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ABSTRACT: Novel experimental techniques allow for the
manipulation and interrogation of biomolecules between
metallic probes immersed in micro/nanofluidic channels.
The behavior of ions in response to applied fields is a major
issue in the use of these techniques in sensing applications.
Here, we experimentally and theoretically elucidate the
behavior of background currents in these systems. These
large currents have a slowly decaying transient response, as
well as noise that increases with ionic concentration. Using
mechanically controllable break junctions (MCBJ), we study
the ionic response in nanogaps with widths ranging from a few
nanometers to millimeters. Moreover, we obtain an expression
for the ionic current by solving time-dependent Nernst−Planck and Poisson equations. This expression shows that after turning
on an applied voltage, ions rapidly respond to the strong fields near the electrode surface, screening the field in the process. Ions
subsequently translocate in the weak electric field and slowly relax within the diffusion layer. Our theoretical results help to
explain the short- and long-time behavior of the ionic response found in experiments, as well as the various length scales involved.

■ INTRODUCTION

The dynamics of ions in electrolyte solutions is receiving
renewed interest due to the appearance of novel sensing
applications, such as single-molecule approaches to sequencing
based on micro/nanofluidic devices.1−4 As part of this general
platform, several studies, for instance, measured the tunneling
current across individual nucleotides using a mechanically
controllable break junctions (MCBJ).5−9 Other recent works
developed ionic current rectifiers that operate by exploiting
surface charge effects,10−12 including devices that can be
reconfigured by the application of external fields.13 Moreover,
another pioneering work investigated the ionic response to ac
fields.14 From another perspective, there are many possibilities
for constructing narrow channels to obtain various nonlinear
ionic transport characteristics. Despite a long history,15−18

however, the relation between the time and spatial scales of the
electrical response of ionic solutions at the nanoscale remains
unsolved. This is a key issue in controlling ionic transport by
externally applied dc or ac fields. Its study is also of relevance
for any nanofluidic technology that employs electrodes in
solution, e.g., for enhancing the energy storage of electro-
chemical capacitors19−21 and for solid-state nanopore tech-
nologies22−25 in which electrical probes interrogate trans-

locating molecules.26−29 In such complex systems, current noise
is also inevitable due to the presence of ions and this noise
obscures the electrical signals of interest − the ones from the
individual molecules. A full understanding of the mechanisms
responsible for the behavior of these “background” currents is
therefore needed, as it will help the development of single-
molecule approaches to sequencing based on electronic
transport.30

In this study, we develop a combined experimental and
theoretical understanding of the transient electrical response of
ions in the vicinity of biased electrodes that have several
associated length scales, such as the MCBJ electrodes shown in
Figure 1a. This system displays a slowly decaying transient
current and an associated noise that increases with the ionic
concentration. We demonstrate a useful computational method
to treat the various length and time scales involved in this
complex phenomenon. The resulting theoretical understanding
reveals the rich behavior in the electrochemical response of ions
between nanoelectrodes.
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■ EXPERIMENTAL SECTION
Parts a and b of Figure 1 show a schematic illustration and
scanning electron microscopy (SEM) image, respectively, of a
MCBJ made with Au electrodes. The lithographically defined
nanojunction is fabricated on a polyimide-coated phosphor
bronze substrate. It consists of 30 nm thick Au/Cr wires of
approximately 10 mm end-to-end length and width tapered
from 10 to 1 μm along the length. We create a pair of
nanoelectrodes using a self-breaking technique,5 which forms a
1 nm electrode gap with atomically sharp Au tips sensitive
enough to detect single molecules by a tunneling current.7−9 In
our experimental setup, the electrodes are symmetrically placed
in a liquid container of 2 mm diameter. Therefore, large
surfaces (∼10−8 m2) of the lead line are exposed to the
electrolyte solution, which cause the background current with
noise, as shown in Figure 1c. NaCl aqueous solution is
prepared by dissolving NaCl salt in Milli-Q water. To
investigate the dependence of transient ionic currents on
applied voltages and molarities, NaCl solutions (1, 10, 50, 100,
and 200 mM) are prepared and time transition profiles are
measured under a constant dc voltage ranging from 0.1 to 0.9
V. Here, the electrical response of NaCl solution is measured
for various salt concentrations under constant dc voltage with a
sampling frequency of 10 kHz by using a custom-built
logarithmic current amplifier and a PXI-4071 digital multimeter
(National Instruments).9 In this study, NaCl solution is
employed to clearly separate the transport of Na+ and Cl−,

although KCl may be better as an electrolyte to yield high
conductivity of ionic currents. From Figure 1c,d, the transient
response displays a rapid increase and subsequent slow decay of
the ionic current. The time constant is evaluated by least-
squares fit and summarized in Table 1. Particularly, the time
constant increases with increasing molarity and applied
potential and is on the order of 1 s for the parameter regimes
studied. Assuming an equivalent circuit, this system would then
consist of a 1 GΩ resistance evaluated from the current−
voltage characteristics and a 1 nF capacitor. However, such a
huge resistance and small capacitance in the narrow space
cannot be explained by the conventional macroscopic models.
We now seek to understand these features by employing a
microscopic model.

■ THEORETICAL MODEL
A large number of previous works sought to understand
electrochemical reactions at electrode surfaces,31−36 ionic
motions in solutions,37,38 and dynamical response.39,40 In
recent years, the nonequilibrium behavior of ions confined to
micro/nanoscale spaces is becoming increasingly important.
Here, we focus on phenomena outside the strongly adsorbed
(Stern) layer.41 Ionic motion in aqueous solution is expressible
in terms of Newton’s equation of motion with fluctuations and
dissipation, which gives mv ̇ = ξv + F + R, where m is the mass, v
is the velocity, ξ is the friction coefficient, F is the external force
(due to an applied potential), and R is the random force from
the solvent molecules. In this scenario, ions will rapidly respond
to the application of an applied potential, strongly screening it
by building up near the electrode surfaces.35,37,42,43 Sub-
sequently, ions gradually form a diffusion layer.
We elucidate the scale of this phenomena (and hence

illuminate the underlying physics) by considering one-dimen-
sional ionic current densities ji(x,t) due to the migration and
diffusion of each of the ionic species i in aqueous solution.
Taking into account the stochastic process in electrolyte
solutions, ionic motions are expressible by a Nernst−Planck
equation for each species:15,16,41,44
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where ρi(x,t) is the charge density expressed by the valence zi,
the number density ni(x,t), and the elementary charge e: ρi =
zieni, and Di is the diffusion coefficient. The coordinate x is
defined in an interval of x ∈ (0, L) where the electrode surface
is at x = 0 and the thickness of the diffusion layer is L. Ionic
migration is driven by the electrostatic force due to the applied
potential and thus Fi can be represented by the gradient of
potential ϕ such that Fi = −zie∇ϕ. The relation between ϕ and
ρi is expressed by the Poisson equation:

∑ε ϕ ρ− Δ =
i

i
(2)

Figure 1. (a) Schematic illustration and (b) SEM image of MCBJ
electrodes, (c) transient current response of NaCl solution under an
applied potential of 0.4 V for several salt concentrations, and (d)
current response for a concentration of 200 mM NaCl at various
voltages. Data from applied voltages above 0.5 V are omitted here for
clarity, although all data ranging from 0.1 to 0.9 V are summarized in
Table 1. After an initial rapid increase, the ionic current then slowly
decays (with a time scale of about 1 s, Table 1).

Table 1. Time Constant τ of Ionic Current Response

condition τ [s] condition τ [s] condition τ [s]

1 mM/0.4 V 0.459 200 mM/0.1 V 0.267 200 mM/0.6 V 0.544
10 mM/0.4 V 0.499 200 mM/0.2 V 0.446 200 mM/0.7 V 0.558
50 mM/0.4 V 0.556 200 mM/0.3 V 0.528 200 mM/0.8 V 0.599
100 mM/0.4 V 0.594 200 mM/0.4 V 0.542 200 mM/0.9 V 0.710

200 mM/0.5 V 0.577
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where ε is the dielectric constant. The solution with respect to
charge distributions is given by
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where ϕ(0) and ϕ(L) are the potentials at x = 0 and L,
respectively. The summation is taken for all species that
contribute to ϕ. The ion density and the electrostatic potential
should be determined self-consistently to solve the nonlinear
partial differential equation. In previous works, Sokalski et
al.44,45 and Lingenfelter et al.46 developed numerical methods
for the coupled Nernst−Planck and Poisson equations and
obtained useful results for the ion selective membrane
potentials. In particular, they discuss a long-period response
at the interface of the electrolyte solution and an ion-exchange
membrane. Here, focusing on MCBJ electrodes, we introduce
another method that correctly predicts the rapid response and
noise found in experiments (Figure 1c,d). Incorporating source
terms into the dynamics, eq 1 becomes
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where f ir are constants depending on the current density and
noise, and φir are the phase shifts at t = 0. In the numerical
solution, ϕ depends only on the displacement of ions and thus
it is treated as independent of time in the short interval. The
smallest time step, which is large enough to represent the
stochastic process, should be determined properly to maintain
constraints at boundaries and electroneutrality. The source
terms can express noise generated at x = 0, which induces
external flux in the domain. As a first step, we consider
Gaussian white noise, although it is known that noise detected
in micro/nanofluidic devices usually also show flicker
noise.47−49 The parameters ωir and φir are generated by
Gaussian50 and uniform probability distributions, respectively.
Rescaling x, t, and ϕ to make them dimensionless by
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and, considering a unit surface, replacing ρi by
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eq 4 becomes
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where f ir* = L2f ir/zieDi and ωir* = L2ωir/Di. For the other species,
the equation can be derived in the same manner. Here, ni* and
ψi* are expanded by the Fourier series:
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where k = 0, ±1, ±2, ..., δ(x*) is also expanded similarly:
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Each basis function is orthogonal on x* ∈ [−1, +1]. In this
model, a mirror symmetry is assumed at x* = 0 and 1. Ions are
adsorbed or reflected at x* = 0 and the concentrations
correspond to those of bulk at x* ≥ 1, conserving the
electroneutrality in the domain. On the basis of the description
above, eq 7 becomes
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Ψi*are real functions and thus Ĥi are Hermitian matrices. The
variable transform of eq 6 results in equations amenable to
analytic treatment. For the homogeneous case, we can solve eq
11 via its eigenvalues λij and eigenvectors. Using these
solutions, we can also solve the inhomogeneous case. If λij
are nonzero, then
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where ukj
† are the conjugate transpose of ujk, cil

0 are constants
determined at the initial condition and

∫ ω φ* = * *′ + *′λ λ− *
*

*′I t t t( ) e cos( )e dir
j t

t

ir ir
t

0
ij ij

(14)

At equilibria, λij should be zero. As a consequence, we obtain
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The nonlinear eq 7 can be numerically solved according to the
procedure shown in Figure 2.
The one-dimensional coordinate space is divided into 2n

points where n ≥ 7 is employed to maintain the numerical
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accuracy. Computations are carried out for L = 2, 5, 10, 15, and
20 nm with a 128 grid and for L = 30 and 40 nm with a 256
grid to evaluate eigenvalues of the homogeneous equation of eq
7. Furthermore, for the inhomogeneous case with the source
and noise, the computations are carried out for L = 40 nm with
a 256 grid. In each case, the time step is fixed at dt = 1 × 10−11 s
to maintain the computational accuracy of ρi and ϕ. From the
viewpoint of stochastic processes, the condition of dt < 10−11 s
tends to cause the divergence of computations. On the other
hand, large dt cannot represent electronic properties precisely.
In the numerical analysis, ωir are determined randomly by the
Box−Muller50 algorithm and φir by a uniform random number
in (−π/2, +π/2). The variance of Gaussian white noise is set to
(1 × 1012)2. In this study, the number of noise components is
set to 100.

■ RESULTS AND DISCUSSION
We apply this model to evaluate the ionic current near an Au
electrode in NaCl solution. At the negatively charged cathode
surface, Na+ is highly concentrated regardless of the anion
species. In the numerical analysis, L is taken as a constant for
each molarity. The applied potential is restricted to a practical
range of potentials in aqueous solution: ϕ(0) = −0.01 to −1 V
and ϕ(L) = 0 V. The valence is +1 and −1 for Na+ and Cl−,
respectively. The diffusion coefficients are known: DNa

+ = 1.35
× 10−9 m2/s and DCl

− = 2.03 × 10−9 m2/s.38 The dielectric
constant and temperature are ε = 78.4ε0,

51 where ε0 is the
dielectric constant of vacuum and T = 298.15 K, respectively.
As a first approximation, the time constant τ = L2/Dλ due to
the slowest process within the transient response is determined
by the homogeneous equation of eq 7 for the two component
system.
Figure 3 shows τ for Na+ and Cl− as a function of the ratio of

V = ϕ(L) − ϕ(0) to L for the molarity of 1, 10, 50, and 100
mM, where V/L merely expresses a fraction of the applied
potential and the length, but not the actual electric field in the
system. It is found that τ tends to be proportional to (V/L)ζ,
where ζ = −2.15 for Na+ and −2.05 for Cl− resulting from the
fits of the computational data at 1 mM. We can then predict
that τ ∝ (V/L)−2 in the dilute limit, because the second term
on the left-hand side of eq 7 dominates as ni* ∼ 0. On the other
hand, the gradient decreases as the molarity increases due to
the strong screening of the electrode surface. These results
suggest that ions rapidly respond to the strong electric field
near the electrode surface and that τ becomes large in the weak
electric fields far away from the electrode. The magnitude of τ
is expected to be on the order of 1 s for the electric field of 103

V/m. Thus, L is estimated to be 100 μm (1 mm), when the

applied potential is on the order of 0.1 V (1 V). Recently, a
similar trend of time and spatial scales of the ionic response was
reported by using a nanofluidic field effect transistor.14 In
experimental systems, as shown in Figure 1a, several length
scales are usually present, but the slowest process is likely the
result of the longest length scale. To evaluate τ from the
experimental results (Figure 1c,d), L is fixed at 1.57 mm
assuming that the longest length along the electric field line in
the experimental system is a quarter of 1 mm radius circle,
although the actual diffusion layer thickness is possibly less than
this value. The series of τ from the experiment with 200 mM
solution is expected to show a negative gradient if L becomes
larger with increasing applied potential. Consequently, the
theoretical evaluations are in reasonable agreement with the
experimental results.
To discuss the spatial scale of the ionic response, the time

evolution of the ionic current and density at the surface are
calculated for various L with respect to applied potentials. A
constant source term, on the right-hand side of eq 7, is applied
only for Na+ to define a steady current condition. We set fNa+r=0
= −αe2n0D(ϕ(L) − ϕ(0))/LkBT on the basis of the Nernst−
Einstein relation, where n0 is the number density of bulk
solution and α is a constant. Here, we demonstrate a case of α
= 1. The total ionic current density is evaluated as ∑i(ji(x→0)
− ji(x→L)), which is simply the difference of ion flux at both
ends without any electrochemical reaction at the electrode
surface. Figure 4 shows the time evolution of net current
density and normalized number density of Na+ at the cathode
surface, resulting from the condition of L = 5 and 20 nm under
the applied potential of V = 0.05 V. In both lengths of L, the
current density increases and converges to a constant value that
becomes higher with the molarity, as shown in Figure 4a,c. The
response of the current density is apparently affected by the
density of Na+. As shown in Figure 4b, it is interesting that the
fractional density of Na+ relatively increases up to 100 mM and
then decreases with increasing the molarity when L = 5 nm. On
the other hand, the normalized density seems to uniformly
decrease with increasing molarity when L = 20 nm (Figure 4d).
This means that there is an absolute limit of the surface density
with respect to V and L. The response time becomes longer
with increasing L. It is then suggested that it takes long times
when there is a large space for ions to stabilize the electric field

Figure 2. Flowchart of numerical analysis.

Figure 3. Time constant τ of the transient response of (a) Na+ and (b)
Cl− in aqueous solution as a function of (V/L) where V = ϕ(L) −
ϕ(0). τ and V/L show τ ∝ (V/L)−2.15 for Na+ and τ ∝ (V/L)−2.05 for
Cl− fitting the computational data at 1 mM. Experimental results
(Figure 1c,d) are also shown in insets.
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in solution. Figure 5 also shows similar computational results
for the applied potential of V = 0.3 V. As shown in Figure 5a,
the current density quickly increases and is saturated at a steady
state, when the bulk solution is defined at L = 5 nm. The
response time becomes shorter with increasing the molarity. As
shown in Figure 5b, the response of surface density is
correlated with the current density and the difference from
the bulk tends to be apparent at low concentrations. On the
other hand, clear peaks can be observed in the ionic current
response as L increases.
As shown in Figure 5c, a peak point can be recognized at 40

mM and turns to be a sharp one as the molarity increases. The
surface density of Na+ exhibits a similar response (Figure 5d). It
is found that the small L causes a sufficient provision of Na+

near the cathode that results in quickly charging and stabilizing
the surface. This property may be preferable to make a good
capacitor, but such a trend was not observed in experiments.
On the other hand, the large L results in the appearance of
maximum peak in the response, in which Na+ highly
concentrates at the electrode surface immediately after applying
an electric potential and successively reduces to relax the
excessive concentration. Additionally, it is clear that the

magnitude of applied potentials also causes the response
characteristics, in comparison with Figure 4.
In the next step, to replicate noise associated with

electrochemical reactions,35,42 we then apply other source
terms on the right-hand side of eq 7. Perturbations at the
cathode surface (x = 0) due to charge transfer via electro-
chemical reactions are mimicked by the frequency-dependent
sources. The amplitude of noise is determined to be
proportional to the square root of the bulk density based on
the surface charge density41 such that f Na+r = βηn0

1/2 with a
constant β common to each molarity. η is determined from
f Na+r=0 of 10 mM such that η = −f Na+r=0/αn01/2, because in this
study, the molarity of 10 mM is the minimum and available as a
reference. Details of electrochemical reactions have not been
explicitly represented in the framework of Nernst−Planck
equation. Here, we suggest a mathematical model to mimic
such perturbations, although the quantitative evaluation of
noise remains to be solved. We perform computations for a
case of α = 1, β = 100, L = 40 nm, and V = 0.3 V. Figure 6
shows current density and normalized number density of each
species obtained from 10, 50, 100, and 200 mM NaCl solutions
as a function of time. As shown in Figure 6a, the net current
density rapidly increases at the moment when the electric
potential is applied. The maximum peak appears to be higher as
the molarity increases, associated with the increase of Na+ at

Figure 4. Time evolution of net current density (j(0) − j(L)) and
normalized number density of Na+ at x = 0 under applied electric
potential of V = ϕ(L) − ϕ(0) = 0.05 V. (a) and (b) are respectively
the current density and the normalized density (magnfied view in
inset) for L = 5 nm, and (c) and (d) are similarly for L = 20 nm.
Molarity dependence is presented ranging from 10 to 200 mM.

Figure 5. Time evolution of net current density (j(0) − j(L)) and
normalized number density of Na+ at x = 0 under applied electric
potential of V = ϕ(L) − ϕ(0) = 0.3 V: (a), (b) for L = 5 nm and (c),
(d) for L = 20 nm, in the same manner as Figure 4.
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the cathode surface (Figure 6b). Such tendencies are similar to
those in Figure 5c,d. Furthermore, the time constant τ of Na+

tends to become large as the molarity increases as shown in the
inset of Figure 6a. This trend has never been observed with
short L. The time scale τ ∼ 0.1 μs, obtained from L = 40 nm
and V = 0.3 V (V/L ∼ 107V/m), closely corresponds to the
result from Figure 3. This result explains well the experimental
observations (Figure 1c,d and Table 1). Cl− also shows large τ
but does not contribute to the current density at the cathode
side due to the extremely low density near the surface. As
shown in Figure 6b, the response in the current density is
obviously caused by the prominent increase and subsequent
decrease of Na+ at the surface. Furthermore, the noise
propagating through the solution is suppressed due to the
highly screened surface. This is a reason why the effect of noise
seems to be weakened as the molarity increases, even though
the noise is proportional to the square root of bulk
concentration.
Figure 7 shows the density profiles of Na+, Cl−, the

electrostatic potential, and the electric field obtained from the
simulations. Parts a−c, d−f, g−i, and j−l of Figures 7 present
results from 10, 50, 100, and 200 mM NaCl solutions,
respectively. Resulting from the density of Na+, the electrode
surface is strongly screened and the diffusion layer is gradually
formed as time passes. On the other hand, the distribution of
Cl− rapidly decreases near the electrode surface and exhibits
uniform increase as a function of x in each molarity. The
electrostatic potential shows a drastic increase near the
electrode surface and the screening effect is apparent as the
molarity increases. These trends are also expressed more clearly
by the electric field strength. As previously discussed for Figures
4 and 5, high salt concentrations may cause a rapid response to
the applied field especially near the electrode surface and thus
weak fields remain behind the strongly screened surface, which
cause the whole solution to take a long period to relax.
Figure 8a shows density distributions of Na+ at t = 1.0 μs. For

each concentration, a minimum peak of Na+ is found near the
surface. This peak implies that part of the ions tends to adsorb
on the electrode surface and the others separate, forming
density gradients. In the case of Cl− as shown in Figure 8b, the
concentration is depleted near the electrode surface and
approaches its bulk density as x increases. Due to these
distributions, the electrostatic potentials show extremely steep

gradients near the electrode surface, as shown in Figure 8c. In
the 100 and 200 mM solutions, the electric field strength is 2
orders of magnitude different between the two ends. Despite
the strong screening, however, weak fields also seem to exist
widely in the solution, which drives the transport of
electrolytes.

■ CONCLUSIONS
In this study we developed a theoretical model and carried out
numerical calculations to explain the dynamical behavior of
electrolytes near biased electrodes in nanofluidic devices. We
have found that the ionic response strongly depends on the

Figure 6. Time evolution of (a) current density of 10 (purple), 50
(blue), 100 (orange), and 200 (red) mM NaCl solution where τ of
Na+ is also shown in the inset and (b) normalized number density of
Na+ and Cl− (inset) at x = 0. Computations are for V = 0.3 V and L =
40 nm.

Figure 7. Time transition of number densities, electrostatic potential,
and electrostatic field resulting from (a)−(c) 10 mM, (d)−(f) 50 mM,
(g)−(i) 100 mM, and (j)−(l) 200 mM NaCl solutions, applying V =
0.3 V on the length of L = 40 nm.
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applied potential and the length of the nanogap, from which an
effective power law arises in the numerical calculations.
Moreover, multiple time and length scales are involved in the
ionic response to a biased nanogap with large electrode surfaces
as is present in MCBJ systems. The power law behavior shown
in Figure 3 will allow for the prediction of the response times in
devices and future experiments. Furthermore, this work is an
important building block to investigate multiple electrode
systemsa problem that requires a solution in higher
dimensions where efficient computational techniques are
required. These findings will also be helpful in understanding
the background currents in novel single-molecule sequencing
approaches, as well as the behavior of electrochemical
capacitors for high-energy density storage.
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