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Abstract

Fact-checking agencies are essential to correct misinformation and inform the public,
while how people evaluate these agencies and their messages remain unclear (Brandtzaeg et al.,
2017). Two factors about the messages and the sources — two essential factors in the theories of
persuasion — were examined: language intensity of fact-checking labels and Al as a fact-checking
agency. Language intensity, a linguistic feature that reflects message specificity and emotionality,
may implicitly influence the acceptance of misinformation corrections and behavior intentions
(Bowers, 1963). While Al has the potential to automate the fact-checking process and improve
the acceptance of misinformation corrections as an unbiased automated decision maker, the
social acceptance of Al in fact checking is unclear. This study investigated how language
intensity and fact-checking agency (human vs. Al) influence the evaluations of fact-checking
messages and agencies with an observational study of fact-checking messages on social media
(N =33755) and two online experiments (combined N = 1449) in the U.S. Both the
observational study and the experiments showed that fact-checking messages with high language
intensity would elicit low message credibility, while this effect diminished when the messages
were counter-attitudinal in the experiments. Besides, participants perceived Al fact-checking
agencies the same as human agencies. Individual differences in conspiracy ideation, political
ideology and demographics significantly affected message credibility and engagement intentions
as well. These findings suggest that language nuances such as language intensity in fact-checking
messages affected message perception and the acceptance of misinformation corrections.

Theoretical and practical implications were discussed in detail.
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Introduction

Misinformation creates and intensifies public misperceptions and behaviors in the realm
of politics, health, and other social issues (Walter & Murphy, 2018). Especially technological
advances enable the faster transmission of misinformation on social media without traditional
media gatekeepers (Shin, 2021). The effect of misinformation can linger and even strengthen
after exposure to corrections (Thorson, 2016). However, fact-checking, a systematic validation of
public claims, is promising to effectively alleviate the damaging effect of misinformation
circulated on social media (Walter et al., 2019). Fact-checking is not a novel form of journalism
(Grant, 2000), but independent fact-checking agencies (e.g., snopes.com) and in-house fact-
checking groups (e.g., AP Fact Check) only emerged in recent years to cope with the viral spread
of misinformation.

Fact-checking agencies commonly use fact-checking labels such as true, false, and
mostly false to convey their decisions on checked misinformation in a straightforward manner
(e.g., Truth-O-Meter by PolitiFact). Since people mostly engage in heuristic processing of
information on social media (Chaiken & Ledgerwood, 2012), fact-checking labels — commonly
emphasized with various visual cues — are crucial heuristics of persuasion (Oeldorf-Hirsch et al.,
2020). The persuasiveness of fact-checking labels are usually accomplished by conveying
message strength through language intensity, a linguistic feature that reflects message specificity
and emotionality (Bowers, 1963; Hamilton et al., 1990). This is a subtle aspect that may
implicitly influence attitude and is positively associated with persuasiveness (Burgers & de
Graaf, 2013). Although fact-checking agencies are expected to be and usually perceived as
unbiased as a part of journalism, there is skepticism about the objectivity and transparency of

those agencies from both professional journalists and social media users (Brandtzaeg et al.,
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2017). Expressions with different levels of language intensity, such as different levels of
emotional arousal conveyed by fantastic and nice, may imply partisanship in journalism
practices by inducing a reporting bias, which suggests a perception that facts are not accurately
reported (Burgers & de Graaf, 2013; Eagly et al., 1978). In fact-checking contexts, it is possible
that different levels of language intensity exist in fact-checking labels by describing
misinformation untruthfulness. For instance, the implied untruthfulness varies when two equally
false statements are labeled as wrong or misleading. The processing and effects of such subtle
linguistic variations in fact-checking remain unexamined.

In addition to the fact-checking labels, fact-checking agencies matter significantly as the
message sources and influence the perceived trustworthiness (e.g. Zhang et al., 2021). Al has
been increasingly assisting with the fact-checking process and has the potential to improve the
acceptance of misinformation corrections with an unbiased and non-partisan image (Sundar,
2008), while little is known about the social acceptance of Al as fact-checking agencies. Social
media platforms (e.g., Facebook), technology companies (e.g., fullfact.org), and academia (e.g.,
Hassan et al., 2017; Karadzhov et al., 2017) have endeavored to accelerate the fact-checking
process through automated fact-checking conducted by Al. Currently, Al mostly assists humans
in the decision-making process as full automation is not yet achieved. Still, people tend to
perceive Al as more objective than human (Sundar, 2008), which implies that people might be
more willing to keep an open mind to counter-attitudinal corrections. Even though Al is
perceived with great potential, algorithm aversion exists, and the public perception of Al is
context specific. For instance, Al is criticized for being biased in gender and race (e.g., Dastin,
2018) and flawed in areas such as automated driving (e.g., Conger, 2020). Since how people

perceive Al fact-checking is still overlooked, the mixed evidence makes it necessary to



investigate whether the perception of misinformation corrections differs when fact-checking is
done by humans or Al.

The impact of language intensity of fact-checking labels and Al on belief updating and
behavior change remains understudied in the fact-checking contexts. Limited work investigates
the perception of fact-checking agencies or language intensity in this context, especially in terms
of perceived credibility, bias, and trustworthiness. The proposed study fills the gap by addressing
two fundamental questions: 1) Does language intensity of fact-checking labels affect people’s
trust in fact-checking messages and fact-checking agencies? 2) Do people perceive fact-checking
agencies and messages differently when the fact-checking is conducted by humans or AI? The
theoretical argument is grounded on the theoretical frameworks of an information processing
model of language intensity (Hamilton, 1998) and machine heuristic (Sundar, 2008).

This study relies on a combination of an observational study of fact-checking posts on
social media (N = 33755) and two factorial experiments (combined N = 1449) to investigate the
effect of language intensity and fact-checking agency across three different topics in politics,
health, and economics. This project contributes to the literature of language intensity and
message effect by extending to the fact-checking contexts in both real and laboratory settings. It
provides a new perspective to understand the conditions under which people are more willing to
accept counter-attitudinal misinformation corrections and to understand social acceptance of Al
This study also provides practical implications in language preciseness and Al application for
journalism practices in the mediated contexts. The theoretical frameworks used in this study
together with empirical evidence are revisited below; hypotheses, research questions, and results

of all three studies are reported afterwards.



Language Intensity and persuasion

Language intensity is a linguistic feature that reflects message specificity and
emotionality, which is associated with language extremity in evaluations (Bowers, 1963, as cited
in Burgers & de Graaf, 2013; Hamilton et al., 1990). Specificity refers to the degree of language
concreteness, €.g., sexual assault is more detailed than violence, while emotionality suggests that
language varies across the degree of emotion in evaluative statements, e.g., fantastic is perceived
as more positive than nice, and ruthless is perceived as more negative than unkind (Burgers & de
Graaf, 2013).The focus of the fact-checking contexts is language emotionality and extremity;
language variations in fact-checking exist across the spectrum of message untruthfulness through
lexical and semantic intensifiers (Athanasiadou, 2007). For example, misleading and deceptive
can be used to describe the same misinformation while implying different levels of
untruthfulness intentions: deceptive is usually perceived as intentionally false and therefore more
negative than misleading. Besides, mostly false is perceived as more true than completely false.
These adjectives are commonly used by fact-checking agencies to label or describe
misinformation. How fact-checking agencies attach different labels with different issues or
entities may imply different levels of language intensity and create a clear but subtle partisanship
(Abelson, 1995).

Language intensity is associated with evaluations of journalistic neutrality and news
quality as a form of news sensationalism (Burgers & de Graaf, 2013). Though sensationalism in
news sometimes is appreciated for a human touch, news media are usually expected to be
neutral. This expectation also applies to fact-checking as a form of journalism, and fact-checking
agencies are often perceived as factual and unbiased (Brandtzaeg et al., 2017). Such attitudinal

extremity conveyed by language intensity in fact-checking labels can be perceived as a violation
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of journalistic neutrality, which is negatively associated with evaluations of newsworthiness and
trustworthiness. This tendency is theorized as a reporting bias, “the belief that a communicator's
willingness to convey an accurate version of external reality is compromised” (Eagly et al.,
1978). Therefore, fact-checking labels with high language intensity that deviates from neutrality
might not only harm message evaluation but damage source credibility as well. This connection
is also supported by the information processing model of language intensity that establishes the
effect of language intensity on source and message evaluation (Hamilton, 1998).

Although little empirical evidence exists regarding the effect of language intensity in the
fact-checking contexts, empirical evidence confirmed a negative effect on message and source
evaluation to some extent. Burgers and de Graaf (2013) found a negative effect of language
intensity on newsworthiness, though it became a positive indirect effect with a different topic in
the second study. When a mild transgression was exaggerated as a scandal in political news,
participants held lower levels of message appropriateness and trust; when it came to a severe
transgression, scandalization made no difference (Grafl et al., 2019). In other cases, however,
language intensity has been found to increase persuasiveness (e.g., Clementson et al., 2015;
Hamilton & Stewart, 1993) or have no effect (Bowers, 1963).

There are two possible explanations for this discrepancy. First, the effect of language
intensity is subject to a variety of contextual factors such as operationalization of language
intensity (Liebrecht et al., 2019) and topic relevance (e.g., Burgers & de Graaf, 2013). Changes
in the contexts bring in external factors that might alter the main effect. High language intensity
might be encouraged in certain occasions (e.g., political speech) while discouraged in others.
Topic relevance matters as well; language intensity may not have any effect when people do not

care about a matter. Second, other variables involved might not be identified, such as source



credibility, argument quality, and gender (Hamilton, 1998). These factors may act as mediators or
moderators in the process. Therefore, the influence of language intensity remains unclear in the

fact-checking context.

Artificial Intelligence in the Fact-checking Contexts

News organizations and fact-checking agencies rely on professional journalists to
produce factual and non-partisan information. However, misinformation disseminated on social
media has been soaring over the last decade, which makes it difficult for professionals to
monitor, detect, and correct misinformation on social media. Therefore, Al starts to play an
assisting role in misinformation detection and fact-checking. It detects information truthfulness
based on existing ground truth, linguistic features, and social media engagements (e.g., Hassan et
al., 2017). Since Al cannot fully capture the linguistic and factual nuance that may determine
information truthfulness, fully automated fact-checking Al is under development by researchers
and technology companies (e.g., Fullfact.org, Logically.ai). Currently, major technology
companies also automatically take down misinformation on social media that have been
identified by fact-checking agencies to stop further spread (Facebook, 2020). Al shows the
potential to fully automate the laborious fact-checking process and may play a major and
independent role in future journalism practice, but the social acceptance of Al is unclear and the
research on the perceptions of Al fact-checking is necessary.

There are substantial definitions and categories of Al in the literature; the definition of Al
also evolves over time and technology development (Wang, 2019). A recent definition by
(Ginsberg, 2012) states that Al is “the enterprise of constructing an artifact that can reliably pass

the Turing test”, which implies that Al acts like a human and is as intelligent as or even more



intelligent than a human. Terms such as algorithm, machine, and automated decision maker point
at the notion of human-like capability and intelligence. In the context of this study, Al refers to a
non-human enterprise or machine that performs the same task as humans do. Al fact-checking
agents would engage in tasks such as identifying information check-worthiness and truthfulness
and posting fact-checking messages on social media.

Literature suggests mixed theoretical frameworks and empirical findings regarding the
perception of Al versus humans. In the context of interpersonal communication, (Nass and
colleagues (1994) proposed that individuals perceive computers as independent social entities
and apply the rules of human interactions to computers in the theoretical framework of
Computers are Social Actors (CASA). This claim suggests that humans treat humans and Al
without difference, which is based on the assumption that humans expect Al to be a similar social
actor like humans. However, this assumption may not hold currently as individuals have
increasingly more direct interactions with Al over the last two decades, which leads to updated
perceptions and expectations of Al (Gambino et al., 2020).

This discrepancy in expectation is captured by the Modality-Agency-Interactivity-
Navigability (MAIN) model, in which Sundar (2008) referred to the tendency that individuals
perceive machines as more objective and non-partisan than humans as machine heuristic. This
mental shortcut implies a positive stereotype about “machine infallibility and neutrality” (Sundar
& Kim, 2019) that is gradually formed with more interactions with and knowledge on machines,
which is related to a mindless trust in automation and automation bias under the theoretical
framework of heuristic processing (Mosier et al., 1998). When applied to the fact-checking
contexts, machine heuristic indicates that individuals are more likely to develop more favorable

perceptions and behavior intentions when it comes to Al fact-checkers.



Algorithm appreciation describes this mindless preference for Al even when people have
limited knowledge on the underlying mechanism of Al (Logg et al., 2018, as cited in Wojcieszak
et al., 2021). In addition to the study context of numeric estimation task, empirical findings have
supported the preference for Al over humans and even experts in privacy revealing (Sundar &
Kim, 2019), recruiting process (Hong et al., 2020), and general topics in health, media, and
justice (Araujo et al., 2020). However, a recent meta-analysis of 11 experiments published in the
last three years found that there is no significant difference in perceptions of automated and
human-written news, while human-written news is perceived as high-quality and well-written in
general (Graefe & Bohlken, 2020). This finding might be explained by the fact that current Al is
not fully intelligent in imitating natural expressions and news writing; therefore, the favorability
toward humans might attribute to the preference for quality news.

But one boundary condition of algorithm appreciation identified is algorithm failing:
algorithm aversion occurs when people see Al make mistakes and perform worse than humans,
since people tend to assume Al to be perfect as the machine heuristic indicates (Dietvorst et al.,
2014). Since the contexts of these two studies by Logg and colleagues (2018) and Dietvorst and
colleagues (2014) involved numeric estimation tasks, the assumption of machine infallibility
might be reasonable as machines have greater advantages in big data access and processing than
humans. Automated driving is another context in which machine failures were more
unacceptable than human’s (Hong, 2020). But when it comes to humanity issues such as
automated identification of hate speech, people are more forgiving of Al than human (Shank et
al., 2019). People also trust human more when it came to online content moderation (Wojcieszak
et al., 2021). This is also consistent with the idea of expectation fulfillment. Therefore, when Al

fails to meet this expectation, people would show averse attitudes toward Al. As machine



heuristic predicts machine objectivity, we argue that people would expect Al to be unbiased and
the preference for Al would exist in the fact-checking context, although the effect of fact-

checking agency on behavior intentions is unclear.

Study 1: Observational Study

Since social media have become a major source of news, social media platforms provide
a platform to observe the natural occurrences of and connections between different constructs.
This observation study of posts and comments from seven US-based fact-checking agencies on
Facebook (N = 33755; March 2010 — January 2021) was conducted to investigate (a) whether
variations of language intensity exist in fact-checking labels and (b) the potential association
between the language intensity of fact-checking labels and the engagement with the posts (i.e.,
likes, comments, and shares).

Both computational methods (e.g., natural language processing) and pilot study with
human participants were used to quantify language intensity and emotionality (as an aspect of
intensity). Since the attitude toward fact-checking issues can be hard to capture on social media,
the main dependent variable is the actual engagement. Since there is currently no Al fact-
checking agency operating, fact-checking agency was not included as a factor in this case. This
section proposes hypotheses related to the research question, followed by a detailed description

of data collection and processing, results reporting, and discussion.
Language intensity, emotionality and engagement

Language intensity can be positively associated with behavior change since it indicates

larger message strength (Craig & Blankenship, 2011). Previous findings showed that emails



using intense language elicited a higher response rate (Andersen & Blackburn, 2009); people
were more likely to engage in health behaviors with more intense language (Buller et al., 2000,
2009). It is possible that language intensity increases message engagement as well, since
message engagement on social media can be affectively and cognitively triggered (Kim & Yang,
2017). However, there is little evidence on its effect on message engagement, such as likes,
comments, and shares. Therefore,

RQ1. What is the association between language intensity of fact-checking messages and

the number of likes, comments, and shares of fact-checking messages?

Since emotionality is one of the aspects of language intensity, it is expected that
emotionality is correlated with language intensity and possesses a positive effect on engagement
as well.

H1. Emotionality of fact-checking messages would be positively associated with the

number of likes, comments, and shares of fact-checking messages.
Data and Methods

Data collection. First, Facebook was chosen because fact-checking agencies tend to have
more engagements and attention on Facebook than other social media platforms such as Twitter.
Further, fact-checking related keywords on Facebook with a brand-new Facebook account were
searched to retrieve Facebook pages of all relevant fact-checking agencies. Relevant agencies
refer to those that (a) operate in the U.S., (b) report in English, (¢) report original fact-checking
stories, (d) falls into the category of News & Media Website, and (e) has a verified badge. This
search results in seven fact-checking agencies. Second, Facebook’s CrowdTangle data

monitoring platform was used to collect all historical posts (N = 88,598; CrowdTangle Team,
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2021). Not all posts were fact-checking posts; irrelevant ones included website donation and
repost of different websites. Since almost all posts were attached with a link to the official
website of a fact-checking agency, irrelevant posts were removed by identifying features in the
website links. For example, AFP fact-checking articles were featured by “factcheck.afp.com”;
fact-checking articles by Snopes.com were archived by years in the links, from 2016 to 2021.
Therefore, irrelevant posts were removed automatically with Python, resulting in 33,755 fact-
checking posts. Among these posts, 29,374 posts have received at least one comment, and all
comments attached were collected with Facepager (N = 1,284,813; Jiinger & Keyling, 2019). It is
worth noticing that the number of comments retrieved does not equal the number of comments
made, since some comments may have been deleted or have privacy settings.

Linguistic features of language intensity. To my best knowledge, there is no corpus on
language intensity in untruthfulness. However, one aspect of language intensity is emotionality
(Burgers & de Graaf, 2013), which can be captured with existing natural language processing
tools such as IBM Watson Natural Language Understanding (IBM Watson, 2021). With IBM
Watson, we were able to obtain the sentiment score for each post ranging from -1 (negative
emotion) to 1 (positive emotion). Since emotionality does not consider emotional valence,
emotionality was represented by the absolute value of the sentiment score. All comments
attached to a post were aggregated to a single text for convenient processing. Comments of 38
posts were unable to be processed by IBM Watson due to errors in length or special characters,
resulting in 29,336 sets of comments and 33,755 posts with emotionality scores.

Pilot study of language intensity. To my best knowledge, there is no corpus on language
intensity in untruthfulness. Therefore, 30 most frequently used adjectives describing information

untruthfulness from these fact-checking posts were collected (e.g., wrong, misleading,
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unfounded, manipulated). Addiction applies when a post with multiple veracity-related adjectives
or with one adjective appearing more than once, since more adjectives used indicate higher
levels of language intensity. 24% of all posts contain at least one of these adjectives (N = 7,962).

Language intensity of these 30 adjectives were determined by a sample of undergraduate
students enrolled in a communication introduction course from a public university in California.
To make sure that participants have similar levels of English proficiency and experience, 43
responses completed by international students were excluded, and the final sample size is 191. In
the pilot study, participants were asked to reflect on 10 random adjectives out of 30 based on

their daily experiences and to rate how intense these adjectives are.
Measures

Perceived intensity. The intensity of an adjective was measured by 10 items from the
Language Intensity Scale on a 7-point scale (Hamilton & Stewart, 1993). This scale included
three universal semantic features — evaluation (e.g., emotional — unemotional), potency (e.g.,
potent — impotent), and activation (e.g., active — inactive; Osgood, 1969). These 30 adjectives
were generally intense (M = 4.27; SD = 1.34), with 21 of 30 being rated above four (Table 1).

Perceived intensity of each fact-checking post was measured by the number of times that
each adjective appeared in this post multiplied by the corresponding intensity score of that
adjective. Among all posts, 24% of them contained more than one of the veracity-related
adjectives pretested (N = 7962; M =4.92, SD = 1.76). Taking all posts into consideration, the

fact-checking posts were not highly intense (N = 33755; M = 1.16; SD = 2.26; Table 2).
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Engagement. The engagement of a fact-checking post (M = 748.22; SD = 1980.40; Table
2) was measured by the sum of the number of likes, comments, and shares of a post. This
statistic was obtained through CrowdTangle (2021).

Emotionality. Emotionality, an important and measurable aspect of language intensity,
was represented by the absolute value of the sentiment score since emotional valence does not
matter in the case of emotionality. Both posts (M = 0.54, SD = 0.33) and comments (M = 0.57,

SD = 0.18) were moderately emotional (Table 2).
Results

Descriptive statistics of fact-checking agencies. Though the oldest fact-checking post in
this dataset dated back to 2010, there was a significant soar of fact-checking messages since
2018. Fact-checking posts created in the last four years (N = 27614) contributed to 82% of this
dataset. Among 7 fact-checking agencies included, most agencies were active with more than
2,000 fact-checking posts, except Health Feedback (N = 32). FactCheck.org was the most
popular agency with more than one million comments in total and approx. 3,700 engagement per
post (M =3777.18; SD = 4370.40). The fact-checking posts from AFP Fact Check (M =3.93, SD
=2.37;t="73.15, p <.001), FactCheck.org (M =2.82, SD = 3.23; t = 30.60, p <.001), and
Health Feedback (M =2.99, SD =4.03; t=3.18, p <.01) were significantly more intense than
those from other four agencies (M = 0.72; SD = 1.83). An average fact-checking post induced
approximately 412 likes, 122 comments, and 214 shares.

Descriptive statistics of language intensity. On average, the language intensity of a fact-
checking post was relatively low on a 7-point scale (Min = 0, Max =19.22; M=1.16, SD =

2.26). The most frequent adjectives were false (M =4.19; SD = 1.34; N = 4047), misleading (M =
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4.32; SD =1.16; N = 853), fake (M = 4.65; SD = 1.33; N =762), and wrong (M = 4.48; SD =
1.38; N = 604). The intensity of these words tended to be moderate. The most intensive
adjectives tended to describe intentionally false information, such as manipulated (M = 5.60; SD
= 1.18), fraudulent (M = 5.35; SD = 1.04), deceptive (M = 5.12; SD = 1.04), and inflammatory
(M =5.12; SD = 1.18). Unclear was considered the least intense (M =2.93; SD = 1.19; N = 88).
Language intensity of fact-checking posts was positively correlated with engagement (= .11, p
<.001) and emotionality in posts (» =.17, p <.001) and comments (» = .06, p < .001). It
suggested that higher levels of language intensity in posts were positively associated with higher
levels of engagement and emotionality in comments, and that emotionality represented some
aspect of language intensity.

To test H1 and H2, Poisson regression models were conducted since intensity scores and
engagement had Poisson distributions (Table 3). The number of followers of fact-checking
agencies, post word counts, and post emotionality were controlled in both models. Robust
standard errors were used due to a large sample size and homoscedasticity to obtain robust p-
values. The results showed that language intensity was a positive indicator of engagement with
fact-checking posts (b = 0.08, p <.001) and emotionality in comments (b = 0.01, p <.001).
Specifically, the effect of language intensity was consistent for the number of likes (b = 0.03, p
<.001), comments (b = 0.04, p <.01), and shares (b = 0.06, p <.001). It suggested that social
media users were more likely to engage with fact-checking posts and to become more emotional
in the comments with higher levels of language intensity in the fact-checking posts. Therefore,
H1 was supported.

Not surprisingly, emotionality in posts and comments was positively associated with each

other (b =0.04, p <.001): the more emotional a fact-checking post is, the more emotional its
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comments are. However, emotionality in posts negatively predicted engagement (b =-0.12, p
=.003), with more emotional posts attracting less engagement from the audience. However, a
significant negative association was only found for the number of comments (b =-0.15, p
<.001), while nonsignificant effects were found for the number likes (b =-0.06, p =.121) and

shares (b =-0.05, p = .482). H2 was not supported.

Discussion

This observational study of fact-checking posts and comments on social media provides
initial evidence that language intensity matters in the fact-checking contexts. Overall, fact-
checking posts possessed a relatively low level of language intensity and fact-checking agencies
maintain a high level of objectivity. Specifically, when it came to fact-checking posts that used
words with higher levels of language intensity, people not only engaged with more likes,
comments, and shares, but were more emotional in their comments as well. It may suggest that
language intensity serves as both affective and cognitive triggers of social media engagement
(Kim & Yang, 2017). This finding extends the study of language intensity by building a concrete
connection between language intensity and message engagement.

Though emotionality is one significant aspect of language intensity, emotionality had a
distinct effect on engagement. Overall, a negative effect on engagement was found, but a
significant negative effect was only found for the number of comments, not likes and shares. It
suggested that emotionality of fact-checking posts suppressed expressions of opinions, though it
had no effect on the liking and sharing behaviors. This might be explained by the fact that

emotionality accounts for a portion of language intensity, and the extremity part of language
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intensity might mainly contribute to its positive effect on engagement and the “attitude-behavior
correspondence” (Craig & Blankenship, 2011).

However, this observational study has a few limitations. First, this study may not
represent the population since it only covered the audience of fact-checking agencies on social
media and they are likely to be their followers, while fact-checking agencies are not a
mainstream media that the majority of the population are exposed to. In the future study, this
could be addressed with a larger scale of fact-checking messages from any news media, not
limited to independent fact-checking agencies. Further, similar to most observational studies, it
did not establish a causal inference of the effect of language intensity. Lastly, the influence of
individual characteristics remains unexplored since it is usually a violation of privacy to acquire
personal information on social media. To address these issues, an online experiment was
conducted to further explore the effect of language intensity, fact-checking agency, and

individual characteristics.

Experiment 1

The observational study has confirmed that variations of language intensity exist in fact-
checking messages, and that language intensity positively indicated message engagement. This
experiment aims to examine the influence of language intensity and fact-checking agencies (Al
vs. human) on source and message evaluations and establish a causal inference in a laboratory
environment. This section presents the hypotheses and research questions in this study,

experiment procedure and design, as well as a detailed report on results and discussion.
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Language intensity and persuasion. Empirical evidence suggested that the persuasive
effect of language intensity is context-specific, though the reporting bias predicts that high
language intensity decreases source credibility (Eagly et al., 1978). Therefore,

RQ1. How does language intensity of fact-checking messages affect perceived credibility

of fact-checking messages and engagement intentions?

Al in the fact-checking context. Since fact-checking is a part of journalism where people
expect accuracy and objectivity (Brandtzaeg et al., 2017), machine heuristic that emphasizes on
machine neutrality and nonpartisanship fits the context better (Sundar, 2008). Machine heuristic
indicates a favorable attitude toward Al over human, though there is no prediction on
engagement intentions. Therefore,

H1. Individuals would have better perceived credibility on fact-checking messages

toward Al than human fact-checking agencies.

H2. Individuals would have better evaluations of fact-checking agencies toward Al than

human fact-checking agencies.

RQ2. Do engagement intentions vary across fact-checking agencies?
Effects of Motivated Reasoning

Individual motives lead to selective information processing and biased evaluation
(Chaiken & Ledgerwood, 2012; Kunda, 1990). Driven by confirmation and disconfirmation
biases, people tend to favor information that is consistent with existing beliefs and worldviews
and criticize counter-attitudinal information (Taber & Lodge, 2006). Empirical evidence suggests
that motivated reasoning exists in the contexts of politics (Thorson, 2016), health (Bode &

Vraga, 2017), climate change (Hart & Nisbet, 2012), and emerging technologies (Druckman &
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Bolsen, 2011). People are also motivated to process misinformation corrections, in which people
are more reluctant to accept counter-attitudinal corrections as true and persuasive (Walter et al.,
2019). Motivated reasoning can be influenced by linguistic features. Language intensity was
found to be negatively associated with attitude toward the source when it comes to counter-
attitudinal information, while language intensity has no effect on attitude when the information is
pro-attitudinal (Hosman, 2002). Still, the research on language intensity and motivated reasoning
is limited, and it is difficult to make predictions at this point. Therefore,

RQ3. When fact-checking messages are counter-attitudinal, how does language intensity

affect perceived credibility on fact-checking messages and engagement intentions?

As for the prior effect on fact-checking agency, the literature is also thin. Machine
heuristic does imply that machines tend to be associated with higher objectivity and therefore,
credibility (Sundar, 2008). A relevant study (Zarouali et al., 2020) found that people tended to
agree more with counter-attitudinal news when it is delivered by chatbots than online news
websites, and one of the influencing factors is credibility. In the context of online moderation, Al
did not make people more open-minded (Wojcieszak et al., 2021). Therefore,

RQ4. When fact-checking messages are counter-attitudinal, how does fact-checking

agency affect perceived credibility on fact-checking messages and engagement

intentions?
Methods

Study design. To investigate the influence of language intensity and fact-checking agency,
a factorial experiment with a mixed design was conducted. The between-subject factor in this

experiment was the fact-checking agency, where participants read messages from either human
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or Al fact-checking agency. Since people tend to encounter messages of varied language
intensity instead of the same level of intensity on social media, language intensity (low, mid,
high) was included as a within-subject factor to ensure a high level of external validity. High,
mid, and low levels of language intensity were represented by three adjectives respectively —
fake, wrong, and inaccurate. These three adjectives were selected because (a) the meanings are
all related to untruthfulness only, without implying the intention of untruthfulness, (b) they were
used relatively commonly in the fact-checking messages, and (c) they varied across language
intensity.

Another within-subject factor was the fact-checking topics, including the presidential
election fraud in 2020, Covid-19 vaccine, and the raise of federal minimum wage. These topics
were chosen as they had a prominent salience and representativeness in recent fact-checking
messages. Each participant randomly read three fact-checking messages that cover all possible
combinations of three levels of language intensity (one random adjective for each level) and
three topics, with each message mapped with a random language intensity and a random topic.
Political affiliation and ideology, Al familiarity, topic-specific prior attitude, conspiracy ideation,
and demographics were included as covariates.

Sample and procedure. American participants (N = 657) were recruited from the SONA
system of a public university in California in exchange for 0.5 research credit. Participants were
redirected to a Qualtrics survey once they accepted the task (N = 824). After signing the consent,
participants answered a few questions on their familiarity with Al and their attitudes on three
topics. Further, participants were randomly assigned to read three fact-checking messages by an
Al or human fact-checking agency. For each message, participants were asked to answer

questions about their perceptions on this message. They were able to review the message while
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answering these questions. After reading all three messages, participants were asked to evaluate
the manipulated agency. This online experiment ended with questions on conspiracy ideation and
demographics to avoid the potential priming effect.

Non-American responses (N = 155) and blank responses were removed (N = 12).
Therefore, the final sample was reduced to N =657 (132 male, 504 female). Participants were
aged from 18 to 67 (M = 20.32, SD = 2.85) and well educated with most having some college
experience (N = 461). Participants’ median annual household income fell in the $80,000 to
$99,999 range. A detailed summary of sample characteristics is summarized in Table 4. There
was no significant difference in age, gender, or education across conditions, though the income
level was significantly higher in the Al condition than in the human condition (Ma1 = 6.96,
Mhuman = 6.18, p = .035). Since the income was not associated with the major findings, no
adjustment was made.

Stimuli. In total, three fact-checking Facebook messages were created based on recent
fact-checking messages on social media, ranging from October 2019 to January 2021. The
format of a Facebook post was chosen because fact-checking agencies tend to have more
engagements and attention on Facebook than other social media platforms such as Twitter. Each
message consisted of 1) the fact-checking section: the claim that [a misinformation statement]
was [manipulated adjective], such as the claim that the covid vaccine is harmful was false, 2) the
explanation of the fact-checking decision, and 3) the credit section that states the fact-checking
agency and post writer to be professional journalist or Al (see Figure 5). Each message contained
one neutral topic-relevant image covered by the manipulated adjective, which was congruent
with the practices of most fact-checking posts on social media (i.e., snopes.com). Consistent with

the experiment conditions, the username was either FactChecker or FactCheckingAl. Other
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aspects were kept constant, such that the social media metrics were the same as the median of

fact-checking posts on Facebook.
Measures

Message intensity. On a 7-point semantic differential scale, message intensity (M = 4.74,
SD =1.07, McDonald’s o = .84) was measured by seven items from an existing language
intensity scale, including weak — strong, hesitant — emphatic, uncertain — certain, non-
opinionated — opinionated, mild — intense, not extreme — extreme, powerless — powerful (Burgers
& de Graaf, 2013; Hamilton & Stewart, 1993).

Message credibility. The message credibility (M = 5.04, SD = 1.21, McDonald’s ® = .88)
was measured by six items on a 7-point semantic differential scale, including not sensationalistic
— sensationalistic, biased — unbiased, unfair — fair, non-factual — factual, non-objective —
objective, and inaccurate — accurate (Sundar, 2008).

Evaluation of fact-checking agencies. Evaluation of fact-checking agencies (M = 4.91,
SD = 1.24, McDonald’s ® = .96) was concerned with three dimensions from an existing measure
of evaluation of computer agent on a 7-point semantic differential scale (Brave et al., 2005):
likability (four items, e.g., unpleasant — pleasant), trustworthiness (four items, e.g., dishonest —
honest), and intelligence (three items, e.g., incapable — capable).

Engagement intention. On a 7-point scale (1 — disagree, 7 — agree), the intention to
engage with the fact-checking message (M = 3.40, SD = 1,42, McDonald’s @ = .88) was
measured by five statements on the extent to which participants would like, comment on, or
share a post (J. W. Kim, 2018), such as this fact-checking post is worth sharing with others on

social media and I would share this fact-checking post on my social media.
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Al familiarity. The experience and familiarity with Al (Min =0, Max =10, M = 6.44, SD
= 2.81) were measured with one question on the knowledge of Al products — which of the
following technologies, if any, uses artificial intelligence (AI)? (Wojcieszak et al., 2021). All ten
possible answers were Al products, and the number of products selected indicated the familiarity
with AL

Conspiracy ideation. Conspiracy ideation (M = 2.77, SD = 0.82, McDonald’s @ = .88)
consisted of 10 items from a conspiracy ideation scale (Brotherton et al., 2013) on a 5-point scale
(1 — disagree, 5 — agree). Sample statements are the spread of certain viruses and/or diseases is
the result of the deliberate, concealed efforts of some organization, and a lot of important
information is deliberately concealed from the public out of self-interest.

Prior attitude. Topic-specific prior attitude was measured by the extent to which one
would agree with three topic-related statements on a 7-point scale (1 — disagree, 7 — agree),
including the 2020 presidential election was rigged (M = 2.25, SD = 1.49), the benefits of the
COVID-19 vaccine outweigh its risks (M = 5.89, SD = 1.58), and the U.S. needs a rise in the
minimum wage (M = 5.85, SD = 1.38). These statements were selected from recent fact-checking
messages and research papers (i.e., Zhang et al., 2021) to ensure timeliness and relevance.!

Prior attitude consistency. To answer RQ3 and RQ4, a binary variable was created to
indicate whether a message was consistent with one’s prior attitude on this issue. It was
considered as consistent when participants agreed with the statements above on the Covid-19
vaccines and the rise of minimum wage, and when participants disagreed with the statement on

the election fraud, and vice versa. Those who either agreed or disagreed were considered as

!'It should be acknowledged that the statement regarding the federal minimum wage is purely an attitude
statement instead of a true/false statement, which is essentially distinctive from the other two statements.
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having no clear attitude on an issue, and therefore were removed from this analysis. The stimuli
message on the Covid-19 vaccines was counter-attitudinal for 66 participants (10.7%; Npro-
attitudinal = 348; Nno-atitude = 43); the message on the election fraud was counter-attitudinal for 161
participants (10.3%; Npro-attitudinal = 495; Nho-attiude = 104); the message on the minimum wage was
counter-attitudinal for 49 participants (8.1%; Npro-attitudinal = 557; Nno-attitude = 50).

Party affiliation. Party affiliation was measured with one item with responses ranging
from a strong democrat to a strong republican (see Table 4 for a full list). This variable was
quantified to a continuous variable from 1 (democrat) to 7 (republican) for further analysis.

Political ideology. Participants were asked to rate how left or right they are on a 11-point
scale from 1 (political left) to 11 (political right). The variable was leaning toward left (M = 4.10,
SD =2.14).

Demographics. Participants were asked to report their age, gender, education, race, and
income. For analysis, gender and race were converted to binary variables (gender: 1 — female, 0
—male; race: 1 — white, 0 — non-white); education and income were converted to continuous

variables.
Results

Descriptive statistics. The mean differences of three dependent variables across language
intensity, fact-checking agency, and topic were presented in Figure 1 and 3. The mean
differences across language intensity and the agency were extremely close and non-significant,
though dependent variables with high language intensity tended to be lower than the other
conditions. It suggested that the differences in language intensity of fact-checking labels did not

transfer to the intensity of the whole message. Besides, the Covid-19 vaccines was the topic with
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highest message intensity, message credibility, and engagement intentions; the topic was a
significant factor that influenced dependent variables (F =27.91, p <.001).

Analysis. Since this study involves three dependent variables — message intensity,
message credibility, and engagement intentions, multivariate analyses of variance (MANOVA)
were performed at first to test for a significant difference of means across conditions. To answer
all RQs and test H1, linear effects models were conducted in R with the /merTest package
(Kuznetsova et al., 2017). The random order that three stimuli were presented to each participant
were included as a random effect, in addition to the random intercept for participants. Language
intensity and agency were included as fixed factors. To answer H2, multiple linear regressions
were conducted with the agency evaluation as the dependent variable. For all regression models
conducted, p-values reported were not adjusted for multiple comparisons. This was based on the
fact that adjustment methods do not increase the disjunctive power or reduce the Type I error
significantly when there are a few missing values only and the correlation between dependent
variables is moderate (r = .42; Vickerstaff et al., 2019). Therefore, adjustments were not made at
a risk of increasing a Type II error.

MANOVA tests were conducted on all messages that participants were exposed to (N =
1,971) with message intensity, message credibility, and engagement intentions as the dependent
variables. It showed that the mean difference of three dependent variables was not significant
cross three levels of language intensity (F = 0.71, p = .640) or across two different agencies (F =
0.21, p =.893).

RQ1 asked about the effect of language intensity. Linear effects models were conducted
for each dependent variable (Table 5); the interaction with fact-checking agency was added in the

model as well (Table 6). The results showed that language intensity was associated with lower
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levels of message credibility and engagement intentions. Specifically, high intensity negatively
predicted engagement intentions, and mid intensity negatively predicted message credibility.
High intensity was negatively associated with message credibility when the interaction was
included in the model. Overall, language intensity was partially associated with lower levels of
message credibility and engagement intentions.

H1 predicted that individuals would have better perceptions on fact-checking messages
from Al than from humans, and RQ2 asked whether agency would affect engagement intentions.
Linear regression models were run for each dependent variable respectively (Table 5, 6). Agency
had no effect on any dependent variables; H1 was therefore rejected, and agency did not affect
engagement intentions. H2 predicted that Al would be evaluated as a better fact-checking agency
than humans. Two linear regressions were conducted, and there was no significant effect (Table
7). H2 was rejected as well. Overall, participants evaluated Al and human fact-checking agencies
similarly.

Effects of motivated reasoning. RQ3 and RQ4 asked about the effect of language intensity
and agency when it comes to counter-attitudinal fact-checking messages. Before answering these
RQs, a MANOVA test showed that motivated reasoning had a significant effect on three
dependent variables (F' = 15.55, p <.001). Specifically, participants who found fact-checking
messages counter-attitudinal tended to perceive the messages as less intense (Mcounter = 4.59, Mpro
=4.77,p = .013) and less credible (Mcounter = 4.59, Mpro = 5.11, p <.001), and they were less
likely to engage with them (Mcounter = 3.07, Mpro = 3.45, p <.001), compared with those who
found messages as pro-attitudinal.

MANOVA tests of language intensity and agency showed that neither language intensity

(F=0.19, p = .980) nor agency (F = 0.25, p = .860) had a significant effect on these dependent

25



variables. The results of linear regression models were reported in Table 8 (N = 172), and the
results for pro-attitudinal messages (N = 1,600) and no-attitude messages (N = 197) were
reported in Table 9 and 10 for reference. Still, language intensity or agency had no significant
effect, though language intensity negatively predicted message credibility and engagement
intentions when fact-checking messages were pro-attitudinal. For participants who held no
obvious attitudes, language intensity positively predicted message credibility. Overall, the effect
of language intensity was negligible when fact-checking messages were counter-attitudinal,
while the effect of fact-checking agency remained null.

Effects of covariates. In addition to the effects of fixed factors, abovementioned full
models also suggested significant effects explained by covariates. First, participants tended to
perceive fact-checking messages as more intense and were more likely to engage when the
messages were about the Covid-19 vaccines or election fraud, compared with the topic of
minimum wage; participants tended to perceive fact-checking messages as more credible when
the messages were about the Covid-19 vaccines than the other two topics (Table 5). The effect of
the topic on engagement intentions existed when participants found the fact-checking messages
pro-attitudinal (Table 9). Further, conspiracy ideation and political ideology were consistently
associated with message credibility (Table 5-9); participants with higher levels of conspiracy
ideation and right thinking tended to perceive fact-checking messages as less credible, regardless
of one’s prior attitude on the fact-checking subject. Lastly, female participants tended to perceive
fact-checking messages as less credible, while white participants and those with higher income
tended to perceive fact-checking messages as more credible (Table 5, 6). This demographic

effect was especially true when the fact-checking messages were pro-attitudinal, though it was
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uncertain whether this was an effect of majority or of motivated reasoning, given that the pro-

attitudinal population outnumbered the counter-attitudinal significantly.
Discussion

This study investigated the effect of language intensity and fact-checking agency with a
factorial experiment. It revealed that language intensity negatively predicted message credibility;
participants tended to perceive fact-checking messages as less credible when the messages
employed intense language. This result provided an opposite evidence to the previous finding
that language intensity was positively associated with persuasiveness and behavior change
(Andersen & Blackburn, 2009; Buller et al., 2000). This might be explained by the difference in
persuasion contexts. Positive effects of language intensity occurred in contexts like political
speech and advocacy of health behaviors, where people expect intense language and strong
argument, and high language intensity fits such expectation. According to the Language
Expectancy Theory (Burgoon et al., 2002), high language intensity is a positive violation of
language expectancy and therefore promotes persuasiveness. However, people are likely to
expect fact-checking messages to be objective and neutral, and high language intensity may not
be a positive violation of this expectation.

The second finding is that language intensity negatively indicated engagement intentions:
people were less likely to engage with the messages when the messages employed intense
language. This finding contradicted the observational study where language intensity was
positively associated with engagement. This inconsistency might be explained by the heuristic-
systematic processing model (HSM; Chaiken & Ledgerwood, 2012). Social media users were

likely to engage with heuristic processing of fact-checking messages and therefore were likely to
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engage with intense messages, while participants in this experiment were asked to carefully read
and evaluate the messages before answering questions on engagement intentions. The systematic
processing of fact-checking messages may inhibit participants from engaging with the messages.

Regarding motivated reasoning, the effect of language intensity held true especially when
it came to pro-attitudinal messages, while language intensity had no effect when the fact-
checking messages were counter-attitudinal. It implies that language intensity did not matter
when the fact-checking messages were against one’s pre-existing attitudes, or that pre-existing
attitudes tended to override the message effects. The null effect can also be explained by the
small sample size of counter-attitudinal messages (N = 167); it is harder to obtain a significant
effect when it comes to a small sample size. Besides, it is interesting that language intensity had
a positive effect on message credibility when participants had no or neutral attitudes. When
people have no obvious stance or have insufficient knowledge on an issue, people are likely to be
more open-minded to the influence of fact-checking messages. This open-mindedness was
confirmed in the Differential Information Model (Li & Wagner, 2020), which suggests that the
uninformed people are more likely to experience belief updating after exposure of
misinformation corrections.

The fact-checking agency had no significant effect on how people perceive fact-checking
messages or evaluate fact-checking agencies. This finding was consistent with the argument of
CASA that Al and humans are perceived as the same (Nass et al., 1994). In the case of fact-
checking, people may perceive Al as just capable as professional journalists. This perception
remained the same regardless of one’s knowledge and familiarity with Al, given that Al
knowledge had no significant effect (Table 6, 7). However, it does not suggest that people treat

all kinds of fact-checking agencies as the same, since only Al and human independent agencies
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were studied here. Therefore, this finding only implies that people treat human and Al
independent fact-checking agencies without difference, since a previous research has found that
people trusted universities and health institutions more (Zhang et al., 2021).

Furthermore, the fact-checking topics, individual characteristics such as conspiracy
ideation and political ideology, as well as demographics significantly influenced how people
evaluate fact-checking messages and agencies. For example, participants tended to perceive fact-
checking messages on the Covid-19 vaccines as more intense and more credible, and participants
were more likely to engage with such messages. It suggested that topics with higher priority and
recency tended to attract more intense responses. Besides, participants with higher levels of
conspiracy ideation tended to perceive fact-checking messages as less credible and were less
likely to engage. It makes sense since conspiracy ideation has been found to decrease science
acceptance (Lewandowsky et al., 2013). Unsurprisingly, factors like topics and individual
differences had larger effects than the manipulated factors in this study; it requires a more
representative sample to establish a more solid conclusion.

The major limitation of this study was that language intensity was induced by one
adjective only for each condition. It may bring in ambiguity to the results, such that the effect of
language intensity might result from these particular adjectives instead of the intended language
intensity. Further, a college-student sample was used in this study, and it might largely influence
the findings, since this sample was extremely young, relatively wealthy, very liberal with low
belief in misinformation, and familiar with Al technology. Therefore, it is necessary to replicate

this study with a more representative sample.
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Experiment 2

Together, the observational study and Experiment 1 has confirmed the partial negative
effect of language intensity on message credibility. It is possible that the effect found in
Experiment 1 resulted from the unique sample characteristics and would not be replicated with a
more representative sample. Therefore, Experiment 2 was conducted exactly as Experiment 1
with a different sample recruited from Amazon Mechanical Turk. This experiment was meant to

replicate the key findings regarding message credibility and engagement intentions.
Methods

Sample and procedure. American participants (N = 792) were recruited from MTurk with
a compensation of $1. Participants were redirected to the same Qualtrics survey once they
accepted the task (N = 960). The study design and procedure were kept constant; 5 non-adult
participants and 1 without signing the consent were removed. Non-American responses (N =
150) and blank responses were removed as well (N = 12). Therefore, the final sample was
reduced to N = 792 (517 male, 274 female). Participants were aged from 19 to 78 (M = 36.49,
SD = 10.77) and well educated with 88% having a bachelor’s degree or higher (N = 694).
Participants’ median annual household income fell in the $40,000 to $59,999 range. A detailed
summary of sample characteristics is summarized in Table 4. Compared with the SONA sample,
the MTurk sample was more balanced in terms of age, race, and income. The MTurk sample was
more educated than the national average, and there were more males as well. There was no

significant difference in age, gender, education, or income across conditions.
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Results

Descriptive statistics. The mean differences of three dependent variables across language
intensity, fact-checking agency, and topic were presented in Figure 2 and 4. Identical to
Experiment 1, dependent variables did not vary significantly across language intensity or agency.
However, MTurk participants tended to have significantly higher levels of message intensity
(MmTurk = 5.23, Msona = 4.74, p <.001), message credibility (Mmtuk = 5.21, Msona = 5.04, p
<.001), and engagement intentions (Mwmruk = 4.96, Msona = 3.40, p <.001). Besides, dependent
variables did not vary across topics (F = 0.73, p = .623). The MTurk sample was significantly
different from the SONA sample in Experiment 1. The MTurk sample was less familiar with Al
(MmTurk = 3.94, Msona = 6.44, p <.001) and held more conspiracy ideation (Mmrurk = 3.56,
Msona =2.77, p <.001).

Similarly, MANOVA tested were conducted first to test if the mean differences of
message credibility and engagement intentions vary across experiment conditions. The results
suggested that the mean difference of three dependent variables was not significant cross three
levels of language intensity (N = 2,376; F = 0.75, p = .606) or across two different agencies (F =
1.14, p = .330).

To answer RQ1 about the effect of language intensity, identical linear regression models
were conducted. It showed that mid intensity negatively predicted message credibility; language
intensity had no effect on message intensity or engagement intentions (Table 11). However, this
effect diminished when the interaction with fact-checking agency was added to the model (Table
12). Overall, language intensity was partially associated with message credibility.

Similarly, linear effects model and a linear regression model were conducted to test H1

and H2 as well as to answer RQ2 on the effect of the fact-checking agency. Fact-checking
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agency had no significant effect on any of the dependent variables (Table 11,12). H2 predicted
the relationship between fact-checking agency and agency evaluation. Linear regression models
showed no effect (Table 13). Therefore, H1 and H2 were therefore rejected, and the agency did
not affect engagement intentions.

Effects of motivated reasoning. Among all messages exposed to participants (N = 2,376),
620 were found to be counter-attitudinal, 1,473 were found to be pro-attitudinal, and 283 were
found to be neutral to participants. Especially, the message on the election fraud was counter-
attitudinal to 48.1% participants (N = 381). Identical to Experiment 2, motivated reasoning was a
significant factor influencing dependent variables (F = 15.06, p <.001). Participants who found
the fact-checking messages counter-attitudinal still had lower levels of message intensity (Mcounter
=5.10, Mpro = 5.29, p <.001) and credibility (Mcounter = 4.98, Mpro = 5.30, p <.001) and were
less likely to engage with messages (Mcounter = 4.83, Mpro = 5.02, p <.001).

MANOVA tests showed neither language intensity (¥ = 0.63, p = .707) nor fact-checking
agency (F = 1.15, p = .328) influenced dependent variables when the messages were counter-
attitudinal. The results of linear effects models of counter-attitudinal, pro-attitudinal, no-attitude
messages were reported in Table 14 to 16, and no significant effect was found from language
intensity or the fact-checking agency. Therefore, the negative effects of language intensity on
message credibility or engagement intentions were not replicated in this experiment when the
fact-checking messages were pro-attitudinal, while the null effects of fact-checking agency were
replicated.

Effects of covariates. First, participants in Experiment 2 tended to care more about the
issue of minimum wage than the Covid-19 vaccines or the election fraud: messages on the latter

two topics were perceived as less intense and less credible, and participants were less likely to
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engage with these messages (Table 10). Besides, Al familiarity, conspiracy ideation and political
ideology were surprisingly positively associated with agency evaluation, message credibility, and
engagement intentions, regardless of motivated reasoning. It means that participants who tended
to believe in conspiracy theories or were more politically right perceived fact-checking messages
as more intense and more credible and were more likely to engage with these messages. Further,
participants with stronger affiliation to the republican party tended to have lower levels of
agency evaluation, message intensity, message credibility, and engagement intentions; the
significant effect was less strong when the fact-checking messages were pro-attitudinal.

Lastly, female participants tended to perceive fact-checking messages as more intense
and more credible, while white participants tended to perceive fact-checking messages as less
intense and less credible. Participants with higher levels of education and income were more
likely to engage with fact-checking messages. Similarly, the demographic effect was stronger

when fact-checking messages were pro-attitudinal.
Discussion

Experiment 2 partially replicated and confirmed the key findings in Experiment 1 and the
observational study. With a different sample, language intensity was again found to be a negative
indicator of message credibility, though this effect was less strong, and there was no significant
relationship between language intensity and engagement intentions. It might be because the
MTurk sample was extremely engaging with the fact-checking messages, and this stable
enthusiasm was not wavered by language intensity, fact-checking agency, or even topics in the
messages. However, participants recruited through SONA were less engaging, but they paid

more attention to the messages with high language intensity or about the Covid-19 vaccines. The
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discrepancy of the effect of engagement between the observational study and two experiments
could also be explained by social desirability bias — it is possible that participants behave
differently from in real life (Antin & Shaw, 2012). Overall, the negative effect of language
intensity on message credibility was confirmed.

Consistently, the fact-checking agency did not affect the perceptions and evaluations of
the fact-checking messages. With two different samples, the null effect of the fact-checking
agency was confirmed, although this effect may only be applied to independent fact-checking
agencies. These results were able to confirm the boundary condition of the machine heuristic,
such that people perceive Al and human fact-checking agencies without difference. Besides, Al
knowledge positively affected dependent variables; participants who were familiar with Al
technology tended to find fact-checking messages more intense and credible and were more
likely to engage with the messages.

Experiment 2 showed different effects of covariates on the dependent variables. First, a
smaller effect from topics was observed. Participants viewed the messages on the minimum
wage as more intense and more credible, though this effect did not transfer to engagement
intentions. This might be explained by age and income differences — participants in the MTurk
sample were older and less wealthy than those in the SONA sample, so it is possible that the
MTurk sample cared more about the minimum wage than the SONA sample did.

Interestingly, conspiracy ideation showed a significant positive effect: participants with
more conspiracy ideation tended to view fact-checking messages as more intense and more
credible. There were similar opposite effects for gender, race and party affiliation; such
differences were hard to explain, and it might result from differences in samples. It should be

acknowledged that this sample was not common in the sense that the political ideology and
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political affiliation were not highly corrected (r = 0.16). Besides, there was a disproportionately
large amount of participants with vaccine hesitancy and strong beliefs in misinformation such as
the election fraud. This might be related to the low compensation of this study ($1 for each
participant) as participants may not pay much attention to answer the questions. Overall, sample

characteristics play a significant role in both experiments.
General discussion

Language intensity is a trivial linguistic feature that people tend to ignore but it can affect
how we think implicitly. The current research extends the study of language intensity to the fact-
checking context with a mix of an observational study and two factorial experiments. How
people evaluate fact-checking messages and agencies and how language intensity and fact-
checking agency (Al vs. human) affect such evaluations were examined. The most significant
discovery of this research was that language intensity negatively predicted message credibility
(Experiment 1 and 2). Besides, different effects of language intensity on engagement were found
in the observational study and experiments; a null effect of fact-checking agency was confirmed
in two experiments. Inconsistent effects from conspiracy ideation (Experiment 1 and 2), Al
familiarity, party affiliation, political ideology, and demographics (i.e., gender, race, income)
were also observed.

The current research contributed to the literature of language intensity by extending it to
the fact-checking context. Fact-checking messages with intense adjectives elicited lower levels
of message credibility. It suggested that people indeed pay attention to the variations in language
intensity and value news objectivity, which affects how people evaluate content credibility and

source objectivity. Belief updating can be harder if people do not trust fact-checking agencies.
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However, inconsistent results were found regarding the effect on engagement. It might result
from sample differences or social desirability bias in participants (Antin & Shaw, 2012);
replication of this study is needed to confirm this effect. Besides, the effect of language intensity
was negligible when the fact-checking messages were counter-attitudinal, which suggested that
people tend not to trust the contents that are against their pre-existing attitudes. Though
confirmation bias is hard to eliminate, language intensity still matters to fight against
misinformation since credibility affects the effectiveness of misinformation corrections (Walter
& Murphy, 2018). Therefore, this finding provides an important implication to fact-checking
practitioners that fact-checking is more effective when neutral and unbiased language is
employed.

Another important finding was about the effect of conspiracy ideation, Al familiarity,
party affiliation, political ideology, and demographics. It was not surprising that these covariates
possessed larger effects than the manipulated factors; people tend to behave in line with pre-
existing attitudes and behaviors. A contradictory effect of conspiracy ideation and political
ideology was found: negative effects were observed in Experiment 1 while positive effects were
observed in Experiment 2. The negative effect aligned with previous findings that people with
high conspiracy thinking tend to reject science, such as fact-checking (Lewandowsky et al.,
2013). But it is hard to explain why participants with high conspiracy ideation found fact-
checking messages more credible. Such inconsistency existed for Al familiarity and party
affiliation, the effects of which were only found in Experiment 2. These results suggested the
importance of samples; future research should replicate this study for these inconsistencies.

This study also contributed to the study of Al perception by identifying one boundary

condition of machine heuristics (Sundar & Kim, 2019). Fact-checking is a context in which
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people treat Al and human agency without difference by testing with two different samples. This
finding suggested that people perceive Al as capable as professional journalists in fact-checking,
which is in line with the argument of CASA (Nass et al., 1994) and a recent finding in the
context of online content moderation (Wojcieszak et al., 2021). This result also contributed by
including Al as a potential fact-checking agency, since current research mainly focuses on
existing fact-checking agencies such as news agency and universities. It implies that Al fact-
checking could be promoted more broadly since it may achieve the same effect as humans do

and greatly relieve the pressure from professional journalists.
Limitations and future research

There are a few limitations of this study. First, this study mainly focused on independent
fact-checking agencies, while other institutions that also contribute to fact-checking, such as
general news agencies and universities, were not studied here. The general public may not know
independent fact-checking agencies as well as other familiar institutions, while independent fact-
checking agencies may not be exposed to a representative audience. Second, in the experiments,
only one adjective was employed to induce each level of language intensity. It hurt the internal
validity of this study since the effect of language intensity may be induced by these specific
adjectives rather than different levels of language intensity that they represent.

Though this study aimed to be as comprehensive as possible, several factors can be
studied in the future research. First, given that a piece of information can be verified along the
spectrum from true to false, it is worth studying both true and false fact-checking labels. Second,
the target of fact-checking was not controlled in the experiment. Though the targets of fact-

checking were mainly individuals with a high saying such as public figures and celebrities,
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random social media users could still post misinformation and become the targets as well. It

would be interesting to test how people respond differently to fact-checking of public figures and
random users. Third, more topics should be covered in the stimuli. This study only covered three
different issues and significant effects have been observed. With more topics covered, we will be

able to obtain a more reliable conclusion regarding the manipulated factors.
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