
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Parkinson’s Disease-Linked LRRK2 Structure and Model for Microtubule Interaction

Permalink
https://escholarship.org/uc/item/95k5q45v

Author
Deniston, Colin Keith

Publication Date
2020

Supplemental Material
https://escholarship.org/uc/item/95k5q45v#supplemental
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/95k5q45v
https://escholarship.org/uc/item/95k5q45v#supplemental
https://escholarship.org
http://www.cdlib.org/


 
 

UNIVERSITY OF CALIFORNIA SAN DIEGO 
 
 
 
 

Parkinson’s Disease-Linked LRRK2 Structure and Model for Microtubule Interaction 
 
 
 
 

A dissertation submitted in partial satisfaction of the  
requirements for the degree Doctor of Philosophy  

 
 
 
 

in 
 
 
 
 

Chemistry 
 
 
 
 

by 
 
 
 
 

Colin Deniston 
 
 
 

 Committee in charge: 
 
  Professor Andres Leschziner, Chair 
  Professor Susan Taylor, Co-Chair 
  Professor Rommie Amaro 
  Professor Samara Reck-Peterson 
  Professor Jerry Yang 
    
   
 
 

2020 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



iii 
 

 
 
 
 
 
 
 
 
 
 

 

 

The Dissertation of Colin Deniston is approved, and it is acceptable  
in quality and form for publication on microfilm and electronically: 

 

 

 

 

 

 

 

 

              Co-Chair 

                                                                                     

                                                                                                                        Chair 

 

University of California San Diego 

2020 

 

 

 

 

 

 



iv 
 

DEDICATION 

I want to dedicate this work to my best friend and partner Irene Bonner. Thank you for being my 
pillar of support and love through these 5 years. Without your snap pea sandwiches those long 
days and nights would have been impossible! Let this be the end to another chapter in the 
adventure of our lives together. 

I would also like to dedicate this work to my mother, Nan Deniston, and father, Marty Deniston, 
who have always assisted and supported my endeavors in the scientific field. You’ve inspired 
me to never stop learning and helping the world through scientific discovery. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 
 

EPIGRAPH 

 

 

 

 

 

I must not fear. 
Fear is the mind-killer. 

Fear is the little-death that brings total obliteration. 
I will face my fear. 

I will permit it to pass over me and through me. 
And when it has gone past, I will turn the inner eye to see its path. 
Where the fear has gone there will be nothing. Only I will remain. 

 

Dune: Frank Herbert 
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ABSTRACT OF THE DISSERTATION 

 

Parkinson’s Disease-Linked LRRK2 Structure and Model for Microtubule Interaction 

 

by 

 

Colin Deniston 

 

Doctor of Philosophy in Chemistry 

 

University of California San Diego, 2020 

 

Professor Andres Leschziner, Chair 

 

Professor Susan Taylor, Co-Chair 

 

Leucine Rich Repeat Kinase 2 (LRRK2) is the most commonly mutated gene in familial 

Parkinson’s disease. LRRK2 is proposed to function in membrane trafficking and co-localizes 

with microtubules. We report the 3.5Å structure of the catalytic half of LRRK2, and an atomic 
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model of microtubule-associated LRRK2 built using a reported 14Å structure obtained by cryo-

electron tomography. We propose that the conformation of LRRK2’s kinase domain regulates its 

microtubule interaction, with a closed conformation favoring binding. We show that the catalytic 

half of LRRK2 is sufficient for microtubule binding and blocks the motility of the microtubule-

based motors kinesin and dynein in vitro. Kinase inhibitors that stabilize an open conformation 

relieve this interference and reduce LRRK2 filament formation in cells, while those that stabilize 

a closed conformation do not. Our findings suggest that LRRK2 is a roadblock for microtubule-

based motors and have implications for the design of therapeutic LRRK2 kinase inhibitors. 
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CHAPTER 1: Parkinson’s Disease-Linked LRRK2 Structure and Model for Microtubule 

Interaction 

 

INTRODUCTION 

 

Mutations in Leucine-Rich Repeat Kinase 2 (LRRK2) are the most common cause of 

familial Parkinson’s Disease (PD)1. LRRK2 is also linked to the idiopathic form of PD: mutations 

in LRRK2 are a genetic risk factor1 and increased LRRK2 kinase activity is linked to disease2. A 

growing body of evidence suggests that mutations in LRRK2 are also risk factors for Crohn’s 

Disease and leprosy3-5. Like many other PD-causing genes, LRRK2 is implicated in membrane 

trafficking6. Mutant LRRK2 causes defects in the trafficking of endosomes, lysosomes, 

autophagosomes, and mitochondria6,7. Furthermore, Rab GTPases, central regulators of 

membrane trafficking, are physiological substrates of LRRK28,9. In cells, all five major PD-

causing mutations increase the phosphorylation of LRRK2’s Rab substrates8,9. Long-distance 

transport of Rab-marked membranes occurs along microtubules and is driven by the 

microtubule-based motors dynein and kinesin10,11. LRRK2 function and/or pathology has also 

been linked to microtubules as LRRK2 partially co-localizes with microtubules in cells12 and four 

of the five major PD-causing mutations (Fig. 1a)1 enhance microtubule association of LRRK213.  

 LRRK2 is a large (288 kDa) multi-domain protein. Its amino-terminal half is comprised of 

repetitive protein interaction motifs (Armadillo, Ankyrin, and Leucine-Rich Repeats) and its 

carboxy-terminal catalytic half contains a Ras-like GTPase (Ras-of-Complex, or RoC domain), a 

kinase domain, and two other domains (C-terminal Of Roc, or COR, and WD40) (Fig. 1a). 

Despite LRRK2’s fundamental importance for understanding and treating PD, there is limited 

structural information on LRRK2. While structures are available for bacterial homologs of the 

LRR, RoC and COR domains14,15, and a D. discoideum homolog of the kinase domain16, the 
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only two high-resolution structures available for the human protein are for its RoC17 and WD40 

domains18 and no larger structures have been reported. Structures of the full-length protein 

obtained using negative stain19 and cryo-electron microscopy (Cryo-EM)20 have been 

published, but their resolutions were limited (22Å and 16Å, respectively). A recent 

reconstruction of LRRK2 bound to microtubules in cells using cryo-electron tomography (Cryo-

ET) and sub-tomogram averaging led to a 14Å structure and proposed model of the catalytic 

half of LRRK221. Here, we set out to determine a high-resolution structure of LRRK2’s catalytic 

half using cryo-EM, as well as to understand how it interacts with microtubules and how this 

impacts the movement of microtubule-based motors. 

 

RESULTS 

 

Cryo-EM structure of the catalytic half of LRRK2 

 

High-resolution studies on human LRRK2 have been limited by the lack of efficient 

expression systems resulting in stable LRRK2 protein. We tested a large number of constructs 

(Extended Data Fig. 1a), leading to the identification of one consisting of the carboxy-terminal 

half of LRRK2 (amino acids 1,327 to 2,527), which expressed well in insect cells and resulted in 

a stable protein (Extended Data Fig. 1b, c). This construct comprises the RoC, COR, kinase and 

WD40 domains of LRRK2 (Fig. 1a), which we refer to as LRRK2RCKW. The COR domain was 

previously defined as consisting of two subdomains, COR-A and COR-B, based on its structure 

from a bacterial homolog14. 

We determined a 3.5Å structure of LRRK2RCKW in the presence of GDP using cryo-EM 

(Fig. 1b, c and Extended Data Fig. 2). On our grids, we observed a mixture of monomers, 

dimers and head-to-tail trimers and we used the trimer to solve the structure (Fig. 1b and 

Extended Data Fig. 2b). This trimer species was critical for reaching high resolution, but it is 
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likely specific to the EM grid preparation as LRRK2RCKW is predominantly monomeric, with a 

smaller percentage of dimers, in solution (Extended Data Fig. 3). The RoC and COR-A domains 

were flexible in our structure, yielding significantly lower resolutions than the rest of the protein 

as a result of the symmetry imposed on the trimer (Fig. 1b, c). In order to improve the density of 

this part of the map, we used signal subtraction to generate LRRK2RCKW trimers containing only 

one of the three RoC and COR-A domains and subjected those to 3D classification and 

refinement focused on the monomer containing RoC and COR-A. This resulted in a 3.8Å 

structure with improved local resolution for RoC and COR-A (Fig. 1d, e, Extended Data Fig. 2f-

i). We used a combination of Rosetta22 and manual building in coot23 to generate the final 

model. The RoC and COR-A domains were built using the signal subtracted maps, and then 

combined with the COR-B, kinase and WD40 domains, which were built using the original 

higher resolution trimer map (Fig. 1f and Extended Data Video 1). Importantly, the atomic model 

of LRRK2RCKW we obtained from the trimers fits well into a 8.1Å reconstruction of a LRRK2RCKW 

monomer (Fig. 1g, h), indicating that formation of the trimer does not cause major structural 

changes in the protein. 

 LRRK2RCKW adopts an overall J-shaped structure, with the WD40, kinase and COR-B 

domains arranged along one axis, and COR-A and RoC turning around back towards the 

kinase, bringing COR-A, and therefore the tightly associated RoC domain, which has GDP 

bound, in close proximity to the kinase’s C-lobe (Fig. 1f, i and Extended Data Video 1). This 

arrangement likely underpins the reported crosstalk between LRRK2’s kinase and GTPase24,25 

(reviewed in26). Part of the FERM domain in the FAK-FERM complex approaches the FAK C-

lobe in a similar way27 (Extended Data Fig. 4a, b). The RoC, COR-A and COR-B domains are 

arranged as previously seen in crystal structures of the COR14, RoC-COR14,28, and LRR-RoC-

COR15 fragments of bacterial homologs of LRRK2. The N-lobe of the LRRK2RCKW kinase 

domain, in particular its αC helix, forms an extensive interaction with the COR-B domain, with 



4 
 

COR-B occupying a location reminiscent of that of Cyclin A in CDK2-Cyclin A29 (Extended Data 

Fig. 4a, c). 

The kinase in LRRK2RCKW is in an open, inactive conformation. Its activation loop is 

disordered beyond G2019, the location of one of the major familial PD mutations (G2019S) (Fig. 

1j, k and Extended Data Video 2). Thus, I2020, the location of the other familial PD mutation 

found in the activation loop (I2020T), is disordered in our structure (Fig. 1j, k and Extended Data 

Video 2). R1441 and Y1699 are the sites of three other familial PD mutations and are located at 

the RoC-COR-B interface (Fig. 1j, k and Extended Data Video 2). Y2018 of the DYG motif (DFG 

motif in other kinases) forms a hydrogen bond with the backbone carbonyl of I1933 in the N-

lobe (Extended Data Fig. 4j, k), providing a structural explanation for the hyperactivation of the 

kinase resulting from a Y2018F mutation30, which would release the activation loop. 

 A unique feature of LRRK2 is a 28-amino acid α-helix located at its extreme C-terminus, 

following the WD40 domain (Fig. 1i, l, m and Extended Data Video 3). This helix extends along 

the entire kinase domain, interacting with both its C- and N-lobes (Fig. 1l, m and Extended Data 

Video 3). Deletion of this helix resulted in an insoluble protein (Extended Data Fig.1). While a 

number of other kinases have alpha helices in the same general location as LRRK2’s C-terminal 

helix, none of those interactions are as extensive as that observed in LRRK2 (Extended Data 

Fig. 4d-i). A residue near its end (T2524) is a known phosphorylation site for LRRK231. Given 

the close proximity between T2524 and the N-lobe of the kinase domain, as well as the adjacent 

COR-B domain, we hypothesize that phosphorylation of this residue may play a role in 

regulating the kinase. Since the last two residues of the C-terminal helix are disordered in our 

structure, as is a neighboring loop in COR-B, it is possible that conditions exist where these 

regions become ordered and turn the C-terminal helix into an anchoring element that connects 

COR-B, the kinase and the WD40 domain. 

 Although our construct lacks the N-terminal half of full-length LRRK2, we were able to 

model the Leucine-Rich Repeats (LRR) by using a recent crystal structure of the LRR, RoC, and 
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COR domains of C. tepidum’s Roco protein, a bacterial homolog of LRRK215 (Extended Data 

Fig. 5a-e). Aligning the RoC and COR domains of this structure to those of LRRK2RCKW resulted 

in a good fit for the LRR, which in the model wraps around the N-lobe of the kinase and comes 

in close proximity of its C-lobe as it connects to the RoC domain (Extended Data Fig. 5a-e). This 

model places the known S1292 autophosphorylation site in the LRR in close proximity to the 

kinase’s active site, and the Crohn’s disease-related residue N2081, located in the kinase’s C-

lobe adjacent to the LRR (Extended Data Fig. 5f), suggesting the functional relevance of this 

potential interface. 

 

An atomic model of microtubule-bound LRRK2 filaments 

 

Recently, a 14Å structure of microtubule-associated filaments of full-length LRRK2 

(carrying the filament-promoting I2020T mutation13) was reported using in situ cryo-ET and 

sub-tomogram averaging21 (Fig. 2a). The LRRK2 filaments formed on microtubules were right-

handed21. The fact that microtubules are left-handed, combined with the absence of strong 

density connecting the LRRK2 filament to the microtubule surface21 raised the question of 

whether LRRK2’s interaction with microtubules is direct or is mediated by other microtubule-

associated proteins. To address this, we combined purified microtubules with purified 

LRRK2RCKW and observed them by cryo-EM. The resulting helical microtubule decoration (Fig. 

2b) suggests that the interaction between LRRK2 and microtubules is direct and that the 

catalytic C-terminal half of LRRK2 is sufficient for the formation of microtubule-associated 

filaments. 

Previously, integrative modeling was used to build a model into the in situ structure of 

microtubule-associated LRRK221. This modeling indicated that the observed density was 

comprised of the RoC, COR, Kinase and WD40 domains and gave orientation ensembles for 

each domain21 that were in good agreement with the high-resolution structure of LRRK2RCKW 
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presented here. However, given the uncertainties in the domain orientations intrinsic to the 

integrative modeling approach, we set out to build an atomic model of the microtubule-bound 

LRRK2 filaments by combining our 3.5Å structure of LRRK2RCKW with the 14Å in situ structure of 

microtubule-associated LRRK2. To guide model building, we took advantage of the 

characteristic shape of the WD40 domains, which are a prominent feature of the in situ structure 

(Fig. 2a and Extended Data Fig. 6a-c) and that a crystal structure of a WD40 dimer from LRRK2 

was recently reported18. We first replaced the WD40 domains in the crystal structure with those 

from our LRRK2RCKW structure (there are small differences between them) (Extended Data Fig. 

6a) and then docked this WD40 dimer into the sub-tomogram average density (Extended Data 

Fig. 6b). Next, we aligned the LRRK2RCKW structure to it, thus imposing the WD40 dimer 

interface from the crystal structure on our model (Extended Data Fig. 6d, e). This initial model 

revealed that the LRRK2RCKW structure is sufficient to account for the density seen in the in situ 

structure (Fig. 2a, c), in agreement with our ability to reconstitute microtubule-associated 

LRRK2RCKW filaments in vitro (Fig. 2b), and with the earlier integrative modeling21. The filaments 

formed in vitro with LRRK2RCKW lack the regular pitch and spacing observed in cells (Fig. 2a, b); 

it is possible that other factors, such as the N-terminal half of LRRK2 or the nature of 

microtubules in cells, may play a role in establishing the precise geometry of the filaments. 

Although the LRRK2RCKW structure fits the overall shape of the sub-tomogram average, 

we noticed significant clashes at the filament interface formed by the COR domains (Fig. 2d, e). 

Since the kinase in our LRRK2RCKW structure is in an open conformation (Fig. 2c), we wondered 

whether filament formation might require LRRK2's kinase to be in a closed conformation. We 

modeled a kinase-closed LRRK2RCKW by running structural searches (DALI server) with either 

the N- or C-lobes of LRRK2RCKW’s kinase and looked for a kinase in a closed conformation 

whose N- and C-lobes best matched those of LRRK2RCKW. The top candidate was Interleukin-2 

inducible T-cell kinase (ITK) (PDB: 3QGY). We aligned ITK to LRRK2RCKW using the C-lobes of 

the two kinases, and then aligned the N-lobe of LRRK2RCKW’s kinase to that of ITK, moving RoC, 
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COR-A and COR-B as a rigid body along with the kinase’s N-lobe (Fig. 2f and Extended Data 

Fig. 6f-j). We then repeated the docking into the in situ structure, this time using the model of 

kinase-closed LRRK2RCKW. In addition to improving the fit visually (Fig. 2g, h), using the kinase-

closed LRRK2RCKW model resolved more than 80% of the backbone clashes we had observed 

with our kinase-open LRRK2RCKW structure (Fig. 2i). A closed conformation for the kinase had 

already been proposed by the earlier integrative modeling21. Given this data, we hypothesize 

that the conformation of LRRK2, as driven by the kinase, controls its ability to associate with 

microtubules, with a closed kinase promoting oligomerization, which increases binding, and an 

open (inactive) one disfavoring it (Fig. 2j, k). 

The LRRK2 filaments in our kinase-closed model are formed by two types of homotypic 

interactions, each resulting in a two-fold axis of symmetry perpendicular to the microtubule axis: 

one is mediated by the WD40 domain, and the other by the COR-A and COR-B domains (Fig. 

3a-d). Similar interfaces were reported based on integrative modeling performed with the 14Å 

LRRK2 structure obtained by cryo-ET21. We wondered whether these interfaces were specific to 

the microtubule-associated form of LRRK2. Additional structures we obtained from our cryo-EM 

data showed this was not the case; in addition to the trimers we used to obtain the 3.5Å 

structure of LRRK2RCKW, grids prepared in the absence of microtubules also contained dimers 

that were mediated by the same two interfaces seen in the filaments (Fig. 3e, f and Extended 

Data Figs. 7-10). We observed these dimers under different conditions, both in the presence of 

kinase inhibitors as well as in their absence (Fig. 3e, f and Extended Data Fig. 10). All of our 

cryo-EM maps of dimers fit well the molecular models of dimers derived from the filaments, 

suggesting that the same interfaces observed off microtubules are involved in the formation of 

the microtubule-associated filaments. 

Separately, we docked LRRK2RCKW, split in half at the junction between the N- and C-

lobes of the kinase, into the cryo-EM map of a WD40-mediated dimer obtained in the presence 

of MLi-2 (Extended Data Fig. 11a-c). We docked the resulting closed-kinase model of 
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LRRK2RCKW (Extended Data Fig. 11e) into the cryo-EM maps of WD40- and COR-mediated 

dimers obtained in the presence of MLi-2 to generate molecular models of these dimers 

(Extended Data Fig. 11c, d-g). Finally, we aligned these models, in alternating order, to build a 

polymer in silico. The resulting structure was a right-handed helix with the same general 

geometric properties seen in the cellular LRRK2 filaments, indicating that those properties are 

largely encoded in the structure of LRRK2RCKW itself (Fig. 3g-i and Extended Data Fig. 11g, h). 

Docking the same two halves of LRRK2RCKW into the cryo-EM map of a monomer obtained in 

the absence of inhibitors led to a structure very similar to that obtained from the trimers, further 

confirming that formation of the trimer did not alter the conformation of LRRK2RCKW (Extended 

Data Fig. 11a, b, d, e).  

These data, along with the apparent lack of any residue-specific interactions between 

LRRK2 and the microtubule, suggest that the microtubule may be providing a surface for 

LRRK2 to oligomerize using interfaces that exist in solution. Consistent with this idea, the 

surface charge of the microtubule facing the LRRK2RCKW filament is acidic, while there are a 

number of basic patches on the LRRK2RCKW filament facing the microtubule (Extended Data Fig. 

12). The unstructured C-terminal tails of α- and β-tubulin, which were not included in the surface 

charge calculations, are also acidic. Finally, the interface in the COR-mediated dimer we 

observed for LRRK2RCKW differs from that reported for the homologous Roco protein from C. 

tepidum14,15 (Extended Data Fig. 13). While the GTPase domains interact directly in the dimer of 

the bacterial protein15, they are not involved in the dimerization interface of LRRK2 (Extended 

Data Fig. 13d, e).    

 

LRRK2RCKW inhibits kinesin and dynein motility in vitro 

 

To test our hypothesis that the conformation of LRRK2’s kinase domain regulates its 

interaction with microtubules, we needed a sensitive assay to measure the association of 
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LRRK2RCKW with microtubules and a means to control the conformation of its kinase. 

Microtubule association was monitored by measuring the effect of LRRK2RCKW on the movement 

of microtubule-based motors. We used a truncated dimeric human kinesin-1, Kif5B (“kinesin” 

here)32, which moves towards the plus ends of microtubules, and activated human cytoplasmic 

dynein-1/ dynactin/ ninein-like complexes (“dynein” here) 33, which move in the opposite 

direction. Using single-molecule in vitro motility assays (Fig. 4a) we found that low nanomolar 

concentrations of LRRK2RCKW inhibited both kinesin and dynein movement, with near complete 

inhibition achieved at 25 nM LRRK2RCKW (Fig. 4b-e). We hypothesized that LRRK2RCKW was 

acting as a roadblock for the motors. In agreement with this hypothesis, the run length of kinesin 

was reduced (Fig. 4f), while its velocity remained relatively constant (Fig. 4g). Activated 

cytoplasmic dynein-1 complexes also showed a significant reduction in run length in the 

presence of LRRK2RCKW (Fig. 4h). Thus, LRRK2RCKW robustly blocked the motility of both kinesin 

and dynein motors in vitro. 

 

Ponatinib and GZD-824 rescue motor inhibition by LRRK2RCKW in vitro 

 

Our hypothesis predicts that the closed conformation of LRRK2’s kinase domain will 

favor microtubule binding. Conversely, it predicts that conditions that stabilize the kinase in an 

open conformation will lead to decreased microtubule binding of LRRK2RCKW, resulting in relief 

of LRRK2RCKW-dependent inhibition of kinesin and dynein motility. To test these predictions, we 

searched for a Type 2 kinase inhibitor that binds tightly to LRRK2 with structural evidence that it 

stabilizes an open kinase conformation. We selected Ponatinib as our initial candidate inhibitor 

as it has a reported Ki for LRRK2 of 31 nM34, and crystal structures show it bound to RIPK235 

and IRAK4 in open conformations (Extended Data Fig. 14). We confirmed that Ponatinib also 

inhibited LRRK2RCKW by monitoring phosphorylation of the known LRRK2 substrate, Rab8a8 in 

vitro (Extended Data Fig. 15a). 
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 As our hypothesis predicted, Ponatinib rescued kinesin motility in a dose-

dependent manner at concentrations of LRRK2RCKW (25 nM) that had resulted in almost 

complete inhibition of the motors (Fig. 5a, Extended data Fig. 15b-e). We observed similar 

effects with GZD-824, a chemically-related Type 2 kinase inhibitor36 (Fig. 5a and Extended Data 

Fig. 15d, e). Our hypothesis also predicted that kinase inhibitors that stabilize the closed form of 

the kinase should be unable to rescue the motors and may even enhance the inhibitory effect of 

LRRK2RCKW by increasing its interaction with microtubules. Indeed, the LRRK2-specific Type 1 

inhibitors MLi-237,38 and LRRK2-IN-139, which are known40 or expected37 to stabilize a closed 

conformation of the kinase, further enhanced the inhibitory activity of LRRK2RCKW on kinesin 

motility (Fig. 5a). As was the case with Ponatinib, GZD-824, MLi-2 and LRRK2-IN-1 all inhibited 

phosphorylation of Rab8a by LRRK2RCKW (Extended Data Fig. 15a). Similar to kinesin, dynein 

motility was rescued by Ponatinib and GZD-824, but not MLi-2 or LRRK2-IN-1 (Fig. 5b and 

Extended Data Fig. 15d, f). These data suggest that the effects of LRRK2 kinase inhibitors on 

microtubule-based motility should be taken into account when designing LRRK2-targeted PD 

therapeutics. 

 

GZD-824 reduces filament formation in cells 

 

In cells, LRRK2 forms filaments that colocalize with a subset of microtubules and are 

sensitive to the microtubule depolymerizing drug nocodazole13. This association is enhanced 

by the PD-linked mutations R1441C, R1441G, Y1699C and I2020T13,41 and by Type 1 kinase 

inhibitors39,42. We tested our kinase conformation hypothesis in 293T cells by determining if 

Type 1 and Type 2 kinase inhibitors had opposite effects on the formation of cellular 

microtubule-associated LRRK2 filaments. Consistent with previous findings, the Type 1 inhibitor 

MLi-2 enhanced LRRK2’s-microtubule association (Fig. 5c, d), suggesting that the closed 

conformation of the kinase favors binding to microtubules in cells. In contrast, we found that the 
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Type 2 inhibitor GZD-824 reduced the filament-forming ability of overexpressed LRRK2 

(carrying the mutation I2020T; Fig. 5e, f). This reduction in LRRK2 filament formation was not 

due to changes in LRRK2 protein expression levels (Extended Data Fig. 16a, b) or the overall 

architecture of the microtubule cytoskeleton (Extended Data Fig. 16c). 

 

CONCLUSIONS 

 

Here we reported the 3.5Å structure of the catalytic half of LRRK2 (LRRK2RCKW), where 

most major PD-linked mutations are located. Our model represents the first structure of a large 

portion of human LRRK2 with sufficient resolution to yield molecular information about LRRK2’s 

activity and its regulation. LRRK2RCKW is J-shaped, which brings its GTPase (RoC domain) and 

kinase in close proximity despite their separation along the linear sequence of LRRK2. The 

direct contact we observe between the C-lobe of the kinase and COR-A, which is closely 

associated with the GTPase, provides a structural context for the cross-talk between these two 

catalytic domains (reviewed in26). Our cryo-EM structure, obtained in the absence of kinase 

inhibitors, shows the kinase in an open (inactive) conformation. A unique feature of the structure 

is a long alpha helix located at the C-terminus of LRRK2, following the WD40 domain. Running 

along the long axis of the kinase domain, this helix has multiple interactions with both its N- and 

C-lobes. Given these interactions, and the presence of a known phosphorylation site near its 

end (T2524)31, it is likely that this helix plays an important role in regulating LRRK2’s kinase 

activity. 

Our ability to generate microtubule-associated LRRK2RCKW filaments using purified 

components demonstrates that these filaments can form in the absence of other proteins and 

that the C-terminal half of LRRK2 is sufficient for their assembly. This is also in agreement with 

the observation that our LRRK2RCKW structure accounts for the filament density observed in a 

recent 14Å structure of LRRK2-microtubule associated filaments in cells obtained by cryo-ET21. 
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We used the high-resolution structure of LRRK2RCKW, in combination with the 14Å in situ 

structure21, to build an atomic model of the microtubule-associated LRRK2 filaments. Docking of 

our LRRK2RCKW structure, with its open kinase domain, into the microtubule-associated in situ 

structure led to significant steric clashes. These clashes were largely resolved by modeling 

LRRK2’s kinase in a closed conformation, leading us to hypothesize that the conformation of 

LRRK2’s kinase controls its association with microtubules, with a closed conformation favoring 

its oligomerization on microtubules (Fig. 5g). In our model of microtubule-associated 

LRRK2RCKW filaments, the filaments form through head-head and tail-tail interactions involving 

either the COR or WD40 domains of LRRK2. Formation of these interfaces does not require 

LRRK2 to interact with microtubules, as we obtained lower resolution cryo-EM structures of both 

types of LRRK2RCKW dimers in the absence of microtubules. In addition, aligning atomic models 

of these dimers in silico resulted in a right-handed filament with similar geometric properties to 

the LRRK2 filaments observed in cells21. Thus, the ability of LRRK2 to form filaments is a 

property inherent to LRRK2, and specifically the RCKW domains. Since LRRK2RCKW exists both 

as a monomer and dimer in solution, it remains to be determined what the minimal filament-

forming unit is. We propose that the surface charge complementarity between the microtubule 

and LRRK2, as well as the size and shape of the microtubule stimulates the formation of LRRK2 

filaments.  

We tested the model that the conformation of LRRK2’s kinase regulates microtubule 

association both in vitro and in cells using kinase inhibitors that are known or expected to 

stabilize either the open (Type 2) or closed (Type 1) kinase conformations. In support of our 

model, Type 2 inhibitors relieved the LRRK2RCKW-dependent inhibition of the microtubule-based 

motors kinesin and dynein and reduced LRRK2 filament formation in cells, while Type 1 

inhibitors failed to rescue the motors and enhanced filament formation in cells. In contrast to our 

structural studies, which used high concentrations of LRRK2RCKW (cryo-EM) or overexpressed 

LRRK2 in cells (cryo-ET), our single-molecule motility assays showed that low nanomolar 
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concentrations of LRRK2RCKW negatively impact the microtubule-based motility of both kinesin 

and dynein in vitro. At these low concentrations it is likely that LRRK2 would not form the long, 

highly ordered filaments and microtubule bundles observed in cells overexpressing the protein; 

instead, we hypothesize that at endogenous expression levels in cells LRRK2 forms short 

stretches of filaments on microtubules.  

Our data showing that increasing concentrations of LRRK2RCKW dramatically shorten the 

distance kinesin moves (run length), without affecting its velocity suggest that LRRK2 acts as a 

roadblock. Other microtubule-associated proteins (MAPs), such as MAP2 and Tau, also inhibit 

kinesin motors43 (bioRxiv 10.1101/731604). In contrast to kinesin, dynein is largely unaffected 

by MAP2 and Tau43 (bioRxiv 10.1101/731604), likely due to its ability to sidestep to adjacent 

protofilaments44-46. LRRK2’s unusual ability to inhibit dynein motility may be a consequence of 

its forming oligomers that block dynein’s sidestepping.  

 What is the physiological role of non-pathogenic microtubule-associated LRRK2? 

Our data show that low nanomolar concentrations of LRRK2 act as a roadblock for microtubule-

based motors. Dynein and kinesin have been shown to bind directly or indirectly to many Rab-

marked cargos47-51. Our data also show that the microtubule-associated form of LRRK2 has its 

kinase in a closed (and potentially active) conformation. Given this, it is possible that when 

microtubule-associated LRRK2 stalls the movement of kinesin and dynein, this increases the 

likelihood that LRRK2 will phosphorylate cargo-associated Rab GTPases on their switch 2 

region8, ultimately leading to effector dissociation8 and cargo release. This scenario suggests 

that increased microtubule binding by LRRK2 carrying PD mutations could (1) block membrane 

transport driven by molecular motors by acting as a roadblock, (2) lead to increased 

phosphorylation of physiological microtubule-associated substrates and/or phosphorylation of 

non-physiological substrates, or (3) a combination of the first two points. In support of this idea, 

the four familial PD mutations that enhance LRRK2 microtubule binding13 also show higher 

levels of Rab GTPase phosphorylation in cells than the G2019S LRRK2 mutant8,9,52, whose 
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microtubule binding is not enhanced over wild-type LRRK213. Testing this and other models is 

an important future direction to understand the cell biological function of both wild-type and 

pathogenic LRRK2. 

Regardless of what role LRRK2’s binding to microtubules plays in PD, our data have 

important implications for the design of LRRK2 kinase inhibitors for therapeutic purposes. Our 

data predict that treatment with inhibitors that promote binding of LRRK2 to microtubules by 

favoring a closed conformation of its kinase will block microtubule-based trafficking, while 

inhibitors that favor an open conformation of the kinase will not. 

Chapter 1, in full, is a reprint of material as it appears in Parkinson’s Disease-Linked 

LRRK2 Structure and Model for Microtubule Interaction, 2020. Colin K. Deniston, John 

Salogiannis, Sebastian Mathea, David M. Snead, Indarjit Lahiri, Oscar Donosa, Reika 

Watanabe, Jan Böhning, Andrew K. Shiau, Stefan Knapp, Elizabeth Villa, Samara L. Reck-

Peterson, Andres E. Leschziner., Nature, 2020. The dissertation author was a co-author of this 

paper. 

 

METHODS 

 

Cloning, plasmid construction, and mutagenesis 

 

For baculovirus expression, the DNA coding for the LRRK2 residues 1327 to 2527 

(taken from Mammalian Gene Collection) was PCR-amplified using the forward primer 

TACTTCCAATCCATGAAAAAGGCTGTGCCTTATAACCGA and the reverse primer 

TATCCACCTTTACTGTCACTCAACAGATGTTCGTCTCATTTTTTCA. The T4 polymerase-

treated amplicon was inserted into the expression vector pFB-6HZB by ligation-independent 

cloning. According to Bac-to-Bac expression system protocols (Invitrogen), this plasmid was 

used for the generation of recombinant Baculoviruses. 
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For mammalian expression vectors, pDEST53-GFP-LRRK2 (WT)56 from Addgene 

(#25044) was used. pDEST53-GFP-LRRK2 (I2020T) was cloned using QuikChange site-

directed mutagenesis (Agilent) with the forward primer 

AAGATTGCTGACTACGGCACTGCTCAGTACTGCTG and the reverse primer 

CAGCAGTACTGAGCAGTGCCGTAGTCAGCAATCTT. pET17b-Kif5b(1-560)-GFP-His57 was 

obtained from Addgene (#15219). For pET28a-ZZ-TEV-Halo-NINL1-702, Ninein-like1-702 

(NINL) was synthesized as previously described33 and inserted into a pET28a expression vector 

with a synthesized ZZ-TEV-Halo gBlock fragment (IDT) using Gibson assembly. 

 

LRRK2RCKW expression and purification 

 

The expression construct contained an N-terminal His6-Z-tag, cleavable with TEV 

protease (Extended Data Fig. 1). For LRRK2RCKW purification, the pelleted Sf9 cells were 

washed with PBS, resuspended in lysis buffer (50 mM HEPES pH 7.4, 500 mM NaCl, 20 mM 

imidazole, 0.5 mM TCEP, 5% glycerol, 5 mM MgCl2, 20 μM GDP) and lysed by sonication. The 

lysate was cleared by centrifugation and loaded onto a Ni-NTA (Qiagen) column. After vigorous 

rinsing with lysis buffer the His6-Z tagged protein was eluted in lysis buffer containing 300 mM 

imidazole. Immediately thereafter, the eluate was diluted with a buffer containing no NaCl, in 

order to reduce the NaCl-concentration to 250 mM and loaded onto an SP sepharose column. 

His6-Z-TEV-LRRK2RCKW was eluted with a 250 mM to 2.5 M NaCl gradient and treated with TEV 

protease overnight to cleave the His6-Z-tag. Contaminating proteins, the cleaved tag, uncleaved 

protein and TEV protease were removed by another combined SP sepharose Ni-NTA step. 

Finally, LRRK2RCKW was concentrated and subjected to gel filtration in storage buffer (20 mM 

HEPES pH 7.4, 800 mM NaCl, 0.5 mM TCEP, 5% glycerol, 2.5 mM MgCl2, 20 μM GDP) using 
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an AKTA Xpress system combined with an S200 gel filtration column. The final yield as 

calculated from UV absorbance was 1.2 mg LRRK2RCKW/L insect cell medium. 

 

SEC-MALS 

 

SEC-MALS experiments were performed using an ÄKTAmicro chromatography system 

hooked up to a Superdex 200 Increase 3.2/300 size exclusion chromatography column coupled 

in-line to a DAWN HELEOS II multiangle light scattering detector (Wyatt Technology) and an 

Optilab T-rEX refractive index detector (Wyatt Technology). SEC-MALS was performed in 50 

mM Hepes pH 7.4, 200 mM NaCl 0.5 mM TCEP, 5% glycerol, 5 mM MgCl2, and 20 μM GDP. 

For a typical sample, 50 uL of ~7 μM LRRK2RCKW was injected onto the column. Molar mass 

was calculated using ASTRA 6 software, with protein concentration derived from the Optilab T-

rEX. LRRK2RCKW used for SEC-MALS experiments contained an extra 16 residue N-terminal 

Gly-Ser linker sequence.   

 

Electron microscopy 

 

Electron microscopy sample preparation and imaging of trimer dataset 

 

Purified LRRK2RCKW was dialyzed into a final buffer consisting of 20mM HEPES pH7.4, 

80mM NaCl, 0.5mM TCEP, 5% glycerol, 2.5mM MgCl2 and 20μM GDP and then diluted to a 

final concentration of 4μM in the same buffer. This sample was applied to glow-discharged 

(20mA for 20s in a K100 Instrument) UltrAuFoil Holey Gold R 1.2/1.3 grids (Quantifoil). A 

Vitrobot (FEI) was then used to blot away excess sample and plunge freeze the grids in liquid 

ethane. Grids were stored in liquid nitrogen until imaged. 
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Cryo-EM data was collected at UCLA California NanoSystems Institute in a Titan Krios 

(FEI) operated at 300kV, equipped with a K2 Summit direct electron detector (Gatan) and a 

Quantum energy filter (Gatan). Automated data collection was performed using Leginon58. We 

recorded a total of 3,824 movies in ‘counting mode’ at a dose rate of 6.65 electrons Å-2 sec-1 

with a total exposure time of 8s sub-divided into 200ms frames, for a total of 40 frames. The 

images were recorded at a nominal magnification of 130,000x resulting in an object pixel size of 

1.07Å. The defocus range of the data was -1μm to -1.8μm. 

 

Electron microscopy map and model generation of trimer dataset 

 

We aligned the movie frames using UCSF MotionCor259, using the dose-weighted frame 

alignment option. We estimated the CTF on dose-weighted images using GCTF version 1.0660 

as implemented in Appion61 with per-particle CTF generation. Images having CTF fits worse that 

5Å (as determined by GCTF) were excluded from further processing. Using this approach, 

3,693 micrographs were kept for further processing. We selected particles from micrographs 

using FindEM62 with projections of a trimeric LRRK2RCKW map, created from an initial Cryosparc 

ab initio model generation, serving as a reference. Particle picking was performed within the 

framework of Appion, resulting in a data set of 836,956 particles. 

We carried out subsequent processing first in Relion 3.063 then in CryoSparc264. A series 

of 2D and 3D classifications were performed as shown in Extended Data Fig. 2c to generate the 

final map. The initial reference was created in a similar manner to those used for template 

picking, from an initial ab initio model generated in Cryosparc. All references were filtered to 

either 60Å (default in Relion) or 30Å (default in CryoSparc) before refinement processes. The 

final map, generated in Cryosparc2 using non-uniform refinement and while applying C3 

symmetry, reached 3.47Å resolution. Initial 2D classifications used binned data (4.28Å pixel-1) 



18 
 

while all subsequent 3D classifications and refinement steps used unbinned images (1.07Å 

pixel-1).  

In order to improve the density corresponding to the RoC and COR-A domains, a 

second map was generated following a different processing scheme, which used signal 

subtraction and is shown in Extended Data Fig. 2f. The final refinement led to a 3.8Å map of 

LRRK2RCKW. All the steps used unbinned images (1.07Å pixel-1).  

The resolutions of the cryo-EM maps, here and below, were estimated from Fourier 

Shell Correlation (FSC) curves calculated using the gold-standard procedure and the 

resolutions are reported according to the 0.143 cutoff criterion65,66. FSC curves were corrected 

for the convolution effects of a soft mask applied to the half maps by high-resolution phase 

randomization67. For display and analysis purposes, we sharpened the maps with automatically 

estimated negative B factors from Relion63 or CryoSparc264.  

We built the LRRK2RCKW models using both the 3.47Å C3 and 3.8Å density-subtracted 

maps. We used a combination of Rosetta22 and manual building in Coot68 to build all models. 

Starting models were found via a sequence alignment search in HHpred69 and the top 5 results 

for each domain were used in the initial fitting of the backbone. We built the COR-B, KIN, and 

WD40 domains using the density of the 3.47Å C3 map and the RoC and COR-A domains using 

the 3.8Å map, then connected the two after fitting them into the 3.8Å map. Finally, we performed 

multiple iterations of both the CM and Relax functions in Rosetta, along with manual 

manipulation in Coot, to build our final 20 models (10 including GDP-Mg2+ in the RoC domain, 

and 10 excluding it). In areas of weak density, we either removed part of the polypeptide chain 

or, where only side chain density was poor, converted the chain to poly-alanine.  

The GDP-Mg2+ was placed in our model by initially aligning a structure of the RoC 

domain containing a bound GDP-Mg2+ (PDB: 2zej)17 to the RoC domain in our structure. The 

GDP-Mg2+ was then added to our model in the aligned position and run through Rosetta to allow 

for fine movements into our density and re-arrangement of nearby chains.  
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The phosphorylation of the threonine residue 1343, which we observe in our map and is 

a known phosphorylation site of Roco family GTPases70, was confirmed by phosphor-

enrichment mass spec (data not shown). 

  

Electron microscopy sample preparation, imaging, and processing of apo, MLi2, Ponatinib 

LRRK2RCKW monomer/dimers 

 

For all samples, purified LRRK2RCKW was dialyzed into the same final buffer as described 

for the trimer data, then diluted to its final concentration in the same buffer. Unlike with the 

trimer data, however, the following datasets were collected from multiple grids prepared using 

slightly different sample conditions and imaged using a range of microscope settings.  

The apo LRRK2RCKW monomer dataset had sample diluted to final concentrations 

ranging between 1μM and 6μM. In addition, one dataset was collected with the grid tilted to 30o 

to overcome preferred orientation issues. Otherwise, grids were prepared as described for the 

trimer dataset. 

The apo LRRK2RCKW dimer dataset had sample diluted to final concentrations ranging 

between 4μM and 12μM. Two of the samples contained 0.05mM Digitonin (Sigma, D141) or 

0.03% octyl glucoside (Sigma, O8001) detergents to overcome preferred orientation issues. 

One dataset was collected with the grid tilted to 30o, also to overcome preferred orientation 

issues. Otherwise, grids were prepared as described for the trimer dataset. 

The MLi-2 LRRK2RCKW dimer dataset had sample diluted to final concentrations of either 

3μM or 4μM. MLi-2 was added post-dialysis to a final concentration of 5μM. The sample was 

incubated on ice for at least one hour before being applied to the grid. Otherwise, grids were 

prepared as described for the trimer dataset. 

The ponatinib LRRK2RCKW dimer dataset had sample diluted to final concentrations of 

2μM or 4μM. Ponatinib was added post-dialysis at a concentration of either 5μM or 100μM. The 
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sample was incubated on ice for at least one hour before being applied to the grid. Otherwise, 

grids were prepared as described for the trimer dataset. 

The apo LRRK2RCKW monomer cryo-EM data was collected on a Talos Arctica (FEI) 

operated at 200kV, equipped with a K2 Summit direct electron detector (Gatan). Automated 

data collection was performed using Leginon58. A total of 11,354 movies were collected. We 

imaged samples at dose rates between 4.2 and 10 electrons Å-2 sec-1 with total exposure times 

ranging from 6s to 12s sub-divided into 200ms frames, for a total of 30 or 60 frames. All the 

images were recorded at nominal magnification of 36,000x (either counting or super resolution 

mode) resulting in object pixel sizes of either 1.16Å or 0.58Å, respectively. The defocus range of 

the data was -1μm to -2μm.  

Frame alignment, CTF estimation and image selection were performed as described for 

the trimer dataset except that per-particle CTF was not used, instead the CTF information of the 

whole image was used. After selection we had 7,067 micrographs. Particles were extracted 

using crYOLO71. We carried out subsequent processing in CryoSparc264 on binned images 

(2.32Å pixel-1). 

A series of 2D and 3D classifications were performed as shown in Extended Data Fig. 8 

to generate the final map. The initial monomer reference, used for refinement of the monomer 

map, was generated from our LRRK2RCKW model. The initial dimer references, used for particle 

sorting, were generated as shown in Extended Data Fig. 7. All references were filtered to 30Å, 

the default value in CrypSparc2, before refinement processes. This final map reached a 

resolution of 8.08Å using non-uniform refinement.  

The apo LRRK2RCKW dimer cryo-EM data was collected as described for the apo 

LRRK2RCKW monomer. A total of 5,303 movies were collected. We imaged samples at dose 

rates between 4.6 and 7.8 electrons Å-2 sec-1 with total exposure times ranging between 7s and 

11s sub-divided into 200ms frames, for a total of 35 or 55 frames. All the images were recorded 

at nominal magnification of 36,000x (either counting mode or super resolution mode) resulting in 
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object pixel sizes of either 1.16Å or 0.58Å, respectively. The defocus range of the data was -

1μm to -2μm.  

Frame alignment, CTF estimation, image selection, and particle picking were performed 

as described for the apo LRRK2RCKW monomer. After selection we had 3,100 micrographs. We 

carried out subsequent processing in CryoSparc264 on binned images (2.32Å pixel-1). 

The classification and refinement scheme for the apo LRRK2RCKW WD40- and COR-

mediated dimer maps is shown in Extended Data Fig. 8. The same initial dimer references used 

for the apo LRRK2RCKW monomer, filtered to the same resolution, were used here for refinement 

of the dimer maps. In addition, a linear trimer reference, generated from stitching together the 

two initial dimer references and filtered to the same resolution, was used during the initial 3D 

classification step to sort out oligomers longer than two subunits which harm downstream 

alignment. The final maps had resolutions of 13.39Å (WD40-mediated dimer) and 9.52Å (COR-

mediated dimer) with C2 symmetry applied to both.  

The MLi-2 LRRK2RCKW dimer cryo-EM data was collected as described for the apo 

LRRK2RCKW monomer. We recorded a total of 4,139 movies. We imaged all datasets at a dose 

rate of 5.5 electrons Å-2 sec-1, with total exposure times of either 9s or 10s sub-divided into 

200ms frames, for a total of 45 or 50 frames. All the images were recorded at a nominal 

magnification of 36,000x (counting mode) resulting in object pixel sizes of 1.16Å. The defocus 

range of the data was -1μm to -2μm.   

Frame alignment, CTF estimation, image selection, and particle picking were performed 

as described for the apo LRRK2RCKW monomer. After selection, 4,030 micrographs were kept for 

further processing. Processing was done in Relion 3.063 then CryoSparc264 using binned 

images (2.32Å pixel-1). 

The classification and refinement scheme for the MLi-2 LRRK2RCKW WD40- and COR-

mediated dimer maps is shown in Extended Data Fig. 9. The same references used for the apo 

LRRK2RCKW dimers, and filtered to the same resolution, were used here for the same purposes. 
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The final maps had resolutions of 9.74Å (WD40-mediated dimer) and 9.04Å (COR-mediated 

dimer), with no symmetry applied. 

The Ponatinib LRRK2RCKW dimer cryo-EM data was collected as described for the apo 

LRRK2RCKW monomer.  We recorded a total of 1,797 movies. We imaged all dose rates of either 

5.5 or 9.7 electrons Å-2 sec-1 with total exposure times of 7s or 10s sub-divided into 200ms 

frames, for a total of 35 or 50 frames. All the images were recorded at a nominal magnification 

of 36,000x (counting mode) resulting in object pixel sizes of 1.16Å. The defocus range of the 

data was -1μm to -2μm.  

Frame alignment, CTF estimation, image selection, and particle picking were performed 

as described for the apo LRRK2RCKW monomer. 1,455 micrographs were kept for further 

processing. Processing was done in CryoSparc264 on binned images (2.32Å pixel-1). Ponatinib 

LRRK2RCKW dimer particles were sorted via 3D and 2D classification leading to the final 2D 

averages shown in Extended Data Fig. 10. 

 

Electron microscopy sample preparation and imaging of microtubule-bound LRRK2RCKW 

 

Purified LRRK2RCKW was dialyzed into the same buffer used for the trimer dataset with 

the addition of 20μM Taxol and then diluted to a final concentration of 3μM in the same buffer. 

Microtubules, made as previously described57, were then added to a final concentration of 3μM 

(tubulin dimer concentration). The mixture was incubated at room temperature for a minimum of 

5 minutes before being applied to the grid. Grids were prepared as described for the trimer 

dataset except that Quantifoil C-flat 1.2/1.3 carbon open hole grids were used.  

 Cryo-EM data was collected on a Talos Arctica (FEI) operated at 200kV, equipped with a 

K2 Summit direct electron detector (Gatan) using Leginon58. We recorded a total of 10 movies. 

We imaged at a dose rate of 7.9 electrons Å-2 sec-1 with a total exposure time of 7s sub-divided 

into 200ms frames, for a total of 45 frames. All the images were recorded at a nominal 
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magnification of 36,000x (super resolution mode) resulting in object pixel sizes of 0.58Å. The 

defocus range of the data was -1μm to -2μm. Images were aligned using MotionCor259.  

 

Building the molecular model of microtubule-associated LRRK2RCKW filaments 

 

Given that the WD40 densities are clearly identifiable in the sub-tomogram average of 

microtubule (MT)-associated LRRK2, we used these as a starting point for docking the structure 

of LRRK2RCKW into the cryo-ET map. First, a synthetic dimer of the WD40 domains from the 

LRRK2RCKW structure was generated by aligning them to a crystal structure of the isolated 

WD40 domain, which formed a dimer in the crystal (PDB: 6DLP)18. This synthetic dimer was 

then docked into the sub-tomogram average in Chimera, using the Fit in Map function with the 

options of filtering the structure to the resolution of the map (14Å) and optimizing correlation. A 

WD40 dimer was placed into each of the two corresponding densities present in the map. Then, 

four copies of the LRRK2RCKW structure were added by aligning their WD40 domains to those 

previously docked into the sub-tomogram average. The same procedure was followed to build 

the filament using the “closed” kinase model of LRRK2RCKW (see section below for how that 

model was generated). 

Backbone clashes at the COR-mediated interface in the model filament were measured 

in Chimera (with default settings) after converting the four LRRK2RCKW monomers to poly-

alanine models. 

 

Modeling a “closed” kinase version of LRRK2RCKW 

 

In order to identify a good reference to model the closed state of LRRK2RCKW’s kinase, 

we ran separate structural searches (using the DALI server) with the N- and C-lobes of 

LRRK2RCKW’s kinase domain. We looked through the matches for a kinase that scored highly 
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with both lobes, and whose structure is in a closed state. We selected Interleukin-2 inducible T-

cell kinase (Itk) bound to an inhibitor as our reference (PDB: 3QGY)54. 

 LRRK2RCKW was split at the junction between the N- and C-lobes of its kinase domain 

(L1949-A1950), resulting in one half containing the RoC, COR, and kinase (N-lobe) domains 

and another containing the kinase (C-lobe) and WD40 domains. The C-lobe of 3QGY was then 

aligned (in Chimera) to the C-lobe of LRRK2RCKW’s kinase domain, and subsequently the N-lobe 

of LRRK2RCKW’s kinase was aligned to the N-lobe of 3QGY. The two halves were then combined 

to generate the “closed” kinase model of LRRK2RCKW. 

 

Docking of LRRK2RCKW into cryo-EM maps of monomers and dimers 

 

In order to build models of WD40- and COR-mediated dimers of LRRK2RCKW in the 

presence of MLi-2, we again split LRRK2RCKW at the junction between the N- and C-lobes 

(L1949-A1950). The two halves were fitted into one half of the cryo-EM map of a WD40-

mediated dimer of LRRK2RCKW obtained in the presence of MLi-2 (we chose this map as its 

resolution was higher than that of the COR-mediated dimer). We also docked the two halves of 

LRRK2RCKW into a cryo-EM map of a LRRK2RCKW monomer obtained in the absence of inhibitor. 

The fitting was done in Chimera using the Fit in Map function with the options of filtering the 

structure to the resolution of the map and optimizing correlation. The two halves were then 

joined to generate a full model of LRRK2RCKW. 

 The WD40- and COR-mediated dimers of LRRK2RCKW in the presence of MLi-2 were 

built by docking the models built above into the corresponding cryo-EM maps, using the same 

approach in Chimera as outlined above. 

 The LRRK2RCKW “filament” shown in Extended Data Fig. 11 was generated by aligning, 

in alternating order, multiple copies of the two dimer models (WD40- and COR-mediated) built 

into the cryo-EM maps obtained in the presence of MLi-2. 
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Kinase inhibitors  

 

Stocks of the kinase inhibitors MLi-2 (10 mM; Tocris), Ponatinib (10 mM; ApexBio), 

GZD-824 (10 mM; Cayman Chemical), and LRRK2-IN-1 (2 mM; Michael J Fox Foundation) 

were stored in DMSO at -20 C.  

 

Antibodies 

 

All antibodies used for immunocytochemistry were diluted to 1:500. Primary antibodies 

used were chicken anti-GFP (Aves Labs) and rabbit anti-alpha-tubulin (ProteichTech). 

Secondary antibodies used were goat anti-chicken-Alexa 488 (ThermoFisher) and goat anti-

chicken Alexa568 (ThermoFisher). DAPI was used at 1:5000 according to the manufacturers 

suggestions (ThermoFisher). Primary antibodies used for Western blots were mouse anti-GFP 

(Santa Cruz, 1:1000 dilution) mouse anti-GAPDH (ProteinTech, 1:5000 dilution) and mouse 

anti-gamma-tubulin (ProteinTech, 1:5000 dilution).  Secondary antibodies (1:15,000) used for 

Western blots were IRDye goat anti-mouse 680RD and IRDye goat anti-rabbit 780RD (Li-COR).  

 

Rab8a expression and purification 

 

N-terminally tagged (His6-ZZ) Rab8a containing a TEV cleavage site was cloned into a 

PET28a expression vector and expressed in BL21(DE3) E. coli cells. Transformed cells were 

grown overnight at 37ºC in 10 mL LB medium containing kanamycin (50 µg/ml), then diluted into 

200 mL LB medium containing kanamycin (50 µg/ml), grown to an optical density at 600 nm of 

~1-2, diluted into 4 L LB medium containing kanamycin (50 µg/ml), and grown to an optical 

density at 600 nm of 0.4. IPTG was added (final concentration 0.5 mM) to induce protein 
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expression for ~18 hours at 18ºC. Cells were harvested by centrifugation at 8983 x g for 10 min 

at 4ºC, followed by resuspension in 15 mL LB medium and centrifugation at 2862 x g for 10 min 

at 4ºC. The cell pellet was flash frozen in liquid nitrogen and stored at -80ºC. For a typical 

protein purification, cell pellets were resuspended in lysis buffer (50 mM HEPES pH 7.4, 200 

mM NaCl, 2 mM DTT, 10% glycerol, 5 mM MgCl2, 0.5 mM Pefabloc, and protease inhibitor 

cocktail tablets) and lysed by sonication on ice. The lysate was clarified by centrifugation at 

164,700 x g for 40 mins at 4ºC and then incubated with Ni-NTA agarose beads (Qiagen) for 1 

hour at 4ºC. Beads were extensively washed with wash buffer (50 mM HEPES pH 7.4, 150 mM 

NaCl, 2 mM DTT, 10% glycerol, 5 mM MgCl2); His6-ZZ-Rab8a was eluted in 40 mL elution 

buffer (50 mM HEPES pH 7.4, 150 mM NaCl, 300 mM imidazole, 2 mM DTT, 10% glycerol, 5 

mM MgCl2). The protein eluate was diluted 2 fold in wash buffer, incubated with IgG sepharose 

6 fast flow beads equilibrated in wash buffer, incubated at 4ºC for 2.5 hours, and washed 

extensively in wash buffer. Protein-bound IgG beads were then transferred into TEV buffer (50 

mM HEPES pH 7.4, 200 mM NaCl, 2 mM DTT, 10% glycerol, 5 mM MgCl2), and untagged 

Rab8a was cleaved off of IgG sepharose beads by incubation with TEV protease at 4ºC 

overnight. The next day, cleaved Rab8a was separated from His6-TEV protease and any 

remaining uncleaved protein or residual tag by incubation with Ni-NTA agarose beads (Qiagen), 

followed by washing with TEV buffer containing 25 mM imidazole. Lastly, purified Rab8a was 

run over a Superdex 200 increase 10/300 size exclusion column equilibrated in S200 buffer (50 

mM HEPES pH 7.4, 200 mM NaCl, 2 mM DTT, 1% glycerol, 5 mM MgCl2), and concentrated 

and exchanged into buffer containing 10% glycerol for storage at -80ºC.  

 

In vitro phosphorylation of Rab8a by LRRK2RCKW 

 

Purified Rab8a (~3.8 μM) was phosphorylated by LRRK2RCKW (~38 nM) in a buffer 

containing 50 mM HEPES pH 7.4, 80 mM NaCl, 10 mM MgCl2, 0.5 mM TCEP, 1 mM ATP, 200 
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μM GDP); 34 μL reaction mixtures containing kinase inhibitor or an equivalent volume DMSO 

were incubated at 30ºC, and samples were taken at 45 mins, and 90 mins. An effective reaction 

volume of 0.75 μL was run on a 4-12% Bis-Tris protein gel, transferred to nitrocellulose, and 

blotted with a commercially available antibody to pT72-Rab8a (MJFF-pRab8) as previously 

described72 and per manufacturer’s instructions, with the exception that HRP-labeled secondary 

antibody was used at a dilution of 1:2000.   

 

Purification of molecular motors 

 

Protein purification steps were done at 4°C unless otherwise indicated. Human KIF5B1-

560 (K560)-GFP was purified from E. coli using an adapted protocol previously described73. 

pET17b-Kif5b(1-560)-GFP-His was transformed into BL-21[DE3] RIPL cells (New England 

Biolabs) until OD 0.6-0.8 and expression was induced with 0.5 mM IPTG for 16 hr at 18°C. 

Frozen pellets from 2 L culture were resuspended in 40 mL lysis buffer (50 mM Tris, 300 mM 

NaCl, 5 mM MgCl2, and 0.2 M sucrose, pH 7.5) supplemented with 1 cOmplete EDTA-free 

protease inhibitor cocktail tablet (Roche) per 50 mL and 1 mg/mL lysozyme. The resuspension 

was incubated on ice for 30 min and lysed by sonication. Sonicate was supplied with 10 mM 

imidazole and 0.5 mM PMSF and clarified by centrifuging at 30,000 x g for 30 min in Type 70 Ti 

rotor (Beckman). The clarified supernatant was incubated with 5 mL Ni-NTA agarose (Qiagen) 

and rotated in a nutator for 1 hr. The mixture was washed with 30 mL wash buffer (50 mM Tris, 

300 mM NaCl, 5 mM MgCl2, 0.2 M sucrose, and 20 mM imidazole, pH 7.5.) by gravity flow. 

Beads were resuspended in elution buffer (50 mM Tris, 300 mM NaCl, 5 mM MgCl2, 0.2 M 

sucrose, and 250 mM imidazole, pH 8.0), incubated for 5 mins, and eluted stepwise in 0.5 mL 

increments. Peak fractions were combined and buffer exchanged on a PD-10 desalting column 

(GE Healthcare) equilibrated with storage buffer (80 mM PIPES, 2 mM MgCl2, 1 mM EGTA, and 

0.2 M sucrose, pH 7.0). From this, peak fractions of motor solution were either flash frozen at -
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80°C until further use or immediately subjected to microtubule bind and release purification. A 

total of 1 mL motor solution was incubated with 1 mM AMP-PNP and 20 µM taxol on ice for 5 

mins and warmed to room temperature (RT). For microtubule bind and release, polymerized 

bovine brain tubulin was centrifuged through a glycerol cushion (80 mM PIPES, 2 mM MgCl2, 1 

mM EGTA, and 60 % glycerol (v/v) with 20 µM taxol and 1 mM DTT) and resuspended as 

previously described32 was incubated with motor solution in the dark for 15 mins at RT. The 

Motor-microtubule mixture was laid on top of a glycerol centrifuged in a TLA120.2 rotor at 

278,835 x g for 12 min at RT. Final pellet (Kinesin-bound microtubules) was washed with 

BRB80 (80 mM PIPES, 2 mM MgCl2, and 1 mM EGTA, pH 7.0) and incubated in 100 µL of 

release buffer (80 mM PIPES, 2 mM MgCl2, 1 mM EGTA, and 300 mM KCl, pH ~7 with 5mM 

Mg-ATP) for 5 mins at RT. The supernatant was supplied with 660 mM sucrose and flash 

frozen. A typical kinesin prep yielded ~0.5 to 1 µM K560-GFP dimer. 

Human dynactin was purified from stable cell lines expressing p62-Halo-3xFlag as 

described previously74. Briefly, cells were collected from 160 x 15 cm plates and resuspended in 

80 mL of dynactin-lysis buffer (30 mM HEPES [pH 7.4], 50 mM potassium acetate, 2 mM 

magnesium acetate, 1 mM EGTA, 1 mM DTT, 10% (v/v) glycerol) supplemented with 0.5 mM 

Mg-ATP, 0.2% Triton X-100 and 1 cOmplete EDTA-free protease inhibitor cocktail tablet 

(Roche) per 50 mL and rotated slowly for 15 min. The lysate was clarified by centrifuging at 

66,000 x g for 30 min in Type 70 Ti rotor (Beckman). The clarified supernatant was incubated 

with 1.5 mL of anti-Flag M2 affinity gel (Sigma-Aldrich) overnight on a roller. The beads were 

transferred to a gravity flow column, washed with 50 mL of wash buffer (dynactin-lysis buffer 

supplemented with 0.1 mM Mg-ATP, 0.5 mM Pefabloc and 0.02% Triton X-100), 100 mL of 

wash buffer supplemented with 250 mM potassium acetate, and again with 100 mL of wash 

buffer. Dynactin was eluted from beads with 1 mL of elution buffer (wash buffer with 2 mg/mL of 

3xFlag peptide). The eluate was collected, filtered by centrifuging with Ultrafree-MC VV filter 

(EMD Millipore) in a tabletop centrifuge and diluted to 2 mL in Buffer A (50 mM Tris-HCl [pH 
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8.0], 2 mM MgOAc, 1 mM EGTA, and 1 mM DTT) and injected onto a MonoQ 5/50 GL column 

(GE Healthcare and Life Sciences) at 1 mL/min. The column was pre-washed with 10 column 

volumes (CV) of Buffer A, 10 CV of Buffer B (50 mM Tris-HCl [pH 8.0], 2 mM MgOAc, 1 mM 

EGTA, 1 mM DTT, 1 M KOAc) and again with 10 CV of Buffer A at 1 mL/min. To elute, a linear 

gradient was run over 26 CV from 35-100% Buffer B. Pure dynactin complex eluted from ~75-

80% Buffer B. Peak fractions containing pure dynactin complex were pooled, buffer exchanged 

into a GF150 buffer supplemented with 10% glycerol, concentrated to 0.02-0.1 mg/mL using a 

100K MWCO concentrator (EMD Millipore) and flash frozen in liquid nitrogen. Typical dynactin 

prep yields are between 150-300 nM. 

 Human dynein was purified from stable cells lines expressing an IC2-SNAPf-3xFlag as 

described previously33. Frozen pellets collected from ~60-100 x 15 cm plates were resuspended 

in dynein lysis buffer (25 mM HEPES pH 7.4, 50 mM KOAc, 2 mM MgOAc,1 mM EGTA, 10% 

glycerol (v/v), and 1 mM DTT) supplemented with 0.2% Triton X-100, 0.5 mM Mg-ATP, and 

cOmplete EDTA-free protease inhibitor cocktail. The lysate was centrifuged at 66,000 x g in a 

Ti-70 rotor for 30 mins. The clarified supernatant was incubated with 1 mL of anti-Flag M2 

affinity gel (Sigma-Aldrich) overnight on a roller. Beads were collected by gravity flow and 

washed with 50 mL wash buffer (dynein lysis buffer with 0.02% Triton X-100 and 0.5 mM Mg-

ATP) supplemented with protease inhibitors (cOmplete Protease Inhibitor Cocktail, Roche). 

Beads were then washed with 50 mL high salt wash buffer (25 mM HEPES, pH 7.4, 300 mM 

KOAc, 2 mM MgOAc, 10% glycerol, 1 mM DTT, 0.02% Triton X-100, 0.5 mM Mg-ATP), and 

then with 100 mL wash buffer. For labeling, beads were resuspended in 1 mL wash buffer and 

incubated with 5 µM SNAP-Cell TMR Star (New England BioLabs) for 10 min on the column at 

RT. Unbound dye was removed with 100 mL wash buffer at 4°C. Dynein was eluted with 1 mL 

of elution buffer (wash buffer containing 2 mg/mL 3xFLAG peptide). The eluate was collected, 

diluted to 2 mL in Buffer A (50 mM Tris pH 8.0, 2 mM MgOAc, 1 mM EGTA, and 1 mM DTT) 

and injected onto a MonoQ 5/50 GL column (GE Healthcare Life Sciences) at 0.5 mL/min. The 
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column was washed with 20 CV of Buffer A at 1 mL/min. To elute, a linear gradient was run over 

40 CV into Buffer B (50 mM Tris pH 8.0, 2 mM MgOAc, 1 mM EGTA, 1 mM DTT, 1 M KOAc). 

Pure dynein complex elutes from ~60–70% Buffer B. Peak fractions were pooled and 

concentrated, 0.1 mM Mg-ATP and 10% glycerol were added and the samples were snap 

frozen in liquid nitrogen. A typical preparation yielded 150-300 nM dynein. 

Human NINL was purified as previously described74. pET28a-ZZ-TEV-Halo-NINL1-702 

was transformed into BL-21[DE3] cells (New England Biolabs) until OD 0.4-0.6 and expression 

was induced with 0.1 mM IPTG for 16 hr at 18°C. Frozen cell pellets from 1 L culture were 

resuspended in 40 mL of activator-lysis buffer (30 mM HEPES [pH 7.4], 50 mM potassium 

acetate, 2 mM magnesium acetate, 1 mM EGTA, 1 mM DTT, 0.5 mM Pefabloc, 10% (v/v) 

glycerol) supplemented with 1 cOmplete EDTA-free protease inhibitor cocktail tablet (Roche) 

per 50 mL and 1 mg/mL lysozyme. The resuspension was incubated on ice for 30 min and lysed 

by sonication. The lysate was clarified by centrifuging at 66,000 x g for 30 min in Type 70 Ti 

rotor (Beckman). The clarified supernatant was incubated with 2 mL of packed IgG Sepharose 6 

Fast Flow beads (GE Healthcare Life Sciences) for 2 hr on a roller. The beads were transferred 

to a gravity flow column, washed with 100 mL of activator-lysis buffer supplemented with 150 

mM potassium acetate and 50 mL of cleavage buffer (50 mM Tris–HCl [pH 8.0], 150 mM 

potassium acetate, 2 mM magnesium acetate, 1 mM EGTA, 1 mM DTT, 0.5 mM Pefabloc, 10% 

(v/v) glycerol). The beads were then resuspended and incubated in 15 mL of cleavage buffer 

supplemented with 0.2 mg/mL TEV protease overnight on a roller. The supernatant containing 

cleaved proteins were concentrated using a 50K MWCO concentrator (EMD Millipore) to 1 mL, 

filtered by centrifuging with Ultrafree-MC VV filter (EMD Millipore) in a tabletop centrifuge, 

diluted to 2 mL in Buffer A (30 mM HEPES [pH 7.4], 50 mM potassium acetate, 2 mM 

magnesium acetate, 1 mM EGTA, 10% (v/v) glycerol and 1 mM DTT) and injected onto a 

MonoQ 5/50 GL column (GE Healthcare and Life Sciences) at 0.5 mL/min. The column was pre-

washed with 10 CV of Buffer A, 10 CV of Buffer B (30 mM HEPES [pH 7.4], 1 M potassium 
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acetate, 2 mM magnesium acetate, 1 mM EGTA, 10% (v/v) glycerol and 1 mM DTT) and again 

with 10 CV of Buffer A at 1 mL/min. To elute, a linear gradient was run over 26 CV from 0-100% 

Buffer B. The peak fractions containing unlabeled Halo-tagged NINL were collected and 

concentrated to using a 50K MWCO concentrator (EMD Millipore) to 0.2 mL. A typical NINL 

prep yield was ~5-10 µM dimer. 

 

Single-molecule microscopy and motility assays 

 

Single-molecule imaging was performed using total internal reflection fluorescence 

(TIRF) microscopy with an inverted microscope (Nikon, Ti-E Eclipse) equipped with a 100x 1.49 

N.A. oil immersion objective (Nikon, Plano Apo), and a MLC400B laser launch (Agilent), with 

405 nm, 488 nm, 561 nm and 640 nm laser lines. Excitation and emission paths were filtered 

using single bandpass filter cubes (Chroma), and emitted signals were detected with an electron 

multiplying CCD camera (Andor Technology, iXon Ultra 888). Illumination and image acquisition 

were controlled with NIS Elements Advanced Research software (Nikon), and the xy position of 

the stage was controlled with a ProScan linear motor stage controller (Prior).  

 Single-molecule motility were performed in flow chambers as previously described33 

using the setup shown in the schematic in Fig. 4A. Biotin-PEG-functionalized coverslips 

(Microsurfaces) were adhered to a Superfrost Plus Microscope slide (ThermoFisher) using 

double-sided scotch tape. Each slide contained four flow-chambers. Taxol-stabilized 

microtubules (~15mg/mL) with ~10% biotin-tubulin and ~10% Alex405-tubulin were prepared as 

described previously33. For each motility experiment, 1 mg/mL Strepdavidin (in 30 mM HEPES, 

2 mM MgOAc, 1mM EGTA, 10% glycerol) was incubated in the flow chamber for 3 mins. A 

1:150 dilution of taxol-stabilized microtubules in motility assay buffer (30 mM HEPES, 50 mM 

KOAc, 2 mM MgOAc, 1mM EGTA, 10% glycerol, 1 mM DTT, and 20 µM Taxol, pH 7.4) was 

added to the flow chamber for 3 mins to adhere polymerized microtubules to the coverslip. Flow 
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chambers containing adhered microtubules were washed twice with LRRK2 buffer (20 mM 

HEPES pH 7.4, 800 mM NaCl, 0.5 mM TCEP, 5% glycerol, 2.5 mM MgCl2, 20 μM GDP). Flow 

chambers were then incubated for 5 mins either with (1) LRRK2 buffer alone or with the 

indicated kinase inhibitors (“0 nM” LRRK2RCKW condition) or (2) LRRK2 buffer containing 

LRRK2RCKW either alone, with DMSO, or with kinase inhibitors. DMSO or drugs were incubated 

with LRRK2 buffer (± LRRK2RCKW) for 10 mins at RT before adding to the flow chambers. Prior 

to the addition of dynein and kinesin motors, the flow chambers were washed twice with motility 

assay buffer containing 1mg/mL casein. To assemble dynein-dynactin-ninein-like (NINL) 

complexes, purified dynein (10-15 nM), dynactin and NINL were mixed at 1:2:10 molar ratio and 

incubated on ice for 10 min. The final imaging buffer for motors contained motility assay buffer 

supplemented with an oxygen scavenger system, 71.5 mM β-mercaptoethanol and either 1 mM 

ATP (kinesin) or 2.5 mM ATP (dynein). The final concentrations of kinesin and dynein in the flow 

chambers were ~2.5 nM and ~0.3 nM, respectively. K560-GFP was imaged every 500 msecs 

for 2 mins with 25% laser (488) power at 150 ms exposure time.  Dynein-TMR-dynactin-NINL 

was imaged every 300 msec for 3 mins with 25% laser (561) power at 100 msec. Each sample 

was imaged no longer than 15 mins. Each technical replicate consisted of movies from at least 

two fields of view containing between 5 and 10 microtubules each. 

 

Single-molecule motility assay analysis 

 

Kymographs were generated from motility movies and quantified for run lengths, percent 

motility, and velocity using ImageJ (NIH). Specifically, maximum-intensity projections were 

generated from time-lapse sequences to define the trajectory of particles on a single 

microtubule. The segmented line tool was used to trace the trajectories and map them onto the 

original video sequence, which was subsequently re-sliced to generate a kymograph. Motile and 

immotile events (> 1 sec) were manually traced. Bright aggregates, which were less than 5% of 
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the population, were excluded from the analysis. For dynein-dynactin-NINL, both stationary and 

diffusive events were grouped as immotile. Run length measurements were calculated from 

motile events only. For percent motility per microtubule measurements, motile events (> 1 sec 

and > 1µm) were divided by total events per kymograph. Velocity measurements were 

calculated from the inverse slopes of the motile event traces (> 1 sec and > 1µm) only. 

Statistical analyses were performed in Prism8 (Graphpad). 

 

Western blot analysis 

 

293T cells were maintained in Dulbecco's modified Eagle's medium (containing 10% 

fetal bovine serum and 1% penicillin/streptomycin). For Western blot quantification of LRRK2 

protein expression (Extended Data Fig. 15), cells were plated on 6-well dishes (150K cells per 

well) 24 hrs before transfection.  Cells were transfected with 1 µg of GFP-I2020T using 

polyethylenimine (PEI, Polysciences). After 48 hrs, cells were treated for 30 mins with either 5 

µM GZD-824 or DMSO-matched control. Cells were lysed on ice in RIPA buffer (50 mM Tris pH 

7.5, 150 mM NaCl, 0.2% TritonX-10, 0.1%SDS, 0.5% Na-Deoxycholate, with cOmplete 

protease inhibitor cocktail). Lysates were further rotated for 15 mins at 4°C and clarified by 

centrifuging at 13,000 x g for 15 mins. Clarified supernatants were boiled for 5 mins in Laemmli 

buffer. The experiments were performed in triplicate. 

For Western blots, lysates were run on 4-12% gradient SDS-PAGE (Life Technologies) 

for 60 mins and transferred to nitrocellulose for 3 hrs at 250 mA. Blots were dried at RT for 30 

mins, rinsed in 1x Tris buffered saline (TBS), followed by blocking with 5% milk in TBS. 

Antibodies were diluted in 5% milk in TBS-0.1% Tween-20 (TBS-T). Primary antibodies were 

incubated overnight at 4°C and Infrared (IR) secondary antibodies were incubated at RT for 45 

mins. For quantification of LRRK2 expression levels, blots were imaged on an Odyssey CLx 

controlled by Imaging Studio software (v5.2). DMSO and GZD-824 conditions were quantified in 
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triplicate and normalized to a GAPDH loading control using Empiria Studio software (Li-COR). 

To ensure quantification was in the combined linear range for antibodies detecting both GFP-

LRRK2 and GAPDH, a linear dilution series of lysates from cells expressing GFP-LRRK2 was 

also quantified by IR Western blot. 

 

Immunofluorescence, confocal microscopy and image analysis 

 

The day before transfection, 293T cells were plated on acid-treated coverslips (Bellco 

Glass) pre-coated with 100 µg/mL Poly-D-lysine (Sigma) and 4 µg/mL Mouse Laminin 

(ThermoFisher) in 24-well plates (35K cells per well). Cells were transfected with 500 ng 

plasmid of either pDEST53-GFP-LRRK2 or pDEST53-GFP-LRRK2(I2020T) using PEI. After 48-

72 hrs, cells were incubated with either a kinase inhibitor or DMSO-matched control (matched 

for time and concentration). For the Type 1 inhibitor experiment, cells were incubated with 

DMSO or Mli-2 (500 nM) for 2 hrs.  For the Type 2 inhibitor, cells were incubated with DMSO or 

GZD-824 (5 or 10 µM) for 30 mins. Cells were quickly washed 1x on ice with ice-cold PBS, and 

fixed with ice-cold 4%PFA/90%Methanol/5mM sodium bicarbonate for 10 mins at -20°C. 

Following fixation, the wells were immediately washed 3x with ice-cold PBS. Blocking buffer (1% 

BSA, 5% normal goat serum, 0.3%TritonX-100 in PBS) was added for 1 hr at RT. Primary 

antibodies were diluted (1:500) in antibody dilution buffer (1% BSA, 0.1% TritonX-100 in PBS) 

and incubated overnight at 4°C. After overnight incubation, the wells were washed 3x in PBS 

and incubated with secondary antibodies (1:500) in antibody dilution buffer for 1 hr at RT. After 

secondary incubation, the wells were washed 3x in PBS, 1x in ddH2O and mounted using 

CitiFluor AF2 (EMS) on Superfrost Plus Microscope slides (ThermoFisher). Coverslips were 

sealed with nail polish and stored at 4°C. 

 For the LRRK2 filament analysis in Fig. 5, experimenters were blinded to condition for 

both the imaging acquisition and analysis.  Cells were imaged using a Nikon A1R HD confocal 
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microscope with a LUN-V laser engine (405nm, 488nm, 561nm, and 640nm) and DU4 detector 

using bandpass and longpass filters for each channel (450/50, 525/50, 595/50, and 700/75). 

Slides were imaged on a Nikon Ti2 body using an Apo 60x 1.49 NA objective. Image stacks 

were acquired in resonant scanning mode with bidirectional scanning and 4x line averaging and 

1.2 airy units. The lasers used were 405 nm, 488 nm and 561 nm. Illumination and image 

acquisition were controlled by NIS Elements Advanced Research software (Nikon Instruments). 

ImageJ was used to quantify the percent of cells with LRRK2 filaments. Maximum-intensity 

projections were generated from z-stack confocal images. Using the GFP immunofluorescence 

signal, transfected cells were traced. Cells were scored for the presence or absence of filaments 

using both the z-projection and z-stack micrographs as a guide. The presence of filaments was 

scored if the cells had either (a) a GFP filament signal greater than 5 µm or (b) bundles of 

filaments with at least two identifiable crosses. To calculate the percent cells with filaments, the 

number of cells with filaments was divided by the total number of transfected cells per technical 

(defined as one 24-well coverslip). Approximately 20 cells were quantified per replicate for each 

condition in Figure 5D (DMSO v. Mli-2) and between 40-100 cells were quantified per replicate 

for each condition in Figure 5F (DMSO v. GZD-824). The quantification of all cellular 

experiments comes from data collected on three separate days except for the 10 µM GZD-824 

condition in Figure 5F which was performed on two separate days. All statistical analyses were 

performed in Prism8 (Graphpad). 
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FIGURES 

 
Figure 1 | Cryo-EM structure of LRRK2RCKW. a, Schematic of the construct used in this study, 
with amino acid numbers of the beginning and end indicated. The N-terminal half of LRRK2, 
absent from our construct, is shown in dim colors. The same color-coding of domains is used 
throughout the paper. The five major familial Parkinson’s Disease mutations and a Crohn’s 
Disease-linked mutation are indicated below the diagram. b, 3.5Å map of the LRRK2RCKW trimer, 
with one monomer highlighted using the colors shown in (a). c, Local resolution of the map 
shown in (b). d, Density for a LRRK2RCKW monomer obtained after processing data where the 
RoC and COR-A domains were signal-subtracted from two of the monomers in each trimer (see 
Methods and Extended Data Fig. 2 for details). e, Local resolution for the monomer in (d), 
showing the improvements in the RoC and COR-A domains. f, Ribbon diagram of the atomic 
model of LRRK2RCKW. g, An 8.1Å cryo-EM map of monomeric LRRK2RCKW with the atomic model 
built from the trimer docked in. h, Close up of the area highlighted by the dashed box in (g). i, 
Each LRRK2RCKW domain is highlighted in color in the context of an otherwise grey ribbon 
representation of the full structure. j, k, Location of the Parkinson’s and Crohn’s Disease 
mutations listed in (a). l, Interface between the C-terminal helix and the kinase domain in 
LRRK2RCKW. m, details of the electrostatic and hydrophobic interactions found at that interface, 
with the residues involved indicated. 
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Figure 2 | Modeling the microtubule-associated LRRK2 filaments. a, 14Å sub-tomogram 
average of a segment of microtubule-associated LRRK2 filament in cells. The microtubule is 
shown in blue and the LRRK2 filament in grey. b, Cryo-EM of microtubule-associated 
LRRK2RCKW filaments reconstituted in vitro using purified LRRK2RCKW and purified microtubules. 
The blue square brackets indicate the boundaries of the microtubule, and the arrowheads point 
to examples of LRRK2RCKW filaments. c, Fitting of the LRRK2RCKW structure, which has its kinase 
in an open conformation, into the sub-tomogram average. d, Atomic model of the LRRK2RCKW 
filaments (c) with the sub-tomogram average density removed. The white circles highlight the 
filament interface mediated by interactions between COR domains, where clashes are found. e, 
Magnified views of the circled area shown in (d). f, Superposition of the LRRK2RCKW structure 
(colored by domains) and a model of LRRK2RCKW with its kinase in a closed conformation in blue 
(see Methods and Extended Data Fig. 6f-j for details on the model building). The dashed blue 
arrow indicates the general direction of movement upon closing of the kinase. g, Fitting of the 
closed-kinase model of LRRK2RCKW into the sub-tomogram average. h, Atomic model of the 
closed-kinase LRRK2RCKW filaments (g) with the sub-tomogram average density removed and a 
white circle highlighting the same interface as in (d). i, Magnified views of the circled area 
shown in (h). j, k, Cartoon representation of the two filament models, highlighting the clashes 
observed with open-kinase LRRK2RCKW (j) and resolved with the closed-kinase model (k). 
Backbone clashes in (d, e) and (h, i) were measured in Chimera with Find Clashes using a poly-
alanine model of LRRK2RCKW. There were 997 clashes in the filament modeled using our 
LRRK2RCKW structure (“open” form (d, e)) and 184 clashes in the filament built using the closed-
kinase model of LRRK2RCKW (h, i), corresponding to an overall reduction of 81.8% in the number 
of clashes.  
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Figure 3 | LRRK2RCKW forms WD40- and COR-mediated dimers outside the filaments. a-d, 
The same filament model shown in Fig. 2j, k is shown here in grey, with either a WD40-
mediated (a), or COR-mediated (c) LRRK2RCKW dimer highlighted with domain colors. The 
corresponding molecular models are shown next to the cartoons (b, d). e, f, Cryo-EM 
reconstructions of LRRK2RCKW dimers obtained in the absence of inhibitor (“Apo”), or in the 
presence of MLi-2. The molecular models (left) are the same ones shown in (b, d) for the 
WD40-mediated (e) and COR-mediated (f) LRRK2RCKW dimers. The models are shown in an 
orientation that matches the cryo-EM maps shown in the first column. For each reconstruction, 
two orientations of the map are shown: down the two-fold axis at the dimerization interface (left), 
and perpendicular to it (right). For each species, the top row shows the cryo-EM map and the 
bottom row a transparent version of the map with a model docked in. The models docked into 
the maps obtained in the presence of MLi-2 are those derived from building the filaments (Fig. 
2g-i). Those docked into the maps obtained in the absence of inhibitor were built with the 
LRRK2RCKW structure (i.e. with an open kinase) but maintaining the interfaces identified in the 
filaments. Both types of dimers were also observed in the presence of Ponatinib but the 
preferred orientation of the sample prevented us from obtaining a 3D reconstruction; Extended 
Data Fig. 10 shows 2D class averages instead. g, We built molecular models of the WD40-
mediated and COR-mediated dimers of LRRK2RCKW obtained in the presence of MLi-2 (e, f) by 
fitting the two halves of LRRK2RCKW split at the junction between the N- and C-lobes of the 
kinase (see Extended Data Fig. 11). We then aligned, in alternating order, copies of these 
dimers. This panel shows the resulting right-handed helix. h, i, The helix has dimensions 
compatible with the diameter of a 12-protofilament microtubule (EMD-5192)53, which was the 
species used to obtain the tomographic reconstruction shown in Fig. 2a21, and has its RoC 
domains pointing towards the microtubule surface.  
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Figure 4 | LRRK2RCKW inhibits the motility of the microtubule-based motors kinesin-1 and 
cytoplasmic dynein-1. a, Schematic representation of the experimental setup for the single-
molecule motility assays. See Methods for details. b, Example kymographs showing that 
increasing concentrations of LRRK2RCKW reduce kinesin-1-GFP (kinesin) runs. c, The 
percentage of motile kinesin events per microtubule as a function of LRRK2RCKW concentration. 
Data are mean ± s.d. (n = 20, 18, 17, and 18 microtubules from left to right; quantified from two 
independent experiments). ****p < 0.0001 calculated using the Kruskal-Wallis test with Dunn’s 
posthoc for multiple comparisons. d, Example kymographs showing that 25 nM LRRK2RCKW 
reduces dynein/ dynactin/ ninein-like (dynein) runs. e, The percentage of motile dynein events 
per microtubule as a function of LRRK2RCKW concentration. Data are mean ± s.d. (n = 19 and 21 
microtubules from left to right; quantified from two independent experiments). ****p < 0.0001 
calculated using the Mann Whitney test. f, Cumulative frequency distribution of run lengths of 
kinesin as a function of LRRK2RCKW concentration. From top to bottom: n = 1166, 1090, 571, 
and 213 runs. Mean decay constants (tau) ± 95% confidence intervals; microns are 1.667 ± 
0.05, 1.570 ± 0.046, 1.048 ± 0.088, and 0.813 ± 0.145. Data quantified from two independent 
experiments. g, Velocity of kinesin as a function of LRRK2RCKW concentration. Data are mean ± 
s.d. (from left to right: n = 680, 604, 228, and 59 runs quantified from two independent 
experiments). ****p < 0.0001 calculated using a one-way ANOVA with Dunn’s posthoc for 
multiple comparisons. All other conditions are n.s. h, Cumulative frequency distribution of run 
lengths for dynein as a function of LRRK2RCKW concentration. (n = 659 and 28 runs from top to 
bottom; mean decay constants (tau) ± 95% confidence intervals; microns are 4.980 ± 0.147 and 
0.8460 ± 0.415). Data quantified from two independent experiments. See Extended Data Table 
1 for all source data and replicate information.    
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Figure 5 | Type 2 kinase inhibitors, but not Type 1, rescue microtubule-based motor 
motility and reduce LRRK2 filament formation in cells. a, Effects of different kinase 
inhibitors on LRRK2RCKW’s inhibition of kinesin motility. Data is shown as the percentage of 
motile kinesin events per microtubule as a function of LRRK2RCKW concentration in the absence 
of any kinase inhibitor (DMSO) or in the presence of the indicated kinase inhibitor (Ponatinib 
(Type 2): 10 μM; GZD-824 (Type 2): 10 μM; MLi-2 (Type 1): 1 μM; and LRRK2-IN-1 (Type 1): 1 
μM). Data are mean ± s.d. (from left to right: n = 34, 17, 30, 18, 14, 23, 10, 12, 14, 14, 14, 8, 12, 
11, and 11 microtubules quantified from two to four independent experiments). ****p < 0.0001 
calculated using the Kruskal-Wallis test with Dunn’s posthoc for multiple comparisons 
(comparisons were within drug only). b, Same as (a) but with dynein/ dynactin/ ninein-like 
(dynein). DMSO conditions reproduced from Fig. 4c for comparison. (From left to right: n = 19, 
21, 9, 18, 13, 16, 7, 8, 14, and 9 microtubules quantified from two independent experiments). 
***p < 0.001 and ****p < 0.0001 calculated using the Kruskal-Wallis test with Dunn’s posthoc for 
multiple comparisons (comparisons were within drug only). c, The Type 1 kinase inhibitor MLi-2 
(500 nM) treated for 2 hrs increases WT GFP-LRRK2 filament formation in 293T cells compared 
to DMSO-treated control cells. d, Quantification of the experiment shown in (c). Data are mean 
± s.e.m. (n = 10 [DMSO] and 6 for [MLi-2] technical replicates (~ 20 cells per replicate). 
****p=0.0002 Mann Whitney test. e, The Type 2 kinase inhibitor GZD-824 (5 µM) treated for 30 
mins decreases GFP-LRRK2 (I2020T) filament formation relative to DMSO-treated control cells. 
f, Quantification of the experiment shown in (e). Data are mean ± s.e.m. (n = 9 [DMSO], 8 [5 
µM], and 4 [10 µM]  technical replicates (> 40 cells per replicate). *p=0.0133 and **p=0.0012 
calculated using Krustal-Wallis test with Dunn’s posthoc for multiple comparisons. See 
Extended Data Table 1 for all source data and replicate information. g, Schematic 
representation of our hypothesis that the conformation of LRRK2’s kinase controls its 
association with microtubules. LRRK2 (represented here by LRRK2RCKW) can have its kinase in 
either an open or closed conformation. The different species we observed (monomers and both 
COR- and WD40-mediated dimers) are represented in the rounded rectangles, but only 
monomers are shown on the microtubule for simplicity. Our model proposes that only the 
kinase-closed form of LRRK2 is compatible with the formation of microtubule-associated 
filaments. The figure shows a single turn of a LRRK2 filament to emphasize that we propose 
that shorter species will be the relevant ones under physiological conditions. The two interfaces 
that mediate filament formation, which are the same ones observed in the dimers, are indicated.   
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EXTENDED DATA FIGURES 
 

 
 
Extended Data Figure 1 | Optimization of LRRK2 constructs for expression in insect cells. 
a, We systematically scanned domain boundaries (amino acid numbers of boundaries noted 
above domain names) to generate LRRK2 constructs that expressed well in baculovirus-
infected insect cells and yielded stable and soluble protein. These attempts included full-length 
LRRK2, the kinase domain alone or with the WD40 domain, and other isolated domains. In this 
approach, only the GTPase domain on its own expressed well. Next, we gradually shortened 
LRRK2 from its amino terminus. Red asterisks indicate constructs that were soluble. b, After 
identifying domain boundaries yielding constructs that expressed soluble protein, additional fine 
tuning of boundaries was performed. A Coomassie stained SDS-PAGE gel shows systematic N-
terminal truncations at the RoC domain resulting in the identification of a construct with the 
highest expression levels: amino acids 1327 to 2527 (red asterisk, “LRRK2RCKW” here). c, A 
Coomassie stained SDS-PAGE gel of purified LRRK2RCKW after elution from an S200 gel 
filtration column. As predicted by its primary structure, LRRK2RCKW runs at ~140 kDa. 
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Extended Data Figure 2 | Cryo-EM structure determination of LRRK2RCKW. a, Electron 
micrograph of LRRK2RCKW. b, 2D class averages of the LRRK2RCKW trimer. c, 2D/3D 
classification scheme used to obtain the 3.5Å structure of the LRRK2RCKW trimer. d, e, Fourier 
Shell Correlations (from Cryosparc) (d) and Euler angle distribution (e) for the LRRK2RCKW 
trimer. f, Processing strategy used to obtain a 3.8Å structure of LRRK2RCKW generated from a 
signal-subtracted trimer where only one monomer contains the RoC and COR-A domains. This 
structure improved the resolution of the RoC and COR-A domains relative to the trimer shown in 
(c). g-i, 2D class averages (g), Fourier Shell Correlations (from Relion) (h), and Euler angle 
distribution (from Relion) (i) for the 3.8Å-resolution signal-subtracted LRRK2RCKW structure. j, 
Close-ups of different parts of the final structure, with the 3.8Å map as a semi-transparent 
surface and the model shown using the coloring scheme introduced in Fig. 1a. 



54 
 

 
 
 
 
 



55 
 

 
Extended Data Figure 3 | LRRK2RCKW is predominantly a monomer under the conditions 
used for cryo-EM. Size Exclusion Chromatography-Multiple Angle Light Scattering (SEC-
MALS) analysis of LRRK2RCKW under the conditions used for cryo-EM (Fig. 1). The table below 
the elution profile shows the calculated molecular weights (MW) of LRRK2RCKW according to 
SEC standards (“SEC”) and MALS. 
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Extended Data Figure 4 | Comparisons between LRRK2 and other kinases. a, View of the 
LRRK2RCKW atomic model with COR-A, COR-B and kinase domains colored. The N- and C-
lobes of the kinase are labeled, as is the αC helix in the N-lobe. b, c, The FAK-FERM (PDB: 
2J0J) 27 (b) and CDK2-Cyclin A (PDB: 2CCH) 29 (c) complexes, shown in the same orientation 
as the kinase in (a). The αC helix of CDK2 is also labeled. d, Same view as in (a) with only the 
kinase domain and the C-terminal helix colored. e, Rotated view of LRRK2’s kinase domain with 
the C-terminal helix facing the viewer. f, g, CDKL3 (PDB: 3ZDU) (f) and RIPK2 (PDB: 4C8B) 35 
(g) shown in the same orientation as LRRK2’s kinase in (e), with alpha helices with the same 
general location as LRRK2’s C-terminal helix colored in green. h, KSR2-MEK1 complex (PDB: 
2Y4I), with the kinase oriented as in (e) (left) and after removing KSR2 for clarity (right). The 
alpha helix associated with the kinase is shown in green. i, HCK (PDB: 2HCK) in complex with 
its SH2 and SH3 domains with the kinase oriented as in (e) (left), and after removal of the SH2 
and SH3 domains for clarity (right). A remaining alpha helix from the SH2 domain is shown in 
yellow. j, Front view of LRRK2’s kinase with the C-Spine and R-Spine residues shown and 
colored in grey and white, respectively. k, Close-up of the DYG motif and neighboring R-Spine 
residues.  
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Extended Data Figure 5 | Modelling of the Leucine-Rich Repeat (LRR) into LRRK2RCKW. a, 
Crystal structure of the LRR-RoC-COR(A/B) domains from C. tepidum Roco (PDB: 6HLU) 15. b, 
Homology model for human LRR-RoC-COR(A/B) based on the C. tepidum Roco structure (from 
SWISS-MODEL). c, Chimeric model combining LRRK2RCKW and the homology model for the 
LRR domain from (b) obtained by aligning their RoC-COR(A/B) domains. d, e, Two views of the 
hybrid LRRK2LRCKW model. f, Close-up showing the proximity between the active site of the 
kinase (with the side chains of its DYG motif shown) and the S1292 autophosphorylation site on 
the LRR. The close-up also highlights the proximity between N2081, a residue implicated in 
Crohn’s Disease, and the LRR. 
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Extended Data Figure 6 | Docking of LRRK2RCKW into the sub-tomogram average of 
cellular LRRK2 filaments, and modeling of the closed-kinase LRRK2RCKW filaments. a, The 
WD40s in the crystal structure of a dimer of LRRK2’s WD40 (PDB: 6DLP)18 were replaced with 
the WD40s from our cryo-EM structure of LRRK2RCKW. b, The resulting dimer was fitted into the 
14Å sub-tomogram average of cellular microtubule-associated LRRK2 filaments. c, Two views 
of the same fitting shown in (b), displayed with a higher threshold for the map to highlight the 
fitting of the WD40 β-propellers into the density. d, Four copies of LRRK2RCKW were docked into 
the sub-tomogram average by aligning their WD40 domains to the docked WD40 dimer. e, 
Model containing the four aligned LRRK2RCKW. f-i, Modeling of the kinase-closed form of 
LRRK2RCKW. f, g, The structure of ITK bound to an inhibitor (PDB: 3QGY)54, which is in a closed 
conformation, was aligned to LRRK2RCKW using only the C-lobes of the two kinases. h, The N-
terminal portion of LRRK2RCKW, comprising RoC, COR-A, COR-B and the N-lobe of the kinase, 
was aligned to ITK using only the N-lobes of the kinases. RoC, COR-A and COR-B were moved 
as a rigid body in this alignment. i, A kinase-closed model of LRRK2RCKW. j, Superposition of the 
kinase-open (our cryo-EM structure) and kinase-closed LRRK2RCKW (the model built here, in 
blue) showing the closing of the RoC-COR(A/B)-kinase N-lobe portion of LRRK2RCKW. Three 
structural reference points are shown in colors and numbered to highlight the differences 
between the two structures.  
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Extended Data Figure 7 | Generation of ab initio models for cryo-EM of LRRK2RCKW 
dimers. An initial dataset was collected from a sample of LRRK2RCKW incubated in the 
presence of the kinase inhibitor MLi-2 and dimers were selected. a, Representative two-
dimensional class averages used for ab initio model building. b, Ab initio models with the 
structure of LRRK2RCKW docked in. c, Volumes generated form the molecular models in (b), 
filtered to 30Å resolution. d, Projections of the volumes in (c) shown in the same order as their 
corresponding 2D class averages in (a). 
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Extended Data Figure 8 | Data processing strategy for obtaining cryo-EM structures of a 
monomer and WD40- and COR-mediated dimers of LRRK2RCKW in the absence of inhibitor 
(“Apo”). The models used during the processing of the dimers (see Methods) are those shown 
in Extended Data Fig. 7 along with an additional linear trimer (see Methods) used for particle 
sorting. The models used for processing of the monomer (see Methods) were the same dimer 
models as in Extended Data Fig. 7 (used for particle sorting) in addition to a monomer model 
generated from our LRRK2RCKW model (used for refinement). 
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Extended Data Figure 9 | Data processing strategy for obtaining cryo-EM structures of 
WD40- and COR-mediated dimers of LRRK2RCKW in the presence of the inhibitor MLi-2. 
The models used during this processing (see Methods) are those shown in Extended Data Fig.7 
along with an additional linear trimer (see Methods) used for particle sorting. 
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Extended Data Figure 10 | LRRK2RCKW forms WD40- and COR-mediated dimers outside 
the filaments. Two-dimensional (2D) class averages of WD40- and COR-mediated LRRK2RCKW 
dimers obtained in the absence of inhibitors (“Apo”) or in the presence of either Ponatinib or 
MLi-2. The same molecular models of the two dimers shown in Fig. 3 are shown on the left but 
in orientations similar to those represented by the 2D class averages shown here. For each 
class average, a projection from the corresponding model in the best-matching orientation is 
shown to its left. 
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Extended Data Figure 11 | The basic geometric properties of the microtubule-associated 
LRRK2RCKW filaments are encoded in the structure of LRRK2RCKW. a, b, The LRRK2RCKW 
structure solved in this work (a) was split at the junction between the N- and C-lobes of the 
kinase domain (L1949-A1950) (b). c, d, Docking of the two halves of LRRK2RCKW into cryo-EM 
maps of LRRK2RCKW solved in the presence of MLi-2 (c) or without inhibitor (“Apo”) (d). The 
dimer maps are the same ones shown in Fig. 3 and Extended Data Figs. 8 and 9 and the Apo 
map is the one shown in Fig. 1g, h and Extended Data Fig. 8. e, Three-way comparison of 
LRRK2RCKW (with domain colors) and the models resulting from the dockings into the MLi-2 
WD40-mediated dimer map (c) (dark blue) and “Apo” monomer map (d) (light blue). The three 
structures were aligned using the C-lobes of their kinases and the WD40 domain. The 
superposition illustrates that the docking into the “Apo” map results in a structure very similar to 
that obtained from the trimer (Fig. 1) and that the presence of MLi-2 leads to a closing of the 
kinase. f, The model obtained in (c) was docked into cryo-EM maps of either WD40- or COR-
mediated dimers obtained in the presence of MLi-2. g, Molecular models resulting from the 
docking in (f). h, Aligning, in alternating order, copies of the dimer models generated in (f, g) 
results in a right-handed filament with dimensions compatible with those of a microtubule, and 
its RoC domains pointing inwards (see Fig. 3g-i for more details). 
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Extended Data Figure 12 | Complementarity between the surface charge distributions of 
the LRRK2RCKW filament model and the microtubule. a, Molecular model of the microtubule-
associated LRRK2RCKW filament obtained by docking a fragment of a microtubule structure 
(PDB: 6O2S) into the corresponding density in the sub-tomogram average (Fig. 2a). b, Same 
view as in (a) with the models shown as surface representations colored by their Coulomb 
potential. c, d, “Peeling off” of the structure shown in (b), with the LRRK2RCKW filament seen 
from the perspective of the microtubule surface (c) and the microtubule surface seen from the 
perspective of the LRRK2RCKW filament (d). Note: the acidic C-terminal tubulin tails are not 
ordered in the microtubule structure and thus are not included in the surface charge 
distributions. The Coulomb potential coloring scale is shown on the right. 
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Extended Data Figure 13 | LRRK2RCKW’s COR-mediated dimerization interface differs from 
that of the C. tepidum’s Roco homolog. a, b, Two copies of the LRRK2RCKW structure were 
aligned to the RoC-COR domains of the LRR-RoC-COR structure from C. tepidum’s Roco 
protein (PDB: 6HLU) (a) to replicate the interface observed in the bacterial homolog in the 
context of the human protein (b). c, One of the LRRK2RCKW monomers was used to 
superimpose the dimer modeled in (b) with the COR-mediated dimer seen both in the 
microtubule-associated filaments in cells (cryo-ET) (Fig. 2) as well as in the absence of 
microtubules (by cryo-EM) (Fig. 3). d, e, Comparison between the dimer modeled based on the 
C. tepidum LRR-RoC-COR structure (d) and the dimer observed for LRRK2RCKW in this work (e). 
While the bacterial structure shows a dimerization interface that involves the GTPase (RoC), 
LRRK2RCKW interacts exclusively through its COR-A and -B domains, with the RoC domains 
located away from this interface. The two arrangements are shown schematically in cartoon 
form below the structures. 
 
 
 
 
 
 
 
 
 
 



69 
 

 
Extended Data Figure 14 | Ponatinib is a Type 2, “DFG out” inhibitor. a, Superposition of 
the structures of Ponatinib-bound RIPK2 (PDB: 4C8B) 55 and IRAK4 (PDB: 6EG9). Ponatinib is 
shown in yellow, and the DYG motif residues are shown in white. b, c, For comparison, the 
structures of (a) Roco4 bound to LRRK2-IN-1 (PDB: 4YZM), a LRRK2-specific Type 1, “DFG in” 
inhibitor, and (b) a model of Mitogen-activated kinase 1 (MAPK1) bound to MLi-2 (PDB: 5U6I), 
another LRRK2-specific Type 1, “DFG in” inhibitor are shown. The inhibitor and DFG residues 
are colored as in (a). d, The structures in (a-c), as well as the kinase from LRRK2RCKW are 
shown superimposed. The color arrowheads point to the N-lobe’s β-sheet to highlight the 
difference in conformation between kinases bound to the two different types of inhibitors. Note 
that LRRK2RCKW’s kinase is even more open than the two Ponatinib-bound kinases. e, Rotated 
view of (d), now highlighting the position of the N-lobe’s αC helix. An additional alpha helix in the 
N-lobe of MAPK1 was removed from this view for clarity. 
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Extended Data Figure 15 | Type 2 kinase inhibitors rescue microtubule-based motor 
motility. a, The kinase inhibitors MLi-2 (1 µM), LRRK2-IN-1 (1 µM), Ponatinib (10 µM) and 
GZD-824 (10 µM) all inhibit LRRK2RCKW’s kinase activity in vitro compared to a DMSO control. A 
Western blot using a phospho-specific antibody to Rab8a at the indicated time points is shown. 
b, A dose response curve showing the percentage of motile kinesin events per microtubule as a 
function of Ponatinib concentration with LRRK2RCKW (25 nM) or without LRRK2RCKW. Data are 
mean ± s.d. (from left to right: n = 12, 18, 16, 14, and 9 microtubules quantified from one 
experiment). ****p < 0.0001 calculated using the Kruskal-Wallis test with Dunn’s posthoc for 
multiple comparisons (compared to DMSO without LRRK2RCKW). c, Dose response curve of run 
lengths from data in (b) represented as a cumulative frequency distribution. From top to bottom: 
n = 654, 173, 584, 293, and 129 motile kinesin events. Mean decay constants (tau) ± 
confidence interval (CI) are (from top to bottom) 2.736 ± 0.113, 1.291 ± 0.181, 2.542 ± 0.124, 
2.285 ± 0.134, and 1.653 ± 0.17. d, Representative kymographs of kinesin and dynein with 
DMSO or Type 2 inhibitors with or without LRRK2RCKW. e, The Type 2 kinase inhibitors Ponatinib 
and GZD-824 rescue kinesin run length, represented as a cumulative frequency distribution of 
run lengths with LRRK2RCKW (25 nM) or without LRRK2RCKW (0 nM). From top to bottom: n = 
893, 355, 507, 499, 524, and 529 runs from two independent experiments. Mean decay 
constants (tau) ± 95% CI are (from top to bottom) 2.070 ± 0.058, 0.8466 ± 0.091, 1.938 ± 0.065, 
2.075 ± 0.07, 1.898 ±, 0.065, and 1.718 ± 0.064. f, Same as in (e) but with dynein. From top to 
bottom: n = 659, 28, 289, 306, 254, and 339 runs from two independent experiments). Mean 
decay constants (tau) ± 95% confidence intervals; microns are 4.980 ± 0.147, 0.846 ± 0.415, 
4.686 ± 0.142, 4.445 ± 0.172, 3.156 ± 0.09, 3.432 ± 0.188 (from top to bottom). The DMSO 
conditions are reproduced from Fig. 4f for comparison. See Extended Data Table 1 for all 
source data and replicate information.   
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Extended Data Figure 16 | Microtubule architecture and LRRK2 expression are not 
perturbed by kinase inhibitors. a, Expression levels of GFP-LRRK2 (I2020T) in 293T cells 
treated with either DMSO or GZD-824 (5 µM). An Immunoblot with anti-GFP (LRRK2) and anti-
GADPH (loading control), which is a representative image from three replicates, is shown. b, 
Quantification of GFP-LRRK2 (I2020T) expression levels from Western blots similar to (a). Data 
are mean ± s.d. (n = 3 per condition). GZD-824 is not significantly different from the DMSO-
treated control (Mann-Whitney test). c, 293T cells immunostained for tubulin showing that the 
microtubule architecture is not affected by GZD-824 or MLi-2 compared to DMSO treatment. 
See Extended Data Table 1 for all source data and replicate information.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 




