and searching for the graph using sub-graph matching. How-

ever, sub-graph matching is NP-complete and thus incapable of applying to large designs. In

more recent research, [65] proposes a new graph similarity heuristic customized for hardware

security to improve accuracy and computation time. However, once again, it can only detect

the HTs with the same graph representation as known HTs in their library, while in practice,

attackers design a variety of HTs.

As for IP theft prevention, watermarking and fingerprinting are two approaches that embed

the IP owner and legal IP user’s signatures into a circuit to prevent infringement [127, 129].

Hardware metering is an IP protection method in which the designer assigns a unique tag to

each chip for chip identification (passive tag) or enabling/disabling the chip (active tag) [100].

Obfuscation is another countermeasure for IP theft [34] which comprises two main approach;

Logic Locking and Camouflaging. In Logic Locking, the designer inserts additional gates

such as XOR into non-critical wires. The circuit will only be functional if the correct key is

presented in a secure memory out of reach of the attacker [178]. Camouflaging modifies the

design such that cells with different functionalities look similar to the attacker and confuses

the reverse engineering process [131]. Lastly, another countermeasure is to split the design

into separate ICs and have them fabricated in different foundries (e.g., Split Manufacturing)

so that none of them can access the whole design to perform malicious activities [124, 200].

In [88], several academic and commercial tools have been proposed to secure hardware. For

example, VeriSketch, SecVerilog, etc., are open-source academia verification tools for securing

hardware. SecureCheck from Mentor Graphics, JasperGold Formal Verification Platform

from Cadence, and Prospect from Tortuga Logic are all commercial verification tools ready

in the market. PyVerilog [157] is a hardware design tool that allows users to parse HDL

code and perform pre-silicon formal verification side-by-side with functional verification. In

short, though many approaches have been proposed to counteract security threats, security
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is still an afterthought in hardware design. Therefore, new countermeasures will be needed

against new security threats.

2.2.3 Machine Learning for Hardware Security

In the last few decades, advancements in Machine Learning (ML) have revolutionized the

conventional methods and models in numerous applications throughout the design flow. De-

fenders can use ML with hardware-based observations for detecting attacks, while attackers

can also use ML to steal sensitive information from an IC, breaching hardware security [159].

Some ML-based countermeasures have been proven effective for detecting HT from hardware

designs in both Register Transfer Level (RTL) or gate-level netlists (GLN) [73, 77]. In [73],

the circuit features are extracted from the Abstract Syntax Tree (AST) representations of

RTL codes and fed to a gradient boosting algorithm to train the ML model to construct

an HT library. [77] extracts 11 Trojan-net feature values from GLNs and then trains a

Multi-Layer Neural Network on them to classify each net in a netlist as a normal netlist or

Trojan. Similarly, researchers have applied ML to automate the process of detecting other

threats. For instance, SVM can be used to analyze the on-chip sensor readings (e.g., HPCs)

to identify counterfeited ICs and detect HT in real-time [90, 101]. However, as indicated

in [159], effectively applying ML models is not a trivial task, as the defenders must first

identify an appropriate input representation for a hardware design. Unlike Euclidean data

such as images, texts, or signals, finding a robust feature representation for a circuit (Non-

Euclidean data) is more challenging as it requires domain knowledge in both hardware and

ML. To overcome this challenge, HW2VEC provides more effective graph learning methods

to automatically find a robust feature representation for a non-Euclidean hardware design.
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2.2.4 Graph Learning for Hardware Design and Security

Although conventional ML and DL approaches can effectively capture the features hidden

in Euclidean data, such as images, text, or videos, there are still various applications where

the data is graph-structured. As graphs can be irregular, a graph can have a variable

size of unordered nodes, and nodes can have a different number of neighbors, thus making

mathematical operations used in deep learning (e.g., 2D Convolution) challenging to be ap-

plied [30]. Also, extracting a feature that captures structural information requires challenging

efforts to achieve the desired performance. To address these challenges, recently, many graph

learning approaches such as Graph Convolutional Networks (GCN), Graph Neural Networks

(GNN), or Graph Autoencoder (GAE) have been proposed and applied in various appli-

cations [98, 175]. Only by projecting non-Euclidean data into low-dimensional embedding

space can the operations in ML methods be applied.

In EDA applications, many fundamental objects such as Boolean functions, netlists, or

layouts are natural graph representations [110]. Some works tackle netlists with GCNs for

test point insertion [111] or with GNNs for fast and accurate power estimation in pre-silicon

simulation [198]. [198] uses a GNN-based model to infer the toggle rate of each logic gate from

a netlist graph for fast and accurate average power estimation without gate-level simulations,

which is a slower way to acquire toggle rates compared to RTL simulation. They use GLNs,

corresponding input port, and register toggle rates as input features and logic gate toggle

rates as ground-truth to train the model. The model can infer the toggle rate of a logic gate

from input features acquired from RTL simulation for average power analysis computed by

other power analysis tools.

As for hardware security, only a few works utilizing GNN-based approaches against security

threats exist [187, 188, 185]. [188] utilizes a GNN-based approach for detecting HT in pre-

silicon design phases without the need for golden HT-free reference. Besides, using the GNN-
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based approach allows the extraction of features from Data-Flow graphs to be automated. In

[187], the proposed GNN-based approach can detect IP piracy without extracting hardware

overhead to insert signatures to prove ownership. Specifically, the Siamese-based network

architecture allows their approach to capturing the features to assess the similarity between

hardware designs as a Data-Flow Graph. In short, these works have shown the effectiveness

of securing hardware designs with graph learning approaches. To further attract attention,

we propose HW2VEC as a convenient research tool that lowers the threshold for newcomers

to make research progress and for experienced researchers to explore this topic more in-depth.

2.3 HW2VEC Architecture Introduction

As Figure 2.3 shows, HW2VEC contains HW2GRAPH and GRAPH2VEC. During the

IC design flow, a hardware design can have various levels of abstraction, such as High-Level

Synthesis (HLS), RTL, GLN, and GDSII, which are fundamentally non-Euclidean data.

Overall, in HW2VEC, a hardware design p is first turned into a graph g by HW2GRAPH,

which defines the pairwise relationships between objects that preserve the structural infor-

mation. Then, GRAPH2VEC consumes g and produces the Euclidean representation hg

for learning.

2.3.1 HW2GRAPH: from hardware design to graph

The first step is to convert each hardware design code p into a graph g. HW2GRAPH

supports the automatic conversion of raw hardware code into various graph formats such

as Abstract Syntax Tree (AST) or Data-Flow Graph (DFG). AST captures the syntactic

structure of hardware code, while DFG indicates the relationships and dependencies be-

tween the signals and gives a higher-level expression of the code’s computational structure.

17



Figure 2.3: The architecture of HW2VEC. Beginning with hardware design objects (RTL or
GLN), the HW2GRAPH leverages PRE PROC, GRAPH GEN, and POST PROC to
extract graph representations from hardware designs in the form of node embedding matrix
(X) and adjacency matrix (A). These graphs are then passed to GRAPH2VEC to acquire
the graph embeddings for graph learning tasks of hardware security.

HW2GRAPH consists of three primary modules: pre-processing, graph generation engine,

and post-processing.

Pre-processing (PRE PROC): in this module, we have several automatic scripts for pre-

processing a raw hardware code p. As a hardware design can contain several modules stored

in separate files, the first step is to combine them into a single file (i.e., flattening). Next, to

automatically locate the “entry point” top module of p, the script scans the flattened code

for the keyword “module” and extracts the module names and the number of repetitions

in p. Then, the script analyzes the list of discovered module names and takes the one that

appears only once, which means the module is not instantiated by any other module, as the

top module. Here, we denote the pre-processed hardware design code as p′.

Graph Generation Engine (GRAPH GEN): we integrate PyVerilog [158], a hardware

design toolkit for parsing the Verilog code, into this module. The pre-processed code p′

is first converted by a lexical analyzer, YACC (Yet Another Compiler-Compiler), into a

corresponding parse tree. Then, we recursively iterate through each node in the parse tree

with Depth-First Search (DFS). At each recursive step, we determine whether to construct a

collection of name/value pairs, an ordered list of values, or a single name/value pair based on
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the token names used in Verilog AST. To acquire DFG, the AST is further processed by the

data flow analyzer to create a signal DFG for each signal in the circuit such that the signal

is the root node. Lastly, we merge all the signal DFGs. The resulting graph, either DFG or

AST, is denoted as g = (V,E). The AST is a tree type of graph in which the nodes V can be

operators (mathematical, gates, loop, conditional, etc.), signals, or attributes of signals. The

edges E indicate the relation between nodes. The DFG shows data dependency where each

node in V represents signals, constant values, and operations such as xor, and, concatenation,

branch, or branch condition, etc. Each edge in E stands for the data dependency relation

between two nodes. Specifically, for all vi, vj pairs, the edge eij belongs to E (eij ∈ E) if vi

depends on vj, or if vj is applied on vi.

Post-processsing (POST PROC) The output from Graph Generation Engine is in JSON

(JavaScript Object Notation) format. In this phase, we convert a JSON-formatted graph

into a NetworkX graph object. NetworkX is an efficient, scalable, and highly portable

framework for graph analysis. Several popular geometric representation learning libraries

(PyTorch-Geometric and Deep Graph Library) take this format of graphs as the primary

data structure in their pipelines.

2.3.2 GRAPH2VEC: from graph to graph embedding

Once hw2graph has converted a hardware design into a graph g, we begin to process g

with the modules in graph2vec, including Dataset Processor, Trainer, and Evaluator to

acquire the graph embedding hg.

Dataset Processor: this module handles the low-level parsing tasks such as caching the

data on disk to optimize the tasks that involve repetitive model testing, performing train-test

split, and finding the unique set of node labels among all the graph data instances. One

important task of the dataset processor is to convert a graph g = (V,E) into the tensor-like
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inputs X and A where X represents the node embeddings in matrix form and A stands

for the adjacency information of g. The conversion between E and A is straightforward.

To acquire X, Dataset Processor performs a normalization process and assigns each of the

nodes a label that indicates its type, which may vary for different kinds of graphs (AST

or DFG). Each node gets converted to an initial vectorized representation using one-hot

encoding based on its type label.

Graph Embedding Model: in this module, we break down the graph learning pipeline into

multiple network components, including graph convolution layers (GRAPH CONV ), graph

pooling layers (GRAPH POOL), and graph readout operations (GRAPH READOUT ). In

HW2VEC, the GRAPH CONV is inspired by the Spatial Graph Convolution Neural Network

(SGCN), which defines the convolution operation based on a node’s spatial relations. In

literature, this phase is also referred to as message propagation phase, which involves two

sub-functions: AGGREGATE and COMBINE functions. Each input graph g = (V,E) is

initialized in the form of node embeddings and adjacency information (X(0) and A). For each

k-th iteration, the process updates the node embeddings X(k) using each node representation

h
(k−1)
v in X(k−1), given by,

a(k)v = AGGREGATE(k)({h(k−1)
u : u ∈ N(v)}),

h(k)
v = COMBINE(k)(h(k−1)

v , a(k)v )

where h
(k)
v ∈ RCk

denotes the feature vector after k iterations for the v-th node and N(v)

returns the neighboring nodes of v-th node. Essentially, the AGGREGATE collects the

features of the neighboring nodes to extract an aggregated feature vector a
(k)
v for the layer k.

The COMBINE combines the previous node feature h
(k−1)
v with a

(k)
v to output next feature

vector h
(k)
v . This message propagation is carried out for a pre-determined number of layers k.

We denote the final propagation node embedding X(k) as Xprop. Next, in GRAPH POOL,

the node embedding Xprop is further processed with an attention-based graph pooling layer.
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As indicated from [108, 190], the integration of a graph pooling layer allows the model to

operate on the hierarchical representations of a graph. It hence can better perform the graph

classification task. Besides, such an attention-based pooling layer allows the model to focus

on a local part of the graph and is considered part of a unified computational block of a

GNN pipeline [99]. In this layer, we perform top-k filtering on nodes according to the scoring

results, as follows:

α = SCORE(Xprop,A),

P = topk(α)

where α stands for the coefficients predicted by the graph pooling layer for nodes. P rep-

resents the indices of the pooled nodes, which are selected from the top k of the nodes

ranked according to α. The number k used in top-k filtering is calculated by a pre-defined

pooling ratio, pr using k = pr × |V |, where we consider only a constant fraction pr of the

embeddings of the nodes of the DFG to be relevant (i.e., 0.5). One example of the scoring

function is to utilize a separate trainable GNN layer to produce the scores so that the scoring

method considers both node features and topological characteristics [108]. We denote the

node embeddings and edge adjacency information after pooling by Xpool and Apool, which

are calculated as follows:

Xpool = (Xprop ⊙ tanh(α))P,

Apool = Aprop
(P,P)

where ⊙ represents an element-wise multiplication, ()P refers to the operation that extracts

a subset of nodes based on P , and ()(P,P) refers to the information of the adjacency matrix

between the nodes in this subset. Lastly, in GRAPH READOUT, the overall graph-level

feature extraction is carried out by either summing up or averaging up the node features
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Xpool. We denote the graph embedding for each graph g as h
(k)
g , computed as follows:

h(k)
g = GRAPH READOUT({h(k)

v : v ∈ V }) (2.1)

We use the graph embedding h
(k)
g to model the behavior of circuits (use hg for simplicity).

After this, the fixed-length embeddings of hardware designs become compatible with ML al-

gorithms. In practice, these network components can be combined in various ways depending

on the type of the tasks (node-level task, graph-level task) or the complexity of the tasks

(simple or complex network architecture). In GRAPH2VEC, one default option is to use

one or multiple GRAPH CONV, followed by a GRAPH POOL and a GRAPH READOUT.

Besides, in conjunction with Multi-Layer Perceptron (MLP) or other ML layers, this archi-

tecture can transform the graph data into a form that we can use in calculating the loss for

learning. In GRAPH2VEC, we reserve the flexibility for customization, so users may also

choose to combine these components in a way that is effective for their tasks.

Trainer and Evaluator: the Trainer module takes training datasets, validating datasets,

and a set of hyperparameter configurations to train a GNN model. HW2VEC currently

supports two types of Trainer, graph-trainer and graph-pair-trainer. To be more specific,

graph-trainer uses GRAPH2VEC’s model to perform graph classification learning and eval-

uation, while graph-pair-trainer considers pairs of graphs, calculates their similarities, and

ultimately performs the graph similarity learning and evaluation. Some low-level tasks are

also handled by Trainer module, such as caching the best model weights evaluated from the

validation set to the disk space or performing mini-step testing. Once the training is finished,

the Evaluator module plots the training loss and commonly used metrics in ML-based hard-

ware security applications. To facilitate the analysis of the results, HW2VEC also provides

utilities to visualize the embeddings of hardware designs with t-SNE-based dimensionality

reduction [165]. Besides, HW2VEC provides multiple exporting functionalities so that the

learned embeddings can be presented in standardized formats, and users can also choose
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other third-party tools such as Embedding Projector [149] to analyze the embeddings.

2.4 HW2VEC Use-cases

In this section, we describe HW2VEC use-cases. First, Section 2.4.1 exhibits a fundamental

use-case in which a hardware design p is converted into a graph g and then into a fixed-length

embedding hg. Next, the use-cases of HW2VEC for two hardware security applications

(detecting hardware Trojan and hardware IP piracy) are described in Section 2.4.2 and

Section 2.4.3, respectively.

2.4.1 Use-case 1: Converting a Hardware Design to a Graph Em-

bedding

The first use-case demonstrates the transformation of a hardware design p into a graph g

and then into an embedding hg. As Algorithm 1 shows, HW2GRAPH uses preprocess-

ing (PRE PROC ), graph generation (GRAPH GEN ) and post-processing (POST PROC )

modules to convert each hardware design into the corresponding graph. The g is fed to

GRAPH2VEC with the uses of Data Processing (DATA PROC ) to generate X and A.

Then, X and A are processed to generate the graph embedding hg. This resulting hg can

be further inspected with the utilities of Evaluator. In HW2VEC, we provide Algorithm 1’s

implementation in use case 1.py of our repository.

2.4.2 Use-case 2: Hardware Trojan Detection (GNN4TJ)

In this use-case, we demonstrate how to use HW2VEC to detect HTs, which has been a

major hardware security challenge for decades. An HT is an intentional, malicious circuit
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Algorithm 1: Use-case - HW2VEC

1 Input: A hardware design program p.
2 Output: A graph embedding hp for p.
3 def HW2GRAPH (p):
4 p′ ← Pre Proc(p);
5 g ← Graph Gen(p′);
6 g′ ← Post Proc(g);
7 return g′;
8 def GRAPH2VEC (g):
9 X,A← Data Proc(g)

10 Xprop, Aprop ← GRAPH CONV (X,A)
11 Xpool, Apool ← GRAPH POOL(Xprop, Aprop)
12 hg ← GRAPH READOUT (Xpool)
13 return hg

14 g ← HW2GRAPH (p);
15 hg ← GRAPH2VEC (g);

modification by an attacker [140]. The capability of detection at an early stage (particularly

at the RTL level) is crucial, as removing HTs at later stages could be very expensive. The

majority of existing solutions rely on a golden HT-free reference or cannot generalize detec-

tion to previously unseen HTs. In our prior work ([188]), we propose a GNN-based approach

to model the circuit’s behavior and identify the presence of HTs.

To realize [188] using HW2VEC, we first use HW2GRAPH to convert each hardware design

p into a graph g. Then, we transform each g to a graph embedding hg. Lastly, hg is used

to make a prediction ŷ with an MLP layer. To train the model, the cross-entropy loss L is

calculated collectively for all the graphs in the training set (see Equation 2.2).

L = H(Y, Ŷ ) =
∑
i

yi ∗ loge(ŷi), (2.2)

where H is the loss function. Y stands for the set of ground-truth labels (either Trojan

or Non Trojan) and Ŷ represents the corresponding set of predictions. Once trained by

minimizing L, we use the model and Algorithm 2 to perform HT detection (can also be done

with a pre-trained model). In practice, we provide an implementation in use case 2.py in
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our repository.

Algorithm 2: Use-case - Hardware Trojan Detection

1 Input: A hardware design program p.
2 Output: A label indicating whether p contains Hardware Trojan.
3 def use case 2 (p):
4 g ← HW2GRAPH(p);
5 hg ← GRAPH2VEC(g);
6 ŷ ← MLP(hg);
7 if ŷ[0] > ŷ[1] then
8 return Trojan;
9 else

10 return Non Trojan;

11 Ŷ ← use case 2 (p);

2.4.3 Use-case 3: Hardware IP Piracy Detection (GNN4IP)

This use-case demonstrates how to leverage HW2VEC to confront another major hardware

security challenge – determining whether one of the two hardware designs is stolen from the

other or not. The globalization of the IC supply chain poses a high risk of theft for design

companies that share their most valuable assets, IPs, with other entities. IP piracy is a serious

issue in the current economy, with a drastic need for an effective detection method. According

to the U.S. Department of Commerce study, 38% of the American economy is composed of

IP-intensive industries [172] that lose between $225 billion to $600 billion annually because

of Chinese companies stealing American IPs mainly in the semiconductor industry, based on

the U.S. Trade Representative report [152].

To implement [187], the GNN model has to be trained with a graph-pair classification trainer

in GRAPH2VEC. The first step is to use HW2GRAPH to convert a pair of circuit designs

p1, p2 into a pair of graphs g1, g2. Then, GRAPH2VEC transforms both g1 and g2 into

graph embeddings hg1 , hg2 . To train this GNN model for assessing the similarity of hg1 and

hg2 , the cosine similarity is computed as the final prediction of piracy, denoted as ŷ ∈ [−1, 1].
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Algorithm 3: Use-case - Hardware IP Piracy Detection

1 Input: A pair of hardware design programs p1, p2.
2 Output: A label indicating whether p1, p2 is piracy.
3 def use case 3 (p1, p2):
4 g1, g2 ← HW2GRAPH(p1), HW2GRAPH(p2);
5 hg1 , hg2 ← GRAPH2VEC(g1), GRAPH2VEC(g2);
6 ŷ ← Cosine Sim(hg1 , hg2);
7 if ŷ > δ then
8 return Piracy;
9 else

10 return Non-Piracy;

11 Ŷ ← use case 3 (p1, p2);

The loss between a prediction ŷ and a ground-truth label y is calculated as Equation 2.3

shows. Lastly, the final loss L is computed collectively with a loss function H for all the

graphs in the training set (see Equation 2.4).

G(y, ŷ) =

 1− ŷ, if y = 1

max(0, ŷ −margin) if y = −1
(2.3)

L = H(Y, Ŷ ) =
∑
i

G(yi, ŷi), (2.4)

where Y stands for the set of ground-truth labels (either Piracy or Non Piracy) and Ŷ

represents the corresponding set of predictions. The margin is a constant to prevent the

learned embedding from becoming distorted (always set to 0.5 in [187]). Once trained, we

use this model and Algorithm 3 with δ, which is a decision boundary used for making a final

judgment to detect piracy. In practice, we provide the implementation of Algorithm 3 in

use case 3.py.
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2.5 Experimental Results

In this section, we evaluate the HW2VEC through various experiments using the use-case

implementations described earlier.

2.5.1 Dataset Preparation

For evaluation, we prepare one RTL dataset for HT detection (TJ-RTL) and both RTL and

GLN datasets (IP-RTL and IP-GLN ) for IP piracy detection.

The TJ-RTL dataset: we construct the TJ-RTL dataset by gathering the hardware designs

with or without HT from the Trust-Hub.org benchmark [164]. From Trust-Hub, we collect

three base circuits, AES, PIC, and RS232, and insert 34 varied types of HTs into them. We

also include these HTs as standalone instances to the TJ-RTL dataset. Furthermore, we

insert these standalone HTs into two other circuits (DES and RC5) and include the resulting

circuits to expand the TJ-RTL dataset. Among the five base circuits, AES, DES, and RC5

are cryptographic cores that encrypt the input plaintext into the ciphertext based on a

secret key. For these circuits, the inserted HTs can leak sensitive information (i.e., secret

key) via side channels such as power and RF radiation or degrade the performance of their

host circuits by increasing the power consumption and draining the power supply. RS232 is

an implementation of the UART communication channel, while the HT attacks on RS232

can affect the functionality of either transmitter or receiver or can interrupt/disable the

communication between them. The PIC16F84 is a well-known Power Integrated Circuit

(PIC) microcontroller, and the HTs for PIC fiddle with its functionality and manipulate the

program counter register. Lastly, we create the graph datasets, DFG-TJ-RTL and AST-TJ-

RTL, in which each graph instance is annotated with a Trojan or Non Trojan label.

The IP-RTL and IP-GNL datasets: to construct the datasets for evaluating piracy de-
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tection, we gather RTL and GLN of hardware designs in Verilog format. The RTL dataset

includes common hardware designs such as single-cycle and pipeline implementation of MIPS

processors which are derived from available open-source hardware design on the internet or

designed by a group of in-house designers who are given the same specification to design

hardware in Verilog. The GLN dataset includes ISCAS’85 benchmark [74] which includes 7

different hardware designs (c432, c499, c880, c1355, c1908, c6288, c7552) and their obfus-

cated instances derived from TrustHub. Obfuscation complicates the circuit and confuses

reverse engineering but does not change the behavior of the circuit. Our collection comprises

50 distinct circuit designs and several hardware instances for each circuit design that sums

up 143 GLN and 390 RTL codes. We form a graph-pair dataset of 19,094 similar pairs

and 66,631 different pairs, dedicating 20% of these 85,725 pairs for testing and the rest for

training. This dataset comprises pairs of hardware designs labeled as piracy (positive) or

no-piracy (negative).

2.5.2 The Evaluation of Hardware Trojan Detection (GNN4TJ)

Here, we evaluate the capability of HW2VEC in identifying the existence of HTs from

hardware designs. We leverage the implementation mentioned in Section 2.4.2. During the

experiments, we used 2 GCN layers with 200 hidden units for each layer. For the graph

pooling layer, we use the pooling ratio 0.8 to perform top-k filtering. For READOUT, we

use max-pooling for aggregating node embeddings of each graph. GNN4TJ uses 1 MLP layer

that reduces the number of hidden units from 200 to 2 used in hG for predicting the result

of HT detection. In training, we append a dropout layer with a rate of 0.5 after each GCN

layer. We train the model for 200 epochs using the batch gradient descent algorithm with

batch size 4 and a learning rate 0.001. In HW2VEC, we directly use this hyperparameter

setting which is stored as a preset in a YAML configuration file. For performance metrics,

we count the True Positive (TP ), False Negative (FN) and False Positive (FP ) for deriving
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Precision P = TP/(TP +FP ) and Recall R = TP/(TP +FN). R manifests the percentage

of HT-infested samples that the model can identify. As the number of HT-free samples

incorrectly classified as HT is also critical, we compute P that indicates what percentage

of the samples that the model classifies as HT-infested actually contains HT. F1 score is

the weighted average of precision and recall that better presents performance, calculated as

F1 = 2× P ×R/(P + R).

To demonstrate whether the learned model can generalize the knowledge to handle the un-

known or unseen circuits, we perform a variant leave-one-out cross-validation to experiment.

We perform a train-test split on the TJ-RTL dataset by leaving one base circuit benchmark

in the testing set and use the remaining circuits to train the model. We repeat this process

for each base circuit and average the metrics we acquire from evaluating each testing set.

The result tested with HW2VEC tool is presented in Table 2.1, indicating that HW2VEC

can reproduce comparable results to [188] in terms of F1 score (0.926 versus 0.940) if we use

DFG as the graph representation. The difference in performance can be due to the use of

different datasets. When using AST as the graph representation for detecting HT, HW2VEC

performs worse in terms of F1 score, indicating that DFG is a better graph representation

because it captures the data flow information instead of simply the syntactic information

of a hardware design code. All in all, these results demonstrate that our HW2VEC can be

leveraged for studying HT detection at design phases.

Method Graph Dataset Precision Recall F1
HW2VEC DFG RTL 0.87334 0.98572 0.92596
HW2VEC AST RTL 0.90288 0.8 0.8453

[188] DFG RTL 0.923 0.966 0.940

Table 2.1: The performance of HT detection using HW2VEC.
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2.5.3 The Evaluation of Hardware IP Piracy Detection (GNN4TP)

Besides HT detection, we also evaluate the power of HW2VEC in detecting IP piracy. We

leverage the usage example mentioned in Section 2.4.3, which examines the cosine-similarity

score ŷ for each hardware design pair and produces the final prediction with the decision

boundary. Using the IP-RTL dataset and the IP-GNL dataset (mentioned in Section 2.5.1),

we generate graph-pair datasets by annotating the hardware designs that belong to the

same hardware category as Similar and the ones that belong to different categories as

Dissimilar. We perform a train-test split on the dataset so that 80% of the pairs will be

used to train the model. We compute the accuracy of detecting hardware IP piracy, which

expresses the correctly predicted sample ratio and calculates the F1 score as the evaluating

metric. We refer to [187] for the selection of hyperparameters (stored in a YAML file).

Specifically, we use 2 GCN layers with 16 hidden units for each layer. For the graph pool,

we use the pooling ratio of 0.5 to perform top-k filtering. For the graph readout, we use

max-pooling for aggregating node embeddings of each graph. In training, we apply dropout

with a rate of 0.1 after each GCN layer. We train the model using the batch gradient descent

algorithm with batch size 64 and a learning rate to be 0.001.

Table 2.2 is the result that indicates that HW2VEC can reproduce comparable results

to [187] in terms of piracy detection accuracy. When using DFG as the graph represen-

tation, HW2VEC underperforms [187] by 3% at RTL level and outperforms [187] by 4.2%

at GLN level. Table 2.2 also shows a similar observation with Section 2.5.2 that using AST

as the graph representation can lead to worse performance than using DFG. Figure 2.4 vi-

sualizes the graph embeddings that HW2VEC exports for every processed hardware design,

allowing users to inspect the results manually. For example, by inspecting Figure 2.4, we

may find a clear separation between mips single cycle and AES. Certainly, HW2VEC can

perform better with more fine-tuning processes. However, the evaluation aims to demon-

strate that HW2VEC can help practitioners study the problem of IP piracy at RTL and
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GLN levels.

Method Graph Dataset Accuracy F1
HW2VEC DFG RTL 0.9438 0.9277
HW2VEC DFG GLN 0.9882 0.9652
HW2VEC AST RTL 0.9358 0.9183

[187] DFG RTL 0.9721 –
[187] DFG GLN 0.9461 –

Table 2.2: The results of detecting IP piracy with HW2VEC.

Figure 2.4: The embedding visualization with 3D t-SNE.

2.5.4 The Evaluation of HW2VEC Tool Timing

To evaluate the time required for training and testing, we test the models on a server with

NVIDIA TITAN-XP and NVIDIA GeForce GTX 1080 graphics cards. Table 2.3 indicates

that the time taken by training and inference are both below 15 milliseconds, and the

time taken by training is more than inference as it includes the time for performing back-

propagation. As HW2VEC aims to serve as a research tool, our users must evaluate their

applications within a reasonable time duration. We believe that the time spent by the graph

learning pipelines of HW2VEC should be acceptable for conducting research. For practically
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deploying the models, the actual timing can depend on the computation power of hosting

devices and the complexity of the models for the applications. Suppose our users need an

optimized performance for real-time applications. In that case, they can implement the

models with performance-focused programming languages (C or C++) or ML frameworks

(e.g., TensorFlow) using the best model settings found using HW2VEC. As for specialized

hardware that can accelerate the processing of GNNs, it is still an open challenge as indicated

in [1].

Table 2.4 indicates that the time that HW2VEC spends in converting the raw hardware

code into ASTs is on average 1.98 seconds. Although [73] takes 1.37 seconds on average per

hardware code, it requires domain knowledge to find a deterministic way to perform feature

extraction. For DFG extraction, HW2VEC takes on average 244.58 seconds per graph as it

requires recursive traversals to construct the whole data flow. In our datasets, AES and DES

are relatively more complex, so HW2VEC takes 472.46 seconds on average to process them

while the rest of the data instances take 16.70 seconds on average. Certainly, HW2VEC

performs worse in DFG extraction, but manual feature engineering possibly requires a much

longer time. In design phases, even for an experienced hardware designer, it can take 6-9

months to prototype a complex hardware design [161] so the time taken by HW2VEC is

acceptable and not slowing down the design process. However, as the first open-source tool

in the field, HW2VEC will keep evolving and embrace the contributions from the open-source

community.

TJ-RTL-AST IP-RTL-AST
training time 10.5 (ms) 13.5 (ms)
testing time 6.8 (ms) 12.4 (ms)

Table 2.3: The time profiling for training/inference.
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TJ-DFG-RTL IP-DFG-GLN TJ-AST-RTL
# of node 7573.58 7616.16 971.01
# of edge 8938.11 9495.97 970.01
Exec time 244.58 (s) 14.61 (s) 1.98 (s)

Table 2.4: The graph extraction time profiling. For TJ-DFG-RTL, the hardware AES and
DES jointly take 472.46 seconds on average for DFG extraction while the rest of the data
instances take 16.7 seconds on average.

2.5.5 The Evaluation of HW2VEC Applicability

In Section 2.5.2 and Section 2.5.3, we have discussed the performance of the GNN-based

approach in resolving two hardware security problems: hardware Trojan detection and IP

piracy detection. In Section 2.5.2, our evaluation shows that HW2VEC can successfully be

leveraged to perform HT detection on hardware designs, particularly on the unseen ones,

without the assistance of golden HT-free reference. The capability to model hardware be-

haviors can be attributed to using a natural representation of the hardware design (e.g.,

DFG) and the use of the GNN-based method for capturing both the structural information

and semantic information from the DFG and co-relating this information to the final HT

labels. Similarly, Section 2.5.3 indicates that HW2VEC can be utilized to assess the simi-

larities between circuits and thus can be a countermeasure for IP piracy. The use of graph

representation for a hardware design and a Siamese GNN-based network architecture are

the keys in [187] to perform IP piracy detection at both RTL and GLN levels. For other

hardware security applications, the flexible modules provided by HW2VEC (Trainer and

Evaluator) can be adapted easily to different problem settings. For example, by adjusting

the Trainer to train the GNN models for node classification, HW2VEC can be adapted to

localize the HT(s) or hardware bug(s) that exist in the hardware designs. Also, the cached

models provided by HW2VEC can be used in learning other new hardware design-related

tasks through the transfer of knowledge from a related task that has already been learned

as the idea of Transfer Learning suggests [162].
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2.6 Summary and Future Directions

As technological advancements continue to grow, the fights between attackers and defenders

will rise in complexity and severity. In this chapter, to contribute to the hardware security

research community, we propose HW2VEC : a graph learning tool for automating hardware

security. HW2VEC provides an automated pipeline for hardware security practitioners to

extract graph representations from a hardware design in either RTL or GLN. Besides, the

toolbox of HW2VEC allows users to realize their hardware security applications flexibly.

Our evaluation shows that HW2VEC can be leveraged and integrated for counteracting two

critical hardware security threats: Hardware Trojan Detection and IP Piracy Detection.

• For HT detection, HW2VEC can be turned into a novel golden reference-free method-

ology to find unknown HT in RTL. We generate the DFGs of RTL codes and employ the

GNN to construct a model on the generated graphs. GNN4TJ automatically extracts

the features of graphs and learns the behavior of the hardware design. Our model is

trained and tested on a DFG dataset created by expanding the Trustub benchmarks.

The results indicate that GNN4TJ discovers HT with 97% recall very fast in 21.1ms.

• For IP piracy detection, HW2VEC can also be converted into a novel IP piracy de-

tection methodology, called GNN4IP, which does not have existing countermeasures

shortcomings such as overhead and vulnerability to attacks. Our automated framework

extracts the DFGs from RTL codes and gate-level netlist. Then, HW2VEC, our graph

neural network generates embeddings for graphs according to the similarity between

designs. Based on embeddings, we infer IP piracy between circuits with 96% accuracy.

As discussed in the chapter, we certainly anticipate that HW2VEC can provide more

straightforward access for practitioners and researchers to apply graph learning approaches

to hardware security applications. While in the meantime, we expect more researchers can
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apply graph learning for many hardware security applications differently from as described

earlier, we hereby point out another critical research challenge, that is Domain Shift (DS)

issue. In practice, the DS issue arises when these ML-based or GL-based approaches fail

to handle Out-Of-Distribution (OOD) data during testing, as pictured in Figure 2.5. The

key reason is the assumption that the training and testing data are drawn from the same

data distribution. Therefore, as a critical future step of HW2VEC project and the hardware

Figure 2.5: The illustration of our motivation where a GL-based approach can fail in gener-
alizing to OOD IC designs.

security field, it is required to revisit the problem of HT detection from a new perspective

considering the DS issue, aiming at advancing existing ML-based approaches towards the

goal of truly defending against zero-day attacks. Generally speaking, to do so, one potential

solution is to propose a new domain generalization framework that enhances the existing

ML-based solutions regarding robustness and generalization. Besides, a new attack model

also needs to be introduced, which is called the OOD HT insertion attack. OOD HT inser-

tion attacks assume the existence of a strong attacker who can craft unseen types of HTs
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that are sampled from an OOD of the defender training set. Against such attacks, this

new framework with domain generalization capability can make ML-based or GL-based ap-

proaches capable of learning domain-invariant features to generalize better against OOD IC

designs.
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Chapter 3

Graph Learning for Embedded

Software Analysis

In this chapter, to improve Software Reverse Engineering (SRE) tools, we propose CFG2VEC,

a Hierarchical Graph Neural Network (GNN) based approach. Mission-critical embedded

software is critical to our society’s infrastructure but can be subject to new security vulner-

abilities as technology advances. When security issues arise, Reverse Engineers (REs) use

SRE tools to analyze vulnerable binaries. However, existing tools have limited support, and

REs undergo a time-consuming, costly, and error-prone process that requires experience and

expertise to understand software behaviors and vulnerabilities. In the chapter, we introduce

a novel representation for analyzing software binaries, called Graph-of-Graph (GoG) repre-

sentation, combining the information of control-flow and function-call graphs. Specifically,

our CFG2VEC learns how to represent each binary function compiled from various CPU ar-

chitectures with GoG, utilizing hierarchical GNN and the Siamese network-based supervised

learning architecture.
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3.1 Introduction

In mission-critical systems, embedded software is vital in manipulating physical processes

and executing missions that could pose risks to human operators. Recently, the Internet of

Things (IoT) has created a market valued at 19 trillion dollars and drastically grown the

number of connected devices to approximately 35 billion in 2025 [202, 122, 50]. However,

while IoT brings technological growth, it unintendedly exposes mission-critical systems to

novel vulnerabilities [44, 143, 19]. The reported number of IoT cyberattacks increased by

300% in 2019 [57], while the discovered software vulnerabilities rose from 1.6k to 100k [48].

The consequence can be detrimental, as indicated in [69], the Heartbleed bug [81] can lead

to a leakage of up to 64K memory, threatening not only personal but also organizational

information security. Besides, Shellshock is a bash command-line interface shell bug, but it

has existed for 30 years and remains a threat to enterprises today [148, 154]. For mission-

critical systems, unexpected disruptions can incur millions of dollars even if they only last

for a few hours or minutes [97]. As a result, timely analyzing these impacted software and

patching vulnerabilities becomes critical.

However, mission-critical systems usually use software that can last for decades due to the

criticality of the missions. Over time, these systems become legacy, and the number of

newly-discovered threats can increase (as illustrated in Figure 3.1). Typically, for legacy

software, the original development environment, maintenance support, or source code might

no longer exist. To address vulnerabilities, vendors offer patches in the form of source code

changes based on the current software version (e.g., ver 0.9). However, the only available

data in the legacy system is binary based on its source code (e.g., ver 0.1). Such a version

gap poses challenges in applying patches to the legacy binaries, leaving the only solution

for applying patches to legacy software as direct binary analysis. Today, as Figure 3.2

shows, Reverse Engineers (REs) have to leverage Software Reverse Engineering (SRE) tools

such as Ghidra [4], HexRays [84], and radare2 [160] to first disassemble and decompile
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Figure 3.1: Legacy software life cycle.

binaries into higher-level representations (e.g., C or C++). Typically, these tools take the

debugging information, strings, and the symbol-table and binary to reconstruct function

names and variable names, allowing REs to rebuild a software’s structure and functionality

without access to source code [96]. For REs, these symbols encode the context of the source

code and provide invaluable information that could help them to understand the program’s

logic as they work to patch vulnerable binaries. However, symbols are often excluded for

optimizing the binary’s footprint in mission-critical legacy systems with limited memory.

Because recovering symbols from stripped binaries is not straightforward, most decompilers

assign meaningless symbol names to code elements. As for understanding the software

semantics, REs have to leverage their experience and expertise to consume the information

and then interpret the semantics of each coding element.

Recent works tackle these challenges with Machine Learning (ML), aiming to recover the

program’s information from raw binaries. For example, [79], and [102] associate code fea-

tures to function names and model the relationships between such code features and the
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corresponding source-level information (variable names in [102], variable & function names

in [79]). Meanwhile, [51] and [66] use an encoder-decoder network structure to predict func-

tion names from stripped binary functions based on instruction sequences and control flows.

However, none of them support cross-architectural debug information reconstruction. On the

other side, there exist works focusing on the cross-platform in their ML models [61, 180, 75].

These works focus on modeling the binary code similarity, extracting a real-valued vec-

tor from each control-flow graph (CFG) with attributed features, and then computing the

Structural Similarity between the feature vectors of binary functions built from different

CPU architectures.

In this paper, as part of a multi-industry-academia joint initiative between Siemens, the

Johns Hopkins University Applied Physics Laboratory (JHU/APL), BAE Systems (BAE),

and UCI, we propose CFG2VEC, which utilizes a hierarchical Graph Neural Network (GNN)

for reconstructing the name of each binary function, aiming to develop the capacity for quick

patching of legacy binaries in mission-critical systems. Our CFG2VEC forms a Graph-of-

Graph (GoG) representation, combining CFG and FCG to model the relationship between

binary functions’ representation and their semantic names. Besides, CFG2VEC can tackle

cross-architectural binaries thanks to the design of Siamese-based network architecture, as

shown in Figure 3.3. One crucial use case of cross-architectural decompilation is patching,

where the goal is to identify a known vulnerability or a bug and apply a patch. However,

there can be architecture gaps when software with a bug can be compiled into many devices

with diverse hardware architectures. For example, it is challenging to patch a stripped

binary from an exotic embedded architecture compiled ten years ago that is vulnerable to a

known attack such as Heartbleed [81]. While the reference patch is available in software, the

reference architecture may not be readily available or documented, or the vendor may no

longer exist. Under such circumstances, mapping code features across architectures is very

helpful. It would allow for identifying similarities in code between a stripped binary that is

vulnerable and its reference patch, even if the patch was built for a different type of CPU

40



architecture. For CFG2VEC, our targeted contributions are as follows:

• We propose representing binary functions in Graph-of-Graph (GoG) and demonstrate

its usefulness in reconstructing function names from stripped binaries.

• We propose a novel methodology, CFG2VEC, that uses a hierarchical Graph Neural

Network (GNN) to model control-flow and function-calling relations in binaries.

• We propose using cross-architectural loss when training, allowing CFG2VEC to cap-

ture the architecture-agnostic representations of binaries.

• We release CFG2VEC in a GitHub repository: https://github.com/AICPS/mindsight_

cfg2vec.

• We integrate our CFG2VEC into an experimental Ghidra plugin, assisting the realistic

scenarios of patching DARPA Assured MicroPatching (AMP) challenge binaries.

3.2 Related Works

This section introduces software reverse engineering backgrounds, discusses the related works

using machine learning to improve reverse engineering, and ultimately covers graph learning

for binary analysis.

Figure 3.2: The RE flow to solve security issues.
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3.2.1 Software Reverse Engineering

Software Reverse Engineering (SRE) aims at understanding the behavior of a program with-

out having access to its source code, often being used in many applications such as detecting

malware [182, 55], discovering vulnerabilities, and patching bugs in legacy software [166, 28].

One primary tool that Reverse Engineers (REs) use to inspect programs is disassembler

which translates a binary into low-level assembly code. Examples of such tools include GNU

Binutils’ objdump [23], IDA [84], Binary Ninja [22], and Hopper [85]. However, even with

these tools, reasoning at the assembly level still requires considerable cognitive effort from

RE experts.

More recently, REs use decompilers such as Hex-Rays [83], or Ghidra [4] to reverse the com-

piling process by further translating the output of disassemblers into the code that ensembles

high-level programming languages such as C or C++ to reduce the burden of understanding

assembly code. From assembly instructions, these decompilers can use program analysis and

heuristics to reconstruct variables, types, functions, and control flow structure of a binary.

However, the decompilation is incomplete even if these decompilers generate a higher-level

output for better code understanding. The reason is that the compilation process discards the

source-level information and lowers its abstraction level in exchange for a smaller footprint

size, faster execution time, or even security considerations. The source-level information

such as comments, variable names, function names, and idiomatic structure can be essential

for understanding a program but is typically unavailable in the output of these decompilers.

As Figure 3.2 demonstrated, REs use disassemblers or decompilers to generate high-level

source code. Besides, [120] indicates REs will take notes and grant a name to those critical

functions related to the vulnerabilities. This will create an annotated source code based on

the high-level machine-generated source code. While annotating the source code, REs also

analyze the significant part related to the vulnerability and ignore those general instructions
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or unrelated codes. At the same time, understanding the logic flow among functions is

another major task they must focus on resolving their tasks. After classification, annotation,

and understanding, REs experiment with several viable remedies to find the correct patch

to fix the vulnerability.

3.2.2 Machine Learning for Reverse Engineering

Software binary analysis is a straightforward first step to enhance security as developers

usually deploy software in binaries [147]. Usually, experts conduct the patching process

or vulnerability analysis by understanding the compilation source, function signatures, and

variable information. However, after the compilation, such information is usually stripped

or confuscated deliberately (e.g., obfuscation). Software binary analysis becomes more chal-

lenging in this case as developers have to recover the source-level information based on their

experience and expertise. The early recovery work for binaries focuses on manual completion

but suffers from low efficiency, high cost, and the error-prone nature of reverse engineering.

As Machine Learning (ML) has significantly advanced in its reasoning capability, applying

ML and reconstructing higher-level source code information as an alternative to manual-

based approaches has attracted considerable research attention. For example, [46] was the

first approach that used neural network-based and graph-based models, predicting the func-

tion types to assist the reverse engineer in understanding the binary. [7] also predicted

function names with neural networks, aggregating the related features of sections of binary

vectors. Then, it analyzes the connections between each function in the source code (e.g.,

Java) and their corresponding function names for function name prediction. [79], on the

other hand, did not use a neural network. It combined a decision-tree-based classification

algorithm and a structured prediction with a probabilistic graphical model, then matched

the function name by analyzing symbol names, types, and locations. However, [79] can only
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predict from a predetermined closed set, incapable of generalizing to new names.

As the languages for naming functions are similar to natural language, recent research works

start leaning toward the use of Natural Language Processing (NLP)[9, 51, 66]. Precisely,

these models predict semantic tokens based on the function names in the library, comprising

the function name during inference. The underlying premise is that each token corresponds

in some way to the attributes and functionality of the function. [51] uses Control-Flow Graph

(CFG) to predict function names. It combined static analysis with LSTM and transformer

neural model to realize the name of functions. However, the dataset with unbalanced data

and insufficient features was limited and hindered utter performance. [9] was designed to

solve the limitation of the dataset. It provided UbuntuDataset that contained more than

9 million functions in 22K software. [66] demonstrated the framework’s effectiveness by

building a large dataset. It considers the fine-grained sequence and structure information

of assembly code when modeling and realizing function name prediction. Meanwhile, [66]

reduced the diversity of data (instructions or words) while keeping the basic semantics un-

changed, similar to word stemming and semantics in NLP. However, these works have low

precision scores for prediction tasks, exampled by [66], only achieving around 41% in cor-

rectly predicting the function name subtokens. Moreover, the metrics for the inference of

unknown functions are substantially lower [66], making it difficult for REs to find it helpful

in practice.

Although many existing works can reconstruct source-level information, none of them sup-

ports reconstructing cross-platform debug information. Cross-compilation is becoming more

popular in the development of software. Hardware manufacturers, for instance, often reuse

the same firmware code base across several devices running on various architectures [136]. A

tool that performs cross-architecture function name prediction/matching would be beneficial

if we have a stripped binary compiled for one architecture and a binary of a comparable pro-

gram compiled for another architecture with debug symbols. We may use the binary with the
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debug symbols to predict the names of functions in the stripped binary, which significantly

aids debugging. A tool that could capture the architecture-agnostic characteristics of bina-

ries would also help in malware detection as the source code of malware can be compiled in

different architectures [136, 167]. Comparing two binaries of different architectures becomes

more complicated because they will have different instruction sets, calling conventions, regis-

ter sets, etc. Furthermore, assembly instructions from different architectures cannot often be

compared directly due to the slightly different behavior of different architectures [6]. Cross-

architecture function name prediction will assist in finding a malicious function in a program

compiled for different architectures by learning its features from a binary compiled for just

one architecture. The tools mentioned above are not architecture-agnostic; thus, we cannot

utilize them for such applications. To address the flaws mentioned above, aid in creating more

efficient decompilers, and make reverse engineering more accessible, we propose CFG2VEC.

Incorporating the cross-architectural siamese network architecture, our CFG2VEC can learn

to extract robust features encompassing platform-independent features, enhancing the state-

of-the-art by achieving function name reconstruction across cross-architectural binaries.

3.2.3 Graph Learning for Binary Analysis

Figure 3.3: An example of a Graph-of-Graph (GoG) of a binary compiled from a package
Freecell with amd64 CPU architecture.

Graph learning has become a practical approach across fields [71, 175, 186, 193]. Although

conventional ML can effectively capture the features hidden in Euclidean data, such as
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images, text, or videos, our work focuses more on the application where the core data is

graph-structured. Graphs can be irregular, and a graph may contain a variable size of

unordered nodes; moreover, nodes can have a varying number of neighboring nodes, making

deep learning mathematical operations (e.g., 2D Convolution) challenging to apply. The

operations in conventional ML methods can only be applied by projecting non-Euclidean

data into low-dimensional embedding space. In graph learning, Graph Embeddings (GE) can

transform a graph into a vector (embedding of a graph) or a set of vectors (embedding of

nodes or edges) while preserving the relevant and structural information about the graph [71].

Graph Neural Network (GNN) is a model aiming at addressing graph-related tasks in an end-

to-end manner, where the main idea is to generate a node’s representation by aggregating

its representation and the representations of its neighbors [175]. GNN stacks multiple graph

convolution layers, graph pooling layers, and a graph readout to generate a low-dimensional

graph embedding from high-dimensional graph-structured data.

In software binary analysis, many approaches use Control-Flow Graphs (CFGs) as the pri-

mary representations. For example, Genius forms an Attributed Control-Flow Graph (ACFG)

representation for each binary function by extracting the raw attributes from each Basic

Block (BB), a straight-line code sequence with no branching in or out except at the entry

and exit, in an ACFG [61]. Genius measures the similarity of a pair of ACFGs through a

bipartite graph matching algorithm, and the ACFGs are then clustered based on similarity.

Genius leverages a codebook for retrieving the embedding of an ACFG based on similar-

ity. Another approach, Gemini, proposes a deep neural network-based model along with a

Siamese architecture for modeling binary similarities with greater efficiency and accuracy

than other state-of-the-art models of the time [180]. Gemini takes in a pair of ACFGs

extracted from raw binary functions generated from known vulnerability in code and then

embeds them with a shared Structure2vec model in their network architecture. Once em-

bedded, Gemini trains its model with a loss function that calculates the cosine similarities

between two embedded representations. Gemini outperforms models like Genius or other
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approaches such as bipartite graph matching. In literature, there exist other works that con-

sider the Function Call Graph (FCG) as their primary data structures in binary analysis for

malware detection [78]. Our CFG2VEC extracts relevant platform-independent features by

combining the usage of CFG and FCG, resulting in a Graph-of-Graph (GoG) representation

for cross-architectural high-level information reconstruction tasks (e.g., function name).

3.3 CFG2VEC Architecture

This section begins with problem formulation. Next, as Figure 3.4 shows, we depict how our

CFG2VEC extracts the Graph-of-Graph (GoG) representation from each software binary.

Lastly, we describe the network architecture in CFG2VEC.

3.3.1 Problem Formulation

In our work, given a binary code, denoted as p, compiled from different CPU architectures,

we extract a graph-of-graph (GoG) representation, G = (V ,A) where V is the set of nodes

and A is the adjacency matrix (As Figure 3.3 shows). The nodes in V represent functions

and the edges in A indicate their cross-referencing relationships. That says, each of the node

fi ∈ V is a CFG, and we denote it as fi = (B,A, ϕ) where the nodes in B represent the basic

blocks and the edges in A denote their dependency relationships. ϕ is a mapping function

that maps each basic block in the assembly form to its corresponding extracted attributes

ϕ(vi) = Ck where C is a numeric value, and k is the number of attributes for the basic block

(BB). Whereas the CFG structure is meant to provide more information at the lower BB

level, the GoG structure is intended for recovering information at the overarching function

level between the CFGs. Figure 3.3 is an example of a partial GoG structure with a closer

inspection of one of its CFG nodes and another of a single CFG BB node, showing the set
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of features corresponding to that BB node. The goal is to design an efficient and effective

graph embedding technique that can be used for reconstructing the function names for each

function fi ∈ V .

3.3.2 Ghidra Data ToolKit for Graph Extraction

To extract the structured representation required for CFG2VEC we leverage the state-of-

the-art decompiler Ghidra [4] and the Ghidra Headless Analyzer 1. The headless analyzer

is a command-line version of Ghidra allowing users to perform many tasks (such as analyz-

ing a binary file) supported by Ghidra via a command-line interface. For extracting GoG

from a binary, we developed our Ghidra Data Toolkit (GDT); GDT is a set of Java-based

metadata extraction scripts used for instrumenting Ghidra Headless Analyzer. First, GDT

programmatically analyzes the given executable file and stores the extracted information in

the internal Ghidra database. Ghidra provides a set of APIs to access the database and

retrieve information about the analyzed binary. GDT uses these APIs to export information

such as Ghirda’s PCode and call graph for each function. Specifically, the FunctionMan-

ager API allows us to manipulate the information of each decompiled function in the binary

and acquire the cross-calling dependencies between functions. For each function, we utilized

another Ghidra API DecompInterface2 to extract 12 attributes associated with each basic

block in a function. These attributes precisely correspond to the total number of instruc-

tions, including arithmetic, logic, transfer, call, data transfer, SSA, compare, and pointer

instructions, as well as other instructions not falling within those categories and the total

number of constants and strings within that BB. Lastly, by integrating all of the information,

we form a GoG representation G for each binary p. We repeat this process until all binaries

are converted to the GoG structure. We feed the resulting GoG representations to our model

1Ghidra Headless Analyzer : https://ghidra.re/ghidra_docs/analyzeHeadlessREADME.html
2Documentation of Ghidra API DecompInterface: https://ghidra.re/ghidra_docs/api/ghidra/app/

decompiler/DecompInterface.html
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in batches, with the batch size denoted as B.

3.3.3 Hierarchical Graph Neural Network

Figure 3.4: The architecture of CFG2VEC with a supervised hierarchical graph neural
network approach.

Once G is extracted from the GDT, we then feed it to our hierarchical network architecture

(inspired from [76]) that contains both CFG Graph Embedding layer and GoG Graph Em-

bedding Layer as Figure 3.4 shows. For each GoG structure, we denote it as G = (V ,A)

where V is a set of functions associated with G and A indicates the calling relationships

between the functions in V . Each function in V is in the form of CFG fi = (B,A, ϕ) where

each node b ∈ B is a BB represented in a fixed-length attributed vector b ∈ Rd, and d is the

dimension that we have mentioned earlier. A encodes the pair-wise control-flow dependency

relationships between these BBs.

CFG Graph Embedding Layer: our network architecture first feeds all functions in a

batch of GoGs to the CFG Graph Embedding Layer consisting of multiple graph convolutional

layers and a graph readout operations. The input to this layer is a function fi = (B,A, ϕ)

and the output is the fixed-dimensional vector representing a function. For each BB bk we

let b0k = bk, and we update btk to bt+1
k with the graph convolution operation shown as follows:

bt+1
k = fG(Wbtk +

∑
bm∈Ak

Mbtm)

where fG is a non-linear activation function such as ReLU, Ak is the list of adjacent BBs for
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bk, and W ∈ Rd×d and M ∈ Rd×d are the weights to be learned during the training. We run

T iterations of such a convolution, which can be a tunable hyperparameter in our model.

During the updates, each BB gradually aggregates the global information of the control-flow

dependency relations into its representation, utilizing the representation of its neighbor. We

obtain the final representation for each BB as bTk . To acquire the representation for the

function fi, we apply a graph readout operation such as sum-readout, described as follows,

g(T ) =
∑
bk∈B

bTk (3.1)

We assign the value of g(T ) (a.k.a. CFG embedding) to fi. The graph readout operation can

be replaced with mean-readout or max-readout.

GoG Graph Embedding Layer: once all the functions have been converted to fixed-length

graph embeddings, we then feed G to the second layer of CFG2VEC, the GoG Embedding

Layer. Here, for each function fi we apply another L iterations of graph convolution with F

and C . The updates can be illustrated as follows,

f
(l+1)
k = fGoG(Uf l

k +
∑

fm∈Ck

V f (l)
m ) (3.2)

where fGoG is a non-linear activation function and Ck is the list of adjacent functions (calling)

for the function fk and U ∈ Rd×d and V ∈ Rd×d are the weights to be learned during

the training. Lastly, we take the f
(L)
k as the representation that considers both CFG and

GoG graph structures. We use these updated representations to perform cross-architecture

function similarity learning.

Siamese-based Cross-Architectural Function Similarity: given a batch of GoGs B =

{GoG1, GoG2, ..., GoGB}, we apply the hierarchical graph neural network to acquire the set

of updated function embeddings, denoted as BF = {f (T )
1 , f

(T )
2 , ..., f

(T )
K }. We calculate the

function similarity for each function pair with cosine similarity, denoted as ŷ ∈ [−1, 1]. The
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loss function J between Ŷ and a ground-truth label y, which indicates whether a pair of

functions have the same function or not, is calculated as follows,

J(ŷ, y) =

 1− y, if y=1,

MAX(0, ŷ −m), if y=-1,
(3.3)

the final loss L is then calculated as follows,

L = H(Y, Ŷ ) =
∑
i

(J(ŷi, yi)), (3.4)

where Y stands for ground-truth labels (either similarity or dissimilarity), and Ŷ represents

the corresponding predictions. More specifically, we denote a pair of functions as similar if

they are the same but compiled with different CPU architectures. The m is a constant to

prevent the learned embeddings from becoming distorted (by default, 0.5). To maintain the

balance between positive and negative training samples, we developed a custom batching

algorithm. The function leverages the knowledge gained by adding a binary of some package

to a given batch to find and add a binary for the same package, built for a different architec-

ture, to the provided batch as a positive sample. It will also include a binary from another

package as a negative sample. This will give any batch a balanced proportion of positive

and negative samples. Finally, we use the loss L to update all the associated weights in

our neural networks with an Adam optimizer. Once trained, we use the model to perform

function name reconstruction tasks.

3.4 Experimental Results

In this section, we evaluate CFG2VEC ’s capability in predicting function names. We first

describe the dataset preparation and the training setup processes. Then, we present the

51



comparison of CFG2VEC against baseline in predicting function names. Although many

baseline candidates tackle the same problem [79, 9, 51, 66], some require purchasing a paid

version of IDA Pro to preprocess datasets, and some even do not open source their im-

plementations. Therefore, [79] was the only feasible choice, as running other models using

our datasets was almost impossible. Next, we also show the result of the ablation study

over CFG2VEC. Besides, we exhibit that our CFG2VEC can perform architecture-agnostic

prediction better than the baseline. Lastly, we illustrate the real-world use case where our

CFG2VEC is integrated as a Ghidra plugin application for assisting in resolving challenging

reverse engineering tasks. We conducted all experiments on a server equipped with Intel

Core i7-7820X CPU @3.60GHz with 16GB RAM and two NVIDIA GeForce GTX Titan Xp

GPUs.

3.4.1 Dataset Preparation

Our evaluating data source is the ALLSTAR (Assembled Labeled Library for Static Analysis

Research) dataset, hosted by Applied Physics Laboratory (APL) [153]. It has over 30,000

Debian Jessie packages pre-built from i386, amd64, ARM, MIPS, PPC, and s390x CPU archi-

tectures for software reverse engineering research. The authors used a modified Dockcross

script in docker to build each package for each supported architecture. Then, they saved each

resulting ELF with its symbols, the corresponding source code, header files, intermediate files

(.o, .class, .gkd, .gimple), system headers, and system libraries altogether.

To form our datasets, we selected the packages that have ELF binaries built for the amd64,

armel, i386, and mipsel CPU architectures. i386 and amd64 are widely used by general

computers, especially in the Intel and AMD products, respectively. MIPS and ARM are crucial

in embedded systems, smartphones, and other portable electronic devices [53]. In practice,

we excluded the packages with only one CPU architecture in the ALLSTAR dataset. Ad-
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ditionally, due to our limited local computing resources, we eliminated packages that were

too large to handle. We checked each selected binary on whether the ground-truth symbol

information exists using the Ghidra decompiler and Linux file command and removed the

ones that do not have them. Lastly, we assembled our primary dataset, called the AS-4cpu-

30k-bin dataset, that consists of 27572 pre-built binaries from 1117 packages and 4 CPU

architectures, as illustrated in Table 3.1.

Our preliminary experiment revealed that the evaluation had a data leakage issue when

splitting the dataset randomly. Therefore, we performed a non-random variant train-test

split with a 4-to-1 ratio on the AS-4cpu-30k-bin dataset, selecting roughly 80% of the binaries

for the training dataset and leaving the rest for the testing dataset. We referenced [180] for

their splitting methods, aiming to ensure that the binaries that belong to the same packages

stay in the same set, either the training or testing sets. Such a variant splitting method

allows us to evaluate CFG2VEC truly.

Next, we converted binaries in the AS-4cpu-30k-bin dataset into their Graph-of-Graph (GoG)

representations leveraging the GDT mentioned previously in Section 3.3.2. Notably, we pro-

cessed a batch of binaries related to one package at one time as developers might define user

functions in different modules of the same package while putting prototype declarations in

that package’s main module. For this case, Ghidra indeed recognizes two function instances

while one only contains the function declaration and another has its actual function content.

As these two instances correspond to the same function name and one contains only dummy

instructions, they can thus create noise in our datasets, thus affecting our model’s learning.

To cope with this, our GDT also searches from other binaries of the same package for the

function bodies. If found, our GDT associates that user function with the function graph

node with the actual content data. Besides user functions, library function calls may exist,

and searching their function bodies in the same package would fail for dynamically loaded

binaries. Under such circumstances, Ghidra would recognize these functions as ThunkFunc-
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tions3 which only contain one dummy instruction. As a workaround, we removed these

ThunkFunctions from our data as they might mislead the model’s learning. Applying this

workaround indicates that our model works in predicting function names for the user and

statically linked functions.

Table 3.1: The statistics of datasets used in our experiments.

Dataset / # pkg/bin func node/edge1 bb node/edge2

AS-4cpu-30k-bin 1117/27,572 51.17/97.14 14.12/19.98
AS-3cpu-9k-bin 633/9,000 44.01/79.06 12.24/17.07
AS-i386-3k-bin 633/3,000 45.31/87.70 11.45/15.97
AS-amd64-3k-bin 633/3,000 42.28/74.07 12.28/17.18
AS-armel-3k-bin 633/3,000 44.45/75.41 13.00/18.07
1 # of average functions and edges in each binary
2 # of average bb blocks and edges from each function

Model Training dataset Testing dataset P@11 P@21 P@31 P@41 P@51

CFG2VEC AS-4cpu-30k-bin AS-noMipsel-300-bin 97.05% 99.47% 99.47% 99.47% 99.47%
CFG2VEC AS-4cpu-20k-bin AS-noMipsel-300-bin 74.22% 75.76% 75.78% 75.78% 78.78%

AS-amd-100-bin 69.18% 69.98% 69.98% 69.98% 69.98%
CFG2VEC AS-3cpu-9k-bin AS-i386-100-bin 69.41% 70.39% 70.39% 70.39% 70.39%

AS-armel-100-bin 70.66% 71.04% 71.11% 71.11% 71.11%
AS-noMipsel-300-bin 69.75% 70.47% 70.50% 70.50% 70.50%

[79]-amd642 AS-amd64-3k-bin AS-amd-100-bin 29.32% - - - -
[79]-i3862 AS-i386-3k-bin AS-i386-100-bin 52.64% - - - -
[79]-armel2 AS-armel-3k-bin AS-armel-100-bin 53.65% - - - -
1 P@k measures if the actual function name is in the top k of the predicted function names.
2 These models only provide the top 1 function name prediction; hence they only have P@1 value.

Table 3.2: The performance evaluation of cfg2vec for function name prediction against [79].

We experimented [79] with our datasets, referencing to their implementation4. As [79] used a

dataset with 3,000 binaries for experiments, we followed accordingly, preparing datasets with

smaller but similar sizes. We achieved this by downsampling from our primary AS-4cpu-30k-

bin dataset, creating the AS-3cpu-9k-bin dataset which has 9,000 binaries for i386, amd64,

and armel CPU architectures. Furthermore, as [79] supports only one CPU architecture

at a time, we then separated the AS-3cpu-9k-bin dataset into different CPU architectures,

generating three training datasets for testing [79]: AS-i386-3k-bin, AS-amd64-3k-bin, and

3ThunkFunction Manual: https://ghidra.re/ghidra_docs/api/ghidra/program/model/listing/

ThunkFunction.html
4Debin’s [79] repository: https://github.com/eth-sri/debin
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AS-armel-3k-bin. For training, we utilized the strip Linux command, converting our original

data into three: the original binaries (debug), stripped binaries with debug information

(stripped), and stripped binaries without debug information (stripped wo symtab) to follow

[79]’s required data format. For evaluation, we sampled 100 binaries from our primary dataset

for each CPU architecture, labeled AS-amd-100-bin, AS-i386-100-bin, AS-armel-100-bin, and

AS-mipsel-100-bin. We also have another evaluation dataset called AS-noMipsel-300-bin,

which contains roughly 300 binaries produced for the amd64, i386, and armel platforms.

Table 3.1 summarizes the data statistics for all these datasets, including the numbers of

packages and binaries, the average number of function nodes, edges, and BB nodes. The

following sections will detail how we utilized these datasets during our experiments.

3.4.2 Evaluation: Function Name Prediction

Table 3.2 demonstrates the results of CFG2VEC in predicting function names. For the

baseline, we followed [79]’s best setting where the feature dimension of register or stack

offset are both 100 to train with our prepared datasets. For CFG2VEC, we used three GCN

layers and one GAT convolution layer in both graph embedding layers. For evaluation, we

calculate the p@k (e.g., precision at k) metric, which refers to an average hit ratio over the

top-k list of predicted function names. Specifically, we feed each binary represented in GoG

into our trained model, converting each function f ∈ F and acquiring its function embedding

hf . Then, we calculate pair-wise cosine similarities between hf and all the other function

embeddings, forming a top-k list by selecting k names in which their embeddings are top-kth

similar to hf . If the ground-truth function name is among the top-k list of function name

predictions, we regard that as a hit; otherwise, it is a miss. During experiments, we set

the top-k value to be 5, so our model can recommend the best five possible names for each

function in a binary.
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As shown in Table 3.2, CFG2VEC, trained with the AS-3cpu-9k-bin dataset, can achieve a

69.75% prediction accuracy (e.g., p@1) in inferring function names. For [79], we had to train

their models for each CPU architecture separately as it cannot train in a cross-architectural

manner. Even so, for amd64 binaries, [79] only achieves 29.32% precision, while for i386

and armel, it performs 52.64% and 53.65%, respectively. This result indicates that in any

case, our CFG2VEC outperforms [79]. Besides, while [79] only yields one prediction, our

CFG2VEC suggests five choices, making it flexible for our users (e.g., REs) to select what

they believe best fits the function among the best k predicted names. The p@2 to p@5

in Table 3.2 demonstrate that our CFG2VEC can provide enough hints of function names

for users. For example, p@5 of CFG2VEC trained with our AS-3cpu-9k-bin dataset can

achieve 70.50% precision across all the CPU architecture binaries. We also experimented

our CFG2VEC with larger datasets. From Table 3.2, we can observe that CFG2VEC can

have 5.04% performance gain in correctly predicting function names (e.g., p@1). Moreover,

the gain increases to 28% when training CFG2VEC with the AS-4cpu-30k-bin dataset. We

believe training on a larger dataset implies training with a more diversified set of binaries.

This allows our model to acquire more knowledge, thus being capable of extracting more

robust features for binary functions. In summary, this result indicates that compared to the

baseline, our model can effectively provide contextually relevant names for functions in the

decompiled code to our users.

Table 3.3: The comparison between CFG2VEC and its ablated variations.

Arch [79] GCN-GAT 2GCN 2GCN-GAT CFG2VEC
amd64 29.32%1 61.59% 69.49% 69.56% 70.66%
armel 52.64%2 66.40% 68.59% 68.92% 69.19%
mipsel 53.65%3 66.47% 68.17% 68.56% 69.41%

Overall 45.20% 64.82% 68.75% 69.01% 69.75%
1 Evaluation results for [79]-amd64 model.
2 Evaluation results for [79]-i386 model.
3 Evaluation results for[79]-armel model.

We also experimented with various ablated network setups to study how each component of
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CFG2VEC contributes to performance. First, we simplified our CFG2VEC by stripping one

GCN layer from the original experimental setup. As shown in Table 3.3, we called this setup

2GCN-GAT which slightly decreased the performance by 0.75%. Then, from 2GCN-GAT

setup, we further removed the GAT layer, calling it 2GCN. We again observed a marginal

performance decrease (<1%). Next, we eliminated another GCN layer from 2GCN-GAT,

constructing the GCN-GAT setup. For GCN-GAT, we saw a drastic drop (4.2%) which

highlights that the number of GCN layers can be an essential factor in the performance.

Specifically, we found that going from 1 to 2 GCN layers improves prediction accuracy by

more than 4%. However, we do not observe a significant performance gain when increasing

the number of GCN layers to more than three. Therefore, we retained the original CFG2VEC

model with its three GCN layers. All in all, as shown in Table 3.3, all these ablated models,

still outperform [79], which we attributed to the GoG representation we made for each binary

in the dataset.

3.4.3 Evaluation: Architectural-agnostic Prediction

Table 3.4 demonstrates our CFG2VEC ’s capability in terms of cross-architecture support.

As [79] supports training one CPU architecture at a time, we had to train it multiple times

during experiments. Specifically, we trained [79] on three datasets: AS-amd64-3k-bin, AS-

i386-3k-bin, and AS-armel-3k-bin, calling resulting trained models, [79]-amd64, [79]-i386,

and [79]-armel, respectively. For these baseline models, we observe that they perform well

when tested with the binaries built on the same CPU architecture but poorly with the ones

built on different CPU architectures. For instance, [79]-amd64 achieves 29.3% accuracy for

amd64 binaries, but performs worse for i386 and armel binaries (13.8% and 7.1%). Similarly,

[79]-i386 achieves 52.6% accuracy for i386 binaries, but performs worse for amd64 and armel

binaries (6.2% and 1.1%). Lastly, [79]-armel achieves 53.6% accuracy for armel binaries, but

performs worse for amd64 and i386 binaries (11.8% and 8.9%). We used the top-1 prediction
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generated from CFG2VEC (a.k.a., p@1) as the comparing metric as [79] produces only one

prediction per each function. From the results, we observe that CFG2VEC outperforms [79]

across all three tested CPU architectures. The fact that CFG2VEC performs consistently

well across all CPU architectures indicates that our CFG2VEC supports cross-architecture

prediction.

To evaluate the capability of generalizing the learned knowledge, we tested all models with

the AS-mipsel-100-bin dataset, which has binaries built from another famous CPU architec-

ture, mipsel, that our CFG2VEC does not train before. For [79], it has lower performance

when testing on binaries built from the CPU architectures that it did not train before, ex-

ampled by the highest accuracy of [79] to be 13.84% when trained on amd64 binaries and

evaluated on i386 binaries. In our work, as Table 3.4 shows, our CFG2VEC achieves 36.69%

accuracy when trained with amd64, i386, and armel binaries but tested on mipsel bina-

ries. For [79], it does not even support analyzing mipsel binaries. In short, these results

demonstrate that our CFG2VEC outperforms our baseline in the function name prediction

task on cross-architectural binaries and generalizes better to the binaries built from un-

seen CPU architectures. To further investigate CFG2VEC ’s cross-architecture performance,

we trained it on three datasets, each consisting of binaries built for two different architec-

tures. We then gave the resulting trained models names that indicated the architectures

from which the binaries were derived: CFG2VEC -armel-i386, CFG2VEC -amd64-i386, and

CFG2VEC -armel-amd64. These results show that our model performs well in the function

name prediction job across all of these scenarios, including when tested on binaries compiled

for unknown CPU architectures.
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Table 3.4: The cross-architectural comparison between cfg2vec and [79]

Model Testing dataset P@1
AS-amd-100-bin 69.18%

CFG2VEC -3-Arch AS-i386-100-bin 70.66%
AS-armel-100-bin 69.41%
AS-mipsel-100-bin∗ 36.69%
AS-amd-100-bin 68.53%

CFG2VEC -amd64-
armel

AS-i386-100-bin∗ 39.23%

AS-armel-100-bin 69.11%
AS-mipsel-100-bin∗ 32.21%
AS-amd-100-bin 68.59%

CFG2VEC -amd64-
i386

AS-i386-100-bin 69.09%

AS-armel-100-bin∗ 34.20%
AS-mipsel-100-bin∗ 38.26%
AS-amd-100-bin∗ 42.96%

CFG2VEC -armel-
i386

AS-i386-100-bin 67.45%

AS-armel-100-bin 63.86%
AS-mipsel-100-bin∗ 36.61%
AS-amd-100-bin 29.32%

[79]-amd64 AS-i386-100-bin∗ 13.84%
AS-armel-100-bin∗ 7.08%
AS-mipsel-100-bin∗ -
AS-amd-100-bin∗ 6.23%

[79]-i386 AS-i386-100-bin 52.64%
AS-armel-100-bin∗ 1.05%
AS-mipsel-100-bin∗ -
AS-amd-100-bin∗ 11.82%

[79]-armel AS-i386-100-bin∗ 8.86%
AS-armel-100-bin 53.65%
AS-mipsel-100-bin∗ -

∗ indicates that dataset was not used during the training.

3.4.4 The Practical Usage of CFG2VEC

In this section, we demonstrate how CFG2VEC assists REs in dealing with Defense Advanced

Research Projects Agency (DARPA) Assured MicroPatching (AMP) challenges binaries. The

AMP program aims at enabling fast patching of legacy mission-critical system binaries,
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enhancing decompilation and guiding it toward a particular goal of a Reverse Engineer

(RE) by integrating the existing source code samples, the original build process information,

and historical software artifacts.

The MINDSIGHT project: our multi-industry-academia initiative between Siemens,

JHU/APL, BAE, and UCI jointly developed a project, Making Intelligible Decompiled Source

by Imposing Homomorphic Transforms (MINDSIGHT). Our team focused on building an au-

tomated toolchain integrated with Ghidra, aiming to enable the decompilation process with

(1) a less granular identification of modular units, (2) an accurate reconstruction of symbol

names, (3) the lifting of binaries to stylized C code, (4) a principled and scalable approach to

reason about code similarity, and (5) the benchmarking of new decompilation techniques us-

ing state-of-the-art embedded software binary datasets. To date, our team has developed an

open-source tool, CodeCut5, to improve the accuracy and completeness of Ghidra’s module

identification, providing an automated script-based decompilation analysis toolchain to ease

the RE’s expert interpretation. Besides, we also developed a Homomorphic Transform Lan-

guage (HTL) to describe transformations on Abstract Syntax Tree (AST) languages and the

rules of their composition. Our tool, integrated with ghidra, allows developers to transform

the decompiled code syntactically while keeping it semantically equivalent. The key idea is

to use this HTL to morph a Ghidra AST into a GCC AST to lift the decompiled binary to

a high-level C representation. This process can make it easier for REs to comprehend the

binary code. CFG2VEC is another tool developed in the MINDSIGHT project, enabling

the reconstruction of function names, saving the manual guesswork from REs.

The cfg2vec plugin: in MINDSIGHT project, we incorporated CFG2VEC into Ghidra

decompiler as a plugin application. Our CFG2VEC plugin assists REs in comprehending

the binaries by providing a list of potential function names for each function without its

name. Technically, like all Ghidra plugins, our CFG2VEC plugin bases on Java with its

5CodeCut ’s repository: https://github.com/DARPAMINDSIGHT/CodeCut
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Figure 3.5: The plugin screenshot integrated into Ghidra.

core inference modules implemented as a REST API in Python 3.8. Once the metadata

of a stripped binary is extracted from Ghidra decompiler, it is then sent to the CFG2VEC

end-point, which calculates and returns the inferred mappings for all the functions. Fig-

ure 3.5 demonstrates the user interface of our CFG2VEC plugin. In this scenario, the user

must provide the vulnerable and the reference binary with extra debug information, such

as function names. The “Match Functions” button triggers CFG2VEC functionality and

displays the function mapping results in three tables:

• Matched Table: displays the mapping of similar functions.

• Mismatched Table: displays the mapping of dissimilar functions and, therefore, candi-

dates for patching.

61



• Orphan Table: displays the mapping of functions with a low confidence score.

The groupings reduce REs’ workload. Rather than inspecting all functions, they can focus

on patching candidate functions (mismatched functions) and the orphans. The “Explore

Functions” button invokes Ghidra’s function explorer, where the two functions can be com-

pared side-by-side, as shown in Figure 3.5. This utility allows the user to switch between

C and assembly language, thus assisting in confirming or modifying the mappings from the

three tables. Regarding CFG2VEC ’s function prediction, the “Rename Function” button

takes the selected row from the tables and imposes the name from the patched binary in the

vulnerable binary. When the “Match Functions” button fires, we invoke the FCG and CFG

generators for the two programs (vulnerable and patched).

The use-case for AMP challenge binaries: DARPA AMP challenges is about REs to

patch a vulnerability regarding a weak encryption algorithm where the encryption of commu-

nication traffic was accomplished with a deprecated cipher suite, Triple DES or 3DES [31].

For this challenge, REs have to analyze the vulnerable binary, identify functions and instruc-

tions to be patched, 3DES cipher suite in this case, and patch 3DES-related function calls

and instructions with the ones for AES [20]. All these steps happen at the decompiled binary

level, and the vulnerable binaries are optimized by a compiler and stripped of the debugging

information and function names. Furthermore, these binaries are sometimes statically linked

against libraries such as GNU C Library [141] or OpenSSL, which introduce many extra func-

tions to the binary (some of which will never be called/used). Given these complications, it

becomes a non-trivial task for an RE to make sense of all these functions, find the problem,

and successfully patch the problem. The direct usage of our CFG2VEC plugin was to pick

a function of interest with stripped information and see predictions of potential function

names or matching functions from the available reference binary to confirm that whether

this function is in the critical path during RE’s problem solving. As Figure 3.5 shows, our

plugin allows users to see possible matches between functions from a stripped vulnerable
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binary and functions from a patched (reference) binary with extra information. REs may

then leverage such information and make appropriate notes for that function, allowing them

to complete their jobs more efficiently. The main feedback we received from REs who used

the tool was that this is the functionality REs would like to have. However, the accuracy

and usability of the tool were not high enough to truly utilize the tool’s potential.

3.5 Conclusion

In this chapter, we present CFG2VEC, a Hierarchical Graph Neural Network-based ap-

proach for software reverse engineering. Building on top of Ghidra, our CFG2VEC plugin

can extract a Graph-of-Graph (GoG) representation for binary, combining the information

from Control-Flow Graphs (CFG) and Function-Call Graphs (FCG). CFG2VEC utilizes a

hierarchical graph embedding framework to learn the representation for each function in

binary code compiled into various architectures. Lastly, our CFG2VEC utilizes the learned

function embeddings for function name prediction, outperforming the state-of-the-art [79]

by an average of 24.54% across all tested binaries. By increasing the amount of data, our

model achieved 51.84% better. While [79] requires training once for each CPU architecture,

our CFG2VEC still can outperform consistently across all the architectures, only with one

training. Besides, our model generalizes the learning better [79] to the binaries built from

untrained CPU architectures. Lastly, we demonstrate that our CFG2VEC can assist the

real-world REs in resolving Darpa Assured MicroPatching (AMP) challenges.

63



Chapter 4

Graph Learning for Autonomous

Driving Systems

This chapter explores Graph Learning for Autonomous Driving Systems (ADSs). In lit-

erature, there is considerable evidence that evaluating the subjective risk level of driving

decisions can improve the safety of self-driving cars in both typical and complex driving

scenarios. In this chapter, we propose a novel data-driven approach that uses scene-graphs

as intermediate representations for modeling the subjective risk of driving maneuvers. This

novel approach, nailed as SG2VEC, can assess the risk of various driving maneuvers more

accurately than state-of-the-art. Besides, its model transfers the knowledge learned from a

lane-changing synthesized dataset more effectively than the state-of-the-art model. More-

over, adding spatial and temporal attention layers improves its performance and explainabil-

ity. Even more, SG2VEC runs faster and consumes lesser energy than the state-of-the-art

method, making it more suitable for implementation on the edge device.
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4.1 Introduction

Autonomous Driving Systems (ADSs) have advanced significantly in recent years. However,

navigation is still challenging in complex urban environments since the scenarios are highly

variable and complex [115, 194, 121]. The continued reports of autonomous vehicle crashes

only highlight these challenges [106, 52, 113, 107]. A risk-based approach for autonomous

driving has the potential to address this challenge and better assure driving safety. Within

this context, the effectiveness of understanding the driving scenes and quantifying the risk

of driving decisions becomes particularly crucial for ADSs.

Several papers have leveraged state-of-the-art deep learning architectures for modeling sub-

jective risk [194, 195]. Such methods typically use Convolutional Neural Networks (CNNs)

and Long-Short Term Memory Networks (LSTMs). They have proven effective at capturing

features essential for modeling subjective risk in both spatial and temporal domains [195].

However, it is unclear whether these methods can capture critical higher-level information,

such as the relationships between traffic participants in a given scene. Failing to capture

these relationships can result in poor ADS performance in complex scenarios.

Frame with objects detected Bird’s-Eye View Frame of a driving clip

Front Left, 

Very Near

Front Left, 

VisibleEgo Car

Car_0

Car_1

Figure 4.1: An illustration of scene-graph extraction using the Real Image Pipeline. In this
process, the first step is to detect a list of objects on each clip frame. Then, we project
each frame to its bird’s-eye view to better approximate the spatial relations between objects.
Finally, we construct a scene-graph using the list of detected objects and their attributes.

Research Challenges and Contributions: overall, designing a risk assessment system

for ADSs using data-driven approaches presents the following challenges:
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1. Designing a reliable method that can handle a wide range of complex and unpredictable

traffic scenarios,

2. Building a model that is transferable from the simulation setting to the real-world

setting because the real-world datasets for supervised training are limited,

3. Building a model that can provide explainable decisions.

To overcome Research Challenge 1, deep learning based subjective risk assessment methods

must be trained on large datasets covering a wide range of “corner cases” (especially risky

driving scenarios), which are expensive and time-consuming to generate [54]. Researchers

use synthesized datasets containing many examples of these corner cases to address this

issue. However, for these to be valuable, a model must be able to transfer the knowledge

gained from simulated training data to real-world situations (Research Challenge 2). A

standard method for measuring a model’s ability to generalize is transferability, where a

model’s accuracy on a dataset different from the training dataset is evaluated. If a model

can transfer the knowledge gained from a simulated training set to a real-world testing set

effectively, it will likely perform better in unseen real-world scenarios.

Even if these existing methods can transfer knowledge well, the predictions of such meth-

ods lack explainability, which is crucial for establishing trust between ADSs and human

drivers [16, 12, 2]. Explainability refers to the ability of a model to effectively communicate

the factors that influenced its decision-making process for a given input, particularly those

that might lead the model to make incorrect decisions [2, 99]. Suppose a model can give

attention to the aspects or entities in a traffic scene that make the scenario risky or non-risky.

In that case, it can improve its decision, and its decisions become more explainable [168]

(Research Challenge 3).

To address these limitations, we propose a scene-graph augmented data-driven approach for

assessing the subjective risk of driving maneuvers, where the scene-graphs serve as Interme-
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diate Representations (IR) as shown in Figure 4.1. The key advantage of using scene-graph

as IR is that they allow us to model the relationships between the participants in a traffic

scene, thus potentially improving the model’s understanding of a scene. Our proposed archi-

tecture consists of three major components: (i) a pipeline to convert the images of a driving

clip to a sequence of scene-graphs, (ii) an MR-GCN to convert each of the scene-graphs to

an embedding (a vectorized representation), and (iii) an LSTM for temporally modeling the

sequence of embeddings of the respective scene-graphs. Our model also contains multiple

attention layers: (i) a node attention layer before the embedding of a scene-graph is com-

puted, and (ii) an attention layer on top of the LSTM, both of which can further improve

its performance and explainability. For training the model, we formulate the problem of

subjective risk assessment as a supervised scene-graph sequence classification problem. The

key contributions are as follows:

• We present a novel scene-graph augmented data-driven approach for assessing the risk

of driving actions in autonomous vehicles.

• We demonstrate that our approach outperforms existing methods of risk assessment

across a wide range of scenarios using lane change as a use case.

• We demonstrate that multi-level attention in our proposed approach provides better

explainability.

• We demonstrate that our scene-graph based approach can better transfer knowledge

gained from simulated environments to real-world risk assessment tasks.
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4.2 Related Works

4.2.1 ADS Design Philosophies

Two broad approaches for designing ADSs are (i) modular design and (ii) end-to-end de-

sign [194]. Most modular approaches comprise a pipeline of separate components from the

sensory inputs to the actuator outputs, while end-to-end approaches generate output directly

from their sensory inputs [126, 25]. One advantage of a modular design approach is the divi-

sion of a task into an easier-to-solve set of sub-tasks that have been addressed in other fields

such as robotics [105], computer vision [92] and vehicle dynamics [130]. Therefore, prior

knowledge from these fields can be leveraged when designing the components corresponding

to the sub-tasks. However, one disadvantage of such an approach is the complexity of the

whole pipeline [194]. End-to-end approaches can achieve good performance with a smaller

network size because they perform feature extraction from sensor inputs implicitly through

the network’s hidden layers [25]. However, the authors in [32] point out that the needed level

of supervision is too weak for the end-to-end model to learn critical controlling information

(e.g., from image to steering angle), so it can fail to handle complicated driving maneuvers.

A third approach was first proposed by DeepDriving [32], called the direct perception ap-

proach. In their approach, a set of affordance indicators, such as the distance to lane mark-

ings and other cars in the current and adjacent lanes, are extracted from an image and serve

as an IR for generating the final control output. They prove this IR is effective for simple

driving tasks such as lane following and generalizing to real-world environments. Authors

in [14] use a collection of filtered images, each representing a piece of distinct information,

as the IR. They state that the IR used in their approach allows the training to be conducted

on real or simulated data, facilitating testing and validation in simulations before testing on

a real car. Moreover, they show that it is easier to synthesize perturbations to the driving

trajectory at the mid-level representations than at the level of raw sensors, enabling them to
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produce non-expert behaviors such as off-road driving and collisions. The authors in [195]

use Mask-RCNN [80] to color the vehicles in each input image, producing a form of IR. In

contrast to the works mentioned above, our approach uses a scene-graph IR that encodes

the spatial and semantic relations between all the traffic participants in a frame.

4.2.2 AV Scene-Graphs and Optimization Techniques

Several works have proposed graph-based methods for scene understanding. For example,

[116] proposed a multi-relational graph convolutional network (MR-GCN) that uses both

spatial and temporal information to classify vehicle driving behavior. Similarly, in [109], an

Ego-Thing and Ego-Stuff graph are used to model and classify the ego vehicle’s interactions

with moving and stationary objects, respectively. In our prior work, we demonstrated that a

scene-graph sequence embedding approach assesses driving risk better than the state-of-the-

art CNN-LSTM approach [193]. In [193], we utilized an architecture consisting of MR-GCN

layers for spatial modeling and an LSTM with attention for temporal modeling; however,

this architecture was only capable of performing binary sequence-level classification over

a complete video clip. Thus, although our prior architecture could accurately assess the

subjective risk of complete driving sequences, it was not capable of predicting the future

state of a scene.

Current autonomous driving systems consume a substantial amount of power (up to 500

Watts for the Nvidia DRIVE AGX Pegasus), demanding more robust cooling and power

delivery mechanisms. Thus, many have tried to optimize AV tasks for efficiency without

sacrificing performance. Existing approaches have proposed methods for jointly optimizing

power consumption and latency for localization [10], perception [13], and control [89]. How-

ever, to the best of our knowledge, no work has explored this optimization for AV safety

systems, such as collision prediction systems.
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4.2.3 Risk Assessment

In prior research, the problem of risk assessment for autonomous driving has been tackled

by modeling either the objective risk or the subjective risk [72, 64, 16]. The objective risk

is defined as the objective probability of an accident occurring and is usually determined

by statistical analysis [72]. Some works have focused on minimizing the objective risk by

modeling the trajectories of vehicles [104, 173] to guarantee safe driving. Subjective risk

refers to the driver’s perceived risk and is an output of the driver’s cognitive process [64, 16].

One primary reason why assessing subjective risk is important is because it accounts for the

human behavior perspective and its critical role in anticipating risks, as many works point

out [15, 16, 64]. Further, studies such as [163, 72] provide direct evidence that a driver’s

subjective risk assessment is inversely related to the risk of traffic accidents. Similarly, [16]

suggests that augmenting an objective risk assessment system with subjective risk techniques

can improve overall risk assessment performance. For these reasons, our goal in this work is

to build a model for subjective risk assessment. In Figure 4.2, we present examples of a lane

change that is both subjectively and objectively risky and a lane change that is subjectively

safe but objectively risky from our driving dataset. An objective and subjective approach

would likely identify the obvious risk factor of the close-proximity, high-speed vehicle in (a).

However, an objective risk assessment approach may incorrectly consider (b) to be risky

because of the ego car’s perceived trajectory while this is, in fact, a safe lane change.

Several works have studied subjective risk assessment for autonomous driving systems [64,

16, 195, 196]. In [196], Hidden Markov Models (HMMs) and Language Models are used

to detect unsafe lane change events. The approach taken in [195] is the most related to

our work as it infers the risk level of overall driving scenes with a deep Spatiotemporal

neural network architecture. Using Mask-RCNN [80] to generate an IR for each image, their

approach achieves a 3% performance gain in risk assessment. They show that the architecture

with Semantic Mask Transfer (SMT) + CNN + LSTM can perform 25% better than the
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(b) 

(a)

Figure 4.2: An example of (a) a lane change that is both subjectively and objectively risky
as well as (b) a subjectively safe but objectively risky lane change from our driving dataset.
In (a), the ego car starts a safe lane change, but a high-speed vehicle suddenly appears in its
blind spot and nearly collides with it. In (b), the ego car appears to drive directly toward
the adjacent vehicle but is making a safe lane change on a curved road.

architecture with Feature Transfer (FT) + Frame-by-Frame (FbF). This result indicates

that capturing the spatial and temporal features from a single camera can be useful in

modeling subjective risk. However, this approach only considers the spatial features (the

latent vector output of the CNN layers) of a frame instead of the relations between all the

traffic participants. Our work uses scene-graphs as IRs to capture the high-level relationships

between all the traffic participants of a scene.

4.2.4 Early Collision Prediction

Since collision prediction is key to the safety of AVs, a wide range of solutions have been

proposed by academia and industry. As mentioned earlier, current consumer vehicles use

statistics-based SBTMs for collision prediction but can perform poorly in complex situations

[91, 49] or react too late to avoid collisions [118, 151]. Expanding on these approaches,

companies like Mobileye and Nvidia have proposed more comprehensive mathematical mod-

els for ensuring AV safety, namely Responsibility-Sensitive Safety (RSS) [145] and Nvidia

Safety Force Field [119], respectively. However, these models are heavily rule-based and can

thus be fragile in complex situations with high uncertainty. Additionally, computing future
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trajectory constraints with RSS is non-trivial and can require vehicle-specific calibration [68].

Model-based probabilistic and deep learning approaches for collision prediction have also

been proposed. For example, [8] proposes a model-based probabilistic technique that uses

the roadway geometry, ego trajectory, and position/velocity of road objects to predict future

object positions. However, this model is highly conservative and is likely to have a high false-

positive rate. Similarly, [171] and [197] use model-based approaches but require significant

domain knowledge about the driving scene, such as road geometry information as well as

accurate vehicle position and velocity information. [170] proposes a deep learning collision

prediction approach. Still, due to its use of pre-processed trajectory data captured from

cameras overlooking a highway, it is not ego-centric and cannot be practically used for

on-vehicle collision prediction. In a different approach, [155] proposes a Deep Predictive

Model (DPM) that used a Bayesian Convolutional LSTM for collision risk assessment where

image data, vehicle telemetry data, and driving inputs were all factors in the risk assessment

decision. However, this approach was only evaluated on simulated street scenes containing

two vehicles and no other dynamic objects. Thus, DPM’s performance may suffer when

evaluated on more complex road scenarios.

In contrast to these existing works, we propose sg2vec which captures structural and re-

lational information of a road scene in a scene-graph representation and computes a spatio-

temporal embedding to predict collisions. Additionally, we perform experiments that were

not done in many prior works, such as evaluating each model’s capability to transfer knowl-

edge, efficiency on AV hardware, performance on a complex real-world crash dataset, and

ability to predict collisions early. We primarily compare our methodology with the DPM as

it is the state-of-the-art data-driven collision prediction framework for AVs that considers

both spatial and temporal factors. Although the DPM uses multiple modalities for sensing,

the results in [155] show that it achieves an accuracy (of 81.95%) that is just 0.24% less using

just the image sensing modality. In this work, we compare our proposed sg2vec method-
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ology and the DPM on image-only datasets, which is fair because the DPM’s performance

does not vary much with the inclusion of other modalities.

4.3 SG2VEC: Scene-Graph Augmented Methodology

4.3.1 Problem Formulation

In our work, we make the same assumption in [195] that the set of driving sequences can be

partitioned into two jointly exhaustive and mutually exclusive subsets: risky and safe. We

denote the sequence of images of length T by I = {I1, I2, I3, ..., IT}. We assume the existence

of a spatiotemporal function f that outputs whether a sequence of driving actions x is safe

or risky via a risk label y, as given in Equation 4.1.

y = f(I) = f({I1, I2, I3, ..., IT−1, IT}), (4.1)

where

y =

 (1, 0), if the driving sequence is safe

(0, 1), if the driving sequence is risky.
(4.2)

In this section, we propose a suitable model for approximating the function f . In the model

we propose, the first step is the extraction of the scene-graph Gt from each image It of the

video clip I. This step is achieved by a series of processes that we collectively call the Scene-

Graph Extraction Pipeline. In the second step, these scene-graphs are passed through graph

convolution layers and an attention-based graph pooling layer. The graph-level embeddings

of each scene-graph, hGt , are then calculated using a graph readout operation. Next, these

scene-graph embeddings are passed sequentially to LSTM cells to acquire the spatio-temporal
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representation, denoted as Z, of each scene-graph sequence. Lastly, we use a Multi-Layer

Perceptron (MLP) layer with a Softmax activation function to acquire the final inference,

denoted as ŷ, of the risk for each driving sequence I. We describe more details regarding

each of our model’s components in Section 4.3.3.

4.3.2 Scene-Graph Extraction

Figure 4.3: An illustration of our model’s architecture. First, each image It ∈ I is converted
to a scene-graph Gt via the Scene-Graph Extraction Pipeline. Next, each scene-graph Gt

is converted to its corresponding scene-graph embedding hGt via the graph convolution,
pooling, and readout operations in the Spatial Modeling block. Then, the resulting scene-
graph embeddings are sequentially processed by LSTM and temporal attention layers to
acquire the spatiotemporal representation Z for a scene-graph sequence. Finally, the risk
inference ŷ of the sequence is calculated from Z using an MLP with a Softmax activation
function.

Several approaches have been proposed for extracting scene-graphs from images by detecting

the objects in a scene and then identifying their visual relationships [179, 183]. However,

these works have focused on single general images instead of a sequence of images as it arises

in autonomous driving, where higher accuracy is demanded. Thus, we adopted a partially

rule-based process to extract objects and their attributes from images called the Real Image

Pipeline. Besides, to evaluate how our approach performs with scene-graphs containing

ground truth information, we use the Carla Ground Truth (GT) Pipeline as a surrogate

for the ideal situation where the attributes for each object can be correctly extracted. We

discuss each of these components in detail below.

Real Image Pipeline: In this pipeline, object attributes and bounding boxes are extracted
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directly from images using state-of-the-art image processing techniques. As Figure 4.1 shows,

we first convert each image It into a collection of objects Ot using Detectron2, a state-of-the-

art object detection model based on Faster RCNN [174, 137]. Next, we use OpenCV’s per-

spective transformation library to generate a top-down perspective of the image, commonly

known as a ”birds-eye view” projection [27]. This projection allows us to approximate each

object’s location relative to the road markings and the ego vehicle. Next, for each detected

object in Ot, we use its estimated location and class type (cars, motorcycles, pedestrians,

lanes, etc.) to compute the attributes required in building the scene-graph.

Carla Ground Truth Pipeline: Object detection and location estimation with solely

a monocular camera can be unstable because of factors such as weather and camera po-

sition [29], which can impact the correctness of our image-based scene-graph construction

pipeline and thus our approach’s performance. To evaluate our methodology under the as-

sumption that object attributes can be extracted without error, we build our scene-graphs

using the ground-truth location and class information for each vehicle in the Carla GT

Pipeline. We extract this information directly from Carla simulator [54] without any image

processing steps.

Scene-Graph Construction: After collecting the list of objects in each image and their

attributes, we begin constructing the corresponding scene-graphs as follows. For each image

It, we denote the corresponding scene-graph by Gt = {Ot, At} and model it as a directed

multi-graph where multiple types of edges connect nodes. The nodes of a scene-graph,

denoted as Ot, represent the objects in a scene such as lanes, roads, traffic signs, vehicles,

pedestrians, etc. The edges of Gt are represented by the adjacency matrix At, where each

value in At represents the type of the corresponding edge in Gt. The edges between two

nodes represent the different kinds of relations between them (e.g., near, Front Left, isIn,

etc.).

In assessing the risk of driving behaviors, traffic participants’ relations that we consider use-
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ful are the distance relations and the directional relations. The assumption made here is

that the local proximity and positional information of one object will influence the other’s

motion only if they are within a certain distance. Therefore, in this work, we extract only

the location information for each object and adopt a simple rule to determine the relations

between the objects using their attributes (e.g., relative location to the ego car), as shown in

Figure 4.1. For distance relations, we assume two objects are related by one of the relations

r ∈ {Near Collision (4 ft.), Super Near (7 ft.), Very Near (10 ft.), Near (16 ft.), Visible

(25 ft.)} if the objects are physically separated by a distance that is within that relation’s

threshold. In the case of the directional relations, we assume two objects are related by the re-

lation r ∈ {Front Left, Left Front, Left Rear, Rear Left, Rear Right, Right Rear, Right Front,

Front Right} based on their relative positions if they are within the Near threshold distance

from one another.

In addition to directional and distance relations, we also implement the isIn relation that

connects vehicles with their respective lanes. For the Carla GT Pipeline, we extract the

ground-truth lane assignments for each vehicle from the simulator directly. For the Real

Image Pipeline, we use each vehicle’s horizontal displacement relative to the ego vehicle to

assign vehicles to either the Left Lane, Middle Lane, or Right Lane based on a known lane

width. Our abstraction only includes these three-lane areas, and, as such, we map vehicles

in all left lanes to the same Left Lane node and all vehicles in right lanes to the Right Lane

node. If a vehicle overlaps two lanes (i.e., during a lane change), we assign it an isIn relation

to both lanes. Figure 4.1 illustrates an example of resultant scene-graph.

4.3.3 Scene-Graph Sequence Model Architecture

The model we propose consists of three major components: a spatial model, a temporal

model, and a risk inference component. The spatial model outputs the embedding hGt for
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each scene-graph Gt. The temporal model processes the sequence of scene-graph embeddings

hI = {hG1 , hG2 , ..., hGT
} and produces the spatio-temporal embedding Z. The risk inference

component outputs each driving clip’s final risk assessment, denoted as Ŷ , by processing the

Spatio-temporal embedding Z. The overall network architecture is shown in Figure 4.1. We

discuss each of these components in detail below.

Spatial Modeling: The spatial model we propose uses MR-GCN layers to compute the

embedding for a scene-graph. MR-GCN allows us to capture multiple types of relations on

each scene-graph Gt = {Ot, At}. In the Message Propagation phase, a collection of node

embeddings and their adjacency information serve as the inputs to the MR-GCN layer.

Specifically, the l-th MR-GCN layer updates the node embedding, denoted as h
(l)
v , for each

node v as follows:

h(l)
v = Φ0 · h(l−1)

v +
∑
r∈At

∑
u∈Nr(v)

1

|Nr(v)|
Φr · h(l−1)

u , (4.3)

where Nr(v) denotes the set of neighbor indices of node v with the relation r ∈ At. Φr

is a trainable relation-specific transformation for relation r in MR-GCN layer. Since the

information in (l − 1)-th layer can directly influence the representation of the node at l-th

layer, MR-GCN uses another trainable transformation Φ0 to account for the self-connection

of each node using a special relation [144]. Here, we initialize each node embedding h
(0)
v ,

∀v ∈ Ot, by directly converting the node’s type information to its corresponding one-hot

vector.

Typically, the node embedding becomes more refined and global as the number of graph

convolutional layers, L, increases. However, the authors in [181] also suggest that the features

generated in earlier iterations might generalize the learning better. Therefore, we consider

the node embeddings generated from all the MR-GCN layers. To be more specific, we

calculate the embedding of node v at the final layer, denoted as HL
v , by concatenating the
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features generated from all the MR-GCN layers, as follows,

HL
v = CONCAT({h(l)

v }|l = 0, 1, ..., L). (4.4)

We denote the collection of node embeddings of scene-graph Gt after passing through L

layers of MR-GCN as Xprop
t (L can be 1, 2 or 3).

The node embedding Xprop
t is further processed with an attention-based graph pooling layer.

As stated in [99], such an attention-based pooling layer can improve the explainability of

predictions and is typically considered a part of a unified computational block of a graph

neural network (GNN) pipeline. In this layer, nodes are pooled according to the scores

predicted from either a trainable simple linear projection [67] or a separate trainable GNN

layer [108]. We denote the graph pooling layer that uses the SCORE function in [67] as

TopkPool and the one that uses the SCORE function in [108] as SAGPool. The calculation

of the overall process is presented as follows:

α = SCORE(Xprop
t ,At), (4.5)

P = topk(α), (4.6)

where α stands for the coefficients predicted by the graph pooling layer for nodes in Gt and

P represents the indices of the pooled nodes which are selected from the top k of the nodes

ranked according to α. The number k of the nodes to be pooled is calculated by a pre-defined

pooling ratio, pr, and using k = pr × |Ot|, where we consider only a constant fraction pr of

the embeddings of the nodes of a scene-graph to be relevant (i.e., 0.25, 0.5, 0.75). We denote

the node embeddings and edge adjacency information after pooling by Xpool
t and Apool

t and
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are calculated as follows:

Xpool
t = (Xprop

t ⊙ tanh(α))P, (4.7)

Apool
t = Aprop

t (P,P). (4.8)

where ⊙ represents an element-wise multiplication, ()P refers to the operation that extracts

a subset of nodes based on P and ()(P,P) refers to the formation of the adjacency matrix

between the nodes in this subset. Finally, our model aggregates the node embeddings of

the graph pooling layer, Xpool
t , using a graph READOUT operation, to produce the final

graph-level embedding hGt for each scene-graph Gt as given by

hGt = READOUT(Xpool
t ), (4.9)

where the READOUT operation can be either summation, averaging, or selecting the

maximum of each feature dimension, over all the node embeddings, known as sum-pooling,

mean-pooling, or max-pooling, respectively. The process until this point is repeated across

all images in I to produce the sequence of embedding, hI .

Temporal Modeling: The temporal model we propose uses an LSTM for converting the

sequence of scene-graph embeddings hI to the combined spatiotemporal embedding Z. For

each timestamp t, the LSTM updates the hidden state pt and cell state ct as follows,

pt, ct = LSTM(hGt , ct−1), (4.10)

where hGt is the final scene-graph embedding from timestamp t. After the LSTM processes

all the scene-graph embeddings, a temporal readout operation is applied to the resultant

output sequence to compute the final Spatio-temporal embedding Z given by

Z = TEMPORAL READOUT(p1, p2, ..., pT ) (4.11)
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where the TEMPORAL READOUT operation could be extracting only the last hidden

state pT (LSTM-last), or be a temporal attention layer (LSTM-attn).

In [12], adding an attention layer b to the encoder-decoder-based LSTM architecture is shown

to achieve better performance in Neural Machine Translation (NMT) tasks. For the same

reason, we include LSTM-attn in our architecture. LSTM-attn calculates a context vector

q using the hidden state sequence {p1, p2, ..., pT} returned from the LSTM encoder layer as

given by

q =
T∑
t=1

βtpt (4.12)

where the probability βt reflects the importance of pt in generating q. The probability βt is

computed by a Softmax output of an energy function vector e, whose component et is the

energy corresponding to pt. Thus, the probability βt is formally given by

βt =
exp(et)∑T
k=1 exp(ek)

, (4.13)

where the energy et associated with pt is given by et = b(s0, pt). The temporal attention

layer b scores the importance of the hidden state pt to the final output, which in our case is

the risk assessment. The variable s0 in the temporal attention layer b is computed from the

last hidden representation pT . The final Spatio-temporal embedding for a video clip, Z, is

computed by feeding the context vector q to another LSTM decoder layer.

4.3.4 Risk Inference

To evaluate SG2VEC for the subjective risk assessment task, on top of spatial modeling

and temporal modeling layers, we define the risk inference layer that computes the risk

assessment prediction Ŷ using the spatiotemporal embedding Z. This component comprises
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Figure 4.4: An illustration of sg2vec’s architecture.

an MLP layer followed by a Softmax activation function. Thus, the prediction Ŷ is given by

Ŷ = Softmax(MLP(Z)) (4.14)

The loss for the prediction is calculated as follows,

arg minCrossEntropyLoss(Y, Ŷ ) (4.15)

For training our model, we use a mini-batch gradient descent algorithm that updates its

parameters by training on a batch of scene-graph sequences. To account for label imbalance,

we apply class weighting when calculating loss. Besides, several dropout layers are inserted

into the network to reduce overfitting.

4.4 Spatiotemporal Scene-Graph Embedding for colli-

sion prediction

4.4.1 Problem Formulation

In sg2vec, we formulate the problem of collision prediction as a time-series classification

problem where the goal is to predict if a collision will occur in the near future. Our goal is
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to accurately model the spatiotemporal function f , where

Yn = f({I1, ..., In−1, In}),Yn ∈ {0, 1}, for n > 2, (4.16)

where Yn = 1 implies a collision in the near future and Yn = 0 otherwise. Here the variable

In denotes the image captured by the onboard camera at time n. The interval between each

frame varies with the camera sampling rate.

sg2vec consists of two parts (Figure 4.4) : (i) the scene-graph extraction, and (ii) collision

prediction through spatiotemporal embedding.

4.4.2 Scene-Graph Extraction

The first step of our methodology is the extraction of scene-graphs for the images of a

driving scene. The extraction pipeline forms the scene-graph for an image as in [183, 179]

by first detecting the objects in the image and then identifying their relations based on their

attributes. The difference from prior works lies in the construction of a scene-graph that is

designed for higher-level AV decisions. We propose extracting a minimal set of relations such

as directional relations and proximity relations. From our design space exploration, we found

that adding many relation edges to the scene-graph adds noise and impacts convergence while

using too few relation types reduces our model’s expressivity. The best approach we found

across applications involves constructing mostly ego-centric relations for a moderate range

of relation types. Figure 4.5 shows an example of the graph extraction process.

We denote the extracted scene-graph for the frame In by Gn = {On, An}. Each scene-graph

Gn is a directed, heterogeneous multi-graph, where On denotes the nodes and An is the

adjacency matrix of the graph Gn. As shown in Fig. 4.5, nodes represent the identified objects

such as lanes, roads, traffic signs, vehicles, pedestrians, etc., in a traffic scene. The adjacency
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matrix An indicates the pair-wise relations between each object in On. The extraction

pipeline first identifies the objects On by using Mask R-CNN [80]. Then, it generates an

inverse perspective mapping (also known as a “birds-eye view” projection) of the image to

estimate the locations of objects relative to the ego car, which are used to construct the

pair-wise relations between objects in An. For each camera angle, we calibrate the birds-eye

view projection settings using known fixed distances, such as the lane length and width, as

defined by the highway code. This enables us to estimate longitudinal and lateral distances

accurately in the projection. For datasets captured by a single vehicle, this step only needs

to be performed once. However, for datasets with a wide range of camera angles such as the

620-dash dataset introduced later in the paper, this process needs to be performed once per

vehicle. With a human operator, we found that this calibration step takes approximately 1

minute per camera angle on average.

The extraction pipeline identifies three kinds of pair-wise relations: proximity relations (e.g.

visible, near, very near, etc.), directional (e.g. Front Left, Rear Right, etc.) relations, and

belonging (e.g. car 1 isIn left lane) relations. Two objects are assigned the proximity rela-

tion, r ∈ {Near Collision (4 ft.), Super Near (7 ft.), Very Near (10 ft.), Near (16 ft.), Visible

(25 ft.)} provided the objects are physically separated by a distance that is within that rela-

tion’s threshold. The directional relation, r ∈ {Front Left, Left Front, Left Rear, Rear Left,

Rear Right, Right Rear, Right Front, Front Right}, is assigned to a pair of objects, in this

case between the ego-car and another car in the view, based on their relative orientation

and only if they are within the Near threshold distance from one another. Additionally, the

isIn relation identifies which vehicles are on which lanes (see Fig. 4.5). We use each vehicle’s

horizontal displacement relative to the ego vehicle to assign vehicles to either the Left Lane,

Middle Lane, or Right Lane using the known lane width. Our abstraction only considers

three-lane areas, and, as such, we map vehicles in all left lanes and all right lanes to the same

Left Lane node Right Lane node respectively. If a vehicle overlaps two lanes (i.e., during a

lane change), it is mapped to both lanes.
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4.4.3 Early Collision Prediction

As shown in Figure 4.4, in our collision prediction methodology, each image In is first con-

verted into a scene-graph Gn = {On, An}. Each node v ∈ On is initialized by a one-hot

vector (embedding), denoted by h
(0)
v . Then, the MR-GCN [144] layers are used to update

these embeddings via the edges in An. Specifically, the l-th MR-GCN layer computes the

node embedding for each node v, denoted as h
(l)
v , as follows:

h(l)
v = Φ0 · h(l−1)

v +
∑
r∈An

∑
u∈Nr(v)

1

|Nr(v)|
Φr · h(l−1)

u , (4.17)

where Nr(v) denotes the set of neighbors of node v with respect to the relation r ∈ An, Φr

is a trainable relation-specific transformation for relation r, and Φ0 is the self-connection

for each node v that accounts for the influence of h
(l−1)
v on h

(l)
v [144]. After the input is

passed through multiple MR-GCN layers, the set of node embeddings output by each layer

is collected and concatenated along the feature dimension to produce the final embedding

for each node v, denoted by HL
v = CONCAT({h(l)

v }|l = 0, 1, ..., L), where L is the index of

the last layer. Thus, if the model uses two MR-GCN layers with output size 64, the final

embedding for each node will contain 128 features.

The final embeddings for scene-graph Gn, denoted by Xprop
n , are then passed through a graph

pooling layer to filter out irrelevant nodes from the graph, creating the pooled set of node

embeddings Xpool
n and their edges Apool

n . The pooling layer is implemented as follows:

α = SCORE(Xprop
n ,Aprop

n ), (4.18)

P = topk(α), (4.19)

where SCORE can either be implemented as a top-k pooling (Top-K ) [67] or self-attention

graph pooling function (SAGPool) [108], α contains the score of each node in Gn, and P is
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the set of k highest scoring nodes in Gn. After pooling, the node embeddings and adjacency

matrix are denoted as Xpool
t and Apool

t computed as follows:

Xpool
t = (Xprop

t ⊙ tanh(α))P, (4.20)

Apool
t = Aprop

t (P,P) (4.21)

where ⊙ represents element-wise multiplication, ()P refers to the operation that selects only

the subset of nodes defined by P and ()(P,P) refers to the formation of the adjacency matrix

between the nodes in this subset. Then, for each scene-graph Gn, the corresponding Xpool
n is

passed through the graph READOUT operation that condenses the node embeddings to a

single graph embedding hGn as follows:

hGn = READOUT(Xpool
t ) (4.22)

where READOUT can be an operation such as averaging (mean-readout), summation (add-

readout), or retrieving the maximum (max-readout) in each feature dimension for the set of

pooled node embeddings Xpool
t .

Then, this spatial embedding hGn is passed to the temporal model (LSTM) to generate a

spatiotemporal embedding zn as follows:

zn, sn = LSTM(hGn , sn−1) (4.23)

Where sn−1 represents the hidden state of the LSTM after the previous time step. For each

timestamp n, the LSTM produces an output embedding zn and updates its hidden state sn.

Since the hidden state is carried over to the next time step n+ 1 and used to compute zn+1,

it enables the LSTM to model how the spatial embeddings hGn change over time.

Lastly, each spatiotemporal embedding zn is then passed through a Multi-Layer Perceptron
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Figure 4.5: An illustration of our scene-graph extraction process.

(MLP) that outputs each class’s confidence value. The two outputs of the MLP are compared,

and Ŷn is set to the index of the class with the greater confidence value (0 for no-collision

or 1 for collision). During training, we calculate the cross-entropy loss between each set of

non-binarized outputs Ŷn and the corresponding labels for backpropagation.

4.5 Experimental Results for Risk Assessment

For this work, we provide extensive experimental results to illustrate the accuracy of our

model and its ability to transfer knowledge (transferability) for a specific driving maneuver:

lane changes. This task by itself is crucial, given that 7.62% of all traffic accidents between

light vehicles can be attributed to improper execution of lane changes [117]. Besides, we also

evaluate our model’s capability for turning and entering or leaving the traffic flow of a road

(merging and branching, respectively). We evaluate our approach by comparing our model
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and a state-of-the-art SMT+CNN+LSTM-based risk assessment model [195]. We refer to

this model as the baseline. Besides, we provide results for our model’s best hyper-parameter

setting and perform an ablation study to evaluate the contribution of each major component

in our model.

4.5.1 Experimental Preparation

We prepared two types of datasets for our experiments (i) synthesized lane-changing datasets

and (ii) real-world driving datasets. To create the synthesized datasets, we developed a tool

to generate lane-changing clips using the Carla1 and Carla Scenario Runner2. We generated

the real-world dataset by extracting lane change clips and other driving actions from the

Honda Driving Dataset (HDD) [134].

Carla is an open-source driving simulator [54] that allows users to control a vehicle in either

manual or autopilot mode. The Carla Scenario Runner contains a set of atomic controllers

that enable users to control a car in a driving scene and perform complex driving maneuvers.

We modified the user script in Carla so that it can (i) select one autonomous car randomly

and switch its mode to manual mode and then (ii) utilize Scenario Runner’s function to force

the vehicle to change lanes.

The data-generating tool allows us to fabricate lane-changing clips directly instead of ex-

tracting them from long-driving clips. We generated a wide range of simulated lane changes

using the various presets in Carla that allowed us to specify the number of cars, pedestrians,

weather and lighting conditions, etc. Also, through the APIs provided by the Traffic Man-

ager (TM) of the Carla simulator, we were able to customize the driving characteristics of

every autonomous vehicle, such as the intended speed considering the current speed limit,

the chance of ignoring the traffic lights, or the chance of neglecting collisions with other

1https://github.com/carla-simulator/carla
2https://github.com/carla-simulator/scenario_runner

87

https://github.com/carla-simulator/carla
https://github.com/carla-simulator/scenario_runner


vehicles. This allowed us to simulate a wide range of realistic urban driving environments

and generate synthesized datasets suitable for training and testing a model.

We generated two synthesized lane-changing datasets: a 271-syn dataset and a 1043-syn

dataset, containing 271 and 1,043 lane-changing clips, respectively. In addition, we sub-

sampled the 271-syn and 1043-syn datasets further to create two balanced datasets that

have a 1:1 distribution of risky to safe lane changes: 96-syn and 306-syn. For real driving

datasets, we processed the HDD dataset to create a dataset called 1361-honda. Specifically,

1361-honda contains 571 lane changing, 350 turning, 297 branching, and 149 merging video

clips. For evaluating the capability of the model to transfer knowledge after training on 271-

syn and 1043-syn datasets, we subsampled 1361-honda to create a real-driving lane-changing

dataset which contains 571 lane-changing clips, denoted as the 571-honda dataset.

To label the video clips in both the real-world and synthesized datasets, we performed an

annotation process similar to the one used in [195]. The process starts with multiple human

annotators assigning a risk score to each clip that ranges from -2 to 2, where 2 implies a

highly risky driving scenario and -2 implies the safest driving scenario. Then for each video

clip, the risk labels of all the annotators are averaged and converted to a binary label y as

follows: if the average is ≤ 0, then the label y = 0 (safe) is assigned, else label y = 1 (risky)

is assigned.

In our work, we used five different anonymous annotators. After the annotation process, the

annotators were required to write down the criteria and rationale they used when annotating

the video clips. This process ensured that the annotators paid attention while labeling,

reducing the odds of trivial misjudgment of a driving scene’s risk level. The risk factors

common among the five annotators were the distance to other cars and the side curbs,

the speed relative to other vehicles, the sizes of adjacent vehicles, the presence of bikers

or pedestrians, and the traffic light status. Besides, the sudden or random appearance of

objects in the scene was also a critical factor in determining a driving scene’s risk level.
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Figure 4.6: Accuracy and AUC comparison between our approaches (Real Image and Carla
GT) and [195] on different datasets.

We randomly split each dataset into a training set and a testing set by the ratio 7:3 such

that the split is stratified, i.e., the proportion of risky to safe lane change clips in each of the

splits is the same. The models are first trained on the training set before being evaluated on

the testing set. The final score of a model on a dataset is computed by averaging over the

testing set scores for ten different stratified train-test splits of the dataset.

Our models were implemented using PyTorch and PyTorch-Geometric [123, 62]. We used the

ADAM optimizer for the training algorithm. We considered three learning rates: {0.0005,

89



0.0001, 0.00005}, and a weight decaying rate of 5 × 10−4 per epoch. We used a batch size

of 16 sequences for each training epoch. In our experiments, we trained each model for 200

epochs. Regarding the setting of hyper-parameters, we considered the options described

in Section 4.3.3. From our experimentation, we found that the best option for the hyper-

parameters of our model is a mini-batch size of 16 sequences, a learning rate of 0.00005,

two MR-GCN layers with 100 hidden units, a SAGPool pooling layer with a ratio of 0.5,

sum-pooling for graph readout operation and LSTM-attn for temporal modeling.

To ensure a fair comparison between our model and the baseline, we reported the performance

of the model configurations with the lowest validation loss throughout the training in the

results section. All the experiments were conducted on a server with one NVIDIA TITAN-

XP graphics card and one NVIDIA GeForce GTX 1080 graphics card. For implementing

the baseline model [195], we used the source code available at their open-source repository3.

The source code and scene-graph datasets used in our experiments are open-sourced at

https://github.com/louisccc/sg-risk-assessment.

4.5.2 The Evaluation of Subjective Risk Assessment

We evaluate each model’s performance by measuring its classification accuracy and the Area

Under the Curve (AUC) of the Receiver Operating Characteristic (ROC) for each dataset.

The classification accuracy is the ratio of the number of correct predictions on the test set

of a dataset to the total number of samples in the testing set. AUC sometimes called a

balanced accuracy measure [150], measures the probability that a binary classifier ranks

a positive sample more highly than a random negative sample. This is a more balanced

measure for measuring accuracy, especially with imbalanced datasets (i.e., 271-syn, 1043-

syn, 571-honda).

3https://github.com/Ekim-Yurtsever/DeepTL-Lane-Change-Classification

90

https://github.com/louisccc/sg-risk-assessment
https://github.com/Ekim-Yurtsever/DeepTL-Lane-Change-Classification


Figure 4.6 compares our model’s performance and the baseline model [195] for all the syn-

thetic datasets. The results show that our approach consistently outperforms [195] across all

the datasets in terms of both classification accuracy and AUC. Particularly, on the 1043-syn

dataset, our Image-based and GT pipelines outperform [195] in classification accuracy by

4.4% and 5% respectively (i.e., the accuracy of 95.8% and 96.4% compared to 91.4% for the

baseline).

We found that the performance difference between our approach and the baseline increased

when the training datasets were smaller. Figure 4.6 shows that the difference in the accuracy

between our approach using the GT pipeline and the baseline [195] is 5% for the 1043-syn

dataset and 8.7% for the 271-syn dataset. This result indicates that our approach can learn

an accurate model even from a smaller dataset. We postulate this is a direct result of its use

of a scene-graph based IR.

We also found that our approach performs better than the baseline on balanced datasets.

Among the datasets used for evaluation of the models, the datasets 271-syn and 306-syn

contain roughly the same number of clips but different distribution of safe to risky lane

changes (2.30:1 for 271-syn vs. 1:1 for 306-syn). We found that the performance difference

between our image-based approach and the baseline on these datasets is 12.9% on the 306-

syn dataset compared to 7.8% on the 271-syn dataset, indicating that our approach can

discriminate between the two classes better than the baseline.

We also evaluated the contribution of each functional component in our proposed model

by conducting an ablation study. The results of the study are shown in Table 4.1. From

Table 4.1 we find that the simplest of the models, with no MR-GCN layer (replaced with an

MLP layer) and a simple average of the embeddings in hI for the temporal model (denoted

as mean in Table 4.1), achieves a classification accuracy of 75%. Replacing mean with an

LSTM layer for temporal modeling yields a 10.5% increase in performance. We also find that

including a single MR-GCN with 64 hidden units and sum-pooling to the simplest model
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Spatial Modeling Temporal Modeling Avr. Acc. Avr. AUC

Ablation
Study

No MR-GCN mean 0.762 0.823
No MR-GCN LSTM-last 0.867 0.929
1 MR-GCN mean 0.910 0.960
1 MR-GCN LSTM-last 0.943 0.977

Temporal
Attention

No MR-GCN LSTM-last 0.867 0.929
No MR-GCN LSTM-attn 0.868 0.928
1 MR-GCN LSTM-last 0.943 0.977
1 MR-GCN LSTM-attn 0.950 0.977

Spatial
Attention

1 MR-GCN mean 0.910 0.960
1 MR-GCN, TopkPool mean 0.886 0.930
1 MR-GCN, SAGPool mean 0.937 0.968

Table 4.1: The results of the Carla GT approach on 1043-syn dataset with various spatial
and temporal modeling settings. In these experiments, we used MR-GCN layers with 64
hidden units and sum-pooling as the graph readout operation.

results in a 14.8% performance gain over the simplest model. The performance gain achieved

by just including the MR-GCN layer suggests the effectiveness of considering the relations

between objects. Finally, we find that the model with one MR-GCN with 64 hidden units

and sum-pooling plus the LSTM layer for temporal modeling yields the maximum gain of

18.1% over the simplest model. These results demonstrate the importance of each component

in the model we propose.

4.5.3 The Impact of Attention Mechanisms on Risk Assessment

Here, we evaluate the various attention components of our proposed model. To evaluate

the benefit of attention over the spatial domain, we tested our model with three different

graph attention methods: no attention, SAGPool, and TopkPool. To evaluate the impact of

attention on the temporal domain, we tested our model with the following temporal models:

mean, LSTM-last, and LSTM-attn. The detailed results that elucidate the effectiveness of

these different attention mechanisms are presented in Table 4.1.
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Figure 4.7: The results of comparing transferability between our Real Image model and [195].
In this experiment, we trained our model using our best hyper-parameters on both 271-syn
dataset and 1043-syn dataset. Then we tested the accuracy of our approach on both the
original dataset and 571-honda dataset. We followed the same procedure to train and test
[195].

For evaluating the benefits of graph attention, we start with an attention-free model: one

MR-GCN layer with sum-pooling + mean. In comparison, the model that uses SAGPool for

attention on the graph shows a 2.7% performance gain over the attention-free model. This

result indicates that attention over both nodes and relations allows SAGPool to filter out

better irrelevant nodes from each scene-graph. We found that the model using TopkPool as

the graph-attention layer became relatively unstable, resulting in a 2.4% performance drop

compared to the attention-free model. This is likely because TopkPool ignores the relations

between nodes when calculating α. Another reason for this instability could be the random

initialization of weights in TopkPool, which can exponentially affect the overall performance

as stated in [99].

For evaluating the impact of attention on the temporal model, we evaluated the effects of

adding a temporal attention layer to the following two models: (i) with no MR-GCN layers

and no temporal attention and (ii) with one MR-GCN layer and no temporal attention.

Compared to the model with no MR-GCN layer and no temporal attention, the model’s
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performance with no MR-GCN and LSTM-attn was found to be 0.1% higher. We also found

that adding LSTM-attn to the model with one MR-GCN layer increases its performance

by 0.7% over the same model with no temporal attention. These results demonstrate that

the inclusion of temporal attention does improve performance, though only marginally. The

reason why we only see a marginal improvement can be that the temporal attention layer is

less relevant to the dataset that our model was trained on. When preparing these datasets,

we manually removed the frames irrelevant to a lane change, exactly the set of frames that

temporal attention would have given less attention to, thus minimizing its effect.

Figure 4.8 demonstrates our model’s capability to pinpoint the critical factors in assessing

driving risk in both temporal and spatial domains. As Equation 4.7 shows, the node attention

weights α are used by our graph pooling layer to filter the objects in a scene-graph that are

less significant for assessing the risk. In the temporal domain, the attention weights, β, allow

the LSTM encoder to score each intermediate hidden state (pt) and retain only the useful

information in Z for the final risk assessment. Table 1 demonstrates the benefit of applying

attention layers in risk assessment. Specifically, it shows that the addition of the SAGPool

attention layer improves the accuracy of the baseline model (1 MR-GCN + mean) by 2.7%

and that including LSTM-attn to the baseline model (1 MR-GCN + LSTM-last) increases

the performance by 0.3%.

In addition to improving our model’s performance, including graph and temporal attention

improves the explainability of our model’s risk assessment decisions. We demonstrate this ca-

pability using the visualization of both graph and temporal attention provided in Figure 4.8.

Figure 4.8 shows the trend of the attention scores β1, β2, ...βT for a risky lane changing

clip. Intuitively, the frame with a higher attention score αt contributes more to the context

vector c (shown in Equation 4.12), thus playing a more critical role in calculating hGt and

contributing to the final risk assessment decision. In this risky lane-changing example, the

temporal attention scores progressively increase between frames 19 and 32 during the lane
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change; and the highest frame attention weights appear in frames 33 and 34, which are the

frames immediately before the collision occurs. Figure 4.8 also shows the projection scores

for the node attention layer, where a higher score for a node indicates that it contributes

more to the final risk assessment prediction. As shown in this example, as the ego car ap-

proaches the yellow vehicle, the node attention weights for the ego car and the yellow vehicle

are increased proportionally to the scene’s overall risk. In the first few frames, the risk of

collision is low; thus, the node attention weights are low; however, in the last few frames,

a collision between these two vehicles is imminent; thus, the attention weights for the two

cars are much higher than for any other nodes in the graph. This example demonstrates

our model’s capability to pinpoint the critical factors in a scene-graph that contributed to

its risk assessment decision. This capability can be valuable for debugging edge cases at

design time, thus reducing the chances of ADS making unexpected, erroneous decisions in

real-world scenarios and improving human trust in the system.

Frame#2 Frame#27 Frame#33

Figure 4.8: The visualization of attention weights in both spatial (α) and temporal (β)
domains using a risky lane-changing clip as an example. We used a gradient color from light
yellow to red for visualizing each node’s projection score that indicates its importance in
calculating a scene-graph embedding. We also used a gradient colored (white to red) bar
chart to visualize the temporal attention coefficients β1, β2, ...β36 used for calculating the
context vector c.
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4.5.4 Evaluating Transferability: From Virtual To Real-Driving

Here, we demonstrate our approach’s capability to effectively transfer the knowledge learned

from a simulated dataset to a real-world dataset. To demonstrate this capability, we use the

model weights and parameters learned from training on the 271-syn dataset or the 1043-syn

dataset directly for testing on the real-world driving dataset: 571-honda. We also compare

the transferability of our model with that of the baseline method [195]. The results are

shown in Figure 4.7.

As expected, the performance of both our approach and the baseline degrades when tested

on 571-honda dataset. However, as Figure 4.7 shows, the accuracy of our approach only

drops by 6.7% and 3.5% when the model is trained on 271-syn and 1043-syn, respectively,

while the baseline’s performance drops drastically by a much higher 21.3% and 14.9%, re-

spectively. The results categorically show that our proposed model can transfer knowledge

more effectively than the baseline.

4.5.5 Evaluating Risk Assessment for Other Driving Maneuvers

We show results from evaluating our model’s performance on various other driving scenar-

ios available in the HDD: turning, branching, merging, etc. The results for training and

evaluating our model on the 1361-honda dataset are shown in Table 4.2. From Table 4.2,

we can observe that our approach significantly outperforms [195] in both overall accuracy

(0.86 v.s. 0.58) and overall AUC (0.91 v.s. 0.61), indicating that our approach can better

assess risk across various driving scenarios. In Table 4.2 we also show the performance for

each action type. The results show that our approach also outperforms [195] on each type

of driving scenario. Our approach slightly underperforms on turning scenarios compared to

its performance on other action types. This discrepancy is likely because turning scenarios

are intrinsically more complicated than straight-road driving scenarios (lane change, branch,
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merge). Another reason could be that the heading of vehicles is a contributing factor in

complicated scenarios, while the scene-graph used in our work contains only distance and

directional relations.

Metric Action Type Ours [195]

Accuracy

Overall 0.8655 0.5844
Lane Changing 0.8710 0.5714
Merging 0.8462 0.5854
Branching 0.9101 0.5556
Turning 0.8211 0.6218

AUC

Overall 0.9124 0.6078
Lane Changing 0.9105 0.5877
Merging 0.9395 0.6526
Branching 0.9462 0.5807
Turning 0.8645 0.6400

Table 4.2: The breakdown of risk assessment performance by driver action types (Lane-
Changing, Merging, Branching, and Turning) evaluated on 1361-Honda dataset.

4.6 Experimental Results for Early Collision Predic-

tion

4.6.1 Experimental Preparation

This section provides extensive experimental results to demonstrate sg2vec’s performance,

efficiency, and transferability compared to the state-of-the-art collision prediction model,

DPM [155]. For sg2vec, we used 2 MR-GCN layers, each of size 64, one SAGPooling layer

with a pooling ratio of 0.25, one add-readout layer, one LSTM layer with hidden size 20,

one MLP layer with an output of size 2, and a LogSoftmax to generate the final confidence

value for each class. For the DPM, we followed the architecture used in [155], which uses

one 64x64x5 Convolutional LSTM (ConvLSTM) layer, one 32x32x5 ConvLSTM layer, one

16x16x5 ConvLSTM layer, one MLP layer with output size 64, one MLP layer with output
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size 2, and a Softmax to generate the final confidence value. For both models, we used a

dropout of 0.1 and ReLU activation. The learning rates were 0.00005 for sg2vec and 0.0001

for DPM. We ran the experiments shown in Sections 4.6.2 and 4.6.3 on a Windows PC with

an AMD Ryzen Threadripper 1950X processor, 16 GB RAM, and an Nvidia GeForce RTX

2080 Super GPU.

a) 1043-syn

b) 571-honda

c) 620-dash

no lane markings varying camera angles

consistent camera anglesclear lane markings

Figure 4.9: Examples of driving scenes from our a) synthetic datasets, b) typical real-world
dataset, and c) complex real-world dataset. In a), all driving scenes occur on highways
with the same camera position and clearly defined road markings; lighting and weather are
dynamically simulated in CARLA. In b) driving scenes occur on multiple types of clearly
marked roads but lighting, camera angle, and weather are consistent across scenes. c) con-
tains a much broader range of camera angles as well as more diverse weather and lighting
conditions, including rain, snow, and night-time driving; it also contains a large number of
clips on unpaved or unmarked roadways, as shown.

Dataset Preparation: We prepared three types of datasets for our experiments: (i) synthe-

sized datasets, (ii) a typical real-world driving dataset, and (iii) a complex real-world driving

dataset. Examples from each dataset are shown in Figure 4.9. Our synthetic datasets focus

on the highway lane change scenario as it is a common AV task. To evaluate the transfer-

ability of each model from synthetic datasets to real-world driving, we prepared a typical

real-world dataset containing lane-change driving clips. Finally, we prepared the complex

real-world driving dataset to evaluate each model’s performance on a challenging dataset

containing a broad spectrum of collision types, road conditions, and vehicle maneuvers. All

datasets were collected at a 1280x720 resolution, and each clip spans 1-5 seconds.
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To synthesize the datasets, we developed a tool using CARLA [54], an open-source driving

simulator, and CARLA Scenario Runner4 to generate lane change video clips with/without

collisions. We generated a wide range of simulated lane changes with different numbers of

cars, pedestrians, weather and lighting conditions, etc. We also customized each vehicle’s

driving behavior, such as their intended speed, probability of ignoring traffic lights, or the

chance of avoiding collisions with other vehicles. We generated two synthetic datasets: a

271-syn dataset and a 1043-syn dataset, containing 271 and 1,043 video clips, respectively.

These datasets have no-collision:collision label distributions of 6.12:1 and 7.91:1, respectively.

In addition, we sub-sampled the 1043-syn dataset to create 306-syn: a balanced dataset that

has a 1:1 distribution. Our synthetic scene-graph datasets5 and our source code6 are open-

source and available online.

As for the typical real-world driving dataset, we denoted it as 571-honda which is a subset

of the Honda Driving Dataset (HDD) [135] containing 571 lane-change video clips from real-

world driving with a distribution of 7.21:1. The HDD was recorded on the same vehicle

during mostly safe driving in the California Bay Area.

Our complex real-world driving dataset, denoted as 620-dash, contains very challenging

real-world collision scenarios drawn from the Detection of Traffic Anomaly dataset [184].

This dataset contains a wide range of drivers, car models, driving maneuvers, weather/road

conditions, and collision types, as recorded by on-board dashboard cameras. Since the

original dataset contains only collision clips, we prepared 620-dash by splitting each clip in

the original dataset into two parts: (i) the beginning of the clip until 1 second before the

collision, and (ii) from 1 second before the collision until the end of the collision. We then

labeled part (i) as ‘no-collision’ and part (ii) as ‘collision.’ The 620-dash dataset contains

315 collision video clips and 342 non-collision driving clips.

4https://github.com/carla-simulator/scenario_runner
5https://dx.doi.org/10.21227/c0z9-1p30
6https://github.com/AICPS/sg-collision-prediction
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Labeling and Pre-Processing: We labeled the synthetic datasets and the 571-honda

dataset using human annotators. The final label assigned to a clip is the average of the

labels assigned by the human annotators rounded to 0 (no collision) and 1 (collision/near

collision). Each frame in a video clip is given a label identical to the entire clip’s label to

train the model to identify the preconditions of a future collision.

For sg2vec, all the datasets were pre-processed using the scene-graph extraction pipeline to

construct the scene-graphs for each video clip. For a given sequence, sg2vec can leverage

the full history of prior frames for each new prediction. For the DPM, the datasets were

pre-processed to match the input format used in its original implementation [155]. Thus,

the DPM uses 64x64 grayscale versions of the clips in the datasets turned into sets of sub-

sequences Jn for a clip of length l defined as follows.

Jn = {In, In+1, In+2, In+3, In+4}, for n ∈ [1, l − 4] (4.24)

Since DPM only uses five prior frames to make each prediction, we also present results for

sg2vec using the same length of history, denoted as sg2vec (5-frames) in the results.

4.6.2 The evaluation of SG2VEC on Collision Prediction

We evaluated sg2vec and the DPM using classification accuracy, the area under the ROC

curve (AUC) [26], and Matthews Correlation Coefficient (MCC) [45]. MCC is considered

a balanced measure of performance for binary classification even on datasets with signif-

icant class imbalances. The MCC score outputs a value between -1.0 and 1.0, where 1.0

corresponds to a perfect classifier, 0.0 to a random classifier, and -1.0 to an always incorrect

classifier. Although class re-weighting helps compensate for the dataset imbalance during

training, classification accuracy is typically less reliable for imbalanced datasets, so the pri-

mary metric we use to compare the models is MCC. We used stratified 5-fold cross-validation
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Dataset Model Accuracy AUC MCC
271-syn sg2vec (5-frames) 0.8979 0.9541 0.5362
271-syn sg2vec 0.8812 0.9457 0.5145
271-syn DPM 0.8733 0.8939 0.2160
306-syn sg2vec (5-frames) 0.7946 0.8653 0.5790
306-syn sg2vec 0.8372 0.9091 0.6812
306-syn DPM 0.6846 0.6881 0.3677
1043-syn sg2vec (5-frames) 0.9142 0.9623 0.5323
1043-syn sg2vec 0.9095 0.9477 0.5385
1043-syn DPM 0.8834 0.9175 0.2912
620-dash sg2vec (5-frames) 0.6534 0.7113 0.3053
620-dash sg2vec 0.7007 0.7857 0.4017
620-dash DPM 0.4890 0.4717 -0.0366

Table 4.3: Classification accuracy, AUC, and MCC for sg2vec (Ours) and DPM.

to produce the final results shown in Table 4.3 and Figure 4.10.

The performance of sg2vec and the DPM on our synthetic datasets is shown in Table

4.3. We find that our sg2vec achieves higher accuracy, AUC, and MCC on every dataset,

even when only using five prior frames as input. In addition to predicting collisions more

accurately, sg2vec also infers 5.5x faster than the DPM on average. We attribute this to the

differences in model complexity between our sg2vec architecture and the much larger DPM

model. Interestingly, sg2vec (5-frames) achieves slightly better accuracy and AUC than

sg2vec on the imbalanced datasets and slightly lower overall performance on the balanced

datasets. This is likely because a large number of safe lane changes in the imbalanced

datasets adds noise during training and makes the full-history version of the model perform

slightly worse. However, the full model can learn long-tail patterns for collision scenarios

and performs better on balanced datasets.

The DPM achieves relatively high accuracy and AUC on the imbalanced 271-syn and 1043-

syn datasets but suffers significantly on the balanced 306-syn dataset. This drop indicates

that the DPM could not identify the minority class (collision) well and tended to over-predict

the majority class (no-collision). In terms of MCC, the DPM scores higher on the 306-syn
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Exp. Spatial Model Graph Pooling Temporal Model Acc. MCC

Ablation
Study

MLP none none 0.7605 0.2612
MLP none LSTM 0.7660 0.2874
MRGCN none none 0.8605 0.4792
MRGCN none LSTM 0.8931 0.5561

Graph
Attn. and
Pooling

MRGCN Top-K none 0.8288 0.3458
MRGCN SAGPool none 0.8738 0.5032
MRGCN Top-K LSTM 0.9014 0.5565
MRGCN SAGPool LSTM 0.9076 0.5407

Table 4.4: sg2vec ablation study on the 1043-syn dataset.

dataset than it scores on the other datasets. This result is because the 306-syn dataset has

a balanced class distribution compared to the other datasets, which could enable the DPM

to improve its prediction accuracy on the collision class.

In contrast, the sg2vec methodology performs well on both balanced and imbalanced syn-

thetic datasets with an average MCC of 0.5860, an average accuracy of 87.97%, and an

average AUC of 0.9369. Since MCC is scaled from -1.0 to 1.0, sg2vec achieves a 14.72%

higher average MCC score than the DPM model.

The results from our sg2vec ablation study are shown in Table 4.4 and support our hy-

pothesis that spatial modeling with MRGCN and temporal modeling with LSTM are core

to sg2vec’s collision prediction performance. However, the MRGCN appears to be slightly

more critical to performance than the LSTM. Interestingly the choice of pooling layer (no

pooling, Top-K pooling, or SAG Pooling) does not seem to significantly affect performance

at this task as long as LSTM is used; when no LSTM is used SAG Pooling presents a clear

performance improvement.

The performance of both the models significantly drops on the highly complex real-world

620-dash dataset due to the variations in the driving scenes and collision scenarios. This drop

is to be expected as this dataset contains a wide range of driving actions, road environments,

and collision scenarios, increasing the difficulty of the problem significantly. We took several
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steps to try and address this performance drop. First, we improved the birds-eye view

(BEV) calibration on this dataset in comparison to the other datasets. Since the varying

camera angles and road conditions in this dataset impact our ability to properly calibrate

sg2vec’s BEV projection in a single step, we created custom BEV calibrations for each clip

in the dataset, which improved performance somewhat. However, as shown in Figure 4c,

a significant part of the dataset consists of driving clips on roads without any discernible

lane markings, such as snowy, unpaved, or unmarked roadways. These factors make it

challenging to correlate known fixed distances (i.e., the width and length of lane markings)

with the projections of these clips. To further improve performance on this particular dataset,

we performed extensive architecture and hyperparameter tuning. We found that, with one

MRGCN layer of size 64, one LSTM layer with the hidden size 100, no SAGPooling layer,

and a high learning rate and batch size, we achieved significantly better performance than

the model architecture discussed at the beginning of Section 4.6.1 (2 MRGCN layers of size

64, one LSTM layer with hidden size 20, and a SAGPooling layer with a keeping ratio of

0.5). We believe this indicates that the temporal features of each clip in this dataset are

more closely related to collision likelihood than the spatial features in each clip. As a result,

the additional spatial modeling components were likely causing overfitting and skewing the

spatial embedding output. The spatial embeddings remained more general with a simpler

spatial model (1 MRGCN and no SAGPooling). This change, combined with using a larger

LSTM layer, enabled the model to capture more temporal features when modeling each clip

and better generalize to the testing set. Model performance on this dataset and similar

datasets could likely be improved by acquiring more consistent data via higher-resolution

cameras with fixed camera angles and more accurate BEV projection approaches. However,

as collisions are rare events, there are little to no datasets containing real-world collisions that

meet these requirements. Despite these limitations, sg2vec outperforms the DPM model

by a significant margin, achieving 21.17% higher accuracy, 31.40% higher AUC, and a

21.92% higher MCC score. Since DPM achieves a negative MCC score, its performance on
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Dataset Model ATP Avg. Seq. Len. Ratio
271-syn sg2vec (Ours) 10.004 33.920 0.2949
271-syn DPM 17.399 32.899 0.5289
1043-syn sg2vec (Ours) 6.442 37.343 0.1725
1043-syn DPM 9.018 37.856 0.2382

Table 4.5: Average time of prediction (ATP) for collisions.

this dataset is worse than that of a random classifier (MCC of 0.0). Consistent with the

synthetic dataset results, sg2vec using all frames performs better on the balanced 620-dash

dataset than sg2vec (5-frames). Overall, these results show that, on very challenging and

complex real-world driving scenarios, sg2vec can perform much better than the current

state-of-the-art.

Time of Prediction: Since collision prediction is a time-sensitive problem, we evaluated

our methodology and the DPM on their average time-of-prediction (ATP) for video clips

containing collisions. To calculate the ATP, we recorded the first frame index in each colli-

sion clip when the model correctly predicts that a collision would occur. We then averaged

these indices and compared them with the average collision video clip length. Essentially,

ATP gives an estimate of how early each model can predict a future collision. These results

are shown in Table 4.5. On the 1043-syn dataset, sg2vec achieves 0.1725 for the ratio of

the ATP and the average sequence length while the DPM achieves a ratio of 0.2382, indi-

cating that sg2vec predicts future collisions 39.07% earlier than the DPM on average. In

the context of real-world collision prediction, the average sequence in the 1043-syn dataset

represents 1.867 seconds of data. Thus, our methodology predicted collisions 122.7 millisec-

onds earlier than DPM on average. This extra time can be critical for ensuring that the AV

avoids an impending collision.
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Figure 4.10: Performance after transferring the models trained on synthetic 271-syn and
1043-syn datasets to the real-world 571-honda dataset.

4.6.3 The evaluation of SG2VEC’s Transferability for Collision

Prediction

The collision prediction models trained on simulated datasets must be transferable to real-

world driving as they can differ significantly from simulations. To evaluate each model’s

ability to transfer knowledge, we trained each model on a synthetic dataset before testing

it on the 571-honda dataset. No additional domain adaptation was performed. We did not

evaluate transferability to the 620-dash dataset because it contains a wide range of highly

dynamic driving maneuvers that were not present in our synthesized datasets. As such,

evaluating transferability between our synthesized datasets and the 620-dash dataset would

yield poor performance and would not provide insight. Figure 4.10 compares the accuracy

and MCC for both the models on each training dataset and the 571-honda dataset after

transferring the trained model.

We observe that the sg2vec model achieves a significantly higher MCC score than the DPM

model after the transfer, suggesting that our methodology can better transfer knowledge from
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a synthetic to a real-world dataset compared to the state-of-the-art DPM model. The drop in

MCC values observed for both the models when transferred to the 571-honda dataset can be

attributed to the characteristic differences between the simulated and real-world datasets;

the 571-honda dataset contains a more heterogeneous set of road environments, lighting

conditions, driving styles, etc., so a drop in performance after the transfer is expected. We

also note that the MCC score for the sg2vec model trained on 271-syn dataset drops

more than the model trained on the 1043-syn dataset after the transfer, likely due to the

smaller training dataset size. Regarding accuracy, the sg2vec model trained on 1043-

syn achieves 4.37% higher accuracy and the model trained 271-syn dataset achieves 1.47%

lower accuracy than the DPM model trained on the same datasets. The DPM’s similar

accuracy after transfer likely results from the class imbalance in the 571-honda dataset.

Overall, we hypothesize that sg2vec’s use of an intermediate representation (i.e., scene-

graphs) inherently improves its ability to generalize and thus results in an improved ability

to transfer knowledge compared to CNN-based deep learning approaches.

4.6.4 Experimental Results: Evaluation on Industry-Standard AV

Hardware

To demonstrate that the sg2vec is implementable on industry-standard AV hardware,

we measured its inference time (milliseconds), model size (kilobytes), power consumption

(watts), and energy consumption per frame (milli-joules) on the industry-standard Nvidia

DRIVE PX 2 platform, which was used by Tesla for their Autopilot system from 2016 to 2018

[63]. Our hardware setup is shown in Figure 4.11. For the inference time, we evaluated the

average inference time (AIT) in milliseconds taken by each algorithm to process each frame.

We recorded power usage metrics using a power meter connected to the power supply of the

PX 2. To ensure that the reported numbers only reflected each model’s power consumption

and not that of background processes, we subtracted the hardware’s idle power consumption
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Figure 4.11: Our experimental setup for evaluating sg2vec and DPM on the industry-
standard Nvidia DRIVE PX 2 hardware.

Model PC AIT (ms) PX2 AIT (ms) Size (KB) Power (W) Energy/frame (mJ)
sg2vec 0.2549 0.4828 331 2.99 1.44
DPM 1.393 4.535 2,764 4.42 20.0

Table 4.6: Performance evaluation of inference on 271-syn on the Nvidia DRIVE PX 2.

from the averages recorded during each test. For a fair comparison, we captured the metrics

for the core algorithm (i.e., the sg2vec and DPM model), excluding the contribution from

data loading and pre-processing. Both models were run with a batch size of 1 to emulate the

real-world data stream where images are processed as they are received. For comparison, we

also show the AIT on a PC for the two models.

Our results are shown in Table 4.6. sg2vec performs inference 9.3x faster than the DPM

on the PX 2 with an 88.0% smaller model and 32.4% less power, making it undoubtedly

more practical for real-world deployment. Our model also uses 92.8% less energy to process

each frame, which can be beneficial for electric vehicles with limited battery capacity. With
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an AIT of 0.4828 ms, sg2vec can theoretically process up to 2,071 frames/second (fps). In

contrast, with an AIT of 4.535 ms, the DPM can only process up to 220 fps. In the context

of real-world collision prediction, this means that sg2vec could easily support multiple 60

fps camera inputs from the AV while DPM would struggle to support more than three.

4.7 Summary

In this chapter, we summarize graph learning applications on two critical AV safety-driven

tasks. Subjective risk assessment is a challenging, safety-critical problem that requires a

good semantic understanding of many possible road scenarios. Our results show that our

scene-graph augmented approach outperforms state-of-the-art techniques at risk assessment

tasks regarding accuracy (95.8% vs. 91.4%) and AUC (0.978 vs. 0.958). We also show that

our approach can learn with much less training data than these techniques, as our approach

achieves 91.8% accuracy on the 96-syn dataset compared to 78.2% accuracy achieved by

[195]. Additionally, our results show that our approach can better transfer knowledge gained

from simulated datasets to real-world datasets (5.0% avg. acc. drop for our approach vs.

18.1% avg. acc. drop for [195]). We also show that using spatial and temporal attention

components improves our approach’s performance and explainability. Finally, our results

illustrate that our model can more accurately assess the risk of diverse driving maneuvers

than the state-of-the-art model (86.5% for our approach vs. 58.4% for [195]).

For collision prediction, we demonstrated that our sg2vec outperforms the state-of-the-art

method, DPM, in terms of average MCC (0.5055 vs. 0.2096), average inference time (0.255

ms vs. 1.39 ms), and average time of prediction (39.07% sooner than DPM). Additionally,

we demonstrated that sg2vec could transfer knowledge from synthetic datasets to real-

world driving datasets more effectively than the DPM, achieving an average transfer MCC

of 0.327 vs. 0.060. Finally, we showed that our methodology performs faster inference than
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Figure 4.12: The differences between the scene-graphs generated by RS2G and those ex-
tracted with a rule-based method for a driving scene.

the DPM (0.4828 ms vs. 4.535 ms) with a smaller model size (331 KB vs. 2,764 KB) and

reduced power consumption (2.99 W vs. 4.42 W) on the industry-standard Nvidia DRIVE

PX 2 autonomous driving platform. In the context of real-world collision prediction, these

results indicate that sg2vec is a more practical choice for AV safety and could significantly

improve consumer trust in AVs. Few works have explored graph-based solutions for other

complex AV challenges such as localization, path planning, and control. These are open

research problems that we reserve for future work.

To further increase the robustness and performance, it can be observed that our approaches

previously mentioned in this chapter may be constrained by the domain-specific rules used

for graph extraction that can vary in effectiveness across domains. As shown in Figure 4.12,

our SG2VEC approach uses a rule-based scene-graph extraction and embedding approach,

enabling GL algorithms to explicitly model inter-object relationships for scene understanding

tasks such as risk assessment or collision prediction. However, SG2VEC requires domain-

knowledge rules to define when to build graph edges for each relation type, which can limit

its generalization ability. One solution to increase the generalization is by proposing inte-

grating a data-driven scene-graph extraction component into the SG2VEC approach. As

an ongoing work, we propose a new data-driven approach, RS2G, for learning the rules for
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building relations from understanding driving scenarios [112] and demonstrate its benefits

in advancing the performance of scene understanding tasks.
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Chapter 5

Conclusion

Overall, through the exploration across many subfields, the results support the claim that

graph learning can assist in automating Cognitive Intelligence for Embedded Systems (ES)

and Cyber-Phsycial Systems (CPS) and making them more robust in terms of performance,

generalization, as well as making explainable decisions. Chapter 2 and Chapter 3 show that

graph learning can better generalize the knowledge from one dataset to various testing scenar-

ios. Specifically, Chapter 2 demonstrates that HW2VEC automates the feature extraction

process from the graphical representation of hardware designs. By doing so, therefore, it can

model the behavior hardware designs into vectorized representations and use them to imple-

ment several downstream tasks. For detecting hardware Trojans, we showed that it could

process hardware designs at the RTL level and extract meaningful information for identifying

hardware Trojans from designs. Similarly, HW2VEC can help increase the abstraction of IP

piracy identification to a behavioral level without any adding extra hardware cost. In Chap-

ter 3, more sophisticated Graph-of-Graph (GoG) representations were proposed to model

the behavioral information for software binaries. By imposing the architectural similarities

supervision, the CFG2VEC methodology combines the control-flow and function call infor-

mation, capable of learning the CPU architectural-agnostic features and generalizing the
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task of function name prediction for binary functions across various CPU architectures.

In Chapter 4, we further demonstrate the power of graph learning in improving the scene

understanding capabilities for cyber-physical systems, namely, autonomous driving systems.

The proposal of scene-graph representation allows us to capture the relationships between

traffic participants in a more structured and simplified way. Combined with the spatiotem-

poral graph embedding network, this novel framework, SG2VEC, can better identify the

driving risk and predict the collision to improve the safety of autonomous driving systems.

Because of such an intermediate representation between perception and reasoning processes,

SG2VEC can understand the scenarios more robustly in generalizing the learning from syn-

thetic data to real-world driving and easily transferring the learned knowledge to different

driving domains.

Although this dissertation demonstrates that graph learning is a powerful tool in advancing

the cognitive intelligence of embedded systems and cyber-physical systems, we want to argue

that graph learning is not the only tool that can achieve the same goal. As a human who

can have a very robust cognitive intelligence, our thought process is indeed much more

complicated than we expected. As mentioned in [70], a human-like mind can be structured

as a high-level breakdown of several sub-processes, such as reactive processes, deliberative

processes, and meta-cognitive processes, and so on, interact with each other to process

the information sent from the preception subsystem and complete the decision process and

command our action subsystem. To make such a cognitive system more robust, enhancing

the methodology to have better generalization is still a challenging research problem but has

several benefits in various application fields. As evidenced in Chapter 2, in hardware security,

new types of hardware trojan appear very frequently so whether the machine learning models

or methodologies can generalize the knowledge of identifying hardware Trojans to the known

designs and even completely unseen designs becomes critically important. In Chapter 4,

automating the scene-graph extraction is a natural next step for the graph learning research
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on autonomous driving systems because domain experts’ graph extraction rules may only

apply to a set of application traffic scenarios. Besides, automating the scene-graph extraction

process also allows more information to be fused into the representations. Lastly, no matter

what direction we are seeking, the most critical question is: how to embed human-like level

computational intelligence into the embedded system and cyber-physical system. Answering

this question remains an open challenge yet important as it can get us closer to the true

”Autonomy” and drastically improve human lives.
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Appendix A

Other Research Areas

A.1 Overview

In addition to the research areas discussed in the Chapters of this dissertation, I have also

studied several other relevant research topics. Below, these topics and their related publica-

tions are briefly summarized.

A.2 Machine Learning for Sabotage Attack Detection

in Advanced Additive Manufacturing

Additive Manufacturing (AM), or 3D Printing, is seeing practical use for the rapid proto-

typing and production of industrial parts. The digitization of such systems not only makes

AM a crucial technology in Industry 4.0 but also presents a broad attack surface that is

vulnerable to sabotage attacks [43]. In the field of AM security, sabotage attacks are cyber-

attacks that introduce inconspicuous defects to a manufactured component at any specific
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process of the AM digital process chain, resulting in the compromise of the component’s

structural integrity and load-bearing capabilities [37]. Defense mechanisms that detect such

attacks using side-channel analysis have been studied [35, 41, 37]. However, most current

works focus on modeling the state of AM systems using a single side-channel, thus limit-

ing their effectiveness at attack detection. To address this challenge, we present a novel

multi-modal sabotage attack detection system for Additive Manufacturing (AM) machines

in [192]. By utilizing multiple side-channels (e.g., vibration, acoustic, magnetic, power), we

improve system state estimation significantly over that of existing methods. Besides, we

analyze the value of each side-channel for performing attack detection in terms of mutual

information shared with the machine control parameters. More details on how side-channels

can be leveraged in manufacturing systems are provided in [138].

A.3 Pykg2vec: A python library for knowledge graph

embedding

Pykg2vec is a Python library for learning the representations of the entities and relations

in knowledge graphs [191]. Pykg2vec’s flexible and modular software architecture currently

implements 25 state-of-the-art knowledge graph embedding algorithms and is designed to

easily incorporate new algorithms. The goal of Pykg2vec is to provide a practical and educa-

tional platform to accelerate research in knowledge graph representation learning. Pykg2vec

is built on top of PyTorch and Python’s multiprocessing framework and provides modules

for batch generation, Bayesian hyperparameter optimization, evaluation of KGE tasks, em-

bedding, and result visualization. Pykg2vec is released under the MIT License and is also

available in the Python Package Index (PyPI).
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