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Unsteady, Low-Mach Number Combustion1 
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Phillip Colella, and William Y. Crutchfield 

Lawrence Berkeley National Laboratory 
Berkeley, CA 94 720 

Woodrow A. Fiveland and J. Patrick Jesse 
Babcock & Wilcox 
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Abstract 

In this paper we present an adaptive projection method for modeling unsteady, low
Mach reacting flow in an unconfined region. The equations we solve are based on a 
model for low-Mach number combustion that consists of the evolution equations for 
density, species concentrations, enthalpy, and momentum coupled with a constraint on 
the divergence of the flow. The algorithm is based on a projection methodology in which 
we first advance the evolution equations and then solve an elliptic equation to enforce 
the divergence constraint. The adaptive mesh refinement (AMR) scheme uses a time
varying, hierarchical grid structure composed of uniform rectangular grids of varying 
resolution. The integration scheme on the grid hierarchy is a recursive procedure in 
which a coarse grid is advanced, fine grids are advanced multiple steps to reach the 
same time as the coarse grid, and the coarse and the fine grids are synchronized. The 
method is valid for multiple grids on each level and multiple levels of refinement. 

The method is currently implemented for laminar, axisymmetric flames with a re
duced kinetics mechanism and a Lewis number of unity. Two methane-air flames, one 
steady and the other flickering, are presented as numerical examples. 

1 Introduction 

The computational modeling of reacting flows with limited computer resources can be made 
difficult by the presence of multiple length scales and by the large number of species in a 
sufficiently detailed reaction mechanism. The problem of limited resources has generally 
been overcome in combustion modeling by the use of globally refined, nonuniform grids. 

In this paper we present a method based on a different approach, local adaptive mesh 
refinement (AMR). We develop an AMR algorithm to solve a system of equations for un
steady low-Mach number reacting flow in an unconfined region. This system is based on a 
generalization of the low-Mach number combustion model in [29, 23). The system includes 

1Support for this work was provided by the Applied Mathematical Sciences Program of the DOE Office 
of Mathematics, Information, and Computational Sciences under contract DE-AC03-76SF00098. Additional 
support was provided by the Applied Mathematical Sciences Program of the DOE Office of Mathematics, 
Information, and Computational Science under Subcontract No. 3643100. 

2Contact information: MS-50D, LBNL,·1 Cyclotron Road, Berkeley, CA 94720, rbpember@lbl.gov, (510) 
486-4180 
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evolution equations for density, velocity, enthalpy, and species concentrations, coupled with 
a constraint on the divergence of the flow. 

Our approach to AMR uses a hierarchical grid structure approach first developed by 
Berger and Oliger [10] and Berger and Colella [9] for hyperbolic conservation laws. The 
grid structure is dynamic in time and is composed of nested uniform rectangular grids of 
varying resolution. By using grids of finer resolution in both space and time in the regions 
of most interest, AMR allows one to model large problems more efficiently. The integration 
algorithm on the grid hierarchy is a recursive procedure in which a coarse grid is advanced, 
fine grids are advanced multiple steps to reach the same time as the coarse grid, and the 
coarse and the fine grids are synchronized. The method is valid for multiple grids on each 
level and for multiple levels of refinement. 

The methodology presented here is based on a single grid algorithm developed by Pem
ber et al. [27, 28]. The single grid method is a fractional step scheme in which we first 
advance the evolution equations and then solve an elliptic equation to enforce the diver
gence constraint and update pressure. The solution of the evolution equations essentially 
follows the approach described in [3, 1]. In order that the method be second-order accu
rate in time for nonlinear differential equations with source terms, however, a sequential, 
predictor-corrector treatment of the equations is used. The sequential approach ensures that 
all implicit finite difference equations are linear and can be solved by standard multigrid 
techniques, while the predictor-corrector formulation guarantees second-order accuracy in 
time. A simple extension of the second-order approximate projection algorithm in [3, 1] to 
low-Mach number compressible flows is employed to enforce the divergence constraint and 
update the pressure. A pressure relaxation term is added to the numerical representation 
of the divergence constraint to account for the fact that the sequential approach cannot 
simultaneously conserve mass and satisfy the equation-of-state. 

The single grid algorithm is coupled to an extension of the conservative adaptive mesh 
refinement scheme for variable density, constant viscosity incompressible flow (IAMR) de
veloped by Almgren et al. [2, 1]. In the present paper the IAMR algorithm is extended to 
account for the thermal expansion of the flow due to heat transfer and combustion, i.e., 
the non-zero divergence of the velocity. Additional enhancements ensure that the vari
ous relationships among the state quantities, in particular, density, enthalpy, temperature, 
and species concentrations, are always satisfied by the numerical solution. The treatment 
of scalars in [1] is also extended to account for evolution equations such as those for en
thalpy and species concentrations. These two sets of extensions ensure that the method 
is freestream preserving with respect to primitive quantities as well as conservative and 
freestream preserving with respect to conserved quantities. Spatial and temporal variation 
of viscosity and of thermal and mass diffusivity are also accounted for. 

The method is currently implemented for laminar, axisymmetric flames with a reduced 
kinetics mechanism and a Lewis number of unity. Results from two numerical examples, a 
steady methane-air diffusion flame [30] and a flickering methane-air flame [33, 39, 32], are 
presented. 

There are numerous references to the use of globally refined, non-uniform grids in com
bustion modeling. We refer the reader to Bennett [7], Bennett and Smooke [8], and the 
references therein. Local adaptive mesh refinement and local rectangular refinement meth-
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ods have been used to model steady, low-Mach number combustion. In addition to the two 
references above, see Coelho and Pereira [11], de Lange and de Goey [13], Mallens et al. 
[24], Smooke et al. [31], and Somers and de Goey [34]. The authors are unaware of any 
previous work using local adaptive mesh refinement to model unsteady low-Mach number 
combustion. Projection methods without mesh refinement have been used in the unsteady 
case; see Dwyer [14], Lai [20], Lai et al. [21], Najm [25, 26], and Yam et al. [39]. 

The remainder of this paper is organized as follows. In §2, we discuss the model for 
low-Mach number combustion and the governing equations solved with our approach. We 
describe the single grid algorithm in §3 and the adaptive algorithm in §4. Numerical results 
are shown in §5. 

2 Model for Low-Mach Number Combustion and Governing Equations 

The system of equations for reacting flow considered here is based on a model for low-Mach 
number combustion[29, 23], which we now briefly review. (See Table 1 for the nomencla
ture.) 

For flow in a spatially open domain the underlying assumption in the low-Mach number 
model is that M is sufficiently small (say M < .3) so that the pressure p can be written as 
the sum of a temporally and spatially constant part Po and a dynamic part 1r, 

p(r, z, t) =Po+ 1r(r, z, t), (2.1) 

where 1rlpo = 0 (M2 ). All thermodynamic quantities are considered to be independent of 
1r. The perfect gas law for a multi-component gas in a flow satisfying the low-Mach number 
assumption is then 

p =Pol (T R) =Pol (T'RIW) =Pol ( T'R ~ (YziWl)) . (2.2) 

Differentiating (2.2) with respect to time and using continuity, the following constraint on 
the divergence of the velocity is obtained: 

\1 . u = !._ DT + w L _!__ DYz = s. 
T Dt 

1 
W1 Dt 

(2.3) 

We consider flows that are axisymmetric without swirl. In addition, we assume a Lewis 
number of unity and neglect radiative heat transfer. The system of governing differen
tial equations thus consists of the divergence constraint (2.3) and the following evolution 
equations for density, velocity, enthalpy, temperature, and species concentrations: 

op 
0 (2.4) -+\l·pU = at 

DU 
-p(O,gf -\lp+'l·T (2.5) P Dt = 

oph 
\1· (>.lep) \lh (2.6) -+\l·pUh -

at 
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c;,,1(T) 
c;,(T) 
D 
D/Dt 
Ea 
g 
h 
ht(T) 

Le 
M 
p 

Po 
Pr 
n 
R 
Re 
r 
s 
Sc 
T 
u 
u 
v 
Yi 
z 
.A 
f.J-
1!" 

p 
7 

Wt 

specific heat of species l at p = Po 
specific heat of the gas mixture at p = Po 
molecular mass diffusivity 
ofot+ u. "V 
activation energy in Arrhenius law 
magnitude of acceleration due to gravity: 9.81 mfsec2 

enthalpy of gas mixture, 2"::1 ht(T)Yi 
specific enthalpy of species l at p = Po, 
including the heat of formation 
subscript denoting species, fu (fuel), 
ox (oxidizer), pr (product) 
Lewis number, Sc/Pr = .A/ pDc;, 
Mach number 
pressure 
ambient pressure: 101325 N fm2 

Prandtlnumber,pc;,/.A 
universal gas constant 
gas constant of mixture 
Reynolds number, pU L / f.J
radial coordinate 
right hand side of divergence constraint 
Schmidt number, f.J-/ pD 
temperature 
velocity 
radial component of velocity 
axial component of velocity 
mass fraction of species l 
axial coordinate 
thermal conductivity 
viscosity 
dynamic pressure, p - Po 
density 
stress tensor 
specific mass production rate of 
species l by chemical reactions 

Table 1: Nomenclature: Physical Model 

DT 
pep Dt = V' · .A\!T + LpD\!Yz · \1h1(T)- Lwthl(T) 

l l 

8pYt 
---at+V'·pUYt = V'. pD\!Yt + W[. 

(2.7) 

(2.8) 

In this system, equations (2.6) and (2. 7) are redundant because the enthalpy h is defined 
by 

h = LYzh1(T). (2.9) 
i 

Numerically, equation (2.9) is used only to define the initial and inlet values of h; otherwise, 
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h is found as the solution of (2.6). Moreover, in our numerical method, equation (2.7) is 
used solely to define intermediate values of T; otherwise, T is computed using h, Yi, and 
(2.9). The specific heat of the gas mixture Cp is found by 

Cp = L Yiep,t(T). (2.10) 
l 

The system of equations are overdetermined in two other ways. Equations (2.4) and 
(2.8) are redundant because p = Et pYi. We account for the redundancy numerically by 
computing V' · pU as Et V' · pUYi. By using (2.4) in addition to (2.8), we are able to use a 
simpler discretization of (2.8) and thereby use a simpler solution strategy. Equations (2.4) 
and (2.2) are also redundant. We use (2.4) to ensure conservation of mass. The sequential 
approach used numerically makes it impossible, in general, to simultaneously satisfy the 
continuity equation and the equation of state; see §3.1 for further discussion. 

For the calculations shown in this paper, a one-step reaction model [18] for methane 
oxidation is used: 

natural gas+ 9.57 air --t 10.57 product. (2.11) 

The rate of fuel consumption is given by 

(2.12) 

where A = 1010m3 /(kg-sec) .and Ea/'R = 1.84 x 104 K. Polynomial curve fits are used 
for Cp,ox, Cp,pr, [36] and Cp,fu [15]. We use a heat of formation of 4.855 x 107 J /kg for 
natural gas[36]. The viscosity, J.t, is computed by the curve fit J.t = J.to (T /To)· 7 [17], where 
/-tO = 1.85 X w-5 kg/m-sec and To = 298K. pD and >..fep are determined from 1-t by 
pD = >..jep = ~-t/Pr. We use a fixed Prandtl number of .7. 

3 Single Grid Algorithm 

The algorithm used to advance the solution from time tn to tn + D.t = tn+l on a single grid 
follows the general approach used in [28] for the case of simple boundaries and incorporates 
many of the details of the single grid algorithm described in [1]. The reader is referred to 
[6, 4, 5, 3, 27] for additional discussion. We use a uniform grid of rectangular cells with 
widths D.r and D.z indexed by i and j. (See Table 2 for the nomenclature.) At the beginning 
of the time step, the numerical solution, except for pressure, represents the flow at time tn 
at cell centers. The solution for pressure, p"!'+-rf2 .+11 , represents the pressure at the previous z t2,J /2 

half-time step, tn- 1
/2, on cell corners. 

The method is essentially a second-order projection method [6]. The overall approach, 
then, is that of a fractional step scheme. In the first step (which we call the advection
diffusion-reaction step), values of h, T, and Yi are computed at time tn+l using a higher
order upwind method for the convective terms and Crank-Nicholson differencing for the 
diffusive and the reactive terms. In addition, values of U, denoted by U* or ( u*, v*), are 
computed in this step which do not necessarily satisfy the divergence constraint at tn+l. In 
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i,j 
tl.r 
tl.z 
tl.t 
Gp 
Ti 

ri+l/2 s 
tn 
tn+l/2 

(-)ij 

(-)ij+l,p 

(-)ij+l/2 

( )n+l/2 
. i+l/2,j 

( )n+l/2 
. i,j+l/2 

( )n+l/2 
. i+lj2.i+l/2 

( ·)ij+ 

cell indices in r-, z- directions 
cell width in r-direction 
cell width in z-direction 
time step used to advance solution from tn to tn+l 
a cell-centered gradient for a node-based pressure p 
r-coordinate of center of cell ij, itl.r 
r-coordinate of upper r-edge of cell ij 
right hand side of the numerical divergence constraint 
time at the end of the n-th time step 
tn + tl.t/2 
value at center of cell ij at time tn 
or average value over cell ij at tn 
axial and radial components of velocity 
before enforcement of divergence constraint 
predicted value at center of cell ij at time tn 

value at center of cell ij at time tn + tl.t/2 
value at upper r-edge of cell ij at tim~ tn + tl.t/2 

value at upper z-edge of cell ij at time tn + tl.t/2 

value at upper corner of cell ij at time tn + tl.t/2 

value at center of cell ij at time tn + tl.t 

Table 2: Nomenclature: Numerical Algorithm 

the second step (the projection step), the divergence constraint is imposed on the velocity 

via a node-based projection (3] .. This step yields un+l and p"!'++J2 .+ 11 , the pressure at tn+lf2 • 
1 72oJ 12 

The first step uses a predictor-corrector formulation and consists of the following steps: 
(1) Compute Ll.t: 

where the CFL number a satisfies a < 1. 

2 min ( Ll.r, Ll.z) p ) 

1(0, -g)T- (Gp)i,j' 
(3.1) 

(2) Compute discrete approximations of the convective terms in the governing equations 
at time tn + b..t/2: 

n+% (V' · pUcp)ij for cp = h, Yi and 

(U · V'cp)ij+% for cp = u, v, T. 

(3) Compute 
n+l n A """"('t"7 UYi)n+% Pij = Pij - l..l.t L..... v · P t ij (3.2) 

I 

d n+I/2 ( n n+l) / 2 an P·· = P·· +P·· 1J 1J 1J . 

( 4) Compute predicted values cpn+l,p of the solution at tn+l for the flow quantities cp, 
cp = Yi, T, and h using the Crank-Nicholson method. 
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(5) Compute corrected the values ofYj,T,h, and (u*,v*) to provide the solution at time 
tn+l again using Crank-Nicholson differencing. 

In step (2), a MAC projection [16] is performed so that the edge velocities used to 
form the convective derivatives satisfy the divergence constraint. In steps (4) and (5) the 
equations for each of the flow quantities Yi, h, T, and ( u *, v*) are solved sequentially so 
that only linear systems of equations result from the Crank-Nicholson differencing. The 
update for ( u*, v*) is a coupled solve due to the tensor nature of T. In the predictor step, 
Tis advanced using (2.7); this approach is typically less computationally expensive than 
solving (2.9) for Tn+l,p. In the corrector step, Tn+l is found by solving (2.9) forT. 

The species update is itself performed sequentially in two steps, one accounting for 
convection and diffusion and the other for kinetics, in order to facilitate the use of complex 
kinetics mechanisms. In the kinetics update, the system of equations opYjfot = W[ is 
integrated with an implicit difference scheme. 

The spatially implicit finite difference equations that arise in the MAC projection, the 
Crank-Nicholson differencing steps, and in the nodal projection are solved with multigrid 
techniques [38, 1]. The cell-centered solves use V-cycles with red-black Gauss-Seidel relax
ation and conjugate gradient at the bottom of the V-cycle. The nodal solve uses a similar 
approach. 

In the remainder of this section, we present the above algorithm in more detail. 

3.1 Numerical divergence constraint 

The right hand sides of equations (2.7) and (2.8) can be used to obtain the following 
expression for S: 

(3.3) 

Numerically, wd pis approximated by !J.Yjj l::i.t, where !J.Yj is the change in Yi due to chemical 
reactions during the time step. The other terms are approximated by central differences. 

If equation (3.3) is used without modification, however, the algorithm may suffer from 
a mild instability due to the fact that the sequential approach cannot simultaneously con
serve mass and enforce the constraint Po = pRT; at the very least, the solution drifts from 
this constraint. (Analytically, this is not an issue; the equation of state and the continuity 
equation (2.4) are equivalent [23].) In our approach, expression (3.2) guarantees conserva
tion of mass. To stabilize the method, we add an extra term to the discrete form of the 
divergence constraint (3.3) which accounts for the discrepancy between the value of p found 
by continuity and that found using the equation of state. The value of the right hand side 
of the divergence constraint used numerically, S, is found by incrementing S as follows, 

- ep··-~· 
S ··-S··+f 1,;:,··-p b) ,tJ 1 

tJ - tJ 1.1-'tJ am "t -
L..l. Cp,ijPij 

(3.4) 
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where Pij = R;,jPiiTii and f is a constant satisfying f < 1.0. The extra term in the numerical 
divergence constraint is found by approximating Dp I Dt in the enthalpy equation for non
isobaric flow [19] by (pij- Pamb) I b.t, rewriting the resultant equation in terms ofT, and 
using (2.3). The term f(pij - Pamb)l b.t acts to drive the solution back to the constraint 
Pii = Pamb· Similar treatments have been used in numerical petroleum reservoir simulation 
[35]. 

Equation (3.4) is evaluated once per time step, immediately prior to the projection step, 
to determine §n+l. §n is used whenever an evaluation of 'V · un is needed. . 

For the MAC projecti~n, we also need an estimate of as I ot in order to approximate s 
at tn+l/2 . We use 

3.2 Advection-Diffusion-Reaction Step 

3.2.1 Computation of convective d~rivatives 

(3.5) 

The approximation of the convective derivatives generally follows the approach described in 
[1]; see [4] for additional discussion. There are two primary components to this computation: 
a higher-order upwind scheme [12] to determine edge states and a MAC projection [16] to 
enforce the divergence constraint on the edge velocities. 

The general procedure can be summarized as follows: 
(1) C 1 f n+% d n+% d n+% d n+lj2 11 d 11 ompute va ues o u.+11 . an v.+ 11 ., an u . . +11 an v . . +11 , on a r- an z- ce 

~ t2,J z t2>J ~,J !2 ~,J 72 

edges, respectively, using the higher-order upwind scheme. 
(2) Compute advection velocities ufJY~i and vtf.rv

2 
by projecting the edge velocities 

found in (1) so that they satisfy the divergence constraint. 
(3) R n+% n+% n+% d n+lf2 d Tn+% Tn+% ( Yi)n+% ecompute U-+11. ., V-+11. ., u. ·+11, an v. ·+11, an compute ·+11. ., . ·+u, p z ·+u ., 

~ t2,J ~ t2,J Z,J 72 ~,J !2 ~ 72,] ~,J !2 Z !2,] 
(PYit~+lj~~, (pht'++J2 ., and (pht~+lft using the higher-order upwind scheme. 

~,J t2 z t2,J ~.J /2 

( 4) Form discrete approximations of convective terms. 
The first step follows the approach in [1]. First, time-centered left and right edge states, 

u.n+t.%3. L and U'!'+t.%. R• at all r-cell faces and bottom and top edge states, u'::+Y~ B and • !2> ' ~ .,2,], ~.J 12> 
Ui~j+}'fh,T' at all z-cell faces are found with Taylor expansions that use monotonicity-limited 
approximations to the spatial derivatives in the convective terms. (Other spatial derivatives 
are evaluated by standard central difference approximations.) The time-centered edge states 

U':+~Y2 . at all r-cell faces and u'::+
1i. at all z-cell faces are then found by an upwinding 

~ t2>J ~,J t2 
procedure. 

In step (2), we use a MAC projection to enforce the divergence constraint (3.4). The 
equation · 

( DMAC ~GMAC if>) = (DMACun+%) .. - (s!l. + b.t f)Sn) (3.6) 
pn ij ~J ~J 2 8t ij 

is solved for</>, where §nand 8SI8tn are given by (3.4) and (3.5), and DMAC and QMAC 
are the standard discretizations of the divergence and gradient operators on a staggered 
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grid [1]. The advection velocities are then computed by 

uADV 
i+lfl,j 

vADV 
i,H% 

= un+% 1 (GMACA..)r 
i+lfl,j - p~+!l . 'f' i+lfl,j 

~ f2,J 

= n+% 1 (GM AC "")z 
vi,H% - p~1 .+11 'f' i,i+%' 

~,J 12 

where the edge values of p are averages of the adjacent cell centered values. 

(3.7) 

I (3) Un+% d un+% d Tn+% Tn+'h ( ·y)n+lh n step , we recompute i+lfl,j an i,i+%' an compute i+If2,j' i,j+'/2' p i+lfl,j' 

and (pY)~:-+'ft, again using the approach in [1]. In this step, the upwind states are found 
~,J 12 

using the MAC projected edge velocities from step (2). 

(pht++J2
. and (pht:+'f~1 are computed in a slightly different manner. The edge values 

~ 12>1 ~,J 12 

ofT are used to compute edge value of hz(T) for all species l. These values of hz and the 
edge values of pY[ are then used to compute edge values of ph using (2.9). 

In step (4), the convective derivatives are approximated by 

(3.8) 

(3.9) 

The higher-order upwind scheme used in steps (1) and (3) uses a second-order Taylor 
series expansion in time and space about ( r i, Zj, tn) to determine left and right (bottom and 
top) states at time tn+l/2 at r- (z-) edges. The time derivative in the Taylor expansion 
is expressed in terms of the spatial derivatives and lower order terms by using a quasilinear 
form of the appropriate governing equation. The particular form of the quasilinear equation 
for a given state variable IP depends on whether we compute PIP or IP at edges. In the 
former case, PIP is computed directly - there is not a separate computation of p - and in 
the quasilinear equation, \7 ·pUlP is expressed as U · \7 (PIP)+ PIP\?· U. Note that in the 
case of pYi, we omit the wz term from the quasilinear equation because of the operator split 
treatment of the kinetics. 

The edge values of ph are computed in the manner described to ensure that the numerical 
scheme is freestream preserving with respect to temperature in the presence of multiple 
species. The advection scheme uses van Leer slope limiting [37] in the approximation of the 
first-order spatial derivatives. The advection scheme is hence monotonicity preserving but 
also necessarily nonlinear [22]. In particular, then, if the edge values of ph were computed 
in the same manner as pY, edge values of pY and ph would not necessarily satisfy (2.9) 
under isothermal conditions; the scheme might then incorrectly generate a non-constant 
temperature field. 
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3.2.2 Crank-Nicholson differencing 

In steps ( 4) and (5) of the advection-diffusion-reaction step we solve difference equations 
obtained by applying the Crank-Nicholson method to the governing equations. The differ
ence equations are solved using the multigrid strategy outlined above. By using a sequential 
approach and a predictor-corrector formulation, these difference equations are linear and 
uncoupled in the sense that we can solve forT, h, Yfu, Y0 x, Ypr, and (u*,v*) separately. 
In step (4), we compute predicted values of temperature, species mass fractions, and en
thalpy at time n + 1. Note that we do not need to find predicted values of ( u*, v*) because 
the equations have no coupled or nonlinear dependencies on the velocity. In step (5), we 
compute corrected values ofT, Yj, and h, as well as (u*, v*). In the corrector step, rn+l is 
found directly by solving (2.9) given values of hn+l and Yin+l. 

The difference equations forT, h, Yj, and U are summarized below; the cell indices ij 
are suppressed. The details of the discretizations of the divergence and gradient. operators, 
except in the case of of 'V · T, are discussed in [1]. The discretization of 'V · T uses similar 
strategies and will be discussed in detail in a future paper. Note that in all the discretiza
tions, edge-based values of the appropriate diffusivity are needed. These are found by simple 
averages of the cell-based values. 

Temperature. In the predictor, we compute rn+l,p by solving the difference equation 

= ~ ('V. 'V). (Tn) 'VTn 
2 

+'V · 'V>. (rn) 'VTn+l,p) 

+1-£ (Tn) L'Vhz (Tn) · 'VYt. 
Sc 

1 

Note that w is not included because of the operator split treatment of kinetics. 
Enthalpy and Species. In the corrector, the discretization of the .evolution equations 

for <p = h, Yi has the form 

Pn+l<pn+l pn<pn 1 ____ -__ + ('V. pU<p)n+l/2 = _ (v. An'V<pn + An+l,p'V<pn+l) 
ilt . 2 

where AN = J.t ( rN) /Sc when <p = Yi and J.t (TN) / ( Pr c¢') when <p = h for N = n or 
n + 1,p. The equations used in the predictor are found by substituting t.pn+l,p and An for 
<pn+l and An+l,P. As was the case for the temperature equation, w is not included for Yj. 

Velocity. The discretization of the momentum equation is a coupled difference equation 
for U* = (u*,v*): 

(3.10) 

The viscosities in ('V · Tt and ('V · T)n+l are evaluated using Tn and Tn+l,p, respectively. 
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3.3 Projection Step 

A projection (3] is now used to approximately enforce the divergence constraint (3.4) and 
determine pn+%. In the advection-diffusion-reaction-step, we use (3.10) and a time-lagged 
pressure gradient to compute a velocity that does not necessarily satisfy the divergence 
constraint (3.4). In the projection we enforce 

un+I un 
n+% ij - ij = ! (Ln .. + Lnt.l) _ pn+% (U. \lU)~:+% _ {\lp)~:+% 

Pij !:lt 2 T,tJ T,tJ tJ tJ 

(\1· U)~+l - B;j+1
•. (3.11) 

From (3.10) and (3.11), we see that 

U!!:+l- U!l: 1 U~-- UI! 
tJ tJ + -- (\1 <5) .. = tJ tJ 

f:lt n+% tJ f:lt 
Pij 

(3.12) 

h ~ _ n+l.f2 n-% '-1- h d f ( ) h w ere ui+%.i+% - pi+%.i+%- pi+%.i+%" Tc:udng t e ivergence o 3.12 , we obtain t e 
following equation, 

( 
1 ) (U~!n+l- U!l:) §r:.+l- §r):. \1 . -- (V' <5) . . = V' . tJ tJ - tJ tJ 

n+% tJ f:lt · f:lt ' 
Pij 

(3.13) 

which we solve using a standard finite-element bilinear discretization. un+I and pn+% are 
then found by 

+1 * !:lt ( - ) UTj = uij - n+% G§ ij 
Pij 

n+% = n-% + §. . 
pi+lf2,i+% pi+%.i+% t+%,J+lf2 

(3.14) 

where ( G&) ij represents the cell average of Go over cell ij. 

4 Extension to Adaptive Mesh Refinement 

In this section we describe the extension of the single grid algorithm to an adaptive hierarchy 
of nested rectangular grids. The methodology is based on the IAMR algorithm described 
by Almgren et al. (1]. Many of details of the present algorithm are identical, or very nearly 
so, to those of the IAMR algorithm. The reader is referred to [1] for these. In the following 
subsections, we review the features common to both algorithms to provide context but 
otherwise emphasize those that are specific to the modeling of low-Mach number reacting 
flow. 

4.1 Grid Hierarchy and Overview of Time-Stepping Procedure 

The adaptive mesh refinement (AMR) algorithm uses a hierarchical grid structure, which 
changes dynamically, composed of rectangular, uniform grids of varying resolution. The 
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collection of grids at a given resolution is referred to as a level. By definition, level 0 covers 
the entire problem domain. The widths of the cells in the level £ grids differ from those at 
£ + 1 by a even integer factor Rt. called a refinement ratio; Rt. is· typically 2 or 4. In space, 
the levels are properly-nested, i.e., there must always be a region at least one cell wide at 
level£+ 1 separating levels£ and£+ 2. (See Figure 1). 

levelo 
leveh 

leveb ..---'-~---. 

Figure 1: A properly nested hierarchy of grids 

On the full adaptive mesh, the AMR timestep consists of separate timesteps on each 
of the levels, plus synchronization operations to insure correct behavior at the coarse-fine 
interfaces, plus regridding operations which permit the refined grids to track complex and/or 
interesting regions of the flow. The ratio of the level£ and the level£+ 1 time steps is Rt.· 
Figure 2 shows a space-time diagram of a single level 0 timestep, during which a regridding 
operation moves the interface between levels 1 and 2. The timestep is a recursive procedure 
which proceeds as follows on level£: 

1. Advance level £, using boundary information from level £ - 1 as needed but ignoring 
levels £ + 1 and higher. 

2. Advance level £ + 1 Re times.(This will involve advancing levels £ + 2 and higher, 
recursively.) 

3. Synchronize levels £ and £ + 1. 

4. If the appropriate regridding interval has passed, tag cells at level £ that require 
refinement according to some predefined user criteria, determine new level £ + 1 grids 
to cover this region, and transfer data to new grids (using conservative interpolation 
from level £ if necessary). 

In the remainder of this section, we refer to steps 1 and 2 as a complete coarse level advance 
or time step; step 1 is referred to as a level advance or a level£ advance. 

The algorithm to advance a single level uses the same sequence of steps as the single 
grid algorithm presented in §3. Note that the MAC projection, the Crank-Nicholson solves, 
and the nodal projection must be done on all grids in a level simultaneously. The only 
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l 
tl.T1 
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tl.T1 
Ll.T2 

Ll.T2 

X 
Figure 2: Multilevel timestep structure 

significant modification in adapting the single grid algorithm to a level advance is that the 
level 0 value of tl.t is always used in the pressure relaxation term in S (3.4) regardless of 
the level index. 

A detailed treatment of boundary conditions for the level advance is presented in [1]. 
For our purposes, we need only mention that boundary conditions for the advection and the 
Crank-Nicholson steps are essentially implemented by filling ghost cells of the grids. The 
ghost cells which are interior to the problem domain but exterior to all of the level grids 
are filled by conservative interpolation from the underlying coarser level grids. 

4.2 General State Variable Considerations 

In the adaptive algorithm, the flow quantities whose values persist from one time step to the 
next are the dependent variables in the evolution equations, and, additionally, s and as 1 at. 
The last two quantities are persistent for algorithmic simplicity and efficiency. The values 
of sand as lOt at a given level R. are computed by (3.3) and (3.5) only before the projection 
step during the level advance. Otherwise, they are computed by averaging down (at the 
end of a complete level R. time step in cells covered by level R. + 1 cells) or by conservative 
interpolation to level R. cells (in level R. cells that are newly created or that are ghost cells not 
contained within existing level R. grids.) The choice to consider s and as I at as state-like 
quantities was made in particular to minimize the complexity of the synchronization step. 

The treatment of the primitive quantities T, Yi, and h also requires discussion. Whenever 
ph and pY[ have been defined by conservative interpolation or redefined by synchronization, 
Tis recomputed according to (2.9). Within a given level, Yi and hare defined in the obvious 
way. In ghost cells completely exterior to a level, Yi (h) is defined by first conservatively 
interpolating p and pY[ (ph). 

The conservative interpolation of the quantities p, pY[, and ph is the final area requiring 
general discussion. As in the single level advection step, the conservative interpolation 
algorithm uses van Leer slope limiting [37] in the approximation of spatial derivatives. For 
the same reasons discussed in §3.2.1, if the conservative interpolation scheme were used 
without modification, interpolated values of ph and pY would not necessarily satisfy (2.9) 
under isothermal conditions. Further, interpolated values of p and pY[ might not satisfy 
p = L:t pYi. In order to overcome these shortcomings, we modify the slope calculation 
procedure used in the interpolation scheme. In a given cell, we compute van Leer-limited 
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slopes and unlimited central-difference slopes of p, p}[, and ph. We then compute the 
minimum of the ratios of the limited slopes to the unlimited slopes, where the ratio is 
defined to be one if the slope is zero. The slopes ocp, c.p = p, ph, pYi, used in interpolation 
are then defined to be this minimum ratio times the unlimited slopes, i.e., 

. ( OlimPh olimP . ( 01imPYi ) ) ~ f h Yi oc.p = mm o . h' o . ' mm o . Yi uunlim'P' or c.p = p,p ,p t, 
unlimP unhmP l unlimP l 

(4.1) 

where olim and ounlim denote the van Leer limited and the unlimited slopes. In the syn
chronization step, corrections for p, ph, and pYi at a given level may need to be interpolated 
to finer levels. The interpolation of these corrections follows the same strategy. 

4.3 Synchronization 

The general synchronization issues for the present algorithm are roughly the same as those 
for IAMR [1]. Before discussing details specific to low-Mach number combustion, we briefly 
review these. 

The advance of a single level entails a number of convective and diffusive solves as well 
as projections. During the advance of a given fine level, each such operation obtains its 
Dirichlet boundary data from next coarser level. Even though the solution within each level 
is consistent, there is a mismatch at the coarse-fine interface at the end of a complete coarse 
grid advance prior to the synchronization step. Specifically, there are four mismatches 
between a coarse and a fine level after a complete coarse level time step (we adopt the 
notation from [1]): 

(M.1) The solution in coarse cells underlaying fine grid cells is not synchronized with the 
overlying fine grid solution. 

(M.2) The composite advection velocity, properly defined, does not satisfy a properly de
fined composite divergence constraint at the coarse-fine interface. 

(M.3) The convective and diffusive fluxes from the coarse and the fine levels do not agree 
along the coarse-fine interface. 

(M.4) The coarse and fine cell-centered velocity do not satisfy a properly defined composite 
divergence constraint at the coarse-fine interface. 

The purpose of the synchronization step is to correct the effects of each mismatch. We 
use the notation (S.n) to refer to the correction for mismatch (M.n). In the remainder of 
this section we outline the correction strategies. The details will be presented in a future 
paper. 

(M.1) is corrected by averaging the fine grid data onto the coarse grid data following the 
approach in [1]. Note that here we average Sand 8Sj&t onto the coarse grid as well. We 
also average T onto the coarse grid to provide the temperature used to compute diffusivities 
in (S.3). 
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Mismatch {M.2) is corrected with exactlithe same approach as that used in [1]. During 
the coarse and fine grid level advances, the difference between the coarse and the fine grid 
advection velocities at a given cell edge along the interface are accumulated in a time and 
area weighted fashion. 

In (8.2), the accumulated differences appear as the right hand side of a MAC sync solve 
whose result is a correction to all the coarse grid advection velocities. Because the coarse 
and fine grid velocities both satisfy the divergence constraint within their respective levels, 
the velocity correction is divergence free; hence, the elliptic equation that is solved in this 
step is identical to that used in [1] for incompressible flow. Because the advection velocities 
used in the original coarse level advance did not contain this correction, we repeat the coarse 
level advection step to generate flux corrections that account for the convective transport 
due to the advective velocity corrections. Note that in this computation, which we call the 
MAC sync advection step, we follow the same prescription for ph that was used in §3.2.1. 

The correction for {M.3) uses the same general approach as in [1]. There are, however, 
a number of modifications and additional details. For a given coarse cell edge along the 
coarse-fine interface, the differences between the coarse and fine level fluxes (both convective 
and diffusive) are accumulated. A cell-centered correction field is defined on the coarse grid 
cells by combining the accumulated flux differences, which are associated with the coarse 
cells along the interface outside the fine grids, and the divergence of the flux corrections 
computed in the MAC sync advection step. 

Unlike (8.1), (8.3) affects the solution at the coarse level and all finer levels. We first 
define the coarse grid corrections to the scalar fields. We denote the scalar correction fields 
by RHSp, RHSph, and RHSpYz· The values of the state quantities after (8.1) but prior to 
(8.3) are denoted by (-)n+l,S.l_ First, we redefine RHSp to be Ez RHSpYz· pn+l is then 
found by 

For cp = h, Yi, we can write 

(pcp)n+l _ {pep)n+l,S.l = pn+l ( epn+l _ cpn+l,S.l) + epn+l,S.l (pn+l _ pn+l,S.l) . (4.2) 

We see that there are two components to the correction to pep: a correction to p and a 
correction to ep. The correction to pep therefore has two steps. We first solve the difference 
equation 

D.t J.L (Tn+l,S.l) 
pn+lepcorr- 2'\7. Pr 'Vepcorr = RHSp<p- epn+l,S.l (Pn+l- pn+l,S.l) (4.3) 

for epcorr, where epcorr denotes epn+l - epn+l,S.l_ (pept+l is then computed by 

(pep)n+l = (pcp)n+l,S.l + pn+lepcorr + epn+l,S.l (Pn+l _ pn+l,S.l). 

The coarse grid velocity correction in (8.3) follows the same approach used in [1], with 
straightforward modifications for non-constant viscosity and the tensor form of r. All the 
coarse grid corrections are conservatively interpolated to the overlying fine grid cells in all 
finer levels. Finally, Tis recomputed on the coarse and all finer levels using equation {2.9). 
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The final mismatch, (M.4), is corrected with a similar approach to that used in [1]. 
During the coarse and fine grid level advances, a composite residual is accumulated at 
the coarse nodes at the coarse-fine interface that measures the extent to which the level 
projections fail to satisfy the composite projection equations at the interface. 

Unlike the case of the MAC projection, there is a contribution to this residual due to 
the compressibility of the flow. At a given coarse node at the coarse-fine interface, there 
is a contribution to the residual from the value of as 1 at (3.5) in each coarse cell outside 
the fine grid which shares the node and each fine cell bordering any of these coarse cells. 
The total residual ResWftrse (the "SP" subscript denotes sync projection) equals the resid
ual Res~0ft~~~U=O for incompressible flow [1] plus the finite-element weighted contributions 
of as 1 at from the coarse cells, plus the time and space averaged finite-element weighted 
contributions from the fine cells, i.e., 

ResWftrse = R coarse "d as "b . essP,"il·U=O +coarse gr1 8t contn ut10ns + 

1 Rcoarse as 
R L fine grid 8t contributions. 

coarse k=l 

Note that the fine grid contributions are first computed at the fine nodes and then averaged 
to the coarse node. See Figure 3 for an example . 

• 
.'( / ' • / 

.A_ \ • / 

'· 
Figure 3: Schematic showing contributions of coarse and fine grid cell-centered values of 
as 1 at to the node-based residual for a refinement ratio 2. 

The remainder of (S.4) is identical to the case for incompressible flow reported in [1]. 
The composite residual is combined with the divergence of the velocity corrections found 
in (S.3) to form the right hand side of a multilevel sync projection. Corrections to both the 
velocity and the pressure at the coarse and all finer levels result. 

5 Computational Results 

In this section we present two numerical examples illustrating the methodology described 
above. In both examples, t::.r = t::.z and the CFL number a = .4. 
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5.1 Steady Laminar Methane-Air Diffusion Flame 

The first example is the calculation of the steady, unconfined coflowing methane-air dif
fusion flame previously computed by Smooke et al. [30]. The experimental configuration 
is illustrated in Figure 4. The radius of the inner fuel jet is .2 em and the radius of the 
coflowing air jet is 2.54 em. At the inlet, the temperature is 298 K and the fuel velocity is 
u = 0, v = 5.0 em/sec. The inlet air velocity is u = 0, v = 25.0 em/sec; Re :::::: 760 for a 
reference length equal to the outer diameter of the air jet. 

symmetry 

line 

air 

inlet 

L 

' -. ' 
' 

' ' . ' 
' ' ' 

2.56cm 

fuel ! ! 

' : ' : ' . 

extent of 
computational 
domain 

6.4cm 

solid 
wall 

/ inle~t: : 

'----------------------L.L.--------
.2cm --I 1--

1· 2.54cm 

Figure 4: Sketch of specification of unconfined coflowing methane-air diffusion flame. 

In our computation, the flame is ignited by a small hot patch (T = 1200K) next to the 
inlet. We use a 16 x 40 level 0 grid to cover a 2.56 em by 6.4 em problem domain. There 
are three additional levels of refinement. The refinement ratio Rt = 2 for f.= 0, 1, 2, so that 
the equivalent uniform grid is 128 x 320. The inlet boundaries are refined to level 3 so that 
they align with level 3 grid lines. The region T > 2000 K is refined to level 2. 

Figure 5 shows the early development of the flame. The unsteady phase is characterized 
by a vortex ring which appears as a "mushroom" shape in the plots. The ring forms due to 
the initial expansion of gas following ignition and ultimately rises out of the computational 
domain. The boundaries of the level 1, 2, and 3 grids are also shown as thin lines in the 
plots. 

Figure 6 shows the flame at steady-state. We compute a flame length and a maximum 
temperature of 1.68 em and 2197 K, respectively; Smooke et al. compute values of 1.25 
em and 2053 K. Qualitatively, our calculation shows the same general flame shape and 
the same rapid increase of axial velocity along the centerline. We speculate that our high 
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Laminar methane-air flame: early time 

Temperature K 

0.0824 sec 0.0969 sec 0.1110 sec 0.1248 sec 0.1386 sec 

Axial velocity m/sec 

0.0824 sec 0.0969 sec 0.11 10 sec 0.1248 sec 0.1386 sec 

Figure 5: Unconfined coflowing methane-air laminar diffusion flame: early time 

temperatmes may be due to using a reduced kinet ics mechanism and/ or species-independent 
mass diffusivities. 

Note t hat after the initial projection, the maximum axial velocity Vmax ~ 1 m/ sec; 
at steady state, Vmax ~ 1.8 m/sec. The computed acceleration is consistent with the 
accelerat ion due to buoyancy. However, the use of a ho t patch to ignite the flow, and the 
resultant large init ial velocity due to the imposit ion of the divergence constraint , probably 
results in too rap id a development of t he computed flow . A possible approach to comput ing 
a more realistic pictme of the early time flow would be to ramp the inlet velocity in t ime 
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Laminar methane-air flame : late time (0.419 sec) 

K Temperature m/sec Radial velocity m!sec Axial velocity 

•) .91J' ,':l 

~~r:- .-

1 .. ''1 ' \ . ' .. !.'.! . 

. , .. , 
·:· ·' 
>I ~ . 

'"·' ' --

Mass fraction Methane Mass fraction Air Mass fraction Product 

secA-1 Fuel burning rate/density Pa rhoRT 

Figure 6: Unconfined coflowing methane-air laminar diffusion flame: late time (0.419 sec) . 
pRT is plotted to show how well the scheme meets the constraint Po = pRT. The two 
values differ significantly only along the edge of the flame . 

and to model ignit ion as a transient source in the enthalpy equation. 

5.1.1 Timings 

We now present t imings of the code for the steady laminar flame problem discussed above. 
All refinement ratios equal two. Four cases are reported : t he 16 x 40 base grid with three 
levels of refinement discussed above, a 32 x 80 base grid with two levels, a 64 x 160 base grid 
with one level, and a uniform 128 x 320 grid . In t he two additional refined cases , the inlets 
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and the region T > 2000K are refined to the finest level. The calculations were all run on 
a 300 MHz single processor DEC Alpha workstation to a final time of .10412 sec. Table 3 
shows the CPU time used to complete the calculation, the total number of cells advanced, 
the CPU time per cell, and the approximate peak memory usage. The total number of 
cells advanced is the sum over all levels of the number of cells advanced at that level. The 
numbers show that the adaptive mesh refinement scheme can reduce the computational cost 
in terms of both CPU time and memory usage. For the examples run, however, the CPU 
time per cell does increase with the number of levels of refinement; the time for the level 
three case is double that of the level zero case. The results suggest that the refinement 
strategy used must be judicious; if too large a portion of the domain were refined, grid 
refinement would not lower the computational cost. 

Grid ding CPU Time Cells Advance d Peak Memory Usage 
Total(s) J.LS/cell Number Mb 

128 x 320, uniform 45810. 615 74547200 33 
64 X 160, R = 2 14380. 1085 13255808 16 
32 X 80,R = 2,2 7260. 1171 6201536 10 
16 X 40,R = 2,2,2 8039. 1208 6654496 9 

Table 3: Timings for uniform grid and refined grid calculations on a single processor of a 
four-processor DEC Alpha for the steady laminar flame problem presented in Section 5.1. 

5.2 Flickering Methane-Air Diffusion Flame 

The other example is the calculation of a flickering, unconfined coflowing methane-air dif
fusion flame. The computation models the coannular burner used by Smyth et al. (33, 32] 
in a flame study performed to help develop better models of soot formation. They report 
results that include the effect of acoustic forcing (33] and those that do not (32]. The latter 
case is the one computed here. Yam et al. [39] have also simulated this flow using a single 
grid projection method. 

The experimental configuration is conceptually similar to that modeled in the previous. 
section. The coannular burner consists of a fuel inlet with a radius of .55 em surrounded 
by an annulus of coflowing air with an outer radius of 5.1 em. The velocity of both inlet 
streams is 7.9 em/sec. 

In our computation, the flame is ignited by a small hot patch (T = 1200K) next to the 
inlet. We use a 32 x 128 level 0 grid to cover a 6.4 em by 25.6 em problem domain. There 
are two additional levels of refinement. The refinement ratio Rg = 2 for f = 0, 1, so that 
the equivalent uniform grid is 128 x 512. The inlet boundaries are refined to level 2 so that 
they align with level 2 grid lines. The region T > 1950 K is also refined to level 2. 

During the early development of the flow, the flame grows in length and oscillates in a 
non-periodic manner; see Figure 7 for the time history of the flame length. After approx
imately .75 sec, the flame reaches a "steady-state" in which it exhibits a highly periodic 
oscillatory behavior best described as flickering. The flame oscillations are caused by a 
buoyancy induced Kelvin-Helmholtz type of instability. Figure 8 displays the temperature 
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field during a single flame oscillation. We compute a flickering frequency of 12.2 Hz; Smyth 
et al. report a value of 12 Hz. The computed time-averaged flame height is 6.94 em; the 
experimental value is 7.9 em. Yam et al. compute values 15.7 Hz and 5.51 em. As in the 
calculation reported in the previous section, our computed temperatures are again too high; 
see the discussion above. We also compute a larger flame height oscillation {roughly 3 em) 
at steady-state than do Yam et al. {1 em). 

Flame Length 
(axial location of temperature maximum) 

0.100 

0.080 

-E -~ 
0.060 -C) 

c 
~ 
CD 
E 
co 0.040 ;;::: 

0.020 

0.000 
0.00 0.25 0.50 0. 75 1.00 1.25 1.50 1. 75 2.00 2.25 

time (sec) 

Figure 7: Axial position of the maximum temperature of the flickering flame along the 
centerline axis as a function of time. · 

6 Conclusions and Discussion 

We have presented an adaptive projection method for computing unsteady, low-Mach num
ber combustion. The adaptive mesh refinement scheme incorporates a higher-order projec
tion methodology and uses a nested hierarchy of rectangular grids which are refined in both 
space and time. The algorithm is currently implemented for laminar, axisymmetric flames 
with a reduced kinetics mechanism and a Lewis number of unity. Numerical results for two 
test problems are favorable with the exception that the computed temperatures are signifi
cantly higher than the values reported elsewhere. We speculate that the high temperatures 
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Flickering laminar methane-air flame : 1 cycle 

1.9649 sec 1.9799 sec 1.9957 sec 

K 

2.0121 sec 2.0276 sec 2.0464 sec 
Figure 8: Temperature field of flickering flame dming a single flame oscillation. 

may be due to the use of a reduced kinetics mechanism and/or species-independent mass 
diffusivities. 

Future directions for this work include incorporating detailed chemistry and species 
dependent mass diffusivities , and extending t he methodology to t hree-dimensional and tm
bulent flows and to realistic engineering geometries . 
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