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ABSTRACT 

We examined Cu contamination effects on macrobenthic communities and Cu 

concentration in invertebrates within Shelter Island Yacht Basin, San Diego Bay, 

California. Results indicate that at some sites, Cu in sediment has exceeded a threshold 

for “self defense” mechanisms and highlight the potential negative impacts on benthic 

faunal communities where Cu accumulates and persists in sediments. At sites with 

elevated Cu levels in sediment, macrobenthic communities were not only less diverse but 

also their total biomass and body size (individual biomass) were reduced compared to 

sites with lower Cu. Cu concentration in tissue varied between species and within the 

same species, reflecting differing abilities to “regulate” their body load. The spatial 

complexity of Cu effects in a small marina such as SIYB emphasizes that sediment-

quality criteria based solely on laboratory experiments should be used with caution, as 

they do not necessarily reflect the condition at the community and ecosystem levels.  
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1. Introduction 

 

Benthic communities (assemblages of coexisting species) are considered effective 

indicators of habitat condition because of their importance to overall ecosystem structure 

and function. Many infaunal species are sedentary and trophically diverse (Lenihan and 

Micheli, 2001) and their communities integrate the effects of water and sediment changes 

over time. In addition, benthic fauna play an important ecological role within food webs. 

They are a direct and indirect food source for many animals, including large crustaceans, 

fishes, marine birds and marine mammals (Feder and Jewett, 1981). Benthic animals also 

can alter physical and chemical conditions at the sediment-water interface, promote 

decomposition of sediment organic matter (OM), and are important mediators in nutrient 

recycling from the sediments to the water column through bioturbation and suspension 

feeding activities (Rhoads, 1974; Aller and Yingst, 1985). Hence, changes in community 

composition, abundances and diversity of benthic fauna can affect the functioning of the 

entire ecosystem (Bilyard, 1987).  

Benthic fauna are most directly exposed to contaminated sediments and hence 

vulnerable to potential toxic effects. The extent of the effect will depend on the species-

specific tolerances to the metals present (Luoma and Carter, 1991) and the influence of 

metals on species interactions. The interaction of animals with the geochemical 

characteristics of the sediment are mediated by the animal physiology, life habit, and 

feeding mode. The uptake of trace metals in benthic invertebrates can affect their 

reproductive processes, feeding rates, respiration, protein utilization, and cause 

morphological abnormalities and histological problems in adult invertebrates (Luoma and 
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Carter, 1991). 

Copper (Cu hereafter) is a common contaminant in coastal waters, particularly in 

industrialized harbors, bays, and estuaries, due to its extensive use in antifouling paints 

(Salomons and Förstner, 1984; Terlizzi et al., 2001; Carson et al., 2009). Trace 

concentrations of Cu are essential for the proper function of many life processes, but Cu 

can be toxic at high levels (Buck et al., 2007). There is increasing concern regarding the 

ecological risk that Cu pollution poses in bays and marinas because Cu is toxic not only 

to the targeted fouling organisms but also to other animals in the environment.  

 

 In San Diego Bay (32˚40’ N; 117˚14’ W) elevated concentrations of dissolved Cu 

have raised concerns about potential effects on benthic faunal communities, because in 

some areas dissolved Cu levels exceed state and national water quality criteria of 3.1 µg 

L-1 (49 nM) (US EPA, 1995; Neira et al., 2009). One of these areas is Shelter Island 

Yacht Basin (SIYB) (32˚43N; 117˚13’W), a small, man-built enclosure whose “mouth” 

(0.2 km) faces the main (and only) entrance channel to San Diego Bay. Because SIYB 

has no through flow, it is among the most Cu contaminated basins in the southern 

California area (Schiff et al., 2007).  

Cu speciation in SIYB is believed to be similar to that in San Diego Bay where 

Cu is   principally associated with OM (99%, Zirino et al., 1998), with the remainder, 

perhaps one percent, being associated with inorganic complexes (Zirino and Yamamoto, 

1972).   Cu species in San Diego Bay include the so-called “free ion” (Cu2+
aq, and Cu 

inorganic complexes), Cu associated with dissolved organic ligands (CuL ≈ 50 %), Cu in 

colloidal forms, principally organic in nature (CuLcoll  ≈ 30 %) and Cu in particulates, 
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again, principally organic in nature (CuLpart. ≈ 10 to 20%) (Chadwick et al., 2004; Blake 

et al., 2004). 

Recently, Neira et al. (2009) examined the overall effect of number of boats and 

distance on Cu species levels in the water column and sediments along with their spatial 

variability within the basin. Spatial models of Cu distribution in water and sediments 

revealed the presence of gradients and “hotspots” of Cu concentration. They found high 

concentrations of dissolved Cu in water and total Cu in sediments but limited amounts of 

free Cu++. This raised questions about the impact of Cu on benthic faunal communities 

living underneath and immediately adjacent to recreational boat basins. 

The implementation by California regional Water Quality Control Board of the 

Total Mean Daily Load (TMDL) program in December 2005 (SDRWQCB, 2005), was 

intended to gradually reduce Cu levels in San Diego waters. This and the eventual phase-

out of Cu-based hull paints on recreational boats in San Diego Bay (Carson et al., 2009) 

has created the need to understand the present status of conditions benthic faunal 

communities in SIYB. In general, the impacts of pollution on marine organisms has 

usually been assessed and predicted from studies with single species under controlled 

conditions (Widdows, 1985; Clark et al., 2001; Stark, 1998). Although this approach is 

valid, it does not lead to predictions about the effects of toxicants on entire communities 

(Kimball and Levin, 1985; Luoma, 1996). It has been well established that the main 

metal contaminant in SIYB is Cu (Zirino et al., 1998; SDRWQCB, 2005) and that a 

strong gradient of Cu occurs both in water and sediments linked to boat distribution 

(Neira et al., 2009). SIYB offers a unique “natural” mensurative experiment to contrast 

changes in macrobenthic communities between sites of high Cu (many boats) and sites of 
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low Cu (no/few boats) levels. 

Stress is a ubiquitous feature of coastal environments and is increasing under 

anthropogenic influence (Parker et al., 1999).  Grime (1989) has defined stress as 

"external constraints limiting the rates of resource acquisition, growth or reproduction of 

organisms". Excess Cu can have these effects on marine invertebrates (e.g. Luoma and 

Carter, 1991; Krång and Ekerholm, 2006; Roberts et al., 2006; Hollows et al., 2007).  

However, it is difficult to extrapolate effects on single functions of single species to 

consequences for higher levels of organization such as communities and ecosystems 

(Parker et al., 1999). Comparative analyses of community responses and species 

responses to stressors suggest that community effects cannot be extrapolated from single 

species responses alone (e.g., Van den Brink et al., 1996). Community level feedbacks 

are not well understood but could involve trophic cascades, facilitation, or animal-

sediment interactions.  Current paradigms suggest that reduced species diversity, elevated 

dominance by stress tolerant taxa, and increased homogeneity are common ecological, 

community-level outcomes of environmental stressors (Luoma and Carter, 1991; Austen 

et al., 1994).  Stress may however promote evolutionary diversity over longer time scales 

(Klerks and Levinton, 1989; Korol, 1999; Nevo, 2001). Below we generate a series of 

predictions about the potential for Cu stress in protected embayments to modify elements 

of macrofaunal community structure based on stress theoretical considerations. 

We hypothesize that (a) reductions in macrobenthic density, biomass, body size 

and diversity are associated with elevated Cu concentration gradients, or with specific Cu 

chemical species, (b) other identifiable factors such as sediment OM, grain size, and 

chlorophyll a (chl a) play a secondary role in structuring communities, (c) different 
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feeding modes occur at different Cu concentrations, with deposit feeders proportionally 

decreased at highest Cu concentrations, and that (d) the community present under highest 

Cu stress should be comprised of a mixture of species with evolved tolerance and those 

with lifestyles that limit exposure to Cu (i.e. mobile and tube builders).   

Information on metal concentrations in invertebrate tissues is an important 

component of any coastal and estuarine assessment because metal concentrations are site-

specific and related to local environmental condition. A major factor determining the 

metal content in an organism is the concentration of the metal in the surrounding 

environment. Benthic animals receive metals directly from overlying waters, or via 

porewater, or when contacting and ingesting sediment particles. Because the benthic 

animals are permanently associated with their sediments, the question arises whether 

invertebrates inhabiting sediments with higher Cu will have enhanced Cu in their tissues. 

In general, little information is available on Cu concentration in the macrofauna of 

bottom sediments (Davydkova et al., 2005), but given the diversity of microhabitat, 

developmental biology, feeding modes and lifestyles among the macrobenthic taxa, we 

can expect a large range of exposures and sensitivities to Cu contamination. Thus we 

hypothesize that invertebrate tissue Cu concentrations will not directly reflect Cu in 

sediment, and that macrofaunal species’ tolerance and sensitivity to Cu concentrations, 

assessed by tissue concentrations and distribution patterns, will vary across and within 

taxa.  
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2. Materials and methods 

 

2.1. Study site 

Shelter Island Yacht Basin is located in the north end of San Diego Bay near the bay 

mouth. It is a semi-enclosed, man-made basin of approximately 3.2 km long, with its 

opening facing the main entrance channel of San Diego Bay (Fig. 1). The mean width of 

the basin is 475 m with a mouth width of 200 m and a greatest width of 750 m in the 

center, and an average volume estimated at 5.9 x 106 m3 (Johnston, 1989). The mean 

depth is about 5 m (MLLW). SIYB is flushed by the largely semidiurnal tidally-driven 

current that enters San Diego Bay via the main channel. The average residence time is 

about 5 days. SIYB is heavily used for boat berthing as well as repair and repainting. 

About 13.5% (~2,300) of the recreational boats of the San Diego Bay region are moored 

there permanently (Lenihan et al., 1990; Neira et al., 2009). A total Cu load of 

approximately 2,200 kg y-1 has been estimated to enter the water column in SIYB, of 

which > 92% is derived from passive leaching from hull paints (SDRWQCB, 2005).  

 

2.2. Sampling design 

In 2006 an exploratory sampling based on a grid of 32 stations projected onto an 

orthophoto of SIYB using ArcGIS (ESRI, 2006) was conducted (Neira et al., 2009). The 

design ensured that the entire basin was equally represented, including both open areas 

and areas with moored boats. This detailed determination of Cu levels in sediments and 

water, and their spatial distribution (vertical and horizontal) in relation to the recreational 

boat distribution, detected a Cu gradient and hotspots with different degrees of Cu 
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concentration (Neira et al. (2009). This provided the basis for sampling in the present 

study. Therefore, in spring 2007 we sampled a total of 26 stations that we categorized in 

terms of sediment Cu as “high” (236.1 ±40.9 mg kg-1; 9 stations), “medium” (183.2 ±19.6 

mg kg-1; 7 stations), and “low” (111.5 ±25.0 mg kg-1; 8 stations). Two stations outside the 

basin served as reference sites (18.9 ±2.7 mg kg-1) (Fig. 1). More details of the study site 

and sampling design are given in Neira et al. (2009).  

 

2.3. Sediment sampling, processing and analyses 

At each station, samples of surface sediment (0-5 cm) were collected by SCUBA divers 

using plastic tube corers (8.1 cm i.d., 51.5 cm2). Onboard, the overlying water was 

removed and the redox potential was measured in the top 1 cm using a portable redox-

meter (Mettler Toledo). In addition, a small syringe core (1.13 cm2 x 1 cm depth) was 

taken from the same core for later sediment chlorophyll a (a proxy of microalgae 

biomass) and phaeopigments analysis. The subsample was placed in pre-weighed 15 mL 

polypropylene tubes and stored at –20˚C. Then, the top 5 cm fraction of sediment was 

transferred into an acid-cleaned Nalgene® jar and transported on ice to the laboratory for 

further analysis of sediment Cu using atomic absorption spectrometry.  Certified 

reference material (MESS-3) (National Research Council, Canada) was used for quality 

control (recovery ~94%) (Table 1). 

“Surface” (50 cm below the surface) water was collected at each site with acid-

washed 250 mL Nalgene® bottles. For the determination of dissolved Cu, 200 ml of 

seawater was filtered through a pre-weighed polycarbonate membrane (0.45 µm, 47 mm) 

using an acid- cleaned Nalgene® analytical filter unit. All filtered water samples were 
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acidified to pH < 2 with Optima grade HNO3 (Fisher) and stored until analysis. Each 

filter containing suspended particulate matter was stored in a pre-cleaned Petri dish and 

kept frozen inside a Ziploc® bag. Porewater was extracted by centrifuging ~30 cc of 

homogenized sediment in polypropylene tubes at 4000 rpm for 10 min. The supernatant 

was filtered through a 13 mm, 0.45 µm PTFE filter. The filtered pore water (~5 mL) was 

acidified to pH < 2 with Optima grade HNO3 and stored until analysis of dissolved Cu. 

Cu was measured using a Varian 880Z graphite furnace atomic absorption spectrometer 

(GFAAS). Accuracy and precision were assessed by analysis of certified coastal seawater 

standards (CASS-4) (National Research Council, Canada) (recovery ~91%) (Table 1). 

OM was determined on ~30 g dried, homogenized sediment by mass loss after 

combustion at 500˚C for 4 h (Byers et al., 1978). For grain size analysis, ~100 g of 

sediment were mixed with 25 ml of 30% hydrogen peroxide to remove the OM. The 

slurry was allowed to stand for 3-4 days until no trace of OM was left. After adding 

distilled water, the mixture was sieved wet through a 63-µm mesh sieve. Both fractions 

of the sample (>63 and <63 µm) were dried at 60˚C and weighed to determine percent 

sand and silt-clay, respectively. Sediment chlorophyll a (chl a) and phaeopigments, were 

determined spectrophotometrically (Thermo Spectronics, Genesis 20) from freeze-dried 

sediment (Hagerthey et al., 2006) after extraction with 90% acetone. The sum of chl a 

and phaeopigments is referred as CPE (Pfannkuche and Soltwedel, 1998). 

 

2.4. Macrofauna collection and processing 

At each site, sediment cores were collected by SCUBA divers with plexiglass tubes (5.1 

cm i.d; 20.4 cm2) for analysis of macrofauna. Immediately after collection, the uppermost 
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5 cm were extruded and transported in plastic jars to the laboratory. Samples were fixed 

in 8% buffered formaldehyde solution with rose Bengal stain. In the laboratory, sediment 

samples were sieved on a 0.3 mm mesh sieve, and the retained invertebrates were sorted 

in fresh water under a dissecting microscope. Specimens were counted and identified to 

the lowest taxon possible, with putative species designated for diversity calculations. Wet 

weighed biomass of each species was determined on a Sartorius® analytical balance.   

 

2.5. Cu concentration in invertebrates  

Sediments were collected in Ziploc® bags by SCUBA divers, and transported in an 

insulated container to SIO. Sediment was sieved on 300 µm mesh while washed with 

filtered seawater. Animals were picked from the sediment under a dissecting microscope 

and placed into Petri dishes with filtered seawater for 24-36 h to allow the gut to empty. 

Animals were identified to the lowest taxonomic level (mostly species). When necessary, 

smaller, same-species individuals from the same Cu-category sediment, though from 

different stations, were combined to obtain the critical mass for analysis. Because most of 

the animals were of small size, the whole animal was used for analysis. Soft parts of 

larger organisms (e.g. bivalves, gastropods) were dissected from the shell. The animals 

and tissue were carefully rinsed with MilliQ water and placed into acid-washed, pre-

weighed polypropylene vials, dried at 60˚C, and reweighed prior to digestion and metal 

analysis. At each sample (1-15 mg DW), 500 µL of 45% ultra pure nitric acid (Optima, 

Fisher) was added. The digestion was made in a microwave oven at 80˚C for 4 h (15 min 

to reach 80˚C, 3 h at 80˚C, 20 min ventilation). The resulting residue was diluted with 5 

ml MilliQ water, gently shaken, and allowing to rest for 48 h. Clear supernatant was 
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transferred into ICPMS polystyrene tubes and measured with a ICP-OES Perkin Elmer 

Optima 3000 DV analyzer. Accuracy and precision additional blanks were prepared, and 

an identical exercise was performed using DOLT-2 standard (National Research Council 

of Canada) (~90% recovery) (Table 1).  

 

2.6. Data analysis   

Correlations among the investigated environmental variables and community parameters 

(abundance, biomass, diversity) were evaluated with the non-parametric Spearman’ rank 

correlation coefficient (Zar, 1996). Total abundance (N), biomass, as well as diversity 

indices such as Pielou’s evenness (J’), Shannon-Wiener diversity index (H’ log10) and 

Rank1 dominance (the proportion of the most abundant species), were calculated to 

describe macrofaunal assemblage structure. Species richness was examined as a function 

of area (species per core) (S), and as a function of the number of individuals via 

rarefaction curves (Hurlbert, 1971). The differences between sites were tested applying 

one-way ANOVA. The post-hoc HSD-Tukey (Honest Significant Difference) test was 

applied when differences were significant (p<0.05; Sokal and Rohlf, 1997). Data were 

tested for normality, and when necessary, square root transformed. Univariate analyses 

were performed using the software package JMP 6.0.3. Given the fact that only one basin 

was studied, we acknowledged that all of our within-basin samples, grouped into zones 

are effectively pseudoreplicates (sensu Hurlbert, 1984). This may limit the inferences that 

can be made to SIYB. 

Feeding modes were evaluated by assigning each species to one of the following 

categories: as surface-deposit feeders (SDF), subsurface-deposit feeders (SSDF), 
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omnivores and carnivores according to information in the literature for higher taxa, 

families, or genera (e.g. Fauchald and Jumars, 1979; Lastra et al., 1991; Rakocinski et al., 

1997; Levin et al., 2006; Shield and Hughes, 2009).  

Differences in the assemblages of taxa among sites of “high”, “medium” and 

“low” Cu were examined using non-metric multidimensional scaling analysis (nMDS), 

based on Bray-Curtis similarity indices. Stress values indicate how well the solution  (2-

dimensional MDS plot) reflects high-dimensional relationships among samples. Values 

<1 are good and < 0.2 are useful (Clarke, 1993). Data were double square root 

transformed to reduce the influence of disproportionally abundant taxa. Pairwise 

comparisons for significant differences in macrofaunal composition between sites were 

made using analysis of similarity (ANOSIM) (Clarke, 1993).  Analysis of macrofaunal 

dissimilarities between sites and similarities within-groups was carried out using 

similarity percentage (SIMPER). A Principal Component Analysis (PCA) was used for 

the ordination of species based on Cu concentrations in tissue. These multivariate 

analyses were performed using PRIMER 5.2.2 (Plymouth marine Laboratory, Clarke, 

1993; Clarke and Warwick, 1994).   

A suite of ordination and gradient analysis routines were used to assess variation 

in assemblage structure, explore multivariate relationships between macrofaunal 

community structure and environmental variables (ter Braak and Šmilauer, 1998), and 

identify prospective indicator species of Cu contamination. As a classification method, 

Detrended Correspondence Analysis (DCA) was performed to determine the appropriate 

response model for the invertebrate data. DCA searches for major gradients in the species 

data irrespective of any environmental variables (ter Braak and Prentice, 1988). The 
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length of the gradient derived from DCA can help to determine which method of direct 

gradient analysis is most appropriate to use on the dataset (Lepš and Šmilauer, 2003). The 

DCA performed on the invertebrate data indicated that the longest gradient was less 

(shorter) than 3.0 standard deviations; therefore we used Redundancy Analysis (RDA), 

the linear method of direct gradient analysis (Van Wijngaarden et al., 1995, ter Braak and 

Šmilauer, 2002). When the longest gradient is larger than 4.0, unimodal methods such as 

CCA are more appropriate (ter Braak and Šmilauer, 2002).  

Partial RDA (pRDA) was used to separate the effects of explanatory variables 

from those of covariables (Lepš and Šmilauer, 2003). In our pRDA analysis, we included 

natural variables with a highly significant effect on community variation as covariables. 

In the case of pRDA, the sum of all canonical eigenvalues accounts only for the effects of 

the Cu species but the inclusion of the other covariables allows for the calculation of 

variance partitioning (Lepš and Šmilauer, 2003).  

Ordination and gradient techniques, in their graphical form, can also aid in the 

identification of any potential invertebrate indicator species (Kremen, 1992). A 

TWINSPAN (Two Way Indicator Species Analysis) was performed to complement and 

facilitate the interpretation of the RDA triplot.  

A forward stepwise selection procedure was applied to select a set of explanatory 

variables (acceptance level: p < 0.05), which could account for the maximum variation in 

the faunal data, to be used in the ordination model (ter Braak, 1988; ter Braak and 

Šmilauer, 1998). A Monte Carlo permutation tests (999 permutations) was used to 

determine statistical significance of the species-environmental relationships (ordination 

axes). Species were square root transformed, while environmental variables were 
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automatically centered and standardized by the CANOCO software (Jongman et al., 

1995). The Monte Carlo permutation model allowed the selection of the most important 

environmental variables to perform the final RDA analysis. Ordination and gradient 

analysis were performed using CANOCO for Windows 4.5. 

To determine how the explanatory variables influence the distribution of 

macrofaunal communities, we modeled regression trees of the species data set using the 

environmental data as predictor variables. Regression trees handle a single response 

variable and multiple explanatory predictors (Merler et al., 1996) without data 

transformation and produce decision trees to display class memberships by recursively 

binary partitioning of the data set into subsets (also called nodes) that are successively 

more an more homogeneous in the values of the response variable (De’ath and Fabricius, 

2000; Sutton, 2005). How each node is split into two sub-nodes is analogous to variable 

selection in regression. The split that maximizes the homogeneity and the difference 

between the resulting two subgroups is then selected. Regression and classification trees 

have been used previously in Southern California bays to model halibut fish nursery 

habitats and the influence of environmental variables (Fodrie and Mendoza, 2006). 

Regression trees were modeled using Statistica v.8 (Statsoft, 2008).  

 

3. RESULTS 

 

3.1. Basin environmental properties  

Patterns of Cu distribution and environmental parameters measured in this study were 

similar to those measured in spring 2006 and confirmed the longitudinal gradient of 
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increasing Cu both in water and sediment. Dissolved Cu in surface water averaged 8.0 

±0.4 µgL-1, exceeding the EPA water quality criteria of 3.1 µg L-1. Sediment Cu showed a 

clear gradient from outside to the head of the basin, ranging on average from 18.9 mg kg-1 

at the reference sites to 236.1 at the “high” Cu sites, with an absolute peak concentration 

of 442 mg kg-1. Pigment content in sediment, as CPE (sum of chl a and phaeopigments) 

ranged from 7.1 to 31.4 µg g-1, being it highest at “medium” and high” Cu sites. Same 

picture was observed for mud content and OM, while the inverse occurred for sand 

content. Sediment redox potential was lower at sites with higher Cu, and inversely 

correlated with OM and pigments (Neira et al. 2009). A summary with of the 

environmental properties measured in spring 2007, representing the different designated 

sites from outside to the head of the basin, is presented in Table 2. Details of the spatial 

distribution of Cu species and their relationships with sediment properties and number of 

boats are given in Neira et al. (2009).  

  

3.2. Macrofaunal density, biomass and body size 

Mean total macrofaunal densities did not vary significantly (Wilcoxon χ2 = 3.3, df = 3, P 

= 0.340) among designated sites, ranging from 94.4 (±1 SE 27.9) to 212 (±1 SE 57.2) ind 

20.4 cm-2 core (46,274 to 103,921 ind m-2) (Table 3). The lowest absolute densities (37 

ind 20.4 cm-2 core were found at the head of the basin. In contrast, mean total biomass 

was an order of magnitude lower (biomass: 42.8 ±1SE 7.9 mg 20.4 cm-2 core) at sites 

with “high” Cu than those of “low” Cu and reference sites (biomass: 495.7 ±1SE 88.6 mg 

20.4 cm-2 core) (Wilcoxon χ2 = 18.74, df = 3, P = 0.0003) (Table 4). The same occurred 

for the average body size (individual biomass), which was 8.5 mg at reference sites 
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versus 1.1 mg at the “high” Cu sites (Wilcoxon χ2 = 21.53, df = 3, P < 0.0001). 

 

3.3. Composition and diversity 

A total of 48 taxa were identified (Table 2), with annelid polychaetes (16 families) (Fig. 

2A) and peracarid crustacean (amphipods, isopods, ostracods, cumaceans) (Fig. 2B) as 

the dominant groups (overall > 77% of total). Other minor taxa present included 

Mollusca, Cnidaria, Turbellaria, Nemertea, Phoronida, and Holothuria (overall < 9.8%). 

Tubificid oligochaetes were numerically important outside and at the head of the basin 

(Table 3). Among the polychaete families, there was a higher family richness at “low” Cu 

and reference sites than in sites with higher Cu (Fig. 2A). Syllids were the dominant 

group overall, with enhanced percent contribution in the “high” Cu sites. In contrast, the 

percent contribution of spionid, orbiniid and capitellid polychaetes was lower at “high” 

Cu sites (Fig. 2A). Peracarid crustacean were the most affected when sediment Cu was 

high (Fig. 2B). The number of amphipds was reduced to only 4 species at “high” Cu 

sites, with Caprella californica and Grandidirella japonica being the dominant (~93% of 

the total crustaceans) while at “low” Cu and reference sites, 10 species were present, in 

relatively equitable proportion (Fig. 2B).  

Samples from sites with different Cu levels exhibited consistent composition 

differences with respect to both density (MDS, Fig. 3A) and biomass (MDS, Fig. 3B). 

Communities of the “high” sediment Cu sites differed significantly from those of the 

“medium” sediment Cu sites (ANOSIM, P = 0.004), “low” Cu sites (ANOSIM, P = 

0.002), and reference area (ANOSIM P = 0.036). Within-site assemblage similarity was 

highest outside the basin (SIMPER, 76.1% similarity) and the lowest at the “high” Cu 
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sites (SIMPER 47.6% similarity). Assemblage dissimilarities were highest between 

“high” and “low” Cu sites (SIMPER 69.1% dissimilarity) (Fig. 3A). Differences were 

driven by enhanced abundances of Exogone lourei, Tubificoides, Caprella californica, 

and Leptochelia dubia at the “high” Cu sites.  The changes in assemblage composition 

based on biomass were even more noticeable, with communities of the “high” Cu sites 

differing from those of the “medium” ANOSIM P = 0.001), “low” (ANOSIM P = 0.001), 

and reference sites (ANOSIM P = 0.018) (MDS, Fig. 3B). Dissimilarities between “high” 

Cu assemblages and those of “medium”, “low”, and reference, were 67.4%, 80.2% and 

80.9% (SIMPER), respectively. Reduced biomass of several species of polychaetes, 

molluscs, and peracarid crustacean at the “high” Cu sites (Table 4) contributed to the 

high dissimilarities. Within-site assemblage homogeneity was greatest at reference sites 

outside (SIMPER, 77.7% similarity) and least at the “high” Cu sites (SIMPER, 42.2% 

similarity).  

 

Average species richness (S = 27.5) per 20.4 cm-2 core as well as diversity (H’ = 

1.25) was greatest at sites with lowest Cu (S = 27.5, H’ = 1.25, respectively), and lowest 

at sites with “medium” and “high” Cu (S = 14.9 and 16.6, respectively) (Table 5), while 

evenness  (J’) was not significantly different. Rank 1 dominance (the proportion of the 

most abundant species) was greatest in sites with “medium” and high” Cu levels (Table 

5). Rarefaction diversity was greatest at reference and “low” Cu sites, and lowest at the 

“medium” and “high” Cu sites (Fig. 4). 
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3.4. Macrofaunal feeding modes and lifestyles 

The dominant macrofaunal organisms in the SIYB were surface-deposit feeders (SDF), 

with a presence of more than 50% at “medium” and “low” sediment Cu sites, followed by 

subsurface-deposit feeders and omnivores. Carnivores contributed only a small 

percentage of the total (Fig. 5A). However, the proportional representation of each 

feeding mode varied between the designated sites. For instance, omnivores were 

dominant (X2
4 = 15.6; P = 0.0036) at the sites of “high” Cu, with about 50% contribution; 

in contrast, subsurface-deposit feeders (SSDF) were dominant at the reference sites (F3,25 

= 3.5, P = 0.032) (Fig. 5A). Mobile fauna were well represented (> 50%) at all sediment 

Cu sites.  Burrowers contributed over 30% at the reference sites. Tube builders were 

fairly equally represented at all sites within the basin (~21%), while their contribution 

was reduced (~12%) at the reference sites outside the basin (Fig. 5B). Species’ feeding 

modes and lifestyles are given in Appendix I. 

 

3.5. Macrofauna in relation to the environment 

Spearman rank correlation analysis was used as a first approach to explore possible 

relationships between the environmental variables and the univariate measures derived 

from macrofaunal data. Noticeably, number of species and biomass were negatively 

correlated with sediment Cu and TOM while dominance (R1) was positively correlated 

with sediment Cu (Table 6). There was a consistent decrease of macrofaunal biomass 

with increasing Cu in sediment (y = -71.02ln(x) + 432.07, r2 = 0.30; P = 0.015) (Fig. 6).  

 

The forward stepwise selection procedure identified a set of five environmental 
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variables (of the ten measured) that best explained the variation in the species data (free 

Cu++, dissolved Cu in pore water, sediment Cu, TOM, and chl a) (Table 7). These 

variables, which can significantly influence macrofaunal community structure, were used 

in the ordination models. The RDA yielded four axes that explained 97.5% of the 

variance in the relationships between macrofaunal community structure and 

environmental variables, and the species-environmental relationships were highly 

significant (P = 0.001) for all canonical axes (Table 8A). In the ordination triplot (Fig. 7), 

there were a few species that clustered together, influenced by sediment Cu and TOM, 

while the highest species representation was related to descending environmental vectors. 

Community structure and the RDA axes synthesizing environmental variation were 

strongly correlated (R > 0.73, Table 8A). The removal of the two natural variables (TOM 

and chl a) as covariables using partial RDA, allowed us to decompose (variance 

partitioning) the total variability into a part that can be explained solely by the influence 

of the Cu chemical species (variables of interest) on macrofaunal assemblage structure. 

By using the results of the redundancy analyses (Table 8B), we calculated that 18.3 % of 

the variance of biological species composition was explained by the Cu species (sediment 

Cu, Cu++ in porewater and dissolved Cu in porewater) and 34.4% is explained by the 

covariables TOM and chl a (total of 52.7%); a 47.3% of the variation remained 

unexplained. All the significant variables accounted for 52.7% of the variance. The 

remaining unexplained variance is presumably due to other physical and biological 

factors such as presence of other pollutants, hydrodynamics, sediment stability, 

competitive interactions (e.g. predation), bioturbation, recruitment patterns, or natural 

variability (Oug, 1998). 
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3.6. Indicator species and regression trees 

Species such as Polydora, Pseudopolydora, Euchone, Lumbrineris and Caprella are 

associated with high sediment Cu and TOM (clustering together many “high” Cu sites) 

(see RDA plot, Fig. 7). This suggests they are more tolerant to Cu and hence are 

prospective “Cu tolerant indicators”. In contrast, we find a group of species that can be 

considered as “Cu sensitive indicators”, such as the amphipods Podocerus, Corophium, 

Elasmopus, Ampithoe, Aoroides and Ampelisca, and the polychaetes Ophelia, 

Diplocirrus, and the bivalves Musculista and Macoma. TWINSPAN analysis provides 

comparable results. Samples were classified into 2 groups at the highest level (Fig. 8), 

with the spionid Polydora as a prospective “Cu tolerant indicator”, while Podocerus and 

Corophium represent those sites with “low” Cu and hence we suggest are prospective 

“Cu sensitive indicators”. Furthermore, the high Cu assemblages were subdivided into a 

group characterized by Euchone and a group characterized by Odontosyllis and 

Mediomastus as indicator species (Fig. 8). The lower Cu assemblages, with Podocerus 

and Corophium as indicator species was subdivided into a group dominated by 

Grandidierella, Scoloplos and Lumbrineris, and a group characterized by Sphaerosyllis. 

The results of the RDA confirm the groupings obtained with TWINSPAN.  

 By using regression trees (a non-parametric regression model), we described the 

dependence of the response of community descriptors (such as macrofaunal biomass) on 

the environmental variables. Given the strong influence of the pRDA natural variables 

and to see the role of the Cu explanatory variables in the variance partitioning model, we 

built regression trees using the variables sediment Cu, dissolved Cu in porewater and free 

Cu++ in porewater. Sediment Cu concentration appears to be the key explanatory variable 
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associated with macrofaunal biomass variation (Fig. 9) while dissolved Cu and free Cu++ 

in porewater were additionally important variables in partitioning biomass and species 

richness variation. The first partition grouped 65% of the sites with the lowest sediment 

Cu range (16.1-191.2 mg kg-1) that contained the highest biomass, and 35% of the sites 

with greatest sediment Cu range (191.2 - 442.3 mg kg-1) containing the lowest biomass.  

 

3.7. Cu concentrations in macrofauna 

Cu concentrations in the fauna collected at sites of different sediment Cu levels are 

shown in Table 9. Concentrations ranged from 3.5 to 1,712 µg g-1. Some species such as 

the polychaetes Lumbrineris, Scoloplos, Euchone, the oligochaete Tubificoides, and the 

crustaceans Leptochelia, Caprella and Paranthura showed enhanced Cu content (> 4 

times the sediment Cu concentration) coinciding with the greatest Cu concentrations in 

surrounding sediments. In contrast, species such as Polydora and Pseudopolydora, 

Harmothoe, Ophelia, Exogone, and Musculista had concentrations 2.8 - 40 times lower 

than in the “high” Cu sediments. A PCA ordination identified patterns in the data 

highlighting similarities and differences of the Cu concentration in invertebrates, 

grouping them in relation to the different sediment Cu levels (“high”, “medium”, “low”, 

and reference) (Fig. 10). The first two axis of the PCA ordination explained 62.5% of the 

total variance of the Cu in tissue. The ordination grouped those species with high Cu (e.g. 

Lumbrineris, Tubificoides, Paranthura, Caprella) associated with the “high” Cu 

sediments. Some species such as Ostracoda sp.1 and Dorvillea grouped separately from 

the other species, as they had the greatest Cu concentrations in their tissues at sites of 

“medium” and “low” Cu in sediment, respectively.  
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4. DISCUSSION 

 

4.1. Sediment Cu concentrations in SIYB 

Sediment Cu concentrations measured in spring 2007 ranged from 16.1 outside the mouth 

to 442.3 mg kg-1 at the head of the basin (on average 166.8 ±1 SE 20.9 mg kg-1). These 

results were consistent with our previous exploratory study conducted in spring 2006, 

which indicated a strong gradient associated with number and distance of boats in SIYB 

(Neira et al., 2009). There is evidence that sediment in SIYB acts as a sink for Cu from 

the water column.  In San Diego Bay, about 48% of the Cu input is deposited into the 

sediment (Chadwick et al., 2004). Prior to the detailed study conducted by Neira et al. 

(2009) that addressed spatial distribution of sediment Cu and other Cu species, there were 

few reports on sediment Cu concentration in SIYB.  The limited Cu data available 

suggest that sediment Cu in SIYB may have increased since 1975. In 1975, 

concentrations of 60-70 mg kg-1 were reported (Peeling, 1975). More recently, Valkirs et 

al. (1994) determined Cu concentrations in 1991 and 1993 ranging from 133 to 212 mg 

kg-1. Furthermore, three stations examined from 1993 to 1994 showed Cu concentrations 

ranging from 86 to 150 mg kg-1 (SWRCB et al., 1996). Van der Veele (1996) reported Cu 

concentrations from five stations that ranged from 86.4 to 188.4 mg kg-1. Also, in 

sediment collected at four stations, Gieskes et al. (2002) found Cu concentrations ranging 

from just over 34 mg kg-1 to > 270 mg kg-1. Although it was known that Cu can build up 

in sediment and persist over time, and that concentrations in some areas of SIYB 

exceeded the Effect Range Medium of 270 mg kg-1 (NOAA, 1999), none of these studies 

gathered data on benthic community structure. This was recognized by the San Diego 
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Regional Water Quality Control Board (SDRWQCB, 2005), and is addressed in the 

present study.    

 

4.2. Effects on macrofaunal composition, biomass and diversity 

The lower diversity, total biomass and individual biomass (body size) found in 

assemblages associated with sediments of “high” background Cu contamination, relative 

to “low” Cu and reference sites assemblages, suggest a linkage to Cu toxicity. Another 

element that supports the argument for Cu toxicity is the lower total biomass and 

individual biomass at “medium” and “high” Cu sites. At these sites OM content of 

sediments is greater than at reference and “low” Cu sites (Table 2). There is a strong 

positive correlation of OM with sediment Cu (Neira et al., 2009). At sites where low 

diversity and biomass occur, oxygen concentrations measured in bottom waters are above 

6.2 mg L-1 (~4.3 ml L-1) and thus hypoxia is not a confounding factor. Similar oxygen 

concentrations have been reported previously in SIYB (e.g. Van der Weele, 1996).  

 

Gray (1982) also found trends of reduced average body size within macrofauna in 

polluted sediments (including Cu). Benthic communities sampled at several sites in 

Frierfjord/Langesundfjord (Norway) exposed to a gradient of Cu and diesel oil 

contamination resulted in reduced biomass-size spectra (Schwinghamer, 1988). A 

correlative study between benthic macrofauna diversity and heavy metal content in 

sediment, indicated that Cu was more closely linked to reduction in diversity than were 

zinc and lead (Rygg, 1985). The lesser macrofaunal biomass and individual biomass 

(body size), as well as lower diversity occurring in SIYB “high” Cu sites, appear to 
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support Gray’s hypothesis that smaller animals will dominate the macrofauna in stressed 

communities (Gray, 1982).  

 Impairment of chemoreception in aquatic animals has been indicated as an 

important effect of Cu contamination (Carreau and Pyle, 2005; Krång and Ekerholm, 

2006; Pyle and Mirza, 2007). Among the potential ecological consequences of impaired 

chemosensory abilities in invertebrates, is reduced ability to search for and acquire food. 

For example, reduced response to food odors as well as reduced feeding was detected in 

crustacean postlarvae after acute exposure to Cu (Santos et al., 2000). Invertebrates have 

a chemosensory epithelium lining the gut to facilitate post-ingestive feeding which can be 

blocked by the contaminant, inhibiting the reception of chemical stimuli (Blaxter and Ten 

Hallers-Tjabbes, 1992; Pyle and Mirza, 2007). Reduction of biomass may also be 

magnified by indirect toxic effects on food sources such as microphytobenthos, which is 

intimately linked to sediment OM, the main food source for benthic organisms. In recent 

microcosm studies, sediments polluted by Cu (10 mM) caused a significant reduction of 

total biomass of cyanobacterial microalgae (from 3.8 to 0.4 mg C cm-3 of sediment) after 

7 days (Burnat et al., 2009). 

 

4.3. Crustacean sensitivity to Cu 

Within the benthic community of SIYB, peracarid crustaceans, primarily amphipods, 

were the most negatively affected by elevated Cu concentrations. A reduced number of 

crustacean species (Fig. 2B), density (Table 3) and biomass (Table 4) were observed at 

“high” Cu sites relative to “low” and reference sites. Based on laboratory and field 

experiments, Stark (1998) reported that crustaceans appeared to be very sensitive to Cu 
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exposure. He found that the controls (untreated with Cu) had greatest abundances of total 

crustaceans, amphipods and copepods while the least abundances occurred in the Cu 

treatments. Field experiments to examine effects Cu on soft sediment fauna indicated that 

in treatments where Cu was introduced, amphipods and cumaceans had reduced 

abundances, compared to controls untreated with Cu (Morrisey et al., 1996). Similar 

effects were observed by Rygg (1985). Amphipods are mobile animals which search for 

food primarily in uppermost sediment layers, although some of them (e.g. Corophium) 

are also capable of burrowing to search for food items bound to the sediment, such as 

microalgae and detritus. Interestingly, while we found that there is a substantial reduction 

in number of amphipod species and their biomass at sites of “high” Cu, at the same time 

there are other crustaceans such as the amphipods Caprella californica and 

Grandidierella japonica, and the tanaid Leptochelia dubia that apparently cope well at 

those sites (Fig. 2B).  

 

In contrast, Annelida, and in particular Oligochaeta seem not to be affected by Cu 

contamination. This pattern has been observed for oligochaetes and nemerteans in 

laboratory and field experiments (Stark, 1998). In SIYB, polychaetes showed a broad 

spectrum of responses, as reflected by the polychaete composition at the different sites 

(Fig. 2A). 

 It has been suggested that coastal invertebrates exposed to high levels of Cu (or 

heavy metals, in general) are under selective pressure to evolve metal tolerance (Klerks 

and Weis, 1987; Luoma and Carter, 1991; Hummel and Paternello, 1994). Clearly, SIYB 

results (Figs. 7A, 8, and 10) indicated that some macrobenthic invertebrates were 
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disadvantaged by Cu pollution (e.g. Podocerus, Corophium, Aoroides, Ampithoe, 

Musculista) while others were “favored” by it (e.g. Caprella, Grandidierella, Polydora, 

Dorvillea, Polydora, Pseudopolydora, Euchone). This, along with the fact that many 

species accumulate Cu differently in their tissues at differing background sediment Cu 

concentrations (Table 9), suggests that the effects cannot be explained by a single 

mechanism. There are clearly differing responses to Cu involving toxicity and diverse 

habitat, lifestyles, feeding habits, behavioral avoidance, degrees of mobility, routes of 

exposure, and ability to accumulate and detoxify (Rees, 1983; Reish, 1993; Correia et al., 

2002; Mardsen and Rainbow, 2004; Wiklund et al., 2006). 

 

Indirect effects of Cu on mobile species such as Caprella can occur through 

changes in species associations and changes in habitat (Perrett et al., 2006). Reduced 

feeding ability and reduced colonization was observed in gammarid amphipods fed with 

Cu-spiked diets (Weeks and Rainbow, 1993; Roberts et al., 2006). In SIYB, the presence 

of some amphipod genera such as Caprella and Grandidierella and several polychaete 

genera (e.g., Exogone, Polydora, Pseudopolydora, Dorvillea, Euchone) at high Cu sites, 

suggests some tolerance to Cu through detoxification and excretory processes (Correia et 

al., 2002; Marsden and Rainbow, 2004).  

 

Despite the association of Cu concentration with community effects, we 

acknowledge that it may be difficult to establish categorically cause-effect relationships 

to Cu contamination because other factors such as presence of other pollutants, and 

differing patterns of circulation could also cause differences among stations. 
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Furthermore, no other contaminant has ever been thoroughly studied in SIYB. 

Nevertheless, our results appear to support a causal relationship between elevated 

sediment Cu concentrations, reduced macrofaunal biomass and diversity, and changes in 

macrobenthic community composition. This result is supported by our pRDA analysis in 

which we included natural variables with a highly significant effect on community 

variation as covariables. 18.3% of the total faunal variance was explained by Cu; this is 

similar to the 17.4% of variance explained by Cu in Olsgard (1999), who examined 

effects of Cu on macrofaunal recolonization.  

 

4.4. Cu in benthic invertebrate tissue 

SIYB sediments not only appear to be an important sink for Cu (SDWQRCB, 2005; 

Neira et al., 2009), but also seem to be a Cu- enriched food source for benthic 

invertebrates. Cu concentration in SIYB invertebrate tissues varied between species and 

within the same species (Table 9). Some species followed a pattern of increasing Cu 

concentrations in tissue with increasing Cu in sediment, while others did not. Several 

species exhibited Cu magnification above concentrations in the surrounding environment, 

whereas other species had lower concentrations. This may reflect species variations in 

feeding strategies, digestive capacity, digestive tract biochemistry, throughput time, and 

assimilation efficiencies of Cu sorbed to sediment and detritus (Chen and Mayer, 1998; 

Wang et al., 1999). 

 

Three major factors have been suggested to influence metal concentration in the 

tissues of marine invertebrates, namely the environmental bioavailability of the metal, the 
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rate of diffusion across tissue boundaries (including the gut), and the extent to which 

metals are retained within the animal (Depledge and Rainbow, 1990).  Several authors 

have noted that concentrations of metals in tissues of marine invertebrates vary with 

species, specific tissue, individual age, size, physiological state, reproductive condition 

(Eisler, 1981; Depledge and Bjerregaard, 1990). Metal exposure of benthic animals is not 

necessarily controlled by porewater concentration, but primarily through ingestion of 

particles. Studies have shown that a weak association between porewater and 

bioaccumulation of metals exist in several invertebrates, and the most probable 

explanation is that these invertebrates accumulate metals mainly through direct ingestion 

of sediment, regardless of sulfide content (Lee et al., 2000). Our results (Fig. 7 and 9) 

suggest that total dissolved Cu and free Cu++ in porewater may have a minor effect on 

benthic faunal composition and biomass. Dissolved Cu averaged 7.3 µg L-1 and did not 

exhibit large variations among sites, while free Cu++ was very low (pCu 14.6-11.7) (Neira 

et al., 2009); pCu values of 11 or lower can become toxic to phytoplankton (Sunda and 

Guillard, 1976; Brand et al., 1986), copepods (Sunda et al., 1987) and mussel larvae 

(Rivera-Duarte et al., 2005).  

In addition, in SIYB we found a relatively high and uniform Cu complexation 

capacity (i.e. occurrence of Cu-binding ligands) in waters overlying sediments, lowering 

Cu++ to below toxic levels (Neira et al., 2009). In marine invertebrates, conditions within 

the digestive system differ substantially from those in surrounding sediments. 

Invertebrate gut fluids contain high concentrations of organic ligands. Cu concentrations 

in tissue suggest that there are some species able to “regulate” their body load through 

mechanisms that need further investigation, most likely associated with detoxification, 
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storage and excretion abilities. However, because we determined Cu concentrations from 

the whole body (due to the small size of the animals), variation in Cu levels in different 

tissues may have been masked.  

 

4.5. Potential ecosystem consequences  

It is well documented that pollution stress leads to structural changes in benthic 

communities (Pearson and Rosenberg, 1978). Diversity is a key aspect of benthic 

community structure in estuarine and coastal areas and may be linked to a number of 

ecosystem functions (e.g. resource availability, elemental cycling, nutrient exchange, 

production of biomass) (Danovaro et al., 2008). The loss or scarcity of key bioturbators 

that are secondary producers, primarily amphipod crustaceans and polychaetes such as 

Capitella and Mediomastus, as observed in “high” Cu sites of SIYB, may have 

substantial consequences for ecosystem function since there is reduced contribution to the 

remineralization of OM, as well as reduced contribution as prey for higher trophic levels. 

In addition, the greater the loss of bioturbators, the more settling and concentration of 

contaminants in sediments occurs. Lower macrobenthic diversity may support lower rates 

of ecosystem processes such as production and remineralization, and a decreased 

efficiency with which they are performed. A lower structural biodiversity (species 

richness) has a direct negative effect on functional diversity (i.e. the number of functional 

roles species represent in the ecosystem) (Lohrer et al., 2004; Danovaro et al., 2008). In 

addition, altered faunal community composition and impaired biomass at high Cu sites 

may affect potential predators, requiring more time to search for and more food to meet 

nutritional requirements. Heavy metals, including Cu, can also influence predatory/prey 
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interactions by degrading the ability of prey to respond to predators (McPherson et al., 

2004).  

 

5. Conclusions 

Sediment Cu is associated with alteration of the SIYB benthic community. Previous 

measurements of Cu complexation capacity (CuCC) revealed relatively high CuCC in 

bottom and surface waters but low free Cu++ concentrations in porewater. Thus Neira et 

al. (2009), suggested that SIYB is “self detoxifying”, modulated by ligands produced in 

situ and those released from the sediment (Neira et al., 2009). The macrofaunal results 

presented here indicate that at some sites, primarily at the head of SIYB, Cu in sediment 

has exceeded a threshold for “self defense” mechanisms and highlight the potential 

negative impacts on benthic macrofaunal communities where Cu accumulates and 

persists in sediments. Chronic Cu stress allows little opportunity for benthic assemblages 

to recover, causing permanent reductions in biomass, body size and diversity, but not in 

density.  

Although SIYB is small in size (relative to San Diego Bay as a whole), high-

spatial resolution sampling revealed significant gradients in Cu species and faunal 

community structure. Previous sampling efforts have focused on bay-wide analyses, and 

have failed to identify the small spatial scale (10s of m) on which Cu contamination can 

act. Identification of fine-scale community responses to environmental Cu will be useful 

to managers and decision makers, enhancing the design of monitoring programs by 

allowing prioritization of the areas and taxa that should be targeted.  
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The combined effects of reduced biomass, body size, and diversity resulting from 

elevated Cu levels in sediments lead to dramatic alteration of the system at the 

community level.  However, the picture is complex, reflecting a diversity of responses at 

the species level, and even within a species.  More information regarding the life habits 

of organisms under Cu “stress” will help to distinguish the reasons for such differences in 

their responses. This study is unique among other studies of Cu contamination, in that our 

results are wholly based on field data, thereby reflect actual environmental conditions. 

The information obtained from this study highlights the spatial complexity of Cu effects 

in a small marina such as SIYB and emphasizes that sediment-quality criteria based 

solely on laboratory experiments should be used with caution as they do not necessarily 

reflect the situation at the community and ecosystem levels.  
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Appendix I.  Feeding modes and lifestyles for Shelter Island Yacht Basin macrofauna 
SDF = surface deposit feeder, SSDF = subsurface deposit feeder 

Taxa Class Family Feeding mode Lifestyle

Tubificoides spp. Oligochaeta Tubificidae SSDF Burrower

Pseudopolydora paucibranchiata Polychaeta Spionidae SDF Tube builder

Polydora nuchalis Polychaeta Spionidae SDF Tube builder

Prionospio sp. Polychaeta Spionidae SDF Tube builder

Exogone lourei Polychaeta Syllidae Omnivore Mobile

Odontosylis cf. phosphorea Polychaeta Syllidae Omnivore Mobile

Sphaerosyllis cf. californiensis Polychaeta Syllidae Omnivore Mobile

Scoloplos sp. Polychaeta Orbiniidae SSDF Tube builder

Diplocirrus sp. Polychaeta Flabelligeridae SDF Burrower

Mediomastus sp. Polychaeta Capitellidae SSDF Burrower

Capitella spp. Polychaeta Capitellidae SSDF Burrower

Phyllodoce mucosa Polychaeta Phyllodocidae Carnivore Mobile

Eteone californica Polychaeta Phyllodocidae Carnivore Mobile

Cossura sp. Polychaeta Cossuridae SSDF Mobile

Tharyx sp. Polychaeta Cirratulidae SDF Mobile

Cirratulus sp. Polychaeta Cirratulidae SDF Mobile

Cirriformia spirobrachia Polychaeta Cirratulidae SDF Mobile

Clymenella californica Polychaeta Maldanidae SSDF Tube builder

Nereis procera Polychaeta Nereididae Omnivore Mobile

Lumbrineris sp. Polychaeta Lumbrineridae Carnivore Mobile

Euchone limnicola Polychaeta Sabellidae SDF Tube builder

Nephtys cornuta Polychaeta Nephtyidae Carnivore Mobile

Dorvillea rudolphi Polychaeta Dorvilleidae Omnivore Mobile

Ophelia limacina Polychaeta Opheliidae SSDF Burrower

Sphaerodoridae sp. Polychaeta Sphaerodoridae Carnivore Mobile

Musculista senhousia Bivalvia Mytilidae SDF Burrower

Macoma sp. Bivalvia Tellinidae SDF Burrower

Lyonsia californica Bivalvia Lyonsiidae SDF Burrower

Gastropod sp. Gastropoda  - SDF Mobile

Corophium spp. Malacostraca Corophiidae SDF Mobile

Grandidierella japonica Malacostraca Aoridae SDF Mobile

Podocerus sp. Malacostraca Podoceridae SDF Mobile

Harpinia sp. Malacostraca Phoxocephalidae SDF Mobile

Aoroides sp. Malacostraca Aoroidae SDF Mobile

Ampithoe sp. Malacostraca Ampithoidae SDF Mobile

Elasmopus sp. Malacostraca Gammaridae SDF Mobile

Ampelisca sp. Malacostraca Ampeliscidae SDF Mobile

Caprella californica Malacostraca Caprellidae SDF Mobile

Leptochelia dubia Malacostraca Leptocheliidae Omnivore Mobile

Heteroserolis sp. Malacostraca Serolidae Omnivore Mobile

Paranthura elegans Malacostraca Paranthuridae Omnivore Mobile

Cumacea Malacostraca  - Omnivore Mobile

Ostracoda Ostracoda  - Omnivore Mobile

Cnidaria Anthozoa  - Carnivore Epifaunal

Tubellaria Turbellaria  - Carnivore Mobile

Nemertea  -  - Carnivore Mobile

Phoronis sp. Phoronida  - SDF Tube builder

Holothurid sp. Holothuriidea  - SDF Burrower

Table(s)



 

Table 1. Analysis of the certified standards for seawater (CASS-4), sediment (MESS-3), and tissue (DOLT-2). 

The 95% confidence interval is given in parenthesis.

Certified Standard Certified value Measured value % Recovery Detection limit N

For seawater: CASS-4 0.59 (± 0.06) mg l-1 0.54 (± 0.02) mg l-1 90.7 (± 3.9) % 0.05 mg l-1 6

For sediment: MESS-3 33.90 (± 1.60) mg kg-1 31.88 (± 1.17) mg kg-1 94.0 (± 3.4) % 0.03 mg kg-1 6

For tissue: DOLT-2 25.8  (± 1.1) mg kg-1 22.75 (± 2.51) mg kg-1 88.2 (± 5.20) % 0.002 mg kg-1 3

Table(s)



 
Table 2. Average (±1 SE) of concentrations/measurements of environmental variables for designated 
sites in Shelter Island Yacht Basin. OM = sediment organic matter, Eh = redox potential (mV),
Chl a = chlorophyll a (g g-1), Phaeo = phaeopigments ( g g-1), CPE = sum of Chl a and Phaeo (g g-1),

DCuSW = dissolved Cu in surface water ( g L-1), CuSed = sediment Cu (mg kg -1), DCuPW = dissolved

Cu in porewater ( g L-1), Cu++SW = free Cu++ in surface water (picomolar), Cu ++PW = free Cu 

in porewater (picomolar).

Sites % OM % Silt-clay % Sand Eh Chl a Phaeo

"High" Cu 5.1 (0.9) 57.1 (10.5) 42.9 (10.5)  -77.8 (26.5) 5.8 (1.5) 23.8 (5.8)

"Medium" Cu 6.3 (0.5) 50.8 (14.0) 49.2 (14.0)  -101.6 (18.5) 6.4 (3.5) 24.9 (4.5)

"Low" Cu 3.9 (0.5) 55.3 (6.9) 44.7 (6.9)  -32.9 (28.3) 3.8 ((0.7) 13.5 (2.5)

Reference 1.3 (0.2) 8.8 (0.3) 91.2 (0.3)  -63.0 (11.0) 3.3 (0.2) 3.8 (0.9)

Sites CPE DCuSW CuSed DCuPW Cu++SW Cu++PW

"High" Cu 29.7 (7.3) 8.8 (0.5) 236.1 (40.9) 7.8 (0.7) 9.35 (0.5) 0.27 (0.1)

"Medium" Cu 31.4 (5.8) 7.9 (0.5) 183.2 (19.6) 7.3 (0.3) 9.30 (1.0) 0.34 (0.2)

"Low" Cu 17.3 (3.1) 8.5 (0.2) 111.5 (25.0) 6.8 (0.6) 9.15 (0.3) 0.89 (0.3)

Reference 7.1 (1.1) 3.8 (0.5) 18. 9 (2.7) 7.2 (0.1) 5.40 (0.2) 1.56 (0.7)

Table(s)



 

Table 3. Mean density (No individuals 20.4 cm -2 core) ±1 SE of macrofaunal taxa at sites along Shelter Island Yacht Basin 
representing disigned sites of "high", "medium", and "low" Cu levels. Two sites outside the basin served as reference.

                 "High" Cu                   "Medium" Cu                       "Low" Cu"                        Reference

Taxa Average S.E. % Average S.E. % Average S.E. % Average S.E. %

Tubificoides spp. 28.1 12.1 13.3 1.9 0.6 1.5 2.8 1.4 2.9 23.0 5.0 18.9

Pseudopolydora paucibranchiata 7.9 2.0 3.7 5.4 2.6 4.5 5.6 3.6 6.0 0.5 0.5 0.4

Polydora nuchalis 5.0 1.5 2.4 2.0 1.2 1.6 0.6 0.7 0.7 0.0 0.0 0.0

Prionospio sp. 0.7 0.3 0.3 1.0 0.4 0.8 1.9 0.9 2.0 2.0 1.0 1.6

Exogone lourei 76.1 31.0 35.9 12.1 6.2 10.0 6.4 5.5 6.8 23.0 13.0 18.9

Odontosylis cf . phosphorea 1.4 0.8 0.7 5.9 2.9 4.8 2.9 2.1 3.0 1.0 0.0 0.8

Sphaerosyllis cf. californiensis 4.8 2.7 2.3 1.0 0.6 0.8 1.1 1.0 1.2 3.5 0.5 2.9

Scoloplos sp. 3.8 1.0 1.8 3.7 1.5 3.1 4.3 1.6 4.5 8.5 2.5 7.0

Diplocirrus sp. 0.0 0.0 0.0 0.3 0.2 0.2 0.9 0.6 0.9 1.5 0.5 1.2

Mediomastus sp. 1.3 0.5 0.6 0.6 0.2 0.5 3.0 1.2 3.2 9.5 1.5 7.8

Capitella spp. 0.8 0.3 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.5 0.4

Anaitides sp. 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.0 0.0 0.0

Eteone californica 0.3 0.2 0.2 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0

Cossura sp. 3.7 2.3 1.7 0.4 0.3 0.4 0.5 0.3 0.5 0.0 0.0 0.0

Tharyx sp. 0.1 0.1 0.1 0.0 0.0 0.0 0.5 0.2 0.5 0.0 0.0 0.0

Cirratulus sp. 6.4 4.2 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Cirriformia spirobrachia 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.5 0.5 3.7

Clymenella californica 0.7 0.7 0.3 0.0 0.0 0.0 0.1 0.1 0.1 0.0 0.0 0.0

Nereis procera 0.4 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Lumbrineris sp. 1.6 0.5 0.7 1.3 0.7 1.1 2.5 0.8 2.6 0.5 0.5 0.4

Euchone limnicola 6.2 2.1 2.9 10.9 4.4 8.9 3.3 1.5 3.4 1.5 1.5 1.2

Nephtys cornuta 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.5 0.5 2.0

Dorvillea rudolphi 4.1 1.0 1.9 0.4 0.2 0.4 0.6 0.6 0.7 0.0 0.0 0.0

Ophelia limacina 0.1 0.1 0.1 0.0 0.0 0.0 0.5 0.3 0.5 1.5 0.5 1.2

Sphaerodoridae 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.0 0.0 0.0

Musculista senhousia 0.0 0.0 0.0 2.0 1.7 1.6 1.1 1.3 1.2 0.0 0.0 0.0

Macoma sp. 0.2 0.1 0.1 0.0 0.0 0.0 0.5 0.3 0.5 1.5 0.5 1.2

Lyonsia californica 0.0 0.0 0.0 0.3 0.2 0.2 0.6 0.4 0.7 0.0 0.0 0.0

Gastropoda 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.3 0.3 0.0 0.0 0.0

Corophium spp. 0.0 0.0 0.0 0.1 0.1 0.1 5.5 1.6 5.8 2.5 0.5 2.0

Grandidierella japonica 16.8 5.8 7.9 40.1 13.8 33.1 9.8 3.0 10.3 8.0 5.0 6.6

Podocerus sp. 0.0 0.0 0.0 10.1 2.7 8.4 4.6 1.2 4.9 3.5 0.5 2.9

Harpinia sp. 1.0 0.8 0.5 1.3 0.6 1.1 3.3 1.1 3.4 3.0 1.0 2.5

Aoroides sp. 0.0 0.0 0.0 0.9 0.9 0.7 4.8 1.2 5.0 2.0 1.0 1.6

Ampithoe sp. 0.0 0.0 0.0 0.0 0.0 0.0 3.4 0.9 3.6 2.0 1.0 1.6

Elasmopus sp. 0.0 0.0 0.0 0.0 0.0 0.0 1.8 0.4 1.9 2.5 0.5 2.0

Ampelisca sp. 0.0 0.0 0.0 0.1 0.1 0.1 2.8 1.0 2.9 1.5 0.5 1.2

Caprella californica 14.3 3.6 6.8 7.7 3.1 6.4 12.9 12.9 13.6 1.0 1.0 0.8

Leptochelia dubia 15.6 8.3 7.3 1.3 0.8 1.1 0.3 0.3 0.3 2.5 1.5 2.0

Heteroserolis sp. 0.2 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.5 0.4

Paranthura elegans 1.3 0.8 0.6 0.0 0.0 0.0 0.1 0.1 0.1 0.0 0.0 0.0

Ostracoda 0.8 0.3 0.4 0.7 0.4 0.6 0.4 0.3 0.4 2.5 0.5 2.0

Cumacea 0.6 0.2 0.3 0.1 0.1 0.1 0.4 0.3 0.4 2.0 1.0 1.6

Cnidaria 5.1 2.0 2.4 9.0 2.6 7.4 3.9 1.6 4.1 3.0 1.0 2.5

Tubellaria 0.6 0.3 0.3 0.6 0.3 0.5 0.1 0.1 0.1 0.0 0.0 0.0

Nemertea 0.2 0.1 0.1 0.0 0.0 0.0 0.1 0.1 0.1 0.5 0.5 0.4

Phoronis sp. 1.8 1.8 0.8 0.0 0.0 0.0 0.1 0.1 0.1 0.0 0.0 0.0

Holothurida 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.3 0.3 0.0 0.0 0.0

 Total 212.0 57.2 100.0 121.4 20.0 100.0 94.4 27.9 100.0 122.0 25.0 100.0
No m 103921.6 28031.4 59523.8 9790.3 46262.3 13693.1 59803.9 12256.8
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Table 4 . Mean biomass (mg 20.4 cm -2 core) ±1 SE of macrofaunal taxa at sites along Shelter Island Yacht Basin 
representing designated sitess of "high", "medium", and "low" Cu levels. Two sites outside the basin served as reference.

              "High" Cu"              "Medium" Cu                   "Low" Cu                   Reference

Taxa Average S.E. % Average S.E. % Average S.E. % Average S.E. %

Tubificoides spp. 2.04 2.31 4.8 0.10 0.03 0.1 0.16 0.07 0.0 1.44 0.31 0.3

Pseudopolydora paucibranchiata 5.15 6.21 12.0 1.78 0.68 2.3 3.12 1.67 0.9 1.29 1.29 0.3

Polydora nuchalis 2.84 3.10 6.6 0.54 0.36 0.7 0.38 0.38 0.1 0.00 0.00 0.0

Prionospio sp. 0.48 0.59 1.1 2.80 1.05 3.6 3.96 2.54 1.2 3.79 1.90 0.8

Exogone lourei 2.27 2.72 5.3 2.33 0.56 3.0 0.86 0.68 0.3 2.76 1.56 0.6

Odontosylis cf. phosphorea 2.23 2.75 5.2 13.35 8.63 17.0 3.89 2.38 1.2 29.74 0.00 6.0

Sphaerosyllis cf . californiensis 0.10 0.12 0.2 0.02 0.01 0.0 0.03 0.02 0.0 0.43 0.33 0.1

Scoloplos sp. 2.86 3.20 6.7 2.08 0.78 2.6 36.19 8.33 11.0 39.27 7.93 7.9

Diplocirrus sp. 0.00 0.00 0.0 0.81 0.55 1.0 9.30 5.38 2.8 16.52 5.51 3.3

Mediomastus sp. 1.41 1.74 3.3 2.29 1.14 2.9 2.80 1.00 0.8 14.31 2.26 2.9

Capitella spp. 0.48 0.59 1.1 0.00 0.00 0.0 0.00 0.00 0.0 1.18 1.18 0.2

Anaitides sp. 0.00 0.00 0.0 0.00 0.00 0.0 0.31 0.31 0.1 0.00 0.00 0.0

Eteone californica 0.38 0.22 0.9 0.65 0.65 0.8 0.00 0.00 0.0 0.00 0.00 0.0

Cossura sp. 0.09 0.08 0.2 0.01 0.01 0.0 0.02 0.01 0.0 0.00 0.00 0.0

Tharyx sp. 0.00 0.00 0.0 0.00 0.00 0.0 0.88 0.51 0.3 0.00 0.00 0.0

Cirratulus sp. 1.57 1.94 3.7 0.00 0.00 0.0 0.00 0.00 0.0 0.00 0.00 0.0

Cirriformia spirobrachia 0.00 0.00 0.0 0.00 0.00 0.0 0.00 0.00 0.0 147.47 16.39 29.7

Clymenella californica 0.04 0.05 0.1 0.00 0.00 0.0 0.51 0.51 0.2 0.00 0.00 0.0

Nereis procera 2.56 3.16 6.0 0.00 0.00 0.0 0.00 0.00 0.0 0.00 0.00 0.0

Lumbrineris sp. 0.69 0.55 1.6 3.07 1.59 3.9 6.40 3.19 1.9 0.59 0.59 0.1

Euchone limnicola. 0.25 0.17 0.6 4.87 1.73 6.2 4.57 1.52 1.4 0.54 0.54 0.1

Nephtys cornuta 0.00 0.00 0.0 0.00 0.00 0.0 0.00 0.00 0.0 28.08 0.33 5.7

Dorvillea rudolphi 2.16 2.39 5.0 0.37 0.27 0.5 0.72 0.64 0.2 0.00 0.00 0.0

Ophelia limacina 0.00 0.00 0.0 0.00 0.00 0.0 0.06 0.03 0.0 2.87 0.96 0.6

Sphaerodoridae 0.00 0.00 0.0 0.00 0.00 0.0 0.04 0.04 0.0 0.00 0.00 0.0

Musculista senhousia 0.00 0.00 0.0 23.83 11.39 30.3 93.19 93.20 28.2 0.00 0.00 0.0

Macoma sp. 1.12 1.39 2.6 0.00 0.00 0.0 58.30 40.51 17.7 14.63 4.88 3.0

Lyonsia californica 0.00 0.00 0.0 1.33 0.88 1.7 8.99 5.09 2.7 0.00 0.00 0.0

Gastropoda 0.00 0.00 0.0 0.00 0.00 0.0 0.50 0.50 0.1 0.00 0.00 0.0

Corophium spp. 0.00 0.00 0.0 0.02 0.02 0.0 23.88 6.78 7.2 1.84 0.37 0.4

Grandidierella japonica 1.90 2.34 4.4 5.50 1.69 7.0 3.43 0.88 1.0 35.37 13.98 7.1

Podocerus sp. 0.18 0.22 0.4 6.24 2.64 7.9 3.09 0.80 0.9 22.40 3.20 4.5

Harpinia sp. 0.00 0.00 0.0 1.44 0.80 1.8 5.33 0.54 1.6 5.88 1.96 1.2

Aoroides sp. 0.00 0.00 0.0 1.47 1.47 1.9 37.20 9.76 11.3 30.20 15.10 6.1

Ampithoe sp. 0.00 0.00 0.0 0.00 0.00 0.0 6.60 0.70 2.0 6.10 2.95 1.2

Elasmopus sp. 0.00 0.00 0.0 0.00 0.00 0.0 4.04 0.93 1.2 4.26 3.15 0.9

Ampelisca sp. 0.00 0.00 0.0 0.04 0.04 0.0 2.60 0.99 0.8 16.49 5.50 3.3

Caprella californica 3.16 3.74 7.4 1.97 0.80 2.5 4.89 3.71 1.5 0.34 0.34 0.1

Leptochelia dubia 0.70 0.86 1.6 0.14 0.09 0.2 0.03 0.03 0.0 2.47 1.06 0.5

Heteroserolis sp. 2.22 2.75 5.2 0.00 0.00 0.0 0.00 0.00 0.0 50.05 50.06 10.1

Paranthura elegans 1.56 1.93 3.6 0.00 0.00 0.0 0.06 0.06 0.0 0.00 0.00 0.0

Ostracoda 0.54 0.67 1.3 0.74 0.43 0.9 0.39 0.27 0.1 0.36 0.07 0.1

Cumacea 0.05 0.06 0.1 0.02 0.02 0.0 0.17 0.11 0.1 5.81 2.91 1.2

Cnidaria 0.79 0.98 1.8 0.69 0.17 0.9 1.89 0.82 0.6 8.88 2.96 1.8

Tubellaria 0.70 0.87 1.6 0.16 0.08 0.2 0.03 0.03 0.0 0.00 0.00 0.0

Nemertea 0.19 0.04 0.5 0.00 0.00 0.0 0.11 0.11 0.0 0.45 0.45 0.1

Phoronis sp. 2.08 2.57 4.9 0.00 0.00 0.0 0.14 0.14 0.0 0.00 0.00 0.0

Holothurida 0.00 0.00 0.0 0.00 0.00 0.0 1.05 1.05 0.3 0.00 0.00 0.0

Total 42.78 7.89 100.0 78.63 16.90 100.0 330.09 88.99 100.0 495.73 88.56 100.0
g m-2 20.97 3.87 38.55 8.28 161.81 43.62 243.01 43.41
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Table 5. Mean number of taxa (S), abundance (N), biomass (B), evenness (J'), Shannon-Wiener   
diversity index (H'), and  rank 1 dominance (R1D) for sites operationally designated as "high",  
"medium", and "low" Cu. Two sites outside the basin served as reference. Significance results are 
shown in the bottom of the Table. 

Sites S N B J' H'(log10) R1D

"High" Cu 16.6 212.0 42.8 0.75 0.90 32.99

"Medium" Cu 14.9 121.4 78.6 0.72 0.85 37.68

"Low" Cu 20.6 94.4 330.1 0.80 0.98 17.32

Reference 27.5 122.0 495.7 0.83 1.25 21.52

F3,25 = 8.23 X2
3 = 3.3 X2

3 = 18.7 X2
3 = 3.85 F3,25 = 5.56 F3,25 = 4.90

P = 0.0007 P = 0.340 P = 0.0003 P = 0.278 P = 0.0054 P = 0.0093

Ra;La,b;Hb,c;Mc Ra;La;Hb;Mb Ra;La,b;Hb;Mb Ma;Ha;Ra,b;Lb
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Table 6. Spearman's rank correlation coefficients between studied environmental variables and macrofauna data. 

Significant correlations and level of significance indicated in bold and asterisks, respectively. Cu++ PW = free Cu++ 

porewater; DCu PW = total dissolved Cu porewater; CuSed = sediment Cu; TOM = total organic matter; surface water; 

Chl a  = chlorophyll a; Phaeo = phaeopigments; CPE = chloroplastic pigment equivalent; SRP = sediment redox 

potential; DCu SW = total dissolved Cu surface water; Cu++ SW = free Cu++ in surface water.

MACROFAUNA

Variable No species Density Biomass H' J' Dominance R1

Cu++ PW 0.216 -0.28 0.432* 0.039 0.06 -0.317

DCu PW -0.057 -0.077 -0.265 -0.253 0.049 0.006

CuSed  -0.389* 0.302  -0.571** -0.354 -0.299 0.538**

TOM  -0.486* 0.015  -0.446* -0.283 -0.139 0.339

Chl a -0.066 0.279 -0.104 -0.247 -0.366 0.447*

Phaeo -0.209 0.269 -0.261 -0.312 -0.376 0.448*

CPE -0.187 0.284 -0.245 -0.302 -0.377 0.461*

Mud -0.139 0.103 -0.227 0.019 0.086 -0.067

Sand 0.139 -0.103 0.227 -0.019 -0.086 0.067

SRP -0.082  -0.405* 0.078 0.057 0.244  -0.418*

DCu SW -0.109 -0.047 -0.273 0.146 0.238 -0.279
Cu++ SW -0.044 -0.003 -0.208 -0.015 0.059 -0.075

Significance levels: *0.01 Š p  < 0.05; **0.001 Š p  < 0.01; ***p  < 0.001
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Table 7. Results of the Forward Stepwise Selection procedure.

Significant variables influencing faunal community structure 

(p < 0.05) are shown in bold.

Environmental variables F P

Free Cu++ porewater 2.76 0.001

Dissolved Cu porewater 2.43 0.001

Sediment Cu (solid phase) 2.27 0.004

Total organic matter 2.13 0.006

Sediment chlorophyll a 1.80 0.015

Free Cu++ surface water 1.05 0.432

Dissolved Cu surface water 0.95 0.542

Mud content (< 63 m) 0.76 0.729

sediment phaeopigments 0.72 0.752

Sediment redox potential 0.58 0.903
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Table 8A. Redundancy analysis (RDA) describing relationships between community structure

and the five  environmental variables identified by a forward stepwise selection. The eigenvalue is 

equivalent to the percent variation explained by each axis and is a measure of the relative importance

of the ordination axis. All P-values were obtained from Monte Carlo permutation tests. 

RDA axis 1 2 3 4

Eigenvalues 0.357 0.085 0.055 0.016

Species-environment correlations 0.902 0.891 0.736 0.782

Cumulative percentage variance of 67.8 83.9 94.4 97.5

species-environment relation

Summ of all eigenvalues 1.000

Sum of all canonical eigenvalues 0.527

Significance P first canonical axis: 0.001

Significance P all canonical axes: 0.001

Table 8B. Partial redundancy analysis (pRDA) describing relationships between macrofaunal 

community structure and variables of interest after removing effects of the natural 

covariables.  

RDA axis 1 2 3 4

Eigenvalues 0.284 0.035 0.025 0.133

Correlations between community 0.887 0.769 0.648 0.000

structure and environmental axis

Cumulative percentage variance of 82.6 92.7 100 0.0

species-environment relation

Summ of all eigenvalues 0.817

Sum of all canonical eigenvalues 0.344

Significance P all canonical axes: 0.001
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Table 9. Mean (±SE) tissue copper concentrations in Shelter Island Yacht Basin benthic  

invertebrates species (g/g DW) collected in spring 2007 at sites designed according to their 

copper concentrations in sediments. Ref = reference; (-) = single sample.

                      Sites

"High" Cu "Medium" Cu "Low" Cu Reference

Taxon          Average Cu in tissue (g/g)

Polychaeta

Lumbrineris 1166.5 (330.7) 533.6 (151.9) 504.9 (159.1) 82.6 (29.8)

Exogone 83.4 (-) 20.1 (-) 1.8 (-)

Odontosyllis 21.5 (6.3) 13.3 38.7 (10.5)

Typosyllis 780.8 (-)

Harmothoe 19.6 (4.7) 13.3 (-)

Diplocirrus 216.4 (71.2) 237.9 (-) 278.6 (70.3) 34.2 (10.5)

Pseudopolydora 18.9 (4.3) 15.9 (-) 53.5 (-)

Polydora 72.8 (19.4)

Prionospio 101.5 (-) 88.5 (25.6) 199.8 (-)

Dorvillea 217.7 (52.5) 27.9 (-) 614.9 (-)

Mediomastus 430.6 (124.8) 49.9 (16.7) 89.3 (-)

Scoloplos 310.5 (75.2) 13.1 (-) 76.9 (20.7) 6.5 (1.6)

Cirratulidae 406.4 (96.6) 179.9 (-)

Clymenella 185.1 (53.9) 104.8 (-)

Euchone 484.7 (-) 122.2 (-) 15.4 (3.5)

Nereis procera 190.3 (70.2)

Eteone 88.0 (-) 174.5 (-)

Ophelia 56.7 (-)

Nephtys 29.5 (6.9)

Oligochaeta

Tubificoides 1712.2 (-) 202.1 (-) 568.5 (-) 126.0 (-)

Isopoda

Paranthura 1048.7(-) 268.3 (67.1)

Amphipoda

Elasmopus 302.2 (-) 179.8 (-) 272.9 (-)

Harpinia 266 (-) 98.3 (22.7) 147.1 (-)

Grandidierella 35.6 (-) 36.0 (10.9)

Corophium 49.8 (-)

Caprellidae

Caprella 448.6 (99.3) 137.0 (31.7) 14.3 (-)

Tanaidacea

Leptochelia 1264.3 (455.2) 584.9 (-)

Cumacea 245.8 (-) 89.9 (-)

Ostracoda sp. 1 582.6 (-) 1655.3 (-)

Ostracoda sp. 2 185.7 (46.1) 9.8

Decapoda

Paguridae sp 586.1 (168.7)

Gastropoda 202.7 (-)

Bivalvia

Musculista 5.9 (-) 3.5 (0.8)

Macoma 1230.2 (-) 91.5 (-)

Lyonsia californica 190.7 (-) 11.5 (-)

Cnidaria

Anthozoa sp.1 108.9 (-) 98.1 (-) 65.1 (-)

Anthozoa sp.2 378.1 (-) 104.1 (25.8) 24.8 (-)

Table(s)
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Figure captions 

 

Figure 1. Location of Shelter Island Yacht Basin in San Diego bay, California. Study 

sites, operationally designated as “high”, “medium”, and “low” Cu levels (based on a 

previous exploratory study by Neira et al. 2009), are shown with symbols. Two sites 

outside the basin served as “reference”.  

 

Figure 2. Percent composition of Polychaeta families (A) and peracarid Crustacea (B), at 

the different study sites.   

 

Figure 3. nMDS analysis of macrofaunal community, A) based on abundance 

composition, B) biomass composition. The bottom shows comparisons of macrofaunal 

assemblages in the different study sites. Pairwise one-way Analysis of Similarity 

(ANOSIM) tests for macrofaunal similarities between sites are given above the diagonal. 

SIMPER within group similarities are given on the diagonal (dark), and SIMPER percent 

dissimilarities are given below the diagonal. Significance was set at  = 0.05. 

 

Figure 4. Comparative rarefaction curves illustrating macrofaunal diversity in SIYB sites 

of different sediment Cu pollution level (“high”, “medium”, “low”, and reference).  

 

Figure 5. Macrofaunal feeding modes (A) and lifestyles (B) as a function of Cu in 

sediment. SDF = surface deposit feeders; SSDF = subsurface deposit feeders.  

 

Figure 6.  Relationship between macrofaunal biomass and sediment Cu concentration (y 

= -71.02ln(x) + 432.07, r
2
 = 0.30; P = 0.015) 

 

Figure 7. Redundancy analysis (RDA) triplot displaying the position of macrofaunal 

species in relation to sediment environmental variables that best explain their distribution 

among sites. Solid arrows are the environmental vectors representing sediment Cu 

(CuSed), free Cu
++

 in porewater (Cu
++

PW), total dissolved Cu in porewater (DCuPW), 

total organic matter (TOM), and chlorophyll a (chl a); the dashed arrows are the 

invertebrate taxa. Arrows pointing in the same relative direction are correlated, and 

longer arrows indicate increasing values. The first two axes explained 83.9% of the 

variance of species-environment relation and the species-environment relationships were 

highly significant (P = 0.001; 999 permutations in Monte Carlo test).  

 

Figure 8. TWINSPAN analysis of benthic macrofaunal assemblages in SIYB base on 

species occurrences weighted according to abundance. Prospective “Cu tolerant 

indicators” and “Cu sensitive indicators” are given on the left and right, respectively.  

 

Figure 9. Regression tree analysis for macrofaunal biomass. Biomass is the single 

response variables while the multiple explanatory variables (predictors) used were 

sediment Cu (Cu sediment), free Cu
++

 in porewater (Cu
++

 PW) and total dissolved Cu in 

porewater (DCuPW). Variables important in explaining variation appear at terminal 

nodes along with the concentration range, significance P of the split as well as the 

number and percent of observations in the group.  

Figure(s)



 2 

 

Figure 10. Biplot showing the first two principal axes from a PCA explaining the total 

variance of Cu concentration in macroinvertebrates tissue at sites of different sediment 

Cu levels.  
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