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Abstract

This dissertation investigates various aspect of the design and testing of on-ramp metering
control systems, including optimization-based control and microscopic freeway modeling. A
new technique for generating optimal metering plans is developed. As with most predic-
tive designs, the ramp metering rates are found as the solution to a nonlinear optimization
problem. In contrast to previous designs, the new approach 1) produces a globally optimal
solution to the nonlinear problem, 2) requires only to solve a single linear program, and 3)
allows the enforcement of hard constraints on the on-ramp queue lengths. The price that
is paid for these features is that the objective function being minimized is not Total Travel
Time, but rather a member of a class of “TTT-like” objective functions. A TTT-like objec-
tive function is defined as a linear combination of mainline flows with weights that, similarly
to the Total Travel Time cost weights, decrease linearly in time from some initial value to
zero at the final time. An example application of the technique shows that the globally opti-
mal metering plan with respect to a TTT-like objective function also performs well in terms
of Total Travel Time. A macroscopic analysis of local traffic-responsive ramp metering on a
short stretch of freeway, with a single on-ramp and no offramps, is also presented. The study
compares the performance of two popular local traffic-responsive ramp metering algorithms:
Alinea and Percent-Occupancy, and addresses issues pertaining to parameter tuning and
loop-detector placement. The second half of the dissertation describes the construction of a
detailed microsimulation model of a stretch of Interstate 210 in Pasadena, CA. The VISSIM
microsimulation package was used to create this model. Descriptions of the data gathering
and processing procedures, bottleneck identification, network coding, and model calibration
are provided. The model is used to test the performance of candidate local traffic-responsive
controllers. Questions concerning the relative merits of these controllers, parameter tun-
ing, and loop-detector placement are addressed in the context of the large-scale microscopic
model.
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Chapter 1

Introduction
Recurring daily congestion is a common feature of many urban freeways. Residents of large
metropolitan areas around the world can attest to the frustration of the ever-deteriorating
daily commute. It is a complex problem without an obvious solution. The phenomenon of
urban sprawl, which continues to draw more and more people away from the urban centers,
has lead to longer commute distances, and to a steady increase in the demands on the
freeway system. A dilemma faced by urban planners and freeway managers is whether to
increase the capacity of the system by expansion, or to increase its efficiency with operational
enhancements.

Over the years, traffic engineers have devised a multitude of techniques for improving
freeway operations with minimal investment. Incentives such as priority lanes for high oc-
cupancy vehicles and toll reductions are used to promote carpooling. Increased tolls during
peak congestion periods are meant to induce temporal shifts in demand. Traffic surveillance
with closed-circuit television and driver “hot lines” allow for prompt detection and response
to incidents. Periodic freeway patrols further reduce incident response times. A variety of
methods of information dissemination, such as radio traffic updates, Internet-based tools
such as PeMS, dynamic message signs, and onboard displays, keep drivers informed of their
best options.

Yet another tactic, and the topic of this dissertation, is on-ramp metering. The goal of on-
ramp metering is to reduce the delay caused to divers by recurrent traffic jams by restricting
their access to the freeway with stoplights placed on the freeway entrances. This may seem
at first like a futile approach, amounting to a simple transferal of the congested area from
the mainline to the on-ramps, with no reduction in delay. Numerous field experiments have
demonstrated, however, that delay can be reduced with a judicious metering strategy. The
properties of traffic behavior that enable these savings are outlined in Section 2.2.1.

The first experiments with on-ramp metering took place in Detroit and Chicago in the
early 1960’s [40]. The Chicago Expressway Surveillance Project, established in 1961, was the
first comprehensive and well-documented evaluation of an automatic metering system [61].
Since then, over 2,300 ramp meters have been deployed in North America [84]. Bogenberger
and May [9] give a comprehensive account of the state of the art as of 1999. Their report
describes operational systems in 21 metropolitan areas across the U.S., 5 of them involving
over 100 ramps, and 12 in other countries. The report illustrates how much ramp metering
has progressed since its inception in the 1960’s. Some strategies now incorporate internal
models of the freeway and advanced feedback control techniques. Sections 2.1 and 2.2 give an

7



overview of the evolution of freeway models and optimization-based ramp metering strategies.
The presentation if the thesis is divided into two parts. The first, comprising Chapters 3

through 5, focuses on the theoretical derivation and simulation testing of a new technique for
computing optimal metering plans. Chapter 3 introduces the Asymmetric Cell Transmission
Model – the ACTM – a variation on the original cell transmission model created especially
for use in the ramp metering design of Chapter 5. The main advantage of this model is in the
simple concave form of its nonlinear terms. This structural simplicity comes at the expense
of its scope: the ACTM is only applicable to linear freeways with on-ramps and offramps.

Chapter 4 applies the ACTM to a stretch of freeway in the vicinity of a single on-ramp.
The aim of this chapter is to derive specific guidelines concerning parameter selection for
two well-known local traffic responsive metering strategies (Alinea and Percent-Occupancy).

Chapter 5 provides the theoretical derivation of the ACTM-based optimal ramp metering
strategy. Similarly to previous predictive designs, the control plan is computed here as the
solution to a nonlinear optimization problem. The distinguishing feature of the proposed
design owes to the concave structure of the ACTM: the nonlinear optimization problem can
be replaced with a linear program, and can therefore be solved globally and efficiently with
any modern LP solver. This represents a tangible improvement over previous designs that
attempted to solve their respective nonlinear programs with local methods. Also in contrast
to many other designs, the proposed strategy includes explicit bounds on the lengths of the
on-ramp queues. It is contended that in many cases a scarcity of on-ramp storage space in
the system may severely limit the ability of any metering strategy to improve performance.
In these situations, the amount and distribution of the scarce resource becomes an important
factor, which should be considered in the control design.

A few limitations to the approach, aside from the possible imprecisions of the ACTM,
should be mentioned. The method is limited in its ability to find a true global optimizer
of Total Travel Time by three factors. The first is that the objective function used in the
problem is not Total Travel Time, but a closely related Generalized Total Travel Time.
These two objective functions are qualitatively similar, in the sense that they both strive to
move vehicles down the freeway as quickly as possible. It is shown with an example that
the optimal plan produces a substantial reduction in both measures. Second, the method
is not applicable to scenarios that are so congested that the mainline queue backs up into
some on-ramp, even when the freeway is optimally controlled. Fortunately, this situation is
not common. Third, the optimal plan may require some on-ramps to be metered at rates
below the minimum allowable rate (typically 180 vph to 240 vph). It may even call for some
ramps to be temporarily closed. In this case, the sub-minimum values in the optimal plan
must be replaced with the minimum allowed rate. The example in Section 5.5 demonstrates
that this step produces only a small sacrifice of global optimality.

The second part of the presentation, Chapters 6 through 8, describes the use of a mi-
croscopic traffic simulator for testing local ramp metering strategies on an existing freeway.
Such a study might be commissioned as a prerequisite for installing or altering a particular
freeway control system. The microscopic model allows the designer to test several features
that may be difficult (although perhaps not impossible) to test macroscopically. VISSIM
was chosen as the microscopic simulator for this study.

Chapter 6 describes the stage of the evaluation common to both macroscopic and micro-
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scopic modeling: data collection. The study focuses on the morning commute on a congested
stretch of Interstate 210 in southern California. The geometric, traffic, and hardware charac-
teristics of the site were gathered from several sources with the help of the Caltrans D07 staff.
The calibration phase of the study is described in Chapter 7. It was found that the VISSIM
software is capable of reproducing all of the features of the freeway that were considered im-
portant to the evaluation of ramp metering. These included an HOV priority lane, bypasses
on some of the on-ramps for HOV vehicles, a variety of vehicle types with a significant per-
centage of trucks, and most importantly, the control hardware and the intricate control logic
contained in the field controller chip. VISSIM’s C-based programming module enabled us to
encode the particular control and override methods used on I-210. Chapter 8 is devoted to
simulation experiments using the VISSIM model and either fixed-rate, Percent-Occupancy,
or Alinea control.
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Chapter 2

Literature review

This chapter provides an overview of the two areas within the field of Traffic Engineering
that are of greater relevance to the propositions of this dissertation. Section 2.1 focuses
on the evolution of macroscopic models for freeways, with emphasis on the first-order LWR
model, and the discrete cell transmission model. Section 2.2 contains discussions on the
motivations for and limitations to on-ramp metering. These discussions are referred to later
in the development of the optimal strategy in Chapter 5. To give context to the proposed
optimal design, a number of previous predictive (static and dynamic) schemes are described
in Section 2.2.3.

2.1 Macroscopic freeway modeling

In the mathematical study of traffic dynamics, two fundamentally different approaches can
be taken. The microscopic approach seeks to reproduce the behavior of the individual
driver/vehicle unit, as it responds to its environment by adjusting its speeds. Microscopic
models typically involve variables such as vehicle position, speed, and headway. The macro-
scopic approach ignores the dynamics of the individual driver and instead attempts to repli-
cate the aggregate response of a large number of vehicles. These models represent traffic
as a compressible fluid, in terms of flow, density, and average speed. The field of Traffic
Engineering has benefitted immensely from macroscopic models; they are widely used in the
design of freeway facilities (e.g. FREQ), and they form the basis of nearly all model-based
on-ramp metering designs. In this section we will define some fundamental quantities and
review the evolution of macroscopic models of freeway traffic.

The Highway Capacity Manual 2000 [8] provides the following definitions. Symbols x
and t represent position (measured in the direction of traffic flow) and time.
Speed v(x, t) is defined as a rate of motion expressed as distance per unit of time. Depending
on how it is measured, it is referred to as either space mean speed or time mean speed. Space
mean speed is computed by dividing a length of freeway by the average time it takes for
vehicles to traverse it. Time mean speed is the average speed of vehicles observed passing a
given point. The latter is easier to measure in the field, as it can be obtained directly from
conventional sensing devices. Free-flow speed is the average speed of traffic measured under
conditions of low volume, when vehicles can move freely at their desired speed.
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Flow f(x, t) is the total number of vehicles that pass the point x during a given time interval
containing t, divided by the length of the time interval. It is usually expressed as an hourly
rate, and is easily measured with road sensors.
Density ρ(x, t) is the number of vehicles occupying a length of freeway about point x at
instant t. Its measurement is difficult because it requires the observation of a stretch of road.
Instead, it is often approximated from measurements of flow and speed with the following
formula:

ρ(x, t) =
f(x, t)

v(x, t)
(2.1)

Demand is the number of vehicle occupants or drivers (usually expressed as the number of
vehicles) who desire to use a given facility during a specified time period.
Capacity is the maximum hourly rate at which persons or vehicles reasonably can be ex-
pected to traverse a point or a uniform section of a lane or roadway during a given time
period under prevailing roadway, traffic, and control conditions.
Bottleneck is defined as any road element where demand exceeds capacity. Freeway bot-
tlenecks sometimes appear near heavy on-ramps, where a localized increase in demand is
combined with a decrease in capacity due to lane changing.

One of the first, if not the first attempt to correlate freeway speed, density, and flow was
by Greenshields in 1934 [33]. He used photographic images to estimate aggregate vehicular
speeds and densities on a straight two-lane roadway, and found that they could be reasonably
well approximated by a straight line. Using Eq. (2.1) he derived a parabolic relationship
between flow and density, as shown in Figure 2.1.

DensityDensity

Speed Flow

Free flow Congestion

freeflow
speed

capacity

Figure 2.1: Greenshields’ speed and flow relationships.

The function f = F (ρ) is commonly known as the fundamental diagram. Many later
researchers have suggested alternative shapes that provide a better fit to the measured data.
Some examples are shown in Figure 2.2. These all share the following characteristics:

1. F (0) = F (ρj) = 0, where ρj is the jam density.

2. The continuous portions of F (ρ) are concave.

3. A critical density ρcrit can be define where the maximum flow is attained. Then,
F ′(ρ) ≥ 0 for ρ < ρcrit and F ′(ρ) ≤ 0 for ρ > ρcrit.

1

1F ′(·) denotes the slope of F (·).
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Figure 2.2: Alternative shapes for the F (ρ) function.

The critical density ρcrit separates the fundamental diagram into two regimes: free-flow
(ρ < ρcrit) and congestion (ρ > ρcrit) (see Figure 2.1). Measurements on the free-flow side
are usually well represented by a straight line, whereas measurements in congestion tend to
be more scattered. Some authors claim that there is a difference in the maximum measured
flow F (ρcrit), depending on whether the freeway is in free-flow or congestion, and contend
that a discontinuity exists at ρ = ρcrit (as in Figure 2.2). This is described in [2, 13, 36] as a
capacity drop, on the order of 4-10% in peak flow, as the freeway transitions into congestion.
Hall et al. [37] warn however that, although a noticeable drop may exist, it can only be
measured at a bottleneck, since it is masked at other locations by shock waves. The issue of
capacity drop is important to on-ramp metering, and will be revisited in Section 2.2.1.

Lighthill and Whitham in 1955 [52] were the first to pose a macroscopic dynamic model
of traffic using Greenshields’ hypothesis of a static flow/density relationship. However they
did not restrict their model to parabolas, but more generally to continuous concave functions
with F (ρj) = F (0) = 0. The model consists of the following two equations:

∂ρ(x, t)

∂t
+

∂f(x, t)

∂x
= 0 (2.2)

f(x, t) = F (ρ(x, t)) (2.3)

Equation (2.2) is the principle of conservation of mass, or in this case conservation of vehicles,
from fluid mechanics. These equations can be written more compactly as:

∂ρ(x, t)

∂t
+ F ′(ρ(x, t))

∂ρ(x, t)

∂x
= 0 (2.4)

This PDE had been used prior to 1955 to describe the movement of water in rivers. Lighthill
and Whitham’s main contribution was a complete characterization of its solutions, as well
as a simple and illustrative graphical method. Richards [88] independently posed a simi-
lar model in 1956, although he assumed Greenshields’ parabolic form, and devised a more
limited graphical method. Equation (2.4) is nevertheless commonly known as the Lighthill-
Whitham-Richards, or LWR, model.

2.1.1 The LWR model

The LWR model is an example of a nonlinear wave equation whose solutions can be described
in terms of characteristics, or trajectories in the time/space plane along which the densities
and flows are described by ordinary differential equations. Equation (2.4) is a relatively
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simple wave equation: its characteristics are straight lines with slope F ′(ρ), and the densities
and flows remain constant along the characteristics. The value of the density or flow at any
point is therefore equal to a boundary or initial condition to which the point is connected
by a characteristic. The boundary value problem is well-posed if the family of characteristics
emanating from the initial and boundary conditions spans the entire time/space plane. The
main complication arises, as described in [52], when characteristics intersect, leading to
multiple values at the point of intersection. In this situation, the PDE admits only weak
solutions, which necessarily contain discontinuities, or shocks. The discontinuities are such
that the more general integral form of Eq. (2.2) between arbitrary points x1 and x2 applies:

d

dt

∫ x2

x1

ρ(x, t) dx + f(x2, t) − f(x1, t) = 0 (2.5)

The speed of the shock (cs) can be found by applying Eq. (2.5) to a small window [x1, x2]
containing the moving shock at x = s(t) [99] (see Figure 2.3):

f(x1, t) − f(x2, t) =
d

dt

∫ x2

x1

ρ(x, t) dx (2.6)

=
d

dt

∫ s−(t)

x1

ρ(x, t) dx +
d

dt

∫ x2

s+(t)

ρ(x, t) dx

= ṡ ρ(s−, t) +

∫ s−(t)

x1

∂ρ

∂t
dx − ṡ ρ(s+, t) +

∫ x2

s+(t)

∂ρ

∂t
dx

Taking the limit x1 → s− and x2 → s+:

cs(t) = ṡ(t) =
f(s+, t)− f(s−, t)

ρ(s+, t)− ρ(s−, t)
=

f+ − f−

ρ+ − ρ−
(2.7)

The speed of the shock is represented graphically on the fundamental diagram as the in-
clination of the chord joining the upstream and downstream states, as illustrated in Figure
2.3. It is shown in [26, 99] that the concavity of F (ρ) implies that only shocks of increasing
density, or deceleration shocks, can develop in the traffic stream. This is because conditions
of heavy downstream traffic and light upstream traffic generate waves that coalesce, whereas
conditions of smaller downstream density lead to diverging waves. Hence, all shocks that
form naturally must satisfy:

ρ− ≤ ρ+ (2.8)

Denoting the speed of the characteristics that terminate in the shock with c− = F ′(ρ−)
and c+ = F ′(ρ+), then Eqs. (2.7), (2.8), and the concavity of F (ρ) imply:

c− > cs > c+ (2.9)

Ansorge [4] completed the LWR theory in 1990 with a condition of increasing entropy,
analogous to the 2nd Law of Thermodynamics. In gas dynamics, the entropy criterion is
used to select a physically relevant solution from a number of weak solutions. Ansorge found
that the principle, when applied to traffic dynamics, is equivalent to Eq. (2.8); i.e. it is always
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Figure 2.3: Speed of a shock.

satisfied on the continuous portions of the solution, and imposes a condition of increasing
density across all discontinuities. It was found furthermore that this condition is sufficient
to eliminate all of the weak solutions except for the physically relevant one. That is, given
a number of weak solutions, Ansorge’s criterion states that the sole realistic solution is the
one with no stable acceleration shocks. It has already been noted that the strict concavity of
the fundamental diagram precludes the natural formation of acceleration shocks in the traffic
stream (Eq. (2.8)). These types of shocks can only be imposed by the boundary or initial
conditions. Thus, Ansorge’s criterion requires more simply that any acceleration shocks
imposed by initial or boundary conditions must dissipate instantaneously2. This criterion is
supported by observation: acceleration shocks, for example at the front of a stoplight queue
when it turns green, tend to dissipate quickly.

Pipes [85] deduced an illustrative formula for the acceleration of a vehicle moving with
the traffic stream in the LWR theory:

dv

dt
= −ρ (V ′(ρ))

2 ∂ρ

∂x
(2.10)

where V (ρ) , F (ρ)/ρ is the equilibrium speed. Vehicle acceleration is seen in Eq. (2.10)
to have the opposite sign of the density gradient; i.e. vehicles decelerate as they move into
more dense regions, and vice-versa. Equation (2.10) also reveals one of the main criticisms
of the theory, that vehicles undergo infinite decelerations as they traverse a shock.

Since 1955, many numerical schemes have been developed for solving the LWR equations.
May [62] gives an account of the available software as of 1981. FREQ, one of the most
widely used freeway simulation programs, automates the graphical technique developed by
Lighthill and Whitham. It also includes several enhancements such as access ramps, weaving
lanes, truck percentages, etc. Other applications have approximated the PDE with finite
differences, however not always successfully. Ross notes in [90] that some of these computer
programs have the undesirable tendency to “lock up”, meaning that congestion persists after
a blockage has been removed. In hindsight it seems that those algorithms may have been
consistent with the theory, but they failed to select the entropy increasing weak solution (as
in Ansorge’s example [4]).

2Ansorge’s proof assumes a strictly concave fundamental diagram; i.e. F ′′(ρ) < 0. It does not apply to
fundamental diagrams, such as those in Figure 2.2, where F ′′(ρ) sometimes equals zero. In this case, the
acceleration shock may persist.
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Daganzo’s cell transmission model (CTM) resolved the “lock-up” problem in 1995 [21, 22].
The CTM is a finite difference approximation of LWR based on the intuitive concepts of
sending and receiving flows. Under the CTM, the highway is divided into homogeneous,
consecutively numbered sections of length Li, where i is a section index. Time is discretized
into uniform intervals of duration ∆t, such that

v ∆t ≤ min
i

Li (2.11)

where v is the free-flow speed. The state variable for section i is ni(k), the number of
vehicles it contains at time k∆t. Equations (2.12) and (2.13) below are discrete forms of the
conservation equation and fundamental diagram respectively:

ni(k + 1) = ni(k) + yi(k) − yi+1(k) (2.12)

yi(k) = min{ ni−1(k) ; Qi ; (w/v)[Ni − ni(k)] } (2.13)

v and w are the slopes of the free-flow and congested portions of a triangular fundamental
diagram. They are assumed to be uniform along the freeway in [21, 22]. Qi is the maximum
number of vehicles that can move between sections i − 1 and i during one time interval
(related to capacity); Ni is the maximum number of vehicles that fit in section i (related
to jam density); yi(k) is the number of vehicles that actually move between sections i − 1
and i during time interval k. The flow variable yi(k) is computed with Eq. (2.13) as the
minimum of what can be sent by the upstream section under free-flow conditions, ni−1(k),
and what can be received by the downstream section during congestion, (w/v)[Ni − ni(k)].
Daganzo showed in [23] that the CTM is consistent with the LWR model in the sense that
their solutions converge as ∆t and Li become small. The model also has the important
property that it dissipates acceleration shock waves. That is, it finds the entropy increasing
solution.

Figure 2.4: Merging and diverging flows in the CTM.

The CTM was extended in [22] to cover more general network topologies, including
traffic merges and diverges (see Figure 2.4). In the case of merges, the flows from each of
the upstream sections are computed with:

ya(k) = mid{ Sa ; Rc − Sb ; p Rc } (2.14)

yb(k) = mid{ Sb ; Rc − Sa ; (1− p)Rc } (2.15)
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where

Sa = min{ Qa ; na(k) } (2.16)

Sb = min{ Qb ; nb(k) } (2.17)

Rc = min{ Qc ; (w/v)[Nc − nc(k)] } (2.18)

The mid{} function in Eqs. (2.14) and (2.15) returns the middle value, or the median, of its
three arguments. Si and Ri are respectively the number of vehicles that a section i can send
or receive. p is a given number between 0 and 1 that determines the priority assigned to
flows coming from sections A or B at the junction. These formulas ensure that the density
in section C will never exceed Nc.

Bifurcating flows in the network CTM are computed using a given split ratio βca(k) ∈
[0, 1], which determines the portion of the total flow leaving section C that continues into
section A, during time interval k 3. The portion that diverts to section B is 1−βca(k). Using
the known split ratios, the total flow out of section C, yc(k) = yca(k) + ycb(k), is given by:

yc(k) = min{ Sc , Ra/βca(k) , Rb/(1− βca(k)) } (2.19)

Then the individual flows can be found with:

yca(k) = βca(k) yc(k) and ycb(k) = (1− βca(k)) yc(k) (2.20)

The CTM was implemented in the NETCELL simulation software [18, 54], which was used to
validate the model using data from I-880 in Oakland, California in [53]. Tan [94] calibrated
the CTM using data from I-210 in Pasadena, California.

Another important contribution to the LWR model is Newell’s “simplified theory”, cov-
ered in [69, 70, 71]. This solution method is based on the concept of the cumulative vehicle
count, N(x, t), defined as “the number of vehicles to pass some location x by time t starting
from the passage of some reference vehicle”. The usage of N(x, t) instead of f(x, t) and
ρ(x, t) as the computed variable has practical justifications. First, several quantities of in-
terest to transportation analysts are readily extracted from N(x, t) curves. For example, the
trajectory of a vehicle m is obtained by intersecting the surface N(x, t) with the horizontal
plane N = m. The plots of Figure 2.5 were constructed by projecting vertical slices of N(x, t)
at x = x1 and x = x2 onto the N/t plane. Both the trip time for a vehicle m between points
x1 and x2 and the total number of vehicles between x1 and x2 at time t1 can be directly
measured from these curves. Also, the total time spent by all vehicles between x1 and x2

during a time interval [t1, t2] appears as the shaded area.
Density and flow also have direct interpretations as the partial derivatives of N(x, t):

ρ(x, t) = −∂N(x, t)

∂x
and f(x, t) =

∂N(x, t)

∂t
(2.21)

Another important advantage of stating the LWR equations in terms of cumulative counts,
is that the conservation of vehicles turns into a condition of continuity of the N(x, t) surface.
Substituting Eq. (2.21) into (2.2):

∂

∂t

(
−∂N(x, t)

∂x

)
+

∂

∂x

(
∂N(x, t)

∂t

)
= 0 (2.22)

3A second version of the network CTM assuming known OD information was also given in [22].
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Figure 2.5: Uses of the cumulative vehicle count.

which is trivially satisfied whenever the derivatives exist. Shocks are manifested in the
simplified theory as creases in N(x, t), or locations where the second derivatives do not
exist.

Newell’s graphical method applies to uniform freeways, where the fundamental diagram
does not change with x. In this case, the cumulative count behaves linearly along character-
istics:

dN = [−ρ + f/F ′(ρ)]︸ ︷︷ ︸
constant

dx = [−ρ F ′(ρ) + f ]︸ ︷︷ ︸
constant

dt (2.23)

since ρ and f remain constant along the characteristic. Thus, the value of N(x, t) at a partic-
ular point can be easily obtained from the value at any other point on the same characteristic
(e.g. an initial or boundary point), without evaluating intermediate points. Newell describes
several situations in which this may be advantageous. A computer implementation of the
method is described in [93].

Despite its simplicity, the LWR model is capable of reproducing many important phe-
nomena of freeway traffic. Notably, it captures the main difference between free-flow and
congested traffic, which is that they propagate small disturbances in opposite directions and
at different speeds. It also explains the formation and dissipation of queues upstream of a
bottleneck, the dynamics of deceleration shock waves, and the absence of naturally form-
ing acceleration shock waves. As opposed to many higher-order models, the LWR theory
never predicts negative speeds or flows. However, several authors have noted that some of
its predictions are unrealistic, and that it fails to capture other important aspects of traffic
behavior. Below follows a list of cited shortcomings.

1. The central hypothesis of the theory – that flow and density are related by a static
function F (ρ) – fails in the congested regime [26, 68, 78, 90].

2. Time sequences of field measurements in the density/flow plane seem to follow different
F (ρ) curves, depending on whether the traffic stream is decelerating or accelerating.
Treiterer and Myers [95] suggest that this is indicative of hysteresis in freeway traffic be-
havior, caused by the fact that vehicle deceleration and acceleration are not symmetric
processes. Hysteresis cannot be replicated by LWR [107, 108].

3. The model predicts instantaneous changes in vehicular speeds as they traverse a shock
[24, 26, 55, 107].
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4. The model does not consider the distribution of driver behaviors and desired speeds.
Daganzo suggests in [25] that this may lead to errors in the free-flow regime, when
significant passing occurs, but that this problem is not likely to be resolved by any
macroscopic model.

5. Because of the requirement of continuity made on the fundamental diagram, the model
cannot incorporate any abrupt losses in capacity due to congestion [74].

Related to this last deficiency, Papageorgiou argues in [74] that it represents a serious limi-
tation to the usefulness of LWR in the design of on-ramp control strategies. This is because
the capacity gained by preserving free-flow conditions is a motivating factor for delaying the
onset of congestion by metering the on-ramps (Section 2.2.1). Metering strategies based on
the LWR model, such as the optimal policy described in Chapter 5, will therefore be most
effective when they are applied to freeways where the capacity drop is less prominent, and
congestion has other detrimental effects, such as the obstruction of upstream offramps.

Lighthill and Whitham were aware of the limitations stemming from their central hy-
pothesis. They suggested as a possible improvement the addition of higher order terms to
capture the effects of diffusion, caused by drivers’ reaction to perceived changes in density,
and inertia, caused by the fact that vehicles do not reach their desired speeds instanta-
neously. Several higher order models, beginning with Payne’s in 1971, were later proposed
to deal with some of the limitations of the LWR theory.

2.1.2 Higher order models

The second and third order PDE models described in this section all retain the principle of
vehicle conservation from the LWR model (Eq. (2.2)), but replace the static fundamental
diagram with a dynamic momentum equation of the form:

∂v

∂t
+ ζ(v)

∂v

∂x︸ ︷︷ ︸
vehicle acceleration

=
1

T (ρ)
[ V (ρ)− v ]

︸ ︷︷ ︸
relaxation

+ h(ρ)
∂ρ

∂x︸ ︷︷ ︸
anticipation

+ ν
∂2v

∂x2︸ ︷︷ ︸
viscosity

(2.24)

The left hand side of this equation is the total time derivative of speed (vehicle acceleration)
whenever ζ = v. The right hand side is composed of three terms representing the reasons
why drivers adjust their speed. The first term, speed relaxation, accounts for the fact that
drivers have a desired speed V (ρ), which they converge to smoothly. The coefficient T (ρ)
is often referred to as the driver reaction time, due to Payne’s original derivation from a
microscopic car-following model. It can also be interpreted as a macroscopic relaxation time.
Del Castillo et al. note in [26] that this double interpretation of T (ρ) has lead to a wide range
of values in different applications. The second term represents the tendency of drivers to
anticipate downstream conditions by accelerating when they are less dense, and decelerating
when they are more dense. The third is a viscosity term introduced by Kühne in [50] to
smooth discontinuous shocks.

Payne [80] developed the first and still the most widely used second order model by
substituting quantities from a microscopic model with analogous macroscopic variables. His
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momentum equation is:

∂v

∂t
+ v

∂v

∂x
=

1

T
[ V (ρ)− v ] +

(
V ′(ρ)

2Tρ

)
∂ρ

∂x
(2.25)

Payne showed that this PDE is stable to small perturbations about a uniform equilibrium
ρ = ρo if and only if:

−2 T ρ2
o V ′(ρo) < 1 (2.26)

Equation (2.26) defines a critical density which Kühne [50] estimates to be approximately
35 veh/km/lane. Payne also proposed a discrete version of the model which was later imple-
mented as the FREFLO software [81]. The METANET model [46] extends Payne’s model
to network configurations. It also introduces a couple changes to the discrete version, which
improve its numerical properties. For example, the 1/ρ in the anticipation term of Eq. (2.25)
is replaced in METANET with 1/(ρ + κ), with κ > 0, to allow it to handle situations of
small or zero density [75]. Several calibration studies using FREFLO, METANET, or other
similar implementations have found Payne’s model to correspond well to measured freeway
data [19, 20, 27, 34, 46, 75, 81, 91]. Although Eq. (2.25) includes a smoothing relaxation
term, it does not eliminate all discontinuities from the solution. Del Castillo et al. showed
in [26] that deceleration shocks may still form if a steady compression wave condition (Eq.
(2.30)) is not met. This condition was derived by assuming a moving wave solution of the
form:

ρ(x, t) = Φ(x− vst) = Φ(y) (2.27)

v(x, t) = Ψ(x− vst) = Ψ(y) (2.28)

where Φ and Ψ are arbitrary functions. vs is the speed of the profiles given by vs = (ρ2v2 −
ρ1v1)/(ρ2 − ρ1), where subscripts 1 and 2 denote the limits as y → −∞ and y → ∞.
Substituting these profiles into (2.2) and (2.25) leads to the following ODE:

(
V ′

2T
+

Q2
s

Φ2
T

)
Φ′ + Φ(V − vs)−Qs = 0 (2.29)

where Qs = ρ1(v1− vs) = ρ2(v2− vs). Smooth compression wave solutions (with ρ2 > ρ1) to
Eq. (2.29) can exist only if:

V ′(ρ)

2T
+

Q2
s

ρ2
T > 0 (2.30)

Thus, the profile Φ(y) must include a discontinuity if Eq. (2.30) is not satisfied for either
Φ = ρ1 or Φ = ρ2.

Kühne’s analysis of the Payne model in [50] showed that it supports “start-stop” wave
solutions that were not predicted by the LWR theory, but that these special waves must
contain discontinuities. To soften the solution he proposed the addition of a dissipation or
viscosity term:

∂v

∂t
+ v

∂v

∂x
=

1

T
[V (ρ)− v]− C2

o

ρ

∂ρ

∂x
+ ν

∂2v

∂x2
(2.31)

where ν is a positive constant and Co is akin to the speed of sound in fluids.
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Lyrintzis et al. [60] suggested that, contrary to Payne’s model, the reaction time of drivers
depends on density, in such a way that traffic reacts quicker at high densities than at low
densities. Their model is identical to Payne’s with the following reaction time specification:

T (ρ) = To

[
1 +

(
ρcrit

ρ

)θ
]

(2.32)

where To and θ are positive constants, and ρcrit is the critical density of Figure 2.1.
The two most severe criticism of Payne’s model are that it can lead to negative speeds and

flows, or wrong-way travel, and that it allows vehicles to be influenced by conditions behind
them [24]. The latter is because perturbations in the model may travel forward through
the traffic stream at a higher speed than the traffic itself; that is, the speed of the fastest
characteristic exceeds the free-flow speed. These two obviously unrealistic predictions do
not plague the LWR theory. The properties of the fundamental diagram imply that, under
LWR, vehicles never travel backwards, and the speed of information is at most equal to the
speed of traffic.

Del Castillo et al. [26] proposed a fix to the problem of fast characteristics. They showed
that it is removed by making the reaction time dependent on density as follows:

T (ρ) = − 1

2 ρ2 V ′(ρ)
(2.33)

This specification for reaction time is a decreasing function of ρ whenever the fundamental
diagram is strictly concave. However, Daganzo showed in [24] that a whole class of higher
order models, including Payne’s with constant or density dependent reaction time, predicts
wrong way travel. This was demonstrated with an example in which a stationary queue of
finite length was initially stopped behind a road block. The density within the queue was ρj

and zero elsewhere. The expected behavior for this scenario is that nothing should happen
unless the blockage is removed. Daganzo showed however that a class of models with diffusion
terms tends to smooth the tail-end of the queue by moving vehicles backwards. Thus, the
problem of wrong way travel cannot be eliminated by making the reaction time density
dependent. A more fundamental departure is required.

Zhang proposed the following momentum equation in [107]:

∂v

∂t
+ v

∂v

∂x
=

1

T
[V (ρ)− v]− ρ (V ′(ρ))

2 ∂ρ

∂x
(2.34)

An interesting property of this model is that it reduces to LWR as T → 0, as can be seen
by comparison with Eq. (2.10). Zhang showed that the model does not exhibit wrong-way
travel when applied to Daganzo’s example, in the limit as T tends to zero. It was not shown
however, that negative speeds cannot result when T is given a larger more realistic value.
Zhang showed in [108] that this model predicts hysteresis, or stop-start waves, in congested
traffic. It is referred to in Table 2.1 as “Zhang I”.

In a later paper [109], Zhang gave a precise definition a class of “Payne-like” models that
all contain fast characteristics. This definition included Zhang I. He went on to propose
a new model (“Zhang II” in Table 2.1) which along with Liu’s described below, are the
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only two presented here that eradicate both wrong-way travel and fast characteristics. The
momentum equation for Zhang II is:

∂v

∂t
+ v

∂v

∂x
= −ρV ′(ρ)

∂v

∂x
(2.35)

Liu et al. [55] devised another model also devoid of wrong-way travel and fast characteristics:

∂v

∂t
=

1

T (ρ)
[ V (ρ)− v ] (2.36)

T (ρ) = To

[
1 +

E

1 + (ρ/ρcrit)
θ

]
(2.37)

where To, E, and θ are positive constants. Notice that these last two models are more simple
than the rest because they remove the anticipation and viscous terms. Wrong-way travel is
eliminated with the removal of the anticipation term.

Table 2.1 summarizes the models covered in this section. Others include [83] and [90], and
the efforts based on alternative techniques, such as catastrophe theory [1], neural networks
[112], and heuristics [42, 43, 44].

Model ζ T (ρ) h(ρ) ν

Payne v T V ′(ρ)/(2Tρ) 0
Kühne v T −C2

o/ρ ν
Lyrintzis et al. v To

[
1 + (ρcrit/ρ)θ

] −α/ρ 0
Del Castillo et al. v −1/(2ρ2V ′(ρ)) V ′(ρ)/(2Tρ) 0

Zhang I v T ρ (V ′(ρ))2 0
Zhang II v + ρ V ′(ρ) ∞ 0 0

Liu et al. 0 To

[
1 + E

1+(ρ/ρcrit)
θ

]
0 0

Table 2.1: Higher order models.
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2.1.3 Lane changing models

The models described so far have focused on the longitudinal behavior of vehicles. Several
attempts have also been made to model the way in which drivers change lanes, and the
effect that this has on density and flow. Gazis [32] proposed a proportional model in 1961,
where the rate of lane changing between adjacent lanes was considered proportional to the
difference between the density errors, delayed by a constant reaction time T :

Q1→2(t) = λ
[
ρ2(t− T )− ρ1(t− T ) − (ρ2o − ρ1o)

]
(2.38)

Q1→2(t) is the rate of lane changing from lane 1 to lane 2, λ is a proportionality constant,
ρio is the equilibrium density in lane i. Gazis also assumed no external sources or sinks
(Q2→1 = −Q1→2) and a uniform distribution of densities in the x direction. Then:

ρ̇1(t) = −ρ̇2(t) = Q1→2(t) (2.39)

From a closed-form solution to the n-lane case, Gazis derived stability conditions for the lane
change process, depending on the values of λ, T , and n. Munjal et al. [66, 67] extended this
result by coupling Gazis’ model with the LWR theory. By assuming T = 0 in Eq. (2.38),
Munjal et al. found that stable closed-form solutions were possible in certain situations, and
compared the predicted densities to measured data. A few modifications to the Gazis-Munjal
model were suggested by Michalopoulos et al. in [63, 64]. They reintroduced the reaction
time, and made the proportionality coefficient λ dependent on the difference between lane
densities, in such a way that it vanished for |ρ1−ρ2| < ka (arguing that lane changing is rare
under near-uniform conditions). These added complexities put closed-form solutions out of
reach, and a numerical scheme was proposed instead. Unfortunately, due to the difficulties
of collecting lane change data, none of these models have been comprehensively validated.

2.2 Freeway on-ramp control

2.2.1 The rationale for on-ramp metering

The goal of any on-ramp control system must be, in general terms, to improve the efficiency of
the system by regulating the number of vehicles allowed to enter the freeway. How efficiency
can be increased by metering the on-ramps and how this improvement is measured are the
topics of this section.

Several measures of performance have been used to assess the effectiveness of traffic
controllers, however most are variations on two fundamental measures: the Total Travel
Distance (TTD) and the Total Travel Time (TTT). TTD is defined as the sum of the distances
travelled by all users of the system, over a given period of time. Equivalently, it is the
product of the average trip length and the total number of users. It can be computed as the
integral of flow over time and space:

TTD ,
∫ x2

x1

∫ t2

t1

f(x, t) dt dx (2.40)
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TTT is the sum of all trip times incurred by users during a given time period, or the number
of users multiplied by the average trip time. It is computed as the integral of density:

TTT ,
∫ x2

x1

∫ t2

t1

ρ(x, t) dt dx (2.41)

Using Eq. (2.2) and integration by parts, TTT can be separated into a control independent
term, involving only the initial conditions and input flows, and a weighted sum of exit flows
[76]:

TTT = (t2 − t1)

∫ x2

x1

ρ(x, t1)dx +

∫ t2

t1

(t2 − t) In(t) dt

︸ ︷︷ ︸
control independent

−
∫ t2

t1

(t2 − t) Out(t) dt

︸ ︷︷ ︸
exit flows

(2.42)

Here, In(t) is the sum of all flows entering the system. The scope of the system is assumed
to be large enough so that the incoming flows are independent of the control. The first two
terms on the right hand side are therefore insensitive to on-ramp control. The third term is a
weighted integral of Out(t), the flows leaving the system. The weights −(t2− t) are linearly
increasing and negative on [t1, t2]. Equation (2.42) demonstrates the intuitive notion that
to minimize TTT, the control strategy must maximize the outgoing flows. That is, it must
remove vehicles from the system as quickly as possible.

Ideally, the spatial boundaries of the system should be chosen such that the entering
flows are not affected by the state of traffic inside it, and the flows exiting are not affected
by traffic outside. A necessary condition for this to happen is that both the upstream
and downstream boundaries must remain in free-flow throughout the test period. For a
freeway this means that the scope of the test section should encompass any queues generated
by internal bottlenecks, as well as the bottlenecks themselves and some stretch of freeway
downstream. The downstream boundaries should not be reached by queues from external
bottlenecks.

Although it is needed, a state of free-flow at the upstream boundaries is not sufficient
to guarantee that incoming flows will not be affected by the control. Drivers often make
on-the-spot routing decisions based on their assessment of travel time and congestion. They
can make the decision to enter or leave the freeway at different points, or they may avoid
the freeway altogether and use only the surface streets. Thus, incoming flows can be affected
by traffic diversion. The scope of the system for which control is being evaluated should
therefore also encompass any alternative routes to which drivers may divert.

Yet another condition relates to the selection of the temporal boundaries for the experi-
ment. In order to capture the full effect of the control strategy, the test section should be left
in an uncongested state at the end of the test period. This is to ensure that the performance
measure represents a fair account of all of the system users.

Finally, to compare the performance of competing control strategies, the demands on the
system should be the same in each of the experiments. This of course can be accomplished
only approximately in actual field tests, but it is important nevertheless, since the day-to-
day variations can be on the same order as the expected savings due to ramp metering. To
minimize the differences in demand, one might restrict comparisons to experiments carried
out on the same day of the week, with similar weather conditions, and without incidents.
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Assuming that the experiments meet the four above-mentioned specifications, it can be
argued that TTT, and not TTD, is the meaningful measure of performance. The total number
of users is the same for all experiments, since the demands are the same, and the time
period is long enough to satisfy all of the demand. TTD and TTT are therefore proportional
to the average trip length and the average trip time, respectively. In the case of a system
without routing alternatives, the trip length is fixed for all users, so the TTD is the same
for all experiments, regardless of the control measure. TTT is clearly the sole significant
performance measure in this case.

In the case that drivers have more than one routing option, it can be expected that they
will choose the route that minimizes their individual travel times. This was postulated by
J.G. Wardrop in [97], and is known as “Wardrop’s first principle”. It implies that individual
users consider travel time savings, and not travel distance, as the determining factor – it is
the individual reward which they seek to maximize. It also implies that the route choice of
some drivers may have a negative impact on others. For example, a relatively small number
of drivers with short trips may decide to use the freeway, even though their decision to do so
produces congestion. This congestion may, in turn, cause a delay to a large number of drivers
with longer trips, and this induced delay may exceed the travel time savings of the short
trip population. This uncontrolled situation results in larger average travel times, and more
variation in the individual travel times. The function of the centralized controller should
then be to provide a global perspective for achieving a more efficient use of the infrastructure,
in order to increase the average reward for all users. Because the individual reward is travel
time savings, the conclusion is that the controller should seek to minimize the average travel
time – and therefore the total travel time.

But, can on-ramp metering alone reduce total travel time? Equation (2.42) shows that
this goal is achieved by keeping the exit flows high. There are three mechanisms by which
metering the on-ramps can increase exit flows. We will refer to these as capacity drop, exit
blockage, and diversion. 4

The first, capacity drop, is based on the observation that the maximum sustainable
flow during congestion, known as the queue discharge rate, is sometimes less than the true
capacity, which can be realized only in free-flow conditions. The onset of congestion is
characterized by a sharp decrease in flow from capacity flow to the queue discharge rate,
measured downstream of the bottleneck. This phenomenon has been reported in several field
studies, where measurements appear to be best represented by a discontinuous fundamental
diagram, as in Figure 2.2. The implication of this observation for on-ramp metering is that
congestion on the freeway should always be avoided, no matter how long the required on-ramp
queueing times, since it leads directly to a decrease in mainline, and therefore offramp flows.

Congestion has several causes related to on-ramp flow. The most obvious is when the
demand exceeds the nominal capacity of the freeway. Congestion caused by excessive demand
can be avoided simply by keeping the surplus on the ramps. Cassidy et al. observe in
[12] that congestion is sometimes triggered by short surges in on-ramp flow. This type of
congestion can be avoided with on-ramp metering by attenuating the spikes in demand.
Congestion can also be caused by inefficient merging of the on-ramp and mainline streams

4Banks [7] identifies the reduction of accidents as a fourth mechanism. This and others, such as the
inducement of temporal shifts in demand, are not considered here.

24



[14]. A class of metering strategies known as “gap-acceptance” strategies aims at improving
merging efficiency by synchronizing the release of vehicles from the on-ramp with vehicles
on the freeway to produce a “zipper effect”.

However there is no consensus among traffic analysts on the capacity drop. Hall [37]
noted that whether or not an abrupt drop exists could not be concluded from some of the
existing studies, because the data was collected upstream of the bottleneck. The observed
gap in the flow-density data could therefore be explained by the passage of a shock wave.
Yet other studies have found a modest but non-negligible drop using downstream data: Hall
and Agyemang-Duah [36], Agyemang-Duah and Hall [2], and Cassidy and Bertini [13] all
found capacity drops ranging from 4% to 10%. These three studies used data from a section
of the Queen Elizabeth Way in Ontario, Canada. On the other hand, Banks [5] found no
significant change in average flow at several sites. In conclusion, the capacity drop does not
appear to be a universal feature of freeway traffic.

A second mechanism by which on-ramp flow can influence travel time is by avoiding the
blockage of the freeway offramps [10, 11]. Left unchecked, mainline queues may grow past
the offramps located upstream of the bottleneck, and thus prevent vehicles from leaving
the freeway. The exiting flow can be increased by restricting on-ramp flow so that the
mainline queue does not overrun the upstream offramps. For this to be effective, it is not
necessary, as with the capacity drop, to eliminate congestion completely, but only to reduce
it sufficiently. In fact, further restricting the on-ramps will induce unnecessary delays. The
offramp blockage mechanism therefore warrants for a measured amount of congestion on the
freeway.

The two mechanisms mentioned so far, capacity drop and offramp blockage, lead to
different strategies for minimizing total travel time. The optimal strategy for capacity drop
alone, for example in a single-destination network, is to reduce on-ramp flow sufficiently to
eliminate all mainline congestion, but not more. When offramp blockage is the only concern,
the optimal strategy is to reduce on-ramp flow enough to unclog the offramps, but not more.
The difference between these two competing strategies was noted by Banks in [7]. He found
that the optimal plan for delay reduction (i.e. minimum travel time) is different from the
one for minimizing congestion, and concluded that this is because delay is not minimized
by eliminating congestion, but by unclogging the offramps. Zhang et al. studied a model
without route choice in [113], and found that the freeway is best left uncontrolled (i.e. no
improving controller exists) if it is either “uniformly congested” or “uniformly uncongested”,
meaning that the amount of congestion cannot be affected by on-ramp control alone. This
seems reasonable, since the two mentioned mechanisms depend on the ability of the on-ramp
controller to reduce congestion.

The third mechanism, diversion, becomes important when certain users have a choice of
route within the system, but tend to select one that causes significant delay to others. For
on-ramp metering to improve travel time in this situation, it must be able to create sufficient
additional delay on the ramps for the troublesome users to switch to the system-preferred
route, while decreasing the total travel time. That is, the added on-ramp queueing time
should be sufficient to induce a particular diversion, but not so much as to increase total
travel time. This balance may not be attainable, for example, if the difference in travel time
between the user-preferred and system-preferred routes is large. It is also not possible unless
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drivers have some propensity to divert when the on-ramp queue is large [111].

2.2.2 Limitations to on-ramp control

The previous section outlined three ways in which on-ramp metering can reduce travel time:
by avoiding the capacity drop and offramp blockage, and by encouraging certain diversions.
The ability of the on-ramp controller to realize these reductions, however, is limited by
physical and practical considerations [6]. The two most important of these are the bounds
placed on the metering rate and the limited storage capacity of the on-ramps.

The metering rate is typically restricted by a lower bound of 180 to 240 vphpl5, and an
upper bound of 900 vphpl [86, 89]. This upper bound is dictated by the one-vehicle-per-
green policy, whereby every vehicle must stop at the meter and wait for a 2-second green
light before proceeding. The minimum time required for a vehicle to approach the stop line
is about 2 seconds, so the minimum cycle time is 4 seconds, or 900 vph. This rate can
be increased if more than one vehicle is allowed entry per green light, or by increasing the
number of metered lanes. The lower bound of between 180 and 240 vphpl is attributed to
the fact that drivers will not wait longer than 15 to 20 seconds at the stop line.

Both the capacity drop and offramp blockage mechanisms call for a reduction of conges-
tion. As was explained in the previous section, this can be accomplished by throttling the
excess demand. Ignoring the effects of diversion, this requires that the surplus be stored
upstream of the on-ramp meter, either in the on-ramp queue or further upstream on the
surface streets. However, storing vehicles on the streets without disrupting traffic is only
possible with a more sophisticated coordination between the on-ramp meter and the street
signals. In the case of independent freeway and surface street control systems, the only
storage space available is on the on-ramps themselves. These can typically hold about 30
vehicles each, which is a small number compared to the number of vehicles that can be stored
on the mainline. When the on-ramp queue grows too long and threatens to spill onto the
street, many systems will override the controller and set the meter to its maximum rate.
The amount and distribution of available storage capacity is thus seen to be a very impor-
tant factor which should be considered in the calculation of the metering rates. However,
very few controller designs take storage capacity into consideration. Exceptions include Di
Febbraro et al. [28], Alessandri et al. [3], and the strategy proposed in Chapter 5 of this
dissertation. These three impose hard constraints on the on-ramp queue lengths. Kotsialos
and Papageorgiou [48, 49] used soft constraints – i.e. penalties in the objective function –
to prevent the on-ramp queues from overflowing.

The use of mathematical models in the design of on-ramp metering strategies began with
the linear programming approach proposed by Wattleworth [98] in 1965. Since then, a large
number of strategies have been proposed, using an array of modeling and control techniques.
These designs can be categorized in several ways, but perhaps the most meaningful is to
separate them into predictive and reactive strategies. The reactive type, also known as traffic-
responsive or feedback controllers, use real-time measurements from the freeway to compute
the metering rates. Predictive or time-of-day strategies, use only historical data. The latter
are susceptible to deviations of the traffic demands from their expected values, and should

5vphpl: vehicles per hour per lane.
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therefore only be implemented within a larger control structure that includes feedback (e.g.
model predictive control, hierarchical control). The next section gives a historical account
of predictive on-ramp metering designs.

2.2.3 Predictive on-ramp control

Predictive on-ramp metering strategies use a model of the freeway and an estimate of future
demands to predict the response of the system to on-ramp control. The metering rates
are found as the solution to an optimization problem. The important components of the
optimization problem are:

1. the objective function,

2. the traffic model,

3. the definition of the state, inputs, disturbances, and tunable parameters,

4. the bounds on the control and state variables.

For multiple-origin/destination networks, in addition to the conservation and flow equations,
the model must also include a method for deciding how to divide the traffic stream at
bifurcations. There are two ways of representing this information: with an OD matrix and
with split ratios.

The OD matrix is a time varying matrix A(t) whose components aij(t) are the numbers
of vehicles that enter the system at source i and time t that wish to exit through sink j.
In networks such as linear freeways, with only one route for every origin/destination pair
(i.e. no alternative routes), the OD matrix provides sufficient information for resolving the
flows at the bifurcations (i.e. at offramps). Additional information is needed when there are
multiple routes.

The OD matrix can be difficult to obtain in practice because it cannot be determined from
aggregate flow measurements alone. This is because any particular set of flow measurements
can be generated by a number of different OD matrices, even though a specific OD matrix
generates only one set of flows. Many useful techniques have been developed for the difficult
problem of OD matrix estimation [16, 56, 57, 92, 102, 103], however many remain unverified.

In the absence of a reliable OD matrix, the most common method for computing the
flows at bifurcations is with split ratios. These are the time varying proportions of the total
flow that take each branch of a bifurcation. In contrast to the OD matrix, the split ratios
can be easily deduced from aggregate measurements before and after the bifurcation. When
the application is on-ramp metering design, the main drawback of using split ratios is that it
introduces the false assumption that they remain unchanged, despite the control of the on-
ramps. In reality the composition of origin/destination types at any point in the network,
and therefore the split ratios, will almost surely be affected by on-ramp control. This is
because metering can induce diversion, and also because different on-ramps with different
OD mixes may be metered at different rates. The decision of whether to use an OD matrix
or split ratios to model bifurcations is therefore not always easy. One must consider the
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drawbacks of each: the uncertainty implied in the estimation of the OD matrix, and the
false assumption of insensitive split ratios.

One way of classifying predictive metering strategies is according to how their underlying
model deals with bifurcations. They can also be classified according to the type of model
(1st order, higher order), the scope of the system (linear freeway, freeway with parallel
route, freeway plus network of streets), or the control measure (on-ramp metering only, on-
ramp metering and variable speed limits, on-ramp metering and variable message signs). Yet
another criterion, which is most useful for this presentation, is whether or not the assumption
of a steady-state is made. Depending on this assumption, predictive strategies are referred
to as either static or dynamic.

Static predictive control

Static or steady-state models assume that the demands (entry flows, OD matrix, split ratios),
and the traffic state (density, flow, speed) remain constant for the duration of the control
period. This assumption, although limiting, allows important simplifications for the control
problem. Equation (2.2) implies that the flow is then uniform along portions of the freeway
without on-ramps or offramps. The flow at any section of the system can be found by
adding and subtracting upstream entry and exit flows. Therefore, under this assumption,
the density state and the fundamental diagram are not needed to determine flow.

Wattleworth [98] was the first to pose the predictive on-ramp control problem. The goal
of this early formulation was to select the on-ramp flows such that travel time was minimized.
Travel time is minimized by maximizing offramp flows, or equivalently under the steady-state
assumption, by maximizing on-ramp flows (ri). Wattleworth assumed knowledge of the OD
matrix, which was used to find proportions wij of flow through the jth bottleneck that
originated from on-ramp i. The total flow through bottleneck j,

∑
i wijri, was constrained

by its capacity bj. On-ramp flows ri were limited by the available demand di. The resulting
linear program is stated below.

max
∑

i

ri (2.43)

s.t.
∑

i

wij ri ≤ bj for all bottlenecks j

0 ≤ ri ≤ di for all on-ramps i

Wattleworth also described how additional features might be included by adding constraints
to Eq. (2.43). Two possible restrictions on the accumulation of vehicles in the on-ramp
queues were suggested:

si ≤ qi and si = si+1 (2.44)

where si is the slack variable associated with constraint ri ≤ di. The first, si ≤ qi, establishes
an upper bound on the number of vehicles not granted access to the freeway, or equivalently,
an upper bound on the rate of growth of the ith on-ramp queue. It does not imply a
strict upper bound on the length of the queue, however. The second less restrictive option,
si = si+1, distributes the queues evenly amongst all on-ramps.
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Later contributions built upon Wattleworth’s formulation by suggesting alternative ob-
jective functions and adding constraints. Yuan and Kreer [106] minimized the sum of the
squared difference between the metering rate and the demand, claiming that this would lead
to a better distribution of the queuing times. Chen et al. [17] used the total travel distance
as the objective function to maximize, instead of total travel time 6. Eldor [29] considered
the capacity bj, not as a given number, but as a normally distributed random variable.
The capacity constraint was re-stated in this context as a restriction on the probability of
overwhelming the bottleneck. Chance-constrained linear programming was used to cast this
stochastic constraint in a deterministic form:

Prob

{∑
i

wij ri ≤ bj

}
≥ αj ⇐

∑
i

wij ri ≤ E {bj} (1−mj) (2.45)

where E {bj} is the expected value of bj and mj ∈ [0, 1] is a function of the probability αj

and the first order statistics of bj.
Other efforts in the static predictive category have accounted for the effects of driver

diversion. Wang and May [96] enhanced Wattleworth’s formulation by considering the pos-
sibility of drivers deciding not to use the freeway because of the added waiting times. They
used a very simple diversion model, which stated only that drivers with shorter trips would
be more likely to divert than drivers with longer trips. Aside from this restriction, the diver-
sion rates were allowed to take their optimal values. The linear program proposed by Wang
and May is the following:

max
∑

i

ri (2.46)

s.t. ri =
∑

j

pij aij for all on-ramps i

pij ≤ 1 for all on-ramps i and offramps j

pij ≤ pij+1 for all on-ramps i and offramps j∑
i

∑
j

δijk pij aij ≤ bk for all bottlenecks k

pij is the portion of the demand aij from on-ramp i to offramp j that does not divert. OD
flows that do not divert at all have pij = 1. The third constraint captures the propensity of
shorter trip users to divert (offramp j+1 is downstream of offramp j). The fourth constraint
is an equivalent form of the capacity constraint of Eq. (2.43), with δijk = 1 if section k is
used by OD pair ij, and 0 otherwise.

Payne and Thompson [82] expanded the scope of the problem by considering the freeway
and a system of parallel streets. More importantly, they introduced the use of Wardrop’s
first principle as determining the diversion behavior of drivers. This entailed a considerable
complication in the statement and solution of the problem, as linearity was lost. Routing
and metering sub-problems, referred to as traffic assignment and optimal allocation, had to

6The use of travel distance instead of travel time was first suggested by A.D. May in the discussion
following [98].
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be posed separately. A sub-optimal numerical method combining a heuristic algorithm and
dynamic programming was proposed to solve the overall problem.

Iida et al. [39] recognized the bi-level assignment/metering problem as an instance of a
Stackelberg planning game, where the control system plays the role of the leader, and acts by
setting the metering rate, and the users act as followers, adjusting their routes in response
to the action of the leader. The goal of the leader is to minimize total travel time, while the
followers strive to minimize their individual travel times (Wardrop’s principle). Although
numerical methods for the general Stackelberg problem existed, Iida et al. proposed a
heuristic fixed-point procedure, where solutions to the individual problems were re-inserted
into each other, until convergence was achieved. Yang et al. [105] designed an improved
numerical method for the bi-level problem using successive linear programming. Yang and
Yagar [104] applied the method to the particular case of a freeway with a parallel street
system (similar to [82]’s).

Dynamic predictive control

All static predictive control designs assume that free-flow conditions prevail on the freeway
and surrounding surface streets. Maintaining free-flow conditions requires that sufficient
demand be either stored on the on-ramps or diverted. For freeways where the effect of
capacity drop is pronounced, such a congestion-avoiding strategy might actually be optimal.
However, when offramp blockage is dominant, a total elimination of congestion may be
counterproductive (Section 2.2.1). Moreover, in either case it may not even be possible to
store or divert the excess demand, due to limitations in on-ramp storage. Static models
become poor predictors of freeway traffic when congestion cannot be avoided.

Dynamic models provide an important potential for improvement over static models for
several reasons. First, they are not restricted to free-flow traffic. Second, limitations on
allowable storage can be included by placing constraints on the on-ramp queue lengths7.
Third, the limiting assumption of constant demands over the design period can be relaxed.
This permits the design period to be extended over longer intervals, perhaps even the entire
peak-period. Unfortunately, the consideration of congestion also introduces the nonlinearity
of the fundamental diagram, which severely complicates the problem. To simplify, all of
the on-ramp metering designs discussed below have reverted to the assumption that vehicles
do not divert. The effects of voluntary diversion have apparently only been studied in the
context of static models [39, 82, 104, 105].

Kaya [41] posed a fairly complete statement of the dynamic predictive problem in 1970.
The objective function included terms penalizing the time spent in on-ramp queues, the
queue length, and the mainline density in excess of the critical density. Constraints included
a discretized form of LWR, constraints on the metering rate, and bounds on the queue lengths
and waiting times. The complete problem contained nonlinearities in both the objective
function and the constraints. These were approximated with piece-wise linear functions.
The approximate optimization problem was solved using a specialized numerical package
that could deal with the piece-wise linear constraints.

7Wardrop’s principle can be used to obtain equilibrium queue lengths for steady-state models, as in [82],
but this requires the solution of the traffic assignment problem.
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Although Kaya’s approach was practically complete in its formulation, its main drawback
lied in the numerical method, which limited its application to small networks and short time
horizons. Several more recent designs have employed more powerful numerical methods,
and used higher order models of freeway traffic. Kotsialos et. al [45, 47] used METANET,
the network extension of Payne’s second order model, and considered the use of on-ramp
metering in conjunction with routing suggestions through variable messaging signs (VMS) as
the control. They solved the resulting nonlinear problem with a gradient method. Kotsialos
and Papageorgiou [48, 49] applied the same technique to a network without VMS (ramp
metering only) and simulated the method using data from the Amsterdam Orbital Motorway.
Zhang [110] posed a similar problem using a first order model, and also solved it with a
gradient method.

Several designs have been developed for the case in which the speed limit, in addition
to the on-ramp flows, can be controlled. Di Febbraro et al. [28] posed this problem using
Payne’s model, modified to incorporate the effect of the variable speed limits. They assigned
a neural network to the control law, and solved its coefficients with a gradient method.
Hegyi et al. [38] also posed the problem using Payne’s model, and used sequential quadratic
programming to find a solution.

Other authors have assumed even stricter forms of control over the system. The design
of Chang et al. [15] generates timing plans for the on-ramps and for signals on a parallel
street route. It also assumes that vehicles can be removed from the freeway and made to
complete their trips on the parallel route. Ziliaskopoulos [114] posed the problem assuming
complete control over the freeway: on-ramp metering rates as well as mainline, bifurcation,
and merging flows were controlled. This highly unrealistic scenario was studied in order to
provide insights into the properties of the optimal plan for single destination networks. The
paper reached a useful conclusion: the optimal traffic assignment for a single destination
network is such that the cost from any point to the single destination – along a used route –
equals the marginal cost of an extra unit of demand at that point in space and time, and the
cost along an unused route is larger. Laval et al. [51] made use of this principle to derive an
explicit optimal assignment for a network consisting of a linear freeway with an alternative
route, and with a single downstream destination.

A different approach to the problem was taken by Lovell [58] and Lovell et al. [59].
Unlike the designs described above, they assumed knowledge of the OD matrix, instead
of the offramp split ratios. They also assumed that the freeway remained uncongested, but
preserved the order of vehicles in the on-ramp queues. That is, the first-in-first-out discipline
was observed. This introduced the additional unknown of the waiting time for each on-ramp,
which was assumed to be time variant but OD-independent. Also in contrast to previous
works, the optimization problem of [58, 59] was posed in continuous time. It was shown that
despite its nonlinear form, global solutions could be found in four special cases: single origin,
single bottleneck, single destination, and constant OD proportions. Erera et al. [30] proved
that the general form of Lovell’s problem is NP-complete.
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Chapter 3

The Asymmetric Cell Transmission
Model

The formulation of the optimal ramp metering control problem includes a model of free-
way traffic among its components. The mathematical form and precision of the model will
influence both the effectiveness of the optimal plan, and the difficulty of finding a good solu-
tion. Ideally, the model should capture all of the travel time reducing mechanisms defined in
Section 2.2.1. However, an overly complicated model will also be difficult to solve, and the
solution that can be found within a limited time frame may be less than optimal. A higher
quality solution to a simpler – i.e. less complete – model may be preferred.

In this chapter we describe the model that is used to formulate the predictive metering
design of Chapter 5. This model has been dubbed the Asymmetric Cell Transmission Model
(ACTM), due to its similarities with the original CTM [21, 22] described in Section 2.1.
The main difference resides in the treatment of merging flows. The CTM merge model is
symmetric in the sense that it is not altered if labels ‘a’ and ‘b’ in Eqs. (2.14) through (2.18)
are swapped, and p is replaced with 1− p. On the other hand, a clear distinction is made in
the ACTM between through and joining flows at the merge.

The advantage of using the ACTM for optimization is that its merge model involves a
concave min{} function, as opposed to the non-convex/non-concave mid{} function of the
CTM (Eqs. (2.14) and (2.15)). This is shown in Chapter 5 to be tremendously beneficial to
the numerical solution of the optimization problem.

The chapter is organized as follows. The model equations are presented in Section 3.1.
Section 3.2 provides proof of an important property of the model: despite its simple concave
structure, the flow and density variables are guaranteed to remain within certain implicit
bounds. An extension to the model that allows a slower update frequency for the ramp
metering rates is presented in Section 3.3. The validity of the model is tested using a
realistic freeway configuration in Section 3.4.

3.1 Model Equations

The ACTM is intended to model one-way roads with on-ramps and offramps, as illustrated
in Figure 3.1. To use the ACTM, it should be possible at any merging junction to distinguish
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between the through or mainline branch and the joining branch. The mainline branch carries
traffic that can move through the merge without changing lanes. The joining branch is
usually a secondary access ramp. This restriction is not too limiting: typical configurations
for on-ramp/freeway and even freeway/freeway junctions permit an unambiguous definition
of the through and the joining traffic streams.

+1-1

-1 +1-2

Figure 3.1: Interpretation of model variables.

The freeway mainline is divided into I sections. Section boundaries are chosen such that
every section contains at most one on-ramp and/or one offramp. Furthermore, in sections
containing both an on-ramp and an offramp, the on-ramp should be upstream of the offramp,
as shown in Figure 3.1. Sections are numbered 0 . . . I− 1, starting from the upstream-most
section, and proceeding sequentially downstream. Time is divided into K uniform intervals
of length ∆t. The following are sets of section and time indices:

I : set of all freeway sections I = {0 . . . I− 1}
K : set of time intervals K = {0 . . . K− 1}
En : set of sections with on-ramps En ⊆ I
En+ : set of sections with metered on-ramps En+ ⊆ En

All traffic variables and boundary conditions are normalized to vehicle units. Flow variables
– fi[k], ri[k], rc

i [k], di[k], and si[k] – are interpreted as a number of vehicles per time interval.
Density variables – ρi[k] and li[k] – represent respectively the number of vehicles on the main-
line and on-ramp portions of section i at time k∆t. Definitions for each of these quantities
are given below.

ρi[k] : number of vehicles in section i at time k∆t
li[k] : number of vehicles queueing in the on-ramp of section i ∈ En at time k∆t
fi[k] : number of vehicles moving from section i to i+1 during interval k
ri[k] : number of vehicles entering section i ∈ En from its on-ramp during interval k
rc
i [k] : metering rate for on-ramp i ∈ En+

di[k] : demand for on-ramp i ∈ En
si[k] : number of vehicles using offramp i during interval k
βi[k] : dimensionless split ratio for offramp i

An on-ramp indicator δi is used to simplify the notation:

δi ,
{

1 if i∈En
0 else

(3.1)

The parameters of the model are listed below. Their relation to a truncated triangular
fundamental diagram is illustrated in Figure 3.2.
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vi : normalized free-flow speed ∈ [0, 1]
wi : normalized congestion wave speed ∈ [0, 1]
ρ̄i : jam density [veh]
f̄i : mainline capacity [veh]
s̄i : offramp capacity [veh]

αi, γi , ξi : influence parameters ∈ [0, 1]

Figure 3.2: Interpretation of model parameters.

The model has five basic components: the mainline and on-ramp conservation equations,
mainline and on-ramp flows, and offramp flows. Offramp flows are assumed to be related to
the mainline flows by a known, possibly time-varying, split ratio βi[k] ∈ [0, 1]. Similarly to
the CTM, βi[k] is defined as the ratio of one of the partial flows to the total flow:
Offramp flows ∀ i∈I , k∈K :

si[k] = βi[k](si[k] + fi[k]) (3.2)

∴ si[k] =
βi[k]

1− βi[k]
fi[k] =

βi[k]

β̄i[k]
fi[k] (3.3)

where β̄i[k] , 1− βi[k] has been defined to simplify the equations. Also for convenience, the
split ratio is defined for every section, and set to 0 if the section does not contain an offramp.
One important difference between the ACTM and the CTM relates to the asymmetry of this
diverge model. The ACTM only supports diverges where one branch is an exiting branch,
and the other is a continuing branch. The exiting branch removes traffic from the simulation,
whereas the continuing branch transfers vehicles to the next downstream section. Moreover,
the exiting branch is assumed to feed an imaginary section with infinite storage capacity,
so no congestion can propagate into the mainline from the exiting branch (although an
exit capacity s̄i is included). This is not the case with the CTM, where both branches are
identical.

Mainline flows are calculated, similarly to the CTM, as the minimum of what can be
sent by the upstream section assuming maximum speed and what can be received by the
downstream section without causing overflow. The mainline flow is calculated as the largest
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value of fi[k] that that complies with the following constraints:

fi[k] + si[k] ≤ vi(ρi[k] + δiγiri[k]) . . . free-flow term (3.4)

fi[k] ≤ wi+1(ρ̄i+1 − ρi+1[k])− δi+1αi+1ri+1[k] . . . congestion term (3.5)

fi[k] ≤ f̄i . . . mainline capacity (3.6)

si[k] ≤ s̄i . . . offramp capacity (3.7)

Equation (3.4) limits the total flow that can leave section i during time interval k, assuming
that traffic moves at the free-flow speed vi. This total includes a portion γi of the traffic
that enters section i from its on-ramp that can reach the downstream boundary within the
same time interval. γi should be chosen based on the distance from the on-ramp to the
downstream boundary.

Equation (3.5) represents the restriction placed on fi[k] by the amount of space available in
section i+1. The right hand side of this equation is the portion wi+1 of the total unoccupied
space (ρ̄i+1 − ρi+1[k]) that can be filled by vehicles coming from section i, discounted by an
amount of space αi+1ri+1[k] that is occupied by traffic from the downstream on-ramp. The
parameter αi determines the influence of the on-ramp flow on the mainline flow that enters
section i. It should be chosen to reflect the position of the on-ramp within the section, with
larger values of αi corresponding to on-ramps that are closer to the upstream edge.

Equations (3.6) and (3.7) are, respectively, the mainline and offramp capacity limits.
Considering Eq. (3.3), this leads to the following expression for fi[k]:

Mainline flows ∀ i∈I , k∈K : (3.8)

fi[k] = min

{
β̄i[k] vi(ρi[k] + δiγiri[k]) ; wi+1(ρ̄i+1 − ρi+1[k])− δi+1αi+1ri+1[k] ; f̄i ;

β̄i[k]

βi[k]
s̄i

}

Similarly, on-ramp flows are computed such that none of the following limits are exceeded:

ri[k] ≤ li[k] + di[k] . . . demand (3.9)

ri[k] ≤ ξi(ρ̄i − ρi[k]) . . . mainline space (3.10)

ri[k] ≤ rc
i [k] . . . ramp metering (for i∈En+) (3.11)

Equations (3.9) and (3.11) represent the fact that the flow on the on-ramp cannot exceed
either the available demand (li[k] + di[k]), or the rate imposed by the on-ramp meter (rc

i [k]

when i∈En+). Equation (3.10) is the restriction to ri[k] due to limited space on the mainline.
The parameter ξi determines the allotment of available space to vehicles entering from the
on-ramp. Its value should reflect the geometrical layout of the section. For example, if the on-
ramp is located at the midpoint, incoming vehicles will only have access to the downstream
half of the section. On multi-lane freeways, vehicles entering from a right-side on-ramp may
not be able to reach open space in the leftmost lanes. Equations (3.9) through (3.11) lead
to the following expression for ri[k]:
On-ramp flows ∀ i∈En , k∈K:

ri[k] =

{
min

{
li[k] + di[k] ; ξi(ρ̄i − ρi[k])

}
if i ∈ En \ En+

min
{

li[k] + di[k] ; ξi(ρ̄i − ρi[k]) ; rc
i [k]

}
if i ∈ En+ (3.12)
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The number vehicles in the on-ramps (li[k]) and on the mainline (ρi[k]), evolve according to
conservation equations (3.13) and (3.14).
On-ramp conservation ∀ i∈En , k∈K :

li[k+1] = li[k] + di[k] − ri[k] (3.13)

with initial condition li[0] and boundary condition di[k].
Mainline conservation ∀ i∈I , k∈K :

ρi[k+1] = ρi[k] + fi−1[k] + δi ri[k] − fi[k] − si[k]

= ρi[k] + fi−1[k] + δi ri[k] − fi[k]/β̄i[k] (3.14)

with initial condition ρi[0]. The boundary condition for this equation is the flow entering the
mainline at its upstream boundary, up[k]. It can be represented either as the mainline flow
into section 0, i.e. f−1[k] = up[k], or as the demand into a fictitious on-ramp, i.e. d0[k] = up[k]

and f−1[k] = 0. The latter approach helps to avoid numerical problems related to mainline
congestion obstructing the upstream source, but increases the dimensionality of the model.

Equations (3.8), (3.12), (3.13), and (3.14) constitute the basic ACTM model. A second
important distinction of the ACTM with respect to the CTM, in addition to the bifurcation
model, is in the merge model implied by Eqs. (3.8) and (3.12). Unlike the CTM, the merge
junction in the ACTM is composed of a through branch and a joining branch, and distinct
equations apply to each one. Three influence parameters, αi, γi, and ξi, are involved in the
merge model. Their influence on the mainline and on-ramp flows is illustrated in Figure 3.3.
In short, γi determines the direct influence of the on-ramp flow on the downstream mainline
flow, αi the influence of the on-ramp on the upstream mainline flow, and ξi the influence of
the mainline density on the on-ramp flow.

+1

+1

+1

+1

Figure 3.3: Directions of influence.

The main advantage of the ACTM over the CTM is in the replacement of the non-concave
/ non-convex mid{} function of the CTM with concave min{} functions. This structural
simplification is the basis for the predictive controller presented in Chapter 5. Section 3.4
demonstrates that the ACTM is capable of replicating freeway traffic behavior. But first,
it is shown that the model preserves some important properties such as positivity (i.e no
wrong-way travel) from the original CTM.

3.2 Implicit bounds

An important property of the CTM is that it never produces negative flows or densities, nor
do the densities ever exceed the jam density. That is, in the notation of the CTM defined
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on page 15, the following constraints automatically apply:

ni(k) ∈ [ 0, Ni ] , yi(k) ≥ 0 (3.15)

These implicit bounds are a minimum requirement for any model to be considered as a rea-
sonable approximation of freeway traffic. In the case of the CTM, they are a consequence
of the consistency of the model with the LWR theory, and of the particular rules used for
merges and diverges. Some models, such as the one proposed by Ross in [90], impose bound
constraints explicitly. Papageorgiou suggests in [55] that explicit constraints can be used
to solve the problem of backward moving traffic associated with higher order models. Such
an artificial “fix” has the drawback that it requires the nominal model to be ignored (i.e.
violated) whenever one of the additional constraints is reached. This annuls the interpreta-
tion of the model equations in these situations, and compromises its usefulness as a tool for
understanding traffic behavior.

The question that arises is whether the ACTM has the property expressed by Eq. (3.15).
The answer is not obvious. For example, the right hand side of Eq. (3.5) could be negative.
The following theorem provides conditions on the model parameters and boundary conditions
that ensure a physically reasonable evolution of the model, thus avoiding the need for explicit
constraints.

Theorem 1 Given initial and boundary conditions, ramp metering rates, and model param-
eters satisfying,

Initial conditions : ρi[0] ∈ [0, ρ̄i] ∀ i∈I
li[0] ≥ 0 ∀ i∈En

Boundary conditions : di[k] ≥ 0 ∀ i∈En , k∈K
f−1[k] = 0 ∀ k∈K

On-ramp metering rates : rc
i [k] ≥ 0 ∀ i∈En+ , k∈K

Model parameters : vi , wi ∈ [0, 1] ∀ i∈I
αi , γi ∈ [0, 1] ∀ i∈En

ξi ∈
[

0 , min
(

wi

αi
, 1−wi

1−αi

) ]
∀ i∈En

f̄i , s̄i ≥ 0 ∀ i∈I
βi[k] ≥ 0 ∀ i∈I , k∈K

the evolution of the ACTM in time is guaranteed to remain bounded as follows:

ρi[k] ∈ [0, ρ̄i] , fi[k] ≥ 0 ∀ i∈I , k∈K
li[k] ≥ 0 , ri[k] ≥ 0 ∀ i∈En , k∈K

Proof
The proof is by induction. Assuming that ρi[k] ∈ [0, ρ̄i] and li[k]≥0 holds for some k, we show
that fi[k] ≥ 0 and ri[k] ≥ 0. We then show that this implies ρi[k+1] ∈ [0, ρ̄i] and li[k+1]≥ 0.
Because ρi[k] ∈ [0, ρ̄i] and li[k]≥0 holds for k = 0, the result follows.

First, from Eq. (3.12), with li[k]≥ 0, di[k]≥ 0, ξi ≥ 0, ρi[k]≤ ρ̄i, rc
i [k]≥ 0, it follows that

ri[k] ≥ 0. To show fi[k] ≥ 0, we need to check that each of the four terms in Eq. (3.8) is

37



positive. The only non-obvious one is the second. However,

ξi+1 ≤ wi+1
αi+1

⇒ ξi+1(ρ̄i+1 − ρi+1[k]) ≤ wi+1
αi+1

(ρ̄i+1 − ρi+1[k])

⇒ δi+1ri+1[k] ≤ wi+1
αi+1

(ρ̄i+1 − ρi+1[k])

⇒ 0 ≤ wi+1(ρ̄i+1 − ρi+1[k])− δi+1αi+1ri+1[k]

Therefore, fi[k] ≥ 0. Using the above, we can deduce li[k+1] ≥ 0 and ρi[k+1] ∈ [0, ρ̄i]:

li[k+1] = li[k] + di[k] − ri[k]

≥ li[k] + di[k] − (li[k] + di[k])
= 0

ρi[k+1] = ρi[k] + fi−1[k] − fi[k] / β̄i[k] + δiri[k]

≥ ρi[k] − fi[k] / β̄i[k] + δiri[k]

≥ ρi[k] − β̄i[k]vi(ρi[k] + δiγiri[k]) / β̄i[k] + δiri[k]

= (1− vi)ρi[k] + δi(1− viγi)ri[k]

≥ 0

ρi[k+1] = ρi[k] + fi−1[k] − fi[k] / β̄i[k] + δiri[k]

≤ ρi[k] + fi−1[k] + δiri[k]

≤ ρi[k] + wi(ρ̄i − ρi[k]) − δiαiri[k] + δiri[k]

= (1− wi)ρi[k] + δiri[k](1− αi) + wiρ̄i
...

...
≤ (1− wi)ρi[k] + δiξi(ρ̄i − ρi[k])(1− αi) + wiρ̄i

=

{
(1− wi)ρi[k] + wiρ̄i if i /∈ En
(1− w̄i)ρi[k] + w̄iρ̄i if i∈En

≤ ρ̄i

where w̄i , wi + ξi(1− αi). The last line holds since by assumption both wi and w̄i ∈ [0, 1].
¥

This theorem ensures that unrealistic behaviors such as backward moving traffic, negative
densities, and densities above the jam density, are not predicted by the model. Most of the
conditions of the theorem are covered by the physical definitions of the model parameters
and variables; e.g. vi, wi ∈ [0, 1], di[k] ≥ 0, etc. The only two that are not trivially satisfied
are f−1[k] = 0 and the upper bound placed on ξi. The first, f−1[k] = 0, is met if the upstream
mainstream boundary is represented as an additional fictitious uncontrolled on-ramp into
section i = 0. The only restrictive condition is then the upper bound for ξi, which requires
it to be less than both wi/αi and (1− wi)/(1− αi). Section 5.5 demonstrates that, at least
in the case of the test site considered in that section, this bound is larger than any practical
choice of ξi.
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3.3 Dual time scales

Consistency of the mainline conservation equation, Eq. (3.14), requires that the time interval
∆t satisfy an analogous form of Eq. (2.11):

∆t ≤ min
i

(Li/vi) (3.16)

where Li is the length of the ith section. This means that ∆t should be small enough so that
no vehicle travelling at the free-flow speed can traverse an entire section within one time
interval. To give an idea of the typical length of the time interval, we consider the I-210
test section described in Chapter 6, whose shortest section is 962 feet long. At 65 mph, this
corresponds to a maximum interval duration of about 10 seconds. However, it is not possible
for the control system on I-210 to update the metering rates at such a high frequency. Data
exchange between the freeway and the District 7 Traffic Management Center occurs only
once every 30 seconds, and it takes two transfers, i.e. 1 minute, to update the control plan.
Aside from this technical problem, it may not make practical sense to change the metering
rate more than once every few minutes, since doing so may confuse drivers.

These two factors – the restriction of the time interval used for the mainline conservation
equation to about 10 seconds, and the natural choice of a much slower control update fre-
quency – motivate the use of a coarser time scale for the on-ramp metering rates rc

i [k]. The
benefit of increasing the size of the control time interval is that, as explained in Section 5.4.1,
it dramatically reduces the dimension of the optimization problem.

Figure 3.4: Dual time scales (p = 5).

In the dual-scale ACTM (Eqs. (3.18) through (3.21)) ∆tc denotes the larger time interval
used for control, ∆t still denotes the nominal time interval satisfying Eq. (3.16), and the
integer p is their ratio:

∆tc = p ∆t (3.17)

As illustrated in Figure 3.4, κ is a time index used for the on-ramp metering rates, and
k is the index used for all other variables. The mainline model of the dual-scale ACTM,
Eqs. (3.18) and (3.19), and the on-ramp conservation equation (3.20) are identical to their
original versions. The only difference is in the specification of the on-ramp flow, where the
“rc

i [k]” term from Eq. (3.12) is replace in Eq. (3.21) with “rc
i [κ]/p”.
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Dual-scale ACTM (dACTM-c):

ρi[k+1] = ρi[k] + fi−1[k] + δiri[k] − fi[k]/β̄i[k] ∀ i ∈ I , k ∈ Kp (3.18)

fi[k] = min

{
β̄i[k]vi(ρi[k] + δiγiri[k]) ; wi+1(ρ̄i+1 − ρi+1[k])− δi+1αi+1ri+1[k] ; f̄i ;

β̄i[k]

βi[k]
s̄i

}

∀ i ∈ I , k ∈ Kp (3.19)

li[k+1] = li[k] + di[k] − ri[k] ∀ i ∈ En , k ∈ Kp (3.20)

ri[k] =





min
{

li[k] + di[k] ; ξi(ρ̄i − ρi[k]) ; rc
i [κ]/p

}
∀ i ∈ En+ , k ∈ Kp

min
{

li[k] + di[k] ; ξi(ρ̄i − ρi[k])
}

∀ i ∈ En \ En+ , k ∈ Kp
(3.21)

In Eq. (3.21), κ is the integer part of k/p, as illustrated in Figure 3.4. Kp is the set of ∆t-
sized time intervals: Kp = [0, . . . , pK− 1]. This version of the ACTM is labelled dACTM-c
(‘d’ for dual-scale and ‘c’ for control) to distinguish it from a third version described in
Section 5.4.1, which is labelled dACTM-o (‘o’ for on-ramps).

3.4 Tests

This section demonstrates the use of the ACTM on a 15-mile stretch of Interstate 210 in
Pasadena, California. The details of the test site and data collection procedures are described
in Chapter 6. The I-210 site contains 20 metered on-ramps and a single uncontrolled freeway
connector from I-605 NB. A measured speed contour plot, constructed with the methods
described in Chapter 6, is shown in Figure 3.5. The darker shaded areas indicate average
speeds below 40 mph.
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Figure 3.5: Measured speed contour plot [mph].

To apply the ACTM, the site was partitioned into 40 sections of varying lengths, as
illustrated in Figure 3.6. The lengths of the individual sections are indicated in the figure in
feet. A simple manual parameter calibration was performed, with resulting speed contour
plot shown in Figure 3.7. The speed variable used in Figure 3.7 was calculated with:

veli[k] , fi[k]/β̄i[k]

ρi[k] + γi ri[k]

(
Li

∆t

)
(3.22)
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This equation ensures veli[k] = vi when the freeway section is free-flowing. The tuned pa-
rameter set is provided in Table 3.1. Notice that the values in the table are fairly uniform:
free-flow speed is 65 mph, congestion propagation speed is 8.4 mph, jam density is 260
veh/mile/lane, capacity is 2200 veh/hr/lane, αi = γi = 0.0, and ξi = 0.0, almost everywhere.
The only exceptions are sections 8, 14, and 15. These correspond to the merge of I-210 with
I-605, in section 8, and the Huntington Av. bottleneck (identified as bottleneck “B1” in
Section 6.8), at sections 14 and 15. The indicated adjustment to w8, ρ̄8, and ξ8 produced the
correct distribution of congestion between the I-605 and I-210 branches of the merge. The
changes to wi and ρ̄i in sections 14 and 15 were made based on the bottleneck activation
time, discharge rate, and duration.

Figure 3.6: 40 ACTM sections in the I-210 test site (section lengths in feet).

This simple calibration effort is intended to establish the feasibility of the ACTM as
a model of freeway traffic, in order to justify its use in control design. A more thorough
calibration effort, using more sophisticated methods such as the gradient method of [20], the
Kalman filtering approach of [34], or the integrated approach of [65], has not been performed.
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Figure 3.7: Simulated speed contour.
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Mainline parameters On-ramp parameters

i vi
Li

∆t
wi

Li

∆t
ρ̄i

1
Li·ni

f̄i
1

∆t·ni δi αi γi ξi
[mph] [mph] [vpm/lane] [vph/lane]

0 65 8.4 260 2,200 1 0 0 0.3
1 65 8.4 260 2,200 1 0 0 0.3
2 65 8.4 260 2,200 0 - - -
3 65 8.4 260 2,200 1 0 0 0.3
4 65 8.4 260 2,200 1 0 0 0.3
5 65 8.4 260 2,200 0 - - -
6 65 8.4 260 2,200 0 - - -
7 65 8.4 260 2,200 1 0 0 0.3
8 65 8.0 250 2,200 1 0 0 0.027
9 65 8.4 260 2,200 0 - - -
10 65 8.4 260 2,200 0 - - -
11 65 8.4 260 2,200 1 0 0 0.3
12 65 8.4 260 2,200 1 0 0 0.3
13 65 8.4 260 2,200 0 - - -
14 65 7.7 240 2,200 1 0 0 0.3
15 65 7.7 240 2,200 0 - - -
16 65 8.4 260 2,200 1 0 0 0.3
17 65 8.4 260 2,200 0 - - -
18 65 8.4 260 2,200 1 0 0 0.3
19 65 8.4 260 2,200 1 0 0 0.3
20 65 8.4 260 2,200 0 - - -
21 65 8.4 260 2,200 1 0 0 0.3
22 65 8.4 260 2,200 1 0 0 0.3
23 65 8.4 260 2,200 0 - - -
24 65 8.4 260 2,200 1 0 0 0.3
25 65 8.4 260 2,200 1 0 0 0.3
26 65 8.4 260 2,200 1 0 0 0.3
27 65 8.4 260 2,200 0 - - -
28 65 8.4 260 2,200 1 0 0 0.3
29 65 8.4 260 2,200 0 - - -
30 65 8.4 260 2,200 1 0 0 0.3
31 65 8.4 260 2,200 1 0 0 0.3
32 65 8.4 260 2,200 0 - - -
33 65 8.4 260 2,200 0 - - -
34 65 8.4 260 2,200 1 0 0 0.3
35 65 8.4 260 2,200 0 - - -
36 65 8.4 260 2,200 1 0 0 0.3
37 65 8.4 260 2,200 0 - - -
38 65 8.4 260 2,200 0 - - -
39 65 8.4 260 2,200 0 - - -

Table 3.1: Parameters for I-210 (mph=mile/hr, vpm=veh/mile, vph=veh/hr, ni=# lanes).
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Chapter 4

A Study of Two Metering Strategies
Using a Discontinuous ACTM

In this chapter we apply the ACTM to the analysis of two popular local ramp metering
strategies – Alinea and Percent-Occupancy (%-Occ) – in order to compare their merits, and
to provide some suggestions for their tuning.

CBA

Bottleneck

Figure 4.1: Detector placement.

The study focuses on a stretch of freeway in the vicinity of a single metered on-ramp,
as illustrated in Figure 4.1. Vehicles entering the freeway from the on-ramp join the main-
line stream by changing lanes within the merge section. Congestion appears whenever the
combined mainline and on-ramp demands exceed the freeway capacity. The point at which
congestion begins is called the bottleneck. It is typically somewhere within the merge section
or nearby downstream. From this point, congestion propagates upstream, while the portion
of freeway downstream of the bottleneck remains uncongested. The geometric features rep-
resented in Figure 4.1 suggest a division of the section into three zones: A, B and C, separated
respectively by the on-ramp junction and the bottleneck. One of the issues addressed in this
study relates to the placement of the feedback sensor on the mainline. Putting it in zone C

is an obviously bad choice, since the flow out of the bottleneck becomes a constant whenever
zone B becomes congested. Thus, the density of the freeway upstream of the bottleneck
is unobservable from zone C during congestion. If the sensor is placed in zone B, it gains
observability in the congested regime. However, as it is moved upstream through zone B,
a delay appears between the onset of congestion and its detection by the sensor. With the
sensor placed in zone A, the mentioned delay is large and the density in zones B and C are
unobservable when traffic is in free-flow. Unlike the linear models used in some previous
studies (e.g. [79]), the ACTM adequately captures the difference between the congested and
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uncongested traffic states, and the dilemma it creates for sensor placement.
The study is based on a discontinuous form of the ACTM, which captures the effect

of capacity drop not present in the original version. This modification is necessary for the
analysis, since travel time cannot be reduced in the single-destination setup by avoiding the
blockage of freeway offramps.

4.1 The discontinuous ACTM

As was described in Section 2.2.1, the term capacity drop refers to the decrease in flow
measured downstream of a bottleneck after congestion initiates [2, 13, 36]. It is caused by
the fact that vehicles cannot accelerate instantaneously to their desired speed once they
exit the congested region. Instead, the speed profile downstream of the bottleneck increases
gradually, from the reduced speed to the free-flow speed. As vehicles move through this
profile, the separation between them gets larger. Whether a capacity drop exists or not
depends on the size of the inter-vehicular gaps once they reach the free-flow speed.

The reduced flow rate downstream of the congested bottleneck is known as the queue
discharge rate. The discontinuous ACTM used in this study mimics the capacity drop
phenomenon by introducing a queue discharge rate parameter (fd) that is less than the
maximum flow during free-flow. The model differs from the original ACTM only in its
specification of mainline flow:

fi[k] =





β̄i[k] vi(ρi[k] + δiγiri[k]) if

{
i Uncongested
i + 1 Uncongested

min{ β̄i[k] vi(ρi[k] + δiγiri[k]) ;
wi(ρ̄i+1 − ρi+1[k])− δi+1αi+1ri+1[k] } if

{
i Uncongested
i + 1 Congested

fd,i if

{
i Congested
i + 1 Uncongested

wi(ρ̄i+1 − ρi+1[k])− δi+1αi+1ri+1[k] if

{
i Congested
i + 1 Congested

(4.1)

In Eq. (4.1), a section i is considered to be “Congested” when its density exceeds a critical
value ρc,i defined by:

vi ρc,i = wi(ρ̄i − ρc,i) (4.2)

Otherwise, it is “Uncongested”. Equation (4.1) is identical to the original Eq. (3.8) (remov-
ing the s̄i term) in all but the i Congested / i + 1 Uncongested regime, where it equals fd,i.
This mainline flow function is allowed to be discontinuous whenever fd,i < viρc,i. The min{}
rule of the original ACTM, on the other hand, ensures continuity of its flow function. Figure
4.2 compares the shapes of these two functions in the case αi = γi = 0. The other three
components of the model remain unchanged (Eqs. (3.12), (3.13) and (3.14)).

4.1.1 Single on-ramp configuration

The study site is a stretch of freeway containing a single metered on-ramp, as shown in Figure
4.3. It is partitioned into 4 sections, numbered 0 through 3, with the on-ramp connected to
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Figure 4.2: Single on-ramp configuration.

section 2.

-1 0 1 2 3

2

0 1 2 3

Figure 4.3: Single on-ramp configuration.

The following assumptions are made:

1. The parameters of the model are uniform along the freeway. The section indices will
therefore be dropped (vi → v, wi → w, etc.).

2. γ2 = 0 , α2 < 1

3. Sections 0 and 3 remain uncongested at all times (i.e. ρi[k] < ρc for i = 0, 3). This
amounts to a restriction on the magnitude of the upstream flow f−1[k] and on the state
of the freeway downstream of section 3. It is required in order to establish boundary
conditions.

4. f−1[k] is constant: f−1[k] = q.

5. q < fd < vρc

Given the uncongested state in sections 0 and 3, the system as a whole can at any time be
in one of four congestion modes: UU, CU, UC and CC, where the first letter denotes the state
(Uncongested or Congested) of section 1, and the second of section 2. Expressions for f0[k],
f1[k], and f2[k] in each of the congestion modes are provided in Table 4.1. A total of six
different combinations of expressions for the flows can occur. Each combination is referred
to as a dynamic mode, and denoted I through VI. The dynamic modes are given, along
with their associated congestion modes in Table 4.2. Notice that dynamic mode V appears
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in congestion modes UC and CC. Also, that different dynamic modes are possible within the
same congestion mode; for example congestion mode CU can evolve according to dynamic
mode II or III.

Congestion
f0[k] = f1[k] = f2[k] =

mode

UU vρ0[k] vρ1[k] vρ2[k]

CU min {vρ0[k] , w(ρ̄− ρ1[k])} fd vρ2[k]

UC vρ0[k] min {vρ1[k] , w(ρ̄− ρ2[k])− αr[k]} fd

CC min{vρ0[k] , w(ρ̄− ρ1[k])} w(ρ̄− ρ2[k])− αr[k] fd

Table 4.1: Four congestion modes.

Dynamic Congestion
f0[k] = f1[k] = f2[k] =

mode mode

I UU vρ0[k] vρ1[k] vρ2[k]

II CU vρ0[k] fd vρ2[k]

III CU w(ρ̄− ρ1[k]) fd vρ2[k]

IV UC vρ0[k] vρ1[k] fd

V UC/CC vρ0[k] w(ρ̄− ρ2[k])− αr[k] fd

VI CC w(ρ̄− ρ1[k]) w(ρ̄− ρ2[k])− αr[k] fd

Table 4.2: Six dynamic modes.

The other component of the single on-ramp model is the principle of vehicle conservation
for each of the four sections. Because section 3 does not affect the stability analysis, it will
not be considered further. The conservation equations are:

ρ2[k+1] = ρ2[k] + f1[k]− f2[k] + r[k]

ρ1[k+1] = ρ1[k] + f0[k]− f1[k] (4.3)

ρ0[k+1] = ρ0[k] + q − f0[k]

Equation (4.3) and Table 4.2 constitute a complete model for the single on-ramp configura-
tion. The model can be understood as a hybrid system switching among 7 finite states: UU-I,
CU-II, CU-III, UC-IV, UC-V, CC-V, and CC-VI, and evolving within each one according to a
discrete-time linear dynamics. Each of the dynamic modes are cast in a state-space form,

ρ[k+1] = Ax ρ[k] + Bx r[k] + W x (4.4)

with ρ[k] = [ρ2[k], ρ1[k], ρ0[k]]T , x = I . . . VI, and matrices Ax, Bx, and W x given in Table 4.3.
Table 4.4 provides open-loop transfer functions and eigenvalues for the six dynamic modes.
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x
Congestion

Ax Bx W x

mode

I UU




1− v v 0
0 1− v v
0 0 1− v







1
0
0







0
0
q




II CU




1− v 0 0
0 1 v
0 0 1− v







1
0
0







fd

−fd

q




III CU




1− v 0 0
0 1− w 0
0 w 1







1
0
0







fd

wρ̄− fd

q − wρ̄




IV UC




1 v 0
0 1− v v
0 0 1− v







1
0
0






−fd

0
q




V UC/CC




1− w 0 0
w 1 v
0 0 1− v







1− α
α
0







wρ̄− fd

−wρ̄
q




VI CC




1− w 0 0
w 1− w 0
0 w 1







1− α
α
0







wρ̄− fd

0
q − wρ̄




Table 4.3: State-space representations.

4.1.2 Controlability and Observability

The observability and controlability properties of the model determine whether the freeway
can be effectively controlled by a suitable on-ramp metering strategy. Here we investigate
how the position of the feedback sensor affects these properties. It is assumed that the
sensor is located either in zone A or in zone B of Figure 4.1, by considering the output of the
model to be either ρ1 or ρ2. The observability of each of the 6 dynamic modes is dictated
by observability matrices Ox

1 and Ox
2 (x=I ... VI),

Ox
1 =




C1

C1A
x

C1(A
x)2


 Ox

2 =




C2

C2A
x

C2(A
x)2




with C1 = [0, 1, 0] and C2 = [1, 0, 0], corresponding to measurements of ρ1 and ρ2 re-
spectively. Similarly, controlability depends on the rank of controlability matrices P x =
[Bx, AxBx, (Ax)2Bx]. The values of Ox

1 , Ox
2 , and P x can be found in Appendix A.1. Of

these, only P V I , OV
1 , OI

2, and OIV
2 have full rank. For the rest, only a subset of the states

can be controlled from the on-ramp or their values reconstructed from the measurements.
The sets of state variables that can be controlled and/or reconstructed in each dynamic
mode are shown in Table 4.5.

Notice in the table that the on-ramp can influence the upstream portion of the freeway
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Dynamic Congestion
r → ρ0 r → ρ1 r → ρ2 Open-loop eigenvalues

mode mode
I UU 0 0 1

z−1+v z = {1−v, 1−v, 1−v}
II CU 0 0 1

z−1+v z = {1−v, 1−v, 1}
III CU 0 0 1

z−1+v z = {1−v, 1−w, 1}
IV UC 0 0 1

z−1 z = {1−v, 1−v, 1}
V UC/CC 0 α(z−1+w/α)

(z−1)(z−1+w)
1−α

z−1+w z = {1−v, 1−w, 1}
VI CC αw(z−1+w/α)

(z−1)(z−1+w)2
α(z−1+w/α)
(z−1+w)2

1−α
z−1+w z = {1−w, 1−w, 1}

Table 4.4: Open loop transfer functions.

Dynamic Congestion Controlable Reconstructable Reconstructable
mode mode with r from of ρ1 from of ρ2

I UU {ρ2} {ρ0, ρ1} {ρ0, ρ1, ρ2}
II CU {ρ2} {ρ0, ρ1} {ρ2}
III CU {ρ2} {ρ1} {ρ2}
IV UC {ρ2} {ρ0, ρ1} {ρ0, ρ1, ρ2}
V UC/CC {ρ1, ρ2} {ρ0, ρ1, ρ2} w 6=v

{ρ1, ρ0+ρ2} w=v
{ρ2}

VI CC {ρ0, ρ1, ρ2} {ρ1, ρ2} {ρ2}

Table 4.5: Controlable and uniquely recontructable states in each dynamic mode.

(ρ0 and ρ1) only in dynamic modes V and VI, when the downstream section is severely
congested. Otherwise, in modes I through IV, its influence travels downstream. Also,
several observations related to the difference between upstream and downstream detector
placements can be made. In the case of an upstream detector (ρ1), the downstream state
can only be deduced if section 2 is congested, in modes V and VI. Conversely, the state
upstream of the on-ramp is only known to a downstream detector if section 1 is uncongested,
in modes I and IV. In both cases, reconstructability of the other is lost in modes II and III

(i.e. the CU congestion mode).

4.1.3 Finite state transitions

Part of the control objective described in the next section is to drive the system to the
UU-I final state in a fairly direct way. The analysis is simplified considerably by reducing
the number of possible transitions with an additional assumption. Figure 4.5 shows a state
transition diagram with all 42 possible transitions among the 7 finite states. This number
is reduced to a more manageable 16 by assuming that the time step is small enough (i.e.
the controller frequency is fast enough) so that certain transitions can be disregarded for
being highly improbable. Figure 4.4 illustrates typical positions of the section densities on
a fundamental diagram, in each of the 7 finite states. The assumption of a small time step
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Figure 4.4: Relative section densities in the 7 finite states.

UU

CU CU UC UC

CC CC

V VI

IV V
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IIIII
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CC CC

V VI

IV V

I

IIIII

Figure 4.5: Simplification of the finite state transition diagram.

implies that these points should move in a continuous fashion. This leads to the following
two types of eliminations:

1. Transitions such as UU-I→CC-VI and CU-II→UC-IV, where the congestion state of
sections 1 and 2 change simultaneously.

2. Transitions such as UC-V→UU-I, where the continuous movement of the state would
force it to go through a different intermediate state, in this case UC-IV.

There are 12 transitions in the first category and 14 in the second. The total number possible
transitions is thus reduced from 42 to 16.

4.2 Control objective

The main goal of this study is to provide suggestions for the selection of control parameters
for Alinea and %-Occ. A typical criterion for parameter selection is closed-loop stability
about a desired equilibrium state. However, to prove global asymptotic stability for the
hybrid model is difficult. Instead, we will seek parameters that result in a “good strategy”,
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in the sense that it eliminates congestion and converges to a steady-state flow that is larger
than the queue discharge rate. A “good strategy” is defined as one that:

1. Stabilizes the closed-loop transfer function from the on-ramp flow to the measurement,
in all dynamic modes where the corresponding open-loop transfer function is non-zero.

2. Never gets stuck in any mode other than UU-I, and when in another finite state, it tends
to move closer to UU-I. This informal statement is made concrete with the conditions
of Table 4.6.

3. Has a steady-state flow in UU-I exceeding the queue discharge rate. That is, in UU-I,
v ρ2ss > fd. This is to ensure that the flow out of the test section is larger with control
than without it. It is assumed that if no control is applied, the freeway section will
become congested and f2 will converge to the queue discharge rate fd. Thus, a strategy
that does not meet this condition will actually be detrimental to travel time.

Dynamic Congestion
Condition

mode mode

I UU {ρ1ss < ρc} AND {fd/v < ρ2ss < ρc}
II CU {ρ1ss < ρc} AND {ρ2ss < ρc}
III CU {ρ0ss < w(ρ̄− ρ1ss)} AND {ρ2ss < ρc}
IV UC {ρ1ss < ρc} AND {ρ2ss < ρc}
V UC/CC {ρ1ss < ρc} AND {vρ1ss < w(ρ̄− ρ2ss)− αrss}
VI CC {vρ0ss < w(ρ̄− ρ1ss)} OR {ρ2ss < ρc}

Table 4.6: Steady-state requirements for a “good strategy”.

Each of the conditions on the steady-state values expressed in Table 4.6 tends to push
the system out of its current finite state and into another that is closer to UU-I in the
following ordering: CC-VI, CC-V, UC-V, UC-IV, CU-III, CU-II, UU-I. Note the this definition
of a “good strategy” does not imply global asymptotic stability, nor does global asymptotic
stability require the strategy to be good. For example, a good strategy may still get caught
in an infinite loop between two finite states, due to oscillations. Conversely, a globally stable
controller may take a more convoluted trajectory to UU-I, and thus not be considered as
“good”.

4.3 Percent-Occupancy control

Percent-occupancy (%-Occ) control is one of the most widespread on-ramp metering schemes
in the U.S. due to its simplicity of implementation and observed effectiveness. Along with
Alinea, it falls under the category of local traffic-responsive controllers, since the rate at
every meter is based on local real-time measurements (i.e. no coordination). It is distin-
guished from Alinea by the fact that the feedback sensor is placed upstream of the on-ramp
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junction. %-Occ can be interpreted as a proportional control of the occupancy measurement.
Occupancy is defined as the portion of time during which a loop detector registers a vehicle
presence. It is closely related to the density states of the model used here. The metering
rate under %-Occ control is computed with:

r[k] = K1 −K2 ρ1[k] (4.5)

where K1 and K2 are tunable controller parameters. The closed-loop dynamics under %-Occ
control is given by:

ρ[k+1] = Ax
occρ[k] + Bx

occ (4.6)

with Ax
occ =Ax−K2B

xC1 and Bx
occ =W x+K1B

x (x = I . . . VI). Specific expressions for Ax
occ

and Bx
occ are provided in Appendix A.2.

We derive conditions on K1 and K2 under which %-Occ qualifies as a “good strategy”,
according to the definition of Section 4.2. To illustrate the methodology, consider dynamic
mode V, with closed-loop dynamics:

ρ[k+1] =




1− w 0 0
w 1 v
0 0 1− v


 ρ[k] +




1− α
α
0


 (K1 −K2[0 1 0]ρ[k]) +




wρ̄− fd

−wρ̄
q




=




1− w −(1− α)K2 0
w 1− αK2 v
0 0 1− v


 ρ[k] +




(1− α)K1 + wρ̄− fd

αK1 − wρ̄
q




Figure 4.6: Root locus diagram for dynamic mode V with %-Occ.

A root locus diagram for mode V is shown in Figure 4.6. For the controller to meet the speci-
fications of Section 4.2, the parameters must be chosen such that the closed loop eigenvalues
are within the unit circle, and the stable equilibrium point is as required by Table 4.6. To
derive stable gains, we first separate the problem into two cases, depending on whether the
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intersection of the root locus with the real axis (point m in Figure 4.6) falls inside or outside
of the unit circle. The characteristic polynomial for mode V is:

λ2 + (αK2 + w − 2)λ + 1− w + (w − α)K2

The point m is defined by the occurrence of a repeated real eigenvalue at λ = m. Then:

−2m = αK2 + w − 2

m2 = 1− w + (w − α)K2

Which leads to:
m = 1 − w

α
− w

α

√
1− α

The two cases, m>−1 and m<−1, are thus translated into conditions on w and α:

m > −1 ⇔ 4α− 4w + w2 > 0

In the case m>−1, stability is lost when an eigenvalue crosses the -1 point on the real axis.
In the m<−1 case, both eigenvalues exit the unit circle simultaneously. In both cases, K2 is
restricted by an upper bound. The derivation of the upper bounds for K2 in dynamic modes
V and VI can be found in Appendix A.2. For dynamic mode V, the upper bound is:

K̄2 =

{
2(2−w)
2α−w

if 4α− 4w + w2 > 0
w

w−α
else

(4.7)

With K2 thus chosen, the steady-state equilibrium point is,

ρss =




ρ2ss

ρ1ss

ρ0ss


 =




ρ̄− 1−α
w

q − α
w
fd

1
K2

(K1 − fd + q)
1
v
q


 (4.8)

This steady-state is subject to the conditions from Table 4.6: {ρ1ss < ρc} and {vρ1ss <
w(ρ̄−ρ2ss)−αrss}. Using the values from Eq. (4.8), and after some manipulation, these
conditions become:

K1 − ρcK2 < fd − q (4.9)

K1 − (q/v)K2 < fd − q (4.10)

Given Eq. (4.10), Eq. (4.9) is always satisfied, since ρc > q/v by assumption. Therefore,
in summary, K1 and K2 must satisfy Eqs. (4.7) and (4.10) for %-Occ to qualify as a “good
strategy”.

A similar analysis was carried out for the remaining modes. Table 4.7 provides the ranges
of stable gains for the two modes with non-zero open loop transfer functions. Table 4.8 shows
the long term behavior for the six dynamic modes. In the table, the ↗ symbol indicates
unstable states whose values increase without bound, and ↘ indicates states that decrease
without bound. Also, labels [IV-a] and [VI-a] in Table 4.8 are constraints on the values
of K1 and K2 defined in Table 4.9.
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Dynamic Congestion
K̄2mode mode

V UC/CC
2(2−w)
2α−w

if 4α− 4w + w2 > 0
w

w−α
else

VI CC
(2−w)2

2α−w
if 2α− 2w + wα > 0

w(2−w)
w−α

else

Table 4.7: Maximum stable gains for %-Occ.

Dynamic Congestion Long term behavior
mode mode ρ0ss ρ1ss ρ2ss

I UU 1
v q 1

v q 1
v [(1− 1

vK2)q + K1]

II CU 1
v q ↘ ↗

III CU ↘ ρ̄− 1
wfd

1
v [K1 −K2(ρ̄− 1

wfd) + fd]

IV UC 1
v q 1

v q
↘ if [IV-a]
↗ else

V UC/CC 1
v q

K1−fd+q
K2

ρ̄− 1−α
w q − α

wfd

VI CC
↘ if [VI-a]
↗ else

K1+wρ̄−fd
K2+w

(wρ̄−fd)(1+ α
w

K2)+(1−α)K1

K2+w

Table 4.8: Long term behavior with %-Occ.

Table 4.8 offers useful information for parameter selection. Perhaps the most important
requirement for a “good strategy” is that the steady state flow in the uncongested regime
must exceed the queue discharge rate without exceeding the maximum flow. Given that
ρ2ss = 1

v
[(1 − 1

v
K2)q + K1] in mode I, these two requirements translate into conditions

[I-a] and [I-b] in Table 4.9. Table 4.8 also shows that the upstream density in the CU-II

mode decreases without bound, while the downstream density increases. Thus, from CU-II,
any of the transitions to CU-III, CC-V, or UU-I are possible. The steady state values in
modes III and V translate into conditions [III-a], [V-a], and [V-b] in Table 4.9. Notice
that conditions [IV-a] and [V-a] are exactly contrary to condition [I-b]. Thus, the
controller cannot simultaneously satisfy the steady state requirement for modes IV and V

while increasing the flow in UU-I above the queue discharge rate.
Modes UC-IV and CC-VI involve densities that may either increase or decrease without

bound, depending on the values of K1 and K2. In mode UC-IV, the preferred behavior
for section 2 is for its density to decrease. This is guaranteed by condition [IV-a]. As
was mentioned, this condition is in conflict with the important condition [I-b]. Thus,
unbounded growth of ρ2 in UC-IV cannot be avoided without sacrificing [I-b]. In CC-VI,
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Dynamic Congestion
Requirements for K1 and K2 Label

mode mode

I UU
K1 − (q/v)K2 < vρc − q [I-a]

K1 − (q/v)K2 > fd − q [I-b]

II CU - -

III CU K1 − (ρ̄− fd/w)K2 < vρc − fd [III-a]

IV UC K1 − (q/v)K2 < fd − q [IV-a]

V UC/CC
K1 − (q/v)K2 < fd − q [V-a]

K1 − ρcK2 < fd − q [V-b]

VI CC K1 − (ρ̄− q/w)K2 < fd − q [VI-a]

Table 4.9: Conditions on the %-Occ parameters.

the preferred behavior is for the density in section 0 to decrease, since this section has
been assumed to remain uncongested. Condition [VI-a] is enforced. Notice that because
ρ̄− (q/w) > ρc, condition [VI-a] is satisfied whenever [V-b] must therefore be enforced.

In summary, it can be concluded that %-Occ does not qualify as a “good strategy” for
several reasons. First, the steady state conditions outlined in Table 4.6 cannot be guaranteed
in mode CU-II since both ρ2 and ρ1 diverge. This is not necessarily a major problem:
although it is not guaranteed, the decreasing ρ1 may in fact force a transition to UU-I before
the increasing ρ2 forces the transition to CC-V. A more troubling observation is the conflict
between conditions [I-b], [IV-a], and [V-a]. No single selection of parameters can satisfy
all of these conditions. Thus, the controller can either efficiently reject congestion, if [IV-a]
and [V-a] are enforced, or increase uncongested flow, if [I-b] is enforced, but not both.

For the single-destination layout studied here, condition [I-b] is required in order to re-
duce travel time. In the next section we will discard [IV-a] and [V-a] in favor of [I-b], and
use computer simulation to test the convergence of %-Occ for an array of initial conditions
and parameter values.

4.3.1 Computer simulations with %-Occ

Figure 4.7 illustrates restrictions [I-a], [I-b], [III-a], [V-b], and [VI-a] from Table 4.9
in the K2/K1 plane. These lines and the simulations reported in this section were found
with the following parameter values:

v = 0.7, α = 0, fd = 0.9 vρc, Kr = 0.3,
w = 0.3, ρ̄ = 10, q = 0.5 fd, ρ̂2 = 0.95 vρc

Even though a particular set of parameter values was used, the general shape of the plot
applies to any valid set of parameters. This is because the assumptions ρc < ρ̄ and q < fd
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Figure 4.7: Parameter selection and convergence with %-Occ.

lead to the following relations amongst the slopes of the constraints and their intersections
with the K1 axis:

(q/v) < ρc < ρ̄− (fd/w) < ρ̄− (q/w)

vρc − fd < vρc − q

fd − q < vρc − q

The only ambiguity in the figure is whether the intersection of [III-a] with the K1 axis
occurs above or below fd − q. Figure 4.8 focuses on the region where all of the restrictions
are satisfied. The maximum value of K2, according to Table 4.7 is K̄2 = 1.0. The smallest
allowed value of K2 is 0.31.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1.0

1.1
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2.5

3

0.31

Figure 4.8: Parameter selection and convergence with %-Occ.

The response of the system under %-Occ control was simulated for K1/K2 pairs on an
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irregular 11 X 12 grid covering the shaded region in Figure 4.8. For each of the K1/K2

pairs, 400 runs were conducted starting from initial conditions on a 20×20 grid of ρ1[0] and
ρ2[0] values between 0 and ρ̄. Each run recorded whether or not the desired final condition,
with ρ1 < ρc and fd/v < ρ2 < ρc, was reached. The portion of the 400 initial conditions
that reached the desired final state was determined for each of the K1/K2 pairs. This region
of convergence is represented in Figure 4.8 in shades of gray. The darker shades represent
larger portions of successful runs; i.e. larger regions of convergence. It should be noted that
the largest region of convergence, recorded for K1 = 2.13 and K2 = 0.86, covered only 84%
percent of the grid of initial conditions. That is, no selection of parameters was found to
improve mainline flow and travel time for more than 84% of all possible initial conditions.

4.4 Alinea control

The Alinea control law was first introduced by Papageorgiou and others in [79]. It has since
been tested in several European cities [35, 77], where it has performed favorably as compared
to %-Occ, or a variant of %-Occ since a downstream measurement was used. It is interpreted
as integral control of the downstream occupancy measurement. Again relating occupancy to
density, the control law for Alinea is:

r[k] = r[k−1] + Kr (ρ̂2 − ρ2[k]) (4.11)

The two tunable parameters are ρ̂2, the target density, and Kr, the feedback gain. It is
assumed that Kr > 0 and ρ̂2 < ρc. We apply the same analytical procedure to Alinea as to
%-Occ. Table 4.10 provides stable ranges of Kr and the resulting steady-states. In almost
all cases, Alinea stabilizes the downstream density about ρ̂2, with mode IV being the only
exception. The ¯ symbol in Table 4.10 in mode IV is meant to indicate that the density
error ρ̃2 = ρ2 − ρ̂2 behaves like an undamped oscillator (see Appendix A.3):

ρ̃2[k+2] + (Kr − 2) ρ̃2[k+1] + ρ̃2[k] = 0 (4.12)

This, strictly speaking, violates the first requirement of a “good strategy”, that the con-
troller should stabilize all dynamic modes with non-zero open-loop transfer functions. It
also introduces the possibility of an infinite loop between UC-IV and UC-V (see Figures 4.4
and 4.5). Notice however that the loop is always broken after at most one cycle, since ρ2

oscillates about ρ̂2 in UC-IV, and converges to ρ̂2 in UC-V. Hence, if the system transitions
from UC-IV to UC-V, it will eventually come back, and then move through UC-IV to UU-I.

Aside from the marginal stability of mode IV, Alinea meets all of the requirements for
a “good strategy”. It can be easily verified that the long-term behavior in Table 4.10 is in
compliance with Table 4.6, given that q < fd < v ρc and ρ̂2 < ρc < ρ̄. Hence, summariz-
ing Table 4.10, and applying the condition f2ss > fd, Alinea is considered a nearly “good
strategy” whenever:

Kr ∈
[

0 , min

(
2
2− w

1− α
, 2(2− v)

) ]
(4.13)

ρ̂2 ∈ [ fd/v , ρc ] (4.14)
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Dynamic Congestion
Kr ∈ Long term behavior

mode mode ρ2ss ρ1ss ρ0ss

I UU [ 0 , 2(2− v) ] ρ̂2
1
v
q 1

v
q

II CU [ 0 , 2(2− v) ] ρ̂2 ↘ 1
v
q

III CU [ 0 , 2(2− v) ] ρ̂2 ρ̄− 1
w
fd ↘

IV UC [ 0 , 4 ] ¯ 1
v
q 1

v
q

V UC/CC
[
0 , 22−w

1−α

]
ρ̂2 ↘ 1

v
q

VI CC
[
0 , 22−w

1−α

]
ρ̂2 ρ̂2 + α

1−α
( 1

w
fd − (ρ̄− ρ̂2)) ↘

Table 4.10: Stable gains and Steady-states with Alinea.

4.4.1 Computer simulations with Alinea

Analogous to Section 4.3.1, exhaustive simulation is used here to investigate the performance
of Alinea with varying initial conditions and parameter settings. The objective is to refine
the recommendation for Kr given in Eq. (4.13). Figure 4.9 shows a sample of the response
of the discontinuous ACTM with Alinea, using the model parameters from Section 4.3.1.
In this example, the system begins completely congested in the CC-VI finite state. Alinea
quickly reduces the ramp metering rate, which eliminates congestion in the downstream
section. The system passes through the CU-III and CU-II modes before reaching UU-I. The
exiting flow then recovers and settles in the desired range, between the queue discharge rate
and the maximum uncongested value. In this example, it took Alinea 18 steps to go from
the congested initial condition to the desired final condition of no congestion and f2 > fd.
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  CC-V

 CC-VI

Figure 4.9: Downstream flow and congestion mode with Alinea.

The same experiment was repeated for all initial conditions on a 20 × 20 grid covering
ρ1[0] and ρ2[0] values between 0 and ρ̄. This was done for Kr ranging from 0 to its maximum
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value according to Eq. (4.13) of Kr = 2.6. For each simulation run, the number of steps it
took for the system to reach the desired final state, if it was reached at all, was recorded.
The average number of steps, over all initial conditions, was computed for each Kr, and is
shown in Figure 4.10. Only those values of the gain for which all initial conditions reached
the desired final state were recorded. Gains for which any initial condition failed to converge
appear in the plot as 0 steps1.

The plot shows that performance is fairly uniform for a range of Kr values, as suggested
by [35], but that there is clearly an optimal value of Kr = 0.65 that provides the quickest
response. Figure 4.10 also illustrates a couple problems that were not considered in the
definition of a “good strategy”. Decreasing Kr below 0.3 results in a sharp increase in the
number of steps to convergence. Also, values above 1.7 produce an infinite loop between
UC-IV and UU-I. This result is in agreement with the observation in [35] that high gains may
lead to oscillatory behavior.
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Figure 4.10: Performance of Alinea with varying Kr.

4.5 Summary

A discontinuous form of the ACTM was described in this chapter, and used to study two
local on-ramp metering controllers. The observability and controllability characteristics of
this model revealed that a detector placed upstream of the on-ramp may be more effective
when the freeway is congested, whereas a downstream detector is preferred during free-
flow. The model was also used to analyze two well-known on-ramp metering schemes, and
to find ranges of parameter values that qualify them as “good strategies”, meaning that

1The corresponding plot with %-Occ would be identically zero, since it always failed for some initial
condition.
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they eliminate congestion and increase mainline flow. It was found that neither qualify as a
“good strategy”, since they do not satisfy all of the criteria for any single choice of parameter
values. In addition, exhaustive computer simulations with %-Occ showed that no selection
of parameters achieves the stated goals for more than 84% of all initial conditions.

Although it did not strictly qualify, Alinea was found to meet most of the criteria for a
“good strategy”, whenever its parameters are chosen according to Eqs. (4.13) and (4.14).
Only the marginal stability of mode IV prevented it from qualifying. Exhaustive simulation
with Alinea showed that, within the range suggested by Eq. (4.13), a best choice of Kr could
be found the minimizes the convergence time, and presumably also minimizes total travel
time.
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Chapter 5

Optimal Control of the ACTM

The preceding chapter used a discontinuous form of the ACTM to study the performance
of two local ramp metering strategies. The modification to the original continuous model
was needed in order to allow the controllers to save travel time by avoiding the capacity
drop. Alinea, which is based on this principle, was found capable of repelling congestion
while increasing downstream flow above the queue discharge rate. This chapter describes
the design of a predictive and coordinated strategy using the original version of the ACTM.
Thus, the aim of this design is to avoid the loss of travel time related to offramp blockage.

The solution method described here differs from the previous efforts mentioned in Sec-
tion 2.2.3 in that it does not attempt to directly solve the nonlinear optimization problem,
but instead to construct and solve an equivalent convex problem. The construction of the
convex problem is based on two facts. First, the nonlinearity of the ACTM (and of most
freeway models) is in the fundamental diagram, which is a concave function. Hence, the set
defined by all values of flow below this function is a convex set. The second fact, shown by
Eq. (2.42), is that minimizing Total Travel Time is equivalent to maximizing a weighted
sum of flows. The relaxed convex problem is obtained by replacing the equality constraint
f = F (ρ) with an inequality constraint f ≤ F (ρ), as shown in Figure 5.1. Because the travel
time objective function favors larger flows, it is not unreasonable to expect the solution of
the relaxed problem to “naturally” fall on the upper boundary. In this chapter we derive
conditions that guarantee that it does.
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Figure 5.1: Concave fundamental diagram and a convex set.

The model equations of the original ACTM from Chapter 3 are reproduced below for
reference here.

ρi[k+1] = ρi[k] + fi−1[k] + δi ri[k] − fi[k]/β̄i[k] (5.1)

li[k+1] = li[k] + di[k] − ri[k] (5.2)

ri[k] =

{
min

{
li[k] + di[k] ; ξi(ρ̄i − ρi[k])

}
if i ∈ En \ En+

min
{

li[k] + di[k] ; ξi(ρ̄i − ρi[k]) ; rc
i [k]

}
if i ∈ En+ (5.3)

fi[k] = min

{
β̄i[k] vi(ρi[k] + δiγiri[k]) ; wi+1(ρ̄i+1 − ρi+1[k])− δi+1αi+1ri+1[k] ; f̄i ;

β̄i[k]

βi[k]
s̄i

}

(5.4)

The definitions of both ri[k] and fi[k] in Eqs. (5.3) and (5.4) are concave functions of their
arguments, similar to Figure 5.1. The relaxed optimization problem is obtained by restricting
ri[k] and fi[k] to less than each of the terms in their defining min{} functions. The objective
function is a linear combination of mainline and on-ramp flows termed the Generalized Total
Travel Time (gTTT). We will see that the solution to the relaxed problem can be guaranteed
to fall on the “upper boundary” whenever certain conditions on the cost weights are met.
The goal of the Cost Weights Synthesis (CWS) problem, described in Section 5.2, is to find
weights that meet these conditions, given the layout of the freeway. Thus, any global solution
to the relaxed linear problem posed with cost weights generated by the CWS problem is also
a global solution to the nonlinear problem with the same objective.

Section 5.3 presents a simple example aimed at determining whether the optimal plan
performs well in terms of Total Travel Time, in addition to gTTT. This depends on the
form of the weights generated by the CWS, and their similarity to the TTT weights (Eqs.
(5.9) and (5.10)). It is found that the CWS weights generated with the original approach
are qualitatively different from TTT in two ways: first, the mainline flow weights decay too
quickly (faster than a straight line), and second, the weights on the on-ramp flows are not
identically zero. Two additional assumptions are introduced in Section 5.4 to remedy these
problems. Simulation experiments in Section 5.5 demonstrate that,
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1. the cost weights generated by the CWS problem under the two additional assumptions
are qualitatively similar to TTT,

2. the relaxed linear problem can be posed with or without restrictions on the lengths of
the on-ramp queues,

3. the optimal plans derived in both cases (with or without queue length constraints)
offer substantial savings in TTT,

4. both assumptions are reasonable.

5.1 Problem Formulation

5.1.1 Objective function

Equation (2.42) in Section 2.2.1 provided an expression for the Total Travel Time as the
sum of a control independent term and a term composed of exiting flows. Below we derive
this expression using the notation of the ACTM (Section 3.1). An expression for the total
number of vehicles in the system (N [k]) is first derived from the conservation equations (5.1)
and (5.2) (multiplied by δi):

ρi[k+1] = ρi[k] + fi−1[k] + δi ri[k] − fi[k]/β̄i[k]

δi li[k+1] = δi li[k] + δi di[k] − δi ri[k]

Adding the two:

(ρi[k+1] + δi li[k+1]) = (ρi[k] + δi li[k]) + fi−1[k] − fi[k]/β̄i[k] + δi di[k]

= (ρi[k] + δi li[k]) + fi−1[k] − fi[k]− βi[k]

β̄i[k]
fi[k] + δi di[k]

Summing both sides over all sections i and cancelling fi[k] terms, an expression for the
evolution of the total system occupancy N [k] ,

∑
i(ρi[k] + δi li[k]) is obtained:

N [k+1] = N [k] + f−1[k] − fI−1[k] −
∑
i∈I

βi[k]

β̄i[k]
fi[k] +

∑
i∈En

di[k]

The total occupancy at time k is then given by:

N [k] = N [0] +
k−1∑
m=0

[
f−1[m] − fI−1[m] −

∑
i∈I

βi[m]

β̄i[m]
fi[m] +

∑
i∈En

di[m]

]
(5.5)
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Equation (5.5) can now be used in the definition of the Total Travel Time (TTT):

TTT ,
∑

k∈K

[ ∑
i∈I

ρi[k]∆t +
∑
i∈En

li[k]∆t

]
(5.6)

= ∆t
∑

k∈K
N [k]

= ∆t
∑

k∈K

{
N [0] +

k−1∑
m=0

[
f−1[m] − fI−1[m] −

∑
i∈I

βi[m]

β̄i[m]
fi[m] +

∑
i∈En

di[m]

]}

= ∆t K N [0] + ∆t

K−1∑

k=0

k−1∑
m=0

(
f−1[m] +

∑
i∈En

di[m]

)

− ∆t

K−1∑

k=0

k−1∑
m=0

(
fI−1[m] +

∑
i∈I

βi[m]

β̄i[m]
fi[m]

)

Expanding the double summations and grouping similar terms leads to:

TTT = ∆t K N [0] + ∆t
∑

k∈K
(K− k)

(
f−1[k] +

∑
i∈En

di[k]

)

︸ ︷︷ ︸
control independent

− ∆t
∑

k∈K
(K− k)

(
fI−1[k] +

∑
i∈I

βi[k]

β̄i[k]
fi[k]

)

︸ ︷︷ ︸
exit flows

The “control independent” portion includes the initial condition and the inlet demands,
which are not affected by the on-ramp flows whenever the conditions of Section 2.2.1 are
met. The “exit flows” portion gathers offramp flows si[k] = (βi[k]/β̄i[k])fi[k], and the flow
leaving the system through the downstream mainline boundary fI−1[k]. Thus, minimizing
the TTT is equivalent to minimizing:

TTT , −
∑

k∈K
(K− k)

(
fI−1[k] +

∑
i∈I

βi[k]

β̄i[k]
fi[k]

)
(5.7)

This is a particular instance of the Generalized Total Travel Time, defined below as a linear
combination of mainline and on-ramp flows with positive cost weights ai[k] and bi[k]:

gTTT , −
∑

k∈K

[ ∑
i∈I

ai[k] fi[k] +
∑
i∈En

bi[k] ri[k]

]
(5.8)

By using different settings for the cost weights, gTTT can be made to represent different
useful cost functions. Equation (5.7) demonstrates that TTT is minimized by setting:

ai[k] =

{
(K−k) βi[k]/β̄i[k] i < I−1
(K− k)

(
βi[k]/β̄i[k] + 1

)
i = I−1

(5.9)

bi[k] = 0 (5.10)
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The Total Travel Distance is maximized by setting ai[k] and bi[k] equal to their respective
mainline and on-ramp section lengths. The cost weights that render gTTT equal to TTT can
be described qualitatively as follows:

1. the ai[k]’s are linearly decreasing from an initial positive value to 0 at k = K− 1.

2. the bi[k]’s are all zero.

The metering plan derived in this chapter is globally optimal with respect to an objective
function that is similar to TTT, in the sense that they share these qualitative characteristics.
The speculation, which is supported by the example of Section 5.5, is that such a plan also
performs well in terms of TTT.

5.1.2 Bounds

Minimum and maximum bounds on the control and state are often used to keep their values
within physical limits. Several of these bounds are not required here because they are implicit
in the ACTM due to Theorem 1 on page 37. Specifically, ρi[k] ∈ [0, ρ̄i], li[k] ≥ 0, fi[k] ≥ 0,
and ri[k] ≥ 0, are guaranteed. However, bounds are needed to account for the restrictions
on the metering rate and the on-ramp storage capacity. These constraints were described in
Section 2.2.2 as the two most important factors limiting the potential savings with on-ramp
metering. They are represented in the problem formulation as follows:

Metering rate bounds: rc
i [k] ≥ rc

i ∀ i∈En+ (5.11)

rc
i [k] ≤ r̄c

i ∀ i∈En+ (5.12)

Queue length bounds: li[k] ≤ l̄i ∀ i∈En (5.13)

5.1.3 Problem statement

The nonlinear and relaxed linear problems are respectively labelled as PA and PB. In both
cases, the on-ramp queue lengths are left unrestricted (i.e. Eq. (5.13) is not enforced). The
reason for this omission is explained in Section 5.2.1. Queue length bounds can only be
imposed in Problem PC (page 75), after the two assumptions of Section 5.4 have been made.
In the statement of Problem PB, the linear constraints (5.16) through (5.18) are a relaxation
of (5.4) in PA, and (5.19) through (5.20) are a relaxation of (5.3).
Problem PA: Given initial and boundary conditions satisfying Theorem 1, find

ψ∗ = arg min
ψ∈ΩA

gTTT(ψ) (5.14)

ΩA =
{

ψ = {ρi[k], li[k], fi[k], ri[k], rc
i [k]} :

Dynamic equations : Eqs. (5.1) and (5.2),

Concave fundamental diagram : Eqs. (5.3) and (5.4),

Metering rate bounds : Eqs. (5.11) and (5.12)
}
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Problem PB: Given initial and boundary conditions satisfying Theorem 1, find

ψ∗ = arg min
ψ∈ΩB

gTTT(ψ) (5.15)

ΩB =
{

ψ = {ρi[k], li[k], fi[k], ri[k], rc
i [k]} :

Dynamic equations : Eqs. (5.1) and (5.2),

Linear inequality constraints : Eqs. (5.16) through (5.21),

Metering rate bounds : Eqs. (5.11) and (5.12)
}

∀ k∈K, i∈I fi[k] ≤ β̄i[k] vi( ρi[k] + δi γi ri[k] ) (5.16)

fi[k] ≤ wi+1 ( ρ̄i+1 − ρi+1[k] ) − δi+1 αi+1 ri+1[k] (5.17)

fi[k] ≤ min

{
f̄i ;

β̄i[k]

βi[k]
s̄i

}
(5.18)

∀ k∈K , i∈En : ri[k] ≤ li[k] + di[k] (5.19)

ri[k] ≤ ξi ( ρ̄i − ρi[k] ) (5.20)

∀ k∈K , i∈En+ : ri[k] ≤ rc
i [k] (5.21)

Our goal is to find a globally optimal solution to PA. This is not a simple task, in principle,
since the problem is nonlinear and non-differentiable. Problem PB, on the other hand, is
linear, and can therefore be solved globally and quickly. In the following section we will
derive conditions on the cost weights ai[k] and bi[k] that make the two problems equivalent.
Hence, under these conditions, the global and easily found solution to PB also solves PA.

5.2 The Cost Weights Synthesis Problem

The goal of the Cost Weights Synthesis (CWS) problem is to find weights ai[k] and bi[k] that
render problems PA and PB equivalent (PA ≡PB), in the sense that their solution sets are
identical:

{ψ∗ solves PA} ⇔ {ψ∗ solves PB} (5.22)

Problem PB is a relaxation of PA since ΩA ⊂ ΩB and the two share the same cost function.
Therefore, any solution to PB that is within ΩA must also solve PA. For the two solution sets
to be equivalent, the entire set of solutions to PB must be contained in ΩA. Hence, PA≡PB

if:
{ψ∗ solves PB} ⇒ ψ∗ ∈ ΩA (5.23)

Conversely stated, the two problems are equivalent if there are no solutions to PB in the set
ΩB \ ΩA:

ψ ∈ ΩB \ ΩA ⇒ {ψ∗ does not solve PB} (5.24)
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A feasible point ψ ∈ ΩB \ΩA can be shown not to solve PB if there exists a perturbation ∆
that is both feasible and improving:

∆ is feasible if ∃ ε > 0 such that: ψ + ε∆ ∈ ΩB (5.25)

∆is improving if ∃ ε > 0 such that: gTTT(ψ + ε∆) < gTTT(ψ) (5.26)

Due to the linearity of gTTT, Eq. (5.26) is equivalent to gTTT(∆) < 0. The CWS problem
is then restated as follows: Given the layout of the freeway, find weights ai[k] and bi[k] such
that for all ψ ∈ ΩB \ ΩA there exists a feasible perturbation ∆ with gTTT(∆) < 0.

The methodology used here for solving the CWS problem is to propose a feasible per-
turbation for every ψ ∈ ΩB \ ΩA (Section 5.2.2). Evaluating gTTT(∆) < 0 on each of these
perturbations leads to conditions on the values of ai[k] and bi[k]. We then compute particular
values of ai[k] and bi[k] that meet all of these conditions.

5.2.1 Feasible perturbations

A feasible perturbation ∆ = {∆ρi[k], ∆li[k], ∆fi[k], ∆ri[k], ∆rc
i [k]} to a point ψ = {ρi[k], li[k], fi[k], ri[k], rc

i [k]} ∈
ΩB is one for which ψ + ε∆ satisfies Eqs. (5.1), (5.2), (5.11), (5.12), and (5.16) through
(5.21), for some ε > 0. This can be expressed in terms of the components of ∆. For example,
the mainline conservation equations for ψ and ψ + ε∆ are:

ρi[k+1] = ρi[k] + fi−1[k] + δi ri[k] − fi[k]/β̄i[k]

(ρi[k+1] + ε∆ρi[k+1]) = (ρi[k] + ε∆ρi[k]) + (fi−1[k] + ε∆fi−1[k]) + δi(ri[k] + ε∆ri[k])

− (fi[k] + ε∆fi[k])/β̄i[k]

Subtracting the two and dividing by ε,

∆ρi[k+1] = ∆ρi[k] + ∆fi−1[k] + δi ∆ri[k] − ∆fi[k]/β̄i[k]

The same must be done for the on-ramp conservation equation and for all active inequality
constraints. Thus, a feasible perturbation to ψ is one that satisfies the following:

∆ρi[k+1] = ∆ρi[k] + ∆fi−1[k] − ∆fi[k]/β̄i[k] + δi∆ri[k]

∆li[k+1] = ∆li[k] − ∆ri[k]

∆fi[k] ≤ β̄i[k] vi( ∆ρi[k] + δiγi∆ri[k] ) if (5.16)ik is active in ψ

∆fi[k] ≤ −wi+1∆ρi+1[k] − δi+1αi+1∆ri+1[k] if (5.17)ik is active in ψ

∆fi[k] ≤ 0 if (5.18)ik is active in ψ

∆ri[k] ≤ ∆li[k] if (5.19)ik is active in ψ

∆ri[k] ≤ −ξi ∆ρi[k] if (5.20)ik is active in ψ

∆ri[k] ≤ ∆rc
i [k] if (5.21)ik is active in ψ

∆rc
i [k] ≥ 0 if (5.11)ik is active in ψ

∆rc
i [k] ≤ 0 if (5.12)ik is active in ψ
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The notation (5.16)ik refers to the particular instance of constraint (5.16) applied to the ith
section, during the kth time interval. An inequality constraint is active in a feasible point ψ
when it evaluates as an equality.

These conditions for a feasible perturbation are used next to explain the reason why
queue length constraints were omitted from the statements of problems PA and PB. The
queue length constraint would have appeared in the definition of the feasible perturbation
as the addition of the following condition:

∆li[k] ≤ 0 if (5.13)ik is active in ψ

Consider a ψ ∈ ΩB \ΩA for which a particular component fi[k] is beneath its “upper bound-
ary”. That is, Eqs. (5.16)ik, (5.17)ik, and (5.18)ik are not active in ψ for some i and k. We
would like to find a feasible perturbation to ψ that has a positive component ∆fi[k] > 0, in
order to move fi[k] closer to its “upper boundary”. Considering only causal perturbations,
i.e. ones whose components are zero for all times before k, then the following derives from
the conditions on feasible perturbations:

∆ρi+1[k+1] = ∆fi[k] > 0

⇒ ∆ri+1[k+1] ≤ −ξi∆ρi+1[k+1] < 0 if (5.20)i+1,k+1 is active in ψ

⇒ ∆li+1[k+2] = −∆ri+1[k+1] > 0

This last line conflicts with the condition imposed by the queue constraint if (5.13)i+1,k+2 is
active in ψ. Therefore, in the case that both (5.20)i+1,k+1 and (5.13)i+1,k+2 are active, there
is no feasible causal perturbation with ∆fi[k] > 0. One might consider searching amongst
non-causal perturbations, however the argument would still hold for k = 0. One could
also consider perturbations with fi[k] ≤ 0, however such perturbations would not meet the
second criterion of being cost improving (Eq. (5.26)). One may further consider “sideways”
perturbations, where fi[k] = 0 and either ∆ρi[k] in Eq. (5.16) or ∆ρi+1[k] Eq. (5.17) is
perturbed. This however, cannot be done when k = 0 since the values of ρi[0] and ρi+1[0]

are fixed. Thus, it seems that whenever a queue constraint is included, there may be points
ψ ∈ ΩB \ ΩA for which no feasible and improving perturbation exists. In fact, in this case,
it may even be that PA is not feasible, and therefore PA and PB are not equivalent for any
selection of ai[k] and bi[k].

5.2.2 The Maximal Worst-Case Causal perturbation

It is obviously not possible to perturb every one of the innumerable ψ ∈ ΩB \ ΩA. Instead,
ΩB \ ΩA is divided into a finite number of subsets, and perturbations are constructed that
are feasible for all points in their respective subsets. The subsets are defined as follows:

Iικ =
{

ψ∈ΩB\ΩA : Eq. (5.4) is not satisfied with i= ι , k=κ
}

(5.27)

IIικ =
{

ψ∈ΩB\ΩA : Eq. (5.3) is not satisfied with i= ι , k=κ
}

(5.28)

A member of Iικ is a point ψ ∈ ΩB \ΩA for which Eq. (5.4) is violated with i = ι and
k = κ, or equivalently one for which constraints (5.16)ικ, (5.17)ικ, and (5.18)ικ are inactive
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(fι[κ] is beneath its upper boundary in Figure 5.1). Subsets of the IIικ type have analogous
interpretations for the on-ramp flows. There are a total of I×K subsets of the Iικ type and
|En| ×K subsets of the IIικ type.

To each of the (I+|En|)×K subsets corresponds a Maximal Worst-Case Causal (MWCC)
perturbation; ∆̄I

ικ for Iικ and ∆̄II
ικ for IIικ. The definition of the MWCC perturbations is

given in Eqs. (5.29) and (5.30). The MWCC is a feasible perturbation for all points in
its corresponding subset because it is feasible for the worst-case point, where all inequality
constraints, aside from the ones that define it, are active. It is maximal because it selects
the largest (least negative) feasible value for each of the ∆f ’s and ∆r’s. This is done in
order to maximize its beneficial effect on the cost, and thus minimize the rate of decay of
the resulting cost weights. Finally, it is causal because its effects only propagates forward
in time. That is, all of the components (∆ρi[k], ∆fi[k], etc.) of ∆̄I

ικ and ∆̄II
ικ equal 0 for

k < κ. This property enables the simple backstepping numerical algorithm described in
Section 5.2.3.

∆̄I
ικ = {∆ρi[k], ∆li[k], ∆fi[k], ∆ri[k], ∆rc

i [k]} is defined for κ∈K, ι∈I as: (5.29)

∆ρi[k+1] = ∆ρi[k] + ∆fi−1[k]−∆fi[k]/β̄i[k] + δi∆ri[k]

∆li[k+1] = ∆li[k] − ∆ri[k]

∆fi[k] =





1 i = ι , k = κ

min
{

β̄i[k]vi (∆ρi[k] + δiγi∆ri[k]) ;

−wi+1∆ρi+1[k]− δi+1αi+1∆ri+1[k] ; 0
}

i ∈ I , k > κ

0 i ∈ I , k < κ

∆ri[k] = min
{
∆li[k] ; −ξi∆ρi[k] ; 0

}

∆rc
i [k] = 0

∆̄II
ικ = {∆ρi[k], ∆li[k], ∆fi[k], ∆ri[k], ∆rc

i [k]} is defined for κ∈K, ι∈En as: (5.30)

∆ρi[k+1] = ∆ρi[k] + ∆fi−1[k]−∆fi[k]/β̄i[k] + δi∆ri[k]

∆li[k+1] = ∆li[k] − ∆ri[k]

∆fi[k] = min
{

β̄i[k]vi (∆ρi[k] + δiγi∆ri[k]) ; −wi+1∆ρi+1[k]− δi+1αi+1∆ri+1[k] ; 0
}

∆ri[k] =





1 i = ι , k = κ
min

{
∆li[k] ; −ξi∆ρi[k] ; 0

}
i ∈ En , k > κ

0 i ∈ En , k < κ

∆rc
i [k] = 0

Each of the (I + |En|)×K MWCC perturbations can be computed offline given the layout of
the freeway, the model parameters, and the offramp split ratios. Figure 5.2 shows a sample
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Figure 5.2: ∆̄II
5,15 with parameters of Section 5.3.

MWCC perturbation (∆̄II
5,15) with the parameters of Section 5.3. Here, a unit increase in

r5[15] produces negative waves that propagate forward in time, and upstream and downstream
along the freeway.

With all of the MWCC perturbations computed, the CWS problem can be restated as:
Find ai[k] and bi[k] such that:

gTTT(∆̄I
ικ) < 0 ∀ κ∈K , ι∈I (5.31)

gTTT(∆̄II
ικ) < 0 ∀ κ∈K , ι∈En (5.32)

Because each MWCC perturbation is feasible for every point in its member set, conditions
(5.31) and (5.32) are sufficient to guarantee non-optimality for all ψ ∈ ΩB \ΩA, and thus
PA≡PB.

5.2.3 Backstepping numerical method

Using Eq. (5.8), Eqs. (5.31) and (5.32) are expressed as (I + |En|)×K linear equations of
the form:

−
∑

k∈K

[ ∑
i∈I

ai[k] ∆fi[k] +
∑
i∈En

bi[k] ∆ri[k]

]
= −ε (5.33)

where ∆f ’s and ∆r’s are components of either ∆̄I
ικ or ∆̄II

ικ, and ε is some positive number.
Because the MWCC perturbation is causal, the summations in Eq. (5.33) only contain
non-zero elements for k ≥ κ. Equation (5.33) is therefore equivalent to:

−
K−1∑

k=κ

[ ∑
i∈I

ai[k] ∆fi[k] +
∑
i∈En

bi[k] ∆ri[k]

]
= −ε (5.34)
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Noting that at time k = κ all of the components of ∆̄I
ικ and ∆̄II

ικ are zero, except for:

∆fι[κ] = 1 in ∆̄I
ικ

∆fι−1[κ] = −αι and ∆rι[κ] = 1 in ∆̄II
ικ

the cost weights for section ι and time κ can be written in terms of present and future
components of ∆̄I

ικ and ∆̄II
ικ as follows:

aι[κ] = −
K−1∑

k=κ+1

( ∑
i∈I

ai[k] ∆fi[k] +
∑
i∈En

bi[k] ∆ri[k]

)
+ ε (5.35)

bι[κ] = −
K−1∑

k=κ+1

( ∑
i∈I

ai[k] ∆fi[k] +
∑
i∈En

bi[k] ∆ri[k]

)
+ αιaι[κ] + ε (5.36)

where ∆f ’s and ∆r’s in (5.35) are components of ∆̄I
ικ, and ∆f ’s and ∆r’s in (5.36) are

components of ∆̄II
ικ. These equations can be easily solved by setting ai[K−1] and bi[K−1] to

some positive value, and computing the rest sequentially backwards.

5.3 A simple example

The CWS problem was solved for a simple test freeway consisting of 10 sections and 40 time
intervals. A single on-ramp was placed at i=5. Offramps were placed at i=4, 5, and 9 with
βi[k]=0.1 for all three. vi =0.7 and wi =0.2 was used throughout.

Figure 5.3 shows the cost weights resulting from α5 = γ5 = 0.2, and ξ5 = 0.06. A time
decay index (D) was computed for each sequence ai[·] and bi[·] as the number of entries in
the sequence that exceeded 10% of the first value, divided by the length of the sequence; for
example, D(a4[·]) = size {a4[·] ≥ 0.1× a4[0]} /40. The decay index for a constant sequence
is 1.0, and the decay index for a linearly decreasing sequence, such as the TTT weights of
Eq. (5.9), is 0.9. We inspect the decay indices because they provide some measure of the
similarity of gTTT with TTT. Values near 0.9 among the decay indices for ai[·]’s would suggest
that the resulting objective function is “close” to total travel time. The decay indices for
the sequences of Figure 5.3 are D(a4[·]) = 0.51 and D(b5[·]) = 0.54.

Figure 5.4 shows mini {D(ai[·])} (i.e. the decay index of the fastest decaying mainline
weight) in the top window, and mini {D(bi[·])} in the bottom window, as functions of ξ5,
and for several values of α5. The decay index was found to be insensitive to γ5. The figure
shows that the cost weights degrade less quickly, and are therefore more similar to TTT, for
smaller values of αi and ξi. However it also shows that the gTTT objective is quite different
from TTT in most cases.

5.4 Modifications to the original formulation

The preceding example reveals a few deficiencies in the solution to the CWS problem de-
scribed in Section 5.2. First, the weights on the mainline flows, ai[k]’s, decay more quickly
than the TTT weights of Eq. (5.9), which decay linearly. Hence, the resulting optimal plan
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Figure 5.3: Cost weights with α5 =γ5 =0.2 and ξ5 =0.06.
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Figure 5.4: Fastest decay index vs. ξ5 and α5. (γ5 = 0.2).

will be more likely to allow congestion to form late in the optimization time window. Also,
unlike the TTT bi[k] weights of Eq. (5.10), the bi[k]’s of the example are not identically zero.
A third deficiency, this one in the formulation of the problem, is the omission of upper limits
on the on-ramp queue lengths (Eq. (5.13)). Section 5.2.1 explained that including these
constraints would have introduced the possibility of a feasible solution in ΩB \ ΩA with no
improving perturbation. Finally, the time horizon used in the example spanned only 40
time intervals – about 7 minutes. The linear program resulting from a more useful 1-hour
prediction window was found to be unmanageably large.

This section outlines a series of alterations to the original formulation that resolve these
four shortcomings. The modified optimization problem, Problem PC , minimizes an objective
function with linearly decaying ai[k]’s and identically zero bi[k]’s, includes on-ramp queue
constraints, and is small enough to be solved for up to a 5-hour prediction window.
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5.4.1 An additional restriction: Slowly varying on-ramp flows

Problem PB was formulated using the original ACTM of Section 3.1. The number of equa-
tions and constraints in the problem can be substantially reduced by using a modified dual-
scale ACTM instead. In contrast to the dual-scale model defined in Section 3.3 (dACTM-c),
the modified version (dACTM-o) updates all of the on-ramp related quantities at the slower
rate, not just the control.

The units of the various quantities change as expected: ri[k], li[k], di[k], rc
i [k] are in numbers

of vehicles per ∆tc, and the mainline variables, ρi[k] and fi[k], are in vehicles per ∆t. The
mainline model of the dACTM-o is obtained by replacing the ri[k]’s in Eqs. (3.14) and (3.8)
with ri[κ]/p. The on-ramp conservation equation remains unchanged. The dual-scale version
of the on-ramp flow equation, Eq. (5.40), is the only component of the model that changes
significantly. Here, instead of a single “ξi” term as in Eq. (3.12), p separate “ξi” terms are
needed to ensure that the on-ramp flow does not overwhelm the mainline over the entire
upcoming ∆tc interval. This is necessary in order to retain the property of Theorem 1. The
modified model equations are given below.
Dual-scale ACTM (dACTM-o):

ρi[k+1] = ρi[k] + f−1[k] + δiri[κ]/p − fi[k]/β̄i[k] ∀ i ∈ I , k ∈ Kp (5.37)

fi[k] = min

{
β̄i[k]vi(ρi[k] + δiγiri[κ]/p) ; f̄i ;

wi+1(ρ̄i+1 − ρi+1[k])− δi+1αi+1ri+1[κ]/p ;
β̄i[k]

βi[k]
s̄i

}
∀ i ∈ I , k ∈ Kp (5.38)

li[κ+1] = li[κ] + di[κ] − ri[κ] ∀ i ∈ En , κ ∈ K (5.39)

ri[κ] =





min
{

li[κ] + di[κ] ; mink

{
ξi(ρ̄i − ρi[k])

}
; rc

i [κ]

}
∀ i ∈ En+ , κ ∈ K

min
{

li[κ] + di[κ] ; mink

{
ξi(ρ̄i − ρi[k])

}}
∀ i ∈ En \ En+ , κ ∈ K

(5.40)

In Eqs. (5.37) and (5.38), κ is the integer part of k/p. Kp and K are the sets of mainline and
on-ramp time intervals: Kp = [0, . . . , pK − 1] and K = [0, . . . , K − 1]. The internal min{}
in Eq. (5.40) is taken over k = κp . . . (κ + 1)p − 1. That is, ri[κ] is restricted by p terms
in the upcoming time interval. Unfortunately, this makes the dACTM-o model non-causal,
since knowledge of future mainline densities is needed to compute the present on-ramp flow.
Unlike the basic ACTM and the dACTM-c, uniqueness of the dACTM-o is therefore not a
given. Also, the numerical method for solving the model is not straightforward. Fortunately
however, the problem of non-causality is eliminated with the assumption proposed in the
next section.

5.4.2 Assumption #1: Unobstructed on-ramps

Two of the four deficiencies noted at the beginning of this section – fast decaying ai[k]’s
and the lack of on-ramp queue limits – are caused by the interaction between the mainline
densities and the on-ramp flows dictated by Eq. (5.20). The non-causality of the dACTM-o
model is also due to the “ξi” terms in Eq. (5.40). All three of these problems disappear with
the following assumption.
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Assumption #1: Equation (5.20) is not active in the optimal solution.
In other words, it is assumed that congestion on the mainline does not spill onto any

on-ramps, metered or not, when optimal metering is used. Obviously, this does not hold
for every freeway. In some cases, on-ramp flows may be restricted by insufficient space on
the freeway, even when the freeway is optimally controlled. One scenario in which this
may occur is on a heavy uncontrolled freeway-to-freeway connector, such as the I-605/I-
210 merge described in Chapter 6. The assumption therefore limits the applicability of the
proposed design to freeways where it holds – presumably most well designed freeways. If
the assumption does hold, it permits the removal of Eq. (5.20) from the problem statement,
and the “−ξi∆ρi[k]” terms from the definitions of ∆̄I

ικ and ∆̄II
ικ (Eqs. (5.29) and (5.30)).

Notice that then ∆ri[k] = ∆li[k] = 0 in ∆̄I
ικ, and ∆li[k] ≤ 0 in ∆̄II

ικ. There is no longer a
conflict between the MWCC perturbation and the queue length constraint, which requires
only ∆li[k]≤0 (Section 5.2.1). Furthermore, removing the “ξi” terms from Eq. (5.40) leads
to the following causal definition of on-ramp flows:

ri[κ] =

{
min

{
li[κ] + di[κ] ; rc

i [κ]

}
∀ i ∈ En+ , κ ∈ K

li[κ] + di[κ] ∀ i ∈ En \ En+ , κ ∈ K
(5.41)

As we shall see in Section 5.5, this assumption also eliminates the problem of rapidly decaying
ai[k]’s. Section 5.5 also shows that the assumption is not overly restrictive, and in fact holds
for the I-210 model.

5.4.3 Assumption #2: Zero minimum metering rate

With the additional constraint of slowly varying on-ramp flows and the added assumption
of unobstructed on-ramps, the variable rc

i [κ] can be seen to be practically unnecessary. It
only appears in Eq. (5.41) and in the minimum and maximum metering rate bounds, Eqs.
(5.11) and (5.12). Its only function is to restrict the on-ramp flows at metered locations.
The relaxed linear problem can therefore be equivalently stated without the rc

i [κ] variables
by setting ri[κ] = li[κ] + di[κ] at uncontrolled on-ramps, and ri[κ] ≤ min{ li[κ] + di[κ] ; r̄c

i } at
metered on-ramps. This leads to the statement of Problem PC in Eq. (5.42). The values of
rc
i [κ] for metered on-ramps can be constructed after the optimal solution to Problem PC is

found as the optimal values of ri[κ] that are strictly less than min{ li[κ] + di[κ] ; r̄c
i }. Where

the optimal ri[κ]’s equal min{ li[κ] + di[κ] ; r̄c
i }, the on-ramp metering rate can be assigned

any larger value, up to r̄c
i .

The only pitfall in this simplification is that the optimal on-ramp flows may be less than
the minimum metering rate rc

i (typically 180 vph). Theorem 1 guarantees however that they
will be positive. Hence, the rc

i [k] variables can be removed without affecting the problem
whenever rc

i = 0.
Assumption #2: rc

i = 0.
This is almost never true in practice: the actual minimum metering rate on I-210 is 180

vph, which corresponds to 1 vehicle every 20 seconds. The assumption is adopted never-
theless because it reduces the number of variables and constraints, but more importantly
because it leads to bi[k] = 0. Recall that this is one of the qualitative features of TTT-like
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objective functions. Under Assumption #2, in addition to Assumption #1, and using the
dACTM-o model, the following linear program is equivalent to Problem PB:
Problem PC : Given initial and boundary conditions satisfying Theorem 1, find

ψ∗ = arg min
ψ∈ΩC

gTTT(ψ) (5.42)

ΩC =
{

ψ = {ρi[k], li[k], fi[k], ri[k]} :

Dynamic equations : Eqs. (3.18) and (3.20),

Relaxed fundamental diagram : Eqs. (5.43) through (5.45)

On-ramp flow constraints : Eqs. (5.46) through (5.48)

On-ramp queue constraint : Eq. (5.13)
}

∀ k ∈ Kp , i∈I : fi[k] ≤ β̄i[k] vi( ρi[k] + δi γi ri[κ]/p ) (5.43)

fi[k] ≤ wi+1 ( ρ̄i+1 − ρi+1[k] ) − δi+1 αi+1 ri+1[κ]/p (5.44)

fi[k] ≤ min

{
f̄i ;

β̄i[k]

βi[k]
s̄i

}
(5.45)

∀ κ ∈ K , i ∈ En\En+ : ri[κ] = di[κ] (5.46)

∀ κ ∈ K , i∈En+ : ri[κ] ≤ li[κ] + di[κ] (5.47)

∀ κ ∈ K , i∈En+ : 0 ≤ ri[κ] ≤ r̄c
i (5.48)

Notice that the statement of Problem PC does not include li[κ]’s for unmetered on-ramps,
since these are not allowed to accumulate by Assumption #1. A simple step not shown here
is to eliminate constraint (5.46) and the unmetered ri[κ] variables by replacing ri[k] with the
given demands di[κ].

However, the main advantage of PC over PB is that neither metered nor unmetered ri[k]’s
in PC are required to fall on their “upper boundary”. Perturbations to ri[k]’s and the resulting
non-zero bi[k]’s are therefore not needed. The CWS problem can be solved for Problem PC by
setting all bi[k]’s to zero, and computing ai[k]’s with the procedure developed in Section 5.2,
with ∆̄I

ικ’s modified to include the dACTM-o model and Assumption #1.
The optimal plan derived from Problem PC may call for some on-ramps to be metered

at rates below rc
i , or even temporarily closed. This may not be feasible in practice. An

implementable metering plan, complying with both the maximum and minimum metering
rate bounds, can be derived from the solution to Problem PC with:

rc
i [k] = max{ ri[k] ; rc

i } (5.49)

The optimal, perhaps unimplementable metering plan is of course rc
i [k] = ri[k]. The following

section provides a numerical example using the I-210 layout that demonstrates that the
sacrifice to global optimality incurred by applying the implementable plan instead of the
optimal plan is not large.
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5.5 Tests using the I-210 layout

The I-210 test site is described in Chapter 6. The details of its representation in the ACTM
are explained in Section 3.4. Problem PC was solved using this layout for 1, 2 and 5-hour
time horizons, with ∆t = 10 seconds and ∆tc = 5 minutes (i.e. p = 30). In all cases, an
additional half-hour “cool-down” period was appended to the end of the simulation period.
The optimizations were performed over the entire 1.5, 2.5, and 5.5 hour time windows.
During the cool-down period, all traffic demands were set to zero, and the freeway was
allowed to empty completely.

Figure 5.5: Computed cost weights.

The cost weights generated by the CWS problem, under Assumptions #1 and #2, are
shown in Figure 5.5. As opposed to the result Section 5.3, these cost weights have the desired
TTT-like properties of linear decay and bi[k] = 0. The optimal solution to Problem PC posed
with these weights is also a global solution to PA (with the same objective).

The linear programs were solved with the commercial LP solver MOSEK 3.0. Each of
the three time horizons was solved with and without on-ramp queue length restrictions (Eq.
(5.13)). The size of the problem ranged from 92,310 constraints and 41,480 variables for
the 1-hour problem without queue constraints, to 352,950 constraints and 158,600 variables
for the 5-hour problem with queue constraints. Percent improvements in TTT are reported
in Table 5.1. The travel time was computed using Eq. (5.6), and including the cool-down
period. It was confirmed in every case that the solution to the LP problem satisfied the
equations of the model to a high degree of precision – i.e. ψ∗ ∈ ΩA.

The validity of the two assumptions was also confirmed. For Assumption #1, it was
verified that the optimal ri[k]’s never exceeded ξi p (ρ̄i − ρi[x]). Assumption #2 was found to
have little effect on the solution. This was concluded by running the implementable metering
plan suggested in Eq. (5.49) through the model. TTT values for both the optimal and imple-
mentable plans are provided in Table 5.1. These results show that increasing the minimum
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metering rate from 0 (optimal) to 180 (implementable) induces only a small reduction in
travel time savings (0.04% without queue constraints and 1.12% with queue constraints).
It should be noted that applying Eq. (5.49) can never cause the queue constraint to be
violated, since increasing the metering rate will only make the on-ramp queues shorter.

Period TTT TTT % TTT %
[hr:min] no control optimal saved implem. saved

Without queue constraints
1:00 1,716 1,715 0.06% 1,716 0.00%
2:00 4,080 4,035 1.10% 4,036 1.08%
5:00 13,075 11,535 11.78% 11,540 11.74%

With queue constraints
1:00 1,716 1,715 0.06% 1,716 0.00%
2:00 4,080 4,053 0.66% 4,060 0.49%
5:00 13,075 11,824 9.56% 11,971 8.44%

Table 5.1: Travel time savings and run times.

It is also interesting to note that the 1-hour and 2-hour time horizons yielded almost
no improvement over no control. This is because, as can be seen in Figure 3.7, congestion
only begins after the first hour, and starts to dissipate in the fourth hour. These two
observations tend to corroborate Zhang’s conclusion in [73] that “uniformly uncongested”
and “uniformly congested” freeways should not be metered since they provide no opportunity
for reducing congestion. The 1-hour experiment demonstrates that nothing can be gained
by metering the uncongested freeway, unless there is knowledge of future congestion. In
the 2-hour scenario there is no post-peak period. Hence, vehicles retained in the on-ramps
cannot be released without increasing congestion. Not much can be gained by metering
this situation either. In the 5-hour experiment however, the optimizer is able to shift the
surplus demand to the post-peak period by holding vehicles on the on-ramps. Only the
5-hour experiments produced a substantial improvement over no control: 11.78% travel
time savings without queue constraints, and 9.56% with queue constraints. This result also
emphasizes the importance of using a numerical technique that is efficient enough to produce
optimal plans for sufficiently long time horizons, within a relatively short computation time.

Optimized speed contour plots and queue lengths for the 5-hour experiments are shown
in Figure 5.6. The left hand plot shows that the optimal strategy when on-ramp queue
lengths are left unrestricted is to keep the freeway almost completely uncongested by storing
large numbers of vehicles in the on-ramps. In this situation, one of the on-ramp queues
accumulates over 500 vehicles. The ride hand side shows that congestion cannot be avoided
when the on-ramp queues are limited to at most 50 vehicles. The implementable metering
plan nevertheless achieves a reduction of 8.44% in TTT in this case.
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Figure 5.6: Congestion and queue lengths with and without queue constraints.
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5.6 Summary

This chapter has outlined a complete methodology for solving the feedforward optimal me-
tering problem efficiently and with near-global optimality. The unadulterated result was
described in the Sections 5.2 and 5.2.3, and was found to have a few drawbacks. Section 5.4
focussed on solving those problems. The approach was tested in Section 5.5 on realistic
freeway setup. The repairs required the use of two additional assumptions. The first, that
congestion does not propagate from the mainline onto the on-ramps, can be easily verified
in the optimal solution. Future work will consider the question of what to do if this assump-
tion is temporarily violated. The second assumption was that the on-ramp flows could be
reduced to zero by the on-ramp meters. This is never true, but it was found to induce only
a small sacrifice of global optimality. It was found that, under these two assumptions, the
cost weights generated by the CWS problem were qualitatively similar to the values that
minimize total travel time, in that 1) the weights on the mainline flows decayed linearly
in time, and 2) the on-ramp flow weights were all zero. Also, these assumptions enabled
the inclusion of queue length constraints, and allowed the formulation of a simplified but
equivalent problem (Problem PC).

This technique has several advantages over many other predictive on-ramp metering
designs. First, it requires only to solve a single linear program, which can be done with
extreme efficiency using any modern LP solver. Second, it takes on-ramp storage constraints
explicitly into account. Finally, the optimal solution is a global optimum, or near global if
slowly varying on-ramp flows are imposed, with respect to a cost function that is qualitatively
similar to Total Travel Time.
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Chapter 6

The I-210 test site

The remainder of this dissertation consists of a microscopic evaluation of several local on-
ramp metering schemes. One of the objectives of the study is to determine the influence
of certain more detailed features of the freeway and its control system, that could not be
included in the macroscopic studies. For example, the specifics of the SATMS controller
chip used on I-210 and the controller override rules. Also the differences in behavior between
trucks, passenger cars with single occupants, and high-occupancy vehicles (HOVs). The
latter are allowed on I-210 to bypass the meters on the on-ramps, and to use a dedicated
HOV lane on the mainline. All of these features can be reproduced in the VISSIM microscopic
simulation environment.

Interstate 210, also known as the Foothill Freeway, is one of the important east-west
links in the Los Angeles County freeway system. It runs along the northern edge of the L.A.
metropolitan area, connecting several surrounding cities, including Pasadena, Monrovia,
Azusa, and Glendora. The present study focuses on a 15-mile stretch of the westbound
direction, between Vernon St. and the 210/134 junction (see Figure 6.1), which sustains
heavy congestion daily between about 6:30 am and 9:30 am. This site contains several
complicating features that make it a challenge for microscopic simulation. These include:

1. Twenty metered on-ramps, all equipped with upstream mainline loop detectors, a set
of on-ramp loop detectors, and 1 or 2 meter heads.

2. A centralized control system that gathers the freeway measurements and issues the
control commands remotely from a Traffic Management Center (TMC).

3. A dedicated lane for HOVs, separated from the mixed-traffic lanes by an intermittent
barrier.

4. Bypass lanes on the on-ramps that allow the HOVs to circumvent the on-ramp meters.

5. A heavy and uncontrolled freeway connector from I-605.

6. Several interacting bottlenecks.

This chapter provides a description of the geometric and traffic related characteristics of the
test site. It also describes the procedure that was followed to collect and analyze the traffic
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data and to compute the OD tables for the microscopic model. Section 6.8 provides an
interpretation of the observed congestion patterns, which was used in the model calibration
phase of Chapter 7.

6.1 Sources of geometric information

The basic geometric characteristic of the freeway include the location of on-ramps and of-
framps, the number of lanes and location of lane drops, and the freeway curvature. In the
case of I-210, additional features were also considered important, such as the location of the
HOV gates (gaps in the intermittent barrier where vehicles enter and exit the HOV lane), the
positions of the traffic sensors, and the control hardware. Support material used to deter-
mine the layout of I-210 included as-built maps and a record of aerial photographs provided
by Caltrans, and a report from a previous study on I-210 provided by the District 07 Traffic
Operations group [72]. This information was encoded in VISSIM with much help from the
VISSIM staff.

In VISSIM, the recommended method for entering the geometric data is to construct
a scaled map, in bitmap format. This picture can be displayed as a background image in
the program, allowing the user to easily trace the links and connectors that constitute the
freeway layout (see Figure 6.2). The topographical features that were considered relevant to
the description of I-210 are:

1. For the mainline:

(a) Width and numbers of lanes

(b) Locations of on-ramps and offramps

(c) Lane drops

(d) Auxiliary lanes

(e) Lane change zones

(f) Location of the HOV lane and gates

(g) Position of mainline loop detector stations

2. For on-ramps and offramps

(a) Number of lanes at the gore of each on-ramp and offramp

(b) Existence of an HOV bypass lane on on-ramps

(c) Existence and position of metering lights on on-ramps

(d) Arrangement of loop detectors on on-ramps and offramps. The position of the on-
ramp queue detector with respect to the presence detector is especially important
for on-ramp control evaluations, since it determines the maximum storage of the
on-ramp.

Three sources of geometric information were used:
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Figure 6.1: 65 sections in the test site. (MP = Mile Post).

1. A set of photocopies of scaled aerial photographs obtained from Caltrans HQ. These
photographs are black-and-white and printed on 11′′ × 17′′ paper, with a 1:2400 scale.

2. A set of “as-built” maps indicating the arrangement of loop detectors on on-ramps and
the mainline. These were provided by the Caltrans District 07 Ramp Metering Group,
headed by Mr. Hanh Pham.

3. Un-scaled aerial photographs in bitmap format downloaded from MapQuest1.

All of the geometric features were extracted from the aerial photographs (source 1), with
the exception of items 1g, 2c, and 2d, which were measured from the as-built maps (source

1http://www.mapquest.com
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2). Each of the important features was assigned a section in Figure 6.1. In total, the
site was divided into 65 sections. Boundaries were chosen to isolate each of the important
topographical features. For example, section S29 contains a single lane change zone (item
1e) where traffic from the Santa Anita St. on-ramp merges with the mainline stream. Figure
6.1 also provides the lengths (in feet) and the number of mixed-flow lanes in each section.
This highway partition was transferred to the large overhead view compiled from source 3
(Figure 6.2).

Figure 6.2: Assembled overhead view of I-210.

6.2 Traffic data sources

The traffic demand is defined in VISSIM as a set of OD matrices that specify the average
numbers of vehicles travelling from every freeway origin to every destination, at 15-minute
intervals2. This and the next few sections describe the procedure that was followed to gather
and process traffic data for generating the OD matrices. The first step was to compile a
complete and representative set of boundary flows, covering every on-ramp, offramp, and
the two mainline boundaries. FREQ was then used to translate the boundary flows into the
required set of OD matrices. Two sources of field data were used:

2This is one of two available methods. The alternative is to use turning percentages (i.e. split ratios).
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1. PeMS: The PeMS database gathers 30-second and 5-minute data from over 30,000
miles of freeway in California. This database was used to assemble a history of traffic
measurements for every loop detector station in the site. A Matlab-based data process-
ing algorithm was created to filter, aggregate, and correct the PeMS data (Section 6.3).
Three examples of speed contour maps generated from the processed PeMS mainline
data can be found in Appendix B.1. These represent a light, a typical, and a heavy
day of congestion on I-210. Speed contour plots such as these were used to identify the
three major bottlenecks (Section 6.8), and played a significant role in the calibration
effort.

2. Manual counts: The District 07 Traffic Operations group provided the results of a
biennial survey of freeway ramp volumes conducted between 10/2001 and 1/2002. The
collected data consists of 15-minute estimates of volumes on most of the on-ramps and
offramps in the test site (all except Marengo St. and the I-210 and SR-710 freeway
connectors). The D07 survey did not include any mainline data.

Figure 6.3: Comparison of PeMS 30-second data with the Caltrans D07 survey.

A sample of flow values for the Sierra Madre Villa on-ramp (MP 29.17) from each of
the two data sources is shown in Figure 6.3. As in this example, there is close agreement
between the two sources in most cases. Instances where significant differences were noted
were usually attributable to malfunctioning loop detectors (i.e. errors in PeMS). Manual
counts were generally favored over the PeMS loop detector measurements for the ramps.
PeMS data was used primarily where mainline measurements were needed. That is, to
determine the upstream and downstream mainline flows (needed to estimate the OD matrices
in Section 6.7) and to construct the contour plots used for model calibration (Chapter 7).
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6.3 PeMS data processing with Matlab

PeMS – the Performance Measurement System – has as its primary function to gather,
analyze, and disseminate real-time traffic information for California freeways. Its main
interface is a web page3, where users can generate informative graphs and performance
indices. Additionally, the raw traffic data is stored in a database. PeMS data was used
primarily to identify recurring trends in demands and congestion patterns during the morning
commute on I-210. Interpretation of PeMS-derived flow and speed contour maps yielded the
critical traffic parameters (e.g. capacity, bottleneck locations) that were used to calibrate
the VISSIM model. PeMS data was also used to asses the quality and reliability of real-time
data on I-210. Section 6.4 summarizes the conclusions that were reached in this respect. This
section gives a brief overview of the filtering and aggregation algorithms that were applied
to the raw PeMS data sources prior to their being used in VISSIM.

The PeMS database stores two levels of data resolution: 30 seconds and 5 minutes. The
5-minute data is generated from the 30-second feed, and is aggregated over time before
storage. The traffic variables recorded in PeMS include occupancy, flow, speed, and g-
factor (estimated effective vehicle length). These can be combined to obtain an estimate
of average density. All variables in the PeMS database are per-loop quantities. Samples of
data sequences from PeMS are shown in Figure 6.4.

Figure 6.4: Raw 30-second and 5-minute flows from PeMS (R30 and R5).

Figure 6.5 illustrates the stages of data processing that were applied to the raw PeMS
feeds. All of these were implemented using Matlab. First, the raw 30-second data (R30)
was put through a first-order low-pass filter, producing output S30. The smoothed and raw
per-loop values (S30, R30 and R5) were then aggregated over lanes, to obtain values for
cross-sections of the freeway at ramps and mainline locations (AS30, AR30 and AR5). In each

3http://pems.eecs.Berkeley.edu
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Figure 6.5: PeMS data processing.

case, the aggregation step was performed with:

occagg(i, k) =
∑

j

γ(i, j) occ(i, j, k)

flowagg(i, k) =
∑

j

γ(i, j) flow(i, j, k) (6.1)

speedagg(i, k) =
∑

j

γ(i, j) speed(i, j, k)

Here, the values on the left-hand-side are aggregated quantities. They are a linear combi-
nation of the per-loop values, with coefficients γ(i, j). i denotes the detector station, j is
an index for each loop detector within a detector station, and k is the time interval. For
on-ramps, the detector station may include entrance, presence, passage, hov bypass, and
queue detectors. In this case, all γ(i, j)’s were set to zero, except for the one representing
the entrance loop, which was set to 1.0. For mainline loop detector stations, all γ(i, j)’s
were set to 1.0. The γ(i, j) coefficients were also used to perform crude data reconstruction
for malfunctioning mainline loops. For instance, the detector on lane 2 of the Myrtle St.
mainline station (MP 34.049) did not work on 11/6/2001. Its data was replaced with the
average of lanes 1 and 3, by setting the γ’s on those lanes equal to 1.5.

Next, additional conservation-based data reconstruction methods were applied in cases
where more severe data losses could not be compensated with the γ(i, j) coefficients. Two
examples of this situation that were encountered are the temporary loss of communication
with an entire mainline station, and the permanent lack of loop detectors on several offramps.
The reconstruction method is based on a static balance of flows on a small section of the
freeway. Three reconstructed data sets resulted from this step: RS30, RR30, and RR5. These
were fed through a time-aggregation block which generated 15-minute tables. The contour
plots of Appendix B.1 were constructed from FR30.

6.4 Loop detector reliability

One of the difficulties of using detector data for model input and calibration (as well as for
traffic-responsive control) is that in many cases adequate data is not available, due either to
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an incomplete sensor infrastructure or to failure of the existing system. Large quantities of
historical data from the PeMS database were used to asses the dependability of the existing
loop detector infrastructure on I-210.

Table 6.1 provides percentages of time during which each on-ramp, offramp, and mainline
station registered signal pulses. The percentage values in the table are the averages over all
loops in a given station (on-ramp, offramp, or mainline/HOV station) of the ratio of non-
zero flow measurements to the total number of measurements. These are optimistic estimates
since they do not consider whether the non-zero values were reasonable. The statistics were
taken over 11 weeks of PeMS data, using weekdays only, and from 5:30 am to 10:30 am. It
can be noted that, in general, mainline and on-ramp detectors are more reliable than offramp
detectors. Most remain on-line around 80% of the time. Two exceptions are the Michillinda
NB (44%) and Sierra Madre Villa (60%) on-ramp and mainline stations. The only on-ramp
lacking a set of loop detectors is the freeway connector from I-605 NB (MP 36). Offramps, on
the other hand, are more problematic. Many lack sensors, or at least these are not included
in the PeMS database (e.g. Buena Vista - MP 36). Others have sensors that appear to be
permanently disconnected from the data collection system (e.g. Lake - MP 26.12).

6.5 Ramp flows from the Caltrans D07 survey

The on- and offramp counts collected by the District 07 biennial survey are provided in
Appendix B.3. These measurements were gathered manually, by counting the number of
vehicles that used every on-ramp and offramp, at 15-minute intervals, throughout the day.
Each ramp was surveyed over a period of about 14 consecutive days. The surveyed days are
highlighted in the tables of Appendix B.2. This data set constitutes a complete picture of
the traffic demand entering and exiting the test site using the ramps, but it does not include
any mainline data. Conversely, the PeMS database provides mainline measurements that are
practically complete, but doesn’t contain information from several key ramps, including the
heavy freeway connector from I-605 NB (MP 36), and several offramps where loop detectors
had either failed or were missing.

The main difficulty encountered with the D07 boundary data was that there was no
single day in which all ramps were surveyed simultaneously. This situation is common in
real-world settings, since it is rare to find a complete and reliable sensor structure. As a
consequence, it was necessary to assemble a single composite day using ramp counts from
several different days considered as typical. The set of typical days was created by first
discarding all Mondays, Fridays, weekends, and days that did not closely follow the normal
(i.e. average) pattern. The remaining days are highlighted with bold grey lines in the time
series plots of Figures 9.4 through 9.6. The variances in the counts for the reduced group
are plotted in Figure 6.6. These values were computed with:

var(s) =
1

K ×D

K∑

k=1

D∑

d=1

(fs,k,d − f̄s,k)
2

f̄s,k

with f̄s,k =
1

D

D∑

d=1

fs,k,d
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Street Name MP
% non-zero data

offramps on-ramps mainline/HOV
Vernon St On 39.159 - 81.0% 81.0%

Irwindale St. On/Off
38.209 0.0% 81.6% 81.6%
38.069 - 81.2% 81.2%

I-605 SB Off 38 n.m. - -
Mt. Olive Off 37 n.m. - -
Mt. Olive On 36.589 - 81.4% 81.4%
I-605 NB On 36 - n.m. n.m.

Buena Vista Off 36 n.m. - -
Mountain Off 35.409 0.0% - -

Buena Vista On 35.409 - 72.1% 72.1%
Mountain On 34.899 - 65.9% 65.9%
Myrtle On/Off 34.049 79.1% 79.1% 79.1%

Huntington On/Off 33.049 79.9% 80.4% 80.4%
Santa Anita Off 32.019 76.5% - -

Santa Anita NB On 32.199 - 79.4% 79.4%
Santa Anita SB On 32.019 - 80.4% 80.4%

Baldwin Off 30.779 79.1% - -
Baldwin NB On 30.999 - 80.5% 80.5%
Baldwin SB On 30.779 - 79.1% 79.1%

Rosemead/Michillinda Off 30.5 n.m. - -
Michillinda NB On 30.139 - 44.0% 44.0%
Rosemead NB On 29.999 - 79.9% 79.9%
Rosemead SB On 29.879 - 62.7% 62.7%

Sierra Madre Villa On/Off 29.17 60.2% 60.2% 60.2%
San Gabriel On/Off 28.27 67.2% 81.5% 81.5%

Altadena On 28.03 - 81.5% 81.5%
Allen Off 27.64 74.0% - -

Hill On/Off 26.8 80.0% 80.0% 80.0%
Lake On/Off 26.12 0.0% 81.5% 81.5%
Marengo Off 25.68 81.5% - 81.5%

I-210 connector Off 25.6 n.m. - -
SR-710 connector Off 25.5 n.m - -

Table 6.1: Data quality (n.m.=not measured, ’-’=does not apply).

fs,k,d is the kth 15-minute vehicle count in the 5:30 am to 10:30 am period (K = 20), on day
d, from station s. D is the number of days in the reduced set.

From this set, a single day was selected for each on-ramp and offramp. The selected day
is marked with a ‘+’ sign in Appendix B.2, and also with ‘+’ markers in Figures 9.4 through
9.6 in Appendix B.3.
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Figure 6.6: Percent variance in selected ramp counts from the Caltrans D07 survey.

6.6 Mainline flows from PeMS

Measurements for the two mainline boundaries (Vernon and Fair Oaks) were required to
complete the specification of traffic demands for FREQ’s OD table estimation. These were
obtained from PeMS. Figure 6.7 shows per-lane average flow measurements (AS30) for several
days (Tuesdays, Wednesdays, and Thursdays only) during the District 7 survey of freeway
ramps. Notice that the flow pattern near Vernon St. does not resemble the expected inverted
U shape for the morning period. Flow at this location starts at an extremely high value, near
2200 vph per lane, and slowly decreases throughout the morning. This tendency is odd, but
repeats itself from day to day. Again, it was necessary to select a single typical day for the
mainline boundary flows from a number of days. This selection was based on the following
criteria:

1. completeness of the data set,

2. how well the flow data followed the day-to-day trend,

3. resulting scale factor.

Scale factors are defined as the ratio, for each 15-minute period, of the total number of
vehicles entering the system to the total number of vehicles that exit. They are computed
in FREQ as a first step to finding the OD matrices (Section 6.7). They can also be used to
identify possible problems in the data set, since they are expected to fall within 10% of 1.00,
for a normal (incident-less) traffic scenario, and their average over a 5-hour period should be
very close to 1.00. The scale factors resulting from the final selection of ramp and mainline
flows are shown in Figure 6.8. The aggregate scale factor for the 5 hour period is 1.02. Two
tables with the final selection of ramp flows can be found in Appendix B.4.
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Figure 6.7: Mainline boundary flows for several days.
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Figure 6.8: Time-dependent scale factors with selected boundary flows (average=1.02).

6.7 Estimating OD matrices with the FREQ model

The translation of ramp counts to the set of OD matrices required by VISSIM was achieved
with FREQ. FREQ is a macroscopic deterministic freeway corridor model for the devel-
opment and evaluation of freeway operational strategies, developed by A. D. May and his
colleagues at U.C. Berkeley. As was mentioned in the previous section, FREQ was first used
as a data verification tool. Specifically, it was used to check scale factors (α[k]):

α[k] =

∑
origins f in

i [k]∑
destination f out

i [k]
k = all 15-minute time intervals (6.2)

The scale factors corresponding to the final selection of flows are shown in Figure 6.8. The
OD matrices (γij[k]’s) are computed in FREQ as the solution to the following optimization
problem:
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For each k, given entering flows f in
i [k] and exiting flows f out

j [k], ∀ i
and j, find γij[k]’s that minimize a cost function, subject to:

∑
j

γij[k] = f in
i [k] ∀i

∑
i

γij[k] = f out
j [k] ∀j

Additional constraints are imposed to ensure positivity and that vehicles exit through ramps
that are downstream of their origin on-ramps. FREQ’s OD estimation function was used to
convert the on-ramp and offramp demand data into a sequence of 20 OD matrices – one for
each 15-minute time interval in the 5 hour period. Each of these matrices has dimensions
(22)×(19) = (21 on-ramps + 1 mainline origin)×(18 offramps + 1 mainline destination).

An intermediate step was then performed to incorporate the information of the percentage
of HOV vehicles present in each of the source flows. As is explained in Section 7.1.5 of
Chapter 7, each OD matrix in VISSIM applies to a specific traffic composition. Since the I-210
model includes two traffic compositions (MIX TC and HOV TC, defined in Section 7.1.5),
each FREQ OD matrix spawned two VISSIM OD matrices, giving a total of 40 matrices. The
following assumptions were made based on available data and on suggestions from Caltrans
staff. They were sufficient to make the conversion from 20 to 40 OD matrices.

• The number of vehicles using the HOV lane at the upstream mainline boundary (Ver-
non St.) is a given time-varying fraction of the total (mixed-flow lanes plus HOV lane).
This fraction, shown in Figure 6.9, was derived from PeMS data.

• In addition to the HOV vehicles in the HOV lane, 5% of the vehicles in the Vernon St.
mixed-flow lanes are also HOV.

• 12% of the vehicles entering the freeway at on-ramps are HOV.

• Of the total number of HOV vehicles that reach the downstream mainline boundary,
at Fair Oaks St., 20% are in mixed-flow lanes, and 80% are in the HOV lane.

05:50 06:15 06:40 07:05 07:30 07:55 08:20 08:45 09:10 09:35 10:00
 0%
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20%

Figure 6.9: Percentage flow in the HOV lane at Vernon St.
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6.8 Identification of recurring bottlenecks

The first step in the model calibration process is to identify the location and causes of
congestion. Appendix B.1 contains three speed contour plots showing the congestion patterns
for a heavy, a typical, and a light day of traffic on I-210. From these and other similar contour
plots, three distinct problem areas, or bottlenecks, were identified. They are:

B1: Near Huntington St. (MP 33.049).
B2: Near the Rosemead and Michillinda St. ramps (MP 30.139).
B3: Near Hill St. (MP 26.8).

These three bottlenecks are illustrated in Figure 6.10. Mainline loop detector stations are
depicted in the figure with a ×, ◦, or ⊗ symbol, depending on whether the station is charac-
terized by heavy congestion (speed is often < 40 mph), by free-flow (speed > 55 mph), or by
decreased speeds not reaching full congestion (speed is between 40 mph and 55 mph). Dis-
tances between ramps are marked on the figure, along with the number of mixed-flow lanes
in each section. The number accompanying each on-ramp and offramp is a representative
(approximately average) level of flow on the ramp when congestion begins.

The following conclusions were reached on the probable causes of congestion at each
bottleneck:

B1: This bottleneck is not easily explained with a simple comparison of nominal capacities
and demands. The Myrtle ramps make no net contribution to the amount of traffic
on the freeway (600-600=0). The Huntington ramps supply about 500 vph to the
mainline, but this should be easily absorbed by the auxiliary lane between Huntington
and Santa Anita. The observed deceleration of the traffic stream must therefore be
caused by a reduction in capacity near the Huntington ramps, or somewhere between
Huntington and Santa Anita. Localized reductions in capacity have a variety possible
causes, including grades, curves, reduced visibility, street signs, and direct oncoming
sunlight. In this case, the most probable cause is the series of reverse curves between
Myrtle and Huntington (as suggested by Caltrans staff).

B2: Bottleneck B2 is less stable than B1, in the sense that its location and congestion
pattern changes from day to day. Congestion usually initiates somewhere near the
Rosemead and Michillinda ramps (MPs 30.139 to 29.879), however, complete break-
down, with speeds in the 20’s and 30’s, only occurs upstream near the Baldwin on-ramp
(MP 30.779). The Rosemead and Michillinda detectors sometimes register speeds de-
creasing as low as 40 mph, but seldom less than that. Congestion in this region is
probably caused by the two heavy on-ramps from Rosemead and Michillinda, which
add approximately 1700 vph to the freeway. These on-ramp flows should be easily
accommodated by the two additional auxiliary lanes. However, it appears that this
increased capacity is not being fully utilized, probably due to increased weaving in that
area.

B3: Mainline traffic near Hill St. (MP 26.8) is usually slow, and sometimes fully congested.
Traffic near Altadena (MP 28.03) almost always becomes completely congested. As
with the previous two, bottleneck B3 is not easily explained by comparing demands

92



and nominal capacities, since the heavy flow from the Hill on-ramp is supported by
an auxiliary lane. The observed congestion must therefore again be explained by a
reduction in capacity. In this case, at least two probable causes exist: the S-shaped
bend between Hill and Lake, and the heavy weaving that takes place in the 800-foot
auxiliary lane feeding the Lake offramp.

6.9 Control hardware

Aside from the topographical and traffic data, the characteristics of the centralized control
system were also considered important to the representation of I-210 in VISSIM. All of
the relevant elements of the current system were gathered through correspondence with
the District 07 On-ramp Metering Group. Following is a list of the elements that were
incorporated in the VISSIM model:

1. Traffic Management Center (TMC): The TMC is the central location where freeway
measurements are processed and control commands for each of the controlled on-ramps
are generated. The TMC commands are updated every 30 seconds. The main function
of the TMC is to generate target cycle lengths for the upcoming 30-second period.
The TMC commands are based on average detector measurements from the previous
30-second period.

2. Communication delay: The commands issued by the TMC take 30 seconds to arrive
to the individual control boxes.

3. SATMS chip: All controlled on-ramps on I-210 have either 1 or 2 signal heads. These
are locally controlled by a SATMS chip located in the signal control box. The main
features of the chip that are reproduced in VISSIM are:

(a) Each signal can be in one of three modes: normal, queue override, or green ball.
When in the normal mode, the cycle length commanded by the TMC is used.
The queue override mode is activated whenever the on-ramp queue exceeds a
maximum length. The green ball mode is activated if the flow and occupancy on
the mainline are low.

(b) The nominal duration of the green phase is 2 seconds. However, it may last as long
as 5 seconds depending on the time it takes for the vehicle to clear the passage
detector. This is to allow inattentive drivers enough time to react before the light
turns red. Only one vehicle is allowed to pass per green phase. Platoon metering
is not used on I-210.

(c) The signal rests on red in the normal and queue override modes.

(d) In the case of double signal heads, the release of vehicles is simultaneous. Both
stoplights turn green whenever either of the two presence detectors register a
waiting vehicle.
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Figure 6.10: Three major bottlenecks.

(e) The green ball mode is activated whenever the average mainline flow is less than
1500 vphpl and the average mainline occupancy is less than 15%. Control is then
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suspended and the meter is set to green. The green ball mode has a minimum
duration of 1 minute. After the first minute, the controller may return to the
normal mode if the conditions on the mainline surpass any one of the two threshold
values.

(f) The queue override mode is briefly summarized as follows: If for a particular
on-ramp, at least one of its queue detectors remains occupied for more than 3.2
seconds and the speed on the mainline is greater than 35 mph, that on-ramp
will enter the queue override mode. In this mode, the command rate issued by
the TMC is ignored. Instead, the per-lane rate is increased by 120 vphpl (=2
vehicles per minute) at every TMC cycle, until the maximum rate of 900 vphpl
(15 veh/min) is reached. If at any point the queue detector is not occupied for
3.2 seconds, the on-ramp is returned to the normal mode in a single step.

6.10 On-ramp configurations

Figure 6.11: Loop detector layout on on-ramps.

Table 6.2 contains basic descriptions of each of the 20 controlled on-ramps in the test site.
RH and LH in the second and third columns denote Right Hand and Left Hand on-ramps.
Note that most of the on-ramps have one metered lane and an HOV bypass lane, 6 on-ramps
have two metered lanes and no HOV bypass, and one on-ramp has a single metered lane and
no HOV bypass. The storage capacities are given in total number of vehicles, not in vehicles
per metered lane.

Each on-ramp is equipped with a set of loop detectors. A typical loop detector configura-
tion for a single-metered lane on-ramp is shown in Figure 6.11. The queue detector is placed
at the entrance to the on-ramp, and is used to trigger the queue override. The presence and
HOV bypass detectors are placed side by side near the signal, in the metered and HOV bypass
lanes respectively. The entrance detector measures the total flow that enters the freeway.
The mainline detector bank is located upstream of the on-ramp merge, at approximately the
same distance from the junction as the stoplight.
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Street Name
Number of HOV Number of Storage

metered lanes bypass lanes at gore capacity
Vernon 1 RH Yes LH 1 28

Irwindale NB 1 RH Yes LH 1 21
Irwindale SB 1 RH Yes LH 1 27
Mount Olive 1 RH Yes LH 1 33
Buena Vista 1 RH Yes LH 1 19
Mountain 1 RH Yes LH 1 25
Myrtle 1 RH Yes RH 1 12

Huntington 1 RH Yes RH 1 26
Santa Anita NB 2 No 1 45
Santa Anita SB 1 RH Yes RH 1 21

Baldwin NB 1 RH Yes LH 1 14
Baldwin-Foothill 2 No 1 30

Michillinda 2 No 1 19
Rosemead-Foothill 2 No 1 17

Rosemead 1 RH Yes LH 1 10
Sierra Madre Villa 1 No 1 18

San Gabriel 1 RH Yes LH 1 23
Altadena 1 RH Yes LH 1 26

Hill 2 No 1 28
Lake 2 No 1 42

Table 6.2: On-ramp configurations.
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Chapter 7

Calibration of VISSIM for I-210

This chapter describes the process through which the geometric and traffic data collected in
Chapter 6 were encoded in VISSIM. Section 7.1 describes the VISSIM software, focusing on
those features of the model that were used. Section 7.2 provides definitions for the model
parameters that were varied in the calibration phase. Sections 7.3 and 7.4 describe the
calibration methodology and the findings.

7.1 The VISSIM model

VISSIM is the microscopic/stochastic traffic simulator that was used to create the detailed
model of I-210 West. In the past, it has been used mostly as a tool for the design of urban
public transportation systems, but has been shown to be capable of reproducing freeway
traffic behaviors as well. Its traffic model is based on the work of R. Wiedemann [100, 101],
which combines a perceptual model of the driver with a vehicle model. The behavioral model
for the driver involves a classification of reactions in response to the perceived relative speed
and distance with respect to the preceding vehicle. Four driving modes are defined, as shown
in Figure 7.1: Free driving, approaching, following, and braking. In each mode the driver
behaves differently, reacting either to its following distance, or trying to match a prescribed
target speed. These reactions result in a command acceleration given to the vehicle, which
is processed according to its capabilities. Drivers can also make the decision to change lanes.
This decision can either be forced by a routing requirement, for example when approaching
an intersection, or made by the driver in order to access a faster-moving lane.

A useful feature in VISSIM is that it allows stochastic variations of several of its param-
eters, such as the desired speeds and accelerations. Stochastic sources of boundary flows
(rates and compositions) are also supported. Randomness can further be introduced in the
ability of the driver population to perceive changes in relative speeds and distances and to
determine their mode of driving. More comprehensive descriptions of the VISSIM model
and software can be found in [31, 87].

Traffic signals can be simulated, and are controlled in VISSIM by the Signal State Gen-
erator (SSG), which is a separate module from the traffic simulation module. One important
feature of the SSG is that it is programmable – the user is allowed to specify the signal up-
date logic using a C-language based script. Functions are provided for reading loop detector
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Figure 7.1: VISSIM’s driver behavior model.

measurements and for setting the signal states. A trace file can be exported from the sim-
ulation to record loop detector and signal related variables. These traffic signaling features
can be used, for example, on freeway on-ramps to simulate traffic-responsive metering.

7.1.1 Coding of the network geometry

As was described in Chapter 6, the relevant features of the I-210 test site were marked on
a composite aerial photograph, which was downloaded from MapQuest (Figure 6.2). Scale
was established on this image by matching landmarks with the scaled aerial photographs
obtained from Caltrans HQ. Links and link connectors were then traced on this background
image in VISSIM. A screenshot of VISSIM is shown in Figure 7.2.

Figure 7.2: Snapshot of VISSIM.
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7.1.2 Control hardware

In addition to the freeway geometry, coding of the supply side of the model also entailed the
placement of the control hardware elements: loop detectors and signal heads. In VISSIM,
each signal head is associated with a signal group. All signal heads in the same group display
the same signal status at all times. For I-210, a separate signal group was created for each
signal head, in order to allow every on-ramp, and even different signal heads on the same on-
ramp, to act independently. Every signal group, in turn, is associated with a signal controlled
junction (SCJ). An SCJ can contain several signal groups. The control logic corresponding
to a particular SCJ determines the signal status of all signal groups and signal heads within
that SCJ. A single SCJ was used to control all of the signals in the I-210 model.

7.1.3 HOV lanes

Another important aspect of the network coding is the implementation of HOV lanes. VIS-
SIM allows particular lanes of a link to be closed to certain vehicle types (vehicle types are
defined in the next section). HOV-only restrictions were enforced by creating a separate
vehicle type for the HOV vehicles, and closing the HOV-only lanes to all non-HOV types.
This method was used for the HOV lanes on the mainline and HOV bypass lanes on the
on-ramps.

7.1.4 Freeway connector

Almost all of the on-ramp merges were modeled following the method recommended in [87],
where vehicles entering from the on-ramp join the mainline stream by changing lanes within a
merge section. It was found however, that this approach only worked well for on-ramps with
small or moderate flows. It failed for the heavy freeway connector from I-605 NB (MP36),
where it produced a large queue on the ramp. An alternative configuration was designed to
shift some of the burden of the merge away from the ramp and onto the mainline, by forcing
a percentage of the mainline vehicles to evacuate the right-most lane upstream of the ramp
junction, thereby opening space for the flow from I-605 NB. This was accomplished using
VISSIM’s partial routing decisions (see [87] for details).

7.1.5 Coding of traffic demands

Vehicle types and Traffic compositions

The vehicle population in VISSIM is categorized into vehicles types. A single type gathers
vehicles that share common physical attributes. These attributes include model, minimum
and maximum acceleration, minimum and maximum deceleration, weight, power, and length.
All of these, except for model and length, are defined in VISSIM with probabilistic distribu-
tions (as opposed to scalars). Four vehicle types were created to model I-210: LOV, HOV,
HGV MED, and HGV LARGE. The LOV type represents passenger vehicles with a single
occupant. HOV vehicles have 2 or more occupants and are allowed to use the HOV and
bypass lanes. The vehicle specifications for these two types are identical to those of the
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default “CAR” type in VISSIM [87]. The HGV MED and HGV LARGE types represent,
respectively, medium and large size trucks. Distributions for each of the four vehicle types
are provided in Appendix C.3. Traffic compositions are the proportions of each vehicle type
present in each of the source flows. Two traffic compositions were defined: MIX TC for
mixed-flow lane sources (93% LOV, 3.5% HGV MED, 3.5% HGV LARGE) and HOV TC
for HOV lane sources (100% HOV type).

Dynamic assignment

VISSIM supports two different forms of input for the traffic demands. We chose to use
its dynamic assignment function, which automatically determines inlet flows and routing
information based on a user-supplied set of OD matrices. Each OD matrix is related to
a single traffic composition, and to a particular 15-minute period of the simulation. The
demand specification for the I-210 model consists of 40 OD matrices - 2 traffic compositions
(MIX TC and HOV TC) times 20 time intervals. Each OD matrix has entries in the ijth

position indicating the average flow of a given traffic composition entering the network at
the ith on-ramp, with destination at the jth offramp, during a particular 15-minute period.
Routes, or traffic assignments, are generated by the dynamic assignment module by assigning
a cost to every route available to each OD pair, and then choosing the route with minimum
cost. The cost function in VISSIM includes terms penalizing the total distance, total travel
time, and a link cost. This last term serves to model factors not covered by the first two,
such as tolls. The link cost was used here, as explained below, to encourage the use of the
HOV lanes by HOV vehicles.

HOV lanes and link costs

The idea behind dynamic assignment is that repeated simulations using this method for
generating routes, and updating the travel time cost between iterations, should eventually
converge to an equilibrium solution, in the sense that traffic assignments and travel times
should eventually stop changing between iterations. In the case of I-210, the only routing
decision to be made is whether and where the HOV vehicles will access the HOV lane. The
calibration runs are based on a single iteration of dynamic assignment. Travel time was
therefore not considered in the selection of routes for HOV vehicles (this is because travel
time is only known after the first iteration). Instead, the HOV lane was given a favorable
cost by using the link cost coefficient. A separate link cost coefficient can be assigned to each
vehicle type. The LOV vehicle type’s link cost coefficient was set to 0.0, whereas the HOV
type was given a value of 1.0. In computing a cost for each route, the program multiplies
this coefficient by a link cost associated with each link in a given route, and adds them
up. HOV lanes were given a preferred status by attaching a lesser link cost to HOV lanes,
as compared to mixed-traffic lanes. Thus, the minimum-cost route available to HOV-type
vehicles was always to enter the HOV lane at the gate nearest to its origin, and to exit it at
the gate nearest to its destination. Non-HOV vehicles were declined the use of HOV lanes
with type-specific lane closures (mentioned in Section 7.1.1).
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7.1.6 VISSIM output

Two output files were used to generate the contour and time-series plots. First, the C-
based script produced a trace file that contains 5-minute averages of flow and occupancy
measurements for all of the loop detectors in the model. Second, VISSIM’s link evaluation
was used to export space-aggregated traffic variables, such as link flow, density, and speed,
also at 5-minute intervals.

7.2 Changeable model parameters - Default values

Section 7.1.5 listed the model parameters related to the physical attributes of the vehicle.
These were assigned separately for each vehicle type. Fixing the vehicle population, we now
look at the parameters of the driver model. We have assumed that driver behavior is not
correlated with vehicle type, but instead with the position of the driver/vehicle unit on the
freeway. For example, drivers might behave differently on curved sections, as compared to
straight sections. Thus, the parameters described in this section apply equally to all vehicle
types, but can be adjusted for each link type. Link types are analogous to vehicle types. They
gather links with similar driver behavior parameters. Six link types were created to model
I-210. These are described in Section 7.3. The driver behavior parameters that were changed
from their default values in each link type are described below. This is a subset of the total
number of adjustable driver behavior parameters available in VISSIM. The complete list can
be found in [87].

7.2.1 Necessary lane change

The dynamic assignment module provides to each driver a sequence of links to follow that
will take it from its origin to its destination. The parameters related to necessary lane
changes dictate how far in advance each driver will be able to anticipate the next bifurcation
or lane drop on its list, and how aggressively that driver will change lanes to reach it. The
first two items below – look-back distance and emergency stop distance – are the only driver
behavior parameters that are not grouped into link types, but must be specified for each link
connector separately1.

• Look-back distance: Distance in anticipation of a bifurcation that the driver will begin
maneuvering towards the desired lane. The default value is 200 m.

• Emergency stop distance: Distance before the bifurcation where the driver will stop if
it has not reached its desired lane. The default value is 5 m.

• Waiting time before diffusion: A vehicle that has come to a halt at the emergency stop
position will wait at most this amount of time for a gap to appear in the adjacent
lane. After the waiting time has elapsed, the vehicle is removed (diffused) from the
simulation. The default value is 60 seconds.

1In VISSIM the link connector is the boundary between two links.
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• Acceleration parameters: The aggressiveness of the lane change maneuver can be ad-
justed by changing the deceleration applied by the vehicle (Own) and the acceptable
deceleration capabilities of the vehicle in the adjacent lane (Trailing). These two num-
bers vary continuously with distance to the emergency stop position and are determined
by six parameters. The relation between the six parameters is illustrated in Figure 7.3.
Default values are shown in Table 7.2.
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(TRAILING)
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     stop
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Figure 7.3: Necessary lane change parameters.

7.2.2 Vehicle following behavior

VISSIM includes two versions of the Wiedemann model: urban driver and freeway driver.
Only the freeway driver type was used. The car-following mode of the freeway driver model
involves 10 tunable parameters: CC0 through CC9. Below are described only those CC-
parameters that were modified from their default values.

• CC0 and CC1: Coefficients used in the calculation of the safe bumper-to-bumper
distance (in [m]): dx safe=CC0+v·CC1, where v (in [m/s]) is the speed of the trailing
vehicle. According to [87], CC1 is the parameter with the strongest influence on
freeway capacity. In fact, it can be related almost directly to capacity by noting
that (dx safe+vehicle length)×capacity = free-flow speed. With reasonable values of
capacity, dx safe, and free-flow speed, and default CC0, this calculation gives CC1=1.5
seconds. Default values are CC0=1.5 m and CC1=0.9 s.

• CC4 and CC5: These are dimensionless parameters influencing the coupling between
leader and follower accelerations. Smaller magnitudes result in driver behaviors that
are more sensitive to changes in the speed of the preceding vehicle. It is recommended
in [87] that these two parameters have opposite signs and equal magnitude. Default
values are CC4=-0.35 and CC5=0.35. The absolute value of CC4 (or CC5) can be
understood as the inverse of a stiffness coefficient between consecutive vehicles.
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These three CC-parameters (CC0, CC1, and the CC4/CC5 pair) were used to model the
curvature-induced capacity reductions that are the supposed culprits of bottlenecks B1 and
B3 (Section 6.8). We can infer from their definitions that increasing CC0, CC1, or the
absolute value of CC4/CC5 will lead to reductions in freeway capacity.

7.3 Parameter variations

With model inputs (network supply and traffic demand) fixed as described in Section 7.1,
an initial simulation experiment was conducted using default driver behavior parameters.
The resulting speed contour plot is shown in Figure 7.4. The immediate observation here
is that there is a severe blockage near the downstream end of the freeway that produces a
queue which quickly overruns the entire site. This problem was caused by the large number
of vehicles attempting to exit through the last two offramps (the I-210 and SR-710 freeway
connectors), but were unable to complete the necessary lane changes before reaching and
stopping at the emergency stop position. Several adjustments to the routing-imposed lane
change parameters were made to correct this problem.

Figure 7.4: Speed contour plot with default driver behavior parameters (in [mph]).

7.3.1 Adjustments to the look-back distance

It was determined that the default look-back distance of 200 m was too small for large
numbers of vehicles crossing over several lanes of traffic to reach their exits. On the other
hand, increasing this value too much had the unrealistic effect of bunching up all of the exiting
vehicles in the right-most lane, far upstream of their intended offramp. These vehicles then
obstructed other upstream offramps and on-ramps. It was therefore necessary to tune the
look-back distances individually for each offramp, in a way that allowed vehicles sufficient
weaving space while ensuring that these lane-change regions did not overlap. The list of
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tuned look-back distances is given in Table 7.1. Figure 9.9 in Appendix C.1 shows the
contour plot resulting from this adjustment. Note that the offramp blockage problem was
corrected almost completely by tuning the look-back distances.

MP Street Name
Mainline Offramp
look-back look-back

38.209 Irwindale 800’ 800’
38 I-605-SB 1450’ 1450’
37 Mount Olive 800’ 800’
36 Buena Vista 400’ 400’

35.409 Mountain 200’ 400’
34.049 Myrtle 800’ 800’
33.049 Huntington 800’ 800’
32.019 Santa Anita 200’ 800’
30.779 Baldwin 800’ 800’
30.5 Rosemead 800’ 800’
29.17 Sierra Madre Villa 800’ 800’
28.27 San Gabriel 800’ 800’
27.64 Allen 800’ 800’
26.8 Hill 800’ 800’
26.12 Lake 800’ 800’
25.68 Marengo 600’ 700’
25.6 I-210 connector 250’ 700’
25.5 SR-710 connector 200’ 700’

Table 7.1: Adjusted look-back distances for mainline/offramp bifurcations.

7.3.2 Adjustments to the lane change parameters

The parameters influencing the aggressiveness of necessary lane changes were modified in
order to further reduce the number of vehicles reaching the emergency stop position. The
final selection is provided in Table 7.2.

Default Final
Own Trailing Own Trailing

Maximum Deceleration [m/s2] -4.00 -3.00 -5.00 -5.00
-1 m/s2 per Distance [m] 200 200 10 10

Accepted Deceleration [m/s2] -1.00 -0.50 -4.00 -4.00

Table 7.2: Adjusted lane change parameters.
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7.3.3 Adjustments to the Waiting time before diffusion

Another modification that was found useful for eliminating the offramp blockages was to
decrease the waiting time before diffusion parameter from its default 60 seconds to 1 second.
With this setting, vehicles that reached the emergency stop position were immediately re-
moved from the simulation, thereby minimizing the obstruction to the freeway. Eliminating
these vehicles has little impact on the total travel time, since they are few and very close
to their exit anyway. However, this adjustment is only recommended after the number of
affected vehicles has been minimized by tuning the look-back and lane change parameters.
Also, one should be careful not to affect other parts of the network where longer waiting
times are expected. In the case of I-210, vehicles attempting to enter the freeway also fre-
quently reached the emergency stop position at the end of the on-ramp acceleration lanes.
To avoid these vehicles from being evaporated, a set of merge link types was created. These
mimic their non-merge counterparts in all features except for the waiting time, which was
kept at 60 seconds for the merge types (see Table 7.4). Merge link types were used on all
on-ramps and on-ramp merge areas.

7.3.4 Link types - Adjustments to the CC parameters

The remainder of the calibration effort focused on finding a suitable set of values for the
CC-parameters defined in Section 7.2. Three separate sets of CC-parameter values were
defined: Freeway, HardCurve, and SoftCurve. Each was paired with a corresponding merge
link type (with a 60 second diffusion time), giving a total of 6 link types. The Freeway
and Freeway Merge types were used almost everywhere. The HardCurve and SoftCurve link
types were applied only to the curved sections that affect bottlenecks B1 and B3 respectively
(see Figure 6.10). As is described in the next section, one of the findings of the calibration
is that only modest adjustments to the CC-parameters were required to produce the desired
simulation response. Also, that capacity reductions due to curvature can be reproduced with
changes to the CC1 parameter alone.

7.4 Calibration goals and parameter selection

Having assembled the on-ramp and offramp flow inputs using data from several different
days, it is not obvious how the simulation results should be evaluated. The usual method
of computing an error norm with respect to the measured data, and tuning the model
parameters to minimize that norm is not applicable in this case because of the composite
nature of the input data. The question arises, should a single typical day be used, or a
composite day, as was done with the boundary flows? Added to this difficulty is the fact
that none of the data sets considered as typical had a complete set of mainline measurements.
Furthermore, there seems to be more variability in the mainline measurements than appears
in the on-ramp flows, suggesting the influence of unseen factors, such as weather, day-to-day
variations in driver behavior, traffic incidents, etc.

Instead, the goal for the calibration was to match more qualitative aspects of the freeway
operation. These are:
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1. location of the three identified bottlenecks,

2. initial and final times for each of the three mainline queues,

3. extent of the queues,

4. utilization of the HOV lane,

5. on-ramp performance.

The first three items on this list pertain to the simulated response of the mixed-flow lanes.
Target values for these were extracted from contour plots similar to those in Appendix B.1,
and are listed in Table 7.3. The goal for the HOV lane was to approximately match the flow
values from PeMS. For the on-ramps, the only objective was to avoid large on-ramp queues
that might obstruct the vehicle sources.

The parameter selection methodology consisted of iterated runs, visual evaluation of
the results using speed contour plots (e.g. Figure 7.6), and manual adjustments of the
parameters. These adjustments were limited to the CC-parameters described in Section 7.2,
and were aided by the bottleneck analysis of Section 6.8 and by the physical interpretation
of the parameters of Section 7.2. The iterative procedure was stopped when all of the
qualitative calibration goals were met. This approach was favored over a more exhaustive
automated search method because of the potentially huge number of parameter variations,
as well as the approximately 3-hour running time2, and the advantage that it leads to a more
sensible result.

The final selection of driver behavior parameters is given in Table 7.4. This parameter set
is the most parsimonious among those sets that also met the calibration goals. Notice that
the CC4/CC5 parameter was increased (in absolute value), but was kept uniform throughout
the freeway. It was found that this parameter, in addition to CC1, also has an important
influence on capacity. Its default value of -0.35/0.35 produced almost no congestion. The
CC0 parameter was increased globally from 1.5 to 1.7. As expected from its definition, CC0
was more influential at low speeds (i.e. within the mainline queues), and was used to regulate
the queue lengths. The CC1 parameter on the other hand, was changed only locally, at two
locations. The HardCurve link type was used on the reverse curve near Huntington St. and
the SoftCurve type was used on the curved section between Hill and Lake St. (see Figure
6.10). CC1 was adjusted in both cases to achieve the correct activation times for bottlenecks
B1 and B3. Interestingly, bottleneck B2 did not require a separate CC1 value. This result
supports the interpretations provided in Section 6.8 of Chapter 6 for the causes of the three
bottlenecks; that B1 and B3 are probably influenced by curvature, whereas B2 is probably
due mostly to weaving.

7.4.1 On-ramp response

One of the qualitative goals for the calibration was to avoid unrealistic queues on the on-
ramps that might obstruct the vehicle sources. The only on-ramp queuing problem that arose

2Using a PC/Windows XP, 2.6 GHz, 512 Mb machine.
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Bottleneck Location Start time End time Queue length

Measured
B1 MP 33.049 6:00 - 6:30 10:00 - 10:30 To MP 39.159
B2 MP 30.779 / 30.139 6:45 - 7:15 9:00 - 9:45 Into B1
B3 MP 28.03 / 26.8 7:00 - 7:30 9:15 - 9:45 To MP 29.17

Simulated
B1 MP 33.049 6:00 10:15 To MP 39.159
B2 MP 30.779 7:00 9:45 Into B1
B3 MP 26.8 7:15 9:30 To MP 29.17

Table 7.3: Measured and model predicted congestion pattern.

Link type CC0 CC1 CC4 / CC5 Waiting time

Default 1.5 0.9 -0.35 / 0.35 60
Freeway 1.7 0.9 -2.0 / 2.0 1

SoftCurve 1.7 1.1 -2.0 / 2.0 1
HardCurve 1.7 1.4 -2.0 / 2.0 1

Freeway Merge 1.7 0.9 -2.0 / 2.0 60
SoftCurve Merge 1.7 1.1 -2.0 / 2.0 60
HardCurve Merge 1.7 1.4 -2.0 / 2.0 60

Table 7.4: Default and calibrated CC values.

was on the freeway connector from I-605 NB (MP 36). As was mentioned in Section 7.3, this
was corrected at an earlier stage with partial routing decisions and was not a factor in tuning
CC-parameters. All other on-ramps were checked by comparing the supplied on-ramp flows
with the simulated on-ramp flows. These were a close match in all cases (see Appendix C.4),
indicating that none of the vehicles sources were obstructed by overflowing on-ramp queues.

7.4.2 HOV lane response

The goal of matching the utilization of the HOV lane was verified by checking the simulated
HOV lane flows. Samples of simulated and field-measured HOV lane flows are shown in
Figure 7.5. Recall that the upstream boundary flows (at Vernon) are an input to the model.
The differences at other locations may reflect modeling errors, such as errors in the provided
percentage of HOV vehicles at on-ramps, and/or errors in the modeling of route choice by
HOV drivers (Section 6.7). In general, the result is considered a sufficiently good match for
the control purposes of this model. However, this aspect of the model might be improved with
a refinement of the HOV input percentages, and/or more iterations of VISSIM’s dynamic
assignment routine.

7.4.3 Mixed-flow lane response

The bulk of the calibration effort was dedicated to matching the response of the mixed-flow
lanes, in terms of the start time, end time, and extent of the queue generated by each of the
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Figure 7.5: Measured and simulated HOV flows (in [vph]).

three major bottlenecks. The iterative procedure was stopped when all of the 9 indicators
for the mixed-flow response fell within their target ranges. Target and simulated values for
these 9 indicators are given in Table 7.3. The resulting speed contour plot, shown in Figure
7.6, is compared to the typical PeMS contour of Appendix B.1. Notice that the model has
approximately matched the period of activation and queue length for the three bottlenecks.
This was accomplished with a few global changes to the default parameter values, and with
a couple local changes that were based on the analysis of field data and freeway geometry.

7.5 Random seed variations

The calibrated parameter set was run with 10 different random seeds. The random seed
affects the realization of the stochastic quantities in VISSIM, such as inlet flows and vehicle
capabilities. Contour plots for three examples are shown in Appendix C.2. Average per-
cent variations in several simulation input and output variables resulting from random seed
variations are shown in Table 7.5 and Figure 7.7.
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Figure 7.6: Contour plot with final parameters selection.

Quantity Average Value % Variation

On-ramp flow e.g. Figure 7.7 12.20%
Offramp flow e.g. Figure 7.7 14.04%
Average speed Figure 7.7 2.26%

Average volume Figure 7.7 1.05%
Total Passenger Hours 22,482 veh.hr 1.56%

Total Passenger Kilometers 1,539,700 veh.km 0.09%

Table 7.5: Variation in model output due to changes in the random seed.
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Figure 7.7: Mainline speed and flow measurements with several random seeds.
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Chapter 8

On-ramp Metering Tests with
VISSIM

This chapter reports a series of controlled simulation runs conducted with the VISSIM model
of I-210 described in Chapters 6 and 7. The objective is to compare several options of on-
ramp metering, and to tune their parameters for this particular test site. The candidate
metering strategies are fixed-rate control, Alinea, and %-Occ. One of the issues pertaining
to the potential use of Alinea is whether it can be employed when the feedback sensor is
placed upstream of the on-ramp, and not downstream as envisioned by its creators. Chapter 4
partially answered this question with the finding that the upstream placement is actually
preferred during congestion. The next question is how then to tune Alinea when the only
upstream detectors are available.

An issue for any candidate controller on I-210 is that its commanded rate may be overrid-
den if the on-ramp queue threatens to spill onto the streets (queue override), or if the freeway
is relatively empty (green ball override). These experiments also attempt to determine the
effect of these rules on controller performance and tuning.

8.1 Performance Measures

The performance measures used in this chapter are defined here in terms of variables exported
by VISSIM’s link evaluation output file and DDE trace file. The Total Travel Time and Total
Travel Distance defined in Section 5.1 are referred to here as the Total Vehicle Hours (TVH)
and Total Vehicle Kilometers (TVK), to distinguish them from the the Total Passenger Hours
and Total Passenger Kilometers. The latter are the total trip times and distances incurred
by individual passengers, instead of vehicles. VISSIM’s link evaluation file contains 5-minute
average densities, flows, and speeds for every link in the model, including on-ramp, mainline,
and offramp links. Separate variables are exported for each vehicle type (LOV, HOV, and
trucks). LOV and truck type densities, flows, and speeds are aggregated and denoted with
ρl

ik, f l
ik, and vl

ik respectively. Variables for the HOV type are denoted ρh
ik, fh

ik, and vh
ik. The

sub-indices i and k in these variables indicate the link and 5-minute time interval respectively.
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On-ramp, Freeway, and Total Passenger Hours (OPH, FPH, TPH) :
The Total Passenger Hours (TPH in [pass.hr]) is the sum of the On-ramp Passenger Hours

(OPH) and the Freeway Passenger Hours (FPH). The formulas for these three quantities are:

OPH =

on-ramps∑
i

time∑

k

( αhρh
ik + αlρl

ik ) Li ∆t

FPH =

!on-ramps∑
i

time∑

k

( αhρh
ik + αlρl

ik ) Li ∆t

TPH = OPH + FPH

Li is the length in kilometers of section i. ∆t is the length of the data collection time interval
in hours; ∆t = 5 min = 1/12 hr. Coefficients αh and αl are the average number of passengers
in HOV and LOV (including truck) type vehicles. They were assigned values of αh = 2.5
and αl = 1.2. %TPH is the percent improvement in passenger hours over the uncontrolled
scenario:

%TPH = 100× TPH− TPHg

TPHg

where TPHg is the passenger hours without on-ramp control.
On-ramp, Freeway, and Total Passenger Kilometers (OPK, FPK, TPK) :

The Total Passenger Kilometers (TPK in [pass.km]) is the sum of the On-ramp Passenger
Kilometers (OPK) and the Freeway Passenger Kilometers (FPK):

OPK =

on-ramps∑
i

time∑

k

( αhfh
ik + αlf l

ik ) Li ∆t

FPK =

!on-ramps∑
i

time∑

k

( αhfh
ik + αlf l

ik ) Li ∆t

TPK = OPK + FPK

Average Mainline Speed (AMS) :
The average mainline speed (AMS in [mile/hr]) is computed as the mean of the per link

speeds over time and space:

AMS =
1

nk

time∑

k

∑
i Livik∑

i Li

(8.1)

Both internal summations in Eq. (8.1) are over all mainline links. nk is the number of
5-minute time intervals in the summation. As explained below, only measurements from the
5-hour period from 5:30 am to 10:30 am were used to compute AMS.
Average Throughput (ATh) :

The TPH, TPK, and AMS are computed with link data contained in the link evaluations file.
Point-wise detector data printed in the DDE trace file is used to compute the throughput,
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or average mainline flow over the 5-hour period:

ATh =
1

nmd

1

nk

time∑

k

mainline∑
i

vol(i, k)

∆t
(8.2)

nmd = 100 is the number of mainline loop detectors in the test site. vol(i, k) is the number
if vehicles registered by detector i during time interval k. ∆t = 5 min.

The simulation time for all of the runs reported in this chapter is 60,000 seconds. The first
900 seconds are warmup time, used to create a non-empty initial condition. The demands
for the 5:30-5:45 am period were applied during the warmup time. The period of interest,
from 5:30 am to 10:30 am, covers simulation seconds 900 to 18,900. All source flows were
turned off after second 18,900 in order to allow the freeway to discharge. This period, from
18,900 to 60,000, is referred to as the cool down period. Output data from the full 60,000
seconds was used to compute the travel time and travel distance performance measures: OPH,
FPH, TPH, OPK, FPK, and TPK. Only measurements collected during the period of interest, i.e.
excluding warmup and cool-down periods, were used to find AMS and ATh.

Measures for the uncontrolled freeway with a number of different random seed values are
provided in Table 8.1.

Random OPH FPH TPH TVH TPK TVK AMS ATh
seed [pass.hr] [pass.hr] [pass.hr] [veh.hr] [pass.km] [veh.km] [mph] [vphpl]
11 5,300 24,779 30,079 22,731 2,161,429 1,597,989 49.6 1,662
15 5,313 24,199 29,512 22,254 2,165,870 1,598,657 50.4 1,659
22 5,236 24,253 29,489 22,232 2,170,573 1,600,880 50.2 1,662
28 5,265 25,001 30,266 22,883 2,164,348 1,600,268 49.0 1,666
35 5,516 25,061 30,577 23,120 2,167,644 1,602,424 49.0 1,666
41 5,305 24,064 29,369 22,167 2,163,746 1,599,573 50.4 1,663
42 5,412 25,282 30,693 23,227 2,161,107 1,598,105 48.8 1,660
52 5,215 23,779 28,994 21,873 2,158,866 1,595,752 50.9 1,656
66 5,729 26,175 31,904 24,184 2,162,793 1,600,595 47.8 1,659
73 5,531 25,723 31,254 23,648 2,165,615 1,600,901 48.0 1,665

mean 5,382 24,832 30,214 22,832 2,164,199 1,599,514 49.4 1,662
% dev. 2.45 2.48 2.40 2.54 0.12 0.09 2.35 1.02

Table 8.1: Performance measures with 9 different random seeds.

8.2 The TMC and field controllers

The Traffic Management Center (TMC) is the “brain” of the freeway management system.
It is in the TMC that freeway loop detector measurements are collected and processed,
and the control commands for each of the on-ramps are calculated. These commands are
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updated and distributed to the on-ramp control boxes every 30 seconds. In the case of I-
210, a chip inside each box processes the TMC command and makes the decision to either
implement or override it, depending on local conditions. This section describes the important
features of the on-ramp control system currently installed on I-210 West. The control logic
is schematically depicted in Figure 8.1. It was implemented in VISSIM using the software’s
C-based scripting feature.

The task of the field controller chip is to adjust and enforce the control rate issued by
the TMC. In Figure 8.1, the TMC commanded rate for period k is denoted TMCrate[k].
It is computed according to whatever control algorithm is being used – %-Occ, Alinea, etc.
The control loop starts at point A at the top of the left side of the diagram, and ends at
point A at the bottom right corner. Each on-ramp operates in one of three modes: normal,
queue override, or green ball. In the normal mode, the TMC commanded rate is applied.
The other two modes are described below.

The policy of the queue override is shown in the left-hand side of the diagram. The
goal of this mode is to prevent the on-ramp queue from spilling onto the surface streets. It
works by monitoring a queue detector placed near the entrance to the ramp (shown in Figure
6.11, page 95). The controller enters the queue override mode whenever the queue detector
becomes “hot”, while the the speed on the mainline is above 35 mph. The queue detectors on
I-210 are considered to be “hot” if they are continuously occupied for more than 3.2 seconds.
In VISSIM a detector is “hot” if it reports a smoothed occupancy rate of 40% or higher1.
However, if the average mainline speed is less than 35 mph, the on-ramp will remain in the
normal mode, and the on-ramp queue will be allowed to invade the surface streets. This
exception to the queue override is meant to avoid the on-ramp queue from being flushed into
an already congested freeway. Once in the queue override mode, the TMC commanded rate
is discarded. Instead, the metering rate applied during the previous interval is increased by
120 vphpl, without exceeding the maximum metering rate of 900 vphpl.

The second override, termed the green ball override, occurs when the local conditions on
the mainline fall below an average flow of 1500 vphpl, at an occupancy of 14% or lower. In
this situation, on-ramp metering is suspended and the signal is set to green. The green ball
condition has a minimum duration of 1 minute, or until either of the thresholds are exceeded.
This override is intended to reduce the on-ramp waiting times when the freeway is relatively
empty. However, it has the drawback of possibly interfering with system-wide control.

If neither of the two overrides are active, then the per-lane metering rate is computed
from the TMC command with:

rate[k] =
TMCrate[k] - HOVflow[k-1]

# metered lanes
in [vphpl]

where HOVflow[k-1] is the average flow measured by the HOV bypass detector, shown in
Figure 6.11, during the previous time interval. In the queue override mode, rate[k] is found
with:

rate[k] = rate[k-1] + 120 in [vphpl]

1The smoothed occupancy rate is an output of VISSIM’s loop detector model.
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Both are subject to minimum and maximum bounds:

rate[k] = max{ min{ rate[k] ; 900 } ; 180 } in [vphpl]

The duration of the red phase is then found with:

red phase =
3600

rate[k]
− green phase in [seconds]

where the green phase lasts a fixed 2 seconds. The metering lights on I-210 “rest on red”,
meaning that they show a red light if there is no vehicle waiting at the stop line (i.e. detected
by the presence detector in Figure 6.11). The red phase clock advances whether or not there
is a vehicle waiting. Hence, a vehicle arriving to the stopline at second 8 of a 10 second red
phase will have to wait for only 2 seconds.

8.3 Fixed-rate metering

Fixed-rate metering, where the TMC commands to each of the on-ramps is a constant,
is the simplest form of metering possible. This section investigates the use of fixed-rate
metering using different constant rates, and activating or deactivating different portions of
the controller logic described in the previous section. These experiments can be used to gain a
better understanding of the effects of the two controller overrides and of the limited on-ramp
storage space. For example, the longest possible queue lengths and on-ramp waiting times
occur when the meters are held at 180 vphpl, and the queue override policy is deactivated.
Maximum freeway delay occurs in the 900 vphpl experiment. These experiments also serve
to identify ramps that trigger the queue override even when metered at the maximum rate
of 900 vphpl. These on-ramps are likely to be dominated by the queue override policy,
regardless of the control strategy implemented by the TMC.

Four sets of runs were conducted with fixed-rate metering. The experimental setup is
given in Table 8.2. Each set contains five runs, with constant metering rates of 180, 300,
450, 600, and 900 vphpl. These rates correspond to integer-valued cycle durations of 20, 12,
8, 6, and 4 seconds respectively.

In batch FR-1, no overrides were applied, and the on-ramp queues were allowed to grow
without limit. Figure 8.2 shows flows from the Vernon St. on-ramp for the 180 vph and 900
vph experiments of FR-1. The solid gray line in both plots is the number of vehicles waiting
in the on-ramp queue. In the 180 vph case the queue reaches a peak value of about 500
vehicles, or 3,461 meters in Table 8.3. Peak queue lengths for all of batch FR-1 are provided
in Table 8.3. Peak queue lengths that exceed the on-ramp storage capacity (right-most
column) have been highlighted in bold type. Notice in the table that four on-ramps (Myrtle,
Huntington, San Gabriel, and Lake St.) develop excessive queues even when the metering
rate is kept at its maximum value. This suggests that these on-ramps will be affected and
possibly even driven by the queue override policy, regardless of the control strategy. Ramps
other than these can withstand more restrictive metering rates.

Batches FR-2, FR-3, and FR-4 respectively incorporate the queue override, the green ball
override, and the mainline speed exception to the queue override. The peak queue lengths for
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Figure 8.1: I-210 controller logic.

these three sets are shown in Tables 8.4, 8.5, and 8.6. Figures 8.3 through 8.5 show control
related variables for the Rosemead NB on-ramp. These figures are intended to give some
insight into the effect of each of the overrides. Each figure has 4 plots; the top plot shows the
evolution of the on-ramp queue for each of the five fixed metering rates. The bottom three
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Batch
Number Fixed Queue Green Ball Mainline speed
of trials rate override override exception

FR-1 5 180 - 900 - - -
FR-2 5 180 - 900 X - -
FR-3 5 180 - 900 X X -
FR-4 5 180 - 900 X X X

FR-5 4

- - -
non- X - -

uniform X X -
X X X

Table 8.2: Experiments with fixed-rate control.
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Figure 8.2: On-ramp detector measurements from the Vernon St. on-ramp.

windows show a number between 0 and 1 indicating how often the queue override, green
ball override, and mainline speed exception were active. This number was calculated every
five minutes for each of the on-ramp controllers as the number of 30 second cycles in which
the override was active divided by the total number of cycles in the previous 5 minutes (i.e.
10). Figure 8.3 shows that the queue override was active at Rosemead NB in the 180 vphpl
experiment during about 80% of the period between 7:00 am and 9:00 am.

Also evident in Figure 8.3 is the influence of the queue override on the maximum queue
length: the peak queue length for the 180 vphpl experiment of 178 m is contrasted with the
8,990 m shown in Table 8.3 when the queue override was deactivated. Figure 8.4 shows the
situation when both queue and green ball overrides were enforced, but without the mainline
speed exception. It shows that the green ball override is only triggered before and after
the peak period (6:30 am to 9:00 am). It therefore acts more or less like an automated
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Street Name Ramp metering rate [vph] Storage Max. Queue
180 300 450 600 900 [veh] Length [m]

Vernon 3,461 1,985 408 107 91 28 190
Irwindale NB 8,294 8,293 4,336 302 88 21 147
Irwindale SB 7,263 4,833 600 184 67 27 189
Mount Olive 480 102 48 30 27 33 231
Buena Vista 1,324 313 85 44 37 19 133
Mountain 2,394 1,014 145 56 52 25 175
Myrtle 7,755 7,753 5,241 1,663 203 12 84

Huntington 10,788 9,401 5,634 2,454 215 26 182
Santa Anita NB 3,974 82 39 35 22 45 155
Santa Anita SB 3,111 931 107 68 68 21 147

Baldwin NB 3,853 1,779 243 96 70 14 98
Baldwin SB 3,290 79 28 29 27 30 105
Michillinda 5,449 1,927 47 34 29 19 65

Rosemead NB 8,990 5,288 444 55 38 17 60
Rosemead SB 53 41 33 28 28 10 70
Sierra Madre 5,114 4,281 318 118 74 18 126
San Gabriel 10,375 9,024 5,791 2,669 207 23 161
Altadena 2,719 2,719 559 96 69 26 182

Hill 14,523 14,526 7,396 1,821 61 28 98
Lake 19,211 16,522 6,735 772 178 42 145

Table 8.3: Peak queue lengths for FR-1.

on/off switch for the metering system. Figure 8.5 shows that the mainline speed exception,
although sometimes active during the peak period (7:00 am to 9:00 am), does not have an
important effect on the frequency of occurrence of the queue override at Rosemead NB. This
is because these two rules respond to complementary situations: the queue override is more
likely in the 180 vphpl experiment, whereas the mainline speed exception is more likely in
the 900 vphpl experiment.
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Street Name Ramp metering rate [vph] Storage Max. Queue
180 300 450 600 900 [veh] Length [m]

Vernon 266 267 96 95 91 28 190
Irwindale NB 345 314 259 161 88 21 147
Irwindale SB 280 325 209 158 69 27 189
Mount Olive 65 37 33 30 28 33 231
Buena Vista 85 59 37 38 34 19 133
Mountain 192 104 50 56 52 25 175
Myrtle 322 327 173 150 98 12 84

Huntington 690 450 360 431 134 26 182
Santa Anita NB 148 83 39 30 21 45 155
Santa Anita SB 205 188 88 68 68 21 147

Baldwin NB 174 174 124 83 70 14 98
Baldwin SB 156 79 28 29 27 30 105
Michillinda 200 166 47 34 29 19 65

Rosemead NB 178 123 91 55 38 17 60
Rosemead SB 53 41 33 28 28 10 70
Sierra Madre 295 281 150 91 74 18 126
San Gabriel 960 618 509 350 185 23 161
Altadena 302 297 242 91 69 26 182

Hill 523 484 239 231 56 28 98
Lake 788 460 329 314 179 42 145

Table 8.4: Peak queue lengths for FR-2.
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Figure 8.3: Queue length and overrides for FR-2 (Rosemead NB on-ramp).
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Street Name Ramp metering rate [vph] Storage Max. Queue
180 300 450 600 900 [veh] Length [m]

Vernon 266 267 96 95 91 28 190
Irwindale NB 637 626 298 161 88 21 147
Irwindale SB 1,502 1,186 484 184 67 27 189
Mount Olive 54 63 33 30 28 33 231
Buena Vista 90 72 68 36 34 19 133
Mountain 327 256 56 56 52 25 175
Myrtle 1,691 1,155 395 204 81 12 84

Huntington 706 843 571 339 147 26 182
Santa Anita NB 453 82 38 35 22 45 155
Santa Anita SB 272 226 87 68 68 21 147

Baldwin NB 513 512 198 96 70 14 98
Baldwin SB 350 79 28 29 27 30 105
Michillinda 1,109 240 47 34 29 19 65

Rosemead NB 439 145 86 55 38 17 60
Rosemead SB 53 41 33 29 28 10 70
Sierra Madre 279 235 204 91 74 18 126
San Gabriel 2,889 4,508 1,758 609 178 23 161
Altadena 451 647 256 96 69 26 182

Hill 3,020 2,638 476 476 59 28 98
Lake 983 925 333 318 284 42 145

Table 8.5: Peak queue lengths for FR-3.
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Figure 8.4: Queue length and overrides for FR-3 (Rosemead NB on-ramp).
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Street Name Ramp metering rate [vph] Storage Max. Queue
180 300 450 600 900 [veh] Length [m]

Vernon 309 307 277 108 91 28 190
Irwindale NB 650 484 343 178 88 21 147
Irwindale SB 377 392 269 174 69 27 189
Mount Olive 243 102 48 30 27 33 231
Buena Vista 264 173 85 44 37 19 133
Mountain 241 216 147 56 52 25 175
Myrtle 617 393 338 281 203 12 84

Huntington 2,223 1,488 953 568 191 26 182
Santa Anita NB 218 82 39 35 22 45 155
Santa Anita SB 219 232 117 68 68 21 147

Baldwin NB 203 199 124 83 70 14 98
Baldwin SB 148 79 28 29 27 30 105
Michillinda 200 177 47 34 29 19 65

Rosemead NB 192 105 91 55 38 17 60
Rosemead SB 53 41 33 28 28 10 70
Sierra Madre 342 319 204 118 74 18 126
San Gabriel 2,092 1,378 1,161 470 198 23 161
Altadena 301 317 242 91 69 26 182

Hill 519 443 344 255 59 28 98
Lake 811 522 342 297 167 42 145

Table 8.6: Peak queue lengths for FR-4.
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Figure 8.5: Queue length and overrides for FR-4 (Rosemead NB on-ramp).
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Performance measures for all of the fixed-rate tests are provided in Table 8.7. The
values in the table are percent changes with respect to the uncontrolled freeway. Thus,
improvements over no control are indicated by negative values in the %TPH and %TVH columns
and positive values in %AMS and %TVH.

Batch FR-1 exhibits some expected tendencies: the %OPH and %AMS decreased and %ATh

increased with increasing metering rate. The travel time measures (%TPH and %TVH) on the
other hand, did not behave monotonically, but instead reached a minimum value in the 600
vphpl experiment. In fact, 600 vphpl was the only level of on-ramp flow that performed
favorably as compared to no control. The reductions in travel time of -4.4% TPH and -4.3%
TVH deteriorated quickly to 25.7% and 29.1% increases at 450 vphpl. This suggests that
selecting a single fixed metering rate for a large and complex site such as I-210 is a delicate
task, and probably not a wise approach.

Similar patterns in terms of %OPH and %AMS were observed when the queue override
was added in batch FR-2. ATh remained more or less constant for all metering rates (also
in batches FR-3 and FR-4) because the queue override ensured that relatively few vehicles
remained in the on-ramp queues at 10:30 am. The %TPH and %TVH are less sensitive to
the fixed metering rate in batches FR-2, FR-3, FR-4 than in FR-1. Thus, adding the queue
override helped to avoid the huge travel time losses observed in batch FR-1 at low metering
rates (e.g. 327% TPH in FR-1 became 4.1% in FR-4), but also reduced the potential benefits
(-4.4% TPH became -1.5% at 600 vphpl).
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Batch
metering

%OPH %FPH %TPH %TVH %TPK %TVK %AMS %ATh
rate [vph]

FR-1

180 2,019.9 -35.4 327.0 358.5 -2.7 -3.1 28.6 -15.9
300 967.2 -30.5 145.4 160.1 -0.3 -0.5 24.4 -8.4
450 256.4 -23.6 25.7 29.1 0.2 0.3 18.4 -2.8
600 41.8 -14.2 -4.4 -4.3 0.1 0.0 10.2 -0.2
900 3.2 4.4 4.2 4.3 0.4 0.3 -2.2 -0.2

FR-2

180 18.8 -2.9 0.9 0.9 0.2 0.1 2.1 0.0
300 11.8 -0.8 1.5 1.5 0.1 0.1 0.4 0.1
450 5.1 0.5 1.3 1.4 0.1 0.1 -0.3 0.1
600 5.8 -2.6 -1.1 -1.3 0.3 0.2 1.8 0.2
900 -1.6 -3.4 -3.0 -3.2 0.0 0.0 2.4 0.0

FR-3

180 40.0 -8.7 -0.1 -0.1 0.2 0.2 6.0 0.4
300 33.2 -5.8 1.1 1.2 0.3 0.2 3.7 0.4
450 10.4 -7.5 -4.4 -4.6 0.0 0.0 5.5 0.2
600 4.4 0.4 1.1 1.0 0.3 0.2 0.3 0.0
900 0.6 -0.2 -0.1 -0.1 0.3 0.3 0.0 0.4

FR-4

180 50.7 -5.8 4.1 4.4 0.2 0.2 3.9 0.2
300 30.7 -5.6 0.8 1.0 0.1 0.1 3.6 0.4
450 16.3 -1.6 1.6 1.6 0.3 0.3 1.1 0.5
600 6.8 -3.3 -1.5 -1.7 0.2 0.2 2.2 0.3
900 1.5 -1.9 -1.3 -1.4 0.2 0.2 1.3 0.3

Table 8.7: Performance measures with fixed-rate metering.
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8.4 Alinea control

The Alinea control law was introduced in Section 4.4. Its control law is expressed in the
notation of this chapter as:

TMCrate[k] = ENTflw[k-1] + Kr

(
ô − occ[k]

)
(8.3)

The two tunable parameters in this control law are the target occupancy (ô) and a positive
gain (Kr). The desired metering rate for the upcoming time interval, TMCrate[k], is com-
puted as the measured flow entering the freeway during the previous interval, ENTflw[k-1],
adjusted by an amount proportional to the difference between the measured mainline occu-
pancy and the target mainline occupancy (ô− occ[k]). Thus, if the mainline occupancy is
less than the desired value, Alinea will increase the number of vehicles being released onto
the freeway. The quickness with which Alinea reacts is determined by Kr.
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Figure 8.6: Simulated scatter plot for the Rosemead NB mainline detector station.

It is suggested in [77] that the target occupancy be set a little lower than the estimated
critical occupancy at which the freeway transitions from free-flow into congestion. Scatter
plots from the VISSIM model such as the one shown in Figure 8.6 suggest that its critical
occupancy is somewhere between 15% and 20%. The recommended value for the gain is
7,000. Alinea was originally conceived for freeways with mainline loop detectors placed
downstream of the on-ramp.

The goals of the experiments with Alinea presented here are 1) to understand the influence
of ô and Kr on performance, 2) to determine a best choice of controller parameters, 3) to
see whether Alinea can be successfully applied to a freeway such as I-210, equipped with
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upstream rather than downstream detectors, and 4) to study the effects of the controller
overrides on Alinea’s performance.

Table 8.8 provides the experimental setup. The first three batches are a study of Alinea
without overrides, using upstream detectors. AL-1 tests 13 different values of ô between 8%
and 40%, using the recommended value of Kr = 7, 000. The gain is varied in AL-2 and
AL-3 using a good and a bad choice of ô from AL-1. The study is repeated with detectors
placed downstream of the on-ramps in AL-4 through AL-6. Finally, AL-7, AL-8, and AL-9

investigate the effects of the overrides.

Batch Number of
Kr ô

Detector Queue Green Ball Speed
trials location override override exception

AL-1 13 7,000 8.0% - 40.0% UP - - -
AL-2 5 70 - 20,000 14.4% UP - - -
AL-3 5 70 - 20,000 27.2% UP - - -
AL-4 13 7,000 8.0% - 40.0% DOWN - - -
AL-5 5 70 - 20,000 14.4% DOWN - - -
AL-6 5 70 - 20,000 27.2% DOWN - - -
AL-7 13 7,000 8.0% - 40.0% UP X - -
AL-8 13 7,000 8.0% - 40.0% UP X X -
AL-9 13 7,000 8.0% - 40.0% UP X X X

Table 8.8: Experiments with Alinea.
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Figure 8.7: Control variables for Rosemead NB (AL-1).

First, however, Figure 8.7 illustrates how Alinea works. The top window in the figure
shows the average mainline occupancy (occ[k]). Alinea reacts to “congestion”, i.e. occ[k] >
ô, by reducing the metering rate. In the figure, congestion starts at around 6:40 am. At
this point, Alinea starts to reduce its commanded rate, which quickly reaches its minimum
value of 360 vph (= 180 vphpl × 2 metered lanes). The actual flow onto the freeway
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closely follows the commanded rate because there is a queue of vehicles waiting on the ramp.
After congestion dissipates at around 9:00 am, and mainline occupancy decreases below the
threshold, Alinea responds by increasing the on-ramp flow to its maximum value of 1,800
vph, until 10:30 am when simulated demand stops. After the freeway has emptied, the TMC
commanded rate settles at 1,120 vph (= Krô), which is the value obtained by replacing
ENTflw[k-1] = occ[k] = 0 in Eq. (8.3).

Figure 8.8: Upstream vs. Downstream Alinea (AL-1 vs. AL-3).

Tables 8.9 and 8.10 at the end of this section provide performance measures for all of the
experiments with Alinea. Figure 8.8 compares the system performance when the mainline
detectors are placed either immediately upstream or downstream of the on-ramp junction.
Recall that the loop detectors on I-210 are located upstream of the on-ramps, and that
the recommended placement according to [77] is downstream. The reasoning behind this
recommendation is that, in the free-flow state, which is the state that Alinea attempts to
preserve, changes in on-ramp flow are reflected in the downstream and not in the upstream
measurement. Therefore, in the free-flow state, feedback control is only possible with a
downstream measurement. However, one of the conclusions of Chapter 4 was that the
opposite is true when the freeway is congested: observability is achieved with the upstream
measurement. Figure 8.8 confirms this observation. Better performance was obtained with
downstream detectors at low target occupancies, which lead to shorter congestion periods,
whereas the upstream detectors performed better at high (i.e. super-critical) occupancies.
Also, the best case performance was achieved with downstream detectors and a near critical
target occupancy, as originally claimed by [77].

Figure 8.9 compares the performance of several variations of Alinea using upstream de-
tectors. The four lines represent the four levels of override implementation (AL-1, AL-7,
AL-8, AL-9), with target occupancy as the independent variable. Best case performance
without overrides and using upstream detectors, is achieved at relatively high target occu-
pancy values of 24% to 32%. This is also true when the queue override and later the green
ball override are enforced in AL-7 and AL-8. As with fixed-rate control, the pattern becomes
more irregular when all of the overrides are activated.
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Figure 8.9: Performance with upstream Alinea (AL-1, AL-7, AL-8, AL-9).

Figure 8.10: Alinea - Gain variations (AL-2, AL-4).

Batches AL-2 and AL-4 test the sensitivity of Alinea to changes in the value of Kr, for
ô = 14.4% and 27.2%, and using either the upstream or downstream detectors. ô = 27.2%
was the best choice in AL-1, when upstream detectors were used, and a near-best choice
in AL-3 with downstream detectors. ô = 14.4% was a bad choice in both cases. The
results are illustrated in Figure 8.10. With ô = 14.4%, the controller never performs better
than in the no control case, for any values of the gain, although the performance with
the downstream detectors is consistently better than with the upstream detectors. For
ô = 27.2%, the best performance was recorded with relatively small values of the gain:
Kr = 3, 000 with downstream detectors and Kr = 700 with upstream detectors. The figure
also reconfirms the observation from Figure 8.8, that upstream detectors perform better at
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high target occupancies (27.2%), and downstream perform better at low target occupancies
(14.4%). Another interesting observation is that, for both super-critical and sub-critical
target occupancies and for upstream and downstream detectors, Kr = 20, 000 was a near-
optimal choice. Although not tested, this suggests that a “bang-bang” controller, might be
an effective strategy.
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Batch ô Kr %OPH %FPH %TPH %TVH %TPK %TVK %AMS %ATh

8.0 1170.0 -34.6 177.8 195.0 -1.8 -2.1 28.0 -13.3
9.6 893.6 -33.5 130.0 143.0 -0.7 -0.8 27.0 -8.6

11.2 569.7 -31.9 74.1 82.1 -0.3 -0.4 25.3 -4.0
12.8 318.2 -28.4 32.7 36.7 0.1 0.1 21.8 -1.6
14.4 ↑ 163.8 -26.1 7.4 8.9 0.3 0.3 19.6 0.1
16.0 118.8 -26.0 -0.5 0.3 0.0 0.0 18.9 0.0

AL-1 17.6 7,000 94.8 -26.2 -4.9 -4.5 0.2 0.1 19.2 0.1
19.2 90.7 -23.6 -3.5 -3.0 0.3 0.3 17.0 0.3
20.8 ↓ 86.4 -23.1 -3.8 -3.4 0.2 0.2 16.3 0.2
24.0 70.0 -22.6 -6.3 -6.0 0.1 0.1 15.8 0.0
27.2 60.3 -21.2 -6.8 -6.7 0.4 0.3 14.5 0.4
32.0 53.5 -18.8 -6.1 -5.9 0.3 0.2 12.7 0.3
40.0 32.7 -13.0 -5.0 -4.9 0.3 0.2 8.7 0.2
↑ 70 1102.0 -30.1 169.5 185.7 -0.6 -0.7 24.2 -8.3

700 521.7 -28.8 68.2 75.5 -0.5 -0.6 22.4 -2.7
AL-2 14.4 3,000 199.7 -27.0 13.0 15.1 0.0 0.0 20.2 -0.6

7,000 163.8 -26.1 7.4 8.9 0.3 0.3 19.6 0.1
↓ 20,000 136.4 -26.7 2.1 3.1 0.2 0.2 19.9 0.3
↑ 70 1089.2 -29.7 167.6 183.6 -0.5 -0.7 23.9 -8.1

700 60.8 -24.4 -9.4 -9.4 0.1 0.0 17.2 -0.2
AL-3 27.2 3,000 60.0 -21.5 -7.2 -7.0 0.1 0.1 14.7 0.1

7,000 60.3 -21.2 -6.8 -6.7 0.4 0.3 14.5 0.4
↓ 20,000 55.1 -20.9 -7.5 -7.4 0.3 0.2 14.3 0.1

8.0 1109.6 -34.7 167.1 183.7 -1.5 -1.8 28.2 -15.2
9.6 789.9 -32.9 112.1 124.0 -0.2 -0.3 26.7 -10.3

11.2 505.3 -31.4 63.2 70.3 0.4 0.3 25.0 -6.5
12.8 276.6 -28.6 25.2 28.5 0.2 0.2 22.0 -3.2
14.4 ↑ 141.5 -26.6 3.0 4.2 0.1 0.1 19.9 -2.4
16.0 101.3 -26.8 -4.2 -3.7 0.3 0.3 19.9 -1.9

AL-4 17.6 7,000 82.6 -25.4 -6.3 -6.1 0.1 0.1 18.4 -2.1
19.2 77.1 -23.8 -6.0 -5.8 0.4 0.3 17.1 -2.1
20.8 ↓ 73.2 -24.9 -7.6 -7.4 0.3 0.3 17.8 -1.9
24.0 75.0 -19.2 -2.6 -2.1 0.2 0.2 13.0 -2.0
27.2 60.2 -20.1 -5.9 -5.7 0.2 0.2 13.7 -2.1
32.0 46.5 -16.5 -5.4 -5.2 0.3 0.3 10.9 -1.9
40.0 12.2 -3.6 -0.8 -0.6 0.2 0.2 2.0 -1.6
↑ 70 1091.4 -30.7 167.1 183.3 -0.7 -0.8 24.6 -11.0

700 483.8 -30.3 60.3 66.9 -0.4 -0.5 23.7 -4.8
AL-5 14.4 3,000 160.8 -28.6 4.8 6.2 0.2 0.2 21.5 -2.3

7,000 141.5 -26.6 3.0 4.2 0.1 0.1 19.9 -2.4
↓ 20,000 129.7 -26.2 1.3 2.3 0.3 0.2 19.5 -2.3
↑ 70 1091.4 -30.7 167.1 183.3 -0.7 -0.8 24.6 -11.0

700 79.5 -24.1 -5.8 -5.5 0.1 0.1 17.0 -2.2
AL-6 27.2 3,000 65.7 -22.5 -7.0 -6.9 0.2 0.1 15.9 -2.2

7,000 75.0 -19.2 -2.6 -2.1 0.2 0.2 13.0 -2.0
↓ 20,000 67.4 -20.7 -5.2 -4.9 0.4 0.4 14.3 -2.1

Table 8.9: Performance with Alinea.
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Batch ô Kr %OPH %FPH %TPH %TVH %TPK %TVK %AMS %ATh

8.0 36.5 -7.0 0.6 0.7 -0.1 -0.1 4.8 -0.1
9.6 34.2 -1.5 4.8 5.0 0.3 0.3 1.0 0.5

11.2 26.2 -5.0 0.5 0.5 0.1 0.0 3.6 0.0
12.8 22.5 -7.4 -2.1 -2.2 0.0 0.0 4.9 0.1
14.4 ↑ 19.2 -7.4 -2.7 -2.8 0.2 0.2 5.0 0.4
16.0 14.3 -6.3 -2.6 -2.8 0.1 0.1 4.2 0.2

AL-7 17.6 7,000 16.3 -4.4 -0.8 -0.8 0.1 0.1 2.8 0.2
19.2 15.5 -5.8 -2.1 -2.1 0.3 0.3 4.0 0.7
20.8 ↓ 16.7 -3.3 0.3 0.3 0.2 0.2 1.7 0.5
24.0 10.9 -8.2 -4.8 -5.0 0.1 0.1 5.5 0.3
27.2 10.6 -3.1 -0.7 -0.7 0.3 0.2 2.0 0.3
32.0 6.2 -4.4 -2.5 -2.6 0.3 0.2 2.9 0.5
40.0 7.2 1.7 2.7 2.8 0.3 0.3 -1.0 0.2
8.0 14.2 -4.9 -1.6 -1.7 0.2 0.1 3.2 0.3
9.6 15.7 -5.9 -2.1 -2.3 0.1 0.0 3.9 0.1

11.2 13.2 -2.7 0.1 0.0 0.0 0.0 2.2 0.0
12.8 13.1 -2.1 0.6 0.6 -0.1 -0.1 1.5 -0.1
14.4 ↑ 12.3 -2.3 0.3 0.2 0.1 0.1 1.9 0.1
16.0 12.1 -3.0 -0.3 -0.4 0.2 0.2 2.0 0.5

AL-8 17.6 7,000 6.3 -4.4 -2.5 -2.7 0.2 0.1 3.2 0.2
19.2 10.3 1.2 2.8 2.9 0.3 0.2 -0.2 0.0
20.8 ↓ 11.7 1.0 2.9 3.0 0.3 0.2 -0.1 0.0
24.0 5.3 -6.7 -4.6 -4.9 0.1 0.0 4.6 0.1
27.2 2.6 -6.0 -4.5 -4.7 0.1 0.1 4.4 0.2
32.0 6.5 -2.4 -0.9 -1.0 0.1 0.1 1.7 0.1
40.0 -2.0 -5.9 -5.2 -5.4 -0.1 -0.1 3.8 -0.1
8.0 33.8 -12.3 -4.1 -4.3 0.1 0.1 8.3 0.3
9.6 42.7 -8.1 0.9 1.0 0.4 0.3 5.6 0.6

11.2 45.7 -8.4 1.2 1.4 0.2 0.2 5.5 0.3
12.8 37.0 -10.5 -2.1 -2.1 0.1 0.1 7.0 0.4
14.4 ↑ 42.7 -9.3 -0.1 -0.1 0.1 0.1 6.3 0.1
16.0 32.0 -6.7 0.1 0.2 0.3 0.2 4.5 0.5

AL-9 17.6 7,000 21.0 -12.7 -6.8 -7.0 0.0 0.0 8.7 0.1
19.2 30.3 -8.2 -1.4 -1.5 0.2 0.1 5.8 0.3
20.8 ↓ 23.1 -10.4 -4.5 -4.7 0.2 0.2 7.3 0.3
24.0 23.7 -9.7 -3.8 -4.0 0.3 0.3 6.7 0.6
27.2 14.3 -11.0 -6.5 -6.8 0.1 0.1 7.7 0.3
32.0 16.3 -3.3 0.2 0.2 0.1 0.1 1.8 0.2
40.0 -1.6 -3.8 -3.4 -3.6 0.1 0.1 2.4 0.1

Table 8.10: Performance with Alinea, continued.
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8.5 Percent occupancy control

The Percent Occupancy (%-Occ) control law was introduced in Section 4.3. It is expressed
in the notation of this chapter as,

TMCrate[k] = 900− 900− 180

oh − ol
(occ[k]− ol) (8.4)

Under %-Occ control, the commanded rate is a decreasing linear function of the mainline
occupancy, as plotted in Figure 8.11. The two parameters in the %-Occ control law are the
low and high occupancy thresholds, ol and oh, at which the commanded rate is assigned the
maximum and the minimum rate respectively. For values below ol, the value computed by
Eq. (8.4) exceeds 900 vphpl, but it is reduced to 900 vphpl by the control boxes. Similarly,
the implemented rate is never less than 180 vphpl. The author knows of no published
guidelines for tuning ol and oh.

900

180

Figure 8.11: The %-Occ control function.

Three sets of simulation experiments were conducted, as shown in Table 8.11. Each set
consists of 26 parameter selections with ol ranging from 10% to 30%, and oh from 18% to
30%. The resulting changes in TPH are shown in Table 8.11 and Figure 8.12.

Batch Number occ low occ high Detector Queue Green Ball Speed
of trials location override override exception

PO-1 26 10% - 30% 18% - 30% UP - - -
PO-2 26 10% - 30% 18% - 30% UP X - -
PO-3 26 10% - 30% 18% - 30% UP X X X

Table 8.11: Experiments with %-Occ.

The plots in Figure 8.12 are a bit erratic and difficult to interpret. Even in PO-1, when
no overrides were enforced, there is no recognizable trend and no obvious best choice. All

131



but one of the tests in this batch reduced travel time. A maximum reduction of -7.4% was
recorded with ol = 14% and oh = 30%. One consistent trend in PO-1 is in the performance
of “bang-bang” controllers, whose performance worsened with increasing ol = oh. As with
Alinea, enforcing the overrides in PO-2 and PO-3 has the general effect of diminishing travel
time reductions. In general, no concrete recommendation for tuning the %-Occ controller
can be extracted from the results.

� oh PO-1 PO-2 PO-3
ol � 18% 22% 26% 30% 18% 22% 26% 30% 18% 22% 26% 30%
10% 5.7 -4.0 -3.8 -5.4 -4.4 -3.2 -3.2 -2.4 -4.9 -5.8 -2.6 -4.4
12% - - -5.5 -6.1 - - -2.6 0.2 - - -3.2 -2.4
13% - - -7.1 -7.2 - - 1.1 -2.1 - - -2.0 -3.3
14% -3.5 -4.3 -4.5 -7.4 -7.6 -2.7 -2.5 -0.9 -3.0 -4.0 -2.4 -2.5
15% - - -5.6 -3.0 - - -1.9 -2.5 - - -4.6 -0.3
17% - - -5.3 -5.7 - - 0.2 -4.9 - - 0.8 -3.1
18% -7.2 -4.8 -3.7 -6.9 -5.6 -2.4 -1.4 -4.4 -2.8 -1.7 -5.0 -3.2
22% - -6.5 -6.1 -2.8 - -4.6 -2.3 -3.2 - -3.3 -5.0 -3.6
26% - - -6.4 -7.0 - - -2.4 -3.2 - - -3.5 1.5
30% - - - -2.9 - - - 0.2 - - - -6.1

Table 8.12: Percent change in TPH with %-Occ.
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Figure 8.12: Performance with %-Occ.
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Chapter 9

Summary and Conclusions

This dissertation has investigated several aspects of the design and evaluation of on-ramp
metering control systems for congested freeways. A survey of the literature on macroscopic
models and optimization-based ramp metering schemes was presented in Chapter 2. A
discussion of the rationale for regulating the on-ramp flows identified three mechanisms
which can be exploited by on-ramp metering controllers in order to reduce travel time: the
prevention of a capacity drop, the prevention of offramp blockage, and traffic diversion. It
was concluded that the optimal policy depends on which of these mechanisms is prevalent.
For freeways in which the prevention of the capacity drop is the only way to reduce travel
time, the optimal policy is to keep the freeway in a free-flow state at all times. On the
other hand, for freeways without a capacity drop, where the only available mechanism is the
prevention of offramp blockage, the best strategy is to reduce congestion only sufficiently to
unclog the offramps.

The limited amount of storage space on the ramps was identified in Chapter 2 as an
important consideration for on-ramp metering design, since it restricts the ability of the
controller to reduce congestion. In many cases, a scarcity of on-ramp storage space may
make the complete elimination of congestion impossible. The I-210 test site described in
Chapter 6 was found to be one such case. In this situation, the mechanism of capacity drop
is lost in the congested portions of the freeway, and offramp blockage becomes the main
concern. The goal of ramp metering is then to distribute the unavoidable congestion so that
the offramps remain unblocked whenever possible, and to dispel the congestion quickly in
order to recover the lost capacity. The amount and distribution of on-ramp storage space
becomes an especially important factor for control design when congestion is unavoidable.

Chapter 3 described a macroscopic model of freeway traffic which was used in Chapter 5
in the design of a new optimization-based ramp metering strategy. The proposed design has
the following attributes:

• It is dynamic. The underlying macroscopic model, the Asymmetric Cell Transmission
Model, is a discrete form of the dynamic LWR model, and related to the original Cell
Transmission Model of Daganzo [21, 22].

• It considers both free-flow and congested traffic states. The simplifying assumption of
persistent free-flow traffic is not made. This is important because, as noted before, it
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is often not possible to avoid congestion when on-ramp queue constraints are imposed.

• It requires only to solve a single linear program. The exact solution to the full nonlinear
problem can be found via a linear program. This transformation is possible when the
objective being minimized is the Generalized Total Travel Time (gTTT), as opposed to
the standard Total Travel Time (TTT), and the cost weights of the gTTT are obtained
from the Cost Weights Synthesis procedure described in Section 5.2. Although the use
of gTTT has the disadvantage that TTT may not be minimized, it has the significant
advantage that globally optimal solutions can be found using very efficient LP solvers.

• It observes on-ramp queue length constraints. It was found that hard constraints on
the on-ramp queue lengths can be imposed if none of the on-ramp flows are restricted
because of insufficient space on the mainline (Assumption #1, page 73). Thus, as
opposed to many other ramp metering designs ([3, 28, 48, 49] excluded), the proposed
technique considers the distribution of on-ramp storage space in the system.

• It provides a near global optimum solution. The globally optimal solution to the non-
linear problem is found with the solution to the equivalent linear program. This is in
contrast to most other techniques that seek only local minima. The solution is said
to be a “near global” optimum, because it is global with respect to gTTT, and not
necessarily TTT. These two objective functions were found to be qualitatively similar,
in that both are minimized by maximizing the mainline flows with linearly decreasing
cost weights, whenever Assumptions #1 and #2 (page 74) are made. A second reason
for “near global” optimality is that the optimal plan assumes that ramp metering rates
can be set to zero, whereas in reality the meters on I-210 can be set to no less than 180
vph. Hence, the optimal plan must be modified before implementation by increasing
all rates to at least 180 vph (Eq. (5.49)). The example of Section 5.5 found that this
extra step produced only a 1.12% sacrifice in travel time savings.

The optimization technique was tested in Section 5.5 using data from the I-210 test site.
It was found to produce an 11.74% reduction in TTT, when the on-ramp queues were left
unrestricted, and 8.44% when they were constrained.

Chapters 4 and 8 respectively presented macroscopic and microscopic studies of Percent-
Occupancy (%-Occ) and Alinea control; two widely used local traffic responsive ramp me-
tering strategies. These studies investigated several questions of interest to freeway analysts,
such as: Are either %-Occ or Alinea capable of reducing travel time? Can Alinea be used
on freeways where the mainline detectors are placed upstream of the on-ramps? How should
the controller parameters be chosen in either case?

The macroscopic study of Chapter 4 focused on a single on-ramp and incorporated the
effect of capacity drop by introducing a discontinuity in the original ACTM model. The
discontinuous ACTM was cast as a hybrid system with 7 finite states, each of which evolved
according to a discrete-time linear state equation. A set of criteria defining a “good strategy”
was then delineated. These criteria required the controller to eliminate congestion by driving
the system to the UU-I finite state, in fairly direct way. This was expressed in terms of
conditions on the closed-loop steady-state values in Table 4.6. Furthermore, after reaching
the UU-I finite state, the mainline flow was required to converge to some value exceeding
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the queue discharge rate. It was found that neither %-Occ nor Alinea meet all of the stated
criteria, although Alinea failed in only one relatively unimportant condition (marginal instead
of asymptotic stability of mode IV). The main conclusions from this study are:

• With respect to detector placement, both upstream and downstream positions have
their advantages. The system is observable from the downstream measurement when
the freeway section is in free-flow (mode I), or lightly congested (mode IV). However
it is never observable from the upstream measurement. On the other hand, when
the freeway is completely congested, in modes V and VI, the downstream density can
be deduced from upstream measurements, whereas the upstream density cannot be
deduced from the downstream measurement. In this situation, the upstream detector
location is preferred.

• No selection of parameters for the %-Occ strategy exists that both rapidly dissipates
congestions and increases throughput during free-flow. This was concluded due to a
conflict in the parameter requirements for modes I, IV, and V. Sacrificing the behavior
during congestion, the range of parameters that increases uncongested throughput was
depicted in Figure 4.8. Exhaustive simulation lead to the conclusion that no selection
of parameters in this range eliminated congestion for more than 84% of all initial
conditions.

• Recommendations for Alinea’s target occupancy and gain were provided in Eqs. (4.13)
and (4.14). Simulations were conducted with gain values ranging from zero to the
maximum stable value of 2.6, according to Eq. (4.13). Alinea’s response was found
to be slow for gains below 0.3. An infinite loop between modes UC-IV and UU-I was
observed for gains larger than 1.7. Behavior between these two extremes was relatively
uniform, with the fastest average convergence being registered with Kr = 0.65.

The microscopic study of local traffic responsive ramp metering was covered in Chapters 6
through 8. The test site for the study was a 15-mile stretch of Westbound Interstate 210.
The methodology that was followed for building the microscopic model was described in
Chapter 6. This procedure included the gathering and processing of field data from the
PeMS database and a District 7 survey of ramps, the estimation of OD matrices using
FREQ, and the coding of the different elements in VISSIM. It was found in Section 6.4
that some of the loop-detectors on I-210, especially those on its offramps, do not provide
consistent and reliable measurements. Gaps in the data were filled by using ramp counts
from the D07 survey, and by combining data from several typical days.

Chapter 7 described the coding and calibration procedure. The calibration was aided by
speed contour plots generated using PeMS data. From these contour plots, three separate
but interacting bottlenecks were identified. Presumed causes behind the breakdown of traffic
at each of the bottlenecks were suggested in Section 6.8 by comparing the demands with the
nominal capacities. It was concluded that two of the bottlenecks are geometry-induced, while
a third is at least partially caused by weaving. VISSIM’s driver behavior parameters provided
more than sufficient flexibility for replicating these behaviors. In conclusion, VISSIM was
found to be a suitable tool for testing complex control strategies on medium-sized freeway
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systems. Our simulations ran at approximately 2 times real time on a Pentium 4, 512 Mb,
2.6 GHz laptop computer, when the freeway was fully loaded.

The simulation runs with local on-ramp metering control lead to the following observa-
tions:

• Tests with several different levels of fixed rate ramp metering were conducted, with
only the 600 vph experiment producing any reduction in total travel time, when no
overrides were applied (4.4%). When the complete set of overrides was enforced, both
the 600 vph and 900 vph resulted in small travel time savings (1.5% and 1.3%).

• Figure 8.8 on page 126 showed that comparable reductions in travel time can be
achieved with either upstream or downstream mainline detector banks. The plot also
supports the notion that upstream detectors may be preferred during congestion, while
downstream detectors work better in free-flow conditions. The optimal target occu-
pancy when downstream detectors are used is near the critical occupancy, as suggested
by [77]. With upstream detectors, the best choice may be larger.

• The choice of gain with Alinea is less important than the target occupancy. Using
downstream detectors and the optimal choice of target occupancy, Alinea’s performance
was practically uniform over a large range of gains. Only very small values should be
avoided. Contrary to Chapter 4, the microscopic study did not conclude that Alinea’s
gain should not be set too high.

• A number of experiments using %-Occ control and with a range of parameter values
were conducted. Almost all resulted in moderate reductions in travel time. However,
unlike Alinea, it was difficult to identify a trend in the results that could be used to
make a concrete recommendation on parameter selection. It is concluded therefore
that some savings can be expected with %-Occ, but that optimizing its performance
for a given freeway may be difficult.

The methods of optimal ramp metering and microscopic testing presented in this dissertation
provide ample opportunity for future research. In order to implement the proposed technique,
it must first be made traffic-responsive by embedding it in a control structure including real-
time measurements, model parameter estimation, and demands prediction.
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A. Appendix for Chapter 4

A.1 Open-loop observability and controlability

Dynamic
Ox

1 Ox
2mode

I




0 1 0
0 1 v
0 1 v(2− v)







1 0 0
1− v v 0

(1− v)2 2v(1− v) v2




II




0 1 0
0 1 v
0 1 v(2− v)







1 0 0
1− v 0 0

(1− v)2 0 0




III




0 1 0
0 1− w 0
0 (1− w)2 0







1 0 0
1− v 0 0

(1− v)2 0 0




IV




0 1 0
0 1− v v
0 (1− v)2 2v(1− v)







1 0 0
1 v 0
1 v(2− v) v2




V




0 1 0
w 1 v

w(2− w) 1 v(2− v)







1 0 0
1− w 0 0

(1− w)2 0 0




VI




0 1 0
w 1− w 0

2w(1− w) (1− w)2 0







1 0 0
1− w 0 0

(1− w)2 0 0




Table 9.1: Observability matrices.

Rank of P V : P V has rank 2 unless its (3, 2) and (3, 3) minors are zero:





(1− α)(α + w(1− α))− α(1− α)(1− w) = 0

(1− α)(w(1− α)(2− w) + α)− α(1− α)(1− w)2 = 0

The first line can never be satisfied for any α ∈ [0, 1) and w > 0. Therefore, P V has rank 2

for the range of valid α and w.
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Dynamic
P x

mode

I




1 1− v (1− v)2

0 0 0
0 0 0




II




1 1− v (1− v)2

0 0 0
0 0 0




III




1 1− v (1− v)2

0 0 0
0 0 0




IV




1 1 1
0 0 0
0 0 0




V




1− α (1− α)(1− w) (1− α)(1− w)2

α w(1− α) + α w(1− α)(2− w) + α
0 0 0




VI




1− α (1− w)(1− α) (1− w)2(1− α)
α w(1− α) + α(1− w) 2w(1− w)(1− α) + α(1− w)2

0 wα w2 + 2αw(1− w)




Table 9.2: Controllability matrices.

Rank of P V I : We compute the determinant of P V I :

|P V I | = (1− w)2(1− α)wα2 − [
2w(1− α)(1− 2) + α(1− w)2

]
wα(1− α)

[
w2(1− α) + wα(2− w)

]
w(1− α)2

...

= w3(1− α)2

P V I is therefore full rank in the range of valid w and α.
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A.2 %-Occ closed-loop dynamics

Dynamic
Ax

occ Bx
occmode

I




1− v v −K2 0
0 1− v v
0 0 1− v







K1

0
q




II




1− v −K2 0
0 1 v
0 0 1− v







K1 + fd

−fd

q




III




1− v −K2 0
0 1− w 0
0 w 1







K1 + fd

wρ̄− fd

q − wρ̄




IV




1 v −K2 0
0 1− v v
0 0 1− v







K1 − fd

0
q




V




1− w −K2(1− α) 0
w 1− αK2 v
0 0 1− v







(1− α)K1 + wρ̄− fd

αK1 − wρ̄
q




VI




1− w −K2(1− α) 0
w −αK2 + 1− w 0
0 w 1







K1(1− α) + wρ̄− fd

αK1

q − wρ̄




Table 9.3: Closed-loop %-Occ.

Maximum K2 in mode V

Characteristic polynomial : λ2 + (αK2 + w − 2)λ︸ ︷︷ ︸
b

+ (1− w + (w − α)K2)︸ ︷︷ ︸
c

Definition of m:





−2m = b = αK2 + w − 2

m2 = c = 1− w + (w − α)K2

∴ αm2 + 2(w − α)m + (w2 − 2w + α) = 0

∴ m > −1 ⇔ 4α− 2w + w2 > 0
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The condition for λ in the unit circle is:

‖ λ ‖< 1 ⇔





c < 1 if b2 < 4c



b + c + 1 > 0

−b + c + 1 > 0

if b2 > 4c

Case m > −1: The crossing point is on the real axis. Therefore, we are in the case b2 > 4c,

and the condition for stability is b + c + 1 > 0 and −b + c + 1 > 0. Inserting the values of b

and c, and after some manipulation, this becomes:

K2 > 0

K2(2α− w) < 2(2− w)

There are two cases to consider: (2α − w) > 0 and (2α − w) < 0. Assuming (2α − w) < 0,

the condition becomes K2 > −2(2 − w)/(w − 2α), which is already covered by K2 > 0.

Therefore, the condition for stability in the case m > −1 is K2 < 2(2− w)/(2α− w).

Case m < −1: In this case the condition for stability is c < 1, which translates into

K2 < w/(w − α). Putting both cases together we get the maximum bound for K2:

K̄2 =





2(2−w)
2α−w

if 4α− 2w + w2 > 0

w
w−α

else

Maximum K2 in mode VI

Characteristic polynomial : λ2 + (αK2 + 2w − 2)λ︸ ︷︷ ︸
b

+ (1− w)2 + (w − α)K2︸ ︷︷ ︸
c
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Definition of m:

αm2 + 2(w − α)m− (1− w)(2w − α− wα) = 0

∴ m > −1 ⇔ 2α− 2w + wα > 0

Case m > −1, in a similar way as mode V, reduces to (2 − w)2/(2α − w). The maximum

gain in the case m < −1 is w(2− w)/(w − α):

K̄2 =





(2−w)2

2α−w
if 2α− 2w + wα > 0

w(2−w)
w−α

else

A.3 Alinea closed-loop dynamics

Dynamic mode IV ρ2[k] and r behave as an unforced oscillator:




ρ2[k+1]

r[k+1]


 =




1 1

−Kr 1−Kr







ρ2[k]

r


 +




−fd + q

Kr(ρ̂2 + fd − q)




Substitute ζ [k] = r + q − fd and γ[k] = ζ [k] + Kr(ρ2[k]− ρ̂2). Then:

γ[k+1] = ζ [k]

ζ [k+1] = (2−Kr)ζ [k]− γ[k]

∴ ζ [k+2] + (Kr − 2)ζ [k+1] + ζ [k] = 0

⇒ ζ [k] oscillates about 0 ⇒ γ[k] oscillates about 0 ⇒ ρ2[k] oscillates about ρ̂2.
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Dynamic
Ax

occ Bx
occmode

I




1− v v 0 1
0 1− v v 0
0 0 1− v 0

−Kr(1− v) −Krv 0 1−Kr







0
0
q

Krρ̂2




II




1− v 0 0 1
0 1 v 0
0 0 1− v 0

−Kr(1− v) 0 0 1−Kr







fd

−fd

q
Kr(ρ̂2 − fd)




III




1− v 0 0 1
0 1− w 0 0
0 w 1 0

−Kr(1− v) 0 0 1−Kr







fd

wρ̄− fd

q − wρ̄
Kr(ρ̂2 − fd)




IV




1 v 0 1
0 1− v v 0
0 0 1− v 0

−Kr −Krv 0 1−Kr







−fd

0
q

Kr(ρ̂2 + fd)




V




1− w 0 0 1− α
w 1 v α
0 0 1− v 0

−Kr(1− w) 0 0 1−Kr(1− α)







wρ̄− fd

−wρ̄
q

Kr(ρ̂2 − wρ̄ + fd)




VI




1− w 0 0 1− α
w 1− w 0 α
0 w 1 0

−Kr(1− w) 0 0 1−Kr(1− α)







wρ̄
0

q − wρ̄
Kr(ρ̂2 − wρ̄ + fd)




Table 9.4: Closed-loop Alinea.
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B. Appendix for Chapter 6

B.1 PeMS speed contours
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Figure 9.1: PeMS speed contour plots.
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B.2 Good days from the D07 survey
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Figure 9.2: On-ramp days.
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Figure 9.3: Offramp days.
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B.3 D07 survey ramp counts
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Figure 9.4: District 07 ramp survey (OR=on-ramp, FR=offramp).
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Figure 9.5: District 07 ramp survey (OR=on-ramp, FR=offramp).

157



0

20
0

40
0

OR 28.03   
Altadena ON

11
/8

/0
1

11
/1

3/
01

11
/1

4/
01

11
/1

5/
01

11
/2

0/
01

0

20
0

40
0

60
0

FR 27.64

12
/1

3/
01

12
/1

9/
01

0

20
0

40
0

60
0

FR 26.8

12
/1

3/
01

12
/1

9/
01

0

50
0

10
00

15
00

OR 26.8
Hill ON

12
/1

3/
01

12
/1

9/
01

0

50
0

10
00

FR 26.12

1/
8/

02
1/

9/
02

1/
10

/0
2

1/
15

/0
2

05
:5

0
06

:1
5

06
:4

0
07

:0
5

07
:3

0
07

:5
5

08
:2

0
08

:4
5

09
:1

0
09

:3
5

10
:0

0
0

50
0

10
00

OR 26.12
Lake ON 

1/
8/

02
1/

9/
02

1/
10

/0
2

1/
15

/0
2

0

50
0

10
00

OR 29.999  
Foothill ON

11
/1

/0
1

11
/6

/0
1

11
/7

/0
1

0

10
0

20
0

OR 29.879  
Rosemead ON

11
/1

/0
1

11
/6

/0
1

11
/7

/0
1

0

10
0

20
0

30
0

40
0

FR 29.17

11
/1

/0
1

11
/6

/0
1

11
/7

/0
1

0

20
0

40
0

OR 29.17             
Sierra Madre Villa ON

10
/3

/0
1

10
/4

/0
1

10
/9

/0
1

10
/1

0/
01

10
/1

1/
01

0

20
0

40
0

60
0

FR 28.27

10
/3

/0
1

10
/4

/0
1

10
/9

/0
1

10
/1

0/
01

10
/1

1/
01

05
:5

0
06

:1
5

06
:4

0
07

:0
5

07
:3

0
07

:5
5

08
:2

0
08

:4
5

09
:1

0
09

:3
5

10
:0

0
0

50
0

10
00

OR 28.27      
San Gabriel ON

10
/3

/0
1

10
/4

/0
1

10
/9

/0
1

10
/1

0/
01

10
/1

1/
01

Figure 9.6: District 07 ramp survey (OR=on-ramp, FR=offramp).
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B.4 Measured boundary flows
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Figure 9.7: On-ramp flows (first column is upstream mainline).
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Figure 9.8: Offramp flows (last column is downstream mainline).
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C. Appendix for Chapter 7

C.1 Intermediate VISSIM speed contours
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Figure 9.9: Contour plot after adjusting the look back distances.
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Figure 9.10: Contour plot after adjusting the waiting time.
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C.2 Random seed variations
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Figure 9.11: Three different random seed values.
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C.3 Vehicle characteristics

Desired speed Weight Power

Figure 9.12: Cars, small trucks, and large trucks - speed, weight, and power.
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Figure 9.13: Cars, small trucks, and large trucks - acceleration and braking.
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C.4 VISSIM boundary flows
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Figure 9.14: VISSIM input and output on-ramp flows.
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