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Cascaded Back-Propagation on
Dynamic Connectionist Networks

Jordan B. Pollack
Computing Research Laboratory

New Mexico State University

ABSTRACT

The Back Propagation algorithm of Rumelhart, Hinton, and Williams (1986)
is a powerful learning technique which can adjust weights in connectionist
networks composed of multiple layers of perceptron-like units. This paper
describes a variation of this technique which is applied to networks with con-
strained multiplicative connections. Instead of learning the weights to com-
pute a single function, it learns the weights for a network whose outputs are
the weights for a network which can then compute multiple functions.

The technique is elucidated by example, and then extended into the realm
of sequence learning, as prelude to work on connectionist induction of
grammars. Finally, a host of issues regarding this form of computation are
raised.

1. Introduction

Most ‘‘Connectionist'’ (Feldman & Ballard, 1982) or ‘‘Parallel Distributed
Processing’’ (Rumelhart et. al., 1986b) models use fixed-structure networks, in
which the weights are set programmatically or are adjusted slowly by some
iterative learning algorithm. The resultant networks are essentially ‘‘hard-wired”
special-purpose computers that perform some application, like a 10-city travel-
ing Salesman problem (Hopfield & Tank, 1985), past-tense verb conjugation
(Rumelhart & MecClelland, 1986), text-to-speech processing (Sejnowski &
Rosenberg, 1986), or context-free parsing of bounded-length sentences (Fanty,
1985; Selman, 1985). This last application is particularly disturbing because a
bounded-length context-free grammar is simply a regular grammar, recogniz-
able by a simple finite-state machine. If connectionism entails a return to pre-
Chomskian theories of linguistic capabilities, then it will be in trouble.

One of the major differences between our work in connectionist language
processing (Pollack & Waltz, 1982; Waltz & Pollack, 1985) and others (Cottrell,
1985; Fanty, 1985; Selman, 1985) is our use of dynamically changing network
structure, i.e., weights that are modified during a computation. Various
researchers have seen the need for dynamic connections, including (Feldman,
1982) and (McClelland, 1985), but the resulting systems are very difficult to
manage. In the most unconstrained case of a system using multiplicative con-
nections, each weight in a system of n nodes can be a function of the activities
of all n nodes, leading to a system with n® ‘‘parameters’’ instead of n?.

But without some form of dynamic connections the generative capacity of
connectionist models is suspect. In the past, we have used ‘““normal” computer
programs such as a chart parser (Kay, 1973) to dynamically connect our net-
work. This paper outlines steps towards a better way.

A modified form of back-propagation is applied to networks with con-
strained structures of multiplicative connections and feedback to build systems
capable of learning to sequentially process inputs. Using multiplicative connec-
tions allows all weights in the system to be dynamically modified for each input.

The technique, called Cascaded Back-Propagation, is introduced by com-
parison to normal back-propagation on feed-forward networks.
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2. Back-Propagation

The basic form of the (Rumelhart et. al., 1986a) learning algorithm is as
follows. A non-iterative feed-forward network of several layers computes
input/output relationships using a continuous version of a perceptron.

Each unit ¢ has an output bounded between 0 and 1. This bounded output
is computed by ‘‘squashing’’ its input, z, (a linear combination of weights and
other outputs) with the sigmoid function:

r(z)=—1—
l+e™*
which has a derivative (after some algebra) of:

I(z)=r(z)(1-T'(z))

Figure 1:
A simple feed-forward network. Each layer s completely connected to the next. The
weights, therefore, are representable by rectangular arrays.

For a simple layered network as shown in Figure 1, this feed-forward computa-
tion is as follows:

Hm=r( Wmf'x-i)

Zk=r( ka'ﬁm)

Where X’, is the set of inputs, Hfm are the outputs of the hidden units, and
7,, are the outputs. Back-propagation is given a set of cases consisting of
matched pairs of input and desired output vectors. The overall error, £, can be
computed as the distance between all desired output vectors D and the actual
output vectors computed by the forward-pass, Z:

£ =Efk}(9§- Zi)?

The backward pass works by distributing this error to all the weights in the
system. For a particular input/output case, c, this computation is as follows:
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And by summing the weight errors over all cases and updating each weight by a

fraction of its error, u, plus a fraction, a, of its previous error, AW, the algo-
rithm can find a set of weights by gradient descent:

oF
W= W- 22 L aAW
u a”,+a&
JF
R s e
Haw

A couple of details complete the algorithm. First, initial weights need to
be chosen; if all weights are initially O, there is no way for the system to allo-
cate error, so usually weights are chosen as very small random numbers, say,
between 4 0.5. Secondly, the network needs to be ‘‘grounded’ by adding a
‘““bias’’ to each hidden and output unit. This amounts to adding another input
unit whose output is always 1; the adjustment of the biases then co-occurs with
adjustment of all the other weights in the system.

Figure 2:
A simple feedforward network for the exzcluswe-or problem. Instead of putling biases
inside the circles, they are shown as links from a unit with an oulput of 1.

The simplest test of the algorithm is to learn to compute ‘‘Exclusive-or’’, a
function which cannot be learned in a single layer of perceptrons. Figure 2
shows a standard feedforward network on which this algorithm is capable of
learning XOR. Using 4=0.5 and o=0.9, back propagation can find these
weights usually in a one to two hundred iterations.
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3. Cascaded Networks

ouTPUT

CONTEXT

FUNCTION

Figure 3:
Cascaded nelwork. A context nelwork with fized weights runs first and sets variable
weights on the funclion network.

Instead of learning a fixed set of weights for one group of input-output
relationships, one network is used to compute some input-output function (the
“function network’’), and another network (the ‘‘context network’’) is used to
compute the weights for the function network (figure 3). By varying the inputs
to the context network, the function network can be used to compute various
functions.

The forward-pass consists of a forward pass on the context network, which
sets f.h?( weights on the function network, then a forward pass on the function
network:

Wi=Cyi;' Y,
Wu=Cu; Y;
H=T(W;X;)
Z,=T(Wy-H,)

Where Cj;; and Cy; represent the fixed weights of the context network,
W, and W, are the varying weights of the function network, ?J- are the inputs
to the context network, X; are the inputs to the function network, H, are the
outputs of the hidden layer, and ?k are the outputs of the function network.

The backward pass consists of computing the errors for the variable
weights of the function network, and then using them to compute the errors
for the fixed weights:
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3.1. Exclusive-or Problem

This approach can build networks which runs multiple functions over the
same set of units. To compute the exclusive-or function, for example, this
amounts to learning the two functions:

y if 2=0
f(y)= -~y if z=1

Figure 4:
Cascaded network for the XOR problem. The function network acts as either an invert-
er or non-inverting buffer depending on the conlext bit.

Figure 4 shows the cascaded network for the XOR problem. This network
needs to learn only 4 weights instead of 7, and, with the learning parameters

u=0.5 and «=0.9, cascaded back propagation only needs about 30 cycles to
learn exclusive-or.
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CASCADED ‘NORMAL °

Figure 5:
Typical learning curves for normal versus cascaded XOR network. The horizontal azis

represents time as ileralions of error propagation, and the vertical represents the global
error, £, over all { test cases. The algorithms halt when all oulputs are within .2 of

their desired values.

Figure 5 shows the learning curves for typical runs of back-propagation and
cascaded back-propagation for the exclusive-or networks. The number of itera-
tions is represented along the horizontal axis and the global error, E, is

represented on the vertical.

3.2. The 4-1 Multiplexor

—
—
DATA
—
—
ADORESS
Figure 6:

Three versions of a 4-1 multiplexor. First is the standard block diagram used for logic design,
nezt s a 6-4-1 layered network; and finally, a cascaded network.

Another example is a 4-to-1 multiplexor. A classic logical functional unit
used in computer design, it can be thought of as a programmable 2-1 logic
function. Figure 6 shows three views of a multiplexor. One of the 4 ‘‘data”
lines is selected by the values on the 2 address lines. In a normal feed-forward
network, there is no distinction between these six inputs, and 4 hidden units
are needed to learn all 64 input/output cases. The cascaded network, com-
posed of a single-layer 4-7 network connected to the standard XOR network,
essentially learns 5 interacting sets of 7 weights, which produce 16 different
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sets, one for each logic function.
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Figure 7:
Typical learning curves for runs of normal versus cascaded back-propagation on the
multiplezor problem.

In general, the cascaded solution for the multiplexor problem converges
much quicker than the feed-forward solution. Figure 7 shows typical behavior
for both solutions with 4=0.5 and a=0.9.

4. Sequential Cascaded Networks

When the outputs of the function network are used as inputs to context
network, a system can be learned which sequentially processes inputs by
dynamically changing the weights in the function network after each input. In
parsing terms, it could be said that each word is processed in the context of all
the preceding words. And although the number of possible intermediate states
are, of course, finite,! this system can learn grammars which are bounded in
depth, but unbounded in length. The intermediate states must encode various
up/down counters. Figure 8 shows a block diagram of a simple sequential cas-
caded network. Given an initial context, Y;(0), and a sequence of inputs,
X,(t),t=1...n, the network can compute a sequence of function output/context
input vectors, T’:-(t),t=1...n by dynamically changing the set of weights,
Wi (t)and Wy(t):

1. Unless it is assume that the outputs are true analog values or rational numbers.
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CONTEXT

FUNCTION

Figure 8:
The outputs of the function nelwork are used as the next inpuls to the context network,
yielding a system whose function varies over time.

Wii(t)=Cyj- Y;(t-1)
Wi(t)=Cy; Yi(t-1)

Hy(t)=T(W,(1) X(1))
¥ (1) =T(Wy(t) Hi(1))

The error correction phase can be applied to just the final input:

398



O0E  QE ‘
ol (n)  a¥y(m) MWL) Hy(n))

)
OWu(n) — aY,(n)

X H(n)

NN ) N
OWi(n)  oH(n)
O0E _  OE
8C;;  dW(n) % Tj(n-1)
9E 08 ¥ n-1)

Cu;  OWy(n)
where 1_)} is the desired output for a particular sequence.

4.1. Learning Parity

When Exclusive-or is generalized to more than 2 inputs, it becomes the
parity problem, to determine whether a boolean string has an odd or even
number of 1's in it. This problem was discussed at length, both by (Minsky &
Papert, 1969), as a hard problem for perceptrons and by (Rumelhart et. al.,
1986a) as a test case for back-propagation.

Figure 9:
A simple £-state machine s shown on the left, and a sequential cascaded network s
shown on the right.

A problem for normal back-propagation is that the parity problem of size
K requires K hidden units to work, so a system which learned to determine
parity of 5 bits would not work for 6. This problem can be overcome by
‘‘going sequential’’, using the cascaded exclusive-or network with feedback
between the output of the function network and the input to the context net-
work. This network, and the corresponding small finite-state machine are
shown in figure 9.

One problem with the cascaded network approach is that if the system is
trained to within .2 of the solution for each training case, the weights ‘‘fuzz
out’’ for longer tests than the ones given. There are several solutions to this.
The simplest one is to put a truncating filter between the function output and
context input which converts outputs above 0.8 to 1 and below 0.2 to 0. Other
possible solutions include more complicated filters such as an auto-associative
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memory or other relaxation system which corrects fuzzy states..

4.2. Parenthesis Balancing

Unfortunately, parity is very unnatural and extremely finite state
““language’’. A real solution to a temporal credit assignment problem with
application to language processing is not served by learning such finite systems
as parity or even 0-letter sequence completion as used by (Rumelhart et. al.,
1986a) to demonstrate recurrent networks.

A connectionist network at least should be able to learn a context-free
language from example in order to claim any service to language processing.
Accordingly, experiments have been performed in learning the second simplest
context-free language known to man: Parenthesis balancing.? We have success-
fully used a sequential cascaded network for parenthesis balancing consisting of
of a layered 1-3-2 function network and a 2-14 context net. The input is either
1 or O for left and right parentheses and one output signifies grammaticality of
the prefix and the other works as a stack, by shifting outputs from 1 to .5 to .25
as more left parentheses are input.

4.3. Other grammars

=
{50

A sequential cascaded network for parsing. The current state s tied back into the con-
text for the next input, and the unlabeled units would develop necessary features.

Using a sequential cascaded network engenders a time-distributed
representation of a parse-tree. For example if a network were used as shown in
figure 10, with lexical categories for input and phrase markers for output and
context, a system could be developed that, for a simple declarative sentence
like "The fat man ate the spaghetti with sauce”, could have time-varying out-
puts which implicitly code its parse tree.

The following table shows the outputs of the phrase-marker units over
time. Each contiguous group of ‘‘on’’ states could be interpreted as a single
node of a tree, with interval-inclusion determining dominance.

2. The simplest context [ree grammar is described by the regular expression a" b".



S * * + # * * * *
VP *
PP *
NP * * * * * *

There are several problems with this representation, the main one being
that self-recursive categories are not recoverable. One possibility which is
currently being examined is the combination of this learning technique with the
representational assumption that outputs can have arbitrary fractional resolution
used as stack. Experimentation with representing and learning larger grammars
of this type has just begun; clearly more work need be done.3

5. Discussion

Cascaded networks do not solve everything, unfortunately. They are basi-
cally a very constrained type of network with multiplicative links. This algo-
rithm, being a variation of back-propagation, does not solve its inherent prob-
lems. For example, it can still get stuck in local minima, and the exact topol-
ogy needed to solve a particular problem must be defined beforehand.

But the combination of faster convergence and the computational power
engendered by multiplicative connections make cascaded back-propagation a
useful technique for connectionist modeling and worthy of further study. Some
issues for further discussion are presented below.

5.1. Why is it Faster?

For both the exclusive-or and multiplexor problems given above, as well
as various other problems we have experimented with, cascaded back-
propagation converges on solutions significantly faster than normal back-
propagation. We think this is due, essentially, to the well-known algorithmic
technique of ‘‘divide-and-conquer’’. By breaking the solution to execlusive-or
into two simpler problems (i.e. an inverting and non-inverting buffer) or the
multiplexor into 16 smaller problems (i.e. each 2-1 boolean function), we
reduce the amount of work involved tremendously.

Consider running normal back-propagation multiple times, once for each
simple problem on the function net, saving the discovered weights, and then
once for mapping the context inputs to to these weights. If both nets are capa-
ble of learning their functions, then this scheme will work, and the number of
iterations needed will be the sum of all the smaller cases.

But when we learn all these subproblems at the same time, the number of
iterations will be related to the hardest subproblem to learn. Thus for the
exclusive-or problem, the number of iterations we need is related to how hard
it is to learn to invert (i.e. even a perceptron can do this), and for the multi-
plexor problem the number of iterations needed will be related to how hard it
is to learn normal exclusive-or or equivalence.

Furthermore, a particular solution to a subproblem found by back-
propagation is a discrete point in ‘‘weight space’’, somewhere along the edge of
a region of good solutions. Running all subproblems first makes the context
mapping problem more difficult by adding this unnecessary edge constraint;
merging the subproblems and mapping problem removes this constraint and

3. One learning trial may be considered a success, however: We inadvertently used a
training set with a simple principle of grammaticality -- the system discovered that all
grammatical sentences were of length Omod 3!
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allows each subproblem solution to be anywhere in its region.

5.2. Relation to Sigma-Pi Units

Williams (1986) has classified various activation functions for connectionist
models. The ultimate function for combining inputs to a unit are called
“Sigma-Pi"’ functions, which linearly combined multiplied subsets of inputs.
So for n inputs, z,, . . ., z,, a unit with 7 weights may provide as output:

Z I_I &g

S,EP €S,

Where P is the set of all subsets of {1,...,n}. This is the ultimate in com-
bining functions because when j=2" a single unit can implement a general
polynomial. The down side is that having 2" weights associated with a single
unit is the combinatorial brut eristant.

As far as classification, however, almost any multiplicative connection sys-
tem is a special case of Sigma-Pi. For example, the gating activation function

described by (Hinton, 1981) uses j=-‘-;-1- weights, where n inputs are separated

-

: n . : s ’
into o pairs which are multiplied and combined. A cascaded network can be
also seen as a special case, where the n?inputs are broken into 2 sets whose ele-

ments are multipled in pairs with j=—rj-1—- weights.

5.3. Single-layered Context Networks

In the examples given in the paper, single-layered context networks were
used. This construction will work only if the good regions in weight space for
each subproblem can be linearly composed with respect to the context inputs.
That a single-layer context works with the exclusive-or problem is obvious; that
it worked for the multiplexor is surprising. For harder problems, it may turn
out that more hidden units are needed in the function network to provide the
flexibility for this kind of context network. On the other hand, if back-
propagation works, there is no constraint that the context network has to be
single-layered.

6. Conclusion: A Universal Neural Network?

Consider the notion of a Universal Turing Machine. A very simple con-
struction which, when presented with a description of any other Turing
Machine and its initial state, runs a simulation of that TM to completion. This
is similar to a virtual machine emulator or programming language interpreter
running on a normal computer. One difference is that because of the random-
access property of a computer versus the serial tape access of a UTM, the nor-
mal computer runs simulations much faster. For each simulated operation of
the TM, the UTM may have to step from one end of its tape to the other. For
a program and tape of size n this amounts to about an n?, or polynomial simula-
tion time. A programmed interpreter, on the other hand, has to look up an
operation in a table and call a simple routine which updates the state of the
interpreted system. Assuming each simulated operation takes about ¥ machine
instructions, then the simulation takes kn, or linear time. This efliciency
advantage is why no modern computers are built like Turing machines.

Consider, finally, an extended cascaded network where the context net-
work is presented a description of a machine and produces the set of weights
for the function network. The function network can then run at full ‘‘neural
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speed’’. If the context network takes a constant time, £, to do its computation,
then this simulation runs in £ +n, or constanl time.

The point of all this is to solve a conundrum for connectionists: When
attempting to model a high-level cognitive domain one quickly realizes the folly
of equating a neuron with an element of that domain. Neurons are arrayed in a
fixed network, and only die as time goes by. If the memory of your grand-
mother were localized to a single neuron, and that neuron failed, you would
forget her.

One backup position (which this author has resorted to occasionally) is
something like the following: The units in my system are not really neurons,
but a elements of a higher level system which are somehow simulated by neu-
rons. The problem for this position has been that simulation takes time, and
given the finite number of cycles available for ‘‘real-time’ cognition, i.e. 10-
100 cycles, there isn't any time for the simulation to take place.

If a universal neural network could really run a simulation of a neural net-
work in constant time, then the backup position becomes viable -- the units in
the higher-level system are temporarily run on neurons at neural speed. Cas-
caded networks are a first step in this direction.
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