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Abstract

Purpose: To learn bone shape features from spherical bone map of knee MRI images using 

established convolutional neural networks (CNN) and use these features to diagnose and predict 

osteoarthritis (OA).

Methods: A bone segmentation model was trained on 25 manually annotated 3D MRI volumes 

to segment the femur, tibia, and patella from 47 078 3D MRI volumes. Each bone segmentation 

was converted to a 3D point cloud and transformed into spherical coordinates. Different fusion 

strategies were performed to merge spherical maps obtained by each bone. A total of 41 822 

merged spherical maps with corresponding Kellgren-Lawrence grades for radiographic OA were 

used to train a CNN classifier model to diagnose OA using bone shape learned features. Several 

OA Diagnosis models were tested and the weights for each trained model were transferred to the 

OA Incidence models. The OA incidence task consisted of predicting OA from a healthy scan 

within a range of eight time points, from 1 y to 8 y. The validation performance was compared and 

the test set performance was reported.

Results: The OA Diagnosis model had an area-under-the-curve (AUC) of 0.905 on the test set 

with a sensitivity and specificity of 0.815 and 0.839. The OA Incidence models had an AUC 

ranging from 0.841 to 0.646 on the test set for the range from 1 y to 8 y.

Conclusion: Bone shape was successfully used as a predictive imaging biomarker for OA. This 

approach is novel in the field of deep learning applications for musculoskeletal imaging and can be 

expanded to other OA biomarkers.

Correspondence Valentina Pedoia, Department of Radiology and Biomedical Imaging, University of California, San Francisco, 1700 
4th St., Suite 201C, CA 94143. valentina.pedoia@ucsf.edu. 
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1 | INTRODUCTION

Osteoarthritis (OA) is a degenerative joint disease which affects over 30 million U.S. adults, 

with the global prevalence of OA approaching 5%.1,2 Risk factors commonly associated 

with OA include obesity, aging, and sex.3 The onset of knee OA is manifested by several 

changes, such as cartilage loss and changes in the meniscus. In addition to degeneration of 

soft tissues, it has been suggested that changes also occur in the subchondral and trabecular 

bone. The subchondral bone in particular interacts with the articular cartilage and softens the 

impact during normal and abnormal mechanical loading of the knee joint.4–6 Both early 

stage and late-stage changes to the subchondral bone are important components of the 

pathogenesis of OA.

Several investigators have previously proposed bone shape as an OA imaging biomarker, 

based on anthropometric measures, cross-sectional findings, or shape modeling of knees.7–10 

Studies based on 2D radiographs have reported sex-based bone shape differences in subjects 

with lateral and medial OA.11 The classical approach to represent bone shape has been 

through Statistical Shape Modeling (SSM), which is a widely used tool to summarize shapes 

in a comprehensive feature vector. SSM has the ability to not only characterize complex 

shapes using principal component analysis (PCA) to reduce the data dimensionality, but also 

analyze shape differences without a priori assumptions, instead of identifying the 

geometrical features empirically. Furthermore, the 3-dimensional nature of MRI lends itself 

to SSM approaches and shows great potential in identifying knee OA risk factors and in 

studying disease pathogenesis; demonstrated in the large body of recent work.8,10,12–14 This 

technique has also been used to evaluate the contribution of knee shape to anterior cruciate 

ligament (ACL) tears,15 in order to assess the association between bone shape and the 

progression of cartilage degeneration16 as well as altered knee kinematics17 after ACL 

reconstruction.

While previous studies show strong evidence of the critical role of the bone shape in the OA 

development and the ability of MRI and 3D shape modeling to quantify OA features, 

inferential statistics do not guarantee actual prediction abilities. Additionally, the use of 

unsupervised linear pattern decompositions, such as PCA, for feature extraction do not 

guarantee the definition of a feature space that actually captures subtle differences able to 

characterize OA. The use of supervised feature learning and deep convolutional neural 

networks (CNN) architectures in medical image processing diagnostic tasks show promising 

results in fully exploiting the image information.18–20 These techniques have dramatically 

improved outcomes of challenging problems in a variety of fields such as object detection, 

classification,21,22 drug discovery and genomics.23 However, the number of validated 

applications in MRI, and specifically in musculoskeletal imaging research, remain limited.
24–26
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This study aims to fill this gap by developing a knee bone shape feature extraction 

framework to explore the ability of established CNNs to extract and use knee bone shape 

features in diagnosing and predicting future incidence of radiographic OA based on 

Kellgren-Lawrence (KL) grade.27

2 | METHODS

2.1 | Methods overview

The overall study overview is summarized in Figure 1. A bone segmentation model was 

trained and validated with a dataset of 40 manually segmented MRI volumes to segment the 

femur, tibia, and patella from 47 078 3D MRI volumes (Figure 1A). Each of the segmented 

bone masks was converted to a 3D point cloud and rigidly registered to a reference point 

cloud to account for rotational variability at scan time (Figure 1B). The registered point 

clouds were then transformed into spherical coordinates and different fusion strategies were 

performed to merge spherical maps obtained by each bone (Figure 1C). A total of 41 822 

merged spherical maps with corresponding KL grades were used to train a classifier model 

to diagnose radiographic OA exclusively using bone shape learned features across all time 

points. For the OA diagnosis task, several models were tested and their validation 

performance was compared (Figure 1D). The weights for each of these trained models were 

transferred to the OA Incidence models. The OA incidence task consisted of predicting 

future OA from the last healthy scan of a patient within a range of eight time points, from 1 

y up to 8 y, and was tested on the same models as the OA diagnosis task (Figure 1E).

2.2 | Patient imaging dataset

The imaging data for this study was acquired from the Osteoarthritis Initiative (OAI), a 

multi-center longitudinal multi-modality imaging study in 4796 patients.28 This dataset 

consisted of a total of 12 time points ranging from an initial baseline visit to a final 108 

month visit with yearly visits in between and a half-year visit for the third and fifth visits. 

Demographic data, such as age, body mass index (BMI), and sex, were recorded during each 

visit. Out of the 12 time points covered in the OAI, spanning 10 y, only 7 time points had 

MRI scans performed, which limited the span of the study to 8 y. A total of 41 822 3D 

sagittal double echo steady-state (DESS) volumes from the OAI acquired (3.0T Siemens 

Trio) were used for this study (field of view = 14 cm; matrix = 384 × 307 × 160; repetition 

time/echo time = 16.2/4.7 ms; bandwidth = 62.5 kHz; resolution = 0.365 × 0.456 × 0.7 mm). 

Selected patients had radiographs for both knees to evaluate their KL OA grade. The KL 

grades represent no OA (KL = 0), minimal/doubtful OA (KL = 1), mild OA (KL = 2), 

moderate OA (KL = 3), and severe OA (KL = 4). For the purposes of this study, KL grades 

of 0 and 1 were determined to be healthy, while KL grades of 2, 3, and 4 are considered to 

be OA. The human studies were conducted with the approval of the Institutional Review 

Board.

Out of a total of 47 078 3D DESS volumes, 41 822 had corresponding KL grades and were 

included in this study. Out of this total, there were 4506 unique patients, 117 of which only 

had scans for one of the knees and all the remaining had bilateral knee scan available in the 

dataset. The KL grade distribution for these 41 822 patients consisted of 16,624 (KL = 0), 
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7807 (KL = 1), 10,240 (KL = 2), 5528 (KL = 3), and 1623 (KL = 4). The 3D DESS volumes 

were interpolated by the Siemens reconstruction software (Siemens Healthineers, Erlangen, 

Germany) from the original 384 × 304 × 160 acquisition resolution to 384 × 384 × 160 for 

sagittal in-plane isotropic resolution. Each of the 41,822 DESS image volumes used was 

cropped from 384 × 384 × 160 to 364 × 364 × 140 to remove extra background in the 

volumes. Each volume was then normalized from 0 to 1 by dividing the volume by its 

highest intensity.

2.3 | Bone segmentation

The first step of the study was to accurately segment the bones from the 3D DESS volumes 

in the OAI dataset. A modified 3D V-Net29 architecture was used for the femur, tibia, and 

patella bone segmentation (Figure 1A). Lateral-medial flipping as well as in-plane rotation 

data augmentation were performed online to prevent overfitting, when training on a data 

split of 25 training, 5 validation, and 10 testing volumes, for which the manual segmentation 

was available.

Subsequently, segmented femur, tibia, and patella bones were post-processed to conform to 

the necessary format for the spherical transformation, such as maintaining the biggest 

connected component for each bone segmentation followed by morphological closing. The 

choices of segmentation post-processing steps were strictly used as a way to sanitize or 

standardize the data and not to influence the performance of OA classification models. 

Given the size of the OAI, an additional validation of the bone segmentation accuracy was 

performed on 60 baseline scans sampled randomly from the OAI. The 60 additional test 

volumes were representative of the OAI demographic distribution and 30 of the baseline 

scans were from patients who never developed OA across the entire OAI on both knees. 

From the remaining scans, 15 were OA Incidence cases and 15 were OA Diagnosis cases. 

The osteophyte coverage of the bone segmentation network was also assessed. Further 

details on the architecture selected for the segmentation, adopted training strategies, 

automatic segmentation post-processing, the additional validation and osteophyte analysis 

are reported in Supporting Information Section 1: Bone Segmentation and Post-processing, 

which is available online.

2.4 | Spherical transformation

Each post-processed segmented bone was converted to a 3D point cloud and converted to 2D 

spherical maps centered around the articular surface (Figure 2). The transformation from 

Cartesian coordinates into spherical coordinates was performed by uniformly sampling 224 

× 224 points in the point cloud and describing them based on the angle along the x-y plane 

from the positive x-axis (θ), the elevation angle from the x-y plane (φ), and the distance 

from the center of the point cloud to the sampled point in the surface (ρ) (Figure 2). The 

angle θ was sampled from −π to +π, while the angle φ was sampled from −π/2 to +π/2. 

Morphological closing was applied to the resulting spherical image to ensure there were no 

holes. The sampling density of 224 × 224 points, which was required to conform to the 

ImageNet image size, amounted to approximately 50 000 points. This was an over-sampling 

of the articular surface for each bone, which comprised 30% to 40% of the total points in 
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each point cloud, with the femur, tibia, and patella full point clouds containing on average 20 

000, 70 000 and 90 000 points, respectively.

Each of the point clouds was also augmented twice by rotating along the distal-proximal 

axis in a range of −5 to +5 degrees before the spherical transformation.

2.5 | Spherical data formatting

The spherical images for each of the bones were normalized from 0 to 1 by dividing the 

intensity by the highest intensity for each of the bones. The rescaled spherical images for 

each patient were merged into an three channel image in the following four combinations: 

each of the three individual bone spherical maps was replicated three times and converted 

into a single knee bone spherical image and the fourth variant was a merged combination of 

the three bones with the femur spherical image as the first channel, the tibia spherical image 

as the second channel and the patella spherical image as the third channel. This early fusion 

model was selected to learn complex features that arise from interactions of bone shape 

between the different bones in the knee joint. These combinations also allowed the 

ImageNet pretraining with three-channel natural images. While the natural images in the 

ImageNet dataset are spatially correlated, the fourth fusion variant consisted of an artificial 

construct that contained imperfect spatial relationships between each different bone. The 

images were then further normalized to have a mean and standard deviation, respectively, of 

0.485 and 0.229 for the red channel, 0.456 and 0.224 for the green channel, and 0.406 and 

0.225 for the blue channel to match the normalization values used for the pre-trained 

ImageNet30 weights. This step also removed the bone size information from the spherical 

bone images, thus avoiding the potentially confounding relationship between bone size and 

patient sex. The spherical transformation process was validated on the test set used to 

evaluate the segmentation model by converting the ground truth segmentations into spherical 

coordinates and then transforming it back to Cartesian coordinates and calculating the 

distance differences between the closest points in the original. This validation ensured that 

the bone surface features were accurately represented in the spherical images. This method 

was iterated identically for the tibia, femur, and patella bones.

2.6 | OA classification model dataset

The 41,822 spherical images were used for a model to diagnose OA and eight OA Incidence 

models. For the OA Diagnosis model, the dataset was divided into 29 012 training images, 

6365 validation images, and 6445 test images. The healthy controls were patient scans that 

had no radiographic OA (KL < 2), while the positive cases were patient scans with 

radiographic OA (KL > 1). Both knee scans for each patient were randomly assigned to a 

single split while controlling for the demographic factors (age, BMI, sex). To test the 

independence of demographic factors for the positive cases across splits, two different 

statistical tests were performed. The independence of sex was tested with a Pearson’s chi-

squared test implemented in scikit-learn31 using Python (Python Software Foundation, 

https://www.python.org/). The independence of age and BMI was tested with a one-way 

MANOVA using a MATLAB implementation. For the OA Incidence models, the healthy 

controls were baseline patient scans from patients who never developed radiographic OA for 

both knees across all time points while the positive cases were the last healthy patient scan 

Martinez et al. Page 5

Magn Reson Med. Author manuscript; available in PMC 2020 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.python.org/


(KL < 2) from patients who later developed radiographic OA. This study looked at eight 

incidence periods, ranging from 1 y to 8 y for radiographic OA incidence. The training, 

validation, and test splits were randomized for every OA Incidence period (1 y to 8 y) to 

balance the classes across splits as well as ensure that the demographic factors were 

independent across splits. Table 1 summarizes the training, validation, and test set splits for 

all models, along with the P-values of the statistical tests showing independence of 

demographic factors.

2.7 | OA classification network implementation

Two binary classification models were trained to extract bone shape features from the 

spherical bone representations and use them to diagnose and predict OA. For the cross-

sectional OA diagnosis task (Figure 1D), a Resnet32 architecture with 50 layers (Resnet50) 

pre-trained with ImageNet weights was implemented in PyTorch.33 The selection of the 

Resnet architecture was informed through a CNN architecture grid search that included 

DenseNet,34 AlexNet,35 SqueezeNet,36 and Resnet. The DenseNet and Resnet architectures 

outperformed the other architectures and the decision to select the Resnet over the DenseNet 

was based on the smaller number of training parameters for the Resnet, which allowed a 

greater batch size. The ImageNet pre-training design choice was validated through a grid 

search, which included a version of the Resnet50 initialized with a Kaiming normal 

distribution.37 The ImageNet pre-trained models achieved faster convergence than the 

models trained from scratch and consequently allowed for a more comprehensive parameter 

space search (shown in Figure 1D,E as Model Selection). Different layer depths of the 

Resnet (18-layer, 34-layer, 50-layer, 101-layer, 152-layer) were also investigated with the 

50-layer deep model providing the best compromise between accuracy and training speed, 

important for hyperparameter optimization. The network architecture uses shortcut residual 

connections that improve the training performance for deeper models over similar shallower 

models. The basic structure of the Resnet50 follows the pattern of three convolutional layers 

with a 1 × 1, 3 × 3, and a 1 × 1 convolutional filter size, respectively. Each of these layers is 

paired with batch normalization and a ReLU activation function. A softmax function was 

used to activate the last fully connected layer for the positive class.

The OA Diagnosis model was trained first with the following variants: femur, tibia, patella, 

early fusion, late fusion, logits averaging, and majority voting. Figure 3 shows an overview 

of the different models used. The femur, tibia, and patella models consisted of three 

individual Resnet50 trained on each single knee bone spherical image (Figure 3A–C). The 

early fusion model consisted of a Resnet50 trained on the combined spherical images of the 

femur, tibia, and patella into a single merged spherical image (Figure 3D). The late fusion 

model was the concatenation of the last three layers of the individual Resnet50 trained fused 

into a fully connected layer and trained end to end (Figure 3E). There were two network 

ensemble methods evaluated: majority voting, where the majority, or median, prediction 

from all three individual bone network for each patient was used (Figure 3F), and logits 

averaging, where the average of the softmax values outputted by each of the three individual 

bone networks was used for the prediction (Figure 3G).
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All OA Diagnosis model variants were initialized with ImageNet weights and fine-tuned 

using Adam optimizer with a learning rate of 1e-4 and trained end to end using a weighted 

binary cross entropy loss, based on the class imbalance, with a batch size of 100 in a 

GeForce GTX Titan 1080 Ti GPU. The OA Incidence models were initialized on the best 

performing checkpoint from the OA Diagnosis model based on the assumption that there is 

an overlap between the features for OA Diagnosis and OA Incidence. They were trained 

using the same parameters as the OA Diagnosis model with the exception of a lower 

learning rate of 1e-6 for Adam optimizer and a regularization weight decay value of 0.9 (to 

fine tune while preventing overfitting on the training set) and trained for 100 epochs with a 

batch size of 32.

Network ensemble methods such as logits averaging, and majority voting were used to 

combine the outputs of the independent bone models. A late fusion model was created by 

concatenating the output of the last hidden layer of three individual Resnet50 architectures 

and performing a global average pooling with a fully connected layer into a one-class 

softmax (sigmoid) activation function using Keras and a TensorFlow backend.

2.8 | OA classification robustness analysis

The robustness of the OA Diagnosis and first two OA Incidence models to bone atlas choice 

as well as bone segmentation and spherical transformation errors was evaluated.

The first robustness analysis of the OA classification models consisted of evaluating the 

impact of bone atlas choice on the performance of the OA Diagnosis and the 2 y and 8 y OA 

Incidence models. Four patients with different KL grades and demographic information 

were randomly picked as the bone atlas (for the femur, tibia and patella). The entire 

framework was rerun on each bone atlas and the OA Diagnosis and the 2 y and 8 y models 

were retrained using the same splits and hyperparameters as the original framework. The test 

set accuracy for each model was recorded for each bone atlas.

The second robustness analysis of the OA classification models consisted of evaluating the 

relationship between the bone segmentation accuracy and the performance of the OA 

Diagnosis and first two OA Incidence models. A randomly selected set of 30 correct 

predictions from the test set of the three models was corrupted and the effect of each 

individual bone corruption on the performance each model was evaluated.

The complete description of the first two analyses can be found in Supporting Information 

Section 2: OA Classification Robustness Analysis.

The third robustness analysis of the OA classification models consisted of evaluating the 

relationship between the spherical transformation error and the performance of the OA 

Diagnosis and first two OA Incidence models. For this analysis, 50 correct predictions (25 

true positives and 25 true negatives across all models) and 50 false predictions (25 false 

positives and 25 false negatives for OA Diagnosis, 38 false positives and 12 false negatives 

for the 1-y, and 30 false positives and 20 false negatives for the 2-y OA) were selected from 

the trained OA Diagnosis model and the 1-y and 2-y OA Incidence models. The 1-y and 2-y 

OA Incidence models were evaluated due to the lack of cases in later year incidences. The 
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distribution of spherical transformation errors measured as mean point-to-surface (MPTS) 

distance errors for the correct and the false predictions was calculated across bones for each 

model to evaluate the relationship between spherical transformation error and OA 

classification performance.

3 | RESULTS

3.1 | Bone segmentation

The mean post-processed bone segmentation Dice scores for the test set of 10 patients were 

97.15% (95% confidence interval = 96.56–97.74%) for the femur, 97.28% (95% confidence 

interval = 96.64–97.92%) for the tibia, and 95.99% (95% confidence interval = 95.26–

96.72%) for the patella. MPTS distance errors were calculated between the manual and 

automated segmentations for the bone segmentation test set. The MPTS distance errors were 

0.45 mm (95% confidence interval = 0.23–0.68 mm) for the femur, 0.57 mm (95% 

confidence interval = 0.39–0.74 mm) for the tibia, and 0.51 mm (95% confidence interval = 

0.07–0.94 mm) for the patella, approximately the size of one voxel. Figure 4 shows 

representative slices of the 3D bone segmentation results from three different patients along 

with their respective MR images with the mean MPTS distance errors over the entire 

volume. The two types of model error, false positives, where the segmentation misclassified 

non-bone regions as bone and false negatives, where the model missed the existing bone, are 

highlighted as cyan and magenta, respectively. The complete results of the additional 

validation are shown in Supporting Information Table S1. Additionally, the results of the 

osteophyte analysis are shown in Supporting Information Figures S2 and S3.

3.2 | Spherical transformation

The morphologically closed spherical transformation MPTS distance errors for the test set of 

10 patients were 0.505 mm (95% confidence interval = 0.534–0.558 mm) for the femur, 

0.272 mm (95% confidence interval = 0.286–0.300 mm) for the tibia, and 0.129 mm (95% 

confidence interval = 0.136–0.144 mm) for the patella. The MPTS distance differences for 

the 10 patients in the segmentation test set were calculated by transforming the bone point 

clouds to the spherical coordinates and back to the bone point clouds and calculating the 

distance differences between the sampled points. The process was accurate at preserving the 

bone shape at most regions of the bones, except in the intercondylar notch, arguably where 

the surface curvature changed rapidly.

3.3 | OA classification models

The validation receiver operating characteristic (ROC) curve results for the binary OA 

classifier models are summarized in Table 2 and a visual representation is reported in Figure 

5 for the OA Diagnosis and the 1-y and 2-y OA Incidence models. The rest of the OA 

Incidence models ranging from 3 y to 8 y can be found in the Supporting Information Figure 

S1. For the OA Diagnosis task, the validation AUC for the models ranged from 0.806 to 

0.904. The ensemble fusion strategies exhibited the best validation performance for the OA 

diagnosis task, with the logits averaging model slightly outperforming the majority voting 

model with a validation AUC of 0.904 and 0.903, respectively. The late and early fusion 

strategies had the next highest validation performance on average, with a validation AUC of 
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0.895 and 0.891, respectively. Out of the single bone fusion strategies, the femur model had 

the best OA diagnostic performance with a validation AUC of 0.893 closely followed by the 

tibia model with a validation AUC of 0.887. The patella model had the lowest validation 

AUC of 0.806. For the OA incidence task, the validation AUC generally decreased with 

incidence time, however, the validation AUC was above 0.72 for the best fusion strategy 

across all incidence times, even for the lowest performing 5-y incidence model.

The test set performance of the models was in line with the validation set performance with 

the exception of the 7-y OA Incidence model, which significantly outperformed in the test 

set. The models were generally more sensitive to the positive cases with the exception of the 

2-y and 8-y model. There was no clear trend in overall performance across each OA 

Incidence model, with the best performing OA Incidence being the 7-y model. The test set 

performance, measured in AUC, sensitivity, and specificity, is summarized in Table 3. The 

OA Diagnosis and the 2-y and 8-y OA Incidence models test set performance for four 

different bone atlases was also consistent with the original results and is shown in 

Supporting Information Table S2.

3.4 | OA classification robustness analysis

The OA classification model robustness to bone segmentation accuracy measured in the 

range of the 95% confidence interval for the test set bone segmentation MPTS distance 

errors was calculated for the OA Diagnosis model and the 1-y and 2-y OA Incidence models. 

The OA Diagnosis model MPTS distance errors were 0.582 to 1 for the specificity, 1 to 1 for 

the sensitivity, and 0.999 to 1 for the AUC across all bones. The 1-y OA Incidence model 

MPTS distance errors were 0.491 to 0.942 for the specificity, 0.941 to 1 for the sensitivity, 

and 0.949 to 1 for the AUC across all bones. The 2-y OA Incidence model MPTS distance 

errors were 0.4 to 0.942 for the specificity, 0.933 to 1 for the sensitivity, and 0.911 to 0.996 

for the AUC across all bones. The total MPTS distance errors for the analysis for each bone 

are shown in Supporting Information Figure S4, Supporting Information Figure S5, and 

Supporting Information Figure S6.

The complete results of both analyses can be found in the Supporting Information Section 2: 

OA Classification Robustness Analysis.

The OA classification robustness to spherical transformation error, measured in MPTS 

distance errors, overview is shown in Figure 6. The OA Diagnosis model robustness to 

spherical transformation error is shown in Figure 6A. The 1-y OA Incidence model 

robustness to spherical transformation error is shown in Figure 6B. The 2-y OA Incidence 

model robustness to spherical transformation error is shown in Figure 6C. There was no 

significant increase in spherical transformation MSTP distance error in the false predictions, 

both positive and negative, compared to the correct predictions.

4 | DISCUSSION

In this study, we established a model to diagnose and predict knee OA onset within a period 

ranging from 1 y to 8 y based on extracted bone shape features. The model generates the 

spherical maps of the femur, tibia, and patella and combines them with a logits averaging 

Martinez et al. Page 9

Magn Reson Med. Author manuscript; available in PMC 2020 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



network ensemble method to diagnose and predict radiographic knee OA. This model is 

state-of-the-art for radiographic knee OA diagnosis and OA incidence prediction using 

solely bone shape.

Classic methods used to represent bone shape based on SSM use PCA to reduce the 

dimensionality of the bone shape for analysis. This allows each component of the features 

vector (mode) to describe a different aspect of the bone shape independent of the other 

components. The effect of each mode on the average surface can be modeled individually, 

synthesizing new instances. There are two shortcomings with this approach, the linearity 

constraint of PCA and the lack of supervision for the feature extraction process. Since PCA 

is a linear decomposition, the nonlinear relationships within the data are lost and the features 

described by the different modes may prove too simple to completely capture the bone 

shape. Furthermore, the unsupervised nature of PCA also means that the features extracted 

may not necessarily be specific to OA, since the bone shape features may depend on other 

factors such as demographics. Deep learning approaches address both of these issues by 

learning representations of data with multiple levels of abstraction, using the fact that many 

natural image patterns are compositional hierarchies, meaning higher-level features can be 

decomposed into lower-level feature representations.38 The hierarchical fashion of deep 

learning models suggests an improvement upon the established concept of simple data 

representation using PCA in favor of data-driven representation of relevant information 

directly from the raw data.38 Some studies have combined supervised learning techniques 

such as linear discriminant analysis (LDA) with PCA to link bone shape to OA.10 LDA best 

separates two groups (OA and no OA) with a hyper-plane in multi-dimensional space, which 

further reduces the bone shape to a single scalar value representing the distance within the 

LDA vector for each bone shape. While LDA goes in the direction of adding some 

supervision to the feature extraction process, the use of a single vector may be an over 

simplification of a complex 3D shape, thus resulting in a robust but potentially less sensitive 

approach.

The purpose of our study was not to achieve the highest predictive performance in the OA 

Diagnosis and OA Incidence task, but rather to evaluate the effect of bone shape in the 

presence and onset of radiographic OA, while accounting for other confounding OA risk 

factors such as age, sex, and BMI. Although the multifactorial nature of OA is well 

understood, and thus including several of these features together may lead to a more 

accurate prediction, the study of the single factors individually is also of great interest. This 

can help identify specific contributions of each factor to better understand the etiology of 

OA and help define unique OA phenotypes.

While this study brings new insights on the role of deep learning for new imaging OA 

biomarkers definition, some limitations need to be acknowledged. One of the limitations of 

the study is the use of radiographic OA based on KL grading as the metric for OA. 

Radiographic OA measures changes, such as tibiofemoral, or joint space, narrowing and 

osteophyte formation, which occur at more advanced OA stages. This could potentially 

mean that the last healthy scans considered for the OA Incidence models could already be 

exhibiting other more subtle OA symptoms, such as loss of cartilage thickness. Another 

limitation of the study is the small number of OA Incidence cases prevented any further 
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stratification of the OA Incidence models by KL grade increase to better understand the 

distribution of these OA Incidence subpopulations. The temporal efficacy for the OA 

Incidence models is also affected by the reshuffling of the splits across incidence periods. A 

future study could focus on a smaller section of the incident population and follow it across 

time points. Additionally, since the KL grading is performed on a coronal knee radiograph, 

only tibiofemoral OA is considered in the diagnosis and the impact of patellofemoral OA is 

not included in the grading, which could explain the lower performance for the patella 

models. Another limitation of this method is the reduced model interpretability when 

compared to a PCA approach, which could model the modes and understand the relationship 

between specific bone shapes and OA. The current model would not be able to evaluate the 

correlation between specific bone shape differences such as tibia slope and the OA diagnosis 

and OA incidence prediction, but rather assess the general relationship between bone shape 

and OA. For future studies, using visualization tools, such as gradient-weighted class 

activation mapping (Grad-CAM39), could characterize different bone shape phenotypes for 

the OA diagnosis and OA incidence tasks. Establishing such a way to phenotype patient 

bone shape populations could have wide implications in clinical studies for potential 

treatment of OA as a patient screening tool.

5 | CONCLUSIONS

In this study, we demonstrated that bone shape can be used as a predictive biomarker for OA 

through the use of a spherical transformation and coupled with a classification CNN. This 

approach is novel in the field of deep learning applications for musculoskeletal imaging and 

shows promise for future expansions to study other OA biomarkers such as cartilage 

thickness and T2 relaxation times values.
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FIGURE 1. 
Overview of the study. (A), A V-Net segmentation model was trained and validated with a 

dataset of 40 3D double echo steady-state (DESS) MRI volumes with the femur, tibia, and 

patella segmented. The trained model was then used to run inference on 47,078 3D DESS 

MRI volumes from the Osteoarthritis Initiative (OAI) dataset. (B), The resulting bone 

segmentations were rigidly registered using an iterative closest point (ICP) algorithm to 

account for rotational variability at scan time. (C), The registered point clouds were 

transformed to spherical coordinates and merged using different fusion strategies. (D), A 

total of 41,822 spherical bone maps corresponding to patient scans were used to train an OA 

diagnosis model to classify osteoarthritis (OA) based on bone shape across all time points. 

Each of the two inputs represents a class in the binary classifier (healthy Kellgren-Lawrence 

[KL] < 2 vs. OA KL > 1). (E), An OA incidence model, defined as predicting future OA 

from the last healthy scan of patient within a range of eight time points, from 1 y up to 8 y, 

was trained using the weights from the OA diagnosis. The first input represents the baseline 

scans (T0) from patients that never developed OA on either knee across the following 1 to 8 

y (T1–8). The second input represents OA incidence cases, as the last healthy scans (Tlast) 

from patients that later developed OA on either knee across the following 1 to 8 y (T1–8). 

The binary OA Incidence model is therefore represented as: baseline scans from always-

healthy patients vs. last healthy scans from future OA patients in 1 to 8 y
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FIGURE 2. 
Spherical transformation of the 3D bone point cloud. A femur point cloud is shown with the 

Cartesian and spherical coordinates. Each point in the surface of the 3D point cloud was 

transformed into a 2D point in a spherical map where the location was encoded with the two 

angles (θ, φ) and the distance from the centroid of the point cloud was encoded as the image 

intensity
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FIGURE 3. 
Overview of the model fusion strategies. (A-C), The single bone fusion strategies, with the 

femur, tibia, and patella shown in order, consisted of replicating the individual spherical 

bone maps three times and merging them into three-channel images which were then used as 

inputs into a Resnet50 classification CNN. (D), The early fusion model merged each of the 

single bone spherical maps into a three-channel image, which was then used as input into a 

Resnet50 classification CNN. (E), The late fusion model concatenated the last layer before 

the fully connected layer of the individual single bone models and added a fully connected 

layer that outputs a single softmax prediction for the osteoarthritis (OA) diagnosis and 

incidence. (F), The first of the ensemble methods consisted of majority voting, where the 

majority predictions from the individual single bone models, (shown as red, green, and blue 

circles corresponding to the femur, tibia, and patella, respectively) was used to determine the 

final OA diagnosis and prediction. (G), The logits averaging model consisted of averaging 

the softmax values from the individual single bone models and using the averaged softmax 

as the OA diagnosis and incidence
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FIGURE 4. 
Examples of bone segmentation errors for three scans from the bone segmentation test set 

with their respective total bone MPTS distance errors. The pixels in agreement between the 

trained segmentation model inference and the ground truths are labeled as green, 

representing the true positive cases. The pixels incorrectly classified as bone by the trained 

segmentation model are labeled as cyan, representing the false positive cases. The pixels 

missed by the trained segmentation model are labeled as magenta, representing the false 

negative cases. (A,B), Bone segmentations and corresponding double echo steady-state 

(DESS) slices, respectively for the three patients show minor errors along the bone surface 

for all three bones. (C,D), Bone segmentations and corresponding DESS slices shown, 

respectively, for the same three patients show more severe errors along the tibiofemoral 
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shafts and the femoral intercondylar notch. These errors are likely caused by poor signal as 

the shaft appears sagittally and partial voluming effects in the intercondylar notch femoral 

region. The framework cropped the bone shaft and sparsely spherically sampled the 

intercondylar notch region, thus reducing the effect of these errors on the overall results
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FIGURE 5. 
Overview of the validation receiver operating characteristics (ROC) curve comparisons for 

the different model fusion strategies. The osteoarthritis (OA) Diagnosis model and the first 

two OA Incidence models are shown, with the remaining OA Incidence models are shown in 

the Supporting Information Figure S1. (A), OA Diagnosis model. (B), 1-y OA Incidence 

model. (C), 2-y OA Incidence model
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FIGURE 6. 
Robustness of the osteoarthritis (OA) classification models to the spherical transformation 

error measured as mean point-to-surface (MPTS) distance errors from the original point 

clouds. The average MPTS error, and corresponding 25% quartiles interval, is shown 

between 50 randomly picked correct predictions from the test set (shown in blue) and 50 

randomly picked false predictions from the test set (shown in orange), for both positive and 

negative cases. There was no significant increase in spherical transformation MPTS distance 

error in the false predictions, both positive and negative, compared to the correct predictions. 

(A), OA Diagnosis model. (B), 1-y OA Incidence model. (C), 2-y OA Incidence model
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