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Abstract

Avoiding Communication in Dense Linear Algebra

by

Grey Malone Ballard

Doctor of Philosophy in Computer Science

with a Designated Emphasis in Computational Science and Engineering

University of California, Berkeley

Professor James Demmel, Chair

Dense linear algebra computations are essential to nearly every problem in scientific
computing and to countless other fields. Most matrix computations enjoy a high compu-
tational intensity (i.e., ratio of computation to data), and therefore the algorithms for the
computations have a potential for high efficiency. However, performance for many linear
algebra algorithms is limited by the cost of moving data between processors on a parallel
computer or throughout the memory hierarchy of a single processor, which we will refer to
generally as communication. Technological trends indicate that algorithmic performance will
become even more limited by communication in the future. In this thesis, we consider the
fundamental computations within dense linear algebra and address the following question:
can we significantly improve the current algorithms for these computations, in terms of the
communication they require and their performance in practice?

To answer the question, we analyze algorithms on sequential and parallel architectural
models that are simple enough to determine coarse communication costs but accurate enough
to predict performance of implementations on real hardware. For most of the computations,
we prove lower bounds on the communication that any algorithm must perform. If an
algorithm exists with communication costs that match the lower bounds (at least in an
asymptotic sense), we call the algorithm communication optimal. In many cases, the most
commonly used algorithms are not communication optimal, and we can develop new algo-
rithms that require less data movement and attain the communication lower bounds.

In this thesis, we develop both new communication lower bounds and new algorithms,
tightening (and in many cases closing) the gap between best known lower bound and best
known algorithm (or upper bound). We consider both sequential and parallel algorithms, and
we asses both classical and fast algorithms (e.g., Strassen’s matrix multiplication algorithm).
In particular, the central contributions of this thesis are

• proving new communication lower bounds for nearly all classical direct linear algebra
computations (dense or sparse), including factorizations for solving linear systems,
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least squares problems, and eigenvalue and singular value problems,

• proving new communication lower bounds for Strassen’s and other fast matrix multi-
plication algorithms,

• proving new parallel communication lower bounds for classical and fast computations
that set limits on an algorithm’s ability to perfectly strong scale,

• summarizing the state-of-the-art in communication efficiency for both sequential and
parallel algorithms for the computations to which the lower bounds apply,

• developing a new communication-optimal algorithm for computing a symmetric-indef-
inite factorization (observing speedups of up to 2.8× compared to alternative shared-
memory parallel algorithms),

• developing new, more communication-efficient algorithms for reducing a symmetric
band matrix to tridiagonal form via orthogonal similar transformations (observing
speedups of 2–6× compared to alternative sequential and parallel algorithms), and

• developing a new communication-optimal parallelization of Strassen’s matrix mul-
tiplication algorithm (observing speedups of up to 2.84× compared to alternative
distributed-memory parallel algorithms).
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Chapter 1

Introduction

1.1 The Role of Scientific Computing

Numerical simulation has emerged as the “third pillar” of science along with theory and
experimentation [33]. Because of the availability of increasingly powerful computers and the
rich development in applied mathematical modeling and algorithmic efficiency, scientists are
able to simulate physical phenomena that would otherwise be too expensive, too dangerous,
too time-consuming, or simply impossible to observe. As computing facilities grow, the size
and complexity of the problems scientists are able to tackle continue to increase. The field of
scientific computing aims to enable domain-specific computational scientists to develop and
test their ideas (through simulation, data analysis, or other means) by providing software
that produces results both quickly and accurately.

While the diversity of scientific domains that depend on efficient computation is vast,
from the computer science point of view, the number of different types of fundamental com-
putational patterns required to support all these domains is quite small. Many applications
that are very different from each other can be mathematically modeled in the same way.
For example, simulating the behavior of a small group of electrons to high accuracy (using
“coupled cluster” theory from computational chemistry) and statistically grouping variables
within large social science data sets (using “principal component analysis” from statistics)
are two applications whose main computational requirements are strikingly similar. In fact,
one classification of fundamental computational patterns identifies seven different patterns
(coined “the seven dwarves”) that cover nearly all domains of computational science [52].
One of the dwarves is dense linear algebra, the topic of this thesis.

1.2 The Importance of Dense Linear Algebra

Dense linear algebra refers to matrix computations where the matrices involved do not
have many zero entries. Common matrix computations include solving linear systems of
equations, solving “least squares” problems, and computing eigenvalue and singular value
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decompositions. Dense linear algebra is an especially important dwarf for two reasons: (1)
a large fraction of applications require some dense linear algebra computation, even if most
of the time is spent on other dwarves, and (2) dense matrix computations have consistently
performed well, even on emerging architectures. For example, based on the 2010 computing
resource allocation requests of the National Energy Research Scientific Computing Center (a
division of Lawrence Berkeley National Laboratory), out of a total of 427 projects, 204 use
LAPACK [8] (ranked first of all requested libraries) and 113 use ScaLAPACK [44] (ranked
third), both of which are dense linear algebra libraries. These libraries are able to obtain
relatively high performance because they benefit from the computations being regular (and
therefore have been heavily optimized over many years) and have high arithmetic intensity
(a ratio of computation to data size).

Over the past few decades, there have been many advances in dense linear algebra soft-
ware. The LAPACK library, which includes the Basic Linear Algebra Subroutines (BLAS)
[45], was developed in the 1980s and targeted single processor machines (and vector ma-
chines of the time). In the 1990s, the Scalable LAPACK (ScaLAPACK) library extended
the functionality to distributed-memory parallel computers, where processors communicate
over a network. Today, these software packages provide reference implementations, but
many other, more-optimized versions of the libraries exist. Some of these libraries are de-
veloped and supported by hardware vendors, like Intel’s Math Kernel Library (MKL) [93],
IBM’s Engineering and Scientific Subroutine Library (ESSL) [91], Cray’s LibSci [53], and
NVIDIA’s CUDA BLAS (CUBLAS) [117], and some are open source, like the Automatically
Tuned Linear Algebra Software (ATLAS) project [149]. There are also open-source libraries
targeting emerging parallel architectures like the Parallel Linear Algebra for Scalable Multi-
core Architectures (PLASMA) [6] and Matrix Algebra on GPU and Multicore Architectures
(MAGMA) [143] libraries, as well as the BLIS, libFLAME, and Elemental libraries devel-
oped within the FLAME project [81]. This range of available software demonstrates both the
demand for dense linear algebra computation as well as the various techniques for attaining
high performance.

1.3 The Rise of Parallelism and the Relative Costs of

Communication

In addition to the importance of dense linear algebra, a major reason for the long list of linear
algebra packages is the diversity of today’s machines. In particular, because of the power,
memory, and instruction-level-parallelism walls that began to hit the hardware industry
in 2004 [9], in order to improve processor performance, vendors were forced to introduce
parallelism into mainstream computer architectures. Parallelism was introduced in the form
of chips with multiple cores (“multicore”) and with wider vector or Same Instruction Multiple
Data (SIMD) lanes, as in general-purpose Graphics Processing Units (GPUs). Processor
manufacturers continue to adapt to this new paradigm and use various techniques to handle
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the complications that arise. As a result, parallelism is both ubiquitous and heterogeneous.
Even before 2004, another hardware trend began to affect the performance of dense

linear computations. Despite the fact that many dense matrix computations enjoy a high
computational intensity—i.e., every entry of the matrix, also referred to as a word of data,
is involved in many arithmetic or floating point operations (flops)—the cost associated with
accessing data from memory to perform computations has become non-negligible. This
cost of data movement, or communication, is higher than that of performing a flop, and
more importantly, this gap has been growing exponentially over time. Both costs have
been improving, but the time to perform a flop has been improving by about 59% per year
while the rate at which words can be accessed from memory (i.e., memory bandwidth) has
improved by about 23% per year [76]. Network improvements have followed a similar pattern,
with the relative costs of communication growing exponentially also for distributed-memory
machines. Thus, not only is communication becoming more important due to the rise in
parallelism, the relative costs of communication are also increasing.

1.4 Thesis Goals and Contributions

The focus of this thesis is to develop a systematic approach for designing and analyzing dense
linear algebra algorithms, paying particular attention to avoiding communication costs as
much as possible, in order to optimize performance on a wide range of platforms. To maintain
general applicability of algorithmic ideas, we will consider one sequential and one parallel
architectural model that are simple enough to facilitate coarse asymptotic communication
analysis of algorithms but accurate enough to predict performance of implementations on
real hardware.

In many cases, we can prove lower bounds on the communication required of a compu-
tation on a particular machine model, thereby setting a target for algorithmic performance.
Establishing lower bounds and developing and improving algorithms is often a simultane-
ous process, with the objective of identifying algorithms that are provably communication
optimal. After an efficient algorithm has been developed for the modeled machine, we will
rely on automatic performance tuning, or autotuning, to tweak the parameters of the algo-
rithm for optimal performance on a particular platform. The ultimate goal of this work is
to deliver the improved performance of the new and improved algorithms to scientists across
many disciplines and other users by integrating the ideas into the state-of-the-art libraries.

To this end, the goals of this thesis are to

(1) prove lower bounds on the communication required by matrix computations, thereby
setting targets for algorithmic performance;

(2) survey the current standard algorithms and their communication costs and identify pos-
sibilities for improvement; and
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(3) present new algorithms for avoiding communication and demonstrate their impact on
asymptotic costs and actual performance.

In particular, the central contributions of this work are that we

• prove new communication lower bounds for LU and Cholesky decompositions using
reductions from matrix multiplication;

• extend an existing communication lower bound for matrix multiplication [95] to “three-
nested-loops” computations for dense or sparse matrices on sequential or parallel ma-
chines, which include BLAS computations, one-sided factorizations like LU, Cholesky,
LDLT , and QR, two-sided factorizations for eigenvalue and singular value decompo-
sitions, and some computations outside of numerical linear algebra, like computing
all-pairs shortest paths of a graph;

• prove new communication lower bounds for Strassen’s [139] and “Strassen-like” fast
matrix multiplication algorithms by analyzing the the edge expansion of their compu-
tation graphs;

• prove new communication lower bounds for parallel algorithms (both classical and
Strassen-like) that are independent of the local memory size and impose limits of the
possibility of perfect strong scaling for the algorithms;

• summarize the asymptotic communication costs of the current state-of-the-art sequen-
tial algorithms (including our recent contributions, some of which do not appear in
this thesis) for numerical linear algebra, in terms of words, messages, and cache-
obliviousness, and discuss their performance in practice;

• summarize the asymptotic communication costs of the current state-of-the-art paral-
lel algorithms (including our recent contributions, some of which do not appear in
this thesis) for numerical linear algebra, in terms of words, messages, and memory
requirements, and discuss their performance in practice;

• introduce the first communication-optimal sequential factorization of symmetric indef-
inite matrices based on Aasen’s algorithm [1], prove its backward stability (subject
to a growth factor), and present numerical experiments measuring numerical stability
(observing speedups of up to 2.8× compared to alternative shared-memory parallel
algorithms [15]);

• present a set of improvements and new sequential and parallel algorithms based on
successive band reduction that asymptotically reduce communication in computing the
eigendecomposition of symmetric band matrices (observing speedups of 2–6× compared
to alternative sequential and parallel algorithms [31]); and
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• describe a communication-optimal parallelization of Strassen’s matrix multiplication
algorithm that is superior to all other matrix multiplication algorithms, both in terms
of its asymptotic communication costs and its performance in practice (observing
speedups of up to 2.84× compared to alternative distributed-memory parallel algo-
rithms [20]).

1.5 Thesis Organization

The content of this thesis is divided between communication lower bounds and algorithms.
Chapter 2 presents preliminary ideas that will be useful throughout the thesis, Part I (Chap-
ters 3–6) presents communication lower bound results, and Part II (Chapters 7–11) discusses
algorithms and their analyses. We conclude and discuss future directions in Chapter 12.

Of the chapters in Part I, Chapter 3 discusses known lower bounds for classical matrix
multiplication and how to extend those results to other computations using reduction ar-
guments. Chapter 4 establishes general theorems which can be applied to most “classical”
linear algebra algorithms, and Chapter 5 proves communication lower bounds for Strassen’s
matrix multiplication algorithm. In Chapter 6 we discuss extensions and further applications
of the lower bound techniques and results.

The chapters in Part II are organized as follows. Chapters 7 and 8 summarize the
most communication-efficient algorithms on sequential and parallel machines, respectively.
Chapters 9–11 discuss new communication-avoiding algorithms for three different computa-
tions: symmetric indefinite matrix factorization (Chapter 9), orthogonal tridiagonalization
of a symmetric band matrix (Chapter 10), and parallelizing Strassen’s matrix multiplication
algorithm (Chapter 11).
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Chapter 2

Preliminaries

2.1 Notation and Definitions

In this section we define general notation and terminology used throughout the thesis. The
most common parameters considered include n, the matrix dimension of a square matrix;
M , the size of local memory available to a processor; and P , the number of processors on a
parallel computer. For rectangular matrices, we generally use m for the number of rows and
n for the number of columns. We use the notation lg = log2 and specify the base of other
logarithms, except when using asymptotic notation.

2.1.1 Asymptotic Notation

We use standard asymptotic notation throughout the thesis. In particular, we use O(·), Ω(·),
Θ(·). Formally, f(n) = O(g(n)) implies that for sufficiently large n there exists a positive
constant c such that f(n) ≤ cg(n); f(n) = Ω(g(n)) implies that for sufficiently large n there
exists a positive constant c such that f(n) ≥ cg(n); and f(n) = Θ(g(n)) implies that both
f(n) = O(g(n)) and f(n) = Ω(g(n)). Informally, we use the notation to hide constants which
are small relative to the values of n, M , and P (and possibly other parameters) for reasonably
sized problems. We also use the notation f(n) = Õ(g(n)) to mean f(n) = O(g(n) logk n)
for some positive constant k, and f(n) � g(n) and g(n) � f(n) to mean that for every
positive constant c, f(n) ≤ cg(n) for sufficiently large n. Informally, Õ(·) means “ignoring
logarithmic factors” and f(n)� g(n) means that f is insignificant relative to g.

We also emphasize that our asymptotic notation does not imply that the results require
n to approach infinity to be correct. While the asymptotic analyses provide better estimates
for larger parameter values, they have proved meaningful and useful in algorithmic design
for modestly sized problems. For example, problems with matrix dimensions in the 100s
and processor counts in the 10s are already affected by communication costs and can benefit
from the ideas based on the asymptotic costs.
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2.1.2 Algorithmic Terminology

In this thesis, we will focus primarily on direct algorithms in linear algebra, where the
computation is specified by the structure of the input (e.g., the matrix dimension) and not
on the numerical values of the input. We specify direct algorithms in contrast to iterative
algorithms (e.g., Krylov subspace methods), where the computation repeatedly improves its
computed solution and the amount of arithmetic depends on the numerical properties of the
input.

We use the term computation to refer to a specified set of inputs and outputs, as well as
the mathematical dependencies among them. We can thus represent a computation with a
directed acyclic graph, or CDAG, consisting of nodes for input and output elements, as well
as temporary intermediate values, and edges representing mathematical dependencies.

We use the term algorithm to refer to a particular scheduling of a computation on a given
memory model. On a sequential machine, an algorithm specifies the order of evaluation of
the scalar operations; on a parallel machine, an algorithm specifies on which processor an
operation is performed and the order of operations for each processor. A correct algorithm
specifies an order that respects the dependencies of the computation.

For the purposes of this thesis, even though we consider only unary and binary scalar
operations, we do not require that all nodes in the CDAG have in-degree less than or equal
to two. In particular, the output of a summation of n values has in-degree n. We allow the
algorithm (rather than the computation) to exploit associativity and specify the shape of
the binary tree used to compute the output.1

We will consider two main classes of computations/algorithms (because these classes
do not depend on communication, we do not differentiate between computations and algo-
rithms). The following definition is based on [56]:

Definition 2.1. A classical algorithm in linear algebra is one that uses only data on which
an output matrix entry mathematically depends2 to compute its value.

For example, in the case of matrix multiplication AB = C, a classical algorithm uses
only nonzero entries in row i of A and column j of B to compute Cij. In general, a classical
algorithm applied to dense matrices performs Θ(n3) flops. Note that a classical algorithm
designed for sparse matrices will avoid flops with zeros and may do far fewer operations than
Θ(n3). We also use the term conventional as a synonym of classical. We define classical
algorithms in order to differentiate them from fast algorithms.

Definition 2.2. Given a dense linear algebra problem for which the most computationally
efficient classical algorithm performs Θ(n3) flops, a fast algorithm for that problem is one
that performs O(nω0) flops, where ω0 < 3.

1Note that because floating point addition is not associative, this implies that two correct algorithms for
the same computation may compute different output values.

2We assume generic input, ignoring the possibility of exact cancellation.
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In particular, fast algorithms do not provide merely a different scheduling for a classical
computation; they are based on a different computation graph that computes equivalent
outputs in exact arithmetic. They introduce computational dependencies between input and
output entries which have no mathematical dependence, but they do so using distributivity
and cancellation in a way that decreases the total amount of arithmetic required. The most
well-known fast algorithm is Strassen’s algorithm for dense matrix multiplication [139]. See
Section 2.4 for two variants of his algorithm.

2.1.3 Communication Terminology

In order to estimate the running time of an algorithm, we consider both the computation
and the communication it performs. Since the algorithms considered are most commonly
used for matrices with real- or complex-valued entries, we measure computation in terms
of floating point operations (flops). We measure communication in terms of words and
messages, where a word is one floating point number and a message is a group of words
communicated simultaneously. See Section 2.2 for a more precise description of a message
in each of the memory models.

We use F , W , and S to denote the number of flops, words, and messages, respectively.
While these quantities are generally functions of parameters like n, M , and/or P , we omit the
arguments when the context is clear. We also use the terms computational cost, bandwidth
cost, and latency cost (defined below) to refer to these quantities.

We assume a fixed cost γ to perform a single flop, and we do not differentiate among scalar
additions, subtractions, multiplication, divisions, and square roots. For communication, we
assume the cost to communicate a message of m words is α+ βm, where α is the fixed cost
for a message and β is the fixed cost for each word. With these assumptions, we can model
the running time T of an algorithm as a sum of three terms:

T = γ · F + β ·W + α · S.

Note that this running time model ignores any overlap of computation and communi-
cation. If we model overlap of computation with communication, the running time may
decrease by at most a factor of two, which will be inconsequential in our asymptotic analy-
sis. However, to obtain satisfactory performance on an actual implementation, overlapping
computation and communication is an important and necessary optimization.

Because we are interested in running time, for parallel algorithms we will consider these
costs along the critical path of the algorithm, the longest path (measured by time) in the
dependency graph of the algorithm’s computation and communication steps. That is, if
two processors perform a flop simultaneously, or if two pairs of processors communicate a
message simultaneously, the cost is that of one flop or one message.3 For example, see [155]
for a discussion of critical path analysis, where the dependency graph is referred to as the
“program activity graph,” or PAG. In the PAG, each vertex corresponds to the beginning

3Note that this implies we ignore network contention; see Section 2.2.2.
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or end of a computation step (performing some number of flops) or a communication step
(communicating a message of some number of words) of a particular processor, and the
weight of an edge between beginning and end vertices is the cost (in time) of the step. For
example, if a computation step consists of f flops, the weight of the edge is γ ·f . Extra edges
of weight zero represent precedence relationships (e.g., a processor must wait to receive data
before it can perform computation with it). The PAG is distinct from the CDAG defined in
Section 2.1.2 because it depends on the algorithm used (not only the computation), but it
inherits some of its dependencies from the computational dependencies.

Note that, in general, determining the critical path depends on the relative costs of
computation and communication. For example, there may be one path that is dominated
by computation steps and another dominated by communication steps, so either path may
be the critical one. In order to keep the algorithmic analysis separate from the machine-
specific costs of computation and communication, we expand the notion of one critical path
to three (possibly) distinct paths. We define the critical path with respect to flops as the path
through the algorithm’s dependency graph with the greatest number of flops performed, and
we define the critical path with respect to words and the critical path with respect to messages
as the paths through the dependency graph with the greatest number of words and messages
communicated, respectively. For most algorithms considered in this thesis, these three paths
are the same, independent of the relative values of α, β, and γ.

We define these critical paths to distinguish our communication costs from another metric
of communication: communication volume, or the sum over all processors of the communica-
tion performed. Because this metric is not as closely related to the running time of parallel
algorithms on most networks, we do not consider it further.

We now define the principal metrics by which we will evaluate algorithms in terms of
computation and communication. For generality, we define these metrics in terms of critical
paths; sequential algorithms have only one path.

Definition 2.3. The computational cost of an algorithm is the number of flops performed
along the critical path with respect to flops.

Definition 2.4. The bandwidth cost of an algorithm is the number of words communicated
along the critical path with respect to words on a given memory model.

Definition 2.5. The latency cost of an algorithm is the number of messages communicated
along the critical path with respect to messages on a given memory model.

Note that lower bounds on the computational, bandwidth, and latency costs can be
established by proving the existence of a single path with a given number of flops, words,
or messages. We will often use a single processor’s path, the edges corresponding to that
processor’s computation and communication steps throughout the algorithm execution, to
establish these lower bounds, thus ignoring all inter-processor dependencies.

We also define two commonly used terms to describe algorithms with low communication
costs. The first definition is informal, and we use the term more loosely. A communication-
avoiding algorithm is one that asymptotically reduces the bandwidth cost and/or latency cost
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compared to the previous most communication-efficient algorithms for the same computation.
That is, we use the adjective “communication-avoiding” to denote asymptotic improvement,
as opposed to improvements by constant factors that are independent of n, M , or P . We also
use the descriptive to distinguish from communication “hiding” by overlapping computation
and communication. Hiding communication is an important practical optimization, but it
improves run time only by a constant factor and so is ignored in our theoretical model.

The next definition is more precise:

Definition 2.6. A communication-optimal algorithm is one whose bandwidth and latency
costs attain known lower bounds in an asymptotic sense4 for the corresponding computation.

Thus, the existence of communication-optimal algorithms indicates matching lower bounds
(given by a proof) and upper bounds (given by an algorithm).

2.2 Memory Models

We consider two main types of architectures in this thesis: sequential and parallel computers
(see Figure 2.1). Our goals in specifying the two machine models are to (1) provide abstrac-
tions that are simple enough to reason about theoretically but realistic enough to be useful
in practice and (2) provide two models that are distinct enough to capture the differences
between sequential and parallel computation but similar enough to share terminology and
fundamental reasoning. To this end, both models include the parameters M , α, β, and γ and
consider communication in terms of bandwidth and latency costs. However, the terminology
must be interpreted slightly differently in the two models. For example, as we will see below,
M is the size of the fast memory in the sequential model, and it is the size of the local
memory in the parallel model.

2.2.1 Two-Level Sequential Memory Model

We model a sequential machine with two levels of memory hierarchy (fast and slow) and
measure the communication between these two levels during the execution of the algorithm.
See Figure 2.1a for a depiction of the model. We use M to denote the size of the fast memory
in words. If words are stored contiguously in slow memory, then they can be read or written
together as a message. Note that we allow messages to range in size from one word to the
size of the fast memory. As described in Section 2.1.3, we measure the number of words and
messages separately.

A simple generalization of this model is to consider a smaller maximum message size
L < M , which is appropriate for modeling cache lines in cache memories, for example. We
use this notation in the statement of Theorem 2.11, but in general we assume L = M because
this will minimize the latency lower bound for any possible architecture.

4By this we mean up to a constant factor and, in some cases, up to a polylogarithmic factor in n, M , or
P .
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Figure 2.1: Main types of memory models used for communication cost analysis.

2.2.1.1 Related Models

This model is similar to the two-level I/O, disk access model, or ideal-cache model (e.g., see
[5, 70, 88]), and the bandwidth and latency costs are closely related to the I/O-complexity of
an algorithm. In some variations of these models, the I/O complexity refers to the number
of words transferred [88], and the contiguity of words in slow memory is ignored. In other
variations, I/O complexity refers to the number of messages, or block transfers, where the
transfer block size is limited to B < M [5]. Note that in this model, every message is of size
exactly B, as opposed to having only a maximum message size L. In this case, the costs of
moving one word and B contiguous words are the same. Note also that in this variation,
it is possible to communicate multiple blocks simultaneously to model the parallelism in
the memory system even for a sequential computational unit. The ideal-cache model [70] is
similar, with B representing the cache line size, but only one cache line can be communicated
at a time.

2.2.1.2 Hierarchical Memory Model

We also consider a generalization of the two-level memory model to memory hierarchies
(see [129], for example). In the hierarchical memory model, there are multiple levels of
memory with monotonically increasing size from the smallest memory where computation is
performed to the largest memory where all data can reside simultaneously. Data may move
only between successive levels of memory, and the costs of data movement vary among pairs
of successive levels. We consider this model particularly in the context of cache-oblivious
algorithms (see [70] and Chapter 7) that attain optimal communication costs between all
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pairs of levels if they are communication-optimal in the two-level model. Note that cache-
aware algorithms can also minimize communication in this model, though they must be
tuned for each level of memory.

2.2.2 Distributed-Memory Parallel Model

In the distributed-memory parallel case, we model the machine as a collection of P processors,
each with a limited local memory of size M , connected over a network. The local memory
size limit may be a result of the physical hardware or a restriction on the algorithm (e.g., the
algorithm may be limited to using only a constant factor more memory than what is required
to store the input and output). Processors communicate via point-to-point messages. See
Figure 2.1b for a depiction of the model. Again, we are interested in both the number of
words (bandwidth cost) and messages (latency cost), and we count these costs along the
critical path(s) of the algorithm. That is, if two processors each send a message to separate
processors simultaneously, the cost along the critical path is that of one message. We assume
that the per-word and per-message costs include the time it takes a processor to pack words
into a contiguous message before sending it over the network.

We assume that (1) the architecture is homogeneous (that is, γ is the same on all pro-
cessors and α and β are the same between each pair of processors), (2) processors can
send/receive only one message to/from one processor at a time, and (3) there is no commu-
nication resource contention among processors. That is, we assume that there is a link in
the network between each pair of processors. Thus lower bounds derived in this model are
valid for any network, but attainability of the lower bounds depends on the details of the
network.

2.2.2.1 Related Models

We note that there are many related parallel models. The parallel random access machine
(PRAM) model [67] was designed to separate concerns of communication from parallel ef-
ficiency given large numbers of processors and uses a shared-memory model. One of many
later variants, the LPRAM model [4] captures communication complexity but still incorpo-
rates a global shared memory. The Bulk Synchronous Parallel (BSP) model [146] addresses
distributed-memory parallel machines and separates algorithmic time into synchronous com-
putational and communication steps. The “communication cost” in that model is equivalent
to the bandwidth cost in our model, and the “synchronization cost” is closely related to
our latency cost, though in the BSP model a processor can communicate with multiple pro-
cessors simultaneously. The LogP model [54] is also very similar to our model. Using the
notation in Section 2.1.3, α is roughly equivalent to the sum of the “latency” and “overhead”
parameters, and β and the “gap” parameters are also roughly equivalent.
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(a) Column-major (b) Block-contiguous (c) Recursive

Figure 2.2: Main types of data layouts used for storing matrices in slow memory.

2.2.2.2 Shared-Memory Parallel Models

We note that because of the current ubiquity of multicore processors, shared-memory parallel
models are also important to consider in estimating algorithmic performance. While we do
not explicitly consider shared-memory models in this thesis, there are several models to
which it is possible to extend both our lower bound analyses and algorithms [46, 130, 145].
Another trend in hardware design is greater heterogeneity among processing units. See [18]
for a shared-memory heterogeneous parallel model with an extension of the lower bounds
and new algorithms for matrix multiplication.

2.3 Data Layouts

2.3.1 Matrix Layouts in Slow Memory

We consider three main types of matrix data layouts in slow memory: column major, block
contiguous, and recursive. There are simple variations of these layouts, like row-major
instead of column-major ordering, that we do not discuss. Adapting the analysis to these
variations is straightforward.

The column-major data layout stores the matrix entries in column-wise order, as shown
in Figure 2.2a. That is, each column is stored contiguously, ordering column entries from
top to bottom, and columns are ordered from left to right. This is the most commonly used
layout (e.g., in Fortran) because the indexing into a linear array is simple, and column major
is the data layout of choice in LAPACK [8].

The block-contiguous data layout involve a block size parameter b, storing the matrix
in a way that b × b blocks are stored contiguously, as shown in Figure 2.2b. The entries
within a block may be stored in any layout, and the (n/b)2 blocks may be ordered using
any (possibly different) layout. We generally assume column-major orderings both inside
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00 01 02 03 04 05 06

10 11 12 13 14 15 16

20 21 22 23 24 25 26

30 31 32 33 34 35 36

40 41 42 43 44 45 46

50 51 52 53 54 55 56

60 61 62 63 64 65 66

Figure 2.3: Block-cyclic matrix distribution. Each of the 16 submatrices shown on the left
has exactly the same distribution. The colored blocks are the ones owned by processor 00.
On the right is a zoomed-in view of one submatrix, showing which processor, numbered with
row and column indices, owns each block.

and among blocks. Alternatively, the elements of each block may be stored as contiguous
sub-blocks, where each sub-block is of size b′ < b. The data structure may include several
such layers of sub-blocks. The contiguous blocks need not be square, but the rectangular
generalization will not be useful in this thesis.

The recursive layout [70, 154] is also known as the bit-interleaved layout, space-filling
curve storage, or Morton ordering format. This layout stores each of the four (n/2)× (n/2)
submatrices of a square matrix contiguously, and then the elements of each submatrix are
ordered so that the smaller submatrices are each stored contiguously, and so on recursively,
as shown in Figure 2.2c. The recursive layout can be extended to rectangular matrices in
various ways, see [32] for an example.

We note that for symmetric matrices, only half the matrix needs to accessed (or stored).
See [24, Section 3.1.1] for a summary of adaptations of each of these data structures to
symmetric matrices.

2.3.2 Matrix Distributions on Parallel Machines

In the parallel case, we consider one general scheme for distributing matrices across the
local memories of the processors: the block-cyclic distribution, shown in Figure 2.3. The
block-cyclic distribution involves two block size parameters, br and bc, and divides the matrix
into br × bc blocks. For a rectangular m × n matrix, these (m/br) · (n/bc) blocks are then
distributed to processors in a round-robin fashion. We generally assume a two-dimensional
logical processor grid, so blocks are distributed so that all blocks in a given block row are
distributed among a single processor row (and similarly for block columns).

The block-cyclic distribution is general enough to encompass many important distribu-
tions, and it is the method of choice of ScaLAPACK [44]. For example, choosing br = bc = 1
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gives the cyclic layout (used in Elemental [121]), and choosing br = m/Pr and bc = n/Pc with
a Pr × Pc processor grid gives the block layout. Column-cyclic, row-cyclic, block-column,
and block-row distributions can all be achieved with appropriate choices of br and bc.

As mentioned in Section 2.2.2, we assume the communication parameters α and β include
the costs incurred by a processor for locally packing words into messages before sending them
to another processor. Thus, we do not specify the layout each processor uses to store data
in its local memory.

2.4 Fast Matrix Multiplication Algorithms

In this section we give two fast algorithms for matrix multiplication. They each have com-
putational cost of O(nlg 7), where lg 7 ≈ 2.81, so they require fewer flops than a classical
algorithm. We note that we present them as recursive algorithms, but they specify computa-
tions more generally, as the recursion tree can be traversed in many different orderings. See
Section 2.1.2 for a differentiation between algorithms and computations.

2.4.1 Strassen’s Algorithm

Here we give Strassen’s algorithm for matrix multiplication in its original notation [139].
First, divide the input matrices A,B and output matrix C into 4 submatrices:

A =

[
A11 A12

A21 A22

]
B =

[
B11 B12

B21 B22

]
C =

[
C11 C12

C21 C22

]
Then, for one step of the algorithm, compute the following quantities:

I = (A11 + A22) · (B11 +B22)
II = (A21 + A22) ·B11

III = A11 · (B12 −B22)
IV = A22 · (B21 −B11)
V = (A11 + A12) ·B22

V I = (A21 − A11) · (B11 +B12)
V II = (A12 − A22) · (B21 +B22)

C11 = I + IV − V + V II
C12 = II + IV
C21 = III + V
C22 = I + III − II + V I

The algorithm is recursive since it can be used for each of the 7 smaller matrix multiplica-
tions. The recursion for the computational cost of the algorithm is F (n) = 7F (n/2) + 18n2,
yielding a solution of

F (n) = 6nlg 7 − 5n2

for n a power of two and using a base case of n = 1.
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2.4.2 Strassen-Winograd Algorithm

The Strassen-Winograd algorithm is usually preferred to Strassen’s algorithm in practice
since it requires fewer additions (15 instead of 18). As before, we divide the matrices into
quadrants. Then we form 7 linear combinations of the submatrices of each of A and B, call
these Ti and Si, respectively; multiply them pairwise; then form the submatrices of C as
linear combinations of these products:

T0 = A11 S0 = B11 Q0 = T0 · S0 U1 = Q0 +Q3

T1 = A12 S1 = B21 Q1 = T1 · S1 U2 = U1 +Q4

T2 = A21 + A22 S2 = B12 −B11 Q2 = T2 · S2 U3 = U1 +Q2

T3 = T2 − A11 S3 = B22 − S2 Q3 = T3 · S3 C11 = Q0 +Q1

T4 = A11 − A21 S4 = B22 −B12 Q4 = T4 · S4 C12 = U3 +Q5

T5 = A12 − T3 S5 = B22 Q5 = T5 · S5 C21 = U2 −Q6

T6 = A22 S6 = S3 −B21 Q6 = T6 · S6 C22 = U2 +Q2

This is one step of Strassen-Winograd. The variation is often erroneously attributed to
[152] and actually appears in [153]. In practice, one often uses only a few steps of Strassen-
Winograd, although to attain O(nlg 7) computational cost, it is necessary to recursively
apply it all the way down to matrices of size O(1) × O(1). The precise computational cost
of Strassen-Winograd (for n a power of 2) is

F(n) = csn
lg 7 − 5n2.

Here cs is a constant depending on the cutoff point at which one switches to the classical
algorithm. For a cutoff size of n0, the constant is cs = (2n0 + 4)/nlg 7−2

0 which is minimized
at n0 = 8 yielding a computational cost of approximately 3.73nlg 7 − 5n2.

2.5 Lower Bound Lemmas

Chapters 3–6 establish several communication lower bounds for a variety of computations.
In this section, we state fundamental definitions and lemmas that will be useful throughout
the subsequent chapters.

2.5.1 Loomis-Whitney Inequality

Loomis and Whitney [107] proved a geometrical result that provides a surface-to-volume
relationship in general high-dimensional space. We need only the simplest version of their
result, which will prove instrumental in proving lower bounds for classical computations in
Chapters 4 and 6.

Lemma 2.7 ([107]). Let V be a finite set of lattice points in R3, i.e., points (x, y, z) with
integer coordinates. Let Vx be the projection of V in the x-direction, i.e., all points (y, z)
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such that there exists an x so that (x, y, z) ∈ V . Define Vy and Vz similarly. Let | · | denote
the cardinality of a set. Then |V | ≤

√
|Vx| × |Vy| × |Vz|.

An intuition for the correctness of this lemma is as follows: think of a box of dimensions
a × b × c. Then its (rectangular) projections on the three planes have areas a · b, b · c and
a · c, and we have that its volume a · b · c is equal to the square root of the product of the
three areas. In this instance equality is achieved; only the inequality applies in general.

2.5.2 Expansion Preliminaries

In this section we define the edge expansion of a graph and generalize it slightly for our
purposes. These preliminaries will be used in Chapters 5 and 6.

We use common graph notation here, with V = V (G) denoting the set of vertices and
E = E(G) the set of edges of a graph G = (V,E). We also use the symbol \ to denote set
subtraction. Recall that a d-regular graph is one whose vertices all have degree d.

Definition 2.8. The edge expansion h(G) of a d-regular undirected graph G = (V,E) is:

h(G) ≡ min
U⊆V,|U |≤|V |/2

|E(U, V \ U)|
d · |U |

(2.1)

where E(A,B) is the set of edges connecting the vertex sets A and B.

If a graph G = (V,E) is not regular but has a bounded maximal degree d, then we
can add (< d) loops to vertices of degree < d, obtaining a regular graph G′. We use the
convention that a loop adds 1 to the degree of a vertex. Note that for any S ⊆ V , we have
|EG(S, V \S)| = |EG′(S, V \S)|, as none of the added loops contributes to the edge expansion
of G′.

For many graphs, small sets expand better than larger sets. Let hs(G) denote the edge
expansion for sets of size at most s in G:

hs(G) ≡ min
U⊆V,|U |≤s

|E(U, V \ U)|
d · |U |

. (2.2)

For many interesting graph families, hs(G) does not depend on |V (G)| when s is fixed,
although it may decrease when s increases. One way of bounding hs(G) is by decomposing
G into small subgraphs of large edge expansion. Let us first define graph decomposition:

Definition 2.9. We say that the set of graphs {G′i = (Vi, Ei)}1≤i≤l is an edge-disjoint
decomposition of G = (V,E) if V =

⋃
i Vi and E =

⊎
iEi.

Now, we state and prove a lemma relating the small-set edge expansion of a graph based
on the edge expansion of its component graphs.
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Lemma 2.10. Let G = (V,E) be a d-regular graph that can be decomposed into edge-disjoint
(but not necessarily vertex-disjoint) copies of a graph G′ = (V ′, E ′) with maximum degree d′.
Then the edge expansion of G for sets of size at most |V ′|/2 is h(G′) · d′

d
, namely

h |V ′|
2

(G) ≡ min
U⊆V,|U |≤|V ′|/2

|EG(U, V \ U)|
d · |U |

≥ h(G′) · d
′

d
.

Proof. Let U ⊆ V be of size U ≤ |V ′|/2. Let {G′i = (Vi, Ei)}1≤i≤l be an edge-disjoint
decomposition of G, where every G′i is isomorphic to G′. Let Ui = Vi ∩ U . Then

|EG(U, V \ U)| =
l∑

i=1

|EG′i(Ui, Vi \ Ui)| ≥
l∑

i=1

h(G′i) · d′ · |Ui|

= h(G′) · d′ ·
l∑

i=1

|Ui| ≥ h(G′) · d′ · |U | .

Therefore |EG(U,V \U)|
d·|U | ≥ h(G′) · d′

d
.

2.5.3 Latency Lower Bounds

In the subsequent chapters, we state all results in terms of the number of words moved.
Corresponding bounds on the number of messages moved exist with a very simple proof:
divide the bandwidth cost lower bound by the largest possible message size. Thus, we have
the following theorem:

Theorem 2.11. Suppose a computation has a bandwidth cost lower bound of W ≥ W ′. If
L is the largest message size, then its latency cost lower bound is S ≥ W ′/L.

Because it applies so generally, we do not restate the latency cost lower bound for every
bandwidth cost lower bound result.

2.6 Numerical Stability Lemmas

In this section we define our model of floating point computation and state several well-known
lemmas regarding the component-wise backward stability of fundamental linear algebra com-
putations. Nearly all of the results in this section can be found in [85].

Our model of floating point arithmetic is:

fl (x op y) = (x op y) (1 + δ) , |δ| ≤ u, op = +, −, ×, ÷, (2.3)

where u is unit roundoff [85, Section 2.2]. In other words, we ignore underflow and overflow.
We also assume that 0.5 is a floating point number and that

fl (0.5x) = 0.5x. (2.4)
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We begin by citing a few lemmas of floating point error analysis, all of which are either
well known or can be easily derived from well-known results. We use the notation γn =
nu/ (1− nu) for any positive n. The following lemma provides a rule for manipulating
expressions involving γn or quantities bounded by it.

Lemma 2.12 ([85, Lemma 3.3]). The bound

γm + γn + γmγn ≤ γm+n

holds. Furthermore, if θm and θn are such that |θm| ≤ γm and |θn| ≤ γn then

(1 + θm) (1 + θn) = 1 + θm+n, |θm+n| ≤ γm+n.

The following lemma provides a bound on the accuracy of matrix-matrix products. In our
analysis we assume that matrices are multiplied using the conventional method, as opposed
to Strassen’s algorithm or any related scheme.

Lemma 2.13 ([85, Section 3.5]). Let A and B be m× p and p× n matrices respectively. If
the product X = AB is formed in floating point arithmetic, then

X = AB + ∆, |∆| ≤ γp |A| |B| .

The following two lemmas also deal with matrix-matrix multiplication. Their proofs
are similar to the proof of Lemma 8.4 in [85], with the only difference stemming from the
possible scaling by 0.5 in Lemma 2.14. The assumption (2.4) in our model guarantees that
this scaling has no effect on the ultimate bound.

Lemma 2.14. Let A, B and C be matrices of dimensions m×p, p×n and m×n respectively,
and let α be one of the scalars 0.5 and 1. If the matrix X = C − αAB is formed in floating
point arithmetic then

C = αAB +X + ∆, |∆| ≤ γp (α |A| |B|+ |X|) .

Lemma 2.15. Let A, B and C be matrices of dimensions m×p, p×m and m×m respectively.
If the matrix X = C − AB − (AB)T is formed in floating point arithmetic then

C = AB + (AB)T +X + ∆, |∆| ≤ γ2p

(
|A| |B|+ (|A| |B|)T + |X|

)
.

Finally, the following two lemmas provide bounds on the accuracy of triangular solves
and of the LU factorization.

Lemma 2.16 ([85, Section 8.1]). Let T and B be matrices of dimensions m×m and m×n
respectively, and assume that T is triangular. If the m× n matrix X is computed by solving
the system TX = B using substitution in floating point arithmetic then

TX = B + ∆, |∆| ≤ γm |T | |X| .

Furthermore, if the system being solved is XT = B and the dimensions of X and B are
n×m then

XT = B + ∆, |∆| ≤ γm |X| |T | .
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Lemma 2.17 ([85, Section 9.3]). Let A be an m × n matrix and let r = min {m,n}. If L
and U are the LU factors of A, computed in floating point arithmetic, then

A = LU + ∆, |∆| ≤ γr |L| |U | .
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Part I

Communication Lower Bounds
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Chapter 3

Communication Lower Bounds via
Reductions

We establish communication lower bounds for three fundamental classical computations in
this chapter: matrix multiplication, LU decomposition, and Cholesky decomposition. In
Chapters 4–6, we extend these lower bound results in various ways. The main contributions
of this chapter are

• a summary of known communication lower bounds for classical matrix multiplication,

• a reduction proof to extend the bounds to classical LU decomposition, and

• a reduction proof to extend the bounds to classical Cholesky decomposition.

That is, we show how to perform matrix multiplication using a black-box call to an LU or
Cholesky factorization routine. Thus, we prove that a lower bound that applies to matrix
multiplication also applies to these decompositions (under the same assumptions).

The content of this chapter appears in both [23] (conference version) and [24] (journal
version), written with coauthors James Demmel, Olga Holtz, and Oded Schwartz. The
journal version of the paper includes a more detailed discussion of the algorithms, but the
lower bound argument for Cholesky, presented in Section 3.2.2, appears in both papers. The
simpler argument for LU, presented in Section 3.2.1, also appears in [80].

3.1 Classical Matrix Multiplication

In 1981 Hong and Kung [88] proved a lower bound on the bandwidth cost required to
perform dense matrix multiplication in the sequential two-level memory model using the
classical algorithm, where the input matrices are too large to fit in the fast memory. They
obtained the following result using what they called a “red-blue pebble game” analysis of
the computation graph of the algorithm. For algorithms attaining this bound, see Section
7.1.1.
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Theorem 3.1 ([88, Corollary 6.2]). For classical matrix multiplication of dense m× k and
k×n matrices implemented on a machine with fast memory of size M , the number of words
transferred between fast and slow memory is

W = Ω

(
mkn

M1/2

)
.

This result was proven using a different technique by Irony, Toledo, and Tiskin [95]
and generalized to the distributed-memory parallel case. They state the following parallel
bandwidth cost lower bound using an argument based on the Loomis-Whitney inequality
[107], given as Lemma 2.7.

Theorem 3.2 ([95, Theorem 3.1]). For classical matrix multiplication of dense m × k and
k × n matrices implemented on a distributed-memory machine with P processors each with
a local memory of size M , the number of words communicated by at least one processor is

W = Ω

(
mkn

PM1/2
−M

)
.

In the case where m = k = n and each processor stores the minimal M = O(n2/P ) words
of data, the lower bound on bandwidth cost becomes Ω(n2/P 1/2). The authors also consider
the case where the local memory size is much larger, M = Θ(n2/P 2/3), in which case O(P 1/3)
times as much memory is used (compared to the minimum possible) and less communication
is necessary. In this case the bandwidth cost lower bound becomes Ω(n2/P 2/3). See Sections
8.1.1 and 8.2.1 for discussions of algorithms that attain this bound.

3.2 Reduction Arguments

3.2.1 LU Decomposition

Given a lower bound for one algorithm, we can make a reduction argument to extend that
bound to another algorithm. In our case, given the matrix multiplication bounds from
Section 3.1, if we can show how to perform matrix multiplication using another algorithm
(assuming the transformation requires no extra communication in an asymptotic sense), then
the same bound must apply to the other algorithm, under the same assumptions.

A reduction of matrix multiplication to LU decomposition is straightforward given the
following identity: I 0 −B

A I 0
0 0 I

 =

IA I
0 0 I

I 0 −B
I A ·B

I

 . (3.1)

That is, given two input matrices A and B, we can compute A ·B by constructing the matrix
on the left hand side of the identity above, performing an LU decomposition, and then
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extracting the (2, 3) block of the upper triangular output matrix. Thus, given an algorithm
for LU decomposition that communicates less than the lower bound for multiplication, we
have an algorithm for matrix multiplication that communicates less than the lower bound,
a contradiction. Note that although the dimension of the LU decomposition is three times
that of the original multiplication, the same communication bound holds in an asymptotic
sense. This reduction appears in [80]. Stated formally:

Theorem 3.3. Given a fast/local memory of size M , the bandwidth cost lower bound for
classical LU decomposition of a dense n× n matrix is

W = Ω

(
n3

PM1/2

)
.

For a discussion of algorithms attaining this bound, see Sections 7.1.4 and 8.1.4.

3.2.2 Cholesky Decomposition

A similar identity to Equation 3.1 holds for Cholesky decomposition: I AT −B
A I + A ·AT 0
−BT 0 D

 =

 I
A I
−BT (A ·B)T X

 ·
I AT −B

I A ·B
XT


where X is the Cholesky factor of D′ ≡ D−BTB−BTATAB, and D can be any symmetric
matrix such that D′ is positive definite.

However, the reduction is not as straightforward as in the case of LU because the matrix-
multiplication-by-Cholesky algorithm would include the computation of A·AT which requires
as much communication as general matrix multiplication.1 We next show how to change the
computation so that we can avoid constructing the I+A·AT term and still perform Cholesky
decomposition to obtain the product A ·B.

In addition to the real numbers R, consider new “starred” numerical quantities, called
1∗ and 0∗, with arithmetic properties detailed in the following tables. The quantities 1∗ and
0∗ mask any real value in addition/subtraction operation, but behave similarly to 1 ∈ R and
0 ∈ R in multiplication and division operations.

Table 3.1 defines arithmetic operations with these new quantities. Consider the set
R ∪ {1∗, 0∗} with the specified arithmetic operations.

• The set is commutative with respect to addition and to multiplication (by the symme-
tries of the corresponding tables).

• The set is associative with respect to addition: regardless of ordering of summation,
the sum is 1∗ if one of the summands is 1∗, otherwise it is 0∗ if one of the summands
is 0∗.

1To see why, take A =

(
X 0
Y T 0

)
, and then A ·AT =

(
∗ XY
∗ ∗

)
.
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± 1∗ 0∗ y

1∗ 1∗ 1∗ 1∗

0∗ 1∗ 0∗ 0∗

x 1∗ 0∗ x± y

· 1∗ 0∗ y

1∗ 1∗ 0∗ y
0∗ 0∗ 0 0
x x 0 x · y

/ 1∗ 0∗ y 6= 0

1∗ 1∗ − 1/y
0∗ 0∗ − 0
x x − x/y

√
.

1∗ 1∗

0∗ 0∗

x ≥ 0
√
x

Table 3.1: Arithmetic operations with starred values. The variables x, y stand for any real
values. For consistency, −0∗ ≡ 0∗ and −1∗ ≡ 1∗.

• The set is also associative with respect to multiplication: (a · b) · c = a · (b · c). This
is trivial if all factors are in R. As 1∗ is a multiplicative identity, it is also immediate
if some of the factors equal 1∗. Otherwise, at least one of the factors is 0∗, and the
product is 0.

• Distributivity, however, does not hold: 1 · (1∗ + 1∗) = 1 6= 2 = (1 · 1∗) + (1 · 1∗).

Let us return to the construction. We set T to be:

T ≡

 I AT −B
A C 0
−BT 0 C


where C has 1∗ on the main diagonal and 0∗ everywhere else:

C ≡


1∗ 0∗ · · · 0∗

0∗ 1∗ 0∗
...

. . .
... 0∗

0∗ · · · 0∗ 1∗

 .

One can verify that the (unique) Cholesky decomposition of C is

C =


1∗ 0 . . . 0

0∗ 1∗
...

...
. . . 0

0∗ · · · 0∗ 1∗

 ·


1∗ 0∗ · · · 0∗

. . . . . .
...

... 1∗ 0∗

0 . . . 1∗

 ≡ C ′ · C ′T . (3.2)

Note that if a matrix X does not contain any “starred” values 0∗ and 1∗ then X = C ·X =
X · C = C ′ ·X = X · C ′ = C ′T ·X = X · C ′T and C + X = C. Therefore, one can confirm
that the Cholesky decomposition of T is:

T ≡

 I AT −B
A C 0
−BT 0 C

 =

 I
A C ′

−BT (A ·B)T C ′

 ·
I AT −B

C ′T A ·B
C ′T

 ≡ L · LT . (3.3)
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One can think of C as masking the A · AT previously appearing in the central block
of T , therefore allowing the lower bound of computing A · B to be accounted for by the
Cholesky decomposition, and not by the computation of A · AT . More formally, let Alg be
any classical algorithm for Cholesky factorization. We convert it to a matrix multiplication
algorithm using Algorithm 3.1.

Algorithm 3.1 Matrix Multiplication by Cholesky Decomposition

Require: Two n×n matrices, A and B
1: Let Alg′ be Alg updated to correctly handle the new 0∗ and 1∗ values

. note that Alg′ can be constructed off-line
2: Construct T as in Equation (3.3)
3: L = Alg′(T )
4: return (L32)

T

The simplest conceptual way to implement line 1 of the algorithm is to attach an extra
bit to every numerical value, indicating whether it is “starred” or not, and modify every
arithmetic operation to check this bit before performing an operation. This increases the
bandwidth cost by at most a constant factor. Alternatively, we can use Signalling NaNs as
defined in the IEEE Floating Point Standard [92] to encode 1∗ and 0∗ with no extra bits.

If the instructions implementing Cholesky are scheduled deterministically, there is an-
other alternative. One can run the algorithm “symbolically”, propagating 0∗ and 1∗ ar-
guments from the inputs forward, simplifying or eliminating arithmetic operations whose
inputs contain 0∗ or 1∗. One can also eliminate operations for which there is no path in
the directed acyclic graph (describing how outputs of each operation propagate to inputs of
other operations) to the desired output A ·B. The resulting Alg′ performs a strict subset of
the arithmetic and memory operations of the original Cholesky algorithm.

We note that updating Alg to form Alg′ is done off-line, so that line 1 does not actually
take any time to perform when Algorithm 3.1 is called.

3.2.2.1 Correctness of Algorithm 3.1

We next verify the correctness of this reduction: that the output of this procedure on input
A and B is indeed the multiplication A ·B, as long as Alg is a classical algorithm, in a sense
we now define carefully.

Let T = L·LT be the Cholesky decomposition of T . Then we have the following formulas:

L(i, i) =

√√√√T (i, i)−
i−1∑
k=1

(L(i, k))2 (3.4)

L(i, j) =
1

L(j, j)

(
T (i, j)−

j−1∑
k=1

L(i, k) · L(j, k)

)
, i > j. (3.5)
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A “classical” Cholesky decomposition algorithm computes each of these O(n3) flops, which
may be reordered using only commutativity and associativity of addition. By the no-pivoting
and no-distributivity restrictions on Alg, when an entry of L is computed, all the entries on
which it depends have already been computed and combined by the above formulas, with the
sums occurring in any order. These dependencies form a dependency graph on the entries
of L, and impose a partial ordering on the computation of the entries of L (see Figure 3.1).
That is, when an entry L(i, i) is computed, by Equation (3.4), all the entries {L(i, k)}1≤k<i
have already been computed.2 Denote this set of entries by Sii, namely,

Sii ≡ {L(i, k)}1≤k<i. (3.6)

Similarly, when an entry L(i, j) (for i > j) is computed, by Equation (3.5), all the entries
{L(i, k)}1≤k<j and all the entries {L(j, k)}1≤k≤j have already been computed. Denote this
set by Sij namely,

Sij ≡ {L(i, k)}1≤k<j ∪ {L(j, k)}1≤k≤j. (3.7)

i

j

j

-B (AB) C’

A C’ 0

I 0 0

i

i

-B (AB) C’

A C’ 0

I 0 0

Figure 3.1: Dependencies of L(i, j), for diagonal entries (left) and other entries (right).
Dark grey represents the sets Sii (left) and Sij (right). Light grey represents indirect depen-
dencies.

Lemma 3.4. Any ordering of the computation of the elements of L that respects the partial
ordering induced by the computation graph results in a correct computation of A ·B.

Proof. We need to confirm that the starred entries 1∗ and 0∗ of T do not somehow “con-
taminate” the desired entries of LT32. The proof is by induction on the partial order on pairs
(i, j) implied by (3.6) and (3.7). The base case —the correctness of computing L(1, 1)—
is immediate. Assume by induction that all elements of Sij are correctly computed and
consider the computation of L(i, j) according to the block in which it resides:

• If L(i, j) resides in block L11, L21 or L31 then Sij contains only real values, and no
arithmetic operations with 0∗ or 1∗ occur (recall Figure 3.1 or Equations (3.3),(3.6)

2While this partial ordering constrains the scheduling of flops, it does not uniquely identify a computation
DAG (directed acyclic graph), for the additions within one summation can be in arbitrary order (forming
arbitrary subtrees in the computation DAG).
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and (3.7)). Therefore, the correctness follows from the correctness of the original
Cholesky algorithm.

• If L(i, j) resides in L22 or L33 then Sij may contain “starred” value (elements of C ′).
We treat separately the case where L(i, j) is on the main diagonal and the case where
it is not.

If i = j then by Equation (3.4) L(i, i) is determined to be 1∗ since T (i, i) = 1∗ and
since adding to, subtracting from and taking the square root of 1∗ all result in 1∗ (recall
Table 3.1 and Equation (3.4)).

If i > j then by the inductive assumption the divisor L(j, j) of Equation (3.5) is
correctly computed to be 1∗ (recall Figure 3.1 and the definition of C ′ in Equation
(3.2)). Therefore, no division by 0∗ is performed. Moreover, T (i, j) is 0∗. Then L(i, j)
is determined to be the correct value 0∗, unless 1∗ is subtracted (recall Equation (3.5)).
However, every subtracted product (recall Equation (3.5)) is composed of two factors
of the same column but of different rows. Therefore, by the structure of C ′, none of
them is 1∗ so their product is not 1∗ and the value is computed correctly.

• If L(i, j) resides in L32 then Sij may contain “starred” values (see Figure 3.1, right-
hand side, row j). However, every subtraction performed (recall Equation (3.5)) is
composed of a product of two factors, of which one is on the ith row (and on a column
k < j). Hence, by induction (on i, j), the (i, k) element has been computed correctly
to be a real value, and by the multiplication properties so is the product. Therefore
no masking occurs.

This completes the proof of Lemma 3.4.

3.2.2.2 Lower Bound Argument

We now know that Algorithm 3.1 correctly multiplies matrices “classically”, and so has
known communication lower bounds given by Theorems 3.1 and 3.2. It remains to confirm
that Step 2 (setting up T ) and Step 4 (returning LT32) do not require much communication, so
that these lower bounds apply to Step 3, running Alg′ (recall that Step 1 may be performed
off-line and so doesn’t count). Since Alg′ is either a small modification of Cholesky to add
“star” labels to all data items (at most doubling the bandwidth cost), or a subset of Cholesky
with some operations omitted (those with starred arguments, or not leading to the desired
output L32), a lower bound on communication for Alg′ is also a lower bound for Cholesky.

That is, any sequential or parallel classical algorithm for the Cholesky decomposition of n-
by-n matrices can be transformed into a classical algorithm for n

3
-by-n

3
matrix-multiplication,

in such a way that the bandwidth cost of the matrix-multiplication algorithm is at most a
constant times the bandwidth cost of the Cholesky algorithm. Therefore any bandwidth
or latency cost lower bound for classical matrix multiplication applies to classical Cholesky,
asymptotically speaking:
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Theorem 3.5. Given a fast/local memory of size M , the bandwidth cost lower bound for
classical Cholesky decomposition of a dense symmetric n× n matrix is

W = Ω

(
n3

PM1/2

)
.

Proof. Constructing T (in any data format) requires bandwidth of at most 18n2 (copying a
3n-by-3n matrix, with another factor of 2 if each entry has a flag indicating whether it is
“starred” or not), and extracting LT32 requires another n2 of bandwidth. Furthermore, we
can assume n2 < n3/M1/2, i.e., that M < n2, i.e., that the matrix is too large to fit entirely
in fast memory (the only case of interest). Thus the bandwidth lower bound Ω(n3/M1/2) of
Algorithm 3.1 dominates the bandwidth costs of Steps 2 and 4, and so must apply to Step
3 (Cholesky). Finally, as each message delivers at most M words, the latency lower bound
for Step 3 is by a factor of M smaller than its bandwidth cost lower bound, as desired.

The argument in the parallel case is analogous. The construction of input and retrieval
of output at Steps 2 and 4 of Algorithm 3.1 contribute bandwidth of O(n2/P ). Therefore
the lower bound of the bandwidth Ω(n3/(PM1/2)) is determined by Step 3, the Cholesky
decomposition. The lower bound on the latency of Step 3 is therefore Ω(n3/(PM3/2)), as
each message delivers at most M words.

For algorithms attaining this bound, see Sections 7.1.2 and 8.1.2.

3.3 Conclusions

In this chapter we establish the fact that LU and Cholesky decompositions are as hard as
matrix multiplication, in terms of their communication requirements. In the Chapter 4, we
reproduce these results with a different, direct proof and show that the new proof can be
applied to many other computations. In fact, the later results generalize those here because
they also apply to sparse and rectangular (in the case of LU) matrices, while Theorems 3.3
and 3.5 assume dense, square matrices. We include the results of this chapter because (1)
they predate those of Chapter 4 and (2) the proof technique may prove valuable for other
computations. For instance, the best known lower bound results for QR decomposition (see
Section 4.3) require technical assumptions; a reduction from matrix multiplication to QR
could make the results more robust. In addition, there exists an incomplete reduction in [17,
Section 4.1] of computing a Schur decomposition to computing a QR decomposition. Note
also that the results here assume “classical” decompositions (see Definition 2.1); algorithms
that compute the decompositions with the help of Strassen’s or other fast matrix multipli-
cation algorithm can communicate less than algorithms for classical matrix multiplication.
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Chapter 4

Lower Bounds for Classical Linear
Algebra

While Chapter 3 extends the lower bounds for matrix multiplication (given in Section 3.1) via
reduction arguments, this chapter presents a much more general set of arguments to establish
lower bounds for nearly all of classical linear algebra. In particular, this approach makes
no assumption on the sparsity of the matrices involved in the computation, so it generalizes
all of the results in the previous chapter. Intuitively, matrix multiplication is the most
fundamental computation in numerical linear algebra—in fact, it is used as a subroutine in
nearly every other algorithm in linear algebra—so it seems no surprise that any lower bound
for matrix multiplication would also apply to many other computations. The goal of this
section is to confirm that suspicion rigorously.

The key observation, and the basis for the arguments in this section, is that the proof
technique of Irony, Toledo, and Tiskin [95] can be applied more generally than just to dense
matrix multiplication. The geometric argument is based on the lattice of indices (i, j, k)
which corresponds to the updates Cij := Cij +Aik ·Bkj. However, the proof does not depend
on, for example, the scalar operations being multiplication and addition, the matrices being
dense, or the input and output matrices being distinct. The important property is the
relationship between the indices (i, j, k) which allows for the embedding of the computation
in three dimensions. These observations let us state and prove a more general set of theorems
and corollaries that provide a lower bound on the number of words moved into or out of a
fast or local memory of size M : for a large class of classical linear algebra algorithms,

W = Ω(G/M1/2),

where G is proportional to the total number of flops performed by the processor. In other
words, a computation executed using a classical linear algebra algorithm requires at least
Ω(1/

√
M) memory operations for every arithmetic operation, or conversely, the maximum

amount of re-use for any word read into fast or local memory during such a computation is
O(
√
M) arithmetic operations.
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The main contributions of this chapter are lower bound results for dense or sparse ma-
trices, on sequential and parallel machines, for the following computations:

• Basic Linear Algebra Subroutines (BLAS), including matrix multiplication and solving
triangular systems;

• LU, Cholesky, LDLT , LTLT factorizations, including incomplete versions;

• QR factorization, including approaches based on solving the normal equations, Gram-
Schmidt orthogonalization, or applying orthogonal transformations;

• eigenvalue and singular value reductions via orthogonal transformations and computing
eigenvectors from Schur form; and

• all-pairs shortest paths computation based on the Floyd-Warshall approach.

This chapter is organized as follows. Section 4.1 generalizes the argument of [95] slightly
and demonstrates that it applies to several other fundamental computations, including LU
and Cholesky decompositions. In Section 4.2, we address a set of computations which violate
certain assumptions in the argument of Section 4.1 (e.g., LDLT decomposition) and show
how to obtain asymptotically equivalent results. Section 4.3 considers computations involv-
ing orthogonal transformations, where the lower bound arguments require more complicated
analysis and some further assumptions.

All of the results in this chapter (with the exceptions of Sections 4.1.2.4 and 4.2.2.4)
appear in [28], written with coauthors James Demmel, Olga Holtz, and Oded Schwartz,
though the presentation of the material has been reorganized into the three sections described
above. The paper was awarded the SIAM Linear Algebra Prize in 2011.

4.1 Lower Bounds for Three-Nested-Loops

Computation

Recall the simplest pseudocode for multiplying n× n matrices, as three nested loops:

for i = 1 to n

for j = 1 to n

for k = 1 to n

C[i,j] = C[i,j] + A[i,k] * B[k,j]

While the pseudocode above specifies a particular order on the n3 inner loop iterations, any
complete traversal of the index space yields a correct computation (and all orderings generate
equivalent results in exact arithmetic). As we will see, nearly all of classical linear algebra
can be expressed in a similar way—with three nested loops.
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Note that the matrix multiplication computation can be specified more generally in math-
ematical notation:

Cij =
∑
k

AikBkj,

where the order of summation and order of computation of output entries are left undefined.
In this chapter, we specify computations in this general way, but we will use the term “three-
nested-loops” to refer to computations that can be expressed with pseudocode similar to that
of matrix multiplication above.

4.1.1 Lower Bound Argument

We first define our model of computation formally, and illustrate it on the case of matrix
multiplication: C = C+A·B. Let Sa ⊆ {1, 2, . . . , n}×{1, 2, . . . , n}, corresponding in matrix
multiplication to the subset of entries of the indices of the input matrix A that are accessed
by the algorithm (e.g., the indices of the nonzero entries of a sparse matrix). Let M be
the set of locations in slow/global memory (on a parallel machine M refers to a location in
some processor’s memory; the processor number is implicit). Let a : Sa 7→ M be a mapping
from the indices to memory, and similarly define Sb, Sc and b(·, ·), c(·, ·), corresponding to
the matrices B and C. The value of a memory location l ∈ M is denoted by Mem(l). We
assume that the values are independent—i.e., determining any value requires accessing the
memory location.

Definition 4.1 (3NL Computation). A computation is considered to be three-nested-loops
(3NL) if it includes computing, for all (i, j) ∈ Sc with Sij ⊆ {1, 2, . . . , n},

Mem(c(i, j)) = fij

(
{gijk(Mem(a(i, k)),Mem(b(k, j))}k∈Sij

)
where

(a) mappings a, b, and c are all one-to-one into slow/global memory, and

(b) functions fij and gijk depend non-trivially on their arguments.

Further, define a 3NL operation as an evaluation of a gijk function, and let G be the number
of unique 3NL operations performed:

G =
∑

(i,j)∈Sc

|Sij|.

Note that while each mapping a, b and c must be one-to-one, the ranges are not required
to be disjoint. For example, if we are computing the square of a matrix, then A = B and
a = b, and the computation is still 3NL.

By requiring that the functions fij and gijk depend “non-trivially” on their arguments,
we mean the following: we need at least one word of space to compute fij (which may or
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may not be Mem(c(i, j))) to act as “accumulator” of the value of fij, and we need the values
Mem(a(i, k)) and Mem(b(k, j)) to be in fast or local memory before evaluating gijk. Note
that fij and gijk may depend on other arguments, but we do not require that the functions
depend non-trivially on them.

Note also that we may not know until after the computation what Sc, fij, Sij, or gijk
were, since they may be determined on the fly. For example, in the case of sparse matrix
multiplication, the sparsity pattern of the output matrix C may not be known at the start
of the algorithm. There may even be branches in the code based on random numbers, or
in the case of LU decomposition, pivoting decisions are made through the course of the
computation.

Now we illustrate the notation in Definition 4.1 for the case of sequential dense n × n
matrix multiplication C = C +A ·B, where A, B and C are stored in column-major layout
in slow memory. We take Sc as all pairs (i, j) with 1 ≤ i, j ≤ n with output entry Cij
stored in location c(i, j) = C + (i− 1) + (j − 1) · n, where C is some memory location. Input
matrix entry Aik is analogously stored at location a(i, k) = A+ (i− 1) + (k− 1) · n and Bkj

is stored at location b(k, j) = B + (k − 1) + (j − 1) · n, where A and B are offsets chosen
so that none of the matrices overlap. The set Sij = {1, 2, ..., n} for all (i, j). Operation
gijk is scalar multiplication, and fij computes the sum of its n arguments. Thus, G = n3.
In the case of parallel matrix multiplication, a single processor will perform only a subset
of the computation. In this case, for a given processor, the sizes of the sets Sc and Sij
may be smaller than n2 and n, respectively, and G will become n3/P if the computation is
load-balanced.

We now state and prove the communication lower bound for 3NL computation.

Theorem 4.2. The bandwidth cost lower bound of a 3NL computation (Definition 4.1) is

W ≥ G

8
√
M
−M

where M is the size of the fast/local memory.

Proof. Following [95], we consider any implementation of the computation as a stream of
instructions involving computations and memory operations: loads and stores from and to
slow/global memory. The argument is as follows:

• Break the stream of instructions executed into segments, where each segment contains
exactly M load and store instructions (i.e., that cause communication), where M is
the fast (or local) memory size.

• Bound from above the number of 3NL operations that can be performed during any
given segment, calling this upper bound F .

• Bound from below the number of (complete) segments by the total number of 3NL
operations divided by F , i.e., bG/F c.
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• Bound from below the total number of loads and stores, byM (load/stores per segment)
times the minimum number of complete segments, bG/F c, so it is at least M · bG/F c.

Because functions fij and gijk depend non-trivially on their arguments, an evaluation of
a gijk function requires that the two input operands must be resident in fast memory and
the output operand (which may be an accumulator) must either continue to reside in fast
memory or be written to slow/global memory (it cannot be discarded).

For a given segment, we can bound the number of input and output operands that
are available in fast/local memory in terms of the memory size M . Consider the values
Mem(c(i, j)): for each (i, j), at least one accumulator must reside in fast memory during
the segment; since there are at most M words in fast memory at the end of a segment
and at most M store operations, there can be no more than 2M distinct accumulators. Now
consider the values Mem(a(i, k)): at the start of the segment, there can be at most M distinct
operands resident in fast memory since a is one-to-one; during the segment, there can be
at most M additional operands read into fast memory since a segment contains exactly M
memory operations. If the range of a overlaps with the range of c, then there may be values
Mem(a(i, k)) which were computed as Mem(c(i, j)) values during the segment. Since there
are at most 2M such operands, the total number of Mem(a(i, k)) values available during
a segment is 4M . The same argument holds for Mem(b(k, j)) independently. Thus, the
number of each type of operand available during a given segment is at most 4M . Note that
this constant can be improved in particular cases, for example when the ranges of a, b, and
c do not overlap.

Now we compute the upper bound F using the geometric result of Loomis and Whitney
[107], a simpler form of which is given as Lemma 2.7. Let the set of lattice points (i, j, k)
represent each function evaluation gijk(Mem(a(i, k)),Mem(b(k, j))). For a given segment,
let V be the set of indices (i, j, k) of the gijk operations performed during the segment, Vz
be the set of indices (i, j) of their destinations c(i, j), Vy be the set of indices (i, k) of their
arguments a(i, k), and Vx be the set of indices (j, k) of their arguments b(j, k). Then by
Lemma 2.7,

|V | ≤
√
|Vx| · |Vy| · |Vz| ≤

√
(4M)3 ≡ F.

Therefore the total number of loads and stores over all segments is bounded by

M

⌊
G

F

⌋
= M

⌊
G√

(4M)3

⌋
≥ G

8
√
M
−M.

Note that the proof of Theorem 4.2 applies to any ordering of the gijk operations. In the
case of matrix multiplication, there are no dependencies between gijk operations, so every
ordering will compute the correct answer. However, for most other computations, there
are many dependencies that must be respected for correct computation. This lower bound
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Figure 4.1: Geometric model of matrix multiplication.

argument thus applies not only to correct algorithms, but also to incorrect ones, as long as
the computation satisfies the conditions of Definition 4.1.

To see the relationship of the geometric inequality given by Lemma 2.7 to 3NL computa-
tions (Definition 4.1), see Figure 4.1, shown for the special case of 3×3 matrix multiplication.
We model the computation as an 3×3×3 set of lattice points, drawn as a set of n3 1×1×1
cubes for easier labeling: each 1 × 1 × 1 cube represents the lattice point at its bottom
front right corner. The cubes (or lattice points) are indexed from corner (i, j, k) = (0, 0, 0)
to (n − 1, n − 1, n − 1). Cube (i, j, k) represents the multiplication A(i, k) · B(k, j) and its
accumulation into C(i, j). The 1× 1 squares on the top face of the cube, indexed by (i, j),
represent C(i, j), and the 1× 1 squares on the other two faces represent A(i, k) and B(k, j),
respectively. The set of all multiplications performed during a segment are some subset (V
in Lemma 2.7) of all the cubes. All the C(i, j) needed to store the results are the projections
of these cubes onto the “C-face” of the cube (Vz in Lemma 2.7). Similarly, the A(i, k) needed
as arguments are the projections onto the “A-face” (Vy in Lemma 2.7), and the B(k, j) are
the projections onto the “B-face” (Vx in Lemma2.7).

4.1.2 Applications of the Lower Bound

We now show how Theorem 4.2 applies to a variety of classical computations for numerical
linear algebra, by which we mean algorithms that would cost O(n3) arithmetic operations
when applied to dense n-by-n matrices, as opposed to Strassen-like algorithms.
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4.1.2.1 BLAS

We begin with matrix multiplication, on which we base Definition 4.1. The proof is implicit
in the illustration of the definition with matrix multiplication in Section 4.1.1.

Corollary 4.3. The bandwidth cost lower bound for classical (dense or sparse) matrix mul-
tiplication is G/(8

√
M)−M , where G is the number of scalar multiplications performed. In

the special case of multiplying a dense m× k matrix times a dense k × n matrix, this lower
bound is mkn/(8

√
M)−M .

This reproduces Theorem 3.2 from [95] (with a different constant) for the case of two
distinct, dense matrices, though we need no such assumptions. We note that this result could
have been stated for sparse A and B in [88]: combine their Theorem 6.1 (their Ω(|V |) is the
number of scalar multiplications) with their Lemma 6.1 (whose proof does not require A and
B to be dense). For algorithms attaining this bound in the dense case, see Sections 7.1.1,
8.1.1, and 8.2.1. For further discussion of this bound in the sparse case, see [16, Section 3].

We next extend Theorem 4.2 beyond matrix multiplication. The simplest extension is to
the so-called Level-3 BLAS (Basic Linear Algebra Subroutines [45]), which include related
operations like multiplication by (conjugate) transposed matrices, by triangular matrices
and by symmetric (or Hermitian) matrices. Corollary 4.3 applies to these operations without
change (in the case of AT ·A we use the fact that Theorem 4.2 makes no assumptions about
the matrices being multiplied not overlapping).

More interesting is the Level-3 BLAS operation for solving a triangular system with
multiple right hand sides (TRSM), computing for example C = A−1B where A is triangular.
The classical dense computation (when A is upper triangular) is specified by

Cij = (Bij −
n∑

k=i+1

Aik · Ckj)/Aii (4.1)

which can be executed in any order with respect to j, but only in decreasing order with
respect to i.

Corollary 4.4. The bandwidth cost lower bound for classical (dense or sparse) TRSM is
G/(8

√
M) −M , where G is the number of scalar multiplications performed. In the special

case of solving a dense triangular n× n system with m right hand sides, this lower bound is
Ω(mn2/

√
M).

Proof. We need only verify that TRSM is a 3NL computation. We let fij be the function
defined in Equation (4.1) (or similarly for lower triangular matrices or other variants). Then
we make the correspondences that Cij is stored at location c(i, j) = b(i, j), Aik is stored
at location a(i, k), and gijk multiplies Aik · Ckj. Since A is an input stored in slow/global
memory and C is the output of the operation and must be written to slow/global memory,
the mappings a, b, and c are all one-to-one into slow/global memory. Note that c = b does
not prevent the computation from being 3NL. Further, functions fij (involving a summation
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of gijk outputs) and gijk (scalar multiplication) depend non-trivially on their arguments.
Thus, the computation is 3NL.

In the case of dense n × n triangular A and dense n × m B, the number of scalar
multiplications is G = Θ(mn2).

See Sections 7.1.1, 8.1.1, and 8.2.2 for discussions of algorithms attaining this bound for
dense matrices.

Given a lower bound for TRSM, we can obtain lower bounds for other computations for
which TRSM is a subroutine. For example, given an m×n matrix A (m ≥ n), the Cholesky-
QR algorithm consists of forming ATA and computing the Cholesky decomposition of that
n × n matrix. The R factor is the upper triangular Cholesky factor and, if desired, Q is
obtained by solving the equation Q = AR−1 using TRSM. Note that entries of R and Q
are outputs of the computation, so both are mapped into slow/global memory. The com-
munication lower bounds for TRSM thus apply to the Cholesky-QR algorithm (and reflect
a constant fraction of the total number of multiplications of the overall dense algorithm).

We note that Theorem 4.2 also applies to the Level 2 BLAS (like matrix-vector multipli-
cation) and Level 1 BLAS (like dot products), though the lower bound is not attainable. In
those cases, the number of words required to access each of the input entries once already
exceeds the lower bound of Theorem 4.2.

4.1.2.2 LU factorization

Independent of sparsity and pivot order, the classical LU factorization (with L unit lower
triangular) is specified by

Lij = (Aij −
∑
k<j

Lik · Ukj)/Ujj for i > j

Uij = Aij −
∑
k<i

Lik · Ukj for i ≤ j.
(4.2)

In the sparse case, the equations may be evaluated for some subset of indices (i, j) and the
summations may be over some subset of the indices k. Equation (4.2) also assumes pivoting
has already been incorporated in the interpretation of the indices i, j, and k. Note that
since the set of input and output operands overlap, there are data dependencies which must
be respected for correct computation.

Corollary 4.5. The bandwidth cost lower bound for classical (dense or sparse) LU factor-
ization is G/(8

√
M)−M , where G is the number of scalar multiplications performed. In the

special case of factoring a dense m×n matrix with m ≥ n, this lower bound is Ω(mn2/
√
M).

Proof. We need only verify that LU factorization is a 3NL computation. We let fij be the
(piecewise) function defined in Equation (4.2). Then we make the correspondences that Lij
and Uij are stored at location a(i, j) = b(i, j) = c(i, j). Note that while a = b, the sets Sa
and Sb do not overlap, as they access lower and upper triangles, respectively, though Sc does
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overlap both Sa and Sb. Since L and U are outputs of the operation and must be written to
slow/global memory, the mappings a, b, and c are all one-to-one into slow/global memory.
Further, functions fij (involving a summation of gijk outputs) and gijk (scalar multiplication)
depend non-trivially on their arguments. Thus, the computation is 3NL.

In the case of dense m×n LU factorization where m ≥ n, the number of scalar multipli-
cations is G = Θ(mn2).

Note that Corollary 4.5 reproduces the result from the reduction argument in Section
3.2.1 for dense and square factorization. However, this corollary is a strict generalization,
as it also applies to sparse and rectangular factorizations. For a discussion of algorithms
attaining this bound for dense matrices, see Sections 7.1.4 and 8.1.4.

Consider incomplete LU (ILU) factorization [127], where some entries of L and U are
omitted in order to speed up the computation. In the case of level-based incomplete factoriza-
tions (i.e., ILU(p)), Corollary 4.5 applies with G corresponding to the scalar multiplications
performed. However, consider threshold-based ILU, which computes a possible nonzero entry
Lij or Uij and compares it to a threshold, storing it only if it is larger than the threshold
and discarding it otherwise. Does Corollary 4.5 apply to this computation?

Because a computed entry Lij may be discarded, the assumption that fij depends non-
trivially on its arguments is violated. However, if we restrict the count of scalar multiplica-
tions to the subset of Sc for which output entries are not discarded, then all the assumptions
of 3NL are met, and the lower bound applies (with G computed based on the subset). This
count may underestimate the computation by more than a constant factor (if nearly all
computed values fall beneath the threshold), but the lower bound will be valid nonetheless.
We consider another technique to arrive at a lower bound for threshold-based incomplete
factorizations in Section 4.2.2.2.

4.1.2.3 Cholesky Factorization

Independent of sparsity and (diagonal) pivot order, the classical Cholesky factorization is
specified by

Ljj = (Ajj −
∑
k<j

L2
jk)

1/2

Lij = (Aij −
∑
k<j

Lik · Ljk)/Ljj for i > j.
(4.3)

In the sparse case, the equations may be evaluated for some subset of indices (i, j) and the
summations may be over some subset of the indices k. Equation (4.3) also assumes pivoting
has already been incorporated in the interpretation of the indices i, j, and k. As in the
case of LU factorization, there are data dependencies which must be respected for correct
computation.
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Corollary 4.6. The bandwidth cost lower bound for classical (dense or sparse) Cholesky
factorization is G/(8

√
M)−M , where G is the number of scalar multiplications performed.

In the special case of factoring a dense n× n matrix, this lower bound is Ω(n3/
√
M).

Proof. We need only verify that Cholesky factorization is a 3NL computation. We let fij be
the (piecewise) function defined in Equation (4.3). Then we make the correspondences that
Lij is stored at location a(i, j) = b(i, j) = c(i, j). Note that all three sets Sa, Sb, and Sc
overlap. Since L is the output of the operation and must be written to slow/global memory,
the mappings a, b, and c are all one-to-one into slow/global memory. Further, functions fij
(involving a summation of gijk outputs) and gijk (scalar multiplication) depend non-trivially
on their arguments. Thus, the computation is 3NL.

In the case of dense n×n Cholesky factorization, the number of scalar multiplications is
G = Θ(n3).

Note that Corollary 4.6 reproduces the result from the reduction argument in Section
3.2.2 for dense factorization. However, this corollary is a strict generalization, as it also
applies to sparse factorizations. For algorithms attaining this bound in the dense case, see
Sections 7.1.2 and 8.1.2. As in the case of LU (Section 4.1.2.2), Corollary 4.6 is general
enough to accommodate incomplete Cholesky (IC) factorizations [127].

We now consider Cholesky factorization on a particular class of sparse matrices for which
computational lower bounds are known. Since these computational bounds apply to G,
Corollary 4.6 leads directly to a concrete communication lower bound. Hoffman, Martin,
and Rose [87] and George [73] prove that a lower bound on the number of multiplications
required to compute the sparse Cholesky factorization of an n2-by-n2 matrix representing a
5-point stencil on a 2D grid of n2 nodes is Ω(n3). This lower bound applies to any matrix
containing the structure of the 5-point stencil. This yields:

Corollary 4.7. In the case of the sparse Cholesky factorization of a matrix which includes
the sparsity structure of the matrix representing a 5-point stencil on a two-dimensional grid
of n2 nodes, the bandwidth cost lower bound is Ω(n3/

√
M).

George [73] shows that this arithmetic lower bound is attainable with a nested dissection
algorithm in the case of the 5-point stencil. Gilbert and Tarjan [74] show that the upper
bound also applies to a larger class of structured matrices, including matrices associated
with planar graphs. Recently, David, Demmel, Grigori, and Peyronnet [79] obtained new
algorithms for sparse cases of Cholesky decomposition that are proven to be communication
optimal using this lower bound.

4.1.2.4 Computing Eigenvectors from Schur Form

The Schur decomposition of a matrix A is the decomposition A = QTQT , where Q is
unitary and T is upper triangular. Note that in the real-valued case, Q is orthogonal and T
is quasi-triangular. The eigenvalues of a triangular matrix are given by the diagonal entries.
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Assuming all the eigenvalues are distinct, we can solve the equation TX = XD for the
upper triangular eigenvector matrix X, where D is a diagonal matrix whose entries are the
diagonal of T . This implies that for i < j,

Xij =

(
TijXjj +

j−1∑
k=i+1

TikXkj

)
/ (Tjj − Tii) (4.4)

where Xjj can be arbitrarily chosen for each j. Note that in the sparse case, the equations
may be evaluated for some subset of indices (i, j) and the summations may be over some
subset of the indices k. After computing X, the eigenvectors of A are given by QX.

Corollary 4.8. The bandwidth cost lower bound for classically computing the eigenvectors
of a (dense or sparse) triangular matrix with distinct eigenvalues is G/(8

√
M)−M , where

G is the number of scalar multiplications performed. In the special case of a dense triangular
n× n matrix, this lower bound is Ω(n3/

√
M).

Proof. We need only verify that the computation is 3NL. We let fij be the function defined
in Equation (4.4). Then we make the correspondences that Tij is stored at location a(i, j)
and Xij is stored at location b(i, j) = c(i, j). Since T is the input and must be stored in
slow/global memory, and X is the output of the operation and must be written to slow/global
memory, the mappings a, b, and c are all one-to-one into slow/global memory. Further,
functions fij (involving a summation of gijk outputs) and gijk (scalar multiplication) depend
non-trivially on their arguments. Thus, the computation is 3NL.

In the case of computing the eigenvectors of a dense triangular n×n matrix, the number
of scalar multiplications is G = Θ(n3).

4.1.2.5 Floyd-Warshall All-Pairs Shortest Paths

Theorem 4.2 applies to more general computations than strictly linear algebraic ones, where
gijk are scalar multiplications and fij are based on summations. We consider the Floyd-
Warshall method [68, 148] for computing the shortest paths between all pairs of vertices in

a graph. If we define d
(k)
ij to be the shortest distance between vertex i and vertex j using

the first k vertices, then executing the following computation for all k, i, and j determines
in D

(n)
ij the shortest path between vertex i and vertex j using the entire graph:

D
(k)
ij = min

(
D

(k−1)
ij , D

(k−1)
ik +D

(k−1)
kj

)
. (4.5)

Taking care to respect the data dependencies, the computation can be done in place, with
D(0) being the original adjacency graph and each D(k) overwriting D(k−1). The original
formulation of the algorithm consists of three nested loops with k as the outermost loop
index, but there are many other orderings which maintain correctness.
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Corollary 4.9. The bandwidth cost lower bound for computing all-pairs shortest paths using
the Floyd-Warshall method is G/(8

√
M) −M , where G is the number of scalar additions

performed. In the special case of computing all-pairs shortest paths on a dense graph with n
vertices, this lower bound is Ω(n3/

√
M).

Proof. We need only verify that the Floyd-Warshall method is a 3NL computation. We
make the correspondences that D

(k)
ij is stored at location a(i, j) = b(i, j) = c(i, j). Then we

let gijk be the addition operation (adding values stored at a(i, k) and b(k, j)) and fij be the
minimum of outputs of gijk over all k. Note that all three sets Sa, Sb, and Sc overlap. Since
D is the input and output of the operation and must be written to slow/global memory, the
mappings a, b, and c are all one-to-one into slow/global memory. Further, functions fij and
gijk depend non-trivially on their arguments. Thus, the computation is 3NL.

In the case of a dense graph with n vertices, the number of scalar additions is G =
Θ(n3).

This result is also claimed (without proof) as [118, Lemma 1]. The authors also provide
a sequential algorithm attaining the bound. For a parallel algorithm attaining this bound,
see [136].

4.2 Lower Bounds for Three-Nested-Loop

Computation with Temporary Operands

4.2.1 Lower Bound Argument

Many linear algebraic computations are nearly 3NL but fail to satisfy the assumption that
a, b and c are one-to-one mappings into slow/global memory. In this section, we show that,
under certain assumptions, we can still prove meaningful lower bounds. We will first consider
two examples to provide intuition for the proof and then make the argument rigorous.

Consider computing the Frobenius norm of a product of matrices: ‖A·B‖2F =
∑

ij(A·B)2ij.
If we define fij as the square of the dot product of row i of A and column j of B, the output of
fij does not necessarily map to a location in slow memory because entries of the product A·B
are only temporary values, not outputs of the computation (the norm is the only output).
However, in order to compute the norm correctly, every entry of A · B must be computed,
so the matrix might as well be an output of the computation (in which case Theorem 4.2
would apply). In the proof of Theorem 4.10 below, we show using a technique of imposing
writes that the amount of communication required for computations with temporary values
like these is asymptotically the same as those forced to output the temporary values.

While the example above illustrates temporary output operands of fij functions, a com-
putation may also have temporary input operands to gijk functions. For example, if we
want to compute the Frobenius norm of a product of matrices where the entries of the input
matrices are given by formulas (e.g., Aij = i2 + j), then the computation may require very
little communication since the entries can be recomputed on the fly as needed. However, if
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we require that each temporary input operand be computed only once, and we map each
operand to a location in slow/global memory, then if the operand has already been computed
and does not reside in fast memory, it must be read from slow/global memory. The assump-
tion that each temporary operand be computed only once seems overly restrictive in the
case of matrix entries given by simple formulas of their indices, but for many other common
computations (see Section 4.2.2), the temporary values are more expensive to compute and
recomputation on the fly is more difficult.

We now make the intuition given in the examples above more rigorous. First, we define a
temporary value as any value involved in a computation that is not an original input or final
output. In particular, a temporary value needs not be mapped to a location in slow memory.
Next, we distinguish a particular set of temporary values: we define the temporary inputs
to gijk functions and temporary outputs of fij functions as temporary operands. While there
may be other temporary values involved in the computation (e.g., outputs of gijk functions),
we do not consider them temporary operands.1 A temporary input a(i, k) may be an input
to multiple gijk functions (gijk and gij′k for j 6= j′), but we consider it a single temporary
operand. There may also be multiple accumulators for one output of an fij function, but we
consider only the final computed output as a temporary operand. In the case of computing
the Frobenius norm of a product of matrices whose entries are given by formulas, the number
of temporary operands is 3n2, corresponding to the entries of the input and output matrices.

We now state the result more formally:

Theorem 4.10. Suppose a computation is 3NL except that some of its operands ( i.e., inputs
to gijk operations or outputs of fij functions) are temporary and are not necessarily mapped
to slow/global memory. Then if the number of temporary operands is t, and if each (input
or output) temporary operand is computed exactly once, then the bandwidth cost lower bound
is given by

W ≥ G

8
√
M
−M − t

where M is the size of the fast/local memory.

Proof. Let C be such a computation, and let C ′ be the same computation with the excep-
tion that for each of the three types of operands (defined by mappings a, b, and c), every
temporary operand is mapped to a distinct location in slow/global memory and must be
written to that location by the end of the computation. This enforces that the mappings
a, b, and c are all one-to-one into slow/global memory, and so C ′ is a 3NL computation
and Theorem 4.2 applies. Consider an algorithm that correctly performs computation C.
Modify the algorithm by imposing writes: every time a temporary operand is computed, we
impose a write to the corresponding location in slow/global memory (a copy of the value
may remain in fast memory). After this modification, the algorithm will correctly perform
the computation C ′. Thus, since every temporary operand is computed exactly once, the

1We ignore these other temporary values because, as in the case of true 3NL computations, they typically
do not require any memory traffic.
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bandwidth cost of the algorithm differs by at most t words from an algorithm to which the
lower bound W ≥ G/(8

√
M)−M applies, and the result follows.

4.2.2 Applications of the Lower Bound

4.2.2.1 Solving the Normal Equations

In Section 4.1.2.1, we prove a communication lower bound for the Cholesky-QR computa-
tion by applying Theorem 4.2 to the TRSM required to compute the orthogonal matrix Q.
In some cases, such as solving the normal equations ATAx = AT b (by forming ATA and
performing a Cholesky decomposition), the Cholesky-QR computation does not form Q ex-
plicitly. Here, we apply Theorem 4.10 to the computation ATA, the output of which is a
temporary matrix.

Corollary 4.11. The bandwidth cost lower bound for solving the normal equations to find
the solution to a least squares problem with matrix A is G/(8

√
M) − M − t, where G is

the number of scalar multiplications involved in the computation of ATA, t is the number of
nonzeros in ATA, and we assume the entries of ATA are computed only once. In the special
case of a dense m× n matrix A with m ≥ n, this lower bound is Ω(mn2/

√
M).

Proof. As argued in Section 4.1.2.1, computing ATA is a 3NL computation (we ignore the
Cholesky factorization and triangular solves in this proof). That is, a(i, j) = b(j, i) and fij is
the summation function defined for either the lower (i ≥ j) or upper (i ≤ j) triangle because
the output is symmetric. Since A is an input to the normal equations, it must be stored in
slow memory. However, the output of ATA need not be stored in slow memory (its Cholesky
factor will be used to solve for the final output of the computation). Thus, the number of
temporary operands is the number of nonzeros in the output of ATA, which are all outputs
of fij functions. In the case of a dense m × n matrix A with m ≥ n, the output ATA is
n × n. When m,n ≥

√
M , the mn2/

√
M term asymptotically dominates the (negative) M

and n2/2 terms.

4.2.2.2 Incomplete Factorizations

In Section 4.1.2.2, we consider lower bounds for threshold-based incomplete LU factoriza-
tions. Because Theorem 4.2 requires that the fij functions depend non-trivially on their
arguments, we must ignore all scalar multiplications that lead to discarded outputs (due to
their values falling below the threshold). However, because the output values must be fully
computed before comparing them to the threshold value, we may be ignoring a significant
amount of the computation. Using Theorem 4.10, we can state another (possibly tighter)
lower bound which counts all the scalar multiplications performed by imposing reads and
writes on the discarded values.

Corollary 4.12. Consider a threshold-based incomplete LU or Cholesky factorization, and
let t be the number of output values discarded due to thresholding. Assuming each dis-
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carded value is computed exactly once, the bandwidth cost lower bound for the computation
is G/(8

√
M)−M − t where G is the number of scalar multiplications.

Proof. As argued in Section 4.1.2.2, sparse LU and Cholesky factorizations are 3NL com-
putations. In a threshold-based incomplete factorizations, some output values are discarded
if they are smaller than a given threshold. These discarded values are the only temporary
operands in the computation, so the result follows from Theorem 4.10.

4.2.2.3 LDLT Factorization

Independent of sparsity and pivot order, the classical Bunch-Kaufman LDLT factorization
[47], where L is unit lower triangular and D is block diagonal with 1 × 1 and 2 × 2 blocks,
is specified in the case of positive or negative definite matrices (i.e., all diagonal blocks of D
are 1× 1) by

Djj = Ajj −
∑
k<j

L2
jkDkk

Lij = (Aij −
∑
k<j

Lik · (DkkLjk))/Djj for i > j.
(4.6)

In the sparse case, the equations may be evaluated for some subset of indices (i, j) and the
summations may be over some subset of the indices k. Equation (4.6) also assumes pivoting
has already been incorporated in the interpretation of the indices i, j and k.

Note that in this case, the operand (DkkLjk) is a temporary operand. This complication
is overlooked in [28], where it is claimed that the argument for Cholesky also applies to
LDLT factorization. In the terminology of this chapter, it is assumed that LDLT is 3NL.
Here, we obtain the lower bound as a corollary of Theorem 4.10.

To specify the more general computation where D includes both 1× 1 and 2× 2 blocks,
we define the matrix W = DLT and let S be the set of rows/columns corresponding to a
1× 1 block of D. Then for j ∈ S, the computation of column j of L can be written similarly
to Equation (4.6):

Lij = (Aij −
∑
k<j

Lik ·Wkj)/Djj, (4.7)

for i > j ∈ S. For pairs of columns j, j + 1 /∈ S corresponding to 2× 2 blocks of D, we will
use colon notation to describe the computation for pairs of elements:

Li,j:j+1 = (Ai,j:j+1 −
∑
k<j

Li,k ·Wk,j:j+1)D
−1
j:j+1,j:j+1, (4.8)

for i > j + 1.

Corollary 4.13. The bandwidth cost lower bound for classical (dense or sparse) LDLT

factorization is G/(
√

8M)−M−t, where G is the number of scalar multiplications performed
in computing L, t is the number of nonzeros in the matrix DLT , and we assume the entries
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of DLT are computed only once. In the special case of factoring a dense n× n matrix, this
lower bound is Ω(n3/

√
M).

Proof. We first verify that LDLT is a 3NL computation, though with temporary operands.
For simplicity, we consider the case of all 1×1 blocks, but the analysis follows for the case of
2× 2 blocks using Equations (4.7) and (4.8). We let fij be the function defined in Equation
(4.6) and gijk be the scalar multiplication of Lik and Wkj. Then we make the correspondences
that Lij is stored at location c(i, j) = a(i, j) and Wij is stored at location b(i, j). Since L is an
input stored in slow/global memory, the mappings a and c are one-to-one into slow/global
memory. Further, functions fij (involving a summation of gijk outputs) and gijk (scalar
multiplication) depend non-trivially on their arguments. Thus, the computation is 3NL,
with the exception that the mapping b is not necessarily into slow/global memory, and the
number of temporary operands is the number of nonzeros in the matrix W = DLT .

In the case of dense n × n LDLT factorization, the number of scalar multiplications
required to compute L is G = Θ(n3).

See Sections 7.1.3 and 8.1.3 for a discussion of algorithms for this computation. No known
sequential algorithm attains this bound for all matrix dimensions.

4.2.2.4 LTLT Factorization

Another symmetric indefinite factorization computes a lower triangular matrix L and a
symmetric tridiagonal matrix T such that A = LTLT . Symmetric pivoting is required
for numerical stability. Parlett and Reid [119] developed an algorithm for computing this
factorization requiring approximately (2/3)n3 flops, the same cost as LU factorization and
twice the computational cost of Cholesky. Aasen [1] improved the algorithm and reduced the
computational cost to (1/3)n3, making use of a temporary upper Hessenberg matrix H =
TLT . Aasen’s algorithm works by alternately solving for unknown values in the equations
A = LH and H = TLT . Because the matrix H is integral to the computation but is a
temporary matrix, we use Theorem 4.10 to obtain a communication lower bound.

In fact, the computation can be generalized to compute a symmetric band matrix T with
bandwidth b (i.e., b is the number of nonzero diagonals both below and above the main
diagonal of T ), in which case the matrix H has b nonzero subdiagonals. For uniqueness,
the L matrix is set to have unit diagonal and the first b columns of L are set to the first b
columns of the identity matrix. Because there are multiple ways to compute T and H, we
specify a classical LTLT computation in terms of the lower triangular matrix L:

Lij = (Ai,j−b −
j−b∑

k=b+1

LikHk,j−b)/Hj,j−b for b < j < i ≤ n. (4.9)

In the sparse case, the equations may be evaluated for some subset of indices (i, j) and
the summations may be over some subset of the indices k. Equation (4.9) also assumes
pivoting has already been incorporated in the interpretation of the indices i, j, and k.
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Corollary 4.14. The bandwidth cost lower bound for classical (dense or sparse) LTLT

factorization is G/(8
√
M)−M−t, where G is the number of scalar multiplications performed

in computing L, t is the number of nonzeros in the matrix TLT , and we assume the entries
of TLT are computed only once. In the special case of factoring a dense n× n matrix (with
T having bandwidth b� n), this lower bound is Ω(n3/

√
M).

Proof. We first verify that LTLT is a 3NL computation, though with temporary operands.
We let fij be the function defined in Equation (4.9) and gijk be the scalar multiplication of Lik
and Hk,j−b. Then we make the correspondences that Lij is stored at location c(i, j) = a(i, j)
and Hi,j−b is stored at location b(i, j). Since L is an input stored in slow/global memory, the
mappings a and c are one-to-one into slow/global memory. Further, functions fij (involving
a summation of gijk outputs) and gijk (scalar multiplication) depend non-trivially on their
arguments. Thus, the computation is 3NL, with the exception that the mapping b is not
necessarily into slow/global memory, and the number of temporary operands is the number
of nonzeros in the matrix H = TLT .

In the case of a dense n× n matrix, the number of scalar multiplications is G = n3/6 +
O(n2b) and the number of nonzeros in H is n2/2+O(nb). When n ≥

√
M , the n3/

√
M term

asymptotically dominates the (negative) M and O(n2) terms.

This bound is attainable in the sequential case by the algorithm presented in Chapter 9
(see Section 9.3.2 for details of the communication costs). See Sections 7.1.3 and 8.1.3 for
more discussions of symmetric-indefinite algorithms.

4.2.2.5 Gram-Schmidt Orthogonalization

Here we consider the Gram-Schmidt process (both classical and modified versions) for or-
thogonalization of a set of vectors (see [57, Algorithm 3.1], for example). Given a set of
vectors stored as columns of an m × n matrix A, the Gram-Schmidt process computes a
QR decomposition, though the R matrix is sometimes not considered part of the output.
For generality, we assume the R matrix is not a final output and use Theorem 4.10. Let-
ting the columns of Q be the computed orthonormal basis, we specify the Gram-Schmidt
computation in terms of the equation for computing entries of R. In the case of Classical
Gram-Schmidt, we have

Rij =
m∑
k=1

QkiAkj, (4.10)

and in the case of Modified Gram-Schmidt, we have

Rij =
m∑
k=1

QkiQkj, (4.11)

where Qkj is the partially computed value of the jth orthonormal vector. In the sparse case,
the equations may be evaluated for some subset of indices (i, j) and the summations may be
over some subset of the indices k.
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Corollary 4.15. The bandwidth cost lower bound for (dense or sparse) QR factorization
using classical or modified Gram-Schmidt orthogonalization is G/(8

√
M) − M − t, where

G is the number of scalar multiplications performed in computing R, t is the number of
nonzeros in R, and we assume the entries of R are computed only once. In the special case
of orthogonalizing a dense m× n matrix with m ≥ n, this lower bound is Ω(mn2/

√
M).

Proof. We first verify that Gram-Schmidt orthogonalization is a 3NL computation, possibly
with temporary operands. For the classical version, we let fij be the function defined in
Equation (4.10) and gijk be the scalar multiplication of Qki and Akj. For the modified version,
we let fij be the function defined in Equation (4.11) and gijk be the scalar multiplication
of Qki and Qkj. Then we make the correspondences that Qij is stored at location a(i, j),
and either Aij is stored at location b(i, j) (in the classical version) or a = b (in the modified
version). Further, we let Rij be stored at location c(i, j). Since A is an input and Q
is an output, the mappings a and b are one-to-one into slow/global memory. If R is an
output of the computation, then c is also one-to-one into slow/global memory; otherwise,
we impose reads and writes on the temporary entries of R. Further, functions fij (involving
a summation of gijk outputs) and gijk (scalar multiplication) depend non-trivially on their
arguments. Thus, the computation is 3NL, with the exception that the mapping c is not
necessarily into slow/global memory, and the number of temporary operands is the number
of nonzeros in R.

In the case of a dense m×n matrix, the number of scalar multiplications is G = Θ(mn2)
and the number of nonzeros in R is about n2/2. When m,n ≥

√
M , the mn2/

√
M term

asymptotically dominates the (negative) M and n2 terms.

4.3 Applying Orthogonal Transformations

The most stable and highest performing algorithms for QR decomposition are based on ap-
plying orthogonal transformations. Two-sided orthogonal transformations are used in the
reduction step of the most commonly used approaches for solving eigenvalue and singular
value problems: transforming a matrix to Hessenberg form for the nonsymmetric eigenprob-
lem, tridiagonal form for the symmetric eigenproblem, and bidiagonal from for the SVD. In
this section, we make two lower bound arguments in Sections 4.3.1 and 4.3.2, first in the
context of one-sided orthogonal transformations (as in QR decomposition), and then in Sec-
tion 4.3.3 we describe how to generalize the arguments for two-sided transformations. Each
of the lower bound arguments requires certain assumptions on the algorithms. We discuss
in Section 4.3.4 to which algorithms each of the lower bounds apply.

The case of applying orthogonal transformations is more subtle to analyze for several rea-
sons: (1) there is more than one way to represent the orthogonal factor (e.g., Householder
reflections and Givens rotations), (2) the standard ways to reorganize or “block” transforma-
tions to reduce communication involve using the distributive law, not just summing terms
in a different order [42, 122, 131], and (3) there may be many temporary operands that are
not mapped to slow/global memory.
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To be concrete, we consider Householder transformations, in which an elementary real
orthogonal matrix Q1 is represented as Q1 = I − τ1u1uT1 , where u1 is a column vector called
a Householder vector and τ1 = 2/‖u1‖22. When applied from the left, a single Householder
reflection Q1 is chosen so that multiplying Q1 · A annihilates selected rows in a particular
column of A, and modifies one other row in the same column (accumulating the weight of
the annihilated entries). We consider the Householder vector u1 itself to be the output of
the computation, rather than the explicit Q1 matrix. Note that the Householder vector is
nonzero only in the rows corresponding to annihilated entries and the accumulator entry.

We furthermore model the standard way of blocking Householder vectors, writing

Q` · · ·Q1 = I − U`T`UT
` ,

where U` = [u1, u2, . . . , u`] is n-by-` and T` is `-by-`. We specify the application (from
the left) of blocked Householder transformations to a matrix A by inserting parentheses as
follows:

(I − U` · T` · UT
` ) · A = A− U` · (T` · UT

` · A) = A− U` · Z`,
defining Z` = T` · UT

` · A. We also overwrite A with the output: A := A− U` · Z`.
The application of one blocked transformation is a matrix multiplication (which is a

3NL computation though with some temporary operands), but in order to show an entire
computation (like QR decomposition) is 3NL, we need a global indexing scheme to define
the fij and gijk functions and a, b, and c mappings. To that end, we let k be the index of the
Householder vector, so that uk is the kth Householder vector of the entire computation, and
we let U = [u1, . . . , uh], where h is the total number of Householder vectors. We thus specify
the application of orthogonal transformations (from the left) to a matrix A as follows:

Aij = Aij −
h∑
k=1

UikZkj, (4.12)

where zk (the kth row of Z) is a temporary quantity computed from A, uk, and possibly
other columns of U , depending on how Householder vectors are blocked. If A is m×n, then
U is m×h and Z is h×n. Note that in the case of QR decomposition, it may be that h� n
(if one Householder vector is used to annihilate each entry below the diagonal, for example).
The equations may be evaluated for some subset of indices (i, j) and the summations are
over some subset of the indices k (even in the dense case). Equation (4.12) also assumes
pivoting has already been incorporated in the interpretation of the indices i and j.

4.3.1 First Lower Bound Argument: Applying Theorem 4.10

Given the specification of applying orthogonal updates as a 3NL computation (with tempo-
rary operands), we can prove the following corollary of Theorem 4.10.

Corollary 4.16. The bandwidth cost lower bound for applying orthogonal updates as specified
in Equation (4.12) is G/(8

√
M) −M − t, where G is the number of scalar multiplications
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involved in the computation of UZ and t is the number of nonzeros in Z. In the special
case of computing a QR decomposition of an m× n matrix using only a constant number of
Householder vectors per column, this lower bound is Ω(mn2/

√
M).

Proof. We first verify that applying orthogonal transformations is a 3NL computation,
though with temporary operands. We let fij be the function defined in Equation (4.12)
and gijk be the scalar multiplication of Uik and Zkj. Then we make the correspondences
that Uij is stored at location a(i, j) and Aij is stored at location c(i, j). Since A is an input
and U is an output, the mappings a and c are one-to-one into slow/global memory. If we
let Zij be stored at location b(i, j), then b may not map into slow/global memory. Further,
functions fij (involving a summation of gijk outputs) and gijk (scalar multiplication) depend
non-trivially on their arguments. Thus, the computation is 3NL, with the exception that
the mapping b is not necessarily into slow/global memory, and the number of temporary
operands is the number of nonzeros in Z.

In the case of a dense m×n matrix, the number of scalar multiplications is G = Θ(mn2).
If only a constant number of Householder vectors are used per column, then h = Θ(n) and
the number of nonzeros in Z is O(mh) = O(mn). When m,n �

√
M , the mn2/

√
M term

asymptotically dominates the (negative) M and mn terms.

Note that in the sparse case where only one Householder vector per column is used,
a separate argument can bound the number of nonzeros in Z in terms of the number of
nonzeros in the input A and output U (see [28, Lemma 4.1]).

Many (but not all) algorithms for QR decomposition use only one Householder trans-
formation per column. See Sections 7.1.5 and 8.1.5 for a discussion of such algorithms.
However, for algorithms that use many Householder transformations per column, the bound
in Corollary 4.16 can degenerate to zero because the number of temporary operands can be
larger than the bandwidth cost guarantees of the 3NL argument.

4.3.2 Second Lower Bound Argument: Bounding Z Values

In order to devise a lower bound for algorithms that create many Z values, we reconsider the
segment-based argument of Theorem 4.2. The assumption we are breaking in that argument
is that one of the operands to each gijk function (the Zkj entry) is a temporary value. In the
argument of Section 4.3.1, we ignore how Z is computed and simply count the total number
of nonzeros of Z. However, Z is defined in terms of U and A (and T , which itself depends
only on U), and so entries of Z must be computed from entries of U and A. We use this
property to bound not the overall number of Z entries, but the number of Z entries that
are available in any given segment of the computation. Because a Z entry is computed from
entries of U and A and updates an entry of A, in order for a Z entry to be computed, used
as many times as necessary, and then discarded (without generating any memory traffic), all
the relevant entries of U and A must be resident in fast memory. We use this observation
to bound the number of Z entries available in any given segment, but this argument will
require two new assumptions and some extra notation.
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As a short-hand, we will sometimes refer to a matrix entry as being treated as nonzero
(TAN) if the algorithm assumes that its value could be nonzero in deciding whether to bother
performing gijk. Thus an algorithm for dense matrices treats all entries as nonzero, even if
the input matrix is sparse, whereas a sparse factorization algorithm would not. We also
introduce some notation:

• Let U(k) be the kth column of U (which is the kth Householder vector). We will use
U(k) and U(:, k) interchangeably when the context is clear.

• Let col src U(k) be the index of the column in which U(k) introduces zeros.

• Let rows U(k) be the set of indices of rows TAN in U(k). Let row dest U(k) be
the index of the row in column col src U(k) in which nonzero values in that column
are accumulated by U(k), and let zero rows U(k) be rows U(k) with row dest U(k)
omitted.

4.3.2.1 Assumptions

We will make two central assumptions in this case. First, we assume that the algorithm
does not block Householder updates (i.e., all T matrices are 1 × 1). Second, we assume
the algorithm makes “forward progress” which we define below. As explained later, forward
progress is a natural property of most efficient implementations, precluding certain kinds
of redundant work. See [27, Appendix A] for a motivating counterexample that breaks the
assumption or Section 10.1.4 for a discussion of a useful algorithm that breaks the assumption
and beats the lower bound.

The first assumption means that we are computing
∏

k(I − τk · U(:, k) · (U(:, k))T ) ·
A, where τk is scalar. This seems like a significant restriction, since blocked Householder
transformations are widely used in practice. We do not believe this assumption is necessary
for the communication lower bound to be valid, but it is necessary for our proof technique.
This assumption yields a partial order (PO) in which the Householder updates must be
applied to get the right answer. It is only a partial order because if, say, U(:, k) and U(:, k+1)
do not “overlap”, i.e., have no common rows that are TAN, then (I − τk ·U(:, k) · (U(:, k))T )
and (I − τk+1 · U(:, k + 1) · (U(:, k + 1))T ) commute, and either one may be applied first
(indeed, they may be applied independently in parallel).

Definition 4.17 (Partial Order on Householder vectors (PO)). Suppose k1 < k2 and
rows U(k1) ∩ rows U(k2) 6= {∅}, then U(k1) < U(k2) in the partial order.

We note that this relation is transitive. That is, two Householder vectors U(k1) and
U(k2) are partially ordered if there exists U(k∗) such that U(k1) < U(k∗) < U(k2), even if
rows U(k1) ∩ rows U(k2) = {∅}.

Our second assumption is that the algorithm makes forward progress:
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Definition 4.18 (Forward Progress (FP)). We say an algorithm which applies orthogonal
transformations to zero out entries makes forward progress if the following two conditions
hold:

1. an element that was deliberately zeroed out by one transformation is never again zeroed
out or filled in by another transformation,

2. if

a) U(k1), . . . , U(kb) < U(k̂) in PO,

b) col src U(k1) = · · · = col src U(kb) = c 6= ĉ = col src U(k̂),

c) and no other U(ki) satisfies U(ki) < U(k̂) and col src U(ki) = c,

then

rows U(k̂) ⊂
b⋃
i=1

zero rows U(ki) ∪ {rows of column c that are TAZ} . (4.13)

The first condition holds for most efficient algorithms applying orthogonal transforma-
tions (though not all–see Chapter 10). By “deliberately,” we mean the algorithm converted
a TAN entry into a TAZ entry with an orthogonal transformation. The introduction of a
zero due to accidental cancellation (such zero entries are still TAN) is not deliberate. We
note also that FP is not violated if an original TAZ entry of the matrix is filled in (so that
it is no longer TAZ); this is a common situation when doing sparse QR. It is easy to see
that it is necessary to prove any nontrivial communication lower bound, since without it an
algorithm could “spin its wheels” by repeatedly filling in and zeroing out entries, doing an
arbitrary amount of arithmetic with no memory traffic at all.

The second condition holds for every correct algorithm for QR decomposition that does
not violate the first condition. This condition means any later Householder transformation
(U(k̂)) that depends on earlier Householder transformations (U(k1), ..., U(kb)) creating ze-
roes in a common column c may operate only “within” the rows zeroed out by the earlier
Householder transformations. We motivate this assumption in [27, Appendix B] by showing
that if an algorithm violates the second condition, it can “get stuck.” This means that it
cannot achieve triangular form without filling in a deliberately created zero.

4.3.2.2 Roots and Destinations

In order to reason more directly about temporary operands, we categorize in more detail the
data available in fast memory for 3NL computation. To this end, we consider each input
or output operand of gijk functions that appears in fast memory during a segment of M
slow memory operations. It may be that an operand appears in fast memory for a while,
disappears, and reappears, possibly several times. For each period of continuous existence
of an operand in fast memory, we label its Root (how it came to be in fast memory) and its
Destination (what happens when it disappears):
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• Root R1 : The operand was already in fast memory at the beginning of the segment,
and/or read from slow memory. There are at most 2M such operands altogether,
because the fast memory has size M , and because a segment contains at most M reads
from slow memory.

• Root R2 : The operand is computed (created) during the segment. Without more
information, there is no bound on the number of such operands.

• Destination D1 : An operand is left in fast memory at the end of the segment (so that
it is available at the beginning of the next one), and/or written to slow memory. There
are at most 2M such operands altogether, again because the fast memory has size M ,
and because a segment contains at most M writes to slow memory.

• Destination D2 : An operand is neither left in fast memory nor written to slow memory,
but simply discarded. Again, without more information, there is no bound on the
number of such operands.

We may correspondingly label each period of continuous existence of any operand in fast
memory during one segment by one of four possible labels Ri/Dj, indicating the Root and
Destination of the operand at the beginning and end of the period. Based on the above
description, the total number of operands of all types except R2/D2 is bounded by 4M (the
maximum number of R1 operands plus the number of D1 operands, an upper bound). The
R2/D2 operands, those created during the segment and then discarded without causing any
slow memory traffic, cannot be bounded without further information.

4.3.2.3 Bounding Z Values

With the assumptions of Section 4.3.2.1, we begin the argument to bound from below the
number of memory operations required to apply the set of Householder transformations.
As in the proof of Theorem 4.2, we will focus our attention on an arbitrary segment of
computation in which there are O(M) non-R2/D2 entries in fast memory. Our goal will
be to bound the number of multiplications in a segment involving R2/D2 entries, since the
number of remaining multiplications can be bounded as before. From here on, let us denote
by Z2(k, j) the element Z(k, j) if it is R2/D2, and by Zn(k, j) if it is non-R2/D2. We will
further focus our attention within the segment on the update of an arbitrary column of the
matrix, A(:, j).

Each Z(k, j) in memory is associated with one Householder vector U(:, k) which will
update A(:, j). We will denote the associated Householder vector by U2(:, k) if Z(k, j) =
Z2(k, j) is R2/D2 and Un(:, k) if Z(k, j) = Zn(k, j) is non-R2/D2. With this notation, we
have the following two lemmas which make it easier to reason about what happens to A(:, j)
during a segment.

Lemma 4.19. If Z2(k, j) is in memory during a segment, then U2(:, k) as well as the entries
A(rows U(k), j) are in memory during the segment.
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Proof. Since Z2(k, j) is discarded before the end of the segment and may not be re-computed
later, the entire A(:, j) = A(:, j)−U(:, k)·Z2(k, j) computation has to end within the segment.
Thus, all entries involved must be resident in memory.

However, even if a Zn(k, j) is in memory during a segment, the Un(:, k) ·Zn(k, j) compu-
tation will possibly not be completed during the segment, and therefore the Un(:, k) vector
and corresponding entries of A(:, j) may not be completely represented in memory.

Lemma 4.20. If Z2(k1, j) and Z2(k2, j) are in memory during a segment, and U(k1) <
U(k) < U(k2) in the PO, then Z(k, j) must also be in memory during the segment.

Proof. This follows from our first assumption that all T matrices are 1 × 1 and the partial
order is imposed. Since U(k1) < U(k), Z(k, j) cannot be fully computed before the segment.
Since U(k) < U(k2), U(:, k) ·Z(k, j) has to be performed in the segment too, at least enough
to carry the dependency, so Z(k, j) cannot be fully computed after the segment. That is,
if U(:, k) is Un(:, k), not all rows U(k) rows of A(:, j) must be updated, but enough for
Z2(k2, j) to be computed and U2(:, k2) · Z2(k2, j) to be applied correctly. Thus, Z(k, j) is
computed during the segment and therefore must exist in memory. Note that a partial sum
of (U(:, k))T ·A(:, j) may have been computed before the beginning of the segment and used
in the segment to compute Zn(k, j), but the final Zn(k, j) value cannot be computed until
the segment.

Roughly speaking, our goal now is to bound the number of U2(r, k) · Z2(k, j) multiplica-

tions by the number of multiplications in a different matrix multiplication Û · Ẑ where we
can bound the number of Û entries by the number of U entries in memory, and bound the
number of Ẑ entries by the number of A entries plus the number of Zn entries in memory,
which lets us use the geometric bound of Lemma 2.7.

Given a particular segment and column j, we construct Û by first partitioning the U2(:, k)

by their col src U(k) and then collapsing each partition into one column of Û . Likewise,
collapse Z(:, j) by partitioning its rows corresponding to the partitioned columns of U and
taking the union of TAN entries in each set of rows to be the TAN entries of the corresponding
row of Ẑ(:, j). More formally,

Definition 4.21 (Û and Ẑ). For a given segment of computation and column j of A, we set

Û(r, c) to be TAN if there exists a U2(:, k) in fast memory such that c = col src U(k) and

r ∈ rows U(k). We set Ẑ(c, j) to be TAN if there exists a Z2(k, j) in fast memory such that
c = col src U(k).

We will “emulate” the computation A(:, j) = A(:, j)−
∑
U2(:, k)·Z2(k, j) with the related

computation A(:, j) = A(:, j) −
∑
Û(:, c) · Ẑ(c, j) in the following sense: we will show that

the number of multiplications done by U2(:, k) ·Z2(k, j) is within a factor of 2 of the number

of multiplications done by Û(:, c) · Ẑ(c, j).



CHAPTER 4. LOWER BOUNDS FOR CLASSICAL LINEAR ALGEBRA 54

The following example illustrates this construction on a small matrix, where K2 contains
three indices (i.e., there are three Householder vectors that were computed to zero entries
in the second column of A); just TAN patterns are shown.

U(:, K2) =



•

• •
• •

•
•
•


⇒ Û(:, 2) =



•

•
•

•
•
•


Note that we do not care what the TAN values of Û and Ẑ are; this computation has

no hope of getting a correct result because the rank of Û · Ẑ is generally less than the rank
of the subset of U · Z it replaces. We emulate in this way only to count the memory traffic.
We establish the following results with this construction.

Lemma 4.22. Û(:, c) has at least half as many TAN entries, and at most as many TAN
entries, as the columns of U from which it is formed.

Proof. The sets zero rows U(k) for k in a partition (i.e., with the same col src U(k)) must be
disjoint by the forward progress assumption, and there are at least as many of these rows as
in all the corresponding row dest U(k), which could potentially all coincide. By Lemma 4.19,
we know that complete U2(:, k) are present (otherwise they could, for example, all be Givens
transformations with the same destination row, and if zero rows were not present, they would
all collapse into one row). And so since every entry of zero rows U(k) contributes to a TAN

entry of Û(:, c), and zero rows U(k) constitutes at least half of the TAN entries of U(k),

Û(:, c) has at least half as many TAN entries as the corresponding columns of U .

If all the U2(:, k) being collapsed have TAN entries in disjoint sets of rows, then Û(:, c)
will have as many entries TAN as all the U(:, k).

Because each TAN entry of U(:, k) contributes one scalar multiplication to

A(:, j) = A(:, j)−
∑
U2(:, k) · Z2(k, j) and each TAN entry of Û(:, c) contributes one scalar

multiplication to A(:, j) = A(:, j)−
∑
Û(:, c) · Ẑ(c, j), we have the following corollary.

Corollary 4.23. Û(:, c) · Ẑ(c, j) does at least half as many multiplications as all the corre-
sponding U2(:, k) · Z2(k, j).

In order to bound the number of Û ·Ẑ multiplications in the segment, we must also bound
the number of Ẑ entries available.
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Lemma 4.24. The number of TAN entries of Ẑ(:, j) is bounded by the number of A(:, j)
entries plus the number of Zn(:, j) entries resident in memory.

Proof. Our goal is to construct an injective mapping I from the set of of Ẑ(:, j) entries to
the union of the sets of A(:, j) and Zn(:, j) entries. Consider the set of Z(k, j) entries (both
R2/D2 and non-R2/D2) in memory as vertices in a graph G. Each vertex has a unique label
k (recall that j is fixed), and we also give each vertex two more non-unique labels: 2 or n
to denote whether the vertex is Z2(k, j) or Zn(k, j) and col src U(k) to denote the column
source of the corresponding Householder vector. A directed edge (k1, k2) exists in the graph
if U(:, k1) < U(:, k2) in the PO. Note that all the vertices labeled both 2 and c are Z2(k, j)

that lead to Ẑ(c, j) being TAN in Definition 4.21.
For all values of c = col src U(k) appearing as labels in G, in order of which node labeled

c is earliest in PO (not necessarily unique), find a (not necessarily unique) node k with label
col src U(k) = c, that has no successors in G with the same label c. If this node is also

labeled n, then we let I map Ẑ(c, j) to Zn(k, j). If node k is labeled 2, then we let I map

Ẑ(c, j) to A(row dest U(k), j). By Lemma 4.19, this entry of A must be in fast memory.
We now argue that this mapping I is injective. The mapping into the set of Zn(k, j)

entries is injective because each Ẑ(c, j) can be mapped only to an entry with column source

c. Suppose the mapping into the A(:, j) entries is not injective, and let Ẑ(c, j) and Ẑ(ĉ, j)
be the entries which are both mapped to some A(r, j). Then there are entries Z2(k, j) and
Z2(k̂, j) such that c = col src U(k), ĉ = col src U(k̂), r = row dest U(k) = row dest U(k̂),
and neither k nor k̂ have successors in G with the same column source label.

Since rows U(k) and rows U(k̂) intersect, they must be ordered with respect to the PO,
so suppose U(k) < U(k̂). Consider the second condition of FP. In this case, premises (2a)
and (2b) hold, but the conclusion (4.13) does not. Thus, premise (2c) must not hold,
so there exists another Householder vector U(k∗) such that c = col src U(k∗) and r ∈
zero rows U(k∗).

Again, because their nonzero row sets intersect, each of these Householder vectors must
be partially ordered. By the first condition of FP, since row dest U(k) ∈ zero rows U(k∗),
we have U(k) < U(k∗). Also, since U(k∗) satisfies (2a), we have U(k∗) < U(k̂). Thus,
U(k) < U(k∗) < U(k̂), and by Lemma 4.20, Z(k∗, j) must also be in fast memory and
therefore in G. Since Z(k∗, j) is a successor of Z(k, j) in G, we have a contradiction.

Theorem 4.25. An algorithm which applies orthogonal transformations to annihilate matrix
entries, does not compute T matrices of dimension 2 or greater for blocked updates, maintains
forward progress as in Definition 4.18, and performs G flops of the form U · Z (as defined
in Equation (4.12)), has a bandwidth cost of at least Ω(G/

√
M) −M words. In the special

case of a dense m-by-n matrix with m ≥ n, this lower bound is Ω(mn2/
√
M).

Proof. We first argue that the number of A, U , and Zn entries available during a segment
are all O(M).

Every A(i, j) operand is destined either to be output (i.e., D1) or converted into a
Householder vector. Every A(i, j) operand is either read from memory (i.e., R1) or created
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on the fly due to sparse fill-in. So the only possible R2/D2 operands from A are entries
which are filled in and then immediately become Householder vectors, and hence become R2
operands of U . We bound the number of these as follows.

All U operands are eventually output, as they compose Q. So there are no D2 operands
of U (recall that we may compute each result U(i, k) only once, so it cannot be discarded).
So all R2 operands U(i, k) are also D1, and so there are at most 2M of them (since at most
M can remain in fast memory, and at most M can be written to slow memory, by the end
of the segment). This also bounds the number of R2/D2 operands A(i, j), and so bounds
the total number of A(i, j) operands by 6M (the sum of 2M = maximum number of D1
operands plus 2M = maximum number of R1 operands plus 2M = maximum number of
R2/D2 operands).

The number of Zn entries available in a segment is bounded by 2M because by definition,
all entries are non-R2/D2.

From Lemma 4.22, the number of Û entries available is O(M) because it is bounded by
the number of U2 entries which is in turn bounded by the number of U entries. From Lemma
4.24, the number of Ẑ entries available is O(M) because it is bounded by the sum of the
number of entries of A and of Zn.

Thus, since the number of entries of each operand available in a segment are O(M),

by Lemma 2.7, the number of Û · Ẑ scalar multiplications is bounded by O
(
M3/2

)
. By

Corollary 4.23, the number of U · Z scalar multiplications within a segment is also bounded
by O

(
M3/2

)
.

Since there are O(M) Zn(k, j) operands in a segment, the Loomis-Whitney argument
bounds the number of multiplies involving such operands by O(M3/2), so with the above
argument that bounds the number of multiplies involving R2/D2 Z(k, j) operands, the total
number of multiplies involving both R2/D2 and non-R2/D2 Z entries is O

(
M3/2

)
.

The rest of the proof is similar to before: a lower bound on the number of segments is
then bG/O

(
M3/2

)
c ≥ G/O

(
M3/2

)
− 1, so a lower bound on the number of slow memory

accesses is M · bG/O
(
M3/2

)
c ≥ Ω

(
G/M1/2

)
−M . For dense m-by-n matrices with m ≥ n,

the conventional algorithm does G = Θ(mn2) multiplies.

See Sections 7.1.5 and 8.1.5 for algorithms that satisfy the assumptions and attain this
bound for dense matrices.

4.3.2.4 Counting Arithmetic Operations

It is natural to wonder whether the G operations in Theorem 4.25 (and Corollary 4.16)
capture a constant fraction of the arithmetic operations performed by the algorithm, which
would allow us to deduce that the lower bound is asymptotically as large as possible. The G
operations are just the multiplications in all the different applications of block Householder
transformations A := A − U · Z, where Z = T · UT · A. We argue that under a natural
“genericity assumption” this constitutes a large fraction of all the multiplications in the
algorithm (although this is not necessary for our lower bound to be valid). Suppose (UT ·
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A)(k, j) is nonzero; the amount of work to compute this is at most proportional to the total
number of entries stored (and so treated as nonzeros) in column k of U . Since T is triangular
and nonsingular, this means Z(k, j) will be generically nonzero as well and will be multiplied
by column k of U and added to column j of A, which costs at least as much as computing
(UT · A)(k, j). The cost of the rest of the computation, forming and multiplying by T and
computing the actual Householder vectors, are lower order terms in practice; the dimension
of T is generally chosen small enough by the algorithm to try to assure this.

4.3.3 Generalizing to Eigenvalue and Singular Value Reductions

Standard algorithms for computing eigenvalues and eigenvectors, or singular values and
singular vectors (the SVD), start by applying orthogonal transformations to both sides of
A to reduce it to a “condensed form” (Hessenberg, tridiagonal or bidiagonal) with the same
eigenvalues or singular values, and simply related eigenvectors or singular vectors [57]. We
can extend our argument for one-sided orthogonal transformations to these computations.
We can have some arbitrary interleaving of (block) Householder transformations applied on
the left,

A = (I − UL · TL · UT
L ) · A = A− UL · (TL · UT

L · A) = A− UL · ZL,
where we define ZL = TL · UT

L · A, and the right,

A = A · (I − UR · TR · UT
R ) = A− (A · UR · TR) · UT

R = A− ZR · UT
R ,

where we define ZR = A · UR · TR. Combining these, we can index the computation by
Householder vector number similarly to Equation (4.12):

A(i, j) = A(i, j)−
∑
kL

UL(i, kL) · ZL(kL, j)−
∑
kR

ZR(i, kR) · UR(j, kR) (4.14)

Of course there are lots of possible dependencies ignored here, much as we wrote down a
similar formula for one-sided transformations. At this point we can apply either of the two
lower bound arguments from before: we can either assume (1) the number of Householder
vectors is small so that the number of temporary ZL and ZR values are bounded, applying
Theorem 4.10, or (2) all T matrices are 1 × 1 and we make “forward progress,” using the
argument in the proof of Theorem 4.25. In case (1) we obtain a similar result to Corollary
4.16:

Corollary 4.26. The bandwidth cost lower bound for applying two-sided orthogonal updates
is G/(8

√
M)−M− t, where G is the number of scalar multiplications involved in the compu-

tation of ULZL and ZRUR (as specified in Equation (4.14)) and t is the number of nonzeros
in ZL and ZR. In the special case of reducing an m × n matrix to bidiagonal form using
only a constant number of Householder vectors per row and column, this lower bound is
Ω(mn2/

√
M). In the special case of reducing an n × n matrix to tridiagonal or Hessenberg

form using only a constant number of Householder vectors per column, this lower bound is
Ω(n3/

√
M).
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In case (2), the second lower bound argument requires a little more discussion to clarify
the definitions of the partial order (Definition 4.17) and forward progress (Definition 4.18).
There will be two partial orders, one for UL and one for UR. In parts 1 and 2 of Defini-
tion 4.18, we insist that no transformation (from left or right) fills in or re-zeros out an entry
deliberately zeroed out by another transformation (left or right). This implies that there is
an ordering between left and right transformations, but we do not need to use this order for
our counting argument. We also insist that part 3 of Definition 4.18 holds independently for
the left and for the right transformations.

With these minor changes, we see that the lower bound argument of Section 4.3.1 applies
independently to UL ·ZL and ZR ·UT

R . In particular, insisting that left (right) transformations
cannot fill in or re-zeros out entries deliberately zeroed out by right (left) transformations
means that number of arithmetic operations performed by the the left and right transforma-
tions can be bounded independently and added. This leads to the same lower bound on the
number of words moved as before (in a Big-Oh sense):

Theorem 4.27. An algorithm which applies two-sided orthogonal transformations to anni-
hilate matrix entries, does not compute T matrices of dimension 2 or greater for blocked
updates, maintains forward progress as in Definition 4.18, and performs G flops of the form
U ·Z (as defined in Equation (4.14)), has a bandwidth cost of at least Ω(G/

√
M)−M words.

In the special case of reducing a dense m-by-n matrix to bidiagonal form with m ≥ n, this
lower bound is Ω(mn2/

√
M). In the special case of reducing an n× n matrix to tridiagonal

or Hessenberg form, this lower bound is Ω(n3/
√
M).

4.3.4 Applicability of the Lower Bounds

While we conjecture that all classical algorithms for applying one- or two-sided orthogonal
transformations are subject to a lower bound in the form of Theorem 4.2, not all of those
algorithms meet the assumptions of either of the two lower bound arguments presented in
this section. However, many standard and efficient algorithms do meet the criteria; see
Chapters 7 and 8 for a full discussion of these algorithms.

For example, algorithms for QR decomposition that satisfy this assumption of Corollary
4.16 include the blocked, right-looking algorithm (currently implemented in (Sca)LAPACK
[8, 44]) and the recursive algorithm of Elmroth and Gustavson [66]. The simplest version
of Communication-Avoiding QR (i.e., one that does not block transformations, see last
paragraph in Section 6.4 of [62]) satisfies the assumptions of Theorem 4.25. However, most
practical implementations of CAQR do block transformations to increase efficiency in other
levels of the memory hierarchy, and neither proof applies to these algorithms. The recursive
QR decomposition algorithm of Frens and Wise [69] is also communication efficient, but
again our proofs do not apply.

Further, Corollary 4.26 applies to the conventional blocked, right-looking algorithms in
LAPACK [8] and ScaLAPACK [44] for reduction to Hessenberg, tridiagonal and bidiagonal
forms. Our lower bound also applies to the first phase of the successive band reduction
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algorithm of Bischof, Lang, and Sun [38, 43], namely reduction to band form, because this
satisfies our requirement of forward progress. However, the second phase of successive band
reduction does not satisfy our requirement of forward progress, because it involves bulge
chasing, which repeatedly creates nonzero entries outside the band and zeroes them out
again. But since the first phase does asymptotically more arithmetic than the second phase,
our lower bound based just on the first phase cannot be much improved (see Chapter 10 for
more discussion of these and other algorithms).

There are many other eigenvalue computations to which these results may apply. For
example, the lower bound applies to reduction of a matrix pair (A,B) to upper Hessenberg
and upper triangular form. This is done by a QR decomposition of B, applying QT to A from
the left, and then reducing A to upper Hessenberg form while keeping B in upper triangular
form. Assuming one set of assumptions applies to the algorithm used for QR decomposition,
the lower bound applies to the first two stages and reducing A to Hessenberg form. However,
since maintaining triangular form of B in the last stage involves filling in entries of B and
zeroing them out again, our argument does not directly apply. This computation is a fraction
of the total work, and so this fact would not change the lower bound in an asymptotic sense.

4.4 Attainability

In this chapter, we obtain lower bounds for many different computations—most of classical
linear algebra. The greatest value in establishing these lower bounds is that it sets a target
for algorithmic development. For a given computation, we can determine if the best algo-
rithms attain the lower bounds (and are asymptotically optimal), or we can identify a gap
between algorithms (upper bounds) and lower bounds. In this case, tighter theoretical anal-
ysis may allow for higher lower bounds, or algorithmic innovation may lead to more efficient
approaches to solving the problem. Once a communication-optimal algorithm is identified,
we know that significant algorithmic improvements are no longer possible, and we can focus
our attention on tuning the implementations to particular hardware platforms to maximize
actual performance. We will discuss state-of-the-art algorithms and the attainability of the
lower bounds presented here in Chapters 7 and 8.
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Chapter 5

Lower Bounds for Strassen’s Matrix
Multiplication

While the approach for proving communication lower bounds discussed in Chapter 4 works
for many algorithms in linear algebra, it no longer applies when distributivity is used, as in the
case of Strassen’s matrix multiplication algorithm. In this case, we consider the computation
directed acyclic graph (CDAG) of an algorithm. While our approach of computation graph
analysis is similar to the red-blue pebble game of Hong and Kung [88], we connect the
communication costs of an algorithm to the expansion properties of its computation graph.

The expansion of a graph relates the number of vertices in a subset of the graph to its
neighbors in the complement; see Definition 2.8 for a more rigorous definition. In the case
of a computation graph, the vertices correspond to arithmetic operations, and the edges
(particularly the ones between a given subset of vertices and its complement) correspond
to communication. The analysis of the expansion properties of Strassen’s CDAG relies on
the recursive property of the algorithm and can be extended to other recursive algorithms.
Indeed, other fast algorithms for matrix multiplication are recursive, and we obtain lower
bound results for many of those algorithms (see Chapter 6).

This chapter is organized as follows. In Section 5.1 we discuss the relationship between
the expansion of an algorithm’s CDAG and its communication costs. We analyze the CDAG
for Strassen’s algorithm in particular in Section 5.2, and in Section 5.3 we combine these
results in the form of a communication lower bound for Strassen’s algorithm.

The main contributions of this chapter are

• introducing a new proof technique of relating communication lower bounds to a com-
putation’s dependency graph (CDAG) and

• using the technique to prove a communication lower bound for Strassen’s matrix mul-
tiplication algorithm.

The results and proofs in this chapter appear in [25] (conference version), which was
awarded the Best Paper prize at the ACM Symposium on Parallelism in Algorithms and



CHAPTER 5. LOWER BOUNDS FOR STRASSEN’S MATRIX MULTIPLICATION 61

Architectures (SPAA) in 2011, and [26] (journal version), written with coauthors James
Demmel, Olga Holtz, and Oded Schwartz.

5.1 Relating Edge Expansion to Communication

In this section we recall the notion of the computation graph of an algorithm, then show
how a partition argument connects the expansion properties of the computation graph to
the communication requirements of the algorithm. The partition argument is the same as
the one used in Chapter 4.

5.1.1 Computation Graph

For a given algorithm, we let G = (V,E) be the directed acyclic graph corresponding to the
computation (CDAG), where there is a vertex for each input element and each arithmetic
operation (AO) performed. The graph G contains a directed edge (u, v), if the output
operand of the AO corresponding to u (or the input element corresponding to u), is an input
operand to the AO corresponding to v. The in-degree of any vertex of G is, therefore, at
most 2 (as the arithmetic operations are binary). The out-degree is, in general, unbounded
(i.e., it may be a function of |V |). We next show how an expansion analysis of this graph
can be used to obtain a communication lower bound for the corresponding algorithm.

5.1.2 Partition Argument

Let M be the size of the fast memory. Let O be any total ordering of the vertices that
respects the partial ordering of the CDAG G (this total ordering corresponds to the actual
order in which the computations are performed). Let P be any partition of V into segments
S1, S2, . . . , so that a segment Si ∈ P is a subset of the vertices that are contiguous in the
total ordering O.

For each segment S, let RS and WS be the set of read and write operands, respectively
(see Figure 5.1). Namely, RS is the set of vertices outside S that have an edge going into S,
and WS is the set of vertices in S that have an edge going outside S. Then the total number
of reads of AOs to perform the computation in S is at least |RS| −M , as at most M of the
needed |RS| operands are already in fast memory when the execution of the segment starts.
Similarly, S causes at least |WS| −M actual write operations, as at most M of the operands
needed by other segments are left in the fast memory when the execution of the segment
ends. The total bandwidth cost is therefore bounded below by

W ≥ max
P

∑
S∈P

(|RS|+ |WS| − 2M) . (5.1)
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S

RS

WS

V

Figure 5.1: A segment of computation S and its corresponding read operands RS and write
operands WS.

5.1.3 Edge Expansion and Communication

Recall the definition of edge expansion (Definition 2.8). We can use the edge expansion of a
CDAG to relate a segment S to its read and write operands:

Claim 5.1. Consider a segment S and its read and write operands RS and WS. If the graph
G (with edge directions ignored) containing S has edge expansion h(G), maximum degree d,
and at least 2|S| vertices, then we have |RS|+ |WS| ≥ h(G) · |S|.

Proof. We have |E(S, V \ S)| ≥ h(G) · d · |S|. Since E(S, V \ S) = E(RS, S)]E(WS, V \ S)
we have |E(S, V \ S)| = |E(RS, S)| + |E(WS, V \ S)| ≤ d · |RS| + d · |WS| where the last
inequality is by the degree bound. The claim follows.

Combining Claim 5.1 with Equation (5.1) and choosing to partition V into |V |/s segments
of equal size s, we obtain:

W ≥ max
s≤ |V |

2

|V |
s
· (h(G) · s− 2M) = Ω (|V | · h(G)) ,

for sufficiently large |V |. In many cases h(G) is too small to attain the desired bandwidth
cost lower bound. Typically, h(G) is a decreasing function in |V (G)| (i.e., the edge expansion
deteriorates as the input size and number of arithmetic operations increase). This is the case
with Strassen’s matrix multiplication algorithm. In such cases, it is better to consider the
expansion of G on small sets (see Equation (2.2)):

W ≥ max
s≤ |V |

2

|V |
s
· (hs(G) · s− 2M) .
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Choosing the minimal s so that
hs(G) · s ≥ 3M (5.2)

we obtain

W ≥ |V |
s
·M. (5.3)

The existence of a value s ≤ |V |
2

that satisfies condition (5.2) is not always guaranteed. In the
next section we confirm the existence of such s for Strassen’s CDAG, for sufficiently large
|V |. Indeed this is the interesting case, as otherwise all computations can be performed
inside the fast memory, with no communication, except for reading the input once.

In some cases, the computation graph G does not fit these assumptions: it may not be
regular, it may have vertices of unbounded degree, or its edge expansion may be hard to
analyze. In such cases, we may consider some subgraph G′ of G instead to obtain a lower
bound on the bandwidth cost:

Claim 5.2. Let G = (V,E) be a computation graph of an algorithm Alg, and let G′ = (V ′, E ′)

be a subgraph of G, i.e., V ′ ⊆ V and E ′ ⊆ E. If G′ is d-regular and α = |V ′|
|V | , then, for

sufficiently large |V ′|, the bandwidth cost of Alg is

W ≥ α

2
· |V |
s
·M

where s is chosen so that hs(G
′) · αs ≥ 3M .

Proof. The correctness of this claim follows from Equations (5.2) and (5.3), and from the
fact that at least an α/2 fraction of the segments have at least α · s of their vertices in G′

(otherwise V ′ < α
2
· V
s
· s+ (1− α

2
) · V

s
· α
2
s < αV ). If we partition G into segments of size s,

consider only those segments with at least α · s of their vertices in G′. The expansion of G′

guarantees that there are at least hs(G
′) · αs ≥ 3M edges in E ′ that connect vertices in the

segment to its complement. Since there at least α/2 such segments, the result follows.

5.2 Expansion Properties of Strassen’s Algorithm

Recall Strassen’s algorithm for matrix multiplication (see Section 2.4.1) and consider its
computation graph (see Figure 5.2). Let Hi be the computation graph of Strassen’s algorithm
for recursion depth i, so that Hlgn corresponds to the computation for input matrices of size
n× n. Then Hlgn has the following structure:

• Encode A: generate weighted sums of elements of A (this corresponds to the left factors
of lines 5-11 of the algorithm).

• Similarly encode B (this corresponds to the right factors of lines 5-11 of the algorithm).
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    0 

Figure 5.2: The computation graph of Strassen’s algorithm (see Section 2.4.1). Top left:
Dec1C. Top right: H1, with Dec1C on the top and Enc1A and Enc1B at the bottom.
Bottom left: DeclgnC. Bottom right: Hlgn.

• Then multiply the encodings of A and B element-wise (this corresponds to line 2 of
the algorithm).

• Finally, decode C, by taking weighted sums of the products (this corresponds to lines
12-15 of the algorithm).

We let EnciA, EnciB, and DeciC be the subgraphs corresponding to the encoding and
decoding of 2i × 2i matrices A, B, and C, respectively. Note that Dec1C is presented in
Figure 5.2, for simplicity, with vertices of in-degree larger than two (but constant). A vertex
of degree larger than two, in fact, represents a full binary (not necessarily balanced) tree.
Note that replacing these high in-degree vertices with trees changes the edge expansion of
the graph by a constant factor at most (as this graph is of constant size, and connected).
Moreover, there is no change in the number of input and output vertices.

5.2.1 Computation Graph for n-by-n Matrices

Assume without loss of generality that n is an integer power of 2. Denote by EnclgnA the
part of Hlgn that corresponds to the encoding of matrix A. Similarly, let EnclgnB and
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DeclgnC correspond to the parts of Hlgn that compute the encoding of B and the decoding
of C, respectively.

5.2.1.1 Top-Down Construction

We next construct the computation graph Hi+1 by constructing Deci+1C (from DeciC and
Dec1C) and similarly constructing Enci+1A and Enci+1B, then composing the three parts
together.

• Replicate Dec1C 7i times.

• Replicate DeciC four times.

• Identify the 4 · 7i output vertices of the copies of Dec1C with the 4 · 7i input vertices
of the copies of DeciC:

– Recall that each Dec1C has four output vertices.

– The set of each first output vertex of the 7i Dec1C graphs is identified with the
set of 7i input vertices of the first copy of DeciC.

– The set of each second output vertex of the 7i Dec1C graphs is identified with
the set of 7i input vertices of the second copy of DeciC, and so on.

– We make sure that the jth input vertex of a copy of DeciC is identified with an
output vertex of the jth copy of Dec1C.

• We similarly obtain Enci+1A from EnciA and Enc1A and also Enci+1B from EnciB
and Enc1B.

• For every i, Hi is obtained by connecting edges from the jth output vertices of EnciA
and EnciB to the jth input vertex of DeciC.

This completes the construction. Let us note an important property of these graphs.

Claim 5.3. All vertices of DeclgnC are of degree at most 6.

Proof. The graph Dec1C has no vertices which are both input and output. As all out-degrees
are at most 4 and all in degree are at most 2 the claim follows.

However, note that Enc1A and Enc1B do have vertices which are both input and output
(e.g., A11), therefore EnclgnA and EnclgnB have vertices of out-degree Θ(lg n). All in-
degrees are at most 2, as an arithmetic operation has at most two inputs. As Hlgn contains
vertices of large degrees, it is easier to consider DeclgnC: it contains only vertices of constant
bounded degree, yet at least one third of the vertices of Hlgn are in it.
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5.2.1.2 Combinatorial Estimation of the Expansion

Let Gk = (V,E) be DeckC, and let S ⊆ V, |S| ≤ |V |/2. Let li be the ith level of vertices of
Gk, so

4k = |l1| < |l2| < · · · < |li| = 4k−i+17i−1 < · · · < |lk+1| = 7k.

The following bounds on the fraction of vertices in the first level will be useful:

Claim 5.4. 3
7
·
(
4
7

)k ≤ |l1|
|V | ≤

3
7
·
(
4
7

)k · 1

1−( 4
7)

k+1 .

Proof. The claim follows from the following identities:

|V | =
k+1∑
i=1

|li| =
k∑
i=0

|lk+1|·
(

4

7

)i
= |lk+1|·

(
1−

(
4

7

)k+1
)
· 7
3

=

(
7

4

)k
·|l1|·

(
1−

(
4

7

)k+1
)
· 7
3

Let Si ≡ S ∩ li. Let σ = |S|
|V | be the fractional size of S and σi = |Si|

|li| be the fractional size

of S at level i. Due to averaging, there exist i and i′ such that σi ≤ σ ≤ σi′ .

Claim 5.5. Let δi ≡ σi+1 − σi. Then |E(S, V \ S)∩E(li, li+1)| ≥ c1 · d · |δi| · |li|, where c1 is
a constant which depends on G1.

Proof. Let G′ be a G1 component connecting li with li+1 (so it has four vertices in li and
seven in li+1). G

′ has no edges in E(S, V \S) if all or none of its vertices are in S. Otherwise,
as G′ is connected, it contributes at least one edge to E(S, V \ S). The number of such G1

components with all their vertices in S is at most min
{
σi·|li|

4
, σi+1·|li+1|

7

}
= min{σi, σi+1} · |li|4 .

Similarly, the number of such G1 components with none of their vertices in S is at most
min{1− σi, 1− σi+1} · |li|4 . Therefore, there are at least |σi − σi+1| · |li|4 G1 components with
at least one vertex in S and one vertex that is not. The claim follows with c1 = 1

4d
.

Claim 5.6 (Homogeneity between levels). If there exists i so that |σ−σi|
σ
≥ 1

10
, then

|E(S, V \ S)| ≥ c2 · d · |S| ·
(

4

7

)k
where c2 is a constant which depends on G1.
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Proof. Assume that there exists j so that
|σ−σj |
σ
≥ 1

10
. By Claim 5.5, we have

|E(S, V \ S)| ≥
∑
i∈[k]
|E(S, V \ S) ∩ E(li, li+1)|

≥
∑
i∈[k]

c1 · d · |δi| · |li|

≥ c1 · d · |l1|
∑
i∈[k]
|δi|

≥ c1 · d · |l1| ·
(

max
i∈[k+1]

σi − min
i∈[k+1]

σi

)
.

By the initial assumption, there exists j so that
|σ−σj |
σ
≥ 1

10
, therefore maxi σi−mini σi ≥ σ

10
,

then
|E(S, V \ S)| ≥ c1 · d · |l1| ·

σ

10
.

By Claim 5.4, |l1| ≥ 3
7
·
(
4
7

)k · |V |,
|E(S, V \ S)| ≥ c1 · d ·

3

7
·
(

4

7

)k
· |V | · σ

10
,

and since |S| = σ · |V |,

|E(S, V \ S)| ≥ c2 · d · |S| ·
(

4

7

)k
for any c2 ≤ 1

10
· 3
7
· c1.

Let Tk correspond to the recursive construction of Gk in the following way (see Figure
5.3): Tk is a tree of height k + 1, where each internal node has four children. The root r
of Tk corresponds to lk+1 (the largest level of Gk). The four children of r correspond to the
largest levels of the four graphs that one can obtain by removing the level of vertices lk+1

from Gk. For every node u of Tk, denote by Vu the set of vertices in Gk corresponding to
u, so if u is at level i of Tk then Vu ⊆ li. One can think of Tk as a quadtree partitioning
of matrix C into blocks, where Vu is the largest level of the decoding subgraph of the C
sub-block corresponding to u. Therefore |Vr| = 7k where r is the root of Tk, |Vu| = 7k−1 for
each node u that is a child of r; in general we have 4i tree nodes u corresponding to a set of
size |Vu| = 7k−i+1. Each leaf corresponds to a set of size 1.

For a tree node u, let us define ρu = |S ∩ Vu|/|Vu| to be the fraction of S nodes in Vu,
and δu = |ρu − ρp(u)|, where p(u) is the parent of u (for the root r we let p(r) = r). We let
ti be the ith level of Tk, counting from the bottom, so tk+1 is the root and t1 are the leaves.

Claim 5.7. As Vr = lk+1 we have ρr = σk+1. For a tree leaf u ∈ t1, we have |Vu| = 1.
Therefore ρu ∈ {0, 1}. The number of vertices u in t1 with ρu = 1 is σ1 · |l1|.
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l1
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lk+1

t1

tk

tk+1

Figure 5.3: The graph Gk and its corresponding tree Tk.

Claim 5.8. Let u0 be an internal tree node, and let u1, u2, u3, u4 be its four children. Then∑
i

|E(S, V \ S) ∩ E(Vui , Vu0)| ≥ c1 · d ·
∑
i

|ρui − ρu0| · |Vui |

where c1 is a constant that depends on G1.

Proof. The proof follows that of Claim 5.5. Let G′ be a G1 component connecting Vu0 with⋃
i∈[4] Vui (so it has seven vertices in Vu0 and one in each of Vu1 ,Vu2 ,Vu3 ,Vu4). G′ has no

edges in E(S, V \ S) if all or none of its vertices are in S. Otherwise, as G′ is connected,
it contributes at least one edge to E(S, V \ S). The number of G1 components with all
their vertices in S is at most min{ρu0 , ρu1 , ρu2 , ρu3 , ρu4} · |Vu1|. Therefore, there are at least
maxi∈[4]{|ρu0 − ρui |} · |Vu1 | ≥ 1

4
·
∑

i∈[4] |ρui − ρu0| · |Vui | G1 components with at least one

vertex in S and one vertex that is not. The claim follows with c1 = 1
4d

.

We now state and prove our main lemma on the edge expansion of the decoding graph
of Strassen’s CDAG:

Lemma 5.9. The edge expansion of DeckC is

h(DeckC) = Ω

((
4

7

)k)
.

Proof. Consider a subset S of the vertices of the decoding graph. Recall that Gk = DeckC is
a layered graph (with layers corresponding to recursion steps), so all edges (excluding loops)
connect between consecutive levels of vertices. By Claim 5.6, each level of Gk contains about
the same fraction of S vertices, or else we have many edges leaving S. By Claim 5.7, the
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lowest level is composed of distinct parts that cannot have homogeneity (of the fraction of
their S vertices), otherwise many edges leave S.

Let Tk and Vu be defined as in the previous section. We will show that the homogeneity
between levels, combined with the heterogeneity of the lowest level, guarantees that there
are many edges leaving S.

We have
|E(S, V \ S)| =

∑
u∈Tk
|E(S, V \ S) ∩ E(Vu, Vp(u))|.

By Claim 5.8, this implies

|E(S, V \ S)| ≥
∑
u∈Tk

c1 · d · |ρu − ρp(u)| · |Vu|

= c1 · d ·
∑
i∈[k]

∑
u∈ti
|ρu − ρp(u)| · 7i−1

≥ c1 · d ·
∑
i∈[k]

∑
u∈ti
|ρu − ρp(u)| · 4i−1.

As each internal node has four children, this means

|E(S, V \ S)| = c1 · d ·
∑
v∈t1

∑
u∈v∼r

|ρu − ρp(u)|,

where v ∼ r is the path from v to the root r. By the triangle inequality for the function | · |

|E(S, V \ S)| ≥ c1 · d ·
∑
v∈t1
|ρu − ρr|.

By Claim 5.7,

|E(S, V \ S)| ≥ c1 · d · |l1| · ((1− σ1) · ρr + σ1 · (1− ρr)).

By Claim 5.6, w.l.o.g., |σi − σ|/σ ≤ 1
10

(otherwise |E(S, V \ S)| ≥ c2 · d · |S| ·
(
4
7

)k
), so

9
10
σ ≤ σi ≤ 11

20
. As σ ≤ 1

2
and ρr = σk+1,

|E(S, V \ S)| ≥ 81

100
· c1 · d · |l1| · σ,

and by Claim 5.4,

|E(S, V \ S)| ≥ c3 · d · |S| ·
(

4

7

)k
,

for any c3 ≤ 3
7
· 81
100
· c1.

Thus, since d is constant (Claim 5.3), we have |E(S,V \S)|
|S| = Ω

((
4
7

)k)
, where the hidden

constant is c4 = d ·min{c2, c3}.
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5.3 Communication Lower Bounds

Theorem 5.10. Consider Strassen’s algorithm implemented on a sequential machine with
fast memory of size M . Then for M ≤ n2, and assuming no recomputation, the bandwidth
cost of Strassen’s algorithm is

W = Ω

((
n√
M

)lg 7

·M

)
.

Proof. Let k = lg
√
M + c5 where c5 is a constant to be determined, and assume k divides

lg n evenly. Note that it is sufficient to prove the result for an infinite number of n’s,
but the smallest n for which the proof holds is n = 2c5

√
M (so that k = lg n). This

assumption implies that DeclgnC is composed of edge-disjoint copies of DeckC, and we can
apply Lemma 2.10 with G = DeclgnC, G′ = DeckC, and s = |V (G′)|/2. Since d and d′ are
the same, we have

hs(DeclgnC) ≥ h(DeckC)

and by Lemma 5.9 this implies

hs(DeclgnC) ≥ c4 ·
(

4

7

)k
.

Note that 7k/2 ≤ s ≤ 2 · 7k.
We now apply Claim 5.2 with G as the entire CDAG of Strassen’s algorithm of matrix

dimension n and G′ = DeclgnC. Here α = 1/3 and

hs(DeclgnC) · αs ≥ c2
6
· 4c5 ·M ≥ 3M

for c5 ≥ lg
√

18/c4, so

W ≥ α · |V |
s
·M = Ω

((
n√
M

)lg 7

·M

)
.

The above inequality holds for M ≤ c6 · n2, where c6 = 18/c4 < 1. For c6 · n2 ≤ M ≤ n2,
note that

W ≥ n2 = Ω

((
n√
M

)lg 7

·M

)
as one has to read 2n2 words of input data and at most n2 of them can be in the fast memory
at the start of the computation.

Theorem 5.10 holds for any implementation and any known variant of Strassen’s algo-
rithm1 that is based on performing 2×2 matrix multiplication with 7 scalar multiplications.

1This lower bound for the sequential case seems to contradict the upper bound from [70] and later [46],
due to a miscalculation in the former which is propagated in the latter ([104]).
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This includes Winograd’s O(nlg 7) variant (see Section 2.4.2) that uses 15 additions instead
of 18, which is the most used fast matrix multiplication algorithm in practice [64, 65, 105].
See Section 7.2 for a scheduling of the computation that attains this lower bound. Note that
Theorem 5.10 does not hold for values of M which are so large that the entire problem can
fit into fast memory simultaneously. In the case that the input matrices start in fast memory
and the output matrix finishes in fast memory, no communication is necessary.

For parallel algorithms, we have:

Corollary 5.11. Consider Strassen’s algorithm implemented on a parallel machine with P
processors, each with a local memory of size M . There exists a constant c such that for
M ≤ c · n2

P 2/ lg 7 , and assuming no recomputation, the bandwidth cost of Strassen’s algorithm
is

W = Ω

((
n√
M

)lg 7

· M
P

)
.

Proof. In the parallel case, we consider the busiest processor. Due to averaging, it must do
at least (1/p)th of the work. We apply the same partitioning argument as in the proof of
Theorem 5.10 to that processor’s subset of computation. However, in order for the proof to
work we must require M ≤ c n2

p2/ lg 7 for some constant c (rather than M ≤ n2 in the sequential

case).

While Corollary 5.11 does not hold for all sizes of local memory (relative to the problem
size and number of processors), there exists another lower bound that holds for all local
memory sizes, though it requires separate assumptions (see Section 6.2). See Chapter 11 for
a parallel algorithm that attains this bound where possible.

5.4 Conclusions

As we explain in Chapter 7, the lower bound of Theorem 5.10 (for sequential machines) is
attainable with the natural recursive algorithm. This has an important (and somewhat sur-
prising) implication. Re-writing the lower bound for classical square matrix multiplication
given by Theorem 3.1 as Wclassical = Ω((n/

√
M)3 ·M), we can more easily compare it to Theo-

rem 5.10. Since lg 7 < 3, we see that Strassen’s algorithm requires not only less computation
than the classical algorithm, it also requires less communication! While we often reduce
communication at the expense of extra computation, in the case of Strassen’s algorithm, we
can reduce both simultaneously. In the parallel case, however, exploiting this opportunity is
less straightforward. The absence of a parallel algorithm that attained the lower bound of
Corollary 5.11 sparked our interest in developing a new and more communication-efficient
algorithm. We present this new algorithm in Chapter 11 and show that it attains the lower
bound (where possible), and we discuss other algorithms that use Strassen’s or other fast
matrix multiplication algorithms in Chapters 7 and 8.
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Chapter 6

Extensions of the Lower Bounds

In this chapter we describe several extensions of the analysis and results presented in the
previous chapters. The main contributions here are

• extending the lower bound for Strassen’s algorithm to other fast matrix multiplication
algorithms,

• proving a separate set of memory-independent lower bounds for both classical and fast
parallel algorithms that (1) are tighter than the bounds proved in Chapters 4 and 5 in
some cases and (2) provide limits on the possibility of perfect strong scaling (see Table
6.1 for a summary) , and

• summarizing further extensions of the lower bound results and proof techniques.

In Section 6.1 we define the “Strassen-like” class of algorithms and show how the analysis
of Chapter 5 can be used to obtain similar results for this class of algorithms. These results
extend beyond square matrix multiplication algorithms to other linear algebra computa-
tions as well as rectangular matrix multiplication. In the case of parallel algorithms, the
lower bounds proved in the previous chapters are not always tight. We show in Section 6.2
that there are “memory-independent” lower bounds, proved using similar techniques as the
bounds that do depend on the local memory size, which hold independently for most linear
algebra computations. These new bounds, when applied in combination with the memory-
dependent ones, tighten the parallel lower bounds for a wider range of problem sizes (relative
to the number of processors and local memory sizes). In Section 6.3 we briefly discuss other
extensions to the lower bound analysis, but we leave the details to the references given.

Most of the content of Section 6.1 appears in [26], written with coauthors James Demmel,
Olga Holtz, and Oded Schwartz. The exception is Section 6.1.3 which appears in [29], and
Section 6.1.4 is a brief summary of [21], written with the additional coauthor Benjamin
Lipshitz. The results of Section 6.2 appear in [19] (without proof); the proofs are included
in the technical report [22], both written with all four coauthors.
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6.1 Strassen-like Algorithms

We can extend the bounds for Strassen’s matrix multiplication to a wider class of algorithms,
namely Strassen-like algorithms.

Definition 6.1. A Strassen-like algorithm is a recursive algorithm for multiplying square1

matrices which is constructed from a base case of multiplying n0×n0 matrices using m0 < n3
0

scalar multiplications, resulting in an algorithm for multiplying n × n matrices requiring
O(nω0) flops where ω0 = logn0

m0. In order to be Strassen-like, the base case decoding graph
(referred to as Dec1C in Section 5.2), which gives the dependencies between the m0 scalar
multiplication results and the n2

0 entries of the output matrix, must be connected.

Given two matrices of size n×n, a Strassen-like algorithm splits them into n2
0 blocks (each

of size (n/n0)-by-(n/n0)), and works block-wise, according to the base algorithm. Additions
(and subtractions) in the base algorithm are interpreted as additions (and subtractions) of
blocks; multiplications in the base algorithm are interpreted as multiplications of blocks,
which are performed by recursively calling the algorithm. The arithmetic count of the
algorithm is then T (n) = m0 · T (n/n0) +O(n2), so T (n) = Θ(nω0) where ω0 = logn0

m0.
This is the structure of nearly all the fast matrix multiplication algorithms that were

obtained since Strassen’s (see [151] for a summary and the most recent results). In fact, any
O(nω0) matrix multiplication algorithm can be converted into a recursive matrix multipli-
cation algorithm of running time O(nω0+ε) for any ε > 0 [124]. Furthermore, the algorithm
can be made numerically stable while preserving this form [59].

However, to be considered Strassen-like, an algorithm’s computation graph must also
satisfy a technical assumption described in Section 6.1.1. This precludes some of the fast
algorithms (and perhaps others whose computation graphs have not been explicitly specified)
as well as the classical O(n3) algorithm.

6.1.1 Connected Decoding Graph Assumption

For our technique to work, and in order to be considered Strassen-like, we demand that the
Dec1C part of the computation graph is a connected graph (this is assumed in the proof of
Claim 5.5 in Section 5.2.1.2). Thus the Strassen-like class includes Winograd’s variant of
Strassen’s algorithm [152], which uses 15 additions rather than 18. The Strassen-like class
does not contain the classical algorithm, where Dec1C is composed of four disconnected
graphs (corresponding to the four outputs). We believe this assumption is an artifact of our
proof technique and unnecessary for the same lower bounds to apply.

6.1.2 Communication Costs of Strassen-like Algorithms

To prove Theorem 6.3, which generalizes the bandwidth cost lower bound of Strassen’s
algorithm (Theorem 5.10) to all Strassen-like algorithms, we note the following: the entire

1See Section 6.1.4 for extensions to fast rectangular matrix multiplication algorithms.
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proof of Theorem 5.10, and in particular, the computations in the proof of Lemma 5.9,
hold for any Strassen-like algorithm, where we plug in n2

0 and m0, instead of 4 and 7. For
bounding the asymptotic bandwidth cost, we do not care about the number of internal
vertices of Dec1C; we need only to know that Dec1C is connected (this critical technical
assumption is used in the proof of Claim 5.5), and to know the sizes n0 and m0. The only
nontrivial adjustment is to show the equivalent of Claim 5.3, that the decoding graph is of
bounded degree. This is given in the following claim:

Claim 6.2. The decoding graph of any Strassen-like algorithm is of degree bounded by a
constant which is independent of the input size.

Proof. If the set of input vertices of Dec1C, and the set of its output vertices are disjoint,
then the entire decoding graph is of constant bounded degree (its maximal degree is at most
twice the largest degree of Dec1C).

Assume (towards contradiction) that the base graph Dec1C has an input vertex which
is also an output vertex. An output vertex represents the inner product of two n0-long
vectors (i.e., the corresponding row-vector of A and column vector of B). The corresponding
bilinear polynomial is irreducible. This is a contradiction, since an input vertex represents
the multiplication of a (weighted) sum of elements of A with a (weighted) sum of elements
of B.

Thus, we state (without formal proof) the extensions of Theorem 5.10 and Corollary 5.11
to Strassen-like algorithms:

Theorem 6.3. Consider a recursive Strassen-like fast matrix multiplication algorithm with
O(nω0) arithmetic operations implemented on a sequential machine with fast memory of size
M . Then for M ≤ n2, and assuming no recomputation, the bandwidth cost of the Strassen-
like algorithm is

W = Ω

((
n√
M

)ω0

·M
)
.

Corollary 6.4. Consider a Strassen-like algorithm implemented on a parallel machine with
P processors, each with a local memory of size M . There exists a constant c such that for
M ≤ c · n2/P 2/ω0, and assuming no recomputation, the bandwidth cost of the Strassen-like
algorithm is

W = Ω

((
n√
M

)ω0

· M
P

)
.

6.1.3 Fast Linear Algebra

A straightforward extension of lower bounds for matrix multiplication extend to computa-
tions that involve a matrix multiplication subcomputation. As shown in [58], many linear
algebra computations can be performed recursively, with the same computational complex-
ity as the matrix multiplication subroutine they call. As we will see in Section 7.2, these
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algorithms also attain the same asymptotic communication costs as the matrix multiplica-
tion algorithm they employ. The following lower bound applies to all the algorithms in [58]
assuming the fast matrix multiplication subroutine is Strassen-like.

Corollary 6.5. Suppose an algorithm has a CDAG containing as a subgraph the CDAG of
a Strassen-like matrix multiplication algorithm with input size Θ(n) which performs Θ(nω0)
flops. Then, assuming that no intermediate value is computed twice, the number of words
moved during the computation on a machine with fast memory of size M is

W = Ω

((
n√
M

)ω0

·M
)
.

Proof. The proof of Theorem 6.3 is based on an analysis of the CDAG of a Strassen-like
matrix multiplication algorithm. If the CDAG of a computation includes as a subgraph
a CDAG which corresponds to Θ(n) × Θ(n) Strassen-like matrix multiplication, then the
analysis yields the same communication lower bound for that subset of the computation and
therefore the entire computation.

Note that there may be many different CDAGs which correspond to computing, for
instance, an LU decomposition using a Strassen-like matrix multiplication as a subroutine.
For example, the algorithms of [58] split the matrix into equal-sized left and right halves,
but another algorithm may split the matrix into a tall-skinny panel and a larger trailing
matrix. Corollary 6.5 applies to all such algorithms that contain a sufficiently large subgraph
corresponding to a Strassen-like matrix multiplication.

This result implies that given the CDAG that a recursive algorithm of [58] produces,
no re-ordering of the computation can improve the communication costs by more than a
constant factor compared to the depth-first ordering given by the recursive algorithm. The
result does not apply to algorithms which restructure the CDAG beyond the freedom allowed
by commutativity and associativity of addition. See Section 7.2 for more details.

6.1.4 Fast Rectangular Matrix Multiplication Algorithms

Many fast algorithms have been devised for multiplication of rectangular matrices (see [21] for
a detailed list). A fast algorithm for multiplying m0×n0 and n0×p0 matrices in q < m0n0p0
scalar multiplications can be applied recursively to multiply mt

0 × nt0 and nt0 × pt0 matrices
in O(qt) flops. For such algorithms, the CDAG has very similar structure to Strassen and
Strassen-like algorithms for square multiplication in that it is composed of two encoding
graphs and one decoding graph. Assuming that the decoding graph is connected, the proofs
of Theorem 5.10 and Lemma 5.9 apply where we plug in m0p0 and q for 4 and 7. In this
case, we obtain a result analogous to Theorem 5.10 which states that the bandwidth cost of
such an algorithm is given by

W = Ω

(
qt

M logm0p0
q−1

)
.
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If the output matrix is the largest of the three matrices (i.e., n0 < m0 and n0 < p0), then
this lower bound is tight (e.g., it is attained by the natural recursive algorithm). The lower
bound extends to the parallel case as well, analogous to Corollary 5.11.

However, in the case that the decoding graph is not connected, the proof does not apply,
and in the case the output matrix is not the largest, the lower bound is not necessarily
tight. In order to handle these technical challenges, we can employ modifications of the
proof technique: we can deal with the decoding graph being disconnected by considering
individual connected components, or we can consider one of the two encoding graphs, which
may contain vertices of high degree. In either case, the proofs must be adapted, and we
obtain slightly weaker results. We detail these approaches in [21] and discuss the application
to rectangular matrix multiplication algorithms of [37] and [89].

6.2 Memory-Independent Lower Bounds

The lower bounds for classical linear algebra in Chapter 4 and Strassen’s matrix multiplica-
tion in Chapter 5 each depend on the size of the fast or local memory, M . Since M appears
in the denominator in both cases, these bounds suggest that as more local memory is used,
less communication is necessary. In the parallel case, especially for large P , there may be
much more local memory available than what is required to store the inputs and outputs of
the computation. In fact, algorithms discussed in Section 8.2 show that extra local memory
(i.e., M � n2/P ) can be used effectively to reduce communication.

However, there is a limit to the tradeoff between extra memory and reduced commu-
nication. Using similar proof techniques to those used in Chapters 4 and 5, we can prove
memory-independent lower bounds (with more restrictive assumptions on the initial data lay-
out and computational load-balance) that begin to dominate the memory-dependent lower
bounds for certain problem sizes.

In addition to tightening existing bounds, the lower bounds in this section yield another
interesting conclusion regarding strong scaling. We say that an algorithm exhibits perfect
strong scaling if it attains running time on P processors which is linear in 1/P , including
all communication costs, for some range of P . For example, Cannon’s parallel matrix mul-
tiplication algorithm (see Section 8.1.1) has a parallel computational cost of O(n3/P ) flops
but a bandwidth cost of O(n2/

√
P ) words. Thus, Cannon’s algorithm scales perfectly with

respect to the computational cost but not with respect to the communication cost. While it
is possible for classical and Strassen-based matrix multiplication algorithms to strongly scale
perfectly, the communication costs restrict the strong scaling ranges much more than do the
computation costs. These ranges depend on the problem size relative to the local memory
size, and on the computational complexity of the algorithm.

Interestingly, in both cases the dominance of a memory-independent bound arises, and
the strong scaling range ends, exactly when the memory-dependent latency lower bound
becomes Ω(1). Of course, since the latency cost cannot possibly drop below a constant, it is
an immediate result of the memory-dependent bounds that the latency cost cannot continue
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to strongly scale perfectly. However, for sufficiently large problems, the bandwidth cost
typically dominates the cost, and the memory-independent bandwidth scaling bounds limit
the strong scaling of matrix multiplication in practice. For simplicity we omit discussions
of latency cost in this section, since the lower bound on the number of messages is always
a factor of M below the bandwidth cost in the strong scaling range and is always constant
outside the strong scaling range.

While the main arguments in this section focus on matrix multiplication, they can be
generalized to other algorithms, including other three-nested-loops computations (see Defi-
nition 4.1) and other Strassen-like algorithms (see Definition 6.1). See Section 6.2.3 for more
details.

6.2.1 Communication Lower Bounds

6.2.1.1 Classical Matrix Multiplication

In this section, we prove a memory-independent lower bound for classical matrix multiplica-
tion of Ω(n2/P 2/3) words. The same result appears elsewhere in the literature, under slightly
different assumptions: in the LPRAM model [4], where no data exists in the (unbounded)
local memories at the start of the algorithm; in the distributed-memory model [95], where
the local memory size is assumed to be M = Θ(n2/P 2/3); and in the distributed-memory
model [137], where the algorithm is assumed to perform a certain amount of input replica-
tion. Our bound is for the distributed memory model, holds for any M , and assumes no
specific communication pattern.

Using Lemma 2.7 (in a similar way to Chapter 4 and [95]), we can describe the ratio
between the number of scalar multiplications a processor performs and the amount of data
it must access.

Lemma 6.6. Suppose a processor has I words of initial data at the start of an algorithm, per-
forms Θ(n3/P ) scalar multiplications within classical matrix multiplication, and then stores
O words of output data at the end of the algorithm. Then the processor must send or receive
at least Ω(n2/P 2/3)− I −O words during the execution of the algorithm.

Proof. We follow the proofs of Chapter 4 and [95]. Consider a discrete n×n×n cube where
the lattice points correspond to the scalar multiplications within the matrix multiplication
A · B (i.e., lattice point (i, j, k) corresponds to the scalar multiplication aik · bkj). Then the
three pairs of faces of the cube correspond to the two input and one output matrices.

The projections on the three faces correspond to the input/output elements the processor
has to access (and must communicate if they are not in its local memory). By Lemma 2.7, and

the fact that
√
|Vx| · |Vy| · |Vz| ≤

√
1
6
(|Vx|+ |Vy|+ |Vz|)3, the number of words the processor

must access is at least 3
√

6 |V |2/3 = Ω(n2/P 2/3). Since the processor starts with I words and
ends with O words, the result follows.
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Theorem 6.7. Suppose a parallel algorithm performing classical dense matrix multiplica-
tion begins with one copy of the input matrices and minimizes computational costs in an
asymptotic sense. Then, for sufficiently large P , some processor has a bandwidth cost of

W = Ω

(
n2

P 2/3

)
.

Proof. At the end of the algorithm, every element of the output matrix must be fully com-
puted and exist in some processor’s local memory (though multiple copies of the element may
exist in multiple memories). For each output element, we designate one memory location as
the output and disregard all other copies. For each of the n2 designated memory locations,
we consider the n scalar multiplications whose results were used to compute its value and
disregard all other redundantly computed scalar multiplications.

In order to minimize computational costs asymptotically, the running time for classical
dense matrix multiplication must be O(n3/P ). This is possible only if at least a constant
fraction of the processors perform Θ(n3/P ) of the scalar multiplications corresponding to
designated outputs.

Since there exists only one copy of the input matrices and designated output–O(n2) words
of data–some processor which performs Θ(n3/P ) multiplications must start and end with no
more than I +O = O(n2/P ) words of data. Thus, by Lemma 6.6, some processor must read
or write Ω(n2/P 2/3)−O(n2/P ) = Ω(n2/P 2/3) words of data.

Note that the theorem applies to any P ≥ 2 with a strict enough assumption on the load
balance. For discussion of algorithms attaining this bound, see Section 8.2.1.

6.2.1.2 Strassen’s Matrix Multiplication

In this section, we prove a memory-independent lower bound for Strassen’s matrix multipli-
cation of Ω(n2/P 2/ lg 7) words. We reuse notation and proof techniques from Chapter 5. By
prohibiting redundant computations we mean that each arithmetic operation is computed by
exactly one processor. This is necessary for interpreting edge expansion as communication
cost.

Theorem 6.8. Suppose a parallel algorithm performing Strassen’s matrix multiplication min-
imizes computational costs in an asymptotic sense and performs no redundant computation.
Then, for sufficiently large P , some processor must have a bandwidth cost of

W = Ω

(
n2

P 2/ lg 7

)
.

Proof. Recall that the computation DAG of Strassen’s algorithm multiplying square matrices
A · B = C can be partitioned into three subgraphs: an encoding of the elements of A, an
encoding of the elements of B, and a decoding of the scalar multiplication results to compute
the elements of C. These three subgraphs are connected by edges that correspond to scalar
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multiplications. Call the third subgraph DeclgnC, where lg n is the number of levels of
recursion for matrices of dimension n.

In order to minimize computational costs asymptotically, the running time for Strassen’s
matrix multiplication must be O(nlg 7/P ). Since a constant fraction of the flops correspond
to vertices in DeclgnC, this is possible only if some processor performs Θ(nlg 7/P ) flops
corresponding to vertices in DeclgnC.

By Lemma 5.9, the edge expansion of DeckC is given by h(DeckC) = Ω((4/7)k). Using
Claim 5.2, we deduce that

hs(DeclgnC) = Ω

((
4

7

)log7 s
)
, (6.1)

where hs is the edge expansion for sets of size at most s.
Let S be the set of vertices of DeclgnC that correspond to computations performed by

the given processor. Set s = |S| = Θ(nlg 7/P ). By Equation (6.1), the number of edges
between S and S is

|E(S, S)| = Ω (s · hs(DeclgnC)) = Ω

(
n2

P 2/ lg 7

)
,

and because DeclgnC is of bounded degree (Claim 5.3) and each vertex is computed by only
one processor, the number of words moved is Θ(|E(S, S)|) and the result follows.

Note that the theorem applies to any P ≥ 2 with a strict enough assumption on the load
balance among vertices in DeclgnC as defined in the proof. For details of the algorithm that
attains this bound, see Chapter 11.

6.2.2 Limits of Strong Scaling

In this section we present limits of strong scaling of matrix multiplication algorithms. These
are immediate implications of the memory independent communication lower bounds proved
in Section 6.2.1. Roughly speaking, the memory-dependent communication cost lower bound
is of the form Ω (f(n,M)/P ) for both classical and Strassen matrix multiplication algorithms.
However, the memory independent lower bounds are of the form Ω (f(n)/P c) where c < 1 (see
Table 6.1). This implies that strong scaling is not possible when the memory-independent
bound dominates. We make this formal below.

Corollary 6.9. Suppose a parallel algorithm performing Strassen’s matrix multiplication
minimizes bandwidth and computational costs in an asymptotic sense and performs no re-
dundant computation. Then the algorithm can achieve perfect strong scaling only for

P = O

(
nlg 7

M (lg 7)/2

)
.
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Classical Strassen

Memory-dependent
Ω
(

n3

P
√
M

)
Ω
(

nlg 7

PM(lg 7)/2−1

)
lower bound

Memory-independent
Ω
(

n2

P 2/3

)
Ω
(

n2

P 2/ lg 7

)
lower bound

Perfect strong
P = O

(
n3

M3/2

)
P = O

(
nlg 7

M(lg 7)/2

)
scaling range

Table 6.1: Bandwidth cost lower bounds for matrix multiplication and perfect strong scaling
ranges. The classical memory dependent bound is due to [95], and the Strassen memory
dependent bound is proved in Chapter 5. The memory-independent bounds are proved here,
though variants of the classical bound appear in [4, 95, 137].

Proof. By Corollary 5.11, any parallel algorithm performing matrix multiplication based on
Strassen moves at least Ω(nlg 7/PM (lg 7)/2−1) words. By Theorem 6.8, a parallel algorithm
that minimizes computational costs and performs no redundant computation moves at least
Ω(n2/P 2/ lg 7) words. This latter bound dominates in the case P = Ω(nlg 7/M (lg 7)/2). Thus,
while a communication-optimal algorithm will strongly scale perfectly up to this threshold,
after the threshold the communication cost will scale as 1/P 2/ lg 7 rather than 1/P .

Corollary 6.10. Suppose a parallel algorithm performing classical dense matrix multiplica-
tion starts and ends with one copy of the data and minimizes bandwidth and computational
costs in an asymptotic sense. Then the algorithm can achieve perfect strong scaling only for

P = O

(
n3

M3/2

)
.

Proof. By [95], any parallel algorithm performing classical matrix multiplication moves at
least Ω(n3/(P

√
M)) words. By Theorem 6.7, a parallel algorithm that starts and ends with

one copy of the data and minimizes computational costs moves at least Ω(n2/P 2/3) words.
This latter bound dominates in the case P = Ω(n3/M3/2). Thus, while a communication-
optimal algorithm will strongly scale perfectly up to this threshold, after the threshold the
communication cost will scale as 1/P 2/3 rather than 1/P .

In Figure 6.1 we present the asymptotic communication costs of classical and Strassen-
based algorithms for a fixed problem size as the number of processors increases. Both types
of perfectly strong scaling algorithms stop scaling perfectly above some number of processors,
which depends on the matrix size and the available local memory size.

Let Pmin = Θ(n2/M) be the minimum number of processors required to store the input
and output matrices. By Corollaries 6.9 and 6.10 the perfect strong scaling range is Pmin ≤
P ≤ Pmax where Pmax = Θ(P

3/2
min) in the classical case and Pmax = Θ(P

(lg 7)/2
min ) in the Strassen

case. Note that the perfect strong scaling range is larger for the classical case, though the
communication costs are higher. Also note that outside the perfect strong scaling range,
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Figure 6.1: Bandwidth cost lower bounds and strong scaling of matrix multiplication: classi-
cal vs. Strassen. Horizontal lines correspond to perfect strong scaling. Pmin is the minimum
number of processors required to store the input and output matrices.

the communication costs do not grow linearly as the scale of the figure seems to suggest. In
the classical case, the (Bandwidth cost)×P is proportional to P 1/3; in the Strassen case, it
is proportional to P 1−2/ lg 7 ≈ P .29 outside the strong scaling range. Note that in both the
classical and Strassen cases, there are algorithms attaining these lower bounds.

6.2.3 Extensions of Memory-Independent Bounds

The memory-dependent bound of classical matrix multiplication of [95] is generalized in
Chapter 4 to algorithms that satisfy Definition 4.1. The memory-independent bound of
classical matrix multiplication (Theorem 6.7) applies to these other algorithms as well. If
the algorithm begins with one copy of the input data and minimizes computational costs
in an asymptotic sense, then, for sufficiently large P , some processor must send or receive

at least Ω
((

G
P

)2/3 − D
P

)
words, where G is the total number of gijk computations and D

is the number of non-zeros in the input and output. The proof follows that of Lemma 6.6
and Theorem 6.7, setting |V | = G (instead of n3), replacing n3/P with G/P , and setting
I +O = O(D/P ) (instead of O(n2/P )).

The memory-independent bound and perfect strong scaling bound of Strassen’s matrix
multiplication (Theorem 6.8 and Corollary 6.9) apply to other Strassen-like algorithms, as
defined in Section 6.1, with ω0 (the exponent of the total arithmetic count) replacing lg 7,
provided that the decoding graph is connected. The proof follows that of Theorem 6.8 and
of Corollary 6.9, but uses Claim 6.2 instead of Claim 5.3 and replaces Lemma 5.9 with its
extension.
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6.3 Other Extensions

There are several more extensions of the lower bounds presented in this and the previous
chapters and many open problems. In this section, we point out a few of these directions
and the corresponding references.

6.3.1 k-Nested-Loops Computations

The heart of the argument made in Chapter 4 is based on relating a three-dimensional set
of computation to two-dimensional data sets using the geometric inequality of Loomis and
Whitney [107] (see Lemma 2.7). Since most linear algebra computations are three nested
loops, this geometric relationship is sufficient for the algorithms considered here. Consider
instead performing an “N -body” calculation, where we wish to compute all the pairwise
interactions within a set of N particles. In this case, the data is one dimensional (a list
of particles) and the computation is two dimensional (all N2 pairwise interactions). Thus,
Lemma 2.7, which is based on three-dimensional lattice points, no longer directly relates a
subset of the computation to the data involved. However, the more general version of the
result that appears in [107] can relate computation to communication for N -body calculation:
it relates a d-dimensional volume to its projections onto (d− 1)-dimensional subspaces.

If, on the other hand, a d-dimensional computation accesses some data of dimension d−2,
some of d−3, and some of d−1, the Loomis-Whitney inequality is no longer helpful. A recent
generalization of the Loomis-Whitney inequality [34] can be used to prove communication
lower bounds for such computations (and many more). The statement of the more general
inequality and its implications on communication costs for a wide class of algorithms are
given in [51]. In the paper, the authors prove communication bounds for algorithms that
have arbitrary numbers of loops and access arrays with arbitrary dimensions, as long as the
index expressions are affine combinations of loop variables.

6.3.2 Sparse Matrix-Matrix Multiplication

The lower bounds given in Chapter 4 hold for both dense and sparse computations. How-
ever, particularly in the sparse case, the lower bounds may not be tight (i.e., attainable).
Although the focus of this dissertation is dense linear algebra, consider the multiplication of
two sparse matrices. Corollary 4.3 effectively upper bounds the number of possible useful
computations for every word of data read into fast/local memory at O(

√
M). However, for

matrices which are very sparse, elements of an input matrix may be involved in far fewer
than O(

√
M) computations, making that amount of data reuse unattainable. Even the

memory-independent bounds described in Section 6.2.3 can be unattainable.
Using assumptions on the type of sparsity in the input matrices and properties particular

to the computation, we can prove a tighter (and attainable) lower bound for sparse matrix-
matrix multiplication [16]. The lower bound proof resembles the memory-independent bound
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proof of Section 6.2.1.1 but also depends on the randomness of the input matrices (and proves
results that hold only in expectation).



84

Part II

Algorithms and Communication Cost
Analysis
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Chapter 7

Sequential Algorithms and their
Communication Costs

The lower bound results of Chapters 3–6 provide targets for algorithmic development; in this
chapter we focus on algorithms for sequential machines and discuss the current state-of-the-
art in terms of communication costs. The main contribution of this chapter is to provide
a comprehensive (though certainly not exhaustive) summary of communication-optimal se-
quential algorithms for dense linear algebra computations and provide references to papers
that provide algorithmic details, communication cost analyses, and demonstrated perfor-
mance improvements. We consider all of the fundamental computations—BLAS, Cholesky
and symmetric-indefinite factorizations, LU and QR decompositions, eigenvalue and singular
value decompositions—and compare the best sequential algorithms with the lower bounds
established in Chapter 4. Chapter 8 summarizes parallel algorithms, and Chapters 9–11
focus on algorithms for particular computations.

Recall the sequential two-level memory model presented in Section 2.2.1. We consider
communication between a fast memory of size M and a slow memory of unbounded size,
and we track both the number of words and messages that an algorithm moves. Because
a message requires its words to be stored contiguously in slow memory, we must specify
the matrix data layout in determining latency costs (see Section 2.3.1 for details on data
layouts). We also consider the multiple-level memory hierarchy model in this chapter, as it
more accurately reflects today’s machines.

One may imagine that sequential algorithms that minimize communication for any num-
ber of levels of a memory hierarchy (see Section 2.2.1.2) might be very complex, possibly
depending not just on the number of levels, but also their sizes. In this context, it is worth
distinguishing a class of algorithms, called cache oblivious [70], that can minimize communi-
cation between all levels (at least asymptotically) independent of the number of levels and
their sizes. These algorithms are recursive, and provided a matching recursive layout is used,
these algorithms may also minimize the number of messages independent of the number of
levels of memory hierarchy. Not only do cache-oblivious algorithms perform well in theory,
but they can also be adapted to perform well in practice (see [156], for example).
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The rest of this chapter is divided into two sections, classical and fast linear algebra
computations. In Section 7.1, we present Table 7.1 with references to the communication-
optimal algorithms for the most fundamental dense linear algebra computations and then
discuss each computation and the corresponding state-of-the-art algorithms in turn. In
Section 7.2, we highlight extensions of fast matrix multiplication algorithms to other dense
linear algebra computations.

The main contributions to the set of communication-optimal sequential algorithms, ap-
pearing either in this thesis or in manuscripts written with various sets of coauthors, are as
follows:

• communication cost analysis for Cholesky decomposition algorithms [24],

• first sequential communication-optimal algorithm for symmetric-indefinite factoriza-
tion [14] (see Chapter 9),

• first sequential cache-oblivious algorithm for LU decomposition to minimize latency
costs (similar algorithm for QR decomposition is also communication optimal) [32],

• new sequential communication-avoiding algorithms for the symmetric eigendecompo-
sition and SVD [30] (see Chapter 10),

• first sequential communication-optimal algorithm for the nonsymmetric eigendecom-
position [17], and

• communication cost analysis for fast algorithms for linear algebra computations [29].

Table 7.1 is an updated version of Table 6.1 in [28], and some of the discussion here is
based on that paper, written with coauthors James Demmel, Olga Holtz, and Oded Schwartz.
The material on Cholesky decomposition in Section 7.1.2 is based on [24], written with the
same set of coauthors, and the material on LU decomposition in Section 7.1.4 also appears in
[32], written with coauthors James Demmel, Benjamin Lipshitz, Oded Schwartz, and Sivan
Toledo.

7.1 Classical Linear Algebra

In this section, we discuss the current state-of-the-art for algorithms that perform the clas-
sical O(n3) computations on sequential machines. For each of the computations considered
here, we can compare the communication costs of the algorithms to the lower bounds pre-
sented in Chapter 4. Table 7.1 summarizes the communication-optimal classical algorithms
for the most fundamental dense linear algebra computations. We differentiate between algo-
rithms that minimize communication only in the two-level model and those that are optimal
also in a multiple-level memory hierarchy. We also differentiate between algorithms that
minimize only bandwidth costs and those that minimize both bandwidth and latency costs.
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Computation
Two Levels of Memory Multiple Levels of Memory
Minimizes Minimizes Minimizes Minimizes

Words Messages Words Messages

BLAS-3 [32, 70] [32, 70]
Cholesky [7, 8, 24, 83] [7, 24, 83] [7, 24, 83]

Symmetric
[14] [14] [14] [14]

Indefinite
LU [32, 80, 83, 142] [32, 80] [32, 83, 142] [32]
QR [32, 62, 66, 69] [32, 62, 69] [32, 66, 69] [32, 69]

Sym Eig
[17, 30] [17]

and SVD
Nonsym Eig [17] [17]

Table 7.1: Sequential classical algorithms attaining communication lower bounds. We sep-
arately list algorithms that attain the lower bounds for two levels and multiple levels of
memory hierarchy. In each of these cases, we separately list algorithms that minimize only
the number of words moved and algorithms that also minimize the number of messages.

In order for an algorithm to be considered communication-optimal in the sequential
model, we require that its communication costs be within a constant factor of the corre-
sponding lower bound and that it performs no more than a constant factor more compu-
tation than alternative algorithms. Most of the algorithms have the same leading constant
in computational cost as the standard algorithms, though we note where constant factor
increases exist. In some cases, there exists a small range of matrix dimensions where the
algorithm is suboptimal; the communication cost includes a term that exceeds the lower
bound and is not always lower order in this range. For example, the rectangular recursive
algorithms of [66, 83, 142] are suboptimal with respect to bandwidth cost when n satisfies
n/ log n�

√
M � n [32]. We omit these details here for sufficiently small ranges.

We emphasize that only a few of the communication-optimal algorithms referenced here
are included in standard libraries like LAPACK. While this chapter focuses on asymptotic
complexity rather than measured performance on current architectures, many of the papers
referenced for algorithms here also include performance data and demonstrate significant
speedups over asymptotically suboptimal alternatives. Our communal goal is to eventually
make all of these algorithms available via widely used libraries. There is a very large body
of work on many of these algorithms, and we do not pretend to have a complete list of
citations. Instead we refer just to papers where these algorithms first appeared (to the
best of our knowledge), with or without analysis of their communication costs, or to survey
papers.
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7.1.1 BLAS Computations

While the lower bounds given in Section 4.1.2.1 apply to all BLAS computations, only the
BLAS-3 computations have algorithms that attain them. In the case of BLAS-2 and BLAS-1
computations, the arithmetic intensity (i.e., ratio of computation to data) is O(1), so it is
impossible for the bandwidth cost to be a factor of O(

√
M) smaller than the arithmetic cost,

assuming the data has to be read from slow memory. In other words, there exist tighter
lower bounds for BLAS-2 and BLAS-1 computations based on the size of the inputs and
outputs, so the lower bounds of Section 4.1.2.1 are valid but unattainable.

For BLAS-3 computations, blocked versions of the naive algorithms attain the lower
bound in the two-level memory model when the block size size is chosen to be Θ(

√
M)

(see for example the Block-Mult algorithm in [70] for matrix multiplication). In order
to attain the corresponding latency cost lower bound, a block-contiguous data structure is
necessary so that every block computation involves contiguous chunks of memory. Further-
more, because of the self-similarity of matrices and these fundamental computations, the
block computations can themselves be blocked. Using a nested level of blocking for each
level of memory (and choosing the block sizes appropriately), these algorithms can mini-
mize communication between every pair of successive levels in a memory hierarchy. Note
that a matching hierarchical block-contiguous data structure is needed to minimize latency
costs. We do not include a reference in Table 7.1, as these blocked algorithms are generally
considered folklore.

In addition to the explicitly blocked algorithms, there are recursive algorithms for all of
the BLAS-3 computations. As explained in [70] for rectangular matrix multiplication, these
recursive algorithms also attain the lower bounds of Section 4.1.2.1. In order to minimize
latency costs, we use a matching recursive data layout, like the rectangular recursive layout
of [32] which matches the Rec-Mult algorithm of [70]. For computations involving square
matrices, data layouts based on Morton orderings and its variants help minimize latency
costs. For recursive algorithms for triangular solve, see for example [24, Algorithm 3], where
the right hand sides form a square matrix, or [32, Algorithm 5] for the general rectangu-
lar case. Similar algorithms exist for symmetric and triangular matrix multiplications and
symmetric rank-k updates. Because these algorithm are recursive and cache oblivious, they
minimize communication costs between every pair of memory levels in a hierarchy.

7.1.2 Cholesky Decomposition

The Cholesky decomposition is used primarily for solving symmetric, positive-definite linear
systems of equations. Because the computation inherits numerical stability properties from
the matrices to which it is applied, it enjoys a freedom in algorithmic design (no pivoting
is required), and communication-optimal algorithms are well known. For a more complete
discussion of sequential algorithms for Cholesky decomposition and their communication
properties, see [24].
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The reference implementation in LAPACK [8] (potrf) is a blocked algorithm, and by
choosing the block size to be Θ(

√
M), the algorithm attains the lower bound of Corollary

4.6. As in the case of the BLAS computations, a block contiguous data structure is used
to obtain the latency cost lower bound. An algorithm with nested levels of blocking and a
matching data layout can minimize communication for multiple levels of memory.

A recursive algorithm for Cholesky decomposition was first proposed in [83] and later
matched with a block-recursive data structure in [7]. We present the communication cost
analysis in [24], where the algorithm is shown to be communication optimal and cache
oblivious as long as cache-oblivious subroutines are used. Thus, the recursive algorithm is
optimal for both two-level and multiple-level memory models.

Note also that for the Cholesky factorization of sparse matrices whose sparsity structure
satisfy certain graph-theoretic conditions (having “good separators”), the lower bound of
Corollary 4.6 can also be attained [79]. For general sparse matrices, the problem is open.

7.1.3 Symmetric-Indefinite Decompositions

If the linear system is symmetric but not positive definite, then pivoting is required to ensure
numerical stability. The need for pivoting complicates the computation, and communication-
efficient algorithms are not as straightforward. A brief history of symmetric-indefinite fac-
torizations and their communication costs is given at the beginning of Chapter 9. The most
commonly used factorization (and the one implemented in LAPACK) is LDLT , where D is
block diagonal with 2× 2 and 1× 1 blocks. An alternative factorization is due to Aasen [1]
and computes a tridiagonal matrix T instead of a block diagonal matrix D. Both factoriza-
tions use symmetric pivoting. The same lower bound for dense matrices, given in Corollaries
4.13 and 4.14, applies to both computations.

However, no current communication-optimal algorithms exist that compute these factor-
izations directly. The implementations of LDLT in LAPACK [8] (sytrf) and of LTLT in
[125] can attain the lower bound for large matrices (where n ≥ M) but fail for reasonably
sized matrices (where

√
M ≤ n ≤M). They also never attain the latency cost lower bound,

and work only for the two-level memory model. It is an open problem whether there exists
a communication-optimal algorithm that computes the factorizations directly.

The communication-optimal algorithm presented in Chapter 9 and [14] first computes
a factorization LTLT where T is a symmetric band matrix (with bandwidth Θ(

√
M)) and

then decomposes T in a second step. This algorithm is a block algorithm, and with a block
contiguous data structure, it minimizes both words and messages in the two-level memory
model.

Because the subroutines in the communication-avoiding symmetric-indefinite factoriza-
tion can all be performed with blocked or recursive algorithms themselves, it is possible to
extend the algorithm (with matching data structure) to minimize communication costs in the
multiple-level memory model. Note that our Shape-Morphing LU algorithm [32] is necessary
to perform the panel factorization subroutine with optimal latency cost for all subsequent
levels of memory.
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7.1.4 LU Decomposition

For general, nonsymmetric linear systems, an LU decomposition is the direct method of
choice. As in the case of symmetric-indefinite systems, pivoting is required to maintain
numerical stability. For performance reasons (and because it is generally sufficient in prac-
tice), we consider here performing only row interchanges. We leave consideration of comm-
unication-optimal complete-pivoting algorithms (those that perform both row and column
interchanges) to future work (see [61, Section 5] for a possible approach). The content of
this section also appears in [32, Section 6].

There is a long history of algorithmic innovation to reduce communication costs for
LU factorizations. Table 1 in [32] highlights several of the innovations and compares the
asymptotic communication costs of the algorithms discussed here.

The LU decomposition algorithm in LAPACK (getrf) is based on “blocking” in order to
cast much of the work in terms of matrix-matrix multiplication rather than working column-
by-column and performing most of the work as matrix-vector operations. The algorithm is a
right-looking, blocked algorithm, and by choosing the right block size, the algorithm asymp-
totically reduces the communication costs compared to the column-by-column algorithm. In
fact, for very large matrices (m,n > M) it can attain the communication lower bound (see
Corollary 4.5). However, for reasonably sized matrices (m,n < M) the blocked algorithm is
sub-optimal with respect to its communication costs.

In the late 1990s, both Toledo [142] and Gustavson [83] independently showed that using
recursive algorithms can reduce communication costs. The analysis in [142] shows that
the recursive LU (RLU) algorithm moves asymptotically fewer words than the algorithm
in LAPACK when m < M (though latency cost is not considered in that work). In fact,
the RLU algorithm attains the bandwidth cost lower bounds. Furthermore, RLU is cache
oblivious, so it minimizes bandwidth cost for any fast memory size and between any pair of
successive levels of a memory hierarchy.

Motivated by the growing latency cost on both sequential and parallel machines, Grig-
ori, Demmel, and Xiang [80] considered bandwidth and latency cost metrics and presented
an algorithm called Communication-Avoiding LU (CALU) that minimizes both. In or-
der to attain the lower bound for latency cost (proved in that paper via reduction from
matrix multiplication–see Section 3.2.1), the authors used the block-contiguous layout and
introduced tournament pivoting as a new and different scheme than partial pivoting. The
tournament pivoting scheme makes different pivoting choices than partial pivoting and is the-
oretically less stable (though the two schemes are equivalent in a weak sense and have similar
characteristics in practice [80]). The drawbacks to CALU are that it requires knowledge of
the fast memory size for both algorithm and data layout (i.e., it is not cache oblivious), and
that, because of its youth, tournament pivoting does not enjoy the same confidence from the
numerical community as partial pivoting (see [144], for example).

Making the RLU algorithm latency optimal had been an open problem for a few years.
For example, arguments are made in [24] and [80] that RLU is not latency optimal for several
different fixed data layouts. In [32], using a technique called “shape-morphing,” we show
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that attaining communication optimality, being cache oblivious, and using partial pivoting
are all simultaneously achievable.

7.1.5 QR Decomposition

The QR decomposition is commonly used for solving least squares problem, but because of
its numerical stability, it has applications in many other computations such as eigenvalue
and singular value decompositions and many iterative methods. While there are several
approaches to computing a QR factorization, including Gram-Schmidt orthogonalization and
Cholesky-QR, we focus in this section on those approaches that use a sequence of orthogonal
transformations (i.e., Householder transformations or Givens rotations) because they are the
most numerically stable.

The history of reducing communication costs for QR decomposition is very similar to
that of LU. The algorithm in LAPACK (geqrf) is based on the Householder QR algorithm
(see [57, Algorithm 3.2] for example), computes one Householder vector per column, and also
uses blocking to cast most of the computation in terms of matrix multiplication. However,
this form of blocking is more complicated than in the case of LU and is based on the ideas
of [42, 131]. While the blocking requires extra flops, the cost is only a lower order term.
Though the algorithm in LAPACK is much more communication-efficient than the column-
by-column approach, it still does not minimize bandwidth cost for reasonably sized matrices
(
√
M < n < M), and the column-major data layout prevents latency optimality. Note that

the representation of the Q factor is compactly stored as the set of Householder vectors used
to triangularize the matrix (i.e., one Householder vector per column of the matrix).

Shortly after the rectangular-recursive algorithms for LU were developed, a similar algo-
rithm for QR was devised in [66]. As in the case of LU, this algorithm is cache oblivious and
minimizes words moved (but not necessarily messages). It also computes one Householder
vector per column. However, the algorithm performs a constant factor more flops than
Householder QR, requiring about 17% more arithmetic for tall-skinny matrices and about
30% more for square matrices. To address this issue, the authors present a hybrid algorithm
which combines the ideas of the algorithm in LAPACK and the rectangular-recursive one.
The hybrid algorithm involves a parameter that must be chosen correctly (relative to the
fast memory size) in order to minimize communication, so it is no longer cache oblivious.

Later, another recursive algorithm for QR was developed in [69]. The recursive structure
of the algorithm involves splitting the matrix into quadrants instead of left and right halves,
more similar to the recursive Cholesky algorithm than the previous rectangular-recursive
LU and QR algorithms. Because recursive calls always involve matrix quadrants, the algo-
rithm maps perfectly to the block-recursive data layout. Indeed, with this data layout, the
algorithm minimizes both words and messages and is cache oblivious. Unfortunately, the
algorithm involves forming explicit orthogonal matrices rather than working with their com-
pact representations, which ultimately results in a constant factor increase in the number of
flops of about 3×. It is an open question whether this algorithm can be modified to reduce
this computational overhead.
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At nearly the same time as the development of the CALU algorithm and tournament
pivoting, a similar blocked approach for QR decomposition, called communication-avoiding
QR (CAQR) was designed in [62]. CAQR maps to the block-contiguous data layout and
minimizes both words and messages in the two-level model, but because it requires the
algorithmic and data layout block size to be chosen correctly, it is not cache oblivious. In-
terestingly, it also requires a new representation of the Q factor. While just as compact as in
the conventional Householder QR, the new representation varies with an internal character-
istic of the algorithm (i.e., the shape of the reduction trees). The ideas behind CAQR first
appear in [75], and include [48, 82, 66]; see [62] for a more complete list of references. Note
that the CAQR algorithm satisfies the assumptions of Theorem 4.25—it maintains forward
progress and needs not compute T matrices of dimension 2 or greater—and attains both
the bandwidth cost lower bound stated in the theorem as well as the latency lower bound
corollary.

As explained in [32], our shape-morphing technique can be applied to the rectangular-
recursive QR algorithm of [66] to obtain similar results as in the case of LU decomposition.
Shape-Morphing QR is both communication optimal and cache oblivious, though it suffers
from the same increase in computational cost as the original rectangular-recursive algorithm.
Again, a hybrid version reduces the flops at the expense of losing cache obliviousness.

We also note that rank-revealing QR is an important variant of QR decomposition. While
the conventional QR with column pivoting approach suffers from high communication costs,
there do exist communication-optimal algorithms for this computation. See [61] for an ap-
plication of the tournament pivoting idea of CALU to column pivoting within rank-revealing
QR, and see [17, Algorithm 1] for a randomized rank-revealing QR algorithm that requires
efficient (non-rank-revealing) QR decomposition and matrix multiplication subroutines.

7.1.6 Symmetric Eigendecomposition and SVD

The processes for determining the eigenvalues and eigenvectors of a symmetric matrix and
the singular values and singular vectors of a nonsymmetric matrix are computationally sim-
ilar. In both cases, the standard approach is to reduce the matrix via two-sided orthogonal
transformations (stably preserving the eigenvalues or singular values) to a condensed form.
In the symmetric case, this condensed form is a tridiagonal matrix; in the nonsymmetric
case, the matrix is reduced to bidiagonal form. Computing the eigenvalues or singular val-
ues of these more structured matrices is much cheaper (both in terms of computation and
communication) than reducing the full matrices to condensed form, so we do not consider
this phase of computation here. The most commonly used tridiagonal and bidiagonal solvers
include MRRR, Bisection/Inverse Iteration, Divide-and-Conquer, or QR iteration (see [63],
for example). After both eigen- or singular values and vectors are computed for the con-
densed forms, the eigen- or singular vectors of the original matrix can be computed via a
back-transformation, by applying the orthogonal matrices that transformed the dense matrix
to tri- or bidiagonal. See Section 10.1.1 for more details in the symmetric case.
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LAPACK’s routines for computing the symmetric eigendecomposition (syev) and SVD
(gesvd) use a similar approach to the LU and QR routines, blocking the computations to
cast work in terms of calls to matrix multiplication. However, because the transformations
are two-sided, a constant fraction of the work is cast as BLAS-2 operations, like matrix-
vector multiply, which are communication inefficient. As a result, these algorithms do not
minimize bandwidth or latency costs, for any matrix dimension; they require communicating
Θ(n3) words, meaning the data re-use achieved for a constant fraction of the work is as low
as O(1).

In 2000, Bischof, Lang, and Sun [38, 43] proposed a two-step approach to reducing a
symmetric matrix to tridiagonal form known as Successive Band Reduction (SBR): first
reduce the dense matrix to band form and then reduce the band matrix to tridiagonal. The
advantage of this approach is that the first step can be performed so that nearly all of the
computation is cast as matrix multiplication; that is, the data re-use can be Θ(

√
M), which

is communication optimal. The drawback is that reducing the band matrix to tridiagonal
form is a difficult task, requiring O(n2b) flops (as opposed to O(nb2) flops in the case of the
symmetric-indefinite linear solver) and complicated data dependencies. Chapter 10 and [30]
address performing this reduction in a communication-efficient manner.

If only eigenvalues are desired, then the two-step approach applied to a dense symmetric
matrix performs asymptotically the same number of flops as the standard approach used
in LAPACK. If eigenvectors are also desired, then the computational cost of the back-
transformation phase is higher for the two-step approach by a constant factor. In terms
of the communication costs, the two-step approach can be much more efficient, matching
the lower bound of Corollary 4.26 and Theorem 4.27 (see [17, Section 6] for the bandwidth
cost analysis). In order to minimize communication across the entire computation, the two-
step approach also requires a communication-efficient tall-skinny QR decomposition (during
the first step) and one of the algorithms proposed in Chapter 10 (for the second step). All of
the SBR algorithms designed for the symmetric eigenproblem can be adapted for computing
the SVD in the nonsymmetric case.

Another communication-optimal approach is to use the spectral divide-and-conquer algo-
rithms described in Section 7.1.7, adapted for symmetric matrices or computing the SVD. In
the symmetric case, a more efficient iterative scheme is presented in [116]. These approaches
require efficient QR decomposition and matrix multiplication algorithms and perform a con-
stant factor more computation than the reduction approaches.

7.1.7 Nonsymmetric Eigendecomposition

The standard approach for computing the eigendecomposition of a nonsymmetric matrix
is similar to the symmetric case: orthogonal similarity transformations are used to reduce
the dense matrix to a condensed form, from which the Schur form is computed. In the
nonsymmetric case, the condensed form is an upper Hessenberg matrix (an upper triangular
matrix with one nonzero subdiagonal), and QR iteration (with some variations) is typically
used to annihilate the subdiagonal. In this case, the amount of data in the condensed
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form is asymptotically the same as the original matrix (about n2/2 versus n2), and Θ(n3)
computation is required to obtain Schur form from a Hessenberg matrix (as opposed to
the symmetric case, where the data and computation involved in solving the tridiagonal
eigenproblem are lower order terms). Thus, in determining the communication cost of the
overall algorithm, we cannot ignore the second phase of computation as in Section 7.1.6.

LAPACK’s routine for the nonsymmetric eigenproblem (geev) takes the reduction ap-
proach and moves O(n3) words in the reduction phase and O(n3) words in the QR iteration,
so it is suboptimal both in terms of words and messages. While there have been approaches
to reduce communication costs in the reduction phase in a manner similar to SBR, reduc-
ing first to band-Hessenberg and then to Hessenberg form (see [96]), it is an open question
whether an asymptotic reduction is possible and the lower bound of Corollary 4.26 and The-
orem 4.27 is attainable. Even if the reduction phase can be done optimally, it is also an
open question whether QR iteration can be done in an equally efficient manner. Some work
on reducing communication for multi-shift QR iteration in the sequential model appears in
[113].

Because of the difficulties of the reduction approach, we consider a different approach for
computing the nonsymmetric eigendecomposition, called spectral divide-and-conquer. In this
approach, the goal is to compute an orthogonal similarity transformation which transforms
the original matrix into a block upper triangular matrix, thereby generating two smaller
subproblems whose Schur form can be combined to compute the Schur form of the original
matrix. While there are a variety of spectral divide-and-conquer methods, we focus on the
one proposed in [13], adapted in [58], and further developed in [17]. This approach relies
on a randomized rank-revealing QR factorization and communication-optimal algorithms
for QR decomposition and matrix multiplication. Under mild assumptions, the algorithm
asymptotically minimizes communication (and is cache oblivious if the QR decomposition
and matrix multiplication algorithms are) but involves a constant factor more computation
than the reduction and QR iteration approach. The algorithm can be applied to the gener-
alized eigenproblem as well as symmetric variants and the SVD. See [17] for full details of
the algorithm and its communication costs.

Note also that to form the eigendecomposition from Schur form requires computing the
eigenvectors of a (quasi-)triangular matrix. The LAPACK routine for this computation
(trevc) computes one eigenvector at a time and does not minimize communication. A
communication-optimal, blocked algorithm is presented in [17, Section 5].

7.2 Fast Linear Algebra

A depth-first traversal of the recursion tree given by Strassen’s original algorithm minimizes
bandwidth cost in the sequential model. See [26, Section 1.4.1] for the cost recurrence and
solution. When the corresponding recursive data layout is used, the algorithm also minimizes
latency cost.



CHAPTER 7. SEQUENTIAL ALGORITHMS AND COMMUNICATION COSTS 95

Demmel, Dumitriu, and Holtz [58] showed that nearly all of the fundamental algorithms
in dense linear algebra can be executed with asymptotically the same number of flops as
matrix multiplication. Although the stability properties of fast matrix multiplication are
slightly weaker than those of classical matrix multiplication, the authors show in [59] that
all fast matrix multiplication is stable. Further, in [58] they show that fast linear algebra
can be made stable at the expense of only a polylogarithmic (i.e., polynomial in log n) factor
increase in cost. That is, to maintain stability, one can use polylogarithmically more bits
to represent each floating point number and to compute each flop. While this increases the
time to perform one flop or move one word, it does not change the number of flops computed
or words moved by the algorithm.

The bandwidth cost analysis for the algorithms presented in [58] is given in [29]. While
stability and computational complexity were the main concerns in [58], in [29] the bandwidth
cost of the linear algebra algorithms is shown to match the lower bound of Corollary 6.5.
To minimize latency costs, the analysis in [29] must be combined with the shape-morphing
technique of [32].

7.3 Conclusions and Future Work

While there exist communication-optimal algorithms for all of the computations discussed
in this chapter and presented in Table 7.1, much work remains to be done. In some cases,
implementations of theoretically optimal algorithms have demonstrated performance im-
provements over previous algorithms; in others, implementations are still in progress. We
highlight in this section possible future directions of algorithmic improvement—finding ways
to reduce costs by constant factors or develop other theoretically optimal algorithms that
might perform more efficiently in practice.

For example, it may be possible to minimize both words and messages for one-sided
factorizations without relying on tournament pivoting, Householder reduction trees, or the
block-Aasen algorithm by using more standard blocked algorithms (as in LAPACK) and
adding a second level of blocking. This could produce a communication-optimal LDLT

algorithm. Other open problems with respect to QR decomposition include reconstructing
Householder vectors from the tree representation of TSQR and modifying the algorithm of
Frens and Wise to be more computationally efficient.

Because there are many variants of eigenvalue and singular value problems, several large-
constant improvements are possible, particularly in the cases of computing eigenvectors of
a symmetric matrix and singular vectors of a nonsymmetric matrix. The communication-
optimal nonsymmetric eigensolver also suffers from high computational costs and requires
more optimization to be competitive in practice.

Finally, the fast linear algebra algorithms are asymptotically as efficient as fast matrix
multiplication, but they have never been demonstrated to perform better than classical
algorithms in practice. One challenge to minimizing the constant factors is to optimize the
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rectangular matrix multiplication subroutines, using either square or rectangular fast matrix
multiplication algorithms.
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Chapter 8

Parallel Algorithms and their
Communication Costs

While Chapter 7 summarizes algorithms for the sequential case, we focus in this chapter
on parallel algorithms. The main contribution of the chapter is a comprehensive (though
certainly not exhaustive) summary of communication-optimal parallel algorithms for dense
linear algebra computations. Again, we provide references to the papers providing algorith-
mic details, communication cost analyses, and demonstrated performance improvements.
We consider the same set fundamental computations—BLAS, Cholesky and symmetric-
indefinite factorizations, LU and QR decompositions, eigenvalue and singular value decom-
positions—and compare the best parallel algorithms with the lower bounds established in
Chapter 4. The following chapters, Chapters 9–11, will focus on algorithms for particular
computations.

Recall the distributed-memory parallel memory model presented in Section 2.2.2. We
consider communication among a set of P processors, all connected by a fully connected
network, and we track both words and messages communicated by the parallel machine
along the critical path(s) of the algorithm. All of the algorithms discussed in this chapter
assume a block-cyclic data distribution (see Section 2.3.2), where a block size of 1 gives a
cyclic distribution and a block size of n/

√
P gives a blocked distribution.

The rest of this chapter is divided into three sections. The first two sections focus on
classical algorithms: those that use no more than a constant factor more than the minimum
amount of local memory required (Section 8.1) and those that use asymptotically more
memory to reduce communication costs (Section 8.2). Section 8.3 considers fast linear algebra
computations.

The main contributions to the set of communication-optimal parallel algorithms, appear-
ing either in this thesis or in manuscripts written with various sets of coauthors, are as
follows:

• communication cost analysis for minimal-memory parallel Cholesky decomposition al-
gorithms [24],
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• first minimal-memory communication-avoiding parallel algorithms for the symmetric
eigendecomposition and SVD [30] (see Chapter 10),

• first minimal-memory communication-optimal parallel algorithm for the nonsymmetric
eigendecomposition [17], and

• first communication-optimal parallel algorithm for parallelizing Strassen’s and other
fast matrix multiplication algorithms [20, 105] (see Chapter 11).

Table 8.1 is an updated version of Table 6.2 in [28], and some of the discussion here is
based on that paper, written with coauthors James Demmel, Olga Holtz, and Oded Schwartz.
The material on Cholesky decomposition in Section 7.1.2 is based on [24], written with the
same set of coauthors. Section 8.3 includes a summary of Chapter 11 and [20], written
written with James Demmel, Benjamin Lipshitz, Olga Holtz, and Oded Schwartz.

8.1 Classical Linear Algebra (with Minimal Memory)

In this section, we discuss the current state-of-the-art for algorithms that perform the clas-
sical O(n3) computations for dense matrices on parallel machines, assuming no more than
a constant factor of extra local memory is used. For each of the computations considered
here, we can compare the communication complexity of the algorithms to the lower bounds
presented in Chapter 4, where we fix the local memory size to M = Θ(n2/P ). Table 8.1
summarizes the communication-optimal algorithms in this case for the most fundamental
dense linear algebra computations. Another term for these minimal memory algorithms is
“2D,” which was first used to distinguish minimal memory matrix multiplication algorithms
from so-called “3D” algorithms that do use more than a constant factor of extra memory.
In these 2D algorithms, the processors are organized in a two-dimensional grid, with most
communication occurring within processor rows or columns.

Recall the lower bounds that applies to these dense computations, where the number
of gijk operations is G = Θ(n3/P ). For these values of G and M , the lower bound on the
number of words communicated by any processor is Ω(n2/

√
P ), and the lower bound on the

number of messages is Ω(
√
P ). In order for an algorithm to be considered communication-

optimal, we require that its communication complexity be within a polylogarithmic (in P )
factor of the two lower bounds and that it performs no more than a constant factor more
computation than alternative algorithms (i.e., the parallel computational cost is Θ(n3/P )).

The asymptotic communication costs for ScaLAPACK algorithms are given in [44, Table
5.8]. Note that the bandwidth costs for those algorithms include a logP factor due to the
assumption that collective communication operations (e.g., reductions and broadcasts) are
performed with tree-based algorithms. Better algorithms exist for these collectives that do
not incur the extra factor in bandwidth cost. For example, a broadcast can be performed with
a scatter followed by an all-gather (see [50] for more details). Thus, the extra logarithmic
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Computation Minimizes Words Minimizes Messages

BLAS-3 [3, 44, 49, 71] [3, 44, 49, 71]
Cholesky [44] [44]

Symmetric Indefinite [14, 44] [14]
LU [44, 80] [80]
QR [44, 62] [62]

Sym Eig and SVD [17, 30, 44] [17, 30]
Nonsym Eig [17] [17]

Table 8.1: Parallel classical algorithms attaining communication lower bounds assuming
minimal memory is used. That is, these algorithms have computational cost Θ(n3/P ) and
use local memory of size O(n2/P ). We separately list algorithms that minimize only the
number of words moved and algorithms that also minimize the number of messages.

factor is not inherent in the algorithm, only in the way collective operations were first
implemented in SCALAPACK.

8.1.1 BLAS Computations

As in the sequential case, the lower bounds of Section 4.1.2.1 apply to all three levels of
BLAS computations, but the only parallel algorithms that can attain the bounds are BLAS-3
routines. ScaLAPACK [44] uses the Parallel BLAS library, or PBLAS, which has algorithms
for matrix multiplication (and its variants) and triangular solve that minimize both words
and messages. The history of communication-optimal matrix multiplication goes back to
Cannon [49]. While Cannon’s algorithm is asymptotically optimal, a more robust and tunable
algorithm known as SUMMA [3, 71] is more commonly used in practice. For a more complete
summary of minimal memory, or 2D, matrix multiplication algorithms, see [95, Section 4].

8.1.2 Cholesky Decomposition

ScaLAPACK’s parallel Cholesky routine (pxposv) minimizes both words and messages on
distributed-memory machines. See [24] for a description of the algorithm and its communi-
cation analysis. Note that the bandwidth cost in that paper includes a logP factor that can
be removed with a more efficient broadcast routine.

8.1.3 Symmetric-Indefinite Decompositions

ScaLAPACK’s parallel LDLT routine (pxsysv) minimizes words moved, but it is not latency
optimal. For the sequential case, Chapter 9 and [14] present an alternate communication-
optimal symmetric-indefinite factorization based on a blocked version of Aasen’s LTLT fac-
torization [1] (where T is tridiagonal). While neither Chapter 9 or [14] address the parallel
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case, the algorithm can be parallelized to minimize communication in the minimal memory
case. This algorithm computes the factorization in two steps, first reducing the symmet-
ric matrix to band form and then factoring the band matrix. The first step requires the
use of a communication-efficient tall-skinny LU decomposition routine (as used in CALU in
Section 8.1.4). The second step can be performed naively with a nonsymmetric band LU
factorization (with no parallelism) with computational and communication costs that do not
asymptotically exceed the costs of the first step. We leave the details of the parallelization of
the reduction to band form and a more complete consideration of efficient parallel methods
for factoring the band matrix to future work.

8.1.4 LU Decomposition

As in the symmetric-indefinite case, ScaLAPACK’s LU routine (pxgesv) minimizes the num-
ber of words moved but not the number of messages. Grigori, Demmel, and Xiang [80] pro-
pose a communication-optimal algorithm known as Communication-Avoiding LU (CALU)
which uses “tournament pivoting,” a scheme that makes different pivoting decisions from par-
tial pivoting. The theoretical numerical stability guarantees are slightly weaker for CALU
than for algorithms using partial pivoting, though in practice both approaches show simi-
lar behavior (see [80] for more details). The use of tournament pivoting allows the overall
algorithm to reach both bandwidth and latency cost lower bounds.

In the sequential case, partial pivoting can be maintained while still minimizing both
words and messages using a technique known as shape-morphing [32]. Unfortunately, the
idea of shape-morphing is unlikely to yield the same benefits in the parallel case. Choosing
pivots for each of n columns lies on the critical path of the algorithm and therefore must be
done in sequence. Each pivot choice either requires at least one message or for the whole
column to reside on a single processor. This seems to require either Ω(n) messages or Ω(n2)
words moved, which both asymptotically exceed the respective lower bounds.

8.1.5 QR Decomposition

ScaLAPACK’s QR routine (pxgeqrf) also minimizes bandwidth cost but not latency cost. It
is a parallelization of the LAPACK algorithm, using one Householder vector per column. At
nearly the same time as the development of the CALU algorithm, Demmel, Grigori, Hoem-
men, and Langou [62] developed the Communication-Avoiding QR (CAQR) algorithm that
minimizes both words and messages. Note that the CAQR algorithm satisfies the assump-
tions of Theorem 4.25—it maintains forward progress and needs not compute T matrices
of dimension 2 or greater—and attains both the bandwidth cost lower bound stated in the
theorem as well as the latency lower bound corollary. The principal innovation of parallel
CAQR is the factorization of a tall-skinny submatrix using only one reduction, for a cost
of O(logP ) messages rather than communicating once per column of the submatrix. The
algorithm for tall-skinny matrices is called TSQR and is an important subroutine not only
for general QR decomposition but also many other computations (see [114], for example). In



CHAPTER 8. PARALLEL ALGORITHMS AND COMMUNICATION COSTS 101

order to obtain this reduction, the authors abandoned the conventional scheme of computing
one Householder vector per column and instead use a tree of Householder transformations.
This results in a different representation of the orthogonal factor, though it has the same
storage and computational requirements as the conventional scheme. It is possible to per-
form TSQR and recover the conventional storage scheme without asymptotically increasing
communication costs, but we leave details of the approach to future work.

The TSQR operation is effectively a reduction operation, and in the distributed memory
parallel case, the optimal reduction tree is binary. Applied to an m × n matrix such that
m/P > n, the communication costs of the reduction are O(n2 logP ) words and O(logP )
messages. As mentioned in the beginning of Section 8.1, it is possible to remove the logarith-
mic factor in the bandwidth cost for some simple reductions; it is an open question whether
this is possible with TSQR.

As in the sequential case, for communication-optimal algorithms performing rank-reveal-
ing QR decompositions, see [61] and [17, Algorithm 1].

8.1.6 Symmetric Eigendecomposition and SVD

As in the case of one-sided factorizations, ScaLAPACK’s routines for the two-sided fac-
torizations for the symmetric eigendecomposition (pxsyev) and SVD (pxgesvd) minimize
bandwidth cost but fail to attain the latency cost lower bound. However, by using the two-
step SBR approach described in Section 7.1.6, we can minimize both words and messages.
In the two-step approach, the first step requires an efficient parallel tall-skinny QR factor-
ization, like TSQR. For the second step, the use of the parallel algorithm given in Chapter
10 and [30] ensures the overall algorithm achieves the lower bounds.

8.1.7 Nonsymmetric Eigendecomposition

For the nonsymmetric eigenproblem, ScaLAPACK’s routine (pxgeev) minimizes neither
words nor messages. As in the sequential case, it is an open problem to minimize communi-
cation using the standard approach of reduction to Hessenberg form followed by Hessenberg
QR iteration. Ongoing algorithmic and implementation development on the ScaLAPACK
code has been improving the communication costs and speed of convergence; see [77] for
details.

For the purposes of minimizing communication, we consider a different approach based
on spectral divide-and-conquer. As in the sequential case, by using the method of [13, 17,
58], we can minimize both words and messages with the use of optimal parallel QR decom-
position and matrix multiplication subroutines (see [17] for the communication analysis).
Also, computing the eigenvectors from Schur form requires an optimal algorithm which is
presented in [17, Section 5].
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8.2 Classical Linear Algebra (with Extra Memory)

The lower bounds proved in Chapter 4 depend on the number of flops performed and the
size of the local memory. In Section 8.1 we assume the local memory to be fixed at Θ(n2/P );
however, the actual amount of available local memory is a machine parameter rather than
dependent on the problem size. Furthermore, the communication lower bound is proportional
to the inverse of the square root of the local memory size, so increasing the local memory
size (potentially) decreases the communication required of a computation. Thus, the lower
bounds suggest that by using local memory, we can decrease the amount of communication
performed. Note that the existence of memory-independent lower bounds, given in Section
6.2, provide a limit on how much this tradeoff can be exploited. In this section, we discuss
classical algorithms that are able to take advantage of this opportunity.

8.2.1 Matrix Multiplication

The first algorithms to reduce the communication cost of parallel matrix multiplication by
using extra memory were developed by Aggarwal, Chandra, and Snir (in the LPRAM model)
[4] and Berntsen (on a hypercube network) [35]. Aside from using extra local memory, the
main innovation in these algorithms is to divide the work for computing single entries in the
output matrix among multiple processors; in the case of Cannon’s and other 2D algorithms, a
single processor computes all of the scalar multiplications and additions for any given output
entry. See [16, Figure 2] for a visual classification of 1D, 2D, and 3D matrix multiplication
algorithms based on the assignment of work to processors (note that the classification is
applied to sparse algorithms in that paper). For a more complete summary of 3D dense
matrix multiplication algorithms, see [95, Section 5].

The extra memory required for 3D algorithms is O(n2/P 2/3), or O(P 1/3) times the min-
imal amount of memory required to store the input and output matrices. The communica-
tion savings, compared to 2D algorithms, is a factor of O(P 1/6) words and Õ(P 1/2) messages.
However, these algorithms provide only a binary alternative to 2D algorithms—only if enough
memory is available can 3D algorithms be employed. McColl and Tiskin [112] showed how
to navigate the tradeoff continuously (in the BSPRAM model): for example, given local
memory of size Θ(n2/P 2α+2/3), their algorithm achieves bandwidth cost of O(n2/P 2/3−α) for
0 ≤ α ≤ 1/6. Later, Solomonik and Demmel [137] developed and implemented a practical
version of the algorithm which generalizes the 2D SUMMA algorithm. Because their ap-
proach fills the gap between 2D and 3D algorithms, the authors coined “2.5D” to describe
their algorithm.

Both of the algorithms exhibiting the continuous tradeoff are iterative algorithms. A
recursive algorithm, which is a simple extension of the parallel Strassen algorithm given in
Chapter 11 and [20], also achieves the same asymptotic communication costs (see also [105]
for more details). The recursive algorithm is generalized to rectangular matrices in [60, 106],
and the 2.5D algorithm [137] is generalized to rectangular matrices in [110], though it is not
communication optimal in all cases.
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8.2.2 Other Linear Algebra Computations

There are only a few known algorithms for the rest of linear algebra that are able to navigate
the memory-communication tradeoff, but none as successfully as matrix multiplication. In
particular, in the case of matrix multiplication, both bandwidth and latency costs can be re-
duced with the use of extra memory. In the case of all other algorithms for computations that
involve more dependencies than matrix multiplication, there exists a second tradeoff between
bandwidth and latency costs. That is, decreasing the bandwidth cost below Θ(n2/P 1/2) in-
creases the latency cost above Θ(

√
P ) (or vice-versa). Therefore, the bandwidth cost and

latency cost lower bounds are not simultaneously achieved for M � Ω(n2/P ). It remains
an open question whether this is a necessary tradeoff.

Tiskin [140] presents a recursive algorithm in the BSP model for LU decomposition with-
out pivoting that exhibits the same tradeoff between communication and synchronization in
that model. This algorithm can be applied to symmetric positive-definite matrices, though
it uses explicit triangular matrix inversion and multiplication (ignoring stability issues) and
also ignores symmetry. Lipshitz [106] provides a similar algorithm for Cholesky decompo-
sition, along with a recursive algorithm for triangular solve, that has the same asymptotic
communication costs but exploits symmetry and maintains the stability of the minimal-
memory algorithm. These Cholesky algorithms achieve a bandwidth cost of O(n2/Pα) and
latency cost of O(Pα) for 1/2 ≤ α ≤ 2/3.

In a later paper, Tiskin [141] incorporate pairwise pivoting into a new algorithm with the
same asymptotic costs as in [140]. While pairwise pivoting is not generally considered stable
enough in practice, the approach is generic enough to apply to QR decomposition based on
Givens rotations. However, the algorithm seems to be of only theoretical value: for example,
constants are generally ignored in the analysis, even for computational costs.

Solomonik and Demmel [137] devise a stable LU factorization algorithm that uses tourna-
ment pivoting and achieves the same asymptotic costs as the algorithm in [140]; they demon-
strate competitive performance compared to minimal-memory LU algorithms. This work
(both algorithm and implementation) is extended to the symmetric positive definite case
in [72]. We leave the development of practical algorithms for QR and symmetric-indefinite
factorizations (as well as eigenvalue and singular value decompositions) to future work.

8.3 Fast Linear Algebra

Compared to classical linear algebra, much less work has been done on the parallelization of
fast linear algebra algorithms. Because there is not as rich a history of minimal-memory fast
algorithms, we do not differentiate between minimal-memory and extra-memory algorithms
in this section. Note that the fast algorithms that do exist are analogous to the classical extra-
memory algorithms of Section 8.2: they can be executed with M = O(n2/P ) if necessary but
also can exploit extra memory at reduced communication costs if possible. While Strassen’s
matrix multiplication has been efficiently parallelized, both in theory and in practice, there
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are only a few theoretical results for other fast matrix multiplication algorithms and for other
linear algebra computations.

McColl and Tiskin [112] present a parallelization of any Strassen-like matrix multiplica-
tion algorithm (see Definition 6.1) in the BSPRAM model that achieves a bandwidth cost
of O(n2/P 2/ω0−α(ω0−2)) words using local memory of size O(n2/P 2/ω0+2α), where ω0 is the
exponent of the computational cost of the algorithm and 0 ≤ α ≤ 1/2 − 1/ω0. This algo-
rithm is communication optimal for any local memory size; in particular, choosing maximum
α achieves a minimal-memory algorithm, and choosing minimum α achieves the memory-
independent lower bound (given in Theorem 6.8 for Strassen’s algorithm). Chapter 11 (see
also [20]) presents a more practical version of the algorithm, with communication analysis
in the distributed-memory model, described in Section 2.2.2, as well as an implementation
with performance results. For more detailed implementation description and performance
results, see [105, 106].

We note that the recursive algorithms in Section 8.2.2 that use square matrix multiplica-
tion as a subroutine can benefit from a fast matrix multiplication algorithm. In particular,
the triangular solve and Cholesky decomposition algorithms of [106, Section 5] and the algo-
rithms of [141] attain the same computational costs as the matrix multiplication algorithm
used and similarly navigate the communication-memory tradeoff. However, these algorithms
have only been theoretically analyzed—no implementations exist yet. We leave the imple-
mentation of these known algorithms and the development of new algorithms for the rest of
linear algebra to future work.

8.4 Conclusions and Future Work

As in the sequential case, there are many constant-factor improvements possible for the
algorithms discussed in Section 8.1 and presented in Table 8.1. In particular, many imple-
mentations are in progress for demonstrating performance benefits of the new algorithms for
symmetric-indefinite factorizations and computing the symmetric eigendecomposition and
SVD.

Furthermore, the algorithms presented in Table 8.1 assume limitations on local memory
that are often not necessary, especially in strong-scaling scenarios. Developing and opti-
mizing extra-memory algorithms is an important area of research for developing scalable
algorithms. As mentioned in Section 8.2.2, many open algorithmic problems remain.

Finally, the field of using fast parallel algorithms is wide open. While Strassen’s algorithm
has been shown to be effective in practice, making it robust for library deployment, applying
it to other linear algebra computations, and discovering and developing even faster matrix
multiplication algorithms are all areas of future work.
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Chapter 9

Communication-Avoiding
Symmetric-Indefinite Factorization

The focus of this chapter is a symmetric-indefinite factorization algorithm that minimizes
communication costs. The main contributions are

• a new algorithm that is asymptotically more communication efficient than alternative
algorithms,

• a proof of its backward stability (subject to a growth factor),

• a proof of its communication optimality in the sequential model, and

• numerical experiments measuring stability of the algorithm with both randomly gen-
erated matrices and matrices arising in real applications.

The algorithm is a block variant of Aasen’s triangular tridiagonalization algorithm [1]. We
designed the algorithm so that it can be implemented by a sequence of operations, each
involving a constant number of b× b submatrices (blocks), where b is a tunable parameter.
Most of these block operations perform Θ(b3) arithmetic operations, which implies that the
computation to communication ratio of the algorithm is Θ(b). Furthermore, we use a block-
contiguous data layout (so that blocks are always contiguous in slow memory, see Section
2.3.1), implying that each block operation requires only O(1) messages and Θ(b2) words.

Matrix algorithms with such a structure usually perform well when implemented on
sequential or shared-memory parallel computers. They can usually be adapted to distributed-
memory parallel computers, but these adaptations are often intricate and far from trivial.
The focus here is on the sequential block algorithm and its memory-hierarchy performance.
See [15] for a description of a shared-memory parallel implementation of the algorithm and
its performance. We do not discuss distributed-memory parallelization in this chapter.

Aasen’s algorithm [1] factors
A = P TLTLTP,
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where P is a permutation matrix selected for numerical stability, L is lower triangular (with
ones on the diagonal and |Lij| ≤ 1), and T is symmetric and tridiagonal. The algorithm
performs n3/3+o(n3) arithmetic operations; it improves upon an earlier algorithm by Parlett
and Reid that computes the same factorization in 2n3/3 + o(n3) operations [119]. Neither
algorithm is used extensively; a few years later Kaufman and Bunch discovered a similar
factorization that proved to be more popular, one in which the tridiagonal T is replaced by
a matrix that is block diagonal with 2× 2 and 1× 1 blocks [47].

Like other early factorizations, the algorithms of Aasen and of Parlett and Reid are
not communication efficient even for very simple memory hierarchies. If M < n2/8, both
algorithms transfer Θ(n3) words between fast and slow memory, which is very inefficient. An
implementation of the Bunch-Kaufman factorization that transfers only O(min(n3, n

2

M
·n2) =

O(n4/M) words was later discovered,1 and this implementation was included in LAPACK [8].
More recently, Rozlozńık, Shklarski and Toledo discovered how to compute the Parlett-Reid-
Aasen factorization with the same communication efficiency [125].

In this chapter, we describe and analyze a stable symmetric factorization algorithm that
is communication avoiding; it requires only O(n3/

√
M) words moved. In terms of commu-

nication, this is much more efficient than any existing symmetric indefinite factorization.
However, the algorithm produces a T that is banded rather than tridiagonal. To achieve
this communication efficiency, the half bandwidth of T is Θ(

√
M). We also show that the

resulting T can be factored further in a way that is also communication efficient, and the
resulting factorization allows linear systems of equations to be solved quickly.

Our algorithm is fundamentally a block version of Aasen’s algorithm, and we will refer
to it as the block-Aasen algorithm. While the methodology of producing block matrix
algorithms from element-by-element algorithms is well understood, applying it to this case
proved to be challenging. The first block-Aasen algorithm that we designed was highly
unstable. In Aasen’s original algorithm, diagonal elements of T are computed by solving a
scalar equation. In the block version, this scalar equation transforms into a linear system of
equations whose solution is a diagonal block of T , which is symmetric. But the system itself
is unsymmetric and the symmetry of the solution is implicit. When the system is solved in
floating point arithmetic, the computed block of T can have a non-negligible skew-symmetric
component in addition to its symmetric part, and this excites an instability. To address this
difficulty, we designed an algorithm that produces a symmetric T even in floating point.

The rest of the chapter is organized as follows. We present the block-Aasen algorithm in
Section 9.1. Section 9.2 analyzes the stability of the algorithm, and Section 9.3 its computa-
tion and communication complexity. Numerical experiments presented in Section 9.4 provide
additional insights into the behavior of the algorithm. Section 9.5 presents our conclusions
from this work.

1The O(n4/M) bound is attained when M ≥ n. In this regime, the algorithm factors panels of roughly
M/n columns. Updating a trailing submatrix of dimension Θ(n) after the factorization of Θ(n/(M/n)) such
panels transfers Θ(n4/M) words. When M < n, the algorithm transfers O(n3) words; in this regime the fast
memory has no significant beneficial effect.
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All of the results in this chapter appear in [14], written with coauthors Dulceneia Becker,
James Demmel, Jack Dongarra, Alex Druinsky, Inon Peled, Oded Schwartz, Sivan Toledo,
and Ichitaro Yamazaki. The companion paper [15], written with the same coauthors, de-
scribes a shared-memory parallel implementation of the algorithm and presents its perfor-
mance compared with several alternatives; we do not present that data here. This work
received a Best Paper award at the 2013 International Parallel and Distributed Processing
Symposium (IPDPS).

9.1 Block-Aasen Algorithm

To keep the notation simple, we initially ignore pivoting in the description of the algorithm.
The algorithm factors the n× n matrix A into

A = LTLT ,

where L is unit lower triangular and T is symmetric and banded with half bandwidth b (i.e.,
Tij = 0 if |i− j| > b). The algorithm processes the matrices in aligned blocks of size b × b
(except for the trailing blocks which might be smaller). The algorithm is a block version of
Aasen’s algorithm, so we view T as a block tridiagonal matrix with triangular blocks in the
positions immediately adjacent to the main diagonal.

To describe the algorithm we must specify three auxiliary matrices. The first is a block
upper-triangular matrix with symmetric diagonal blocks R that we require to satisfy

RT +R = T.

The superdiagonal blocks in R are the same as the corresponding blocks in T , the diagonal
blocks of R are scaled copies of those of T (with scaling 1/2), and the subdiagonal blocks
in R are zero (unlike in T , which is symmetric). The other two matrices are denoted by W
and H and are required to satisfy

W = RLT

H = TLT .

Aasen’s original algorithm also computes H (forming it was the key step that allowed Aasen
to eliminate half the arithmetic operations from Parlett and Reid’s algorithm), but it does
not compute W .

We present the algorithm in the form of block-matrix equations each of which defines one
or two sets of blocks in these matrices. The blocks that are computed from each equation
are underlined, following the notation of [85, Section 11.2]. We use capital I and capital J to
denote block indices, and we denote the block dimension of all the matrices by N = dn/be.
We denote blocks of matrices using indexed notation with block indices. For example, the
submatrix that is specified by A1+(I−1)b:Ib,1+(J−1)b:Jb in scalar-index colon notation is denoted
AI,J .
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W R L
T

 =

Figure 9.1: An illustration of computing superdiagonal blocks of W via matrix multiplication
in Equation (9.1). Here N = 6 and J = 4. The blocks that participate in the equation are
enclosed in thick rectangles, and the blocks that are computed using this equation are crossed.
The same notation is used in other diagrams in this section.

The initialization step of the algorithm assigns

L1:N,1 = (identity matrix)1:N,1.

That is, the first b columns of L have ones on the diagonal and zeros everywhere else. After
this initialization, the algorithm computes a block column of each of the matrices in every
step. Step J computes block column J+1 of L and block columns J of T , H, and W (diagonal
blocks of W are never needed so they are not computed) according to the formulas:

W1:J−1,J = R1:J−1,1:J(LJ,1:J)T (9.1)

AJ,J = LJ,1:J−1W1:J−1,J + (W1:J−1,J)T (LJ,1:J−1)
T + LJ,JTJ,J(LJ,J)T (9.2)

H1:J,J = T1:J,1:J(LJ,1:J)T (9.3)

AJ+1:N,J = LJ+1:N,1:JH1:J,J + LJ+1:N,J+1HJ+1,J (9.4)

HJ+1,J = TJ+1,J(LJ,J)T . (9.5)

9.1.1 Correctness

We now show that the algorithm is correct. Verifying that the blocks that are computed
in each equation depend only on blocks that are already known is trivial. Therefore, we
focus on showing that A = LTLT whenever L and T are computed in exact arithmetic. The
analysis also constitutes a more detailed presentation of the algorithm.

Equation (9.1) computes a block column of W , except for the diagonal block, by multiply-
ing two submatrices, using the equation W = RLT , as shown in Figure 9.1. This guarantees
that WI,J = (RLT )I,J for all I < J . The diagonal blocks of W are not computed and we
define for convenience WJ,J = (RLT )J,J for all J . Because all other blocks of W and RLT

are zero, W = RLT .
Equation (9.2) computes a diagonal block of T by solving a two-sided triangular linear

system. This linear system can be solved by one of the existing solvers which we describe
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Figure 9.2: An expression for the diagonal blocks of W .

below. The right-hand side matrix in this system,

AJ,J − LJ,1:J−1W1:J−1,J − (LJ,1:J−1W1:J−1,J)T ,

must be computed symmetrically; this may be done using the BLAS routine syr2k [45].
The equation guarantees that

AJ,J = LJ,1:J−1W1:J−1,J + (LJ,1:J−1W1:J−1,J)T + LJ,JTJ,J(LJ,J)T .

By noting that

LJ,JTJ,J(LJ,J)T = LJ,J(RJ,J + (RJ,J)T )(LJ,J)T

= LJ,JRJ,J(LJ,J)T + (LJ,JRJ,J(LJ,J)T )T

and that the diagonal blocks of W = RLT are WJ,J = RJ,J(LJ,J)T , as shown in Figure 9.2,
we can transform (9.2) into

AJ,J = LJ,1:J−1W1:J−1,J + (LJ,1:J−1W1:J−1,J)T + LJ,JWJ,J + (LJ,JWJ,J)T

= LJ,1:JW1:J,J + (LJ,1:JW1:J,J)T

= (LW + (LW )T )J,J .

Substituting W = RLT we obtain

AJ,J = (LRLT + (LRLT )T )J,J

= (L(R +RT )LT )J,J

= (LTLT )J,J .

Equation (9.3) computes a block column of H, except for the subdiagonal block, by
multiplying matrices, as shown in Figure 9.4. Equation (9.4) multiplies blocks of L and H,
subtracts the product from a block of A, and factors the difference using an LU factorization.
Equation (9.5) solves a triangular linear system with a triangular right-hand side to compute
a subdiagonal block of T .
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A L W

 =

WT LT

 +

L LTT

+

Figure 9.3: Computing a diagonal block of T in Equation (9.2) by updating the correspond-
ing block of A and solving a two-sided triangular system. The letters below each matrix
describe only the matrices involved in the expression for AJ,J ; they do not constitute a
matrix equation.

H T L
T

 =

Figure 9.4: Computing blocks of H via matrix multiplication in Equation (9.3).

A L H

 =

Figure 9.5: Computing a block column of L and a subdiagonal block of H in Equation (9.4)
via the LU factorization of an updated submatrix of A.
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H T L
T

 =

Figure 9.6: Computing a block of T by solving a triangular system in Equation (9.5).

Equations (9.3) and (9.5) guarantee that HI,J = (TLT )I,J for all I ≤ J and for all
I = J + 1 respectively, and because all other blocks of H and TLT are zero, H = TLT .
Equation (9.4) ensures that AI,J = (LH)I,J for all I > J , and substituting H = TLT shows
that AI,J = (LTLT )I,J for all I > J . Because both A and LTLT are symmetric, this holds
for all I < J as well, and thus A = LTLT .

9.1.2 Solving Two-Sided Triangular Linear Systems

We now describe the procedure that solves the two-sided triangular linear system in Equa-
tion (9.2). The method is not new; it is used to reduce symmetric generalized eigenproblems
to standard eigenproblems and is available in LAPACK and ScaLAPACK under the name
sygst [44, 134]. Even though we are focused on sygst in this paper, other solvers that
produce a symmetric solution would also be suitable for the task. Examples of such solvers
are the subroutine reduc in EISPACK [111, 135] and the algorithms implemented in the
Elemental library [120, 121]. Because we apply the solver to block-sized problems, its flops
and communications costs do not have a substantial impact on the overall costs of the algo-
rithm. The stability of the solver is important, but as long as it satisfies a bound similar to
the one we prove for sygst in Section 9.2, the impact on the overall block-Aasen algorithm
is limited to the size of the constant in the backward stability bound.

To the best of our knowledge the stability of sygst has not been previously analyzed.
In order to analyze the algorithm we will now describe the relevant details of how it works.
The equation that defines TJ,J is of the form LXLT = B with a symmetric right-hand side
B.2 A trivial way to solve such systems is using a conventional triangular solver twice. That
is, to first solve for L−1B and to then solve for X = (L−1B)L−T . This method produces
a solution X that is not exactly symmetric in finite precision, and is thus not suitable for
use in the block-Aasen algorithm. Another approach, which leads to an exactly symmetric
X and which performs only half the arithmetic, is an algorithm that we now describe. We
partition all of the matrices that we introduce in this section such that they are all 2 × 2

2This section uses self-contained notation, for simplicity. The matrix that we call L here is a diagonal
block of the lower-triangular factor in the overall block-Aasen factorization. In addition, the auxiliary
matrices H and W , the dimension of the problem n and the block size b, all of which we define later in this
section, are also distinct.
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block matrices with first diagonal blocks of dimensions b × b and second diagonal blocks of
dimensions (n− b)× (n− b). To describe the algorithm we must define an auxiliary matrix
Y , which we require to be a block upper triangular matrix with symmetric diagonal blocks
that satisfies

X = Y T + Y.

Such a matrix must have the form[
Y11 Y12
Y21 Y22

]
=

[
0.5X11 X12

0 0.5X22

]
.

We also need two additional auxiliary matrices H and W , which we will require to satisfy

H = XLT , W = Y LT .

The algorithm works by solving for the underlined blocks in the following equations:

B11 = L11X11(L11)
T (9.6)

B12 = L11H12 (9.7)

H12 = 0.5X11(L21)
T +W12 (9.8)

W12 = 0.5X11(L21)
T +X12(L22)

T (9.9)

B22 = L21W12 + (L21W12)
T + L22X22(L22)

T . (9.10)

The key in this algorithm is to compute B22 − L21W12 − (L21W12)
T in (9.10) symmetri-

cally, which allows the algorithm to compute X22 symmetrically as well. Note that the
block 0.5X11(L21)

T is computed twice; the algorithm trades off additional computation for
a reduction in workspace requirements.

We derived the equations in (9.6)–(9.10) by considering specific blocks of the equations

B = LXLT , B = LH, B = LW + (LW )T , H = Y TLT +W, W = Y LT .

The derivation is described by diagrams in Figures 9.7–9.11.
We will now verify the correctness of the algorithm, meaning that LXLT = B whenever

X is computed in exact arithmetic. The algorithm computes the diagonal and superdiagonal
blocks of X and the superdiagonal blocks of H and W . The subdiagonal block of X is not
computed because X is symmetric. The diagonal and subdiagonal blocks of H and W are
also not computed, and thus we are free to define them so that our notation is simplified.
We define the uncomputed blocks of H and W such that the corresponding blocks of the
equations H = XLT and W = Y LT hold.

We start by verifying that (LXLT )12 = B12. Equation (9.9) ensures that W12 = (Y LT )12
and thus W = Y LT , due to the way we defined the uncomputed blocks of W . Equation (9.8)
guarantees that H12 = (Y TLT + W )12. Substituting W = Y LT and noting that Y TLT +
Y LT = XLT shows that H12 = (XLT )12 and thus H = XLT , again due to our definition
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B

=

L
T

L X

Figure 9.7: Computing the first diagonal block of X by solving a smaller two-sided triangular
system in Equation (9.6).

B

=

L H

Figure 9.8: Solving a triangular system to compute the superdiagonal block of H in Equa-
tion (9.7).

H

=

LT

+

WYT

Figure 9.9: Computing the superdiagonal block of W in Equation (9.8) by updating the
corresponding block of H.

W

=

LTY

Figure 9.10: Computing the superdiagonal block of Y in Equation (9.9) by updating the
corresponding block of W and solving a triangular system.
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+

B

= +

LTL W WT

LTL X

Figure 9.11: Computing the second diagonal block of X in Equation (9.10) by updating the
corresponding block of B and solving a smaller two-sided triangular system.

of the uncomputed blocks of H. Finally, Equation (9.7) ensures that B12 = (LH)12, and
substituting H = XLT shows that B12 = (LXLT )12.

Next we verify that (LXLT )22 = B22 by transforming the equation in Equation (9.10):

B22 = L21W12 + (L21W12)
T + L22X22(L22)

T

= L21W12 + (L21W12)
T + L22Y22(L22)

T + (L22Y22(L22)
T )T

= L21W12 + (L21W12)
T + L22W22 + (L22W22)

T

= (LW + (LW )T )22

= (LY LT + LY TLT )22

= (L(Y + Y T )LT )22

= (LXLT )22.

Finally, Equation (9.6) explicitly ensures that (LXLT )11 = B11 and thus LXLT = B.
We did not specify the dimensions of the blocks; different choices yield different algo-

rithms. If we choose b = 1, we end up with an algorithm that computes the columns of X
one at a time, in which (9.10) iterates over remaining columns. This version is called sygs2
in LAPACK and ScaLAPACK. The costs in this partitioning are dominated by the triangu-
lar solve in (9.9) and the symmetric update in (9.10) which require (n − i)2 and 2(n − i)2
flops, respectively. Thus, the leading term in flop cost is given by

F1(n) =
n−1∑
i=1

3(n− i)2 = 3
n−1∑
i=1

i2 = n3 + o(n3).
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If instead of b = 1 we choose some fixed b > 1, we obtain sygst, which works by
computing a total of b columns of X at a time. Equation (9.6) here corresponds to a call
to sygs2 and Equation (9.10) iterates over remaining block columns. As long as n � b,
the costs are again dominated by the triangular solve in (9.9) and the symmetric update
in (9.10) which require (n− ib)2b and 2(n− ib)2b flops, respectively (here i iterates over block
columns). Thus, the leading term in the flop cost is given by

Fb(n) =

n/b−1∑
i=1

3(n− ib)2b = 3b3
n/b−1∑
i=1

i2 = n3 + o(n3).

We can also formulate the algorithm recursively, with X11 being
⌊
n
2

⌋
×
⌊
n
2

⌋
. This re-

cursive version is new and it is communication avoiding and cache oblivious even for large
matrices (we use it only on blocks, so this is not useful for the blocked Aasen algorithm).
Equations (9.6) and (9.10) are recursive calls. The triangular solves in steps (9.7) and (9.9)
and the block multiplications in steps (9.8), (9.9) and (9.10) all contribute to the leading
term in the flop cost. The product X11(L21)

T is a symm BLAS call which costs 2(n/2)3.
The triangular solves are trsm calls that cost (n/2)3 each, and the product L21W12 is a
gemm call that costs 2(n/2)3 (we can subtract the transpose after computing and subtract-
ing the product). If we store the X11(L21)

T and reuse it in both step (9.8) and step (9.9),
the recurrence is

FR(n) = 2FR

(n
2

)
+ 6

(n
2

)3
which again yields

FR(n) =
3

4
n3

logn−1∑
i=0

(
1

4

)i
=

3

4
· 4

3
n3 + o(n3) = n3 + o(n3).

If we chose to recompute X11(L21)
T in order to run the algorithm in place, the flop count

increases but is still O(n3).

9.1.3 Pivoting

Without pivoting, the algorithm can break down or become unstable, just like the classical
element-wise Aasen algorithm. In the new algorithm, blocks LJ+1:N,J+1 and HJ+1,J are
computed using an LU factorization, and without pivoting, the factorization may fail to
exist or may be unstable. Clearly, we need to pivot in Equation (9.4). It turns out that this
stabilizes the algorithm, as in the element-wise algorithm.

We use row pivoting, meaning that step J factors

LJ+1:N,J+1HJ+1,J = PJ (AJ+1:N,J − LJ+1:N,1:JH1:J,J) ,

where PJ is a permutation matrix, determined by partial pivoting, for example. There are
several ways to compute this LU factorization in a way that ensures that the block-Aasen
algorithm is communication avoiding; we list and analyze them in Section 9.3.2.2 below.
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Once the LU factorization is computed, we also apply PJ to LJ+1:N,1:J and to the trailing
submatrix AJ+1:N,J+1:N . Applying the permutation to L and to the trailing submatrix is not
trivial to do in a communication-avoiding way, especially since only the upper or lower tri-
angle of the trailing submatrix is stored. The details are explained below, in Section 9.3.2.3.

9.1.4 Computing W and H

As we show in Section 9.3, the arithmetic and communication costs of our algorithm are
asymptotically dominated by the computation that corresponds to Equation (9.4). Never-
theless, if optimizing the computation that corresponds to the other equations can yield any
savings, then pursuing such optimizations would be desirable from a practical standpoint.
It turns out that savings are possible in Equations (9.1) and (9.3). These equations state
that individual blocks of H and W are computed according to the formulas:

HI,J = TI,I−1 (LJ,I−1)
T + TI,I (LJ,I)

T + TI,I+1 (LJ,I+1)
T

and

WI,J = RI,I (LJ,I)
T +RI,I+1 (LJ,I+1)

T

= 0.5 TI,I (LJ,I)
T + TI,I+1 (LJ,I+1)

T

for all I < J . (We encourage the reader to review Figures 9.1 and 9.4 for a visualization of
these relations.) The blocks TI,I (LJ,I)

T and TI,I+1 (LJ,I+1)
T appear in these equations twice

but need to be computed only once. Avoiding the recomputation of these blocks reduces the
number of b × b matrix products required to compute W and H by a ratio of 5:3, thereby
making the computation of W essentially free.

9.1.5 The Second Phase of the Algorithm: Factoring T

There are several single-pass algorithms that efficiently factor a banded symmetric matrix.
All of these algorithms process O(b) rows and columns at a time, so if we choose a small
enough b = Θ(

√
M), the total number of words moved is O(nb), which makes them commu-

nication efficient (because the size of input and output is O(nb)).
Algorithms with these properties include the unsymmetric banded LU factorization with

partial pivoting, Kaufman’s retraction algorithm [99], and Irony and Toledo’s snap-back
algorithm [94]. Both retraction and snap-back algorithms preserve symmetry (and matrix
inertia); the LU algorithm destroys the symmetry of the band. All three perform O(nb2)
flops and produce a factorization that is essentially banded with bandwidth O(b). All of
these factorizations can be used to solve linear systems of equations using O(bn) arithmetic
per right-hand side and O(bn) words moved (for up to O(

√
M) right-hand sides).
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9.2 Numerical Stability

We analyze the stability of the factorization of PAP T where P is the permutation matrix
generated by the selection of pivots. We assume in the analysis that the matrix has been
pre-permuted so the algorithm is applied directly to PAP T (rather than to A) and that it
never pivots. The sequence of arithmetic operations in such a run of the algorithm is identical
to that of the pivoting version applied to A, except perhaps for the order of summation in
inner products. Our analysis does not depend on this ordering so our results apply to the
pivoting version. We will use the standard model of floating point computation and several
well-known results regarding stability of fundamental operations (see Section 2.6).

9.2.1 Stability of the Two-Sided Triangular Solver

Our notation in this section is the same as in Section 9.1.2: we consider solving an n × n
system and partition all of the matrices such that they are 2 × 2 block matrices with first
diagonal blocks of dimensions b×b and second diagonal blocks of dimensions (n−b)×(n−b),
where 1 ≤ b ≤ n − 1. The matrix X and the superdiagonal blocks of H and W represent
the computed floating point matrices. We use Y to denote the exact matrix

Y =

[
0.5X11 X12

0 0.5X22

]
and we define the diagonal and subdiagonal blocks of H and W such that the corresponding
blocks of H = XLT and W = Y LT hold.

Lemma 9.1. If the two-sided n×n triangular system LXLT = B is solved in floating point
arithmetic using any of the partitioned algorithms given in Section 9.1.2, then the computed
X satisfies

B = LXLT + ∆, |∆| ≤ γ3n−1|L||X||LT |.

Proof. The proof is by strong induction on n. In the base case we are solving a 1× 1 system
and the bound clearly holds. To make the inductive step, we first show how the backward
error ∆ relates to the backward errors of the matrix equations used in the algorithms. We
define the matrices ∆(t) for t = 1, 2, . . . , 5 such that

B = LH + ∆(1), H = Y TLT +W + ∆(2), W = Y LT + ∆(3), B = LW + (LW )T + ∆(4)

and
H = XLT + ∆(5).

Substituting the third formula into the second one, we obtain

H = Y TLT + Y LT + ∆(2) + ∆(3) = XLT + ∆(2) + ∆(3),
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and then substituting this result into the first formula yields

B = LXLT + ∆(1) + L(∆(2) + ∆(3)).

Similarly, substituting the third formula into the fourth one yields

B = LXLT + L∆(3) + (L∆(3))T + ∆(4).

Thus we have
∆(5) = ∆(2) + ∆(3) (9.11)

and two equations for the backward error of the solution of the system:

∆ = ∆(1) + L∆(5) (9.12)

∆ = L∆(3) + (L∆(3))T + ∆(4). (9.13)

We’re now ready to consider the computations involved in the algorithm. Recall from
Section 9.1.2 that we partition all matrices into 2×2 blocks so that the top left block is b× b
for some 1 ≤ b ≤ n − 1. Applying the lemmas of rounding-error analysis (given in Section
2.6) and the inductive hypothesis to equations (9.6)–(9.10) allows us to derive the bounds

|∆11| ≤ γ3b−1(|L||X||L|T )11 (9.14)

|∆(1)
12 | ≤ γb(|L||H|)12 (9.15)

|∆(2)| ≤ γb(|Y T ||LT |+ |W |) (9.16)

|∆(3)| ≤ γn|Y ||LT | (9.17)

|∆(4)
22 | ≤ γ2b(|L21||W12|+ (|L21||W12|)T ) + γ2b+3(n−b)−1|L22||X22||L22|T . (9.18)

For example, Equation (9.14) is the result of applying the inductive hypothesis to the solution
of a b×b system (the first step in the algorithm), and Equation (9.15) is the result of applying
Lemma 2.16 to the second step of the algorithm, a b × b triangular solve. We omit the
derivation of Equations (9.16)–(9.18) because they are similar.

Applying (9.16) and (9.17) to (9.11), substituting W = Y LT + ∆(3), and then bounding
again yields

|∆(5)| ≤ γb|Y T ||LT |+ (γb + γn + γbγn)|Y ||LT |

and bounding γb ≤ γn+b and γb + γn + γbγn ≤ γn+b yields

|∆(5)| ≤ γn+b|X||LT |. (9.19)

Substituting (9.15) and (9.19) into (9.12), further substituting H = XLT + ∆(5), and then
applying (9.19) again yields

|∆12| ≤ (γb + γn+b + γbγn+b)(|L||X||LT |)12 ≤ γn+2b(|L||X||LT |)12. (9.20)
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Next we bound ∆22 using (9.13), starting with the first two terms in that equation. We

defined W such that ∆
(3)
22 is zero and thus

(|L||∆(3)|+ (|L||∆(3)|)T )22 = |L21||∆(3)
12 |+ (|L21||∆(3)

12 |)T .

Further applying (9.17) yields

(|L||∆(3)|+ (|L||∆(3)|)T )22 ≤ γn|L21||Y1,:||L2,:|T + γn(|L21||Y1,:||L2,:|T )T

= γn((|L||X||LT |)22 − |L22||X22||L22|T ). (9.21)

Substituting W = Y LT + ∆(3) in the first two terms of (9.18) and using the same argument
that we used to produce (9.21) yields

|L21||W12|+ (|L21||W12|)T ≤ (1 + γn)((|L||X||LT |)22 − |L22||X22||L22|T ). (9.22)

Substituting (9.22) into (9.18), and then substituting the result together with (9.21) into
(9.13) yields

|∆22| ≤ (γn + γ2b + γ2bγn)((|L||X||LT |)22 − |L22||X22||L22|T )

+ γ2b+3(n−b)−1|L22||X22||L22|T .

Because 1 ≤ b ≤ n− 1,

γn + γ2b + γ2bγn ≤ γn+2b ≤ γ3n−2

γ2b+3(n−b)−1 = γ3n−b−1 ≤ γ3n−2,

and thus
|∆22| ≤ γ3n−2(|L||X||LT |)22. (9.23)

Combining bounds (9.14), (9.20) and (9.23) we see that |∆I,J | ≤ CI,J(|L||X||LT |)I,J ,
where

C =

[
γ3b−1 γn+2b

γn+2b γ3n−2

]
,

and because CI,J ≤ γ3n−2 for all I and J , we conclude that |∆| ≤ γ3n−2(|L||X||LT |). The
exception to this is the case n = 1, which requires the larger constant γ3n−1 in the statement
of the lemma.

9.2.2 Stability of the Block-Aasen Algorithm

We now show that the block-Aasen algorithm is backward stable. The analysis relies on
lemmas from Section 2.6 and on Lemma 9.1. We use the symbols L, T , H and W to denote
the corresponding floating point matrices and not their abstract exact equivalents. The
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exception to this is the diagonal blocks of W , which are not computed by the algorithm and
which we define for convenience as being exactly

WJ,J = (RLT )J,J = RJ,JL
T
J,J .

Similarly, R is also not computed by the algorithm due to the optimization described in
Section 9.1.4. We define R as the block upper-triangular matrix with symmetric diagonal
blocks that satisfies RT +R = T . Its superdiagonal blocks are exactly those of the computed
T and its diagonal blocks are obtained from those of the computed T by scaling them by 0.5.

We break the main content of the proof into two lemmas, bounding the backward error
in the off-diagonal blocks in Lemma 9.2 and bounding the backward error in the diagonal
blocks in Lemma 9.3. Combining these results, we obtain the backward stability of the
block-Aasen algorithm, stated in Theorem 9.4.

Lemma 9.2. The computed factors satisfy A = LTLT + ∆, where

|∆I,J | ≤ γn+2b(|L||T ||LT |)I,J

whenever I 6= J .

Proof. Let the matrices ∆(1) and ∆(2) be such that

A = LH + ∆(1), H = TLT + ∆(2).

Substituting the second expression into the first one yields

A = LTLT + L∆(2) + ∆(1),

and thus
∆ = ∆(1) + L∆(2). (9.24)

Bounding ∆ requires that we obtain bounds on ∆(1) and ∆(2).
Let us bound the subdiagonal blocks of ∆(1) by considering the computation that corre-

sponds to Equation (9.4). In that equation we form the matrixX = AJ+1:N,J−LJ+1:N,1:JH1:J,J

and then compute its LU factorization X = LJ+1:N,J+1HJ+1,J . Let Γ(1) and Γ(2) be such
that

AJ+1:N,J = LJ+1:N,1:JH1:J,J +X + Γ(1) (9.25)

X = LJ+1:N,J+1HJ+1,J + Γ(2). (9.26)

Substituting the second expression into the first one yields

AJ+1:N,J = LJ+1:N,1:JH1:J,J + LJ+1:N,J+1HJ+1,J + Γ(1) + Γ(2)

= LJ+1:N1:J+1H1:J+1,J + Γ(1) + Γ(2),
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because HJ+2:N,J is zero,

AJ+1:N,J = (LH)J+1:N,J + Γ(1) + Γ(2),

and therefore
∆

(1)
J+1:N,J = Γ(1) + Γ(2). (9.27)

We analyze the accuracy of forming X using Lemma 2.14, which yields the bound

|Γ(1)| ≤ γJb(|LJ+1:N,1:J ||H1:J,J |+ |X|).

However, because L2:N,1 is zero, the inner dimension of the product LJ+1:N,1:JH1:J,J is effec-
tively (J − 1)b instead of Jb, and therefore

|Γ(1)| ≤ γ(J−1)b(|LJ+1:N,1:J ||H1:J,J |+ |X|). (9.28)

The accuracy of the LU factorization of X can be analyzed using Lemma 2.17, which yields

|Γ(2)| ≤ γb|LJ+1:N,J+1||HJ+1,J |. (9.29)

Substituting (9.28) and (9.29) into (9.27) yields

|∆(1)
J+1:N,J | ≤ γ(J−1)b(|LJ+1:N,1:J ||H1:J,J |+ |X|) + γb|LJ+1:N,J+1||HJ+1,J |,

and further substituting (9.26) and using (9.29) again yields

|∆(1)
J+1:N,J | ≤ γ(J−1)b|LJ+1:N,1:J ||H1:J,J |+ (γ(J−1)b + γb + γ(J−1)bγb)|LJ+1:N,J+1||HJ+1,J |.

Bounding the constants in this expression according to

γ(J−1)b ≤ γJb

γ(J−1)b + γb + γ(J−1)bγb ≤ γJb,

where the second bound is justified by Lemma 2.12, yields

|∆(1)
J+1:N,J | ≤ γJb|LJ+1:N,1:J ||H1:J,J |+ γJb|LJ+1:N,J+1||HJ+1,J |

= γJb(|L||H|)J+1:N,J

and therefore
|∆(1)

I,J | ≤ γJb(|L||H|)I,J (9.30)

for all I > J .
We bound the diagonal and superdiagonal blocks of ∆(2) by considering the computation

that corresponds to Equation (9.3). In that equation we compute blocks of H by forming
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the corresponding blocks of TLT , and as we discuss in Section 9.1.4, these blocks are formed
according to the formula

HI,J = TI,I−1(LJ,I−1)
T + TI,I(LJ,I)

T + TI,I+1(LJ,I+1)
T .

This is equivalent to multiplying the b×3b matrix TI,I−1:I+1 by the 3b×b matrix (LJ,I−1:I+1)
T ,

and the accuracy of this computation is bounded in Lemma 2.13, which guarantees that

|∆(2)
I,J | ≤ γ3b(|T ||LT |)I,J

for all I ≤ J . The blocks ∆
(2)
J+1,J correspond to Equation (9.5), which solves the triangular

system HJ+1,J = TJ+1,J(LJ,J)T . This is analyzed in Lemma 2.16, which guarantees that

|∆(2)
J+1,J | ≤ γb(|T ||LT |)J+1,J .

All other blocks of ∆(2) are zero, and thus

|∆(2)| ≤ γ3b|T ||LT |. (9.31)

Substituting (9.30) and (9.31) into (9.24) yields

|∆I,J | ≤ γJb(|L||H|)I,J + γ3b(|L||T ||LT |)I,J

for all I > J . Further substituting H = TLT + ∆(2) and using (9.31) once again yields

|∆I,J | ≤ (γJb + γ3b + γJbγ3b)(|L||T ||LT |)I,J ≤ γJb+3b(|L||T ||LT |)I,J .

The constant γJb+3b is maximized when J = N − 1, which yields the required bound for all
I > J . As for I < J, the same bound holds because ∆ is the difference of the two symmetric
matrices A and LTLT and is thus itself symmetric.

Lemma 9.3. The computed factors satisfy A = LTLT + ∆, where

|∆J,J | ≤ γ2n−b−1(|L||T ||LT |)J,J

for J = 1, 2, . . . , N .

Proof. Let the matrices ∆(1) and ∆(2) be such that

A = LW + (LW )T + ∆(1), W = RLT + ∆(2).

Substituting the second expression into the first one yields

A = LRLT + (LRLT )T + L∆(2) + (L∆(2))T + ∆(1)

= L(R +RT )LT + L∆(2) + (L∆(2))T + ∆(1)

= LTLT + L∆(2) + (L∆(2))T + ∆(1)
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and therefore
∆ = ∆(1) + L∆(2) + (L∆(2))T . (9.32)

Equation (9.2) computes TJ,J by forming X = AJ,J−LJ,1:J−1W1:J−1,J−(LJ,1:J−1W1:J−1,J)T

and then solving LJ,JTJ,J(LJ,J)T = X. Let Γ(1) and Γ(2) be such that

AJ,J = LJ,1:J−1W1:J−1,J + (LJ,1:J−1W1:J−1,J)T +X + Γ(1) (9.33)

X = LJ,JTJ,J(LJ,J)T + Γ(2). (9.34)

Substituting (9.34) into (9.33) yields

AJ,J = LJ,1:J−1W1:J−1,J + (LJ,1:J−1W1:J−1,J)T + LJ,JTJ,J(LJ,J)T + Γ(1) + Γ(2).

Rewriting the term LJ,JTJ,J(LJ,J)T according to

LJ,JTJ,J(LJ,J)T = LJ,J(RJ,J + (RJ,J)T )(LJ,J)T

= LJ,JRJ,J(LJ,J)T + (LJ,JRJ,J(LJ,J)T )T

= LJ,JWJ,J + (LJ,JWJ,J)T

gives

AJ,J = LJ,1:J−1W1:J−1,J + (LJ,1:J−1W1:J−1,J)T + LJ,JWJ,J + (LJ,JWJ,J)T + Γ(1) + Γ(2)

= LJ,1:JW1:J,J + (LJ,1:JW1:J,J)T + Γ(1) + Γ(2)

= (LW + (LW )T )J,J + Γ(1) + Γ(2)

and thus
∆

(1)
J,J = Γ(1) + Γ(2). (9.35)

The accuracy of forming X and then solving for TJ,J can be bounded using Lemmas 2.15
and 9.1, which guarantee that

|Γ(1)| ≤ γ2(J−2)b(|LJ,1:J−1||W1:J−1,J |+ (|LJ,1:J−1||W1:J−1,J |)T + |X|)
|Γ(2)| ≤ γ3b−1|LJ,J ||TJ,J ||LJ,J |T .

Substituting these bounds into (9.35), further substituting (9.34) and bounding again yields

|∆(1)
J,J | ≤ γ2(J−2)b(|LJ,1:J−1||W1:J−1,J |+ (|LJ,1:J−1||W1:J−1,J |)T )

+ (γ2(J−2)b + γ3b−1 + γ2(J−2)bγ3b−1)|LJ,J ||TJ,J ||LJ,J |T

≤ γ2(J−2)b(|LJ,1:J−1||W1:J−1,J |+ (|LJ,1:J−1||W1:J−1,J |)T )

+ γ2(J−2)b+3b−1|LJ,J ||TJ,J ||LJ,J |T , (9.36)

which is the bound we require for ∆(1).
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The superdiagonal blocks of ∆(2) correspond to Equation (9.1). That equation states
that blocks of W are computed by forming the corresponding blocks of the product RLT ,
which are formed according to the formula

WI,J = 0.5(TI,I(LJ,I)
T ) + TI,I+1(LJ,I+1)

T ,

as we explain in Section 9.1.4. Because of the scaling by 0.5 we cannot apply Lemma 2.13
directly to this formula. Instead we must bound the errors resulting from forming the two
single-block products separately, and then use assumptions (2.4) and (2.3) to account for the
effects of scaling and summation respectively. We skip the details; the resulting bound is

|∆(2)
I,J | ≤ γb+1(|R||LT |)I,J (9.37)

for all I < J .
Next we return to bounding (9.32), starting with the last two terms. The diagonal and

subdiagonal blocks of W are defined such that the corresponding blocks of ∆(2) are zero, and
therefore

(|L||∆(2)|+ (|L||∆(2)|))J,J = |LJ,1:J−1||∆(2)
1:J−1,J |+ (|LJ,1:J−1||∆(2)

1:J−1,J |)
T .

Substituting (9.37) yields

(|L||∆(2)|+ (|L||∆(2)|))J,J ≤ γb+1(|LJ,1:J−1||R1:J−1,1:J ||LJ,1:J |T

+ (|LJ,1:J−1||R1:J−1,1:J ||LJ,1:J |T )T ),

which can be further simplified according to

|LJ,1:J−1||R1:J−1,1:J ||LJ,1:J |T + (|LJ,1:J−1||R1:J−1,1:J ||LJ,1:J |T )T

= 2
J−1∑
I=1

|LJ,I ||RI,I ||LJ,I |T +
J−1∑
I=1

|LJ,I ||RI,I+1||LJ,I+1|T +
J−1∑
I=1

|LJ,I+1||RI,I+1|T |LJ,I |T

=
J−1∑
I=1

|LJ,I ||TI,I ||LJ,I |T +
J−1∑
I=1

|LJ,I ||TI,I+1||LJ,I+1|T +
J−1∑
I=1

|LJ,I+1||TI+1,I ||LJ,I |T

= (|L||T ||L|T )J,J − |LJ,J ||TJ,J ||LJ,J |T ,

yielding

(|L||∆(2)|+ (|L||∆(2)|)T )J,J ≤ γb+1((|L||T ||LT |)J,J − |LJ,J ||TJ,J ||LJ,J |T ). (9.38)

To bound the first term in (9.36) we substitute W = RLT + ∆(2) and apply the same
arguments we used to produce (9.38), obtaining

|LJ,1:J−1||W1:J−1,J |+ (|LJ,1:J−1||W1:J−1,J |)T ≤ (1 + γb+1)((|L||T ||LT |)J,J
− |LJ,J ||TJ,J ||LJ,J |T ). (9.39)
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Finally, substituting (9.39) into (9.36) and then substituting the result together with (9.38)
into (9.32) yields

|∆J,J | ≤ (γ2(J−2)b + γb+1 + γ2(J−2)bγb+1)((|L||T ||LT |)J,J − |LJ,J ||TJ,J ||LJ,J |T )

+ γ2(J−2)b+3b−1|LJ,J ||TJ,J ||LJ,J |T .

Because b ≥ 1, we can bound

γ2(J−2)b + γb+1 + γ2(J−2)bγb+1 ≤ γ2(J−2)b+b+1 ≤ γ2(J−2)b+3b−1,

which allows us to cancel the two instances of |LJ,J ||TJ,J ||LJ,J |T and obtain

|∆J,J | ≤ γ2(J−2)b+3b−1(|L||T ||LT |)J,J .

The constant γ2(J−2)b+3b−1 is maximized when J = N , which yields the required bound.

With these lemmas, we can now state the backward stability of the overall algorithm.

Theorem 9.4. The computed factors satisfy A = LTLT + ∆, where

|∆| ≤ γ2n−b−1|L||T ||LT |

if n > 3b and

|∆| ≤ γn+2b|L||T ||LT |

otherwise.

Proof. Lemmas 9.2 and 9.3 state that

|∆I,J | ≤ γn+2b(|L||T ||LT |)I,J

whenever I 6= J , and
|∆I,J | ≤ γ2n−b−1(|L||T ||LT |)I,J

whenever I = J , and therefore the bound

|∆I,J | ≤ max {γn+2b, γ2n−b−1} (|L||T ||LT |)I,J

holds for all I and J . The quantity γn increases monotonically with n (so long as nu < 1) and
therefore γ2n−b−1 ≥ γn+2b whenever 2n− b− 1 ≥ n+ 2b, which occurs whenever n > 3b.
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9.2.3 Growth

The stability of the factorization algorithm depends on the magnitude of L and T relative to
that of A. How large can L and T get? In the element-wise Aasen algorithm, the magnitude
of elements of L is bounded by 1 (because the algorithm uses partial pivoting), and it is easy
to show that |Tij| ≤ 4n−2 maxij |Aij| [86]; the argument is essentially the same as the one that
establishes the bound on |Uij| in Gaussian elimination with partial pivoting. Furthermore,
this bound is attained by a known matrix of order n = 3, although larger matrices that
attain the bound are not known [85, p. 224].

It is important to interpret this bound correctly. The actual expression 4n−2 is not
important, because it does not indicate the growth that is normally attained. The same
is true for LU with partial pivoting; it is stable in spite of the fact that the growth factor
bound is as large as 2n−1, not because this bound is small (it is not; it is huge). Two
other things are important. One is that the bound shows that growth is not related to the
condition number of A. The second is that growth in practice is small. The reasons for this
are complex and not completely understood even in LU with partial pivoting, but this is the
reality; for deeper analyses and discussion, see [128, 144] and [85, Section 9.4].

If we compute the factorization in Equation (9.4) using LU with partial pivoting (GEPP),
essentially the same bounds hold for our block algorithm. The block columns of the L factor
are generated by Gaussian elimination with partial pivoting, so the same two-sided doubling-
up argument shows that the growth factor for T is bounded by 4n−b−1 (since the first columns
of L are unit vectors and additions/subtractions start only in column b + 1). We provide
numerical experiments in Section 9.4 to illustrate the backward stability and growth using
GEPP within the block-Aasen algorithm in practice.

When the factorization in Equation (9.4) is computed in a communication-avoiding way
using the tall-skinny LU factorization [80] (TSLU), L is still bounded, but the bound is 2bh,
where h is a parameter of TSLU that normally satisfies h = O(log n). This can obviously
be much larger than 1, although experiments indicate that L is usually much smaller. This
implies that growth in T is still bounded, but the bound is now 4nbh. This is worse than with
GEPP, but as we explained above, this theoretical bound is not what normally governs the
stability of the algorithm. We leave numerical experiments with TSLU in the block-Aasen
algorithm to future work. Also, the recently-developed panel rank-revealing LU factoriza-
tion [100] may improve the growth bounds in our algorithm, but we have not fully explored
this.

9.3 Sequential Complexity Analyses

In this section we analyze the costs of the sequential algorithm. We begin with an analysis
of the computational complexity and then analyze the communication costs of the algorithm
in the sequential model.
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9.3.1 Computational Cost

Our goal in this subsection is to show that the new blocked algorithm performs the same
number of arithmetic operations as the element-wise one, up to lower order terms.

In order to determine the arithmetic complexity of the algorithm, we consider only Equa-
tions (9.1)–(9.5) (the computational cost of pivoting is negligible). Letting J denote the
index of the outermost loop of the algorithm and b be the block size, the arithmetic cost
of Equations (9.1)–(9.3) is O(Jb3) flops. This is because each equation involves O(J) block
multiplications of b× b blocks (some of which are triangular). Note that in Equation (9.2),
the dominant cost is in computing the product of the block row of L with the block column of
W ; the arithmetic cost of the two-sided symmetric solve is O(b3). Similarly, Equation (9.5)
is a triangular solve involving one block and has an arithmetic cost of O(b3). The dominant
arithmetic cost for the block-Aasen algorithm comes from Equation (9.4), which consists of
two subcomputations: a matrix multiplication involving L and H and an LU decomposition
of a block column. The arithmetic cost of the LU decomposition is O(Jb3). The matrix
multiplication step multiplies an (N − J)b× Jb submatrix of L by a Jb× b submatrix of H.
At the Jth step of the algorithm, this arithmetic cost is 2(N − J)Jb3 flops, ignoring lower
order terms. Summing over the outermost loop and using the fact that N = n/b, we have a
total arithmetic cost of

N∑
J=2

(
2(N − J)Jb3 +O(Jb3)

)
=

1

3
n3 + o(n3).

9.3.2 Communication Costs

To determine the communication complexity of the algorithm, we must consider Equa-
tions (9.1)–(9.5) as well as the cost of applying symmetric permutations to the trailing
matrix. We analyze the three parts of the algorithm separately: block operations (all of
the computations described in Equations (9.1)–(9.5) with the exception of the LU decom-
position), LU decomposition of block columns, and application of the permutations. We
assume the matrix is stored in block-contiguous format with block size b, the same as the
algorithmic block size. In block contiguous format, b × b blocks are stored contiguously in
memory (see Section 2.3.1. We assume column-major ordering of elements within blocks
and of the blocks themselves. In the following analysis, we assume b ≤

√
M/3 so that three

blocks fit simultaneously in fast memory.

9.3.2.1 Block Operations

By excluding the LU decomposition, all the other computations in Equations (9.1)–(9.5)
involve block operations–either block multiplication (sometimes involving triangular or sym-
metric matrices), block triangular solve, or block two-sided symmetric triangular solve. For
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Algorithm Words Messages

RLU O
(
nb2√
M

+ nb log b
)

O
(

min
(
n, n

2

M

))
SMLU [32] O

(
nb2√
M

+ nb log b log nb
M

)
O
(

nb2

M3/2 + nb
M

log b log nb
M

)
TSLU [80] O

(
nb2√
M

)
O
(

nb2

M3/2

)
Table 9.1: Communication costs of LU decomposition algorithms applied to an n× b matrix
stored in b× b block contiguous storage, assuming b ≤

√
M/3.

example, in Equation (9.3), we compute

HI,J = TI,I−1(LJ,I−1)
T + TI,I(LJ,I)

T + (TI+1,,I)
T (LI+1,J)T

(assuming only the lower halves of T and L are stored). Each of the three multiplications
involve b × b blocks, so by the assumption that b ≤

√
M/3, the operations can be per-

formed by reading contiguous input blocks of size b2 words into fast memory, performing
O(b3) floating point operations, and then writing the output block back to slow memory.
This implies that the number of messages is proportional to the number of block opera-
tions, which is O((computational cost)/b3) = O(n3/b3) and the number of words moved is
O((computational cost)/b) = O(n3/b).

9.3.2.2 Panel Decomposition

We now consider algorithms for the LU decomposition of the column panel. Note that
the O(N) LU factorizations, each involving O(Nb3) flops, contribute altogether only an
O(n2b) term to the computational complexity of the overall block-Aasen algorithm, a lower
order term. Thus, attaining the communication lower bound for the overall algorithm does
not require attaining optimal data re-use within panel factorizations. For example, using
a naive algorithm and achieving only constant re-use of data during the LU factorization
translates to a total of O(n2b) words moved during LU factorizations, which is dominated
by the communication complexity of the block operations, O(n3/b) words, in the case where
n� b2. However, to ensure that both bandwidth and latency costs of the LU factorizations
do not asymptotically exceed the costs of the rest of the block-Aasen algorithm for all
matrix dimensions, we need algorithms that achieve better than constant re-use (though the
algorithms need not be asymptotically optimal).

We choose to use the recursive algorithm (RLU) of [83, 142] for panel factorizations,
updated slightly to match the block-contiguous data layout. The algorithm works by splitting
the matrix into left and right halves, factoring the left half recursively, updating the right
half, and then factoring the trailing matrix in the right half recursively. In order to match
the block-contiguous layout, the update of the right half (consisting of a triangular solve
and matrix multiplication) should be performed block by block. The bandwidth cost of this
algorithm for n × b matrices is analyzed in [142], and the latency cost can be bounded by
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Algorithm Words Messages
Direct O(nb) O(nb)

Blocked O(n2) O
(
n2

b2

)
Table 9.2: Communication costs of symmetric pivoting schemes

the recurrence L(n, b) ≤ 2L(n, b/2) + O(N). The O(N) term comes from the update of the
right half of the matrix, which involves reading contiguous chunks of each of the O(N) blocks
in the panel. The base case occurs either when the subpanel fits in memory (nb < M) or
when b = 1. The cost of the recursive algorithm is dominated by its leaves, each of which
requires O(N) messages. Depending on the relative sizes of n and M , there are either nb/M
or b leaves starting with an n × b matrix. The latency cost becomes the minimum of two
terms: O(n) or O(n2/M). The bandwidth and latency costs are summarized in the first row
of Table 9.1.

In order to determine the contribution of LU factorizations to the costs of the overall
block-Aasen algorithm, we must multiply the cost of the n × b factorization by N , the
number of panel factorizations. Using the RLU algorithm, this yields a bandwidth cost of
O(n2b/

√
M+n2 log b) words and a latency cost of O(min(n2/b, n3/(bM)) messages. With the

exception of the O(n2 log b) term in the bandwidth cost, these costs are always asymptotically
dominated by the costs of the block operations.

While the RLU algorithm is sufficient for minimizing communication in the block-Aasen
algorithm, there are algorithms which require fewer messages communicated. The Shape-
Morphing LU algorithm (SMLU) [32] is an adaptation of RLU that changes the matrix layout
on the fly to reduce latency cost. The algorithm and its analysis are provided in [32], and the
communication costs are given in the second row of Table 9.1. SMLU uses partial pivoting
and incurs a slight bandwidth cost overhead compared to RLU (an extra logarithmic factor on
one term). Another algorithm which reduces latency cost even further is the communication-
avoiding tall-skinny LU algorithm (TSLU) [80], as described in Section 7.1.4. The algorithm
can be applied to general matrices, but the main innovation focuses on tall-skinny matrices.
TSLU uses tournament pivoting, a different scheme than partial pivoting, which has slightly
weaker theoretical numerical stability properties. The algorithm and analysis are provided in
[80], and the communication costs are given in the third row of Table 9.1. The communication
costs of TSLU are optimal with respect to each panel factorization.

9.3.2.3 Applying Symmetric Permutations

After each LU decomposition of a block column, we apply the internal permutation to
the rest of the matrix. This permutation involves back-pivoting, or swapping rows of the
already factored L matrix, and forward-pivoting of the trailing symmetric matrix. Applying
the symmetric permutations to the trailing matrix includes swapping elements within a given
set of rows and columns, as shown in Figure 9.12. For example, applying the transposition
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Figure 9.12: Exchanging rows and columns k and l. The second (dark) block column is
the block column of the reduced matrix whose LU factorization was just computed. The
first block column is a block column of L; the algorithm applies back pivoting to it. Block
columns 3 to 6 are part of the trailing submatrix; the algorithm applies forward pivoting to
them. The trailing submatrix is square and symmetric, but only its lower triangle is stored,
so a row that needs to be exchanged is represented as a partial row (up to the diagonal) and
a partial column, as shown here.

(k, l) implies that the L-shaped set of elements in the kth row and kth column (to the left
and below the diagonal) is swapped with the L-shaped set of elements in the lth row and
lth column, such that element akk is swapped with element all and element alk stays in place
(see Figure 9.12).

Since there are at most b swaps that must be performed for a given LU decomposition,
and each swap consists of O(n) data, the direct approach of swapping L-shaped sets of
elements one at a time has a bandwidth cost of O(nb) words. However, no matter how
individual elements within blocks are stored, because the permutations involve accessing
both rows and columns, at least half of the elements will be accessed non-contiguously, so
the latency cost of the direct approach is also O(nb) messages. Since there are N = n/b
symmetric permutations to be applied, these costs amount to a total of O(n2) words and
O(n2) messages. While the bandwidth cost is a lower order term with respect to the rest of
the algorithm, the latency cost of the permutations exceeds the rest of the algorithm, except
when n�M3/2. This approach is the symmetric analogue of Variant 1 in [80].

In order to reduce the latency cost, we use a blocked approach which will require greater
bandwidth cost than the direct approach but will not increase the asymptotic bandwidth
cost of the block-Aasen algorithm. The blocked approach accesses contiguous b × b blocks,
but it may permute only a few rows or columns of the blocks. This approach is the symmetric
analogue of Variant 2 in [80].
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Figure 9.13: Exchanging a pair of rows in the blocked approach. Numbers indicate sets of
blocks that are held simultaneously in fast memory: all the blocks marked “1” are held in
fast memory simultaneously, later all the blocks marked “2”, and so on.

The algorithm works as follows: for each block in the LU factorization panel that includes
a permuted row, we update the N pairs of blocks shown in Figure 9.13. The updates
include back-pivoting (updating parts of the L matrix that have already been computed)
and forward-pivoting (updating the trailing matrix). Nearly all the updates involve pairs of
blocks, which fit in fast memory simultaneously. Pairs of blocks involved in back-pivoting are
not affected by column permutations and swap only rows (those marked “1” in Figure 9.13).
Some pairs of blocks involved in forward-pivoting are not affected by row permutations and
swap only columns (those marked “2” in Figure 9.13). Because only half of the matrix is
stored, some pairs of blocks in the trailing matrix will swap columns for rows (those marked
“3” in Figure 9.13). The more complicated updates involve blocks that are affected by both
row and column permutations: the two diagonal blocks and the corresponding off-diagonal
block, marked “4” in Figure 9.13. In order to apply the two-sided permutation to these
blocks, all three blocks are read into fast memory and updated at once. Since there are
O(N) blocks in each LU factorization panel, and each block with a permuted row requires
accessing O(N) blocks to apply the symmetric permutation, for a given LU factorization,
the number of words moved in applying the associated permutation is O(N2b2) = O(n2),
and the total number of messages moved is O(N2) = O(n2/b2). The communication costs
of the two approaches are summarized in Table 9.2.

9.3.2.4 Communication Optimality of the Block-Aasen Algorithm

Combining the analysis of the three sections above, we obtain the communication costs of
the overall algorithm. Assuming block-contiguous layout, the communication costs of the
block operations are O(n3/b) words and O(n3/b3) messages, the costs of the panel factoriza-
tions using the RLU algorithm are O(n2b/

√
M+n2 log b) words and O(min{n2/b, n3/(bM)})
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messages, and the costs of the pivoting using the blocked approach are O(n3/b) words and
O(n3/b3) messages. Choosing a block size of b = Θ(

√
M), we obtain communication costs

of the block-Aasen algorithm of

W = O

(
n3

√
M

+ n2 logM

)
and

S = O

(
n3

M3/2

)
.

Given the communication lower bound for this factorization (Corollary 4.14), this algo-
rithm is communication optimal except in the tiny range M � n2 �M log2M . If TSLU is
used for the panel factorization, the algorithm is optimal for all n.

9.4 Numerical Experiments

Next we describe a set of numerical experiments that provide further insight into the nu-
merical behavior of the algorithm. We used a block size b = 16 in all the experiments.

We carried out two sets of experiments: one set involving random matrices and another
involving matrices from the University of Florida Sparse Matrix Collection [55]. In the first
set of experiments we generated a sequence of random square symmetric matrices of order n
for 100 distinct values of n, linearly spaced in the interval 100 ≤ n ≤ 5,000. The elements of
these matrices are distributed normally and independently (preserving symmetry, of course)
with mean 0 and standard deviation 1. In all of our experiments we used GEPP for panel
factorizations. We leave experiments using the tall-skinny LU (TSLU) algorithm to future
work. For each matrix we measured three parameters: the growth factor, the backward error
of the factorization, and the backward error in the solution of a linear system of equations
Ax = b, where b is the sum of the columns of A (so x is the vector of all ones).

We define the growth factor as the number∥∥∥|L| |T | |L|T∥∥∥
∞

‖A‖∞
,

a definition that is justified by Theorem 9.4. The factorization error is defined as

max
i,j

∣∣PAP T − LTLT
∣∣
i,j(

|L| |T | |L|T
)
i,j

,

using the convention 0/0 = 0. We compute the backward error of the floating point solution
x̂ to the system Ax = b according to

‖Ax̂− b‖∞
‖A‖∞ ‖x̂‖∞ + ‖b‖∞

,
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Figure 9.14: Backward errors in the solution of Ax = b and the growth factors in the
factorization of random matrices. The matrices are ordered by growth.

n κ nnz/n
minimum 64 5.0× 100 0.46

1st quartile 800 8.4× 103 6.81
median 2,000 2.5× 106 12.94

3rd quartile 4,581 3.2× 1010 23.93
maximum 8,140 inf 378.19

Table 9.3: Statistics of the University of Florida matrix set.

where we use an unsymmetric LU algorithm to solve the band system.
The factorizations of random matrices were completely backward stable, with backward

errors between 1.1u and 2.4u, with a median of 1.9u. The stability of solutions to linear
systems and the growth factors are shown in Figure 9.14. The backward errors are moderate,
varying between 1.7 × 10−15 and 1.7 × 10−14. The backward error is increasing with n but
at a rate that is clearly slower than linear. The growth factor is strongly correlated with
the error, which is consistent with the bound in Theorem 9.4. The error does not seem to
depend on n outside of the implicit dependence through the growth factor, in contrast with
the bound in Theorem 9.4.
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Figure 9.15: Backward errors and growth factors on matrices from the University of Florida
Collection. The matrices are ordered by growth.

The second set of experiments factored 180 matrices from the University of Florida Sparse
Matrix Collection. We chose for this experiment all of the symmetric, real, non-binary
matrices of order 64 ≤ n ≤ 8,192, with the exception of matrices with bandwidth b or less.
Matrices with low bandwidth were omitted because they are their own T factors and therefore
do not require factorization. This set of 180 matrices is further described in Table 9.3. The
experiment was conducted according to the same scheme as the experiment involving the
random matrices.

The algorithm experienced difficulties on 14 of the matrices; they are discussed later in
this section.

On the 166 matrices on which the algorithm produced good results, we obtained stable
factorizations with backward errors of less than 11u. The stability of the linear solver and
the growth are shown in Figure 9.15. The linear-solver backward errors are in the interval
[1.8× 10−18, 2.0× 10−13] with a median of 2.1× 10−15.

On 14 matrices, the linear solver that we used to solve banded systems involving T failed
to produce a solution. For solving such systems we use the LAPACK subroutine gbsv, which
is a banded implementation of GEPP. The source of the problem is that when T is rank
deficient, gbsv produces a U factor with zeros on the diagonal, and this factor cannot be used
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to solve linear systems. In all 14 matrices the root cause was structural or numerical rank
deficiency of A (Matlab reported condition numbers larger than 1020). Our factorization
algorithm produced stable factorizations, with backward errors of order u, well conditioned
L’s, and mild growth (up to 1.2× 106).

9.5 Conclusions

We have shown that a block variant of Aasen’s factorization algorithm can reduce a sym-
metric matrix into a symmetric banded form in a communication-avoiding way. No prior
symmetric reduction algorithm achieves similar efficiency bounds. We show in [15] that the
shared-memory parallel algorithm performs well in practice on a multi-core machine; here we
focused on complete analyses of the sequential algorithm’s communication costs, arithmetic
costs, and numerical stability.
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Chapter 10

Communication-Avoiding Successive
Band Reduction

In this chapter, we present new sequential and parallel algorithms for tridiagonalizing a
symmetric band matrix in order to compute its eigendecomposition. In order to preserve
band structure, band reduction algorithms based on orthogonal similarity transformations
proceed by an annihilate-and-chase approach. Annihilating entries within the band creates
fill-in (bulges); to preserve sparsity, these bulges are chased off the band before annihilat-
ing subsequent entries. A general framework for this procedure, known as successive band
reduction (SBR), appears in [38].

The main contributions of this chapter are the following:

• we describe new techniques for avoiding communication in the context of SBR,

• we present both new sequential algorithms and improvements on existing ones that
asymptotically reduce both bandwidth and latency costs,

• we introduce a new parallel algorithm that requires asymptotically fewer messages than
previous approaches, and

• we describe how the new sequential and parallel band reduction algorithms can be used
in the context of the dense problem to attain the corresponding communication lower
bounds.

Although no communication lower bound is known for the band reduction problem in iso-
lation, we demonstrate that previous approaches communicate asymptotically more than
necessary. Our results also prove that the assumption of forward progress (Definition 4.18)
is a necessary condition for the lower bound of Theorem 4.25. That is, our algorithms break
the assumption and beat the lower bound, attaining asymptotically better data re-use than
the lower bound allows (see Section 10.1.4 for more details).

While the symmetric band eigenproblem is interesting in its own right, this work is
motivated by the high communication costs of the standard algorithms for solving the full
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(dense) symmetric problem via tridiagonalization. Greater efficiency than the standard
approach can be obtained if the tridiagonalization procedure is split into two steps: reducing
the full matrix to band form and then reducing the band matrix to tridiagonal form. Thus,
by reducing the communication and improving the algorithm for tridiagonalizing a band
matrix, we can also improve algorithms for tridiagonalizing a full matrix. In fact, we can
attain the communication lower bound that applies to the dense problem by using the two-
step approach and the algorithms described in this chapter for the band reduction step.
While we focus on real symmetric matrices in this chapter, the ideas here can be readily
applied to tridiagonalization of complex Hermitian matrices as well as bidiagonalization of
general matrices (for singular value problems).

The rest of the chapter is organized as follows. In Section 10.2, we extend the band
reduction algorithm design space with new techniques for avoiding communication. The
main novel contribution is the idea of chasing multiple bulges in the context of SBR. In
Section 10.3, we give an asymptotic complexity analysis of previous approaches, and show
how our new techniques can be used to improve their communication costs. We also in-
troduce a new algorithm, CASBR, which communicates asymptotically less than all other
approaches. In Section 10.4, we extend CASBR to a distributed-memory parallel algorithm
which communicates asymptotically fewer messages than previous approaches.

All of the results in this chapter appear in [30], written with coauthors James Demmel
and Nicholas Knight. A preliminary version of the work appeared in [31]. The multiple bulge
chasing approach and sequential CASBR algorithm (for eigenvalues only) first appeared in
that paper. We also showed how to extend the sequential algorithm to a shared-memory
parallel environment, and our implementations obtained 2− 6× speedups over state-of-the-
art library implementations. This chapter extends those results in two ways: we discuss
distributed-memory algorithms and consider computing both eigenvalues and eigenvectors,
though we do not give implementation details or performance results here.

10.1 Preliminaries

10.1.1 Eigendecomposition of Band Matrices

In this chapter, we are interested in computing the eigenvalues (and possibly the eigenvec-
tors) of a symmetric band matrix via tridiagonalization. Let A ∈ Rn×n be a symmetric
band matrix with bandwidth b (i.e., having 2b + 1 nonzero diagonals). Because we preserve
symmetry, it is sufficient to store and operate on only the lower b+ 1 diagonals of A. We re-
duce A to a symmetric tridiagonal matrix T via orthogonal similarity transformations which
comprise an orthogonal matrix Q such that QTAQ = T . We refer to this process as the band
reduction phase. We assume the eigendecomposition of the tridiagonal matrix T is computed
via an efficient algorithm such as Bisection/Inverse Iteration, MRRR, Divide-and-Conquer,
or QR Iteration (e.g., see [63]), and we ignore the computation and communication costs of
this phase.
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If only eigenvalues are desired, the eigenvalues of T are the eigenvalues of A, so no extra
computation is required and Q need not be computed or stored. If eigenvectors are also
desired, then a back-transformation phase is needed to reconstruct the eigenvectors of A
from the eigenvectors of T . That is, if the eigendecomposition of T is given by T = V ΛV T ,
then the eigendecomposition of A is A = (QV )Λ(QV )T , so to compute the eigenvectors of A,
we must compute QV . There are a range of possibilities for computing QV : if we form Q and
V explicitly, then this can be done with matrix multiplication; if we store Q implicitly (e.g.,
as a set of Householder vectors), then it can be applied to V after V is formed explicitly;
if QR Iteration is used to compute the eigendecomposition of T , then Q should be formed
explicitly so that V can be applied implicitly to Q from the right as it is computed; or Q
and V can be left implicit, allowing us to multiply by them when needed.

In many applications only a subset of eigenpairs are desired. The cost of the back-
transformation can be made proportional to the number of eigenpairs desired; this can
significantly improve the runtime. Here, we consider only the case of computing all n eigen-
pairs.

One of the most important applications of solving the symmetric band eigenproblem is
when solving the full symmetric eigenproblem. An efficient alternative to direct tridiagonal-
ization [150] is a two-step approach [38]: (1) reducing the full matrix to a band matrix, and
(2) reducing the band matrix to tridiagonal form. Both direct and two-step tridiagonaliza-
tion approaches use orthogonal similarity transformations. The remainder of this chapter
concerns step (2); we discuss step (1) briefly in Section 10.5.

10.1.2 SBR Notation

We follow notation from [38] and the authors’ related papers to describe the terminology
associated with successive band reduction (SBR), our approach for reducing A to T . While
we do not give a complete description of SBR here, Figure 2 in [38] is particularly helpful
for visualizing the framework.

To exploit symmetry, we store and operate on only the lower triangle of the band matrix,
though analogous algorithms apply to the upper triangle. When we refer to a column of the
band, we mean the entries of the column on and below the diagonal.

In a given sweep, SBR eliminates d subdiagonals in sets of c columns,1 using an annihilate-
and-chase approach. We assume Householder transformations are used; each set of trans-
formations eliminates a d-by-c parallelogram of nonzeros but creates trapezoidal-shaped fill
(a bulge). Using analogous orthogonal similarities, SBR chases each bulge off the end of the
band, translating the bulge b columns to the right with each bulge chase. Figure 10.1 shows
the data access pattern of a single bulge chase. A QR decomposition of the (d+ 1 + c)-by-c
matrix (QR region in Figure 10.1) containing the parallelogram computes the orthogonal
matrix that annihilates the parallelogram; the corresponding rows (PRE region) are up-
dated with a premultiplication of the orthogonal matrix; the corresponding columns (POST

1We depart from the LAPACK-style notation nb of [38].
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Figure 10.1: Anatomy of the bulge chasing operation. Following the notation of [38], the
bulge chasing operation based on an orthogonal similarity transformation can be decom-
posed into four parts. There are d diagonals in each bulge and c is the number of columns
annihilated during a bulge chase which leaves behind triangular fill.

region) are updated with a postmultiplication by the transpose of the orthogonal matrix,
creating the next bulge; and the lower half of the corresponding symmetric submatrix on
the diagonal (SYM region) is updated from both the left and right.

We define the working bandwidth b + d + 1 to be the number of subdiagonals necessary
to store the b + 1 diagonals of the matrix as well as to store the d diagonals that hold
temporary fill-in during the course of a sweep. As observed in [115], we note that an entire
bulge need not be eliminated; only the first c columns of the bulge must be annihilated to
prevent subsequent bulges from introducing nonzeros beyond the working bandwidth. This
results in temporary triangular fill.

We index sweeps with an integer i, where i = 1 is the first sweep, so b1 = b is the
initial bandwidth. We index the parallelograms which initiate each bulge chase by j and the
sequence of following bulges by the ordered pairs (j, k): j is the parallelogram index and k
is the bulge index, as in [41].

10.1.3 Related Work

In this section we discuss the previous approaches for band reduction in both sequential and
parallel cases. For the most competitive algorithms, we provide more detailed communication
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cost analyses in later sections. See Tables 10.1–10.4 for summaries and comparisons of
communication costs.

10.1.3.1 Sequential Algorithms

The two papers of Bischof, Lang, and Sun [38, 43] provide a general framework of sequential
SBR algorithms. Their approach first appeared in [40] and generalizes most of the related
work described in this section.

The annihilate-and-chase strategy began with Rutishauser and Schwarz in 1963. Rutis-
hauser [126] identified two extreme points in the SBR algorithm design space: (1) a Givens
rotation-based approach with b sweeps and ci = di = 1 for each i and (2) a column-based
approach with one sweep where c1 = 1 and d1 = b − 1. Rutishauser’s first approach con-
sidered only pentadiagonal matrices; Schwarz [132] generalized the algorithm to arbitrary
bandwidths. Later, Schwarz [133] proposed a different algorithm based on Givens rotations
which does not fit in the SBR framework. This algorithm eliminates entries by column rather
than by diagonal and does not generalize to parallelograms.

Murata and Horikoshi [115] improved on Rutishauser’s column-based algorithm by noting
that computation can be saved by eliminating only the first column of the triangular bulge
rather than the entire triangle. If eigenvectors are desired, Bischof, Lang, and Sun [41]
showed that, with this approach, the Householder vectors comprising Q can be stored in a
lower triangular n-by-nmatrix and applied to V in a different order than they were computed,
yielding higher performance during the back-transformation phase.

Kaufman [98] vectorized the Rutishauser/Schwarz algorithm [126, 132], chasing multiple
single-element bulges in each vector operation. Her motivation for chasing multiple bulges
was not locality but rather to increase the length of the vector operation beyond the band-
width b. Several years later, Kaufman [97] took the approach of [133] in order to maximize
the vector operation length (especially in the case of large b) and make use of a BLAS
subroutine when appropriate. When eigenvectors are requested, the Q matrix is formed ex-
plicitly by applying the updates to an identity matrix. By exploiting sparsity, the flop cost
of constructing Q is about (4/3)n3, compared with 2n3 if sparsity is ignored. The current
LAPACK [8] reference code for band reduction (sbtrd) is based on [97].

More recently, Rajamanickam [123] proposed and implemented a different way of elimi-
nating a parallelogram and chasing its fill. His algorithm uses Givens rotations to eliminate
the individual entries of a parallelogram, and instead of creating a large bulge, the update
rotations are pipelined such that as soon as an element is filled in outside the band, it is
immediately annihilated. The rotations are carefully ordered to obtain temporal and se-
quential locality. By avoiding the fill-in, this algorithm does up to 50% fewer flops than the
Householder-based elimination of parallelograms within SBR and requires minimal working
bandwidth.
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10.1.3.2 Parallel Algorithms

Lang [103, 102] implemented a distributed-memory parallel version of the band reduction
algorithm in [115], although he did not consider computing Q. Bichof et al. [39] implemented
a distributed-memory parallel instance of the SBR framework in the context of tridiagonal-
izing a full matrix. A subsequent paper [41] extended this implementation to reorganize and
block the orthogonal updates comprising Q.

Luszczek et al. [109] implemented the band reduction algorithm from [115] as part of a
two-step shared-memory tridiagonalization algorithm in the PLASMA library [6], using dy-
namic DAG-scheduling of tile-based tasks. They distinguished between “right-looking” and
“left-looking” variants: right-looking algorithms chase a bulge entirely off the band before
eliminating the next parallelogram, left-looking algorithms chase bulges only far enough to
allow for the next bulge to be created (see Constraint 2). For example, the SBR framework
[38] is right-looking while Kaufman’s algorithm [97] is left-looking. In [109], they found im-
proved performance with a left-looking variant. Later, Haidar et al. [84] reduced the runtime
of [109]; the improvements in the band-to-tridiagonal step include using an algorithm-specific
(static) scheduler, “grouping” related tasks, and avoiding fill-in using pipelined Givens rota-
tions (a single-sweep version of the approach in [123]).

Auckenthaler et al. [10, 11, 12] have implemented a two-step distributed-memory tridiag-
onalization algorithm as part of a solver for the generalized symmetric eigenproblem. Their
band-to-tridiagonal step uses an improved version of Lang’s algorithm [102], which performs
one sweep. They give a new algorithm for orthogonal updates which uses a 2D processor
layout instead of a 1D layout. Their implementation also supports taking multiple sweeps
when eigenvectors are not requested; however, this algorithm is not given explicitly.

10.1.4 Related Lower Bounds

No communication lower bound has been established for annihilate-and-chase band reduction
algorithms, so we cannot conclude that our new algorithms are communication optimal in
an asymptotic sense. In fact, Theorem 4.25 in Section 4.3, which applies to many algorithms
that use orthogonal transformations, does not apply to SBR or its variants because they fail
to satisfy forward progress (Definition 4.18). That is, the lower bound proof there requires
that an orthogonal transformation algorithm not fill in a previously created zero—this occurs
frequently in SBR, unlike QR decomposition.

The main results of Chapter 4 state that an applicable algorithm that performs G flops
must move Ω(G/

√
M) words and send Ω(G/M3/2) messages for sufficiently large problems.

For most dense matrix algorithms, the number of flops is G = O(n3/P ), where P = 1 for
the sequential case. In the parallel case, if we assume minimal local memory is used (i.e.,
M = Θ(n2/P ), or just enough to store the input and output matrices), the the lower bounds
simplify to Ω(n2/

√
P ) words and Ω(

√
P ) messages.

Since our new sequential algorithm (see Algorithm 10.1 and Table 10.1) performs O(n2b)
flops, moves O(n2b2/M) words, and sends O(n2b2/M2) messages, its bandwidth and latency
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costs drop below the lower bounds by a factor of O(
√
M/b) for 2 ≤ b ≤

√
M/3. For small b

and large n (such that the band does not fit entirely in fast memory), this discrepancy is as
much as O(

√
M). Similarly, our new parallel algorithm (see Algorithm 10.3 and Table 10.3)

also beats the lower bounds for bandwidth and latency costs, and the discrepancy is largest
for small bandwidths. Thus, our algorithms show that not only does the lower bound proof
technique not apply to annihilate-and-chase algorithms, the bound itself must not apply.

10.2 Avoiding Communication in Successive Band

Reduction

The goal of our algorithms is to avoid communication by reorganizing computation, ex-
tending the SBR framework to obtain greater data locality. In the sequential case, we can
asymptotically reduce the number of words and messages that must be moved between fast
and slow memory during the execution of the algorithm; in the parallel case, we can asymp-
totically reduce the number of messages sent between processors. We achieve data locality
(i.e., avoid communication) using two techniques described in Sections 10.2.1 and 10.2.2.
We navigate the constraints and tradeoffs that arise using a successive halving approach,
described in Section 10.2.3.

10.2.1 Applying Multiple Householder Transformations

The first means of achieving data locality is within a single bulge chase (see Figure 10.1).
Since c Householder vectors are computed to eliminate the first c columns of the bulge
(QR region), every entry in the PRE, SYM, and POST regions is updated by c left and/or
right Householder transformations. These transformations may be applied one at a time or
blocked (e.g., via [131]). Assuming all the data involved in a single bulge chase reside in fast
or local memory, O(c) flops are performed for every entry read from slow memory.

We identify the following algorithmic constraint. If it is violated, then the parallelogram
annihilated by the left update will be (partially) refilled by the right update (i.e., the SYM
and POST regions overlap the QR region)—this implies wasted computation.

Constraint 1. To annihilate a parallelogram within the SBR framework, the dimensions of
the parallelogram must satisfy

c+ d ≤ b.

While increasing c improves data locality, it limits the size of d due to Constraint 1.
Because d is the number of diagonals eliminated in a sweep, this constraint creates a tradeoff
between locality and progress towards tridiagonal form.
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10.2.2 Chasing Multiple Bulges

The second means of achieving data locality is across bulge chases. If ω bulges can be chased
through the same set of columns without data movement, then we have achieved O(ω) reuse
of those columns. Recall that we refer to columns as the subset of column entries on and
below the diagonal. We first establish the following constraint.

Constraint 2. No bulge may be chased into a set of columns still occupied by a previously
created bulge.

If this constraint is violated, then the fill will expand beyond the working bandwidth
of the sweep. While it is possible to eliminate this extra fill, we wish to avoid the extra
computation and storage necessary to do so. Chasing the first c columns of a bulge and
leaving behind the triangular fill is the least amount of work required to prevent the fill from
exceeding the working bandwidth.

We state the following lemmas regarding parallelograms, bulges, sets of bulges, and the
working set (measured in columns) for chasing a set of bulges. We assume in both cases that
Constraints 1 and 2 are satisfied.

Lemma 10.1. Given a sweep of SBR with parameters b, c, and d,

(a) the jth parallelogram occupies columns 1 + (j − 1)c through jc,

(b) bulge (j, k) occupies columns 1 + (j − 1)c+ kb− d through jc+ kb,

(c) bulges (j, k) and (j + 1, k − 2) do not overlap.2

Lemma 10.2. Chasing the set of ω bulges

{(j, k),(j + 1, k − 2), . . . ,(j + ω − 1, k − 2(ω − 1))}

each ` times requires a working set of (ω − 1)(2b− c) + c+ d+ b` columns.

Proof. By Lemma 10.1(c), this set of bulges is nonoverlapping. If the bulges are chased in
turn ` times each, starting with the right-most bulge (j, k) and ending with the left-most
bulge (j + ω − 1, k − 2(ω − 1)), then there is no violation of Constraint 2. The conclusion
follows from Lemma 10.1(b).

Figure 10.2 demonstrates the working set of 44 columns with ω = 2 bulges chased ` = 3
times each on a matrix with bandwidth b = 8 with c = d = 4.

Our motivation for defining a working set is to ensure that the operation of chasing ω
bulges ` times can be done entirely in fast memory (in the sequential case) or local memory
(in the parallel case). We will specify the constraints in each case when we present our
algorithms below.

2Note that if 2c + d ≤ b, bulges (j, k) and (j + 1, k − 1) also do not overlap.
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One of the motivations for SBR was that increasing c can attain
better performance since the (blocked) Householder updates may
use BLAS3 kernels. In our performance model, we explain this by
the higher arithmetic intensity of BLAS3 kernels (flops per byte)
on a fixed working set in fast memory. However, given fixed b and
d, forward progress requires that c ≤ b − d, and this constraint
might hinder the BLAS3 kernels from efficiently using fast memory
when working sets are small (eg when b is small). Our contribution
is to introduce a second, coarser, level of blocking: we will create
and chase multiple bulges, to increase the working set size when
it otherwise would be too small to efficiently use the fast memory.
Kaufman’s algorithm (also LAPACK sbtrd) does a similar form
of blocking when bulges are element-sized, which can be expressed
as a c = d = 1 (Givens rotations) instance of SBR. Our blocking
can be thought of as a generalization of Kaufman’s blocking to the
d× c parallelograms of SBR. Kaufman’s motivation was to exploit
this data parallelism with vector instructions - our motivation is
purely based on data locality and communication costs. Cor. 2.3
follows easily from Cor. 2.2, and quantifies how closely we can
pack bulges

Corollary 2.3. For one sweep of SBR with fixed parameters b > 1,
c ≥ 1, and d ≥ 1 satisfying forward progress,

• c + d ≤ b =⇒ the column indices spanned by bulge (i, j)
are disjoint from those of {(i + 1, k)} for 0 < k ≤ j − 2.
Given a set of m contiguous columns, we could fit at most
� = �(m + 2b − 2c − d) / (2b − c)� bulges.

• 2c + d ≤ b =⇒ the column indices spanned by bulge (i, j)
are disjoint from those of {(i + 1, k)} for 0 < k ≤ j − 1.
Given a set of m contiguous columns, we could fit at most
� = �(m + b − 2c − d) / (b − c)� bulges.

Cor. 2.4 pertains to an certain instance of SBR similar to our
algorithms in the following sections. We will use Cor. 2.4 to argue
that the Householder transformations generated by our algorithms
are well-defined.

Corollary 2.4. Consider an instance of SBR with b even, c =
d = b/2, and m = 3kb for integer k. Up to � = 2k bulges,
{(i, j), . . . , (i+�−1, j−(�−1))}, can be packed into m columns.
Suppose A is blocked columnwise with each block-column of width
m (padding if necessary). Each block column holds 6k band par-
allelograms, which we will chase in 3 sets of 2k each. Consider
2 adjacent block columns. Each of the 3 parallelogram sets in the
left block induces a set 2k bulges which can be chased to fit into
the right block (ie without straddling block boundaries). These 2k
bulges can then be chased into each successive block column and
always fit.

Cor. 2.4 allows us to approximate the working set for both
creating and chasing bulges as two adjacent sets of 3�b/2 columns
each, where � is an even number (the number of bulges blocked
together). A parallel message is one of these blocks. We can assume
the working bandwidth never exceeds b+d so each column requires
at most 2b words (this includes buffer space for the T matrix when
applying blocked Householder updates). Thus, a working set has
6�b2 words. In parallel, processors exchange column blocks, so the
parallel message size is 3�b2 words. This assumes we only perform
band reduction and do not compute or store the orthogonal matrix
Q - this is the case when we only seek eigenvalues.

We conclude by noting that we will choose powers of 2 for �,
rather than arbitrary numbers, in our algorithms that follow. Our
algorithms will successively halve the bandwidth, so we assume it
is always also a power of 2 - if not, in practice we would pad the
starting bandwidth to the next power of 2, or each successively-
halved bandwidth to the next even number.

bulges 
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3. Algorithms and Analysis
3.1 Sequential Case
3.1.1 Algorithm
The communication-avoiding sequential algorithm, shown in Al-
gorithm 1, is based on the framework given in [? ]. At each sweep
i, we cut the remaining bandwidth bi in half by setting di = bi/2.
We also set ci = bi/2 which satisfies the ci + di ≤ bi constraint.
To make the analysis simpler for this successive halving approach,
we assume that the initial bandwidth b is a power of two.
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(a) The ω = 2 bulges occupy 20
of the 24 columns on the left.
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on a fixed working set in fast memory. However, given fixed b and
d, forward progress requires that c ≤ b − d, and this constraint
might hinder the BLAS3 kernels from efficiently using fast memory
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is to introduce a second, coarser, level of blocking: we will create
and chase multiple bulges, to increase the working set size when
it otherwise would be too small to efficiently use the fast memory.
Kaufman’s algorithm (also LAPACK sbtrd) does a similar form
of blocking when bulges are element-sized, which can be expressed
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d× c parallelograms of SBR. Kaufman’s motivation was to exploit
this data parallelism with vector instructions - our motivation is
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Corollary 2.3. For one sweep of SBR with fixed parameters b > 1,
c ≥ 1, and d ≥ 1 satisfying forward progress,

• c + d ≤ b =⇒ the column indices spanned by bulge (i, j)
are disjoint from those of {(i + 1, k)} for 0 < k ≤ j − 2.
Given a set of m contiguous columns, we could fit at most
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Cor. 2.4 pertains to an certain instance of SBR similar to our
algorithms in the following sections. We will use Cor. 2.4 to argue
that the Householder transformations generated by our algorithms
are well-defined.

Corollary 2.4. Consider an instance of SBR with b even, c =
d = b/2, and m = 3kb for integer k. Up to � = 2k bulges,
{(i, j), . . . , (i+�−1, j−(�−1))}, can be packed into m columns.
Suppose A is blocked columnwise with each block-column of width
m (padding if necessary). Each block column holds 6k band par-
allelograms, which we will chase in 3 sets of 2k each. Consider
2 adjacent block columns. Each of the 3 parallelogram sets in the
left block induces a set 2k bulges which can be chased to fit into
the right block (ie without straddling block boundaries). These 2k
bulges can then be chased into each successive block column and
always fit.

Cor. 2.4 allows us to approximate the working set for both
creating and chasing bulges as two adjacent sets of 3�b/2 columns
each, where � is an even number (the number of bulges blocked
together). A parallel message is one of these blocks. We can assume
the working bandwidth never exceeds b+d so each column requires
at most 2b words (this includes buffer space for the T matrix when
applying blocked Householder updates). Thus, a working set has
6�b2 words. In parallel, processors exchange column blocks, so the
parallel message size is 3�b2 words. This assumes we only perform
band reduction and do not compute or store the orthogonal matrix
Q - this is the case when we only seek eigenvalues.

We conclude by noting that we will choose powers of 2 for �,
rather than arbitrary numbers, in our algorithms that follow. Our
algorithms will successively halve the bandwidth, so we assume it
is always also a power of 2 - if not, in practice we would pad the
starting bandwidth to the next power of 2, or each successively-
halved bandwidth to the next even number.

One of the motivations for SBR was that increasing c can attain
better performance since the (blocked) Householder updates may
use BLAS3 kernels. In our performance model, we explain this by
the higher arithmetic intensity of BLAS3 kernels (flops per byte)
on a fixed working set in fast memory. However, given fixed b and
d, forward progress requires that c ≤ b − d, and this constraint
might hinder the BLAS3 kernels from efficiently using fast memory
when working sets are small (eg when b is small). Our contribution
is to introduce a second, coarser, level of blocking: we will create
and chase multiple bulges, to increase the working set size when
it otherwise would be too small to efficiently use the fast memory.
Kaufman’s algorithm (also LAPACK sbtrd) does a similar form
of blocking when bulges are element-sized, which can be expressed
as a c = d = 1 (Givens rotations) instance of SBR. Our blocking
can be thought of as a generalization of Kaufman’s blocking to the
d× c parallelograms of SBR. Kaufman’s motivation was to exploit
this data parallelism with vector instructions - our motivation is
purely based on data locality and communication costs. Cor. 2.3
follows easily from Cor. 2.2, and quantifies how closely we can
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left block induces a set 2k bulges which can be chased to fit into
the right block (ie without straddling block boundaries). These 2k
bulges can then be chased into each successive block column and
always fit.

Cor. 2.4 allows us to approximate the working set for both
creating and chasing bulges as two adjacent sets of 3�b/2 columns
each, where � is an even number (the number of bulges blocked
together). A parallel message is one of these blocks. We can assume
the working bandwidth never exceeds b+d so each column requires
at most 2b words (this includes buffer space for the T matrix when
applying blocked Householder updates). Thus, a working set has
6�b2 words. In parallel, processors exchange column blocks, so the
parallel message size is 3�b2 words. This assumes we only perform
band reduction and do not compute or store the orthogonal matrix
Q - this is the case when we only seek eigenvalues.

We conclude by noting that we will choose powers of 2 for �,
rather than arbitrary numbers, in our algorithms that follow. Our
algorithms will successively halve the bandwidth, so we assume it
is always also a power of 2 - if not, in practice we would pad the
starting bandwidth to the next power of 2, or each successively-
halved bandwidth to the next even number.
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gorithm 1, is based on the framework given in [? ]. At each sweep
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the higher arithmetic intensity of BLAS3 kernels (flops per byte)
on a fixed working set in fast memory. However, given fixed b and
d, forward progress requires that c ≤ b − d, and this constraint
might hinder the BLAS3 kernels from efficiently using fast memory
when working sets are small (eg when b is small). Our contribution
is to introduce a second, coarser, level of blocking: we will create
and chase multiple bulges, to increase the working set size when
it otherwise would be too small to efficiently use the fast memory.
Kaufman’s algorithm (also LAPACK sbtrd) does a similar form
of blocking when bulges are element-sized, which can be expressed
as a c = d = 1 (Givens rotations) instance of SBR. Our blocking
can be thought of as a generalization of Kaufman’s blocking to the
d× c parallelograms of SBR. Kaufman’s motivation was to exploit
this data parallelism with vector instructions - our motivation is
purely based on data locality and communication costs. Cor. 2.3
follows easily from Cor. 2.2, and quantifies how closely we can
pack bulges
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c ≥ 1, and d ≥ 1 satisfying forward progress,
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that the Householder transformations generated by our algorithms
are well-defined.
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Suppose A is blocked columnwise with each block-column of width
m (padding if necessary). Each block column holds 6k band par-
allelograms, which we will chase in 3 sets of 2k each. Consider
2 adjacent block columns. Each of the 3 parallelogram sets in the
left block induces a set 2k bulges which can be chased to fit into
the right block (ie without straddling block boundaries). These 2k
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always fit.

Cor. 2.4 allows us to approximate the working set for both
creating and chasing bulges as two adjacent sets of 3�b/2 columns
each, where � is an even number (the number of bulges blocked
together). A parallel message is one of these blocks. We can assume
the working bandwidth never exceeds b+d so each column requires
at most 2b words (this includes buffer space for the T matrix when
applying blocked Householder updates). Thus, a working set has
6�b2 words. In parallel, processors exchange column blocks, so the
parallel message size is 3�b2 words. This assumes we only perform
band reduction and do not compute or store the orthogonal matrix
Q - this is the case when we only seek eigenvalues.

We conclude by noting that we will choose powers of 2 for �,
rather than arbitrary numbers, in our algorithms that follow. Our
algorithms will successively halve the bandwidth, so we assume it
is always also a power of 2 - if not, in practice we would pad the
starting bandwidth to the next power of 2, or each successively-
halved bandwidth to the next even number.
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on a fixed working set in fast memory. However, given fixed b and
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might hinder the BLAS3 kernels from efficiently using fast memory
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and chase multiple bulges, to increase the working set size when
it otherwise would be too small to efficiently use the fast memory.
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follows easily from Cor. 2.2, and quantifies how closely we can
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Q - this is the case when we only seek eigenvalues.
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gorithm 1, is based on the framework given in [? ]. At each sweep
i, we cut the remaining bandwidth bi in half by setting di = bi/2.
We also set ci = bi/2 which satisfies the ci + di ≤ bi constraint.
To make the analysis simpler for this successive halving approach,
we assume that the initial bandwidth b is a power of two.
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(c) The second bulge is chased
` = 3 times.

Figure 10.2: Chasing a set of bulges. We store and operate on only the lower triangle of the
band matrix. The parameters shown are b = 8, c = 4, and d = 4; ω = 2 bulges are chased
` = 3 times each. Only 2b` = 48 columns of the band are shown. The working bandwidth
includes the diagonals which contain bulges and triangular fill. Note that the triangular fill
left behind by the first bulge does not cause any increase in the working bandwidth as the
second bulge is chased.

10.2.3 Successive Halving

We will navigate the tradeoff imposed by Constraint 1 by setting ci = di = bi/2 at each
sweep i, reducing to tridiagonal form after log b sweeps. We call this a successive halving
approach. We will pick the number of bulges in a set (ωi) and the number of times each bulge
is chased (`i) such that on each sweep (as the bandwidth is successively halved) we double
the number of bulges that we chase in a set, and chase each bulge twice as many times,
compared to the previous sweep. While the successive halving approach (and doubling ωi
and `i) simplifies our asymptotic analysis, in practice the parameters {ci, di, ωi, `i} should
be tuned independently for best performance—we suggested a framework for automatically
tuning these parameters in a shared-memory implementation [31, Section 5].

10.3 Sequential Band Tridiagonalization Algorithms

Recall our sequential machine model, where communication is moving data between slow
memory of unbounded capacity and a fast memory with a capacity of M words. We will
first consider the case of computing eigenvalues only and then extend to the case of comput-
ing both eigenvalues and eigenvectors. We will not analyze the solution of the tridiagonal
eigenproblem. In each case, we discuss existing approaches, apply our techniques to improve
them, and then present our communication-avoiding approach.
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For our sequential algorithms, we will assume the initial bandwidth b is bounded above
by
√
M/3. As mentioned in Sections 10.1.1 and 10.5, this is a reasonable assumption if

the band reduction is used as the second step of a two-step reduction of a full symmetric
matrix to tridiagonal form. For larger bandwidths, another approach must be taken to avoid
communication (see Section 10.5). We also assume that nb � M (the band does not fit in
fast memory).

10.3.1 Computing Eigenvalues Only

When only eigenvalues are desired, the runtime is dominated by the band reduction. Com-
puting the eigenvalues of a tridiagonal matrix involves only O(n) data and less computation
than the band reduction—O(n2) as opposed to O(n2b). While there is a large design space
for band reduction, the computational cost ranges from 4n2b to 6n2b, a difference of only
50% (as long as a bulge-chasing procedure is used to prevent unnecessary fill). However, the
communication cost (and expected performance) has a much larger range.

Under the assumption above, the matrix does not fit in fast memory (otherwise, the
communication costs are the same for all algorithms: O(nb)). In the case that n < M (i.e.,
one or more diagonals fit in fast memory), when the bandwidth is reduced such that the
remaining band matrix fits in fast memory, the communication cost of remaining sweeps is
that of reading the band into fast memory once and writing the tridiagonal output.

Table 10.1 summarizes the computation and communication costs of various algorithms
for tridiagonalizing a band matrix (for computing eigenvalues only). Our new approach,
CASBR, improves the communication costs compared to the previous approaches. For ex-
ample, CASBR moves a factor of M/b fewer words than LAPACK or MH, which is at least√
M in the range of b considered, and near M for b = O(1). Note that while the compu-

tational costs vary only by constant factors, these factors can make a difference in practice.
The tradeoffs between different algorithms and between computation and communication
should be navigated with autotuning (of algorithms and parameters) in practice. In the
context of two-step tridiagonalization of a dense matrix, CASBR is the only approach that
always attains (or beats) the lower bounds discussed in Section 10.1.4.

10.3.1.1 Alternative Algorithms

We first consider Kaufman’s algorithm [97], which is implemented in the current LAPACK
reference code [8], given in the first row of Table 10.1. The algorithm uses Givens rotations
and performs 4n2b flops. It is left-looking and chases multiple single-element bulges in order
to maximize the vector operation length, but it does not limit the size of the working set
to fit in fast memory. As a result, the algorithm has to read (from slow memory) at least
one of each pair of entries to be updated by a Givens rotation. Thus, the data reuse is O(1)
and the total number of words transferred between fast and slow memory is proportional
to the number of flops: O(n2b). Since fine-grained data access occurs along both rows and
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Algorithm Flops Words Messages

LAPACK [97] 4n2b O(n2b) O(n2b)

MH [115] 6n2b O(n2b) O
(
n2b
M

)
Improved MH 6n2b O

(
n2b3

M

)
O
(
n2b3

M2

)
SBR [38]

s∑
i=1

(
4di + 2

d2i
bi

)
n2 O

(
t∑
i=1

(
1 +

di
bi

)
n2

)
O

(
t∑
i=1

(
1 +

di
bi

)
n2

M

)
SBR (ci = di = bi/2) 5n2b O(n2t) O

(
n2t
M

)
CASBR 5n2b O

(
n2b2

M

)
O
(
n2b2

M2

)
Table 10.1: Asymptotic comparison of previous sequential algorithms for tridiagonalization
(for eigenvalues only) with our improvements, for symmetric band matrices of n columns
and b + 1 subdiagonals on a machine with fast memory of size M . The table assumes that
nb � M and that 2 ≤ b ≤

√
M/3. The analysis for all algorithms is given in Section 10.3.

In the fourth and fifth rows, s is the number of sweeps performed and t ≤ s is the smallest
sweep index such that the subsequent sweeps can be performed in fast memory, or t = s
otherwise.

columns, the latency cost is on the same order as the bandwidth cost, assuming LAPACK’s
column-major layout.

Next, we consider the Householder-based approach of Murata and Horikoshi [115], given
as MH in the second row of Table 10.1. In this algorithm, each column is eliminated all at
once, and the bulge is chased completely off the band before the next column is eliminated.
Because of operations on the triangular fill, the number of flops required increases to 6n2b
compared to Givens-based algorithms. Since each bulge is chased entirely off the band, the
entire band must be read from slow memory for every column eliminated, a total of O(n2b)
words moved. Assuming column-major layout, the sequence of bulge chases for each column
(i.e., bulges (j, k) for fixed j) is executed on contiguous data, and the latency cost is a factor
of O(M) less than the bandwidth cost.

In order to reduce communication costs for the MH algorithm it is possible to apply one
of the optimizations described in Section 10.2: chasing multiple bulges. From Lemma 10.2,
we can chase O(M/b2) bulges at a time and maintain a working set which fits in fast memory.
This results in a reduction of both bandwidth and latency costs by a factor of O(M/b2). We
call this algorithm “Improved MH,” given in the third row of Table 10.1.

Consider an algorithm within the SBR framework with parameters {(bi, ci, di)}i=1,2,...,s,
which does not chase multiple bulges at a time (i.e., ωi = 1 for every i). This corresponds to
the fourth row of Table 10.1. The flop count is given by [38, Equation (3)] (and Lemma 10.7
below). Note that the approach of [123] allows the computational cost to be reduced to
4n2b for all parameter choices. Since the SBR framework is right-looking, the trailing band
must be read for each parallelogram eliminated. During the ith sweep, there are O(n/ci)
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parallelograms and each parallelogram is chased O(n/bi) times. The amount of data accessed
during one bulge chase is O(bi(ci + di)) words—for example, bi columns are accessed during
the left update and each bulge occupies ci +di rows. Thus, the number of words read during
the ith sweep is O(n2(1 + di/ci)). In the best case, the latency cost is a factor of M smaller
than the bandwidth cost.

If we apply the successive halving approach (ci = di = bi/2) but do not chase multiple
bulges, then the costs of SBR simplify to O(n2t) words (where t ≤ log b is the smallest sweep
index such that n(bt + dt + 1) ≤ M , or t = log b otherwise) and O(n2t/M) messages, in the
best case. These costs appear in the fifth row of Table 10.1.

10.3.1.2 CASBR

The communication avoiding sequential algorithm, shown in Algorithm 10.1, is based on the
framework given in [38], using the successive halving approach (see Section 10.2.3). Our
main deviation from the original SBR framework is chasing multiple bulges at a time, as
described in Section 10.2.2. Recall that ωi denotes the number of bulges chased at a time,
and `i the number of times each bulge is chased, during sweep i. We would like to maximize
ωi so that for some `i ≥ 1, this working set fits in a fast memory of size M words. We
ignore the sparsity below the bith subdiagonal by assuming each column has bi + di + 1
nonzeros (i.e., the working bandwidth). It follows from Lemma 10.2 that we would like to
pick positive integers ωi and `i such that ωi is maximized and

((ωi − 1)(2bi − ci) + ci + di + bi`i)(bi + di + 1) ≤M. (10.1)

We use a successive halving approach, as mentioned above. That is, at each sweep i, we
cut the remaining bandwidth bi in half by setting di = bi/2. We also set ci = bi/2 (which
satisfies Constraint 1). To simplify the analysis, we assume that the initial bandwidth b = b1
is a power of two.

As in Lemma 10.2, when chasing a set of ωi bulges, we work right-to-left, chasing each
bulge `i = (3/2)ωi times in turn. In this way, after all bulges in the set are chased, the set
does not overlap the previous columns occupied, and the relative positions of the bulges are
maintained. This process is shown in Figure 10.2 and corresponds to line 9 in Algorithm 10.1.
Fixing `i in terms of ωi also has the benefit of decreasing the latency cost on successive sweeps.
While the constant ratio between ωi and `i simplifies theoretical analysis, these parameters
can be tuned independently in practice.

With these parameter choices and assumptions, inequality (10.1) simplifies, as given in
the following constraint.

Constraint 3. Assuming b and ω are even, c = d = b/2, ` = (3/2)ω, and b ≤
√
M/3, then

the number of bulges chased at a time must not exceed ω ≤ 4M/(9(b+ 1)2).

By satisfying Constraint 3, we ensure that the entire operation can be performed on
columns which all fit in fast memory simultaneously.
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We include explicit memory operations within the algorithm in order to determine the
communication costs: writes imply moving data from fast memory to slow memory and
reads imply moving data from slow memory to fast memory.

Algorithm 10.1 Sequential CASBR

Require: initial bandwidth b ≤
√
M/3 is a power of 2

1: t = min{log b,
⌈
log n(b+1)

M

⌉
}

2: for i = 1 to t do
3: bi = b

2i−1 , ci = bi
2
, di = bi

2
, ωi = 2

⌊
2M

9(bi+1)2

⌋
, `i = 3

2
ωi

4: while not reached end of band do
5: create next set of ωi bulges
6: while not reached end of band do
7: write previous `ibi columns of band
8: read next `ibi columns of band
9: chase ωi bulges `i times each

10: end while
11: chase ωi bulges off the end of the band
12: end while
13: copy band into data structure with column height 3

2
bi+1

14: end for
15: if t < log b then
16: read remaining band into fast memory
17: reduce band to tridiagonal
18: write output to slow memory
19: end if

We omit the details of creating a set of bulges (line 5) and of chasing bulges at the end
of the band (line 11). Both the arithmetic and communication costs of creating ωi bulges
or chasing ωi bulges off the end of the band are dominated by that of chasing the ωi bulges
`i times each. Also, since neither operation occurs in the inner loop of the algorithm, they
contribute only lower order terms to the costs of the entire algorithm.

The computation of t in line 1 determines the sweep (if any) after which the remaining
band fits entirely in fast memory. Note that if n > M , then the band will never fit in fast
memory and t = log b. If the band becomes small enough to fit in fast memory, then the
algorithm will stop the main loop (lines 2–14) and fall to the clean-up code in lines 15–19
which simply reads the band into fast memory, reduces to tridiagonal form, and writes the
result back to slow memory.
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10.3.1.3 Arithmetic Cost

In order to count the number of flops required by Algorithm 10.1, we first establish two
lemmas related to the cost of applying Householder transformations.

Lemma 10.3. Applying a Householder transformation from the left, House(u) ·A, costs no
more than 4hc + h− c flops, where h is the number of nonzeros in u and A has c columns.
Equivalently, applying the transformation from the right, A · House(u), costs no more than
4hr + h− r flops if A has r rows.

Proof. The first statement is verified by counting the operations in A :− A − (τu)
(
uTA

)
.

The second statement is verified by transposing the first transformation.

Lemma 10.4. Applying a Householder transformation symmetrically to an n-by-n symmet-
ric matrix A, House(u) ·A ·House(u)T , costs no more than (4h− 1)n+ 5h flops, where h is
the number of nonzeros in u.

Proof. We perform three steps: y := A(τu), v := y− (1/2)
(
yTu

)
u, and A := A−uvT −vuT .

The first step costs (2h − 1)n + h operations, the second 4h − 1, and the third 2nh, if we
exploit symmetry.

Given these lemmas, we can compute the arithmetic cost of a single bulge chase.

Lemma 10.5. A single bulge chase costs 8bcd+ 4cd2 +O(bc) operations. Creating a bulge,
or clearing a bulge (off the end of the band), is less expensive.

Proof. We refer to the four operations depicted in Figure 10.1. Let 1 ≤ m ≤ c index the
(unblocked) Householder transformations that eliminate the parallelogram in the QR region.
Transformation m is applied from the left to c−m columns in the QR region and b−c columns
in the PRE region, from the right to b−(c−m) rows in the POST region, and symmetrically
to a (d + c)-by-(d + c) symmetric matrix in the SYM region. Applying Lemmas 10.3 and
10.4, transformation m performs 8bd + 4d2 + O(b) flops, and there are c transformations.
Creating a bulge is less expensive because the PRE region includes only b− c− d columns.
As a result, transformation m does fewer flops. Clearing a bulge is less expensive because
there are fewer rows in the POST region.

See [31, Section 5.3] for a discussion of different approaches to chasing individual bulges
and their implications on performance.

We can also count the number of bulge chases that occur during each sweep.

Lemma 10.6. The number of bulges chased during a sweep with parameters n, b, c, and d
is n2/(2bc) +O(n/b).

Proof. For each parallelogram eliminated, the bulge must be chased the length of the trailing
band, in increments of b columns. Thus, the total number of bulge chases during a sweep is∑n/c

j=1(n− jc)/b = n2/(2bc) +O(n/b).
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Lemmas 10.5 and 10.6 together imply the following fact, which agrees with [38, Equation
(3)].

Lemma 10.7. The arithmetic cost of eliminating d diagonals from a matrix with bandwidth
b using SBR is (4d+ 2d2/b)n2 +O(n2).

The order of operations specified by the algorithm does not affect the arithmetic count,
provided Constraints 1 and 2 are satisfied. Given the cost of the ith sweep specified by
Lemma 10.7, since di = bi/2 and

∑
i di = b − 1, the arithmetic cost of Algorithm 10.1

(ignoring lower order terms) is

log b∑
i=1

(
4di + 2

d2i
bi

)
n2 = 5n2b.

10.3.1.4 Bandwidth Cost

In determining the communication costs of Algorithm 10.1, we must consider two cases. If
n > M , then log b < dlog(n(b+ 1)/M)e and the main loop (lines 2–14) will be executed
log b times, reducing the band to tridiagonal. However, if n < M , then at some point the
bandwidth will become small enough such that the entire band fits in fast memory. At this
point, the algorithm reduces to lines 15–19 and the only communication required to finish
the reduction is that of reading the band into fast memory and writing the tridiagonal output
back to slow memory for a cost of O(nbt+1) words.

We now consider the ith sweep, where we assume the band is too large to fit in fast
memory. The dominant communication cost is in the innermost loop (lines 6–10). The
number of words in each column is (3/2)bi, so the bandwidth cost of one iteration of the
inner loop is 3`ib

2
i = O(M) words. The inner loop is executed O(n/(`ibi)) times for each set

of bulges, and there are O(n/(ciωi)) sets of bulges during the sweep. Thus, the bandwidth
cost of one sweep is O(n2b2i /M) words.

The bandwidth cost (i.e., number of words moved) of Algorithm 10.1 is then

t∑
i=1

O

(
n2b2i
M

)
+O(nbt+1) = O

(
n2b2

M
+ nb

)
.

10.3.1.5 Latency Cost

We will assume the band matrix is stored in LAPACK symmetric band storage format
(column-major with column height equal to the working bandwidth) so that any block of
columns of the band will be stored contiguously in slow memory. After each set of subdi-
agonals is annihilated from a column block, the algorithm packs the remaining diagonals
into a smaller data structure (see line 13) to maintain a packed column-major layout for all
successive sweeps. This increases the memory footprint by no more than a factor of two and
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can also be done in place, and it adds only lower order terms to the bandwidth and latency
costs.

As in the previous section, if the band becomes small enough to fit in fast memory, then
the communication costs of completing the algorithm are reduced to reading the band and
writing the tridiagonal output. In this case, the latency cost is 2 messages. When the band is
too large to fit in fast memory, the dominant latency cost is that of the innermost loop. Since
consecutive columns are stored contiguously, the latency cost per iteration of the innermost
loop is 2 messages. As argued above, the inner loop is executed O(n/(`ibi)) times for each
set of bulges, and there are O(n/(ciωi)) sets of bulges during the sweep. Thus, the latency
cost of one sweep is O(n2b2i /M

2) messages.
The latency cost (i.e., number of messages moved) of Algorithm 10.1 is then

t∑
i=1

O

(
n2b2i
M2

)
+O(1) = O

(
n2b2

M2
+ 1

)
.

10.3.2 Computing Eigenvalues and Eigenvectors

When only eigenvalues are desired, the orthogonal similarity transformations that reduce the
band matrix to tridiagonal form may be discarded. However, when eigenvectors are desired,
these transformations must be used to reconstruct the eigenvectors QV of the band matrix
from the eigenvectors V of the tridiagonal matrix.

Compared to Section 10.3.1, the main difference between computing eigenvalues and
additionally eigenvectors is that the arithmetic cost of computing QV increases with the
number of sweeps taken in the band reduction. While the arithmetic cost of the band
reduction for the algorithms discussed in Section 10.3.1 ranges from 4n2b to 6n2b, that of
the back-transformation ranges from 2n3 up to n3 log b.

The orthogonal matrix Q can be constructed explicitly by applying the updates from the
band reduction to an n-by-n identity matrix. Some flops may be saved when starting from
the identity matrix (compared to applying them to a dense matrix, see e.g., [97]), but the
entries fill in quickly after one sweep, and we will ignore this savings in our analysis. Then,
the arithmetic cost of computing QV given V is the cost of a matrix multiplication, 2n3 flops.
However, the cost of this matrix multiplication can be avoided by storing Q implicitly as a
set of Householder vectors and applying them to V . While this choice does not affect our
theoretical analysis of CASBR, it should be considered in practice. Storing the Householder
information for each sweep requires extra memory for at most n2/2 entries per sweep.

Table 10.2 shows the computation and communication costs for various approaches to
tridiagonalizing a band matrix (for computing both eigenvalues and eigenvectors).

Recall that one context of this work is two-step tridiagonalization; the communication
lower bounds referenced in Section 10.1.4 apply to the first step (full-to-banded), but not the
second step. However, note that a lower bound for part of the algorithm gives a valid lower
bound for the whole algorithm. So, we will compare the approaches in Table 10.2 (the second
step) and see which attain the lower bounds of Ω(n3/

√
M) words moved and Ω(n3/M3/2)
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Algorithm Flops Words Messages

LAPACK [97] 2n3 O(n2b+ n3) O
(
n2b+ n3

M

)
Improved LAPACK 2n3 O

(
n2b+ n3√

M

)
O
(
n2b+ n3

M

)
BLS [41] 2n3 O

(
n2b+ n3√

M

)
O
(
n2b
M

+ n3

M

)
Improved BLS 2n3 O

(
n2b3

M
+ n3√

M

)
O
(
n2b3

M2 + n3

M3/2

)
CASBR tn3 O

(
n2b√
M

+ tn3√
M

)
O
(
tn2

M
+ tn3

M3/2

)
Table 10.2: Asymptotic comparison of previous sequential algorithms for tridiagonalization
(for eigenvalues and eigenvectors) with our improvements, for symmetric band matrices of n
columns and b + 1 subdiagonals on a machine with fast memory of size M . We include the
cost of the back transformation (but not the cost of the tridiagonal eigendecomposition). The
table assumes that nb�M and that 2 ≤ b ≤

√
M/3. The two terms in the communication

costs correspond to the band reduction and back transformation, respectively. In the last
row, t = O(min{log b, log(nb/M)}).

messages sent; both bounds are attainable by the first step by setting b = Θ(
√
M). We

claim that only CASBR attains these expected lower bounds for all ranges of parameters we
consider, within a factor of t = O(logM).

Clearly the costs of LAPACK asymptotically exceed the lower bounds. If n � M , the
bandwidth costs of the band reduction for Improved LAPACK, BLS, and Improved BLS
asymptotically exceed the lower bound. If n�M , then the bandwidth costs of those three
approaches match the lower bound, and the latency cost of Improved BLS also matches the
lower bound.

Fact 1. The computational cost of applying all the updates from a single band reduction
sweep to a dense n-by-n matrix is 2d

b
n3, ignoring lower order terms.

Proof. From Lemma 10.6, there are n2/(2bc) bulge chases, each consisting of c Householder
vectors of length d+1. From Lemma 10.3, the cost of applying each Householder transforma-
tion to an n-by-n matrix is 4(d+1)n, so the total arithmetic cost is 4dn·(n2/(2b)) = 2(d/b)n3,
ignoring lower order terms.

10.3.2.1 Alternative Algorithms

As mentioned in Section 10.3.1.1, the current LAPACK reference code for band reduction
(sbtrd) is based on [97]. When eigenvectors are requested, Q can be either explicitly formed
or applied to an input matrix. The LAPACK routine for solving the eigenproblem for a
band matrix (sbevd) forms Q explicitly and premultiplies V by it. The arithmetic cost of
forming Q is approximately (4/3)n3 [97], and the cost of the matrix multiplication is 2n3.
In Table 10.2, we do not count the cost of computing Q, because the Givens rotations can
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be stored, reordered, and later applied to V for a total of 2n3 flops, although LAPACK does
not offer this functionality.

The communication cost of the band reduction is analyzed in Section 10.3.1.1. Assuming
the stored Givens rotations are applied to the rows of V one at a time (which is how they are
accumulated in Q in LAPACK), at least one of the rows must be read from slow memory,
and the data reuse is O(1). This implies that the bandwidth cost of the band reduction,
which is O(n2b), is dominated by the cost of the orthogonal updates. In the best case, if V
is stored in row-major order and n > M , the latency cost is O(n3/M).

In [41], the authors consider an alternative approach for computing both eigenvalues
and eigenvectors of a band matrix, in the context of a 2-step reduction of a full symmetric
matrix. The band reduction scheme follows the algorithm of [115] consisting of one sweep
(i.e., d = b− 1 and c = 1). The key idea from [41] is to store all of the Householder vectors
and, instead of applying them to V in exactly the reverse order that they were computed,
to use a reordering technique that respects the dependency pattern. This reordering allows
for the orthogonal updates to be blocked. See Figure 2 in [41] or Figure 2 in [11] for
illustrations of this technique. Since the band reduction is performed in one sweep, the
arithmetic cost is 2n3. Using the reordering technique with a blocking factor of size Θ(

√
M),

the communication cost of the orthogonal updates is O(n3/
√
M). While the orthogonal

updates are performed efficiently, the data reuse obtained during the band reduction is
O(1), as explained in Section 10.3.1.1. Thus, the bandwidth cost of the band reduction is
O(n2b) which dominates the total bandwidth cost for b � n/

√
M . In the best case, the

latency cost of the band reduction is O(n2b/M). In order to determine the latency cost of
the orthogonal updates, we assume the matrix V is stored in column-major order and the
Householder vectors are written to memory in the order they are computed. Then every
application of a block of Householder vectors involves O(

√
M) messages, and so the latency

cost is a factor of O(
√
M) less than the bandwidth cost. We refer to this as BLS, given in

the third row of Table 10.2.
Note that this same reordering optimization from [41] can be used to improve the LA-

PACK algorithm. That is, the Givens rotations may be reordered and applied to V in a
blocked fashion. For examples of implementations for applying blocks of Givens rotations,
see [123, 147]. If the right block size is chosen, the bandwidth cost of the orthogonal updates
can be reduced to O(n3/

√
M). We refer to this algorithm as “Improved LAPACK,” given in

the second row of Table 10.2. Because of better alternatives, we do not discuss improvements
in the latency cost.

We can apply two optimizations to reduce the communication costs of the BLS algo-
rithm. First, as noted in Section 10.3.1.1, when b �

√
M , the communication costs of the

band reduction can be improved by chasing O(M/b2) bulges at a time, reducing both the
bandwidth and latency costs by a factor of O(M/b2).

Second, we can reduce the latency cost in performing the orthogonal updates by storing
the eigenvector matrix V in a block-contiguous layout with block size C-by-C with C =
Θ(
√
M) and by performing a data layout transformation of the temporary data structure

of Householder vectors. In order to minimize bandwidth cost, the Householder vectors
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corresponding to eliminating Θ(
√
M) columns and chasing their respective bulges off the

band should be temporarily stored before applying them to Q.
In order to analyze the data layout transformation, we need to consider the temporary

storage of Householder vectors. If we let H be the temporary storage matrix, then we can
store each Householder vector associated with the same eliminated column of A in the same
column of H. Further, each vector can occupy the rows of H corresponding to the rows of
A it updated; in this way, H is an n-by-n lower triangular matrix. If one bulge is chased at
a time and Householder vectors are written to H in the order they are computed, then H
will have a column-major data layout. However, in order to improve data reuse in applying
the vectors to V , we want to apply parallelograms of vectors at a time, so we need those
parallelograms to be stored contiguously. The data layout transformation is equivalent to
transforming a matrix in column-major layout to a block-contiguous layout. By applying
(for example) the Separate function given as Algorithm 3 in [32] to each panel of width
Θ(
√
M) a logarithmic number of times, we can convert H from column-major to Θ(

√
M)-

by-Θ(
√
M) block-contiguous layout with total bandwidth cost O(n2 log(n/

√
M)) and total

latency cost O((n2/M) log(n/
√
M)), which are lower order terms for n�

√
M .

Note that these two optimizations cannot both be applied straightforwardly to the ap-
proach of [41], as H will not be written in column-major order when multiple bulges are
chased at a time. We claim that a more complicated data layout transformation is possible
in the case that multiple bulges are chased at a time. This costs of this algorithm are given
as “Improved BLS” in the fourth row of Table 10.2. We also claim it is possible to apply
the second optimization to the LAPACK algorithm, though the order in which the Givens
rotations are computed and the method for temporarily storing them is more complicated.

10.3.2.2 CASBR

Algorithm 10.2 is a modification of Algorithm 10.1 which includes the explicit formation of
the matrix Q, which we store in a block-contiguous layout with C-by-C blocks. An important
difference between the two algorithms is the definition of ωi, the number of bulges chased
at a time. In Algorithm 10.1, ωi is maximized under the constraint that the working set
of data to chase ωi bulges `i times each remains of size O(M). In Algorithm 10.2, ωi is
further limited so that the working set of data while applying the Householder updates to
a block row of the intermediate Q matrix remains of size O(M). This working set of data
now consists of three components: a subset of A, Householder transformations (temporarily
stored in a data structure H), and blocks of Q. We will pick ωi to be approximately the
square root of the previous choice so that each of these three components occupies no more
than a third of fast memory. Reducing ωi results in more communication cost during the
band reduction, but we will see that this cost is always dominated by that of the orthogonal
updates. One advantage of this approach is that, assuming the band is too large to fit into
fast memory, Householder information is never written to slow memory: it is computed in
fast memory, all updates are applied, and then the Householder entries are discarded.
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In order to validate the communication pattern described in Algorithm 10.2, we verify
three facts: 2`ibi columns of A fit in one third of fast memory, H fits in one third of
fast memory, and each iteration in the OrthogonalUpdates function involves at most 3
blocks of Q, which fit in one third of fast memory. We will show that this is possible when
ωi ≤ 2

√
M/(9(bi + 1)), `i = (3/2)ωi, C =

√
M/3, and the assumption from above that

b ≤
√
M/3.

Since each column of the band has at most (3/2)bi+1 entries, the total number of words in
2`ibi columns is ωi((9/2)b2i + 3bi) < M/3. The H data structure needs to store Householder
information corresponding to chasing ωi bulges `i times each, and each bulge consists of
ci(di + 1) entries. Thus H occupies (3/8)ω2

i (b
2
i + 2bi) < M/3 words. Finally, we must also

verify that the number of columns of Q updated by the ωi`i bulge chases (which correspond
to the rows of the band that are updated) cannot span more than 3 blocks of Q (i.e., one third
of fast memory). By Lemma 10.1, the number of columns is (3/2)ωi(bi+1)−bi/2 ≤ 2

√
M/3;

since C =
√
M/3, these columns cannot span more than 3 blocks.

Note that t is defined differently here than in Section 10.3.1.2. Here, since we will
eliminate all subdiagonals at once, we need twice the working bandwidth to fit into fast
memory.

10.3.2.3 Arithmetic Cost

From Lemma 1, the arithmetic cost of the orthogonal updates is given by 2n3
∑t

i=1 di/bi,
where t is the number of sweeps, and the cost of the band reduction is always a lower
order term. By the definition of t and the fact that di = bi/2, the arithmetic cost is then
n3 min{log b, dlog(2n(b+ 1)/M)e}, ignoring lower order terms.

10.3.2.4 Bandwidth Cost

The bandwidth cost can be computed in a similar way to Section 10.3.1.2, though ωi is
defined slightly differently. The dominant communication cost is the call to the function
OrthogonalUpdates within the innermost loop (lines 7-12). During the ith sweep, the
number of sets of ωi bulges is n/(ciωi), and for each set, the innermost loop is executed
O(n/(`ibi)) times. Since H resides in fast memory, the bandwidth cost of the function
OrthogonalUpdates is that of reading and writing the row panels of the Q matrix:
O(nC) words. Thus, the total bandwidth cost of Algorithm 10.2 is

t∑
i=0

O

(
n3

√
M

)
= O

(
tn3

√
M

)
.

Note that due to the change in definition of ωi, the bandwidth cost of the band reduction
is increased from O(n2b2/M) (from Section 10.3.1.2) to O(n2b/

√
M), but this higher cost is

still dominated by that of the orthogonal updates.
In the case that dlog(2n(b + 1)/M)e < log b, the final step of the algorithm is to read

the entire band into memory and reduce all the remaining subdiagonals at once, updating Q
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Algorithm 10.2 Sequential CASBR with orthogonal updates

Require: initial bandwidth b ≤
√
M/3 is a power of 2, Q = In is stored in contiguous

C-by-C blocks, H is a temporary data structure of size O(M) which resides in fast
memory

1: t = min{log b,
⌈
log 2n(b+1)

M

⌉
}

2: for i = 1 to t do
3: bi = b

2i−1 , ci = bi
2
, di = bi

2
, ωi = 2

⌊ √
M

9(bi+1)

⌋
, `i = 3

2
ωi

4: while not reached end of band do
5: create next set of ωi bulges , storing Householder entries in H
6: OrthogonalUpdates(Q,H)
7: while not reached end of band do
8: write previous `ibi columns of band
9: read next `ibi columns of band

10: chase ωi bulges `i times each , storing Householder entries in H
11: OrthogonalUpdates(Q,H)
12: end while
13: chase ωi bulges off the end of the band , storing Householder entries in H
14: OrthogonalUpdates(Q,H)
15: end while
16: copy band into data structure with column height 3

2
bi+1

17: end for
18: if t < log b then
19: read remaining band into fast memory
20: reduce band to tridiagonal in one sweep, updating Q with improved BLS algorithm
21: write output to slow memory
22: end if

23: function OrthogonalUpdates(Q,H)
24: for i = 1 to n

C
do

25: read at most 3 blocks from ith block column of Q into fast memory
26: apply Householder updates stored in H to blocks of Q
27: write blocks of Q back to slow memory
28: end for
29: end function
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using the second technique of improving the BLS algorithm (i.e., transforming the column-
major H matrix to block-contiguous layout). In this case, the bandwidth cost of reading A
is O(nb), and the cost of the orthogonal updates is O(n3/

√
M) as explained above. Both of

these are lower order terms.

10.3.2.5 Latency Cost

The latency cost is also dominated by that of the orthogonal updates. Since Q is stored
in C-by-C contiguous blocks, the latency cost of the function OrthogonalUpdates is
O(n/C). Thus, the latency cost of Algorithm 10.2 simplifies to O(tn3/M3/2).

Like the bandwidth cost, the latency cost associated with the band reduction is increased
by the choice of ωi, but this higher cost of O(tn2/M) is still dominated by that of the
orthogonal updates. In the case that dlog(nb/M)e < log b, the final step of the algorithm
using the improved BLS technique incurs a latency cost which is also a lower order term.

10.4 Parallel Band Tridiagonalization Algorithms

Recall our distributed-memory parallel model described in Section 2.2.2, where we have
P processors connected over a network. Again, we will first discuss the case of computing
eigenvalues only and then extend to the case of computing both eigenvalues and eigenvectors.
The main improvement of our new algorithm over previous approaches is a reduction in
latency cost, both in terms of the band reduction and the back-transformation phase (when
eigenvectors are desired).

We assume that b ≤ n/(3P ), where P is the number of processors involved in the band
reduction. This is a reasonable assumption in the context of two-step tridiagonalization, in
order to minimize the latency cost in the first step. For larger bandwidths, one may use
fewer processors on the first sweep(s), or have multiple processors participate in a single
bulge chase. The latter approach may incur a higher communication cost—see [102].

10.4.1 Computing Eigenvalues Only

In this section we concern ourselves with the case when only eigenvalues are desired, so the
orthogonal updates may be discarded after applying them to the band. We collect the results
from the analyses in Sections 10.4.1.1-10.4.1.2 in Table 10.3.

10.4.1.1 Alternate Approaches

The ‘conventional’ distributed memory band tridiagonalization algorithm was introduced in
[102], and has been extended several times. This is a parallelization of the MH algorithm,
discussed in Section 10.3.1.1, a one-sweep band reduction algorithm (i.e., d = b − 1 and
c = 1). We will refer to this as Lang’s algorithm.
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Algorithm Flops Words Messages

Lang [10, 102] O
(
n2b
P

)
O(nb) O(n)

CASBR O
(
n2b
P

)
O(nb) O(P log b)

Table 10.3: Asymptotic comparison of previous parallel algorithms for tridiagonalization (for
eigenvalues only) with our improvements, for symmetric band matrices of n columns and
b + 1 subdiagonals on a machine with P processors. The first row assumes that P ≤ n/b,
and the second row assumes P ≤ n/(3b). The asymptotic arithmetic and communication
costs are determined along the critical path.

We will not present this algorithm and its variants, but instead refer the reader to the
detailed complexity analysis (and performance modeling) in [10] (summarized in the papers
[11] and [12]). We present their complexity results in asymptotic notation; the hidden
constant factors vary depending on the optimizations applied, including ‘logical blocking,’
which eliminates a factor of 2 idle time along the critical path, and using a cyclic layout, which
helps alleviate load imbalance between processors. Along the critical path, their algorithm
performs O(n2b/P ) flops and moves O(nb) words. Because there is a communication step
for every column in the band, the latency cost is O(n) messages.

Unless multiple bulges are chased at a time, the latency cost of O(n) cannot be asymp-
totically reduced. That is, if a message is sent along the critical path for every parallelogram
annihilated, then the last sweep, which has one parallelogram for each column, will incur
O(n) latency cost.

10.4.1.2 CASBR

The parallel CASBR algorithm begins with a similar data layout as Lang’s algorithm. Each
of the P processors (indexed 0 to P − 1) owns a contiguous set of C = n/P columns of the
lower half of the symmetric band. We use a similar successive halving and multiple bulge
chasing approach to the sequential CASBR algorithm. During each sweep, the number of
columns per processor stays fixed at C = n/P . We assume each of the P processors has
Ω(nb/P ) words of memory available, so that the band A can be stored across the machine.
To simplify the presentation, we assume that 3bP divides n, and that b is a power of 2.
This implies that P ≤ n/(3b), which is our maximum parallelism. Note that our maximum
parallelism is three times smaller than the Lang approach; we conjecture that this constant
factor can be improved by exploiting more overlap between the pipeline stages in the bulge
chasing procedure. These constant factors will not affect our asymptotic analysis.

Roughly, the parallel algorithm proceeds as each processor chases bulges through its C
(local) columns and into the C columns of its right neighbor, and then passes the second set
of columns to its right neighbor. This way, each of the P processors accesses only O(nb/P )
of A rather than streaming through the entire band. In the algorithm we present below,
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each processor is active on every other step; we can eliminate this idle time by using logical
blocking (as in [102]); we ignore this factor of 2 savings for the purposes of our asymptotic
analysis.

At the high level, there are four kernels: create bulges, pass bulges, clear bulges, and
create and clear bulges. The create bulges kernel eliminates ωi parallelograms (each with ci
columns and di diagonals) from the local set of C columns of A and chases the resulting
bulges `i times (on average3) into the right neighbor’s set of C columns. The pass bulges
kernel chases ωi bulges (created by the left neighbor) from the local set `i times into the
right neighbor’s set. The create and clear bulges and clear bulges kernels are only executed
by the last processor4 and are analogous to create bulges and pass bulges, except the ‘second
set of columns’ is off the end of the band. Both create bulges and pass bulges require 2C
columns to pass information from one processor’s columns to the next: the left set of C
columns is owned by the processor invoking the kernel, and the right set is owned by the
right neighbor. The create and clear bulges and clear bulges kernels require only the last C
columns of the band (its local set).

At any time, a processor will have access to and update only its own C columns and the
C columns from its right neighbor. For example, the parallel algorithm begins with processor
1 sending its columns to processor 0. After processor 0 executes the create bulges kernel, it
sends the updated second set of C columns (with bulges) back to processor 1. Processor 1
must then also receive processor 2’s C columns in order to execute the pass bulges kernel.
The parallel algorithm ends (on sweep i = log b) with processor P − 1 receiving C columns
from the left, clearing all bulges, and finally eliminating the last subdiagonal of its local
block (via create and clear bulges).

In order for the pass bulges kernel to pass the bulges into the right neighbor’s column
block, and for the bulges to retain their respective positions relative to the column blocks,
we set `i = C/bi, which is an integer given the assumptions above. Recall that a bulge chase
advances a bulge exactly bi columns.

Our constraint on ωi, the maximum number of bulges that fits in C = n/P columns, is
given by Lemma 10.2:

(ωi − 1)(2bi − ci) + ci + di ≤ C.

A little more care must be taken when creating bulges to ensure that they do not cross pro-
cessor boundaries (adjacent sets of C columns). Consulting Lemma 10.1, for the successive
halving approach, we arrive at the following lemma.

Lemma 10.8. Assuming b and ω are even, c = d = b/2, and 3b divides C, then we can create
and chase ω = 2C/(3b) bulges at a time, and chasing them ` = C/b times each advances
them to the next set of C columns.

3Note that some bulges may need to be chased up to 2`i times, some less.
4Note that processor P −2 may chase some bulges (partially or completely) off the end of the band when

invoking pass bulges and create bulges, depending on the number of columns owned by processor P − 1 and
the current bandwidth.
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As in the sequential case, we fix the parameters to simplify the asymptotic analysis; in
practice, the parameters (including the number of processors P ′ ≤ P used and the number
of columns C a processor owns) should be tuned independently.

Algorithm 10.3 Parallel CASBR

Require: 3bP divides n, b is a power of 2, processor ranks are between 0 and P − 1, each
processor owns C = n

P
columns of A.

1: for i = 1 to log b do
2: bi = b

2i−1 , ci = bi
2

, di = bi
2

, ωi = 2C
3bi

, `i = 3
2
ωi.

3: if myrank > 0 then
4: send left: block of C columns
5: end if
6: for j = 1 to 3 ·myrank do
7: receive from left: block of C columns (includes bulges)
8: if myrank = P − 1 then
9: clear bulges

10: else
11: receive right: block of C columns
12: pass bulges
13: send right: block of C columns (includes bulges)
14: end if
15: if j < 3 ·myrank then
16: send left: block of C columns
17: end if
18: end for
19: for j = 1 to 3 do
20: if myrank = P − 1 then
21: create and clear bulges
22: else
23: receive right: block of C columns
24: create bulges
25: send right: block of C columns (includes bulges)
26: end if
27: end for
28: end for

We analyze the arithmetic, bandwidth, and latency costs along the critical path of the
algorithm. That is, we follow the progress of the first ω1 bulges from processor 0 to processor
P − 2, at which point (exactly) one of processors P − 2 and P − 1 is active chasing and/or
clearing bulges on every remaining step of every sweep.
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10.4.1.3 Arithmetic Cost

From Lemma 10.5, the arithmetic cost of chasing one bulge (a single hop), with parameters
b, c, and d, is bounded above by 8bcd+ 4cd2 +O(bc) flops, while the cost of creating a bulge
and the cost of chasing a bulge partially or completely off the band are less. For our choices
b/2i = bi/2 = ci = di, this cost is (5/2)b3i flops.

Every kernel call involves at most ωi bulges; the calls to create bulges, pass bulges,
clear bulges, and create and clear bulges costs each chase the bulges about `i times, so each
kernel invocation costs about ωi`i(5b

3
i /2) = O(n2bi/P

2) flops. Following the critical path,
there are (fewer than) P kernel invocations while the pipeline fills. At this point, processors
P − 2 and P − 1 are active for the remainder of the execution, each invoking a kernel on
alternating steps. There are 3p steps (iterations of the inner two for-loops) per sweep, each
with one kernel invocation (along the critical path). Altogether, this is

O

(
n2b1
P

)
+

log b∑
i=1

O

(
n2bi
P

)
= O

(
n2b

P

)
flops. The hidden leading constant is about 20; a cyclic layout and logical blocking as in
[102] can be applied here to reduce this constant to between 5 and 10 (note these same
strategies reduced the corresponding constant in Lang’s algorithm’s arithmetic cost from 24
to between 6 and 12).

10.4.1.4 Bandwidth Cost

Every message in the algorithm consists of C columns of the band; because of bulges and
triangular fill stored below the bith subdiagonal, each message (during the ith sweep) has
size (at most) C(3bi/2+1) = O(nbi/P ) words. Following the critical path as before, we have
the upper bound of

O (nb1) +

log b∑
i=1

O (nbi) = O (nb)

words moved.

10.4.1.5 Latency Cost

The latency cost analysis is similar to the bandwidth cost analysis, replacing the O(nbi)
terms by O(1); in total, we have O(P log b) messages. This is asymptotically smaller than
the O(n) messages that Lang’s algorithm sends: we save a factor of O(n/(P log b)) messages.

10.4.2 Computing Eigenvalues and Eigenvectors

Recall our three steps: first, tridiagonalize A = QTQT ; second, compute the eigendecom-
position T = V ΛV T with an efficient algorithm; finally, back-transform the matrix V by
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Algorithm Flops Words Messages

Lang [10] O
(
n2b√
P

+ n3

P

)
O
(
nb+ n2√

P

)
O
(
n+ n

b

)
CASBR O

(
n2b√
P

+ n3

P
log b

)
O
(
nb+ n2√

P
log b

)
O(
√
P log b+

√
P log b)

Table 10.4: Asymptotic comparison of previous parallel algorithms for tridiagonalization
(for eigenvalues and eigenvectors) with our improvements, for symmetric band matrices of
n columns and b+ 1 subdiagonals on a machine with P processors. We assume only O(

√
P )

of the processors participate in the band reduction for both algorithms. We include the cost
of the back transformation (but not the cost of the tridiagonal eigendecomposition). The
first row assumes

√
P ≤ n/b, and the second row assumes

√
P ≤ n/(3b). The asymptotic

arithmetic and communication costs are determined along the critical path. The two terms
in each cost correspond to the band reduction and the back transformation, respectively.

computing QV . We may either store Q implicitly as a collection of Householder vectors, and
apply it using a blocked approach, or compute Q explicitly by applying the orthogonal up-
dates (from the band reduction) to an identity matrix, and then compute QV with a matrix
multiplication. As in the sequential case, the computation and communication involved in
constructing and/or applying Q dominates the costs of the band reduction.

We assume V is distributed in a 2D blocked fashion to all P processors, and that the
bandwidth b of A is (at most) 1/3 of the width of a block row of V , i.e., b ≤ n/(3

√
P ).

This means that we will use only
√
P of the P available processors to perform the band

reduction, and all P for the back-transformation. So, we must assume each processor has
Ω(n2/P ) words of memory.

We collect the results from the analyses in Sections 10.4.2.1-10.4.2.2 in Table 10.4. Un-
der our assumptions, for both algorithms, the arithmetic and bandwidth costs of the back-
transformation always dominate those of the band reduction. The asymptotic arithmetic
costs decrease linearly (in P ) as expected. The first step of two-step tridiagonalization can
attain the communication lower bounds for parallel dense linear algebra (without extra mem-
ory), i.e., Ω(n2/

√
P ) words moved and Ω(

√
P ) messages, if b = Θ(n/

√
P ). Asymptotically,

both algorithms attain the bandwidth lower bound, up to a factor of Θ(log(n/
√
P )) in the

case of CASBR. However, only CASBR attains the latency lower bound of Ω(
√
P ), again up

to a factor of Θ(log(n/
√
P )).

10.4.2.1 Alternate Approaches

The approach in [11] stores Q implicitly (as a sequence of Householder transformations) and
then applies Q to V in a blocked fashion. The authors give three algorithms to compute QV ,
with different parallel layouts of the matrix V—we consider only their best approach, based
on a 2D layout which is dynamically rebalanced. Before computing QV , we assume each
processor owns a (n/

√
P )-by-(n/

√
P ) block of V . Again, we refer the reader to the detailed
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analysis in [10]. Along the critical path, the additional costs for the back-transformation are
O(n3/P ) flops, O(n2/

√
P ) words moved, and O(n/b) messages.

10.4.2.2 CASBR

As in the sequential case (Section 10.3.2.2), we construct Q explicitly rather than storing
it implicitly. The extra cost of the matrix multiplication QV is dominated by the cost of
constructing Q and thus will not affect our asymptotic analysis. Again, in practice, this cost
can be avoided by storing and applying Q to V as a sequence of Householder transformations.

By the assumption
√
P ≤ n/(3b), we can involve all

√
P processors in each processor row

in a band reduction. Since the arithmetic cost for the band reduction is a lower order term,
we can afford to perform the band reduction

√
P times redundantly (or once, but only on a

subset of
√
P processors). We distribute the band A to each row of the given

√
P -by-

√
P

processor grid; each row performs the band reduction once. Note that each processor owns
C = n/

√
P columns of A, rather than n/P (as before).

We use Algorithm 10.4, a modification of Algorithm 10.3, which simultaneously computes
the band reduction and the n-by-n matrix Q. That is, we postmultiply an n-by-n identity
matrix In by each orthogonal matrix Q1, Q2, . . ., generated by the bulge chasing procedure.
(To simplify the presentation, we will again refer to the intermediate products In · Q1 ·
Q2 · · · also as Q, and the intermediate band matrices all as A.) These orthogonal updates
combine columns of Q (but not rows); thus, each processor row may work independently.
Each processor row is assigned C contiguous rows of Q; the columns of this block row
are distributed according to the distribution of the band matrix. That is, if processor i
(indexed within a given processor row) owns the first element of the jth row of A, then
processor i will own the jth column of the corresponding block row of Q. In this way, the
communication pattern of the blocks of Q between neighboring processors will exactly match
the communication pattern of the blocks of the band. Whenever a processor performs a local
kernel on 2C columns of the band, it will also apply all of those updates to 2C columns of (its
block row of) Q. This implies that in sweep i, within each processor row, the first processor
owns the first C+bi columns of the corresponding block row of Q, each subsequent processor
owns the next C columns, and the last processor owns the last C−bi columns. (Note that the
first processor does not touch the first bi/2 columns, but rather stores them to be updated in
the next sweep.) This distribution also implies that between sweeps i and i+1, the Q matrix
must be shifted to maintain the relationship between the ownership of rows of the band and
the columns of Q. To simplify the presentation, we assume that on each sweep i, Q is padded
with bi zero columns, and that the first processor in each row always sends its rightmost C
columns; under these assumptions, each processor always sends/receives C-by-C blocks of
Q, avoiding fringe cases for the first and last processors (within each processor row).

For the orthogonal updates of Q, we introduce four new kernels—create bulges update,
pass bulges update, create and clear bulges update, and clear bulges update—which apply
the right orthogonal updates (as sets of Householder transformations) from the corresponding
band reduction kernels to the local blocks of Q.
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Again, we do not analyze computing the eigendecomposition of T , but we assume that
this step terminates with V distributed across the processor grid with each processor owning
a C-by-C block of V . We then compute QV using matrix-matrix multiplication.

In the following complexity analysis, we count only the additional work and communi-
cation done for the orthogonal updates. To obtain the results for CASBR in Table 10.4,
we simply add the the band reduction costs (Section 10.4.1.2), substituting

√
p for p (since

now we run the band reduction redundantly). Then we add the cost of multiplying QV
with Cannon’s algorithm [49], which costs 2n3/p flops, O(n2/

√
p) words moved, and O(

√
p)

messages. These are all lower order terms, due to the logarithmic factors in the other costs.

10.4.2.3 Arithmetic Cost

As argued in Section 10.4.1.2, there are at most ωi`i bulges chased in the pass bulges,
clear bulges, and create and clear bulges kernels, and at most 2ωi`i bulges chased in the cre-
ate bulges kernel. Since the number of Householder entries in each bulge chase is cidi = b2i /4,
from Lemma 10.3, the cost of applying the updates from one kernel invocation to n/

√
P rows

of the Q matrix is at most

4 · b
2
i

4
· n√

P
· ωi`i =

2n3

3P 3/2
= O

(
n3

P 3/2

)
flops (and up to 2 times more for create bulges).

Following the analysis in Section 10.4.1.2, we can upper bound the additional arithmetic
performed along the critical path by

O

(
n3

P

)
+

log b∑
i=1

O

(
n3

P

)
= O

(
n3 log b

P

)
flops. The costs of the band reduction and multiplication QV are lower order terms.

10.4.2.4 Bandwidth Cost

The communication costs of the orthogonal updates are also analogous to band reduction.
As shown in Algorithm 10.4, for every message sent/received containing a block of A, there is
a second message containing a block of Q. (The additional message every sweep to shift the
block row of Q amounts to a lower order term.) However, while the size of the A messages
decreases with the bandwidth, the size of the Q messages remains the same (n2/P words).
The additional bandwidth cost, following the analysis in Section 10.4.1.2, is bounded by

O

(
n2

√
P

)
+

log b∑
i=1

O

(
n2

√
P

)
= O

(
n2 log b√

P

)
words moved. Again, the cost of the band reduction and multiplication QV are lower order
terms.
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Algorithm 10.4 Parallel SBR with orthogonal updates

Require: 3b
√
P divides n, b is a power of 2. Processor ranks are with respect to the processor row (i.e.,

between 0 and
√
P − 1). Within each processor row, each processor stores C = n√

P
columns of A, and

C-by-C (or C-by-(C ± bi)) block of Q, whose column indices correspond to the indices of the local rows
of A whose first (leftmost) nonzero is stored locally.

1: for i = 1 to log b do
2: bi = b

2i−1 , ci = bi
2 , di = bi

2 , ωi = 2C
3bi

, `i = 3
2ωi.

3: if myrank > 0 then
4: send left: block of C columns of A
5: send left: block of C columns and rows of Q
6: end if
7: for j = 1 to 3 ·myrank do
8: receive from left: block of C columns of A (includes bulges)
9: receive from left: block of C columns and rows of Q

10: if myrank =
√
P − 1 then

11: clear bulges
12: clear bulges update
13: else
14: receive from right: block of C columns of A
15: receive from right: block of C columns and rows of Q
16: pass bulges
17: pass bulges update
18: send right: block of C columns of A (includes bulges)
19: send right: block of C columns and rows of Q
20: end if
21: if j < 3 ·myrank then
22: send left: block of C columns of A
23: send left: block of C columns and rows of Q
24: end if
25: end for
26: for q = 1 to 3 do
27: if myrank =

√
P − 1 then

28: create and clear bulges
29: create and clear bulges update
30: else
31: receive from right: block of C columns of A
32: receive from right: block of C columns and C rows of Q
33: create bulges
34: create bulges update
35: send right: block of C columns of A (includes bulges)
36: send right: block of C columns and rows of Q
37: end if
38: end for
39: if myrank <

√
P − 1 then

40: send right: block of bi/2 columns and C rows of Q.
41: else if myrank > 0 then
42: receive left: block of bi/2 columns and C rows of Q.
43: end if
44: end for
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10.4.2.5 Latency Cost

The additional latency cost is the same as that for the band reduction (see Section 10.4.1.2)
plus the shift (a lower order term), i.e., O(

√
P log b) messages. In the more restrictive case√

P � n/(b log b), this is an asymptotic improvement compared to Lang’s algorithm for just
the back-transformation phase; considering also the cost of the band reduction, we always
have an asymptotic improvement.

10.5 Conclusions

In theory, both band reduction and dense matrix-matrix multiplication have O(n) possible
data reuse in the sequential case, given by the ratio of total flops to size of inputs and outputs.
When the problem does not fit in fast memory (of size M words), matrix multiplication can
attain only O(

√
M) data reuse [88], while our CASBR algorithm achieves O(M/b) reuse,

provided b ≤
√
M/3. This constraint on b also ensures that the reuse is always asymptotically

at least as large as that of matrix multiplication, and when b�
√
M , we can actually attain

much better reuse.
Indeed, improved data reuse often translates to better performance. In [31], we observed

that using the techniques of reducing communication (even at the expense of some extra
arithmetic), as well as a framework that automatically tuned the algorithmic parameters,
led to speedups of 2−6× on sequential and shared-memory parallel machines. We believe that
these benefits will extend to the distributed-memory case, particularly when performance is
latency-bound.

The performance results in [31] focused on the case of computing eigenvalues only and
did not include the cost of the back-transformation phase. In that case, the arithmetic cost
increased by no more than 50%. As we have seen, the cost of the back-transformation,
which dominates that of the band reduction when eigenvectors are requested, increases with
the number of sweeps. For example, for the successive halving approach, the increase in
arithmetic was a factor ofO(log b). Thus, there exists an important tradeoff between reducing
communication in the band reduction phase and the resulting increased costs in the back-
transformation phase. Note that when computing partial eigensystems, the costs of the
back-transformation can be reduced to be proportional to the number of eigenvectors desired,
improving this tradeoff.

W also do not give algorithms or complexity analysis for taking more than 1 and less
than log b sweeps and using the technique of chasing multiple bulges. Indeed, we fixed many
parameters here with the sole intention of simplifying the theoretical analysis. In practice,
parameters such as the number of sweeps and the number of bulges chased at a time should
be autotuned for the target architecture to navigate the tradeoffs mentioned above.

Recall our application of two-step tridiagonalization for the symmetric eigenproblem.
The first step (full-to-banded) and its corresponding back-transformation phase, can be per-
formed efficiently [17, 109]. Combined with the approaches here for the second step (and
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an efficient tridiagonal eigensolver), we have sequential and parallel algorithms for the sym-
metric eigenproblem that attain the communication lower bounds for dense linear algebra in
[28] up to O(log b) factors: in the sequential case, Ω(n3/

√
M) words moved and Ω(n3/M3/2)

messages, in the parallel case (if minimal memory is used), Ω(n2/
√
P ) words moved and

Ω(
√
P ) messages. Even though these lower bounds formally apply to only the first step,

they are still valid lower bounds for any algorithm that performs this step.
We also remark that, in the sequential case, similar techniques to those used in a

communication-optimal first step can also be applied in the case b >
√
M/3 (violating

an assumption in Section 10.3). In fact, for any b+ 1 ≤ n, we can reduce to tridiagonal form
with communication costs that attain (or beat) the aforementioned bounds.
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Chapter 11

Communication-Avoiding Parallel
Strassen

In this chapter, we consider the parallelization of Strassen’s fast matrix multiplication algo-
rithm. Our main contribution is a new algorithm we call Communication-Avoiding Parallel
Strassen, or CAPS, that

• perfectly load balances the Θ(nlg 7) flops across processors,

• is communication optimal, attaining the bandwidth and latency cost lower bounds of
Chapter 5 and Section 6.2.1.2 up to a logarithmic factor in the number of processors,

• requires asymptotically less communication than previous parallelizations of Strassen’s
algorithm,

• requires asymptotically less computation and communication than all classical algo-
rithms, and

• outperforms in practice all other known implementations of matrix multiplication,
Strassen-based or classical.

The algorithm and its computational and communication cost analyses are presented in
Section 11.2. There we show it matches the communication lower bounds. We provide a
review and analysis of previous algorithms in Section 11.3. We also consider two natural
combinations of previously known algorithms (Sections 11.3.4 and 11.3.5). One of these new
algorithms that we call “2.5D-Strassen” performs better than all previous algorithms, but is
still not optimal, and is inferior to CAPS.

We discuss our implementations of the new algorithms and compare their performance
with previous ones in Section 11.4 to show that our new CAPS algorithm outperforms
previous algorithms not just asymptotically, but also in practice. Benchmarking our imple-
mentation on a Cray XT4, we obtain speedups over classical and Strassen-based algorithms
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ranging from 24% to 184% for a fixed matrix dimension n = 94080, where the number of
nodes ranges from 49 to 7203.

In Section 11.5 we show that our parallelization method applies to other fast matrix
multiplication algorithms. It also applies to classical recursive matrix multiplication, thus
obtaining a new optimal classical algorithm that matches the communication complexity
of the 2.5D algorithm of Solomonik and Demmel [137]. In Section 11.5, we also discuss
numerical stability, hardware scaling, and future work.

The main results of this chapter appear in [20], written with coauthors James Demmel,
Olga Holtz, Benjamin Lipshitz, and Oded Schwartz. A subsequent paper [105], written with
James Demmel, Benjamin Lipshitz, and Oded Schwartz, details the implementation of the
algorithm on multiple machines and presents more extensive performance data. Much of
that content also appears in [106].

11.1 Preliminaries

11.1.1 Strassen’s Algorithm

Strassen showed that 2×2 matrix multiplication can be performed using 7 multiplications and
18 additions, instead of the classical algorithm that does 8 multiplications and 4 additions
[139]. By recursive application this yields an algorithm with multiplies two n × n matrices
O(nω0) flops, where ω0 = log2 7 ≈ 2.81 (see Section 2.4.1). Winograd improved the algorithm
to use 7 multiplications and 15 additions in the base case, thus decreasing the hidden constant
in the O notation [152]. Our implementation uses the Winograd variant (see Section 2.4.2
for details).

11.1.2 Previous Work on Parallel Strassen

In this section we briefly describe previous efforts to parallelize Strassen. More details,
including communication analyses, are in Section 11.3. A summary appears in Table 11.1.

Luo and Drake [108] explored Strassen-based parallel algorithms that use the communi-
cation patterns known for classical matrix multiplication. They considered using a classical
2D parallel algorithm and using Strassen locally, which corresponds to what we call the “2D-
Strassen” approach (see Section 11.3.2). They also consider using Strassen at the highest
levels and performing a classical parallel algorithm for each subproblem generated, which cor-
responds to what we call the “Strassen-2D” approach. The size of the subproblems depends
on the number of Strassen steps taken (see Section 11.3.3). Luo and Drake also analyzed
the communication costs for these two approaches.

Soon after, Grayson, Shah, and van de Geijn [78] improved on the Strassen-2D approach
of [108] by using a better classical parallel matrix multiplication algorithm and running on a
more communication-efficient machine. They obtained better performance results compared
to a purely classical algorithm for up to three levels of Strassen’s recursion.
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Kumar, Huang, Johnson, and Sadayappan [101] implemented Strassen’s algorithm on
a shared-memory machine. They identified the tradeoff between available parallelism and
total memory footprint by differentiating between “partial” and “complete” evaluation of
the algorithm, which corresponds to what we call depth-first and breadth-first traversal of
the recursion tree (see Section 11.2.1). They show that by using ` DFS steps before using
BFS steps, the memory footprint is reduced by a factor of (7/4)` compared to using all BFS
steps. They did not consider communication costs in their work.

Other parallel approaches [64, 90, 138] have used more complex parallel schemes and
communication patterns. However, they restrict attention to only one or two steps of Strassen
and obtain modest performance improvements over classical algorithms.

11.1.3 Lower Bounds for Strassen’s Algorithm

The main impetus for this work was the observation of the asymptotic gap between the
communication costs of existing parallel Strassen-based algorithms and the communication
lower bounds given by Theorems 5.10 and 6.8. Because of the attainability of the lower
bounds in the sequential case, we hypothesized that the gap could be closed by finding a
new algorithm rather than by tightening the lower bounds.

We made three observations from the lower bound results of Chapter 5 that led to the
new algorithm. First, the lower bounds for Strassen are lower than those for classical matrix
multiplication. This implies that in order to obtain an optimal Strassen-based algorithm, the
communication pattern for an optimal algorithm cannot be that of a classical algorithm but
must reflect the properties of Strassen’s algorithm. Second, the factor Mω0/2−1 that appears
in the denominator of the communication cost lower bound implies that an optimal algorithm
must use as much local memory as possible. That is, there is a tradeoff between memory
usage and communication (the same is true in the classical case). Third, the proof of the
lower bounds shows that in order to minimize communication costs relative to computation,
it is necessary to perform each submatrix multiplication of size Θ(

√
M)×Θ(

√
M) on a single

processor.
With these observations and assisted by techniques from previous approaches to paral-

lelizing Strassen, we developed a new parallel algorithm which achieves perfect load balance,
minimizes communication costs, and in particular performs asymptotically less computation
and communication than is possible using classical matrix multiplication.

11.2 The Algorithm

In this section we present the CAPS algorithm, and prove it is communication optimal. See
Algorithm 11.1 for a concise presentation and Algorithm 11.2 for a more detailed description.
We use notation for the Strassen-Winograd algorithm from Section 2.4.2.
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Figure 11.1: Representation of BFS and DFS steps. In a BFS step, all seven subproblems
are computed at once, each on 1/7 of the processors. In a DFS step, the seven subproblems
are computed in sequence, each using all the processors. The notation follows that of Section
2.4.2.

11.2.1 Overview of CAPS

Consider the recursion tree of Strassen’s sequential algorithm. CAPS traverses it in parallel
as follows. At each level of the tree, the algorithm proceeds in one of two ways. A “breadth-
first-step” (BFS) divides the 7 subproblems among the processors, so that 1

7
of the processors

work on each subproblem independently and in parallel. A “depth-first-step” (DFS) uses all
the processors on each subproblem, solving each one in sequence. See Figure 11.1.

In short, a BFS step requires more memory but reduces communication costs while a DFS
step requires little extra memory but is less communication-efficient. In order to minimize
communication costs, the algorithm must choose an ordering of BFS and DFS steps that
uses as much memory as possible.

Let k = log7 P and s ≥ k be the number of distributed Strassen steps the algorithm will
take. In this section, we assume that n is a multiple of 2s7dk/2e. If k is even, the restriction
simplifies to n being a multiple of 2s

√
P . Since P is a power of 7, it is sometimes convenient

to think of the processors as numbered in base 7. CAPS performs s steps of Strassen’s
algorithm and finishes the calculation with local matrix multiplication. The algorithm can
easily be generalized to other values of n by padding or dynamic peeling.

We consider two simple schemes of traversing the recursion tree with BFS and DFS steps.
The first scheme, which we call the Unlimited Memory (UM) scheme, is to take k BFS steps
in a row. This approach is possible only if there is sufficient available memory. The second
scheme, which we call the Limited Memory (LM) scheme is to take ` DFS steps in a row
followed by k BFS steps in a row, where ` is minimized subject to the memory constraints.

It is possible to use a more complicated scheme that interleave BFS and DFS steps to
reduce communication. We show that the LM scheme is optimal up to a constant factor,
and hence no more than a constant factor improvement can be attained from interleaving.
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Algorithm 11.1 CAPS, in brief. For more details, see Algorithm 11.2.

Require: A, B, n, where A and B are n× n matrices
P = number of processors

Ensure: C = A ·B
. The dependence of the Si’s on A, the Ti’s on B and C on the Qi’s follows the

Strassen-Winograd algorithm. See Section 2.4.2.
1: procedure C = CAPS(A, B, n, P )
2: if enough memory then . Do a BFS step
3: locally compute the Si’s and Ti’s from A and B
4: while i = 1 . . . 7 do
5: redistribute Si and Ti
6: Qi = CAPS(Si, Ti, n/2, P/7)
7: redistribute Qi

8: end while
9: locally compute C from all the Qi’s

10: else . Do a DFS step
11: for i = 1 . . . 7 do
12: locally compute Si and Ti from A and B
13: Qi = CAPS(Si, Ti, n/2, P )
14: locally compute contribution of Qi to C
15: end for
16: end if
17: end procedure

11.2.2 Data Layout

We require that the data layout of the matrices satisfies the following two properties:

1. At each of the s Strassen recursion steps, the data layouts of the four submatrices of
each of A, B, and C must match so that the weighted additions of these submatrices
can be performed locally. This technique follows [108] and allows communication-free
DFS steps.

2. Each of these submatrices must be equally distributed among the P processors for load
balancing.

There are many data layouts that satisfy these properties, perhaps the simplest being block-
cyclic layout with a processor grid of size 7bk/2c × 7dk/2e and block size n

2s7bk/2c
× n

2s7dk/2e
.

(When k = log7 P is even these expressions simplify to a processor grid of size
√
P ×

√
P

and block size n
2s
√
P

.) See Section 2.3.2 for a description of block-cyclic layout and Figure 2.3
for an example with P = 49.

Any layout that we use is specified by three parameters, (n, P, s), and intermediate stages
of the computation use the same layout with smaller values of the parameters. A BFS step
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reduces a multiplication problem with layout parameters (n, P, s) to seven subproblems with
layout parameters (n/2, P/7, s − 1). A DFS step reduces a multiplication problem with
layout parameters (n, P, s) to seven subproblems with layout parameters (n/2, P, s− 1).

Note that if the input data is initially load-balanced but distributed using a different

layout, we can rearrange it to the above layout using a total of O
(
n2

P

)
words moved and

O(n2) messages. This has no asymptotic effect on the bandwidth cost but significantly
increases the latency cost in the worst case.

11.2.3 Unlimited Memory Scheme

In the UM scheme, we take k = log7 P BFS steps in a row. Since a BFS step reduces the
number of processors involved in each subproblem by a factor of 7, after k BFS steps each
subproblem is assigned to a single processor, and so is computed locally with no further
communication costs. We first describe a BFS step in more detail.

The matrices A and B are initially distributed as described in Section 11.2.2. In order to
take a recursive step, the 14 matrices S1, . . . S7, T1, . . . , T7 must be computed (the notation
follows that of Section 2.4.2). Each processor allocates space for all 14 matrices and per-
forms local additions and subtractions to compute its portion of the matrices. Recall that
the submatrices are distributed identically, so this step requires no communication. If the
layouts of A and B have parameters (n, P, s), the Si and the Ti now have layout parameters
(n/2, P, s− 1).

The next step is to redistribute these 14 matrices so that the 7 pairs of matrices (Si, Ti)
exist on disjoint sets of P/7 processors. This requires disjoint sets of 7 processors performing
an all-to-all communication step (each processor must send and receive a message from each
of the other 6). To see this, consider the numbering of the processors base-7. On the
mth BFS step, the communication is between the seven processors whose numbers agree
on all digits except the mth (counting from the right). After the mth BFS step, the set of
processors working on a given subproblem share the same m-digit suffix. After the above
communication is performed, the layout of Si and Ti has parameters (n/2, P/7, s − 1), and
the sets of processors that own the Ti and Si are disjoint for different values of i. Note that
since each all-to-all only involves seven processors no matter how large P is, this algorithm
does not have the scalability issues that typically come from an all-to-all communication
pattern.

11.2.3.1 Memory Requirements

The extra memory required to take one BFS step is the space to store all 7 triples Sj, Tj,
Qj. Since each of those matrices is 1

4
the size of A, B, and C, the extra space required at

a given step is 7/4 the extra space required for the previous step. We assume that no extra
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Algorithm 11.2 CAPS, in detail
Require: A, B, are n× n matrices

P = number of processors
rank = processor number base-7 as an array
M = local memory size

Ensure: C = A ·B
1: procedure C = CAPS(A, B, P , rank, M)

2: ` =
⌈
log2

4n

P1/ω0M1/2

⌉
. ` is number of DFS steps to fit in memory

3: k = log7 P
4: call DFS(A, B, C, k, `, rank)
5: end procedure

1: procedure DFS(A, B, C, k, `, rank)
. Do C = A ·B by ` DFS, then k BFS steps

2: if ` ≤ 0 then call BFS( A, B, C, k, rank); return
3: end if
4: for i = 1 . . . 7 do
5: locally compute Si and Ti from A and B

. following Strassen-Winograd
6: call DFS( Si, Ti, Qi, k, `− 1, rank )
7: locally compute contribution of Qi to C

. following Strassen-Winograd
8: end for
9: end procedure

1: procedure BFS(A, B, C, k, rank)
. Do C = A ·B by k BFS steps, then local Strassen

2: if k == 0 then call localStrassen(A, B, C); return
3: end if
4: for i = 1 . . . 7 do
5: locally compute Si and Ti from A and B

. following Strassen-Winograd
6: end for
7: for i = 1 . . . 7 do
8: target = rank
9: target[k] = i

10: send Si to target
11: receive into L

. One part of L comes from each of 7 processors
12: send Ti to target
13: receive into R

. One part of R comes from each of 7 processors
14: end for
15: call BFS(L, R, P , k − 1, rank )
16: for i = 1 . . . 7 do
17: target = rank
18: target[k] = i
19: send ith part of P to target
20: receive from target into Qi

21: end for
22: locally compute C from Qi

. following Strassen-Winograd
23: end procedure
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memory is required for the local multiplications.1 Thus, the total local memory requirement
for taking k BFS steps is given by

MemUM(n, P ) =
3n2

P

k∑
i=0

(
7

4

)i
=

7n2

P 2/ω0
− 4n2

P
= Θ

(
n2

P 2/ω0

)
.

11.2.3.2 Computational Costs

The computation required at a given BFS step is that of the local additions and subtrac-
tions associated with computing the Si and Ti and updating the output matrix C with the
Qi. Since the Strassen-Winograd algorithm performs 15 additions and subtractions, the
computational cost recurrence is

FUM(n, P ) = 15

(
n2

4P

)
+ FUM

(
n

2
,
P

7

)
with base case FUM(n, 1) = csn

ω0 − 6n2, where cs is the constant of Strassen’s algorithm.
See Section 2.4.2 for more details. The solution to this recurrence is

FUM(n, P ) =
csn

ω0 − 6n2

P
= Θ

(
nω0

P

)
.

11.2.3.3 Communication Costs

Consider the communication costs associated with the UM scheme. Given that the redis-
tribution within a BFS step is performed by an all-to-all communication step among sets
of 7 processors, each processor sends 6 messages and receives 6 messages to redistribute
S1, . . . , S7, and the same for T1, . . . , T7. Each processor can pack the Si and Ti data for a
single other processor into one message. After the products Qi = SiTi are computed, each
processor sends 6 messages and receives 6 messages to redistribute Q1, . . . , Q7. The size of
each message varies according to the recursion depth, and is the number of words a processor
owns of any Si, Ti, or Qi, namely n2

4P
words.

As each of the Qi is computed simultaneously on disjoint sets of P/7 processors, we
obtain a cost recurrence for the entire UM scheme:

WUM(n, P ) = 36
n2

4P
+WUM

(
n

2
,
P

7

)
SUM(n, P ) = 24 + SUM

(
n

2
,
P

7

)
1If one does not overwrite the input, it is impossible to run Strassen in place; however using a few

temporary matrices affects the analysis here by a constant factor only.
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with base case SUM(n, 1) = WUM(n, 1) = 0. Thus

WUM(n, P ) =
12n2

P 2/ω0
− 12n2

P
= Θ

(
n2

P 2/ω0

)
SUM(n, P ) = 24 log7 P = Θ (logP ) . (11.1)

11.2.4 Limited Memory Scheme

In this section we discuss a scheme for traversing Strassen’s recursion tree in the context
of limited memory. In the LM scheme, we take ` DFS steps in a row followed by k BFS
steps in a row, where ` is minimized subject to the memory constraints. That is, we use a
sequence of DFS steps to reduce the problem size so that we can use the UM scheme on each
subproblem without exceeding the available memory.

Consider taking a single DFS step. Rather than allocating space for and computing all 14
matrices S1, T1, . . . , S7, T7 at once, the DFS step requires allocation of only one subproblem,
and each of the Qi will be computed in sequence.

Consider the ith subproblem: as before, both Si and Ti can be computed locally. After
Qi is computed, it is used to update the corresponding quadrants of C and then discarded
so that its space in memory (as well as the space for Si and Ti) can be re-used for the next
subproblem. In a DFS step, no redistribution occurs. After Si and Ti are computed, all
processors participate in the computation of Qi.

We assume that some extra memory is available. To be precise, assume the matrices A,
B, and C require only 1

3
of the available memory:

3n2

P
≤ 1

3
M. (11.2)

In the LM scheme, we set

` = max

{
0,

⌈
log2

4n

P 1/ω0M1/2

⌉}
. (11.3)

The following subsection shows that this choice of ` is sufficient not to exceed the memory
capacity.

11.2.4.1 Memory Requirements

The extra memory requirement for a DFS step is the space to store one subproblem. Thus,
the extra space required at this step is 1/4 the space required to store A, B, and C. The
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local memory requirements for the LM scheme is given by

MemLM(n, P ) =
3n2

P

`−1∑
i=0

(
1

4

)i
+ MemUM

( n
2`
, P
)

≤ M

3

`−1∑
i=0

(
1

4

)i
+

7
(
n
2`

)2
P 2/ω0

≤ 127

144
M < M,

where the last line follows from (11.3) and (11.2). Thus, the limited memory scheme does
not exceed the available memory.

11.2.4.2 Computational Costs

As in the UM case, the computation required at a given DFS step is that of the local
additions and subtractions associated with computing the Si and Ti and updating the output
matrix C with the Qi. However, since all processors participate in each subproblem and the
subproblems are computed in sequence, the recurrence is given by

FLM(n, P ) = 15

(
n2

4P

)
+ 7 · FLM

(n
2
, P
)
.

After ` steps of DFS, the size of a subproblems is n
2`
× n

2`
, and there are P processors involved.

We take k BFS steps to compute each of these 7` subproblems. Thus

FLM

( n
2`
, P
)

= FUM

( n
2`
, P
)
,

and

FLM (n, P ) =
15n2

4P

`−1∑
i=0

(
7

4

)i
+ 7` · FUM

( n
2`
, P
)

=
csn

ω0 − 6n2

P
= Θ

(
nω0
P

)
.

11.2.4.3 Communication Costs

Since there are no communication costs associated with a DFS step, the recurrence is simply

WLM(n, P ) = 7 ·WLM

(n
2
, P
)

SLM(n, P ) = 7 · SLM

(n
2
, P
)

with base cases

WLM

( n
2`
, P
)

= WUM

( n
2`
, P
)

SLM

( n
2`
, P
)

= SUM

( n
2`
, P
)
.
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Thus the total communication costs are given by

WLM (n, P ) = 7` ·WUM

( n
2`
, P
)
≤ 12 · 4ω0−2nω0

PMω0/2−1 = Θ

(
nω0

PMω0/2−1

)
SLM (n, P ) = 7` · SUM

( n
2`
, P
)
≤ (4n)ω0

PMω0/2
24 log7 P = Θ

(
nω0

PMω0/2
logP

)
.

(11.4)

11.2.5 Communication Optimality

Theorem 11.1. CAPS has computational cost Θ
(
nω0

P

)
, bandwidth cost

W = Θ

(
max

{
nω0

PMω0/2−1 ,
n2

P 2/ω0

})
,

and latency cost

S = Θ

(
max

{
nω0

PMω0/2
logP, logP

})
.

Proof. In the case that M ≥ MemUM(n, P ) = Ω
(

n2

P 2/ω0

)
the UM scheme is possible. Then

the communication costs are given by (11.1) which matches the lower bound of Theorem 6.8.
Thus the UM scheme is communication-optimal (up to a logarithmic factor in the latency
cost and assuming that the data is initially distributed as described in Section 11.2.2). For
smaller values of M , the LM scheme must be used. Then the communication costs are
given by (11.4) and match the lower bound of Theorem 5.10, so the LM scheme is also
communication-optimal.

By Theorems 5.10 and 6.8, we see that CAPS has optimal computational and bandwidth
costs, and that its latency cost is at most logP away from optimal.

We note that for the LM scheme, since both the computational and communication costs
are proportional to 1

P
, we can expect perfect strong scaling: given a fixed problem size,

increasing the number of processors by some factor will decrease each cost by the same
factor. However, this strong scaling property has a limited range. As P increases, holding
everything else constant, the global memory size PM increases as well. The limit of perfect
strong scaling is exactly when there is enough memory for the UM scheme. See Section 6.2.2
for details.

11.3 Analysis of Other Algorithms

In the section we detail the asymptotic communication costs of other matrix multiplication
algorithms, both classical and Strassen-based. These communication costs and the corre-
sponding lower bounds are summarized in Table 11.1.

Many of the algorithms described in this section are hybrids of two different algorithms.
We use the convention that the names of the hybrid algorithms are composed of the names
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Flops Bandwidth Latency

C
la
ss
ic
a
l

Lower Bound [19, 95] n3

P
max

{
n3

PM1/2 ,
n2

P2/3

}
max

{
n3

PM3/2 , 1
}

2D [49, 71] n3

P
n2

P1/2 P 1/2

3D [2, 35] n3

P
n2

P2/3 logP

2.5D (optimal) [137] n3

P
max

{
n3

PM1/2 ,
n2

P2/3

}
n3

PM3/2 + logP

S
tr
a
ss
en

-b
a
se
d

Lower Bound [19, 25] nω0

P
max

{
nω0

PMω0/2−1 ,
n2

P2/ω0

}
max

{
nω0

PMω0/2 , 1
}

2D-Strassen [108] nω0

P (ω0−1)/2
n2

P1/2 P 1/2

Strassen-2D [78, 108]
(
7
8

)` n3

P

(
7
4

)` n2

P1/2 7`P 1/2

2.5D-Strassen max
{

n3

PM3/2−ω0/2 ,
nω0

Pω0/3

}
max

{
n3

PM1/2 ,
n2

P2/3

}
n3

PM3/2 + logP

Strassen-2.5D
(
7
8

)` n3

P
max

{(
7
8

)` n3

PM1/2 ,
(
7
4

)` n2

P2/3

} (
7
8

)` n3

PM3/2 + 7` logP

CAPS (optimal) nω0

P
max

{
nω0

PMω0/2−1 ,
n2

P2/ω0

}
max

{
nω0

PMω0/2 logP, logP
}

Table 11.1: Asymptotic matrix multiplication computational and communication costs of
algorithms and corresponding lower bounds. Here ω0 = lg 7 ≈ 2.81 is the exponent of
Strassen; ` is the number of Strassen steps taken. None of the Strassen-based algorithms
except for CAPS attain the lower bounds of Chapter 5 or Section 6.2.1.2, see Section 11.3
for a discussion of each.

of the two component algorithms, hyphenated. The first name describes the algorithm used
at the top level, on the largest problems, and the second describes the algorithm used at the
base level on smaller problems.

11.3.1 Classical Algorithms

Classical algorithms must communicate asymptotically more than an optimal Strassen-based
algorithm. To compare the lower bounds, it is necessary to consider three cases for the
memory size: when the memory-dependent bounds dominate for both classical and Strassen,
when the memory-dependent bound dominates for classical, but the memory-independent
bound dominates for Strassen, and when the memory-independent bounds dominate for both
classical and Strassen. This analysis is detailed in [105, Appendix B]. Briefly, the factor by
which the classical bandwidth cost exceeds the Strassen bandwidth cost is P a where a ranges
from 2

ω0
− 2

3
≈ 0.046 to 3−ω0

2
≈ 0.10 depending on the relative problem size. The same sort of

analysis is used throughout Section 11.3 to compare each algorithm with the Strassen-based
lower bounds.

Various parallel classical matrix multiplication algorithms minimize communication rel-
ative to the classical lower bounds for certain amounts of local memory M . For example,
Cannon’s algorithm [49] minimizes communication for M = O(n2/P ). Several more prac-
tical algorithms exist (such as SUMMA [71]) which use the same amount of local memory
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and have the same asymptotic communication costs. We call this class of algorithms “2D”
because the communication patterns follow a two-dimensional processor grid.

Another class of algorithms, known as “3D” [35, 2] because the communication pattern
maps to a three-dimensional processor grid, uses more local memory and reduces communi-
cation relative to 2D algorithms. This class of algorithms minimizes communication relative
to the classical lower bounds for M = Ω(n2/P 2/3). As shown in Section 6.2.1.1, it is not
possible to use more memory than M = Θ(n2/P 2/3) to reduce communication.

Recently, a more general algorithm has been developed which minimizes communication
in all cases. Because it reduces to a 2D and 3D for the extreme values of M but interpolates
for the values between, it is known as the “2.5D” algorithm [137].

11.3.2 2D-Strassen

One idea to parallelize Strassen-based algorithms is to use a 2D classical algorithm for the
inter-processor communication, and use the fast matrix multiplication algorithm locally [108].
We call such an algorithm “2D-Strassen”. It is straightforward to implement, but cannot
attain all the computational speedup from Strassen since it uses a classical algorithm for part
of the computation. In particular, it does not use Strassen for the largest matrices, when
Strassen provides the greatest reduction in computation. As a result, the computational
cost exceeds Θ(nω0/P ) by a factor of P (3−ω0)/2 ≈ P 0.10. The 2D-Strassen algorithm has the
same communication cost as 2D algorithms, and hence does not match the communication
costs of CAPS. In comparing the 2D-Strassen bandwidth cost, Θ(n2/P 1/2), to the CAPS
bandwidth cost in Section 11.2, note that for the problem to fit in memory we always have
M = Ω(n2/P ). The bandwidth cost exceeds that of CAPS by a factor of P a, where a ranges
from (3−ω0)/2 ≈ .10 to 2/ω0−1/2 ≈ .21, depending on the relative problem size. Similarly,
the latency cost, Θ(P 1/2), exceeds that of CAPS by a factor of P a where a ranges from
(3− ω0)/2 ≈ .10 to 1/2 = .5.

11.3.3 Strassen-2D

The “Strassen-2D” algorithm applies ` DFS steps of Strassen’s algorithm at the top level,
and performs the 7` smaller matrix multiplications using a 2D algorithm. By choosing
certain data layouts as in Section 11.2.2, it is possible to do the additions and subtractions
for Strassen’s algorithm without any communication [108]. However, Strassen-2D is also
unable to match the communication costs of CAPS. Moreover, the speedup of Strassen-2D
in computation comes at the expense of extra communication. For large numbers of Strassen
steps `, Strassen-2D can approach the computational lower bound of Strassen, but each step
increases the bandwidth cost by a factor of 7

4
and the latency cost by a factor of 7. Thus the

bandwidth cost of Strassen-2D is a factor of
(
7
4

)`
higher than 2D-Strassen, which is already

higher than that of CAPS. The latency cost is even worse: Strassen-2D is a factor of 7`

higher than 2D-Strassen.
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One can reduce the latency cost of Strassen-2D at the expense of a larger memory foot-
print. Since Strassen-2D runs a 2D algorithm 7` times on the same set of processors, it is
possible to pack together messages from independent matrix multiplications. In the best
case, the latency cost is reduced to the cost of 2D-Strassen, which is still above that of

CAPS, at the expense of using a factor of
(
7
4

)`
more memory.

11.3.4 2.5D-Strassen

A natural idea is to replace a 2D classical algorithm in 2D-Strassen with the superior 2.5D
classical algorithm to obtain an algorithm we call 2.5D-Strassen. This algorithm uses the
2.5D algorithm for the inter-processor communication, and then uses Strassen for the local
computation. When M = Θ(n2/P ), 2.5D-Strassen is exactly the same as 2D-Strassen, but
when there is extra memory it both decreases the communication cost and decreases the
computational cost since the local matrix multiplications are performed (using Strassen) on
larger matrices. To be precise, the computational cost exceeds the lower bound by a factor of
P a where a ranges from 1− ω0

3
≈ 0.064 to 3−ω0

2
≈ 0.10 depending on the relative problem size.

The bandwidth cost exceeds the bandwidth cost of CAPS by a factor of P a where a ranges
from 2

ω0
− 2

3
≈ 0.046 to 3−ω0

2
≈ 0.10. In terms of latency, the cost of n3

PM3/2 + logP exceeds

the latency cost of CAPS by a factor ranging from logP to P (3−ω0)/2 ≈ P 0.10, depending on
the relative problem size.

11.3.5 Strassen-2.5D

Similarly, by replacing a 2D algorithm with 2.5D in Strassen-2D, one obtains the new al-
gorithm we call Strassen-2.5D. First one takes ` DFS steps of Strassen, which can be done
without communication, and then one applies the 2.5D algorithm to each of the 7` subprob-
lems. The computational cost is exactly the same as Strassen-2D, but the communication
cost will typically be lower. Each of the 7` subproblems is multiplication of n/2`× n/2` ma-
trices. Each subproblem uses only 1/4` as much memory as the original problem. Thus there
may be a large amount of extra memory available for each subproblem, and the lower com-
munication costs of the 2.5D algorithm help. The choice of ` that minimizes the bandwidth
cost is

`opt = max
{

0,
⌈
log2

n

M1/2P 1/3

⌉}
.

The same choice minimizes the latency cost. Note that when M ≥ n2

P 2/3 , taking zero Strassen
steps minimizes the communication within the constraints of the Strassen-2.5D algorithm.
With ` = `opt, the bandwidth cost is a factor of P 1−ω0/3 ≈ P 0.064 above that of CAPS.
Additionally, the computational cost is not optimal, and using ` = `opt, the computational
cost exceeds the optimal by a factor of P 1−ω0/3M3/2−ω0/2 ≈ P 0.064M0.096.

It is also possible to take ` > `opt steps of Strassen to decrease the comptutational
cost further. However the decreased computational cost comes at the expense of higher
communication cost, as in the case of Strassen-2D. In particular, each extra step over `opt
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increases the bandwidth cost by a factor of 7
4

and the latency cost by a factor of 7. As
with Strassen-2D, it is possible to use extra memory to pack together messages from several
subproblems and decrease the latency cost, but not the bandwidth cost.

11.4 Performance Results

We have implemented CAPS using MPI on a Cray XT4, and compared it to various previous
classical and Strassen-based algorithms. The benchmarking data is shown in Figure 11.2.

11.4.1 Experimental Setup

The nodes of the Cray XT4 have 8GB of memory and a quad-core AMD “Bupdapest”
processor running at 2.3GHz. We treat the entire node as a single processor, and when we
use the classical algorithm we call the optimized threaded BLAS in Cray’s LibSci to provide
parallelism between the four cores in a node. The peak flop rate is 9.2 GFLOPS per core, or
36.8 GFLOPS per node. The machine consists of 9,572 nodes. All the data in Figure 11.2
is for multiplying two square matrices with n = 94080.

11.4.2 Performance

Note that the vertical scale of Figure 11.2 is “effective GFLOPS”, which is a useful measure
for comparing classical and fast matrix multiplication algorithms. It is calculated as

Effective GFLOPS =
2n3

(Execution time in seconds)109
. (11.5)

For classical algorithms, which perform 2n3 floating point operations, this gives the actual
GFLOPS. For fast matrix multiplication algorithms it gives the performance relative to clas-
sical algorithms, but does not accurately represent the number of floating point operations
performed. For this problem size and number of Strassen steps taken, the actual number of
flops is about 45% of that of the classical algorithms.

Our algorithm outperforms all previous algorithms, and attains performance as high as
49.1 effective GFLOPS/node, which is 33% above the theoretical maximum for all classical
algorithms. Compared with the best classical implementation, our speedup ranges from
51% for small values of P up to 94% when using most of the machine. Compared with the
best previous parallel Strassen algorithms, our speedup ranges from 24% up to 184%. Unlike
previous Strassen algorithms, we are able to attain substantial speedups over the entire range
of processors.

11.4.3 Strong Scaling

Figure 11.2 is a strong scaling plot: the problem size is fixed and each algorithm is run
with P ranging from the minimum that provides enough memory up to the largest allowed
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Figure 11.2: Strong scaling performance of various matrix multiplication algorithms on a
Cray XT4 for fixed problem size n = 94080. The top line is CAPS as described in Sec-
tion 11.2, and substantially outperforms all the other classical and Strassen-based algorithms.
The horizontal axis is the number of nodes in log-scale. The vertical axis is effective GFLOPS,
which are a performance measure rather than a flop rate, as discussed in Section 11.4.2. See
Section 11.4.4 for a description of each implementation.

value of P smaller than the size of the machine. Perfect strong scaling corresponds to a
horizontal line in the plot. As the communication analysis predicts, CAPS exhibits better
strong scaling than any of the other algorithms (with the exception of ScaLAPACK, which
obtains very good strong scaling by having poor performance for small values of P ).

11.4.4 Details of the Implementations

11.4.4.1 CAPS

This implementation is the CAPS algorithm, with a few modifications from the presentation
in Section 11.2. First, when computing locally it switches to classical matrix multiplication
below some size n0. Second, it is generalized to run on P = c7k processors for c ∈ {1, 2, 3, 6}
rather than just 7k processors. As a result, the base-case classical matrix multiplication is
done on c processors rather than 1. Finally, implementation uses the Winograd variant of
Strassen; see Section 2.4.2 for more details. Every point in the plot is tuned to use the best
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interleaving pattern of BFS and DFS steps, and the best total number of Strassen steps. For
points in the figure, the optimal total number of Strassen steps is always 5 or 6.

11.4.4.2 ScaLAPACK

We use ScaLAPACK [44] as optimized by Cray in LibSci. This is an implementation of the
SUMMA algorithm, and can run on an arbitrary number of processors. It should give the
best performance if P is a perfect square so the processors can be placed on a square 2D
grid. All the runs shown in Figure 11.2 are with P a perfect square.

11.4.4.3 2.5D Classical

This is the code of [137]. It places the P processors in a grid of size
√
P/c×

√
P/c× c, and

requires that
√
P/c and c are integers with 1 ≤ c ≤ P 1/3, and c divides

√
P/c. Additionally,

it gets the best performance if c is as large as possible, given the constraint that c copies
of the input and output matrices fit in memory. In the case that c = 1 this code is an
optimized implementation of SUMMA. The values of P and c for the runs in Figure 11.2 are
chosen to get the best performance. The optimal permissible values of c ranged from 1 on
64 processors to 20 on 8000 processors.

11.4.4.4 Strassen-2D

Following the algorithm of [78, 108], this implementation uses the DFS code from the im-
plementation of CAPS at the top level, and then uses the optimized SUMMA code from the
2.5D implementation with c = 1. Since the classical code requires that P is a perfect square,
this requirement applies here as well. The number of Strassen steps taken is tuned to give
the best performance for each P value, and the optimal number varies from 0 to 2.

11.4.4.5 2D-Strassen

Following the algorithm of [108], the 2D-Strassen implementation is analogous to the Strass-
en-2D implementation, but with the classical algorithm run before taking local Strassen steps.
Similarly, the same code is used for local Strassen steps here and in our implementation of
CAPS. This code also requires that P is a perfect square. The number of Strassen steps is
tuned for each P value, and the optimal number varies from 0 to 3.

11.4.4.6 2.5D-Strassen

This implementation uses the 2.5D implementation to reduce the problem to one processor,
then takes several Strassen steps. The processor requirements are the same as for the 2.5D
implementation. The number of Strassen steps is tuned for each number of processors, and
the optimal number varies from 0 to 3. We also tested the Strassen-2.5D algorithm, but its
performance was always lower than 2.5D-Strassen in our experiments.
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11.5 Conclusions and Future Work

11.5.1 Stability of Fast Matrix Multiplication

CAPS has the same stability properties as sequential versions of Strassen. For discussion of
the stability of fast matrix multiplication algorithms, see [59, 85]. We highlight a few main
points here. The tightest error bounds for classical matrix multiplication are component-
wise: |C − Ĉ| ≤ nε|A| · |B|, where Ĉ is the computed result and ε is the machine precision.
Strassen and other fast algorithms do not satisfy component-wise bounds but do satisfy
the slightly weaker norm-wise bounds: ‖C − Ĉ‖ ≤ f(n)ε‖A‖‖B‖, where ‖A‖ = maxi,j Aij
and f is polynomial in n [85]. Accuracy can be improved with the use of diagonal scaling
matrices: D1CD3 = D1AD2 ·D−12 BD3. It is possible to choose D1, D2, D3 so that the error
bounds satisfy either |Cij − Ĉij| ≤ f(n)ε‖A(i, :)‖‖B(:, j)‖ or ‖C − Ĉ‖ ≤ f(n)ε‖|A| · |B|‖.
By scaling, the error bounds on Strassen become comparable to those of many other dense
linear algebra algorithms, such as LU and QR decomposition [58]. Thus using Strassen for
the matrix multiplications in a larger computation will often not harm the stability at all.

11.5.2 Hardware Scaling

Although Strassen performs asymptotically less computation and communication than clas-
sical matrix multiplication, it is more demanding on the hardware. That is, if one wants
to run matrix multiplication near the peak CPU speed, Strassen is more demanding of the
memory size and communication bandwidth. This is because the ratio of computational cost
to bandwidth cost is lower for Strassen than for classical. From the lower bound in Theorem
5.10, the asymptotic ratio of computational cost to bandwidth cost is Mω0/2−1 for Strassen-
based algorithms, versus M1/2 for classical algorithms. This means that it is harder to run
Strassen near peak than it is to run classical matrix multiplication near peak. In terms of
the machine parameters β and γ introduced in Section 2.1.3, the condition to be able to be
computation-bound is γM1/2 ≥ cβ for classical matrix multiplication and γMω0/2−1 ≥ c′β
for Strassen. Here c and c′ are constants that depend on the constants in the communication
and computational costs of classical and Strassen-based matrix multiplication.

The above inequalities may guide hardware design as long as classical and Strassen matrix
multiplication are considered important computations. They apply both to the distributed
case, where M is the local memory size and β is the inverse network bandwidth, and to the
sequential/shared-memory case where M is the cache size and β is the inverse memory-cache
bandwidth.

11.5.3 Optimizing On-Node Performance

Note that although our implementation performs above the classical peak performance, it
performs well below the corresponding Strassen-Winograd peak, defined by the time it takes
to perform csn

ω0/P flops at the peak speed of each processor. To some extent, this is because
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Strassen is more demanding on the hardware, as noted above. However we have not yet ana-
lyzed whether the amount our performance is below Strassen peak can be entirely accounted
for based on machine parameters. It is also possible that a high performance shared-memory
Strassen implementation might provide substantial speedups for our implementation, as well
as for 2D-Strassen and 2.5D-Strassen.

11.5.4 Parallelizing Other Algorithms

11.5.4.1 Another Optimal Classical Algorithm

We can apply our parallelization approach to recursive classical matrix multiplication to
obtain a communication-optimal algorithm. This algorithm has the same asymptotic com-
munication costs as the 2.5D algorithm [137]. We observed comparable performance to the
2.5D algorithm on our experimental platform. As with CAPS, this algorithm has not been
optimized for contention, whereas the 2.5D algorithm is very well optimized for contention
on torus networks.

11.5.4.2 Other Fast Matrix Multiplication Algorithms

Our approach of executing a recursive algorithm in parallel by traversing the recursion tree
in DFS (sequential) or BFS (parallel) manners is not limited to Strassen’s algorithm. All fast
square matrix multiplication algorithms are built out of ways to multiply n0 × n0 matrices
using q < n3

0 multiplications. Like with Strassen and Strassen-Winograd, they compute q
linear combinations of entries of each of A and B, multiply these pairwise, then compute the
entries of C as linear combinations of these.2 CAPS can be easily generalized to any such
multiplication, with the following modifications:

• The number of processors P is a power of q.

• The data layout must be such that all n2
0 blocks of A, B, and C are distributed equally

among the P processors with the same layout.

• The BFS and DFS determine whether the q multiplications are performed in parallel
or sequentially.

The communication costs are then exactly as above, but with ω0 = logn0
q.

It is unclear whether any of the faster matrix multiplication algorithms are useful in
practice. One reason is that the fastest algorithms are not explicit. Rather, there are non-
constructive proofs that the algorithms exist. To implement these algorithms, they would
have to be found, which appears to be a difficult problem. The generalization of CAPS
described in this section does apply to all of them, so we have proved the existence of a
communication-avoiding non-explicit parallel algorithm corresponding to every fast matrix

2By [124], all fast matrix multiplication algorithms can be expressed in this bilinear form.
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multiplication algorithm. We conjecture that the algorithms are all communication optimal
(i.e., they attain a known lower bound), but that is not yet proved since the lower bound
proofs in Chapter 5 and Section 6.2.1.2 may not apply to all fast matrix multiplication
algorithms. In cases where the lower bounds do apply, they match the performance of the
generalization of CAPS, and so the algorithms are communication optimal.
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Chapter 12

Conclusion

In this thesis, we have considered the fundamental operations in dense linear algebra. We
have seen that, even for a fixed computation, many algorithms exist that exhibit a range of
communication costs when analyzed on simple sequential and parallel models. By proving
lower bounds on the communication required for particular computations and developing
more communication-efficient algorithms, we are able to devise optimal algorithms on state-
of-the-art hardware and observe better performance than existing approaches. Extending the
algorithmic ideas and techniques to computations outside of dense linear algebra can benefit
many more application areas. Even in scientific computing, other “dwarves” include spectral
methods (FFTs), sparse linear algebra, and graph algorithms, and communication-avoiding
ideas have already proved effective for these areas [36, 114, 136]. We believe similar ideas
can and will benefit an even larger range of computations and applications in the future.

We now briefly summarize our contributions and list possible directions for future research
within the realm of dense linear algebra. In this work, we prove communication lower bounds
for dense and sparse, sequential and parallel algorithms for a general set of classical Θ(n3)
linear algebra computations (Chapters 3 and 4). We also prove communication lower bounds
for Strassen’s and Strassen-like fast matrix multiplication algorithms (Chapters 5 and 6) and
establish a separate set of lower bounds that apply to parallel algorithms and set limits on an
algorithm’s ability to perfectly strong scale (Chapter 6). In Chapters 7 and 8, we summarize
the state-of-the-art in communication efficiency for both sequential and parallel algorithms
for the fundamental computations to which the lower bounds apply. Finally, we present new
algorithms for three particular computations: computing a symmetric-indefinite factorization
(Chapter 9), reducing a symmetric band matrix to tridiagonal form via orthogonal similarity
transformations (Chapter 10), and parallelizing Strassen’s matrix multiplication algorithm
(Chapter 11).

While there are many open problems described throughout the previous chapters, and
developing optimized implementations on the most current hardware is ongoing challenge,
we highlight here only a few areas of possible future algorithmic research:

• developing communication-optimal extra-memory algorithms for all of the computa-
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tions discussed in Chapter 8, which likely includes tightening lower bounds;

• extending algorithmic techniques for dense matrices to sparse direct methods, where
computations are more irregular and also communication bound;

• finding and parallelizing other fast, practical matrix multiplication algorithms that are
asymptotically superior to Strassen’s algorithm but also can be implemented to be
faster in practice; and

• developing parallel fast linear algebra computations (e.g., for solving linear systems or
least squares problems)–parallelizing those algorithms that rely on fast matrix multi-
plication subroutines and are already communication optimal in the sequential case.

As mentioned in Chapter 1, the costs of communication relative to computation are grow-
ing, and increased parallelism (on and off chip) means that careful consideration of data
movement is necessary to achieve satisfactory performance on today’s and future machines.
Not only is communication becoming more important, it is also becoming more difficult to
reason about: processors are growing more complex, with heterogeneous computational units
and the ability to vary clock speeds with time, for two examples. Developing efficient algo-
rithms and optimized implementations, within linear algebra and in other domains, requires
both strong theoretical foundations and continual adaptation to new architectures. Beyond
the particular results in this thesis, the performance analysis and lower bound techniques
establish a way of thinking about algorithm design that will be increasingly important as
machines evolve.



190

Bibliography

[1] J. O. Aasen. “On the reduction of a symmetric matrix to tridiagonal form”. In: BIT
Numerical Mathematics 11.3 (1971). 10.1007/BF01931804, pp. 233–242.

[2] R. Agarwal, S. Balle, F. Gustavson, M. Joshi, and P. Palkar. “A Three-Dimensional
Approach to Parallel Matrix Multiplication”. In: IBM Journal of Research and De-
velopment 39.5 (1995), pp. 575–582.

[3] R. Agarwal, F. Gustavson, and M. Zubair. “A high-performance matrix-multiplication
algorithm on a distributed-memory parallel computer, using overlapped communica-
tion”. In: IBM Journal of Research and Development 38.6 (1994), pp. 673–681.

[4] A. Aggarwal, A. K. Chandra, and M. Snir. “Communication complexity of PRAMs”.
In: Theoretical Computer Science 71.1 (1990), pp. 3–28.

[5] A. Aggarwal and J.S. Vitter. “The input/output complexity of sorting and related
problems”. In: Communications of the ACM 31.9 (1988), pp. 1116–1127.

[6] E. Agullo, J. Dongarra, B. Hadri, J. Kurzak, J. Langou, J. Langou, H.
Ltaief, P. Luszczek, and A. YarKhan. PLASMA Users’ Guide. Available from
http://icl.cs.utk.edu/plasma/.

[7] N. Ahmed and K. Pingali. “Automatic Generation of Block-Recursive Codes”. In:
Proceedings from the 6th International Euro-Par Conference on Parallel Processing.
Euro-Par ’00. London, UK: Springer-Verlag, 2000, pp. 368–378.

[8] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,
S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK Users’
Guide. Also available from http://www.netlib.org/lapack/. Philadelphia, PA, USA:
SIAM, 1992.

[9] K. Asanovic, R. Bodik, B. Catanzaro, J. Gebis, P. Husbands, K. Keutzer, D. Pat-
terson, W. Plishker, J. Shalf, S. Williams, and K. Yelick. The Landscape of Parallel
Computing Research: A View from Berkeley. Tech. rep. UCB/EECS-2006-183. EECS
Department, University of California, Berkeley, Dec. 2006.

[10] T. Auckenthaler. “Highly Scalable Eigensolvers for Petaflop Applications”. PhD the-
sis. Fakultät für Informatik, Technische Universität München, 2012.



BIBLIOGRAPHY 191

[11] T. Auckenthaler, V. Blum, H.-J. Bungartz, T. Huckle, R. Johanni, L. Krämer, B.
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[33] M. Benioff and E. Lazowska, eds. Computational Science: Ensuring America’s Com-
petitiveness. The Networking and Information Technology Research and Development
(NITRD) Program. President’s Information Technology Advisory Committee, June
2005.

[34] J. Bennett, A. Carbery, M. Christ, and T. Tao. “Finite bounds for Hölder-Brascamp-
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