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Recent developments in artificial intelligence (AI) have been possible due to the increased 

computing power of the hardware. However, the systems are mainly digital and are optimized for 

fast, accurate, and versatile computing. Analog computing systems are attractive for their energy-

efficiency and throughput in AI applications. In this dissertation, we explore and optimize a 

conventional CMOS transistor, the charge-trap transistor (CTT), as an analog in-memory 

computing unit for neural networks. In addition, to adapt to the finite variation of the analog 

devices and circuits, we develop novel methods to characterize and improve the resiliency of 

neural networks deployed on analog computing systems. Furthermore, as the scaling of the 

network plays a crucial role in enhancing its capability, this dissertation evaluates advanced system 

scaling technologies to scale out the analog computing hardware in a scalable non-von Neumann 

architecture. Finally, our findings are brought together and realized by the hardware demonstration 

of an analog neuromorphic system. We conclude with the characterization result of the system and 

discuss several future directions for scalable and analog neuromorphic systems.   
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Chapter 1: Introduction 
 

Despite the significant development of Moore’s Law in the last few decades, biological 

systems, the brains in particular, still have superior cognitive capability and energy efficiency 

compared with the existing computers. The power consumption of the human brain is only about 

20 Watts [Drubach 00], a fraction of the power requirement of modern computing systems. In 

contrast, the brain can work on many cognitive tasks unsolvable by computers. As a result, 

neuromorphic computing systems [Mead 89] have been inspired by neuroscience to improve the 

cognitive performance of the computing system and its energy efficiency. Among many of the 

neuromorphic algorithms, artificial neural networks (NNs) are inspired by the brain structure and 

proposed by McCulloch in 1943 to develop an understanding of neurophysiology and provide a 

new method for calculation [McCulloch 43]. In 1958 Rosenblatt proposed the perceptron model 

for pattern recognition while mentioning that “higher order functions” (e.g., speech, 

communication, thinking) might be achieved by more advanced models [Rosenblatt 58]. 

Unfortunately, there are no practical computing engines at that time, limiting the research to 

mathematical analyses.   

The spotlight turned to the artificial NNs until the famous Alexnet [Krizhevsky 12] 

appeared and achieved much better cognitive performance (i.e., classification accuracy) than any 

other contemporary machine learning solutions on the ImageNet classification challenge (1000-

class image recognition) [Deng 09]. The Alexnet was deployed on a commercial GPU, and was 

able to be trained on the ImageNet dataset in several days. Since then numerous applications and 

systems based on neural networks have been developed to advance artificial intelligence (AI) and 
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surpassed human performance in many challenges [Russakovsky 15, He 16, Shafiee 16, Real 17, 

Guo 17, Silver 17, Jouppi 17, Desoli 17, Chen 17, Zheng 18, LeCun 19, Cai 19]. 

Artificial NNs, including multi-layer perceptrons (MLP), convolutional neural networks 

(CNN), and deep neural networks (DNN), are intensively used by the industry for commercial 

applications [LeCun 15, Jouppi 17]. It is observed that artificial NNs tend to perform better as they 

expand in size. As shown in Fig. 1. 1 (adapted from [He 16]), for a given image classification 

challenge, a larger network can achieve a lower error rate. Furthermore, as the challenge becomes 

more difficult (from 1000-class ImageNet to 10-class CIFAR-10 dataset [Krizhevsky 09]), a larger 

network is required to reduce the error rate to potentially match it to a simpler challenge. Therefore, 

as people try to use artificial NNs for more advanced problems, the size (size of layers and number 

of layers) of the artificial NNs is expected to grow. As a result, there is also an increasing demand 

for advanced hardware to reduce the energy efficiency gap between the brain the computing 

machines to calculate artificial NNs more efficiency in both time and energy.  

The advanced hardware needs to be suitable for neuromorphic algorithms such as artificial 

NNs. And thus its design should consider for several properties: 

(a) Distributed and parallel operations. Most computations of the artificial NNs can be 

distributed and parallelized (like the brain), especially for DNNs that have many computing 

operations independent of each other. These can be executed in parallel. Thus, the graphics 

processing units (GPUs) [Nvidia 15] become more favored as the primary workforce for artificial 

NNs computations than the central processing units (CPUs) because their architecture supports 

more cores per chip for distributed computing in parallel threads.   

(b) Reduced complexity of instructions and dataflow. Artificial NN computation 

workload is mainly multiplication and addition with few other arithmetic operations (e.g., taking 
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maximum). Also, the data dependencies between operations are very predictable (almost no 

conditional decisions or loop structures). Instead of the x86 instruction set, many of the recent 

digital artificial NN accelerator designs adapt the RISC architecture [Desoli 17]. In flexible 

platforms such as field-programmable gate arrays (FPGAs), dataflow and resource utilization can 

be improved by hardware-software co-optimization, making the systems more efficient than 

general-purpose computing engines [Zhang 18]. Furthermore, application-specific integrated 

circuits (ASICs) provide the highest degree of freedom for optimized architecture and instruction 

set to maximize computing efficiency [Chen 17, Jouppi 17].  

(c) Data-intensive computing: despite the simplicity in the instructions, artificial NN 

computations are very data-intensive. As a result, the von Neumann bottleneck [Backus 78] 

becomes more critical as the systems scale up, demanding more data to be moved across the 

memory hierarchy to the processing elements. Therefore, the gating factor of the speed and even 

energy efficiency of such computation becomes the utilization of memory bandwidth, instead of 

the arithmetic operations themselves [Zhang 15], which can be visualized using the roof-line 

model [Williams 09]. This also limits the marginal gain of “More Moore” for related systems and 

calls for innovation in the compute-memory interaction. To summarize, Fig. 1. 2 shows the 

comparison of artificial NN computation performed in different platforms in terms of time 

efficiency (throughput) and energy efficiency.  

Another field of growing interest is to use analog in-memory computing for artificial NN 

operations. Specifically, use Ohm’s Law (𝐼 =  𝐺 ∗ 𝑉 ) for multiplication and conservation of 

charge for summation to compute the dot-product and vector-matrix multiplication (VMM). It also 

happens that computations of artificial NNs do not require high precision for cognitive applications 

[Rastegari 16], and thus costly high-precision analog circuits may not be required. In addition, due 
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to the fixed data flow and its simplicity in the organization, analog devices can be used to store the 

weight matrices, while the VMM can be done in the analog memory itself. It is estimated that the 

analog non-volatile memory (NVM) can be used to significantly increase the throughput and 

efficiency with respect to digital implementations (Fig. 1. 2). Many emerging analog NVM devices, 

such as phase-change memory (PCM) [Burr 16, Burr 14], conductive bridging RAM (CBRAM) 

[Valov 11], resistive RAM (RRAM) [Wong 12, Seo 11] and spin-transfer-torque RAM (STT-

RAM) [Sengupta 16, Vincent 15] can be used in a crossbar array to implement analog in-memory 

computing of artificial NNs.  

As previously mentioned, the development of artificial NNs depends on scaling, and 

therefore requires the hardware technology to be scalable, both in terms of scaling up (increasing 

computing density) and scaling out (increasing number of chips in a system). It is also important 

to evaluate how the scaling affects the performance of artificial NNs in terms of accuracy, as they 

might not require as much investment in the hardware for high precision as in general-purpose 

computations. 

To indicate a viable path for advanced and efficient computing hardware for the artificial 

NNs, this dissertation proposes a design of scalable and analog neuromorphic computing system, 

leveraging the highly scalable (scaling-up) commercial CMOS technology, featuring the charge-

trap transistor (CTT) [Gu 19] as the analog device. The system is also scalable for scaling out by 

leveraging novel system integration technologies. A neuromorphic engine for neural network 

inference, featuring the CTT, is designed and fabricated to evaluate the feasibility and performance 

of the CTT as an analog computing element.  

The dissertation is organized as follows: Chapter 1 provides the motivation for scalable 

and analog neuromorphic computing systems.  
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Chapter 2 introduces a CMOS-compatible and commercially available device, the charge-

trapping transistor (CTT), and demonstrates how it can be used and optimized as analog memory. 

CTTs are also benchmarked with other state-of-the-art analog memory devices for neural network 

computing engines. 

Chapter 3 introduces a design for a CMOS-compatible analog in-memory computing 

engine for different types of neural networks, including multi-layer perceptron and convolutional 

neural networks, and how the system can be scaled out for very large neural networks. 

Chapter 4 investigates the resiliency of neural networks due to the imprecise nature of the 

analog neuromorphic systems. As it identifies the degradation of network and network resiliency 

for larger networks, it also proposes a modified training method to enhance resiliency without any 

extra cost in the inference engine to clear the obstacle for scaled analog computing systems.    

Chapter 5 discusses the challenges for the scaled-out systems for deep neural networks and 

evaluates novel fine-pitch integration technologies, such as the Si-interconnect fabric, for system 

scaling. 

Chapter 6 shows the design of a CTT-based mixed-signal in-memory computing engine, 

the NeuroCTT, and the testing results from the fabricated chips. 

Finally, this dissertation concludes with a summary of the presented findings and an 

outlook on the future of scalable and analog neuromorphic computing systems.  
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Fig. 1. 1 The effect of scaling of the ResNet [He 16] (a state-of-the-art neural network 

structure). The ImageNet challenge is an image classification problem for 1000 classes while 

CIFAR-10 is a simpler problem (10 classes only). For each of the problem, the error rate 

decreases as the network scales up. 

 

Fig. 1. 2 The throughput on image recognition application and the efficiency (defined as 

throughput per Watt) of some typical and novel architectures. 
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Chapter 2: Charge-Trap Transistor as CMOS 

Compatible Analog Memory 

2.1 Introduction 

Analog memories store a continuum of states which can be grouped into more than two 

“significantly separated” distributions (2 states will be a digital memory).  In the electrical domain, 

the states usually are defined by current values at a given voltage bias, or threshold voltage values 

at a given threshold current. Although every real device may be treated like analog memory, 

observing the memory state inevitably digitizes the states under the limitation of the sensing circuit. 

As a result, digital memories are the ones whose sensing circuit gives two possible outputs for 

each cell, normally as “0” and “1”. In the meantime, the sensing circuit of the analog memories 

should be able to distinguish more than two states, while the cost of the sensing circuit is balanced 

with the number of states for detection. In general, a device can be a good candidate of analog 

memory with the following characteristics: 

(a) A wide memory window for a large number of states. Any programmable physical 

memory can be characterized for a probability density function (PDF) of its possible states. 

The information stored in this memory can be obtained by collecting the well-separated 

groups in the probability density function, which should be more in a wider memory 

window (i.e., the range of the states), as shown in Fig. 2. 1. 

(b) Distribution of the states. When the state of the analog memory is interpreted by 

converting into digital values (more than 2), the relative positions and distribution of the 

states are irrelevant if the sensing circuit can distinguish the states. However, in the domain 

of analog in-memory computing, the stored values (e.g., current under a given bias) 
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themselves might be used directly as an operand for the computation based on natural laws 

(e.g., I = I1 + I2) instead of arithmetic laws. Therefore, the relative positions of the states 

should be compatible with the intended computation. In the case of linear operations, such 

as addition, uniformly distributed states across the memory window are preferred to reduce 

the potential error. The distribution of the states can then be modeled for evaluations at a 

higher level.  

(c) Stable states (i.e., good data retention). The distribution of states needs to be 

evaluated for its retention to meet the requirement of some applications. It is possible to 

strengthen data retention by refreshing, as implemented for dynamic random-access 

memory (DRAM) and spin-transfer torque magnetoresistive RAM (STT-MRAM) [Shihab 

 

Fig. 2. 1 Top: memory window and state distribution of a digital memory. “0” state and “1” are 

achieved by writing “0” and “1” to the memory cell. Middle: memory window and state 

distribution of an analog memory with 4 states distributed linearly (roughly equally spaced). 

Bottom: memory window and state distribution of an analog memory with 4 states distributed 

non-linearly. 
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16]. However, the number of analog states increases the cost of the detection and refreshing 

circuit, which might significantly undermine the advantage of the system and should be 

avoided if possible. 

(d) Analog memory used for frequently writing and re-writing needs to be qualified for 

its endurance and the write speed. For example, the neural network training operation 

requires sufficient symmetry of the incrementing and decrementing the memory value 

[Haensch 18]. However, these requirements are loosened if the application, such as neural 

network inference, requires only frequent reading but infrequent writing and re-writing.  

While lots of materials and devices can exhibit properties of good analog memory 

described above, they need to be benchmarked against the digital counterpart at the system level, 

in terms of latency, energy efficiency and area cost. Therefore, it is, in general, preferred that the 

memory candidates leverage the core of the Moore’s law - the CMOS technology. Many of the 

emerging analog memories today focus the R&D effort in the integration with the CMOS 

processes [Burr 16], which also makes it easier for the integration with existing silicon intellectual 

properties (IP) for optimized computing performance. 

In this chapter, a CMOS-compatible analog memory, the charge-trap transistor (CTT), is 

characterized and optimized for a competitive analog non-volatile memory. 
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2.2 Characterization of CTTs for Analog Memory 

2.2.1 Basic Operations 

The charge-trap transistor (CTT) is a n-type metal-oxide-semiconductor field-effect 

transistor (nMOSFET) that uses high dielectric-constant (high-k) materials as its gate dielectric. 

Because such dielectric material can replace silicon oxide as a more reliable gate dielectric and is 

supported by the high-k metal gate (HKMG) process, it is ubiquitous in all logic transistors since 

the 45nm technology node [Ghani 00, Auth 08]. During HKMG fabrication, oxygen-induced traps 

are formed in the gate dielectric. These traps can capture electrons in the channel and release the 

captured electrons to the channel through tunneling [Cartier 06]. The trapped charge does not 

 

Fig. 2. 2 The charge trapping and de-trapping of the CTT devices is manifested by the shift in 

their threshold voltage after programming (PRG) and erasing (ERS) events. The shift in 

threshold voltage provides a significant dynamic range in the sub-threshold drain current of the 

device. The subthreshold current used for most characterizations is the inference current Iinf, 

measured at VG = 0.2V, VD = 0.05V, VS = VSub = 0V. The figure shows the IDS-VGS 

characteristics after the event in the order: PRG1, ERS1, PRG2, ERS2 
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require energy to remain trapped, and therefore the CTT device as analog memory is non-volatile. 

A high gate-to-source bias (VGS) with high drain current (ID) helps to support significant and stable 

charge trapping for programming (PRG), while a high negative gate-to-source bias can de-trap the 

charges for erasing (ERS). As the trapped charges generate an electric field in the channel, a shift 

in the MOSFET’s threshold voltage can be observed (Fig. 2. 2). Such phenomenon has been shown 

in 32nm, 22nm bulk and silicon-on-insulator (SOI) structures, 14nm FinFET [Khan 16], and 7nm 

FinFET [Khan 19]. For the application of digital multi-time programmable memory (MTPM), the 

retention of 10 years at 105°C has been shown in 32nm and 22nm technology nodes [Viraraghavan 

16]. In this chapter, all device characterization data are based on standard logic devices from 

Globalfoundries 22nm fully-depleted SOI (22FDX) technology [Carter 16] with device width of 

428nm unless otherwise specified.  

By using the sub-threshold drain current as the analog information stored in the CTTs, 

CTTs become analog memory with a substantial (up to 1,000) dynamic range [Gu 19]. For the 

characterization of the CTTs, we define its threshold voltage Vth as the gate voltage when VD = 

50mV, VS = 0V and ID = 200nA, and define the inference current (Iinf) as the sub-threshold drain 

current at VGS = 200mV and VDS = 50mV (Fig. 2. 2). In all experiment results shown, Iinf is 

measured with the high-resolution single measurement unit (HRSMU) in the Keysight B1500A 

parameter analyzer (1fA to 100fA resolution) [Keysight 18]. The Vth is extrapolated with the 

subthreshold slope measured in the ID-VG sweep at VDS = 50mV, VGS = 0V, 50mV, 

100mV,…,300mV (or higher, depends on the experiment) when the device is in the subthreshold 

region (i.e., the subthreshold slope 𝜕log(ID)/ 𝜕VG is almost a constant). As logic devices, CTTs are 

designed for a nominal voltage of 0.8V, with a +/- 10% tolerance from the foundry’s specification. 

In Fig. 2. 2, the device PRG is done by using a 0.5ms of 2.7V VGS pulse with a 1.5ms of 1.2V VDS 
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pulse, which starts 0.5ms earlier and ends 0.5ms later than the VGS pulse. Also, the ERS is done 

by using a 0.5ms of -2.7V VGS pulse while VDS is grounded. 

2.2.2 Charge Trapping in Bulk-Oxide and Interfacial Traps 

The location of the traps for the charge trapping in the device depends on the relative bias 

points of the device. In this section, we discuss the charge trapping in the bulk-oxide traps and 

interfacial traps. A commonly studied case on such logic devices is the negative or positive-bias 

temperature instability (NBTI or PBTI) [Jeppson 77, Khan 15], where the Vth of the device can 

shift due to a negative or positive gate bias. For nMOSFETs, PBTI is more significant due to the 

positive VGS used during most operations. PBTI induces the Vth shift by trapping charges to the 

bulk-oxide traps. While PBTI can also induce the Vth shift, it is not as significant as the proposed 

PRG method, which also mainly traps charge in the bulk-oxide but enhanced by the resistive self-

heating from the large drain current [Khan 15]. Fig. 2. 3 shows the Vth shift induced by both PBTI 

(high VG, with VS = VD = 0V for 20ms) and the CTT PRG method (high VG, with VD = 1.2V, VS 

= 0V for 5ms). The amount of charge-trapping by PRG is almost three times more efficient and 

has good retention. It has been reported that the self-heating enhanced CTT PRG method can retain 

70% of the trapped charge at 105 °C for ten years [Viraraghavan 16].  

Another method to leverage charge trapping for device Vth shift is to use hot-carrier 

injection (HCI), which requires very high VDS to generate interfacial traps between the oxide and 

the drain side channel [Hu 85].  It has been shown that HCI can be used to shift Vth significantly 

with very good retention (< 10% charge loss in 10 years at 125 °C) [Ma 19]. But it can only be de-

trapped by high temperature and long time (> seconds) annealing [Pobegen 13]. The bulk-oxide 

trapping, on the other hand, can be reversed without heating (resistive self-heating during negative 
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VGS is impossible due to the off-state of the device) by applying high VGS, with the drain floated 

or shorted to the source.  

Fig. 2. 4 shows the CTT’s Vth shift during alternating PRG and ERS events, using the same 

set of VG pulses but different VD magnitude. It shows that when higher VD is used (i.e., more 

interfacial traps generated by larger HCI), the Vth shift is larger, and the remaining Vth change (i.e., 

trapped charge) after ERS is more significant. Table 1 summarizes the three different methods to 

induce charge-trapping in the n-type MOSFETs.  

Therefore, to use CTTs as an analog re-writable non-volatile memory, the self-heating 

enhanced charge-trapping in the bulk-oxide traps is the best mechanism. To avoid the effect from 

the non-reversible (at room temperature) interfacial traps, the CTTs should first be initialized by a 

 

Fig. 2. 3 The amount of Vth shift for virgin CTT devices using PBTI (VD = VS = 0V, 5ms) and 

self-heating enhanced CTT PRG (VD = 1.2V, VS = 0V, 20ms).   

 

 

Fig. 2. 4 The Vth shift of CTTs during alternating PRG and ERS events under the same series 

of VG pulses but with different VD. 
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PRG/ERS cycle. Then the memory window of the CTT becomes more consistent for a multi-time 

programmable analog memory. 

 

2.2.3 Gate Leakage 

Gate leakage of the CTTs changes as the number of total traps and occupied traps changes 

due to the PRG and ERS operations. Fig. 2. 5 shows the device ID-VG, IG-VG characteristics at the 

virgin state, and after a series of PRG pulses. It shows that as the amount of the trapped charge 

increases, the gate leakage increases due to the increasing trap-assisted tunneling and barrier 

distortion [DiMaria 95]. This manifests as the measured gate leakage of the CTT increases after 

PRG and decreases after ERS. In addition, for the same amount of trapped charge (i.e., Vth), the 

gate leakage increases if the same Vth is obtained after more PRG/ERS events. This suggests that 

PBTI-like stress could generate traps in the bulk-oxide, which increases the gate leakage as the 

stress-induced leakage current (SILC) [Cartier 09]. Fig. 2. 6 shows the gate leakage (VGS = 0.8V, 

VDS = 0.05V) of a CTT as it experiences alternating PRG and ERS events.  

Table 1 Summary of the PBTI, self-enhanced CTT PRG and HCI induced charge trapping 

 VGS VDS Major traps 

used/generation  

Write time Retention  Re-

writability 

PBTI High Zero Bulk-oxide traps Moderate 

(~sub-ms) 

Poor Very good 

Self-

heating 

enhanced 

CTT PRG 

High Moderate Bulk-oxide traps 

and interfacial 

traps 

Short 

(~us) 

Good Good  

HCI Mode

rate 

High Interfacial traps Long  

(> ms) 

Very 

good 

N/A without 

annealing 
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Fig. 2. 5 The change of the ID-VG and IG-VG characteristics before and after CTT PRG and 

CTT ERS which is after PRG. The gate leakage increases after PRG, and decreases after ERS. 
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2.2.4 Closed-Loop Verification Requirement 

The device variation due to the manufacturing process generates a variation on the memory 

window of the CTTs. For example, the virgin devices have a variation of the Iinf, as shown in Fig. 

2. 7 for 5 CTT arrays in different dies. While the device variation can be reduced by increasing the 

size of the device to reduce the effect of dopant variation, it increases cost in area. In addition, for 

different devices, the change of Iinf due to the same PRG operations can have a spread distribution, 

as shown in Fig. 2. 8, similar for ERS, as shown in Fig. 2. 9. Therefore, to write the CTT to 

accurate analog states closed-loop in a read-write-read process (Fig. 2. 10) is required.  

 

Fig. 2. 6 Left: the gate leakage (VGS = 0.8V, VDS = 0.05V) of the CTT with respect its Vth at 

its various analog states during 4 PRG/ERS cycles from 385 PVRS events. Right: Although 

the amount of trapped charges can be controlled to the same amount by repeated PRG and ERS 

cycles, the gate leakage gradually increases due to the traps generated during PRG. For 

example, the data points between  0.022𝑉 < Δ𝑉𝑡ℎ < 0.023𝑉 at different PVRS iterations are 

extracted (upper right). Although they have similar Vth, the gate leakage gradually increases 

(lower right).   
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Fig. 2. 7 The distribution of the Iinf values of virgin devices in 5 different CTT arrays. All arrays 

are on different dies. 

 

 

Fig. 2. 8 Iinf evolution of 3 different CTTs (same design parameters) during the same series of 

PRG events shows large variation of the CTT PRG response from both the variation of the 

virgin state (left) and the change of Iinf in terms of step size (right). The positive step in the 

right figure is due to the device relaxation between the PRG event and the measurement after 

it, which will be discussed in a later section. 

 



18 

 

 

  

 

Fig. 2. 9 Iinf evolution of 3 different CTTs (same design parameters) during the same series of 

ERS events shows large variation of the CTT ERS response from both the variation of the 

virgin state (left) and the change of Iinf in terms of step size (right). The negative step in the 

right figure is due to the device relaxation between the ERS event and the measurement after 

it. 

 

 

Fig. 2. 10 the closed-loop read-write-read flow to write CTT Iinf to target value (i.e.,Itarget) using 

PRG to reduce current Iinf and ERS to increase current ERS. 
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2.3 Optimization of CTTs for Analog Memory 

2.3.1 Distribution of Analog States  

Iinf was the focus of characterization from the section. Since Iinf is a real physical quantity, 

it can be used for addition and multiplication (i.e., multiple additions) in analog computation. To 

use the CTT as an analog computing element, continuously distributed values of Iinf are preferred 

as stored analog information for direct linear computations. Fig. 2. 11 shows the change of Iinf 

when constant PRG and ERS pulses are applied successively to the CTT device. The change of 

the Iinf is larger in the first few PRG/ERS events than the later ones until the magnitude of VG is 

increased. This can be explained by the saturation of the existing traps in the high-k gate dielectric 

at the energy levels accessible by the electrons at a fixed VG. Although the stress can generate new 

traps [Cartier 09], it is not significant at a relatively low bias (e.g., VG = 1.5V, 2.1V) for short 

pulses (< 1ms). If the PRG pulse is increased for more trap generation, the write speed will be 

reduced.  

Therefore, to distribute Iinf more uniformly, the method of pulsed gate voltage ramp sweeps 

(PVRS) [Kerber 09] is used. For PRG, the magnitude of the gate bias gradually increases, and the 

drain voltage is held constant to induce self-heating by ID and irreversible HCI-induced charge 

trapping (when VDS is too high), as previously discussed in Section 2.2.2. Similarly, negative VGS 

pulses are used for fine-step ERS operations while VDS = 0V. This is to gradually access traps at 

higher energy levels for charge trapping/de-trapping to get a smoother increment/decrement of the 

trapped charge. PRG and ERS VGS pulses of a width of 0.5ms are used, ranging from 1.5V to 2.7V 

for PRG and -1.5V to -2.7V for ERS, with 50mV or 100mV increment/decrement as shown inFig. 

2. 11. VDS pulses have a constant magnitude of 1.2V for PRG and 0V for ERS, with a1.5ms pulse 

width, rising 5ms before and falling 5ms after the  VGS pulse. By using the PVRS method instead 
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Fig. 2. 11 (a) the waveform shapes and the magnitude used for the PVRS experiment. Each 

PRG event uses 1.5ms pulsed VDS = 1.2V, which starts before and ends after the 0.5ms pulsed 

VGS whose magnitude ramps from 1.5V to 2.7V, and with VDS = 0V, from -1.5V to -2.7V for 

ERS. (b) normalized Vth (i.e.,ΔVth) of a CTT cycled by using multiple PRG/ERS pulses with 

the constant VG magnitude in each cycles, changed for +/-1.5V (blue circles and crosses), +/-

2.1V (red circles and crosses), +/-2.7V (magenta circles and crosses) in one cycle, and the ΔVth 

of a CTT cycled by using pulsed voltage ramped sweep (PVRS) which has multiple PRG/ERS 

pulses with increasing VG magnitudes, from 1.5V to 2.7V in each cycles (black circles and 

crosses). (c) the Iinf from the same experiment in the bottom left figure, showing a much finer 

Iinf steps using PVRS method.  
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of constant pulse trains, Iinf states with fine granularity can be achieved and can be finer using finer 

steps of the VGS. Fig. 2. 12 shows the achieved Iinf states for random targets in the device memory 

window by using PVRS PRG with 20mV and 40mV increment of VG per step from 1.5V to 2.7V. 

Because the stop condition is to be equal or less than the target, all achieved values are below the 

target. The mean error is −4.31𝑛𝐴 for 20mV steps and −8.64𝑛𝐴 for 40mV steps. Fig. 2. 13 shows 

the histogram of the step sizes in both experiments, showing that smaller steps in VG produce 

smaller steps in Iinf. However, although the steps are fixed for VG, the step size can still vary 

significantly for Iinf, providing another reason for using the closed-loop verification, as discussed 

in Section 2.2.4.  

 

 

Fig. 2. 12 the target Iinf values (generated randomly in the memory window) with respect to the 

achieved Iinf values by using PVRS PRG, with VD = 1.2V, VG = 1.5V to 2.7V and t = 0.5ms 

for each PRG pulse. PVRS stops only when the measured Iinf (right after last PRG event) is 

lower than the target (i.e.,all achieved points are below the reference line of y = x). Two cases 

of 20mV and 40mV increment of VG per step are shown. The mean error is -4.31nA for 20mV 

step and is -8.64nA for 40mV across 20 CTT devices. 
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2.3.2 Analog Data Retention 

Retention is a significant challenge for the CTTs. Because the trapped charges can be 

emitted spontaneously from the oxide, threshold voltage, and the read current of a CTT with 

trapped charge can change significantly. Since the physical quantity of interest, Iinf, is at the 

subthreshold, it is very sensitive to the loss of trapped charge, roughly in an exponential 

relationship   

𝐼𝑖𝑛𝑓 ∝ exp (
𝑞𝑉𝐺,𝑖𝑛𝑓 − 𝑞𝑉𝑡ℎ(𝑄𝑡𝑟𝑎𝑝𝑝𝑒𝑑)

𝑘𝑏𝑇
) 

where 𝑉𝐺,𝑖𝑛𝑓 = 0.2𝑉  is the gate voltage for Iinf measurement, 𝑉𝑡ℎ(𝑄𝑡𝑟𝑎𝑝𝑝𝑒𝑑)  is the 

threshold voltage as a function of the trapped charge 𝑄𝑡𝑟𝑎𝑝𝑝𝑒𝑑, 𝑘𝑏 is the Boltzmann constant, and 

 

Fig. 2. 13 the step of Iinf achieved by the PVRS sequences with 20mV and 40mV VG steps in 

the experiment shown in Fig. 2. 12. 
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𝑇 is the temperature. The amount of charge loss, both for the bulk-oxide traps and the interfacial 

traps, as a function of time 𝑡, can be modeled as  

𝑉𝑡ℎ(𝑡) ∝ exp (−
𝑡/𝜏𝑡𝑟𝑎𝑝

𝑇
) 

where 𝜏𝑡𝑟𝑎𝑝 is the time constant for the emission of trapped charge. 𝜏 can be different for 

traps of different types and at different energy levels. The charge loss is accelerated by elevated 

temperature. Fig. 2. 14 shows the percentage of trapped charge loss in programmed CTT devices 

at room temperature and at elevated temperature (85C) for 1, 10, and 100 hours. This shows that 

CTTs are most suitable for low-temperature environments.  

To improve charge retention, Fig. 2. 15 shows that the amount of charge loss at a constant 

temperature (e.g., room temperature) can be empirically predicted and compensated by over-PRG 

of the device, where the magnitude of the relaxation (i.e., compensation) Δ𝐼𝑖𝑛𝑓 is a function of its 

final Iinf state [Gu 19]. In addition, resistive heating during read operations should be minimized 

to improve the retention of the stored data.  

To apply CTTs in high-performance systems, the target resolution of the CTTs needs to be 

reduced according to the retention requirement. The amount of required resolution reduction can 

be estimated by modeling the relaxation over time. Fig. 2. 16 shows the relaxation of the CTT 

devices at both room temperature and elevated temperature (85C). The discrepancy between the 

linearly fit model for the room-temperature and baked environment is the larger intercept at the 

baked environment due to the systematic acceleration of the relaxation. Therefore, the relaxation 

should be modeled not only with respect to the analog state (Iinf) of the device, but also to the time 
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for which is retention is measured. The new model is modified based on the previous model [Gu 

18], so that: 

Δ𝐼𝑖𝑛𝑓 = −0.075 ∗ 𝐼𝑖𝑛𝑓,𝑅𝐴 + 𝐵(𝑡, 𝑇) 

 

 

Fig. 2. 14 Box and whisker plot of 40 devices programmed to random Vth values and the 

retention of the trapped charge over time at room temperature (top) and at 85 degrees Celsius 

(bottom). The de-trapping of the trapped charge is accelerated greatly at the elevated 

temperature. 

 



25 

 

where 𝐼𝑖𝑛𝑓,𝑅𝐴 is measured right after the last PRG event of the CTT and Δ𝐼𝑖𝑛𝑓 is the relaxation 

measured with respect to 𝐼𝑖𝑛𝑓,𝑅𝐴. 𝐵(𝑡, 𝑇) represents the average magnitude of the relaxation as a 

function of time (t) and temperature (T). In the previous model [Gu 18], 𝐵(𝑡, 𝑇) = 114.5𝑛𝐴 is 

constant. The linear fit of the function 𝐵(𝑡, 𝑇) with respect to log(t) is shown in Fig. 2. 17 which 

is a stronger function of time (i.e., larger 
𝜕𝐵

𝜕𝑡
) when temperature is high. In this semilog plot, slope 

and intercept of the linear model at the room temperature is 𝑘25𝐶 = 2.19 (nA/log10(hours)) and 

 

Fig. 2. 15 (a) Relaxation of the Iinf current after PRG is measured and can be modelled using 

linear regression as a function of the Iinf  measured right after the last PRG event (adapted from 

[Gu 19]). (b) The relaxation model can be used to offset the PRG targets so it over-PRG the 

device to compensate for relaxation. (c) The device measured after 200 hours of relaxation (at 

room temperature) approaches to the target line (measurement = target). While the model in 

(a) is extracted based on 1 hour relaxation, it can be applied for compensating longer relaxation 

time. 
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𝑏25𝐶 = 47 (nA). At the baked temperature (85 degrees Celsius), 𝑘85𝐶 = 10.4 (nA/log10(hours)) 

and 𝑏25𝐶 = 157 (nA).  

 

 

 

 

Fig. 2. 16 Amount of Iinf change (Delta Iinf) of the CTT devices at room temperature and at 

elevated temperature (85C). The room temperature retention is well predicted by the previous 

model [Gu 18]. The major difference between the linear models is their intercept values, which 

need to be adjusted for the systematic acceleration of charge loss due to baking. 

 

 

Fig. 2. 17 Linear fit of the intercept of the delta Iinf model, 𝐵(𝑡, 𝑇)as a function of time (log) at 

different temperature. 
𝜕𝐵

𝜕𝑡
 is larger at higher temperatures.  
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2.3.3 In-Array Write/Erase Parameters 

Based on the previous observation in Section 2.2.2, the accessibility of the bulk-oxide traps 

depends on the magnitude of VG. In contrast, the accessibility of the interfacial traps depends on 

both VG and VD. Since the bulk-oxide traps are the preferred traps for reversible trapping and de-

trapping of the charge, it is ideal to have a low VD (that is still sufficient for self-heating) and high 

VG (without breaking the gate dielectric) for a single CTT device to work as an

analog memory. However, a high VGD and VGS can become problematic when PRG operation is 

done in an array. Suppose the array structure is designed, as shown in Fig. 2. 18, where gates of 

the CTTs in a row are shorted, and the drain/source terminal of the CTTs in a column are shorted, 

respectively. When device 𝐷11 is selected for PRG, the devices sharing the gate or source/drain 

are half-selected. In addition, the voltages to apply for all terminals should not only provide good 

programmability to the selected device, but also ensure the half-selected and unselected devices 

are not affected by this PRG operation.  

 

Fig. 2. 18 Schematic of a CTT array. When one device (e.g., 𝐷11) is selected for some operation 

(e.g., PRG), the devices in the same row (𝐷12) and column (𝐷21) are half-selected. 
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For the target device (i.e.,𝐷11), assign VS1 = 0V as a global reference, high VG1 and high 

VD1 is required for the PRG operation. As a result, VDS of the column-selected device (i.e.,𝐷21) 

will also be high. To avoid HCI-type charge trapping in 𝐷21, the gate of the other row must be low 

(i.e.,𝑉𝐺2 < 𝑉𝑡ℎ2), but not too low to induce ERS behavior  (i.e.,𝑉𝐺2 − 𝑉𝐷2 > −1.5𝑉). Based on 

these restrictions, 𝑉𝐺2 = 0𝑉  is an option for the unselected rows’ gates. For the row-selected 

devices (i.e.,𝐷12), low device current is required to avoid PRG behavior, and therefore 𝑉𝑆2 = 𝑉𝐷2. 

Since 𝑉𝐺1 is high and 𝑉𝐺2 = 0𝑉. 𝑉𝑆2 should be about the middle of these two levels to avoid both 

PBTI at the row-selected devices and ERS behavior at the unselected devices (i.e.,𝐷22).  

Based on these restrictions, we select 1.5𝑉 < 𝑉𝐺1 < 2.7𝑉 during the PVRS-PRG scheme, 

𝑉𝐷1 = 1.2𝑉, 𝑉𝐺2 = 0𝑉, 𝑉𝑆2 = 𝑉𝐷2 = 1.2𝑉. The drain voltages are always first raised before the 

𝑉𝐺1 rises to avoid PBTI on the row-selected devices during the transient time. A similar analysis 

can be done for PVRS-ERS, and we select 0𝑉 < 𝑉𝐺1 < 1.2𝑉 , 𝑉𝐷1 = 𝑉𝑆1 = 2.7𝑉, 𝑉𝐺2 =

1.5𝑉, 𝑉𝑆2 = 𝑉𝐷2 = 1.5𝑉. For in-array ERS operations, the gate voltages are always first raised 

before 𝑉𝐷1, 𝑉𝑆1 rises to avoid NBTI on the column-selected devices. 

To verify the PVRS-PRG method in the array. An experiment is done in the CTT array 

where every two columns’ drain lines are shorted. Over-PRG is also used to compensate for 

relaxation. Fig. 2. 19 shows the in-array CTT devices fine-tuned to random targets using PVRS-

PRG. For the half-selected devices, including row-selected and column-selected, the error of the 

device before and after their twin/neighbor devices are programmed, is shown in Fig. 2. 20. 
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Fig. 2. 19 The target and the device Iinf measured after 2, 20 and 200 hours relaxation at room 

temperature for the selected devices (top). The error can be modeled as a Gaussian distribution 

centered around 0nA for the selected devices (bottom). 
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Fig. 2. 20 The target and the device Iinf measured after 2, 20 and 200 hours relaxation at room 

temperature for the half-selected devices (top). The error can be modeled as a Gaussian 

distribution centered around 0nA for the selected devices (bottom). 
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2.3.4 CTT Device and Array Reset 

A critical advantage of the CTTs’ charge-trapping through bulk-oxide traps is to enable 

room temperature ERS of the device to reset. However, since the room-temperature ERS cannot 

de-trap or anneal interfacial traps [Ma 19], the memory window of the CTT will be reduced for 

CTTs subject to reset. Fig. 2. 21 shows the evolution of Iinf during four repeated cycles using the 

PVRS-PRG (VG from 1.5V to 2.7V) and PVRS-ERS  (VG from -1.5V to -2.7V) methods (Fig. 2. 

11) at different PRG drain bias points (0.8V, 1V, 1.2V, 1.4V). After the first PRG/ERS cycle, the 

usable memory reduces (assuming the conditions for PVRS-PRG/ERS do not change) depending 

on the PRG VD (i.e., interfacial traps). 

 

 

Fig. 2. 21 the evolution of Iinf of CTTs under 4 cycles of PVRS-PRG/ERS, each cycle consists 

of 48 PVRS-PRG followed by 48 PVRS-ERS. Four different VD values used during PVRS-

PRG are compared. Because the proposed ERS method is at room temperature and cannot de-

trap interfacial traps, the memory window degrades. Higher VD during PVRS-PRG traps more 

charge to the interfacial traps and therefore suffer more from memory window degradation. 

The one-time usable memory window, re-usable memory window and window degradation are 

roughly marked for the case of PRG VD = 0.8V. 
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To remove the contribution of the interfacial traps from the memory window, an 

initialization cycle can be deployed. Here a PRG/ERS cycle is applied to the CTT before the actual 

writing to its target. The initialization will ensure that the remaining memory window is mainly 

from bulk-oxide traps and therefore, reusable. Fig. 2. 22 shows the distribution of an array of CTTs’ 

Iinf at the virgin state, and after two initialization cycles. The memory window of the devices in the 

array is roughly the minimum Iinf of that array since Iinf decreases exponentially with increasing 

Vth and can be very close to zero. 

 

The CTTs can be programmed using the same PVRS-PRG method proposed in the last 

section. Fig. 2. 23 shows the target and the reused device (after reset) Iinf measured after 1, 10, and 

100 hours at room temperature. The error of the PRG result can also be modeled as a Gaussian 

distribution. Table 2 shows the mean and standard deviation of the in-array programming error of 

CTTs.  

 

Fig. 2. 22 Left: distribution of the Iinf of an array of CTTs at virgin state, after the first and 

second initialization cycle. Right: the minimum value of the Iinf in the array, which is roughly 

the size of the memory window. 
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Fig. 2. 23 The target and the device Iinf measured after 1, 10 and 100 hours at 300K for reused 

devices (left). The errors in all cases can also be modeled as a Gaussian distribution for the 

reused devices (right). 

 
Table 2 Summary of the statistics of the errors from CTT programming under different 

conditions (program target is randomly selected in the target range) 

 Error mean (𝜇𝑒𝑟𝑟𝑜𝑟) Error standard 

deviation (𝜎𝑒𝑟𝑟𝑜𝑟) 

Target 

range 

𝜇𝑒𝑟𝑟𝑜𝑟

𝑟𝑎𝑛𝑔𝑒
 

𝜎𝑒𝑟𝑟𝑜𝑟

𝑟𝑎𝑛𝑔𝑒
 

One-time 2hr 3.15nA 48.2nA 1200nA 0.26% 4.02% 

One-time 20hr 11.4nA 49.7nA 1200nA 0.95% 4.14% 

One-time 

200hr 

22.7nA 51.5nA 1200nA 1.89% 4.29% 

Reuse 1hr -24.4nA 39.0nA 500nA -4.88% 7.80% 

Reuse 10hr -18.2nA 35.4nA 500nA -3.64% 7.08% 

Reuse 100hr -12.2nA 38.6nA 500nA -2.44% 7.72% 
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2.4 Summary 

In this chapter, we have demonstrated that the charge-trapping phenomenon in the high-k 

dielectric of standard CMOS logic devices can be leveraged for analog data storage with good data 

retention at room temperature. The optimal application scenario of CTTs as analog memory is for 

one-time use in low-power systems. For multi-time programmability, the memory window will be 

reduced while the absolute programming accuracy is similar, and therefore reducing the resolution 

of the memory. The reduction of memory window can be alleviated by providing a heated 

environment during ERS to de-trap the interfacial traps but at the cost of the extra supporting 

circuitries. 

Comparing with the other emerging analog devices CTTs have several advantages 

1. CTT is CMOS-compatible at advanced nodes (demonstrated up to 7nm [Khan 19]). Unlike 

most of the other analog devices, no extra materials or processes are introduced to fabricate 

the CTT. As a result, variations and reliability of CTTs are relatively well studied and 

controlled, making it a competitive candidate as analog memory, which can be easily 

integrated with other existing VLSI designs. 

2. In contrast to some two-terminal analog devices such as phase-change memory (PCM) 

resistive RAM (RRAM) and memristors, CTT is, by nature, a three-terminal device with a  

non-linear selector (i.e., gate) to avoid leakage as the array scales up in size. For two-

terminal devices organized in a crossbar architecture, the selector needs to be added (Fig. 

2. 24) [Zhou 14]. 

3. The mature CMOS technology also ensures a very high yield compared with the emerging 

analog devices whose yield can still be challenging. In addition, the proposed methods to 

use CTT, including Iinf reading, PRG and ERS, are very repeatable and safe on top of the 
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well-controlled device variation. In contrast, “dead” cells can become a problem for 

RRAM due to the device variation and the repeating operations [Zheng 18]. 

4. The CTTs can be arranged densely in an array because the footprint of the CTTs is very 

small due to the advanced node. The charge-trapping mechanism does not have a strict 

requirement on the channel length and width of the CTT device. 

5. Because the CTTs operate in the subthreshold region, and the relatively small size, the on-

resistance of the CTTs is high compared with other analog devices, making it energy 

efficient during read operations and suitable for applications such as neural network 

inference. 

To benchmark the CTTs with other analog memories for neural network inference, CTT 

device parameters are extracted from the experiment for hardware simulation using the 

NeuroSim simulator [Chen 18]. The CTTs are simulated with peripheral circuits for an 8-layer 

VGG-like convolutional neural network with 8-bit weight and 8-bit activation. The benchmark 

result is shown inFig. 2. 25. It shows that the analog inference engine based on CTTs is faster 

and more energy-efficient than the compared ones based on phase-change memory [Burr 15], 

 

Fig. 2. 24 Cross-bar array structure of the two-terminal analog memory (e.g., RRAM). Green 

dashed arrow shows the current through the target cell. Red arrow shows the leakage current. 

The half-selected devices requires a non-linear selector (right) to reduce the leakage (Adapted 

from [Zhou 14]). 
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resistive RAM (RRAM) [Jain 19] and spin-transfer torque magnetoresistive RAM (STT-

MRAM) [Kim 11].   

 

 

  

 

Fig. 2. 25 Benchmarking CTT for neural networks against other analog devices using 

NeuroSim simulator [Courtesy of Yandong Luo and Prof. Shimeng Yu]. 
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3. CMOS-Compatible Analog Neuromorphic 

Computing Engine 

3.1 Introduction 

Neuromorphic electronic systems include a wide range of applications at different levels. 

Silicon-based electronic systems can be used to simulate large-scale neural models in real-time 

[Silver 07, Schemmel 10, Indiveri 11, Benjamin 14], or to implement a specific function based on 

biological structure such as vision [Koch 96] and echolocation [Wen 18]. For machine learning, 

various neuromorphic systems are applied for inference of supervised learning, including spiking 

neural networks [Merolla 14], multi-layer perceptron [Guo 17], and convolutional neural networks 

[Shafiee 16]. Training is also demonstrated in neuromorphic hardware for supervised learning 

[Davies 18] and unsupervised learning [Cai 19]. The CTT devices discussed in the last chapter 

have also been demonstrated for unsupervised machine learning applications [Gu 18(2)].  

In this chapter, we discuss the use of CTTs in a CMOS-compatible analog neuromorphic 

computing, with a focus on the inference engines for multi-layer perceptron and convolutional 

neural networks. Natural laws, such as the charge conservation, is used to perform analog charge-

based computing for the vector-matrix multiplication (VMM), the major computing workload in 

the networks. To maximize the energy-efficiency, the computation is performed in the memory 

(i.e., CTT array) to eliminate the requirement for off-chip memory access. In addition, minimum 

data conversion from and to the digital domain is used since it does not contribute to real 

computations.  
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3.2 Compute VMM in CTT array 

Analog memory devices such as CTTs can be arranged into an array to build an analog 

vector-matrix multiplication (VMM) engine for applications such as neural networks [Gu 18].  A 

basic VMM is defined as 𝒚 = 𝒙𝑾 where 𝒙 is an input vector of 1 * M, 𝑾 is a weight matrix of M 

* N. A schematic of the VMM engine based on the CTTs is shown in Fig. 3. 1. In this architecture, 

CTTs are arranged in an M * N matrix with M rows and N columns. Each CTT in the array 

represents an element in the matrix using its conductance Gmn  at a given bias condition 

(i.e.,Iinf/VDS from the last chapter, where VDS = 50mV and VGS = 200mV). The gate terminals 

of each row of the array are connected by a word-line (WL). The source/drain terminals of each 

column of the array are connected by a source-line (SL) and bit-line (BL), respectively. The gates 

of the CTTs are used as the terminal to receive the input “on” of VG = 200mV. At the meantime, 

the BLs are connected to VD = 50mV, and SLs are connected to VS = 0V, so that the CTT device 

which receives an “on” input of VG = 200mV will draw the current of the pre-programmed Iinf 

value from BL to SL. When the input is “off”, the WL can be reduced below ground level (e.g., 

VG = -300mV) to reduce the leakage due to VDS > 0.  

Following this convention, each WL represents an element of the input vector. As the CTTs 

operate in the subthreshold region, the relationship between the VGS and the IDS is exponential, 

making it difficult to use the magnitude of VG at each WL for linear calculation. Therefore, the 

input values are encoded as pulse-width modulated (PWM) signals 𝑉𝑚(𝑡) = 𝑉0[𝑢(𝑡) − 𝑢(𝑡 −

𝑥𝑚𝛥𝑡)] at the WLs (e.g., the mth row), where 𝑢(𝑡) is the step function, 𝑉0 is the “on” voltage 

(200mV), 𝑥𝑚 is the mth entry of the input vector and Δ𝑡 is the unit pulse width when 𝑥𝑚 = 1. For 
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Fig. 3. 1 Top: array of CTTs can be used for vector-matrix multiplication (VMM). Current (e.g., 

Iinf) of CTT devices can be programmed to represent the values in the matrix. Input vector can 

be represented by pulse-width modulated (PWM) signal sent to the word-line (WL) of the array, 

which connects the gates of the CTTs in a row. Multiplication is thus computed by integrating 

Iinf for the time period specified by the PWM signal. Summation is computed by collecting the 

drain current of all the devices in a bit-line which connects the sources and drains of the CTTs 

in a column, respectively. Bottom: the VMM engine can be directly used for VMM with a bias 

term by adding an extra input and an extra row of devices in the array.  
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the time when the input is “high” (200mV), the mth device in the nth column will draw the amount 

of charge 𝑄𝑚𝑛 = 𝐼𝑖𝑛𝑓,𝑚𝑛𝑥𝑚Δ𝑡 from BL to SL which is also the multiplication result between the 

input value 𝑥𝑚 and the stored matrix value 𝐼𝑖𝑛𝑓,𝑚𝑛. By charge conservation, the total charge moved 

to the SL of each column is the dot-product of the input and the CTTs at that column:  

𝑄𝑛 = (∑ 𝐼𝑖𝑛𝑓,𝑚𝑛𝑥𝑚

𝑚

) Δ𝑡 + 𝑄𝑙𝑒𝑎𝑘𝑎𝑔𝑒 

To obtain accurate dot-product, the charge collection time 𝑇𝑖𝑛𝑡 must be longer than the 

longest PWM input signal presented in all WLs, and some charge from leakage 𝑄𝑙𝑒𝑎𝑘𝑎𝑔𝑒 will be 

included when some of the WLs are “off” during the charge collection by 

𝑄𝑙𝑒𝑎𝑘𝑎𝑔𝑒(𝑇𝑖𝑛𝑡) = ∑ 𝐼𝑙𝑒𝑎𝑘𝑎𝑔𝑒,𝑚𝑛(𝑇𝑖𝑛𝑡 − 𝑥𝑚Δ𝑡)

𝑚

 

As each column generates the output of a dot-product, the entire array will generate an 

output vector that represents the result of the vector-matrix multiplication. In addition, bias terms 

𝒃 in 𝒚 = 𝒙𝑾 + 𝒃 can also be calculated in the VMM engine by programming an extra row of the 

CTTs to the bias values and adding an extra constant in the input (Fig. 3. 1). A similar structure 

can also be built from any two-terminal analog devices, as previously reported [Shafiee 16, Cai 

19]. One disadvantage of the PWM scheme is that it cannot directly support negative values, but 

negative inputs to the VMM engines are not required in many neural network applications.  

While negative inputs are not required in the neural networks, negative values in the 

matrices are still required. To represent negative entries in the matrices, the CTT memory cells use 

a twin-CTT structure to enable bipolar conductance, where the current from the true device (Iinf
+) 

and complement device (Iinf 
-) of the cell is processed as a differential current  

𝐼𝑖𝑛𝑓  =  𝐼𝑖𝑛𝑓
+ − 𝐼𝑖𝑛𝑓

−   
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To reduce the footprint of the cell, either the sources or the drains of both devices can be 

shorted [Gu 18]. Fig. 3. 2 shows the closed-loop read-write-read process to adjust the twin-CTT 

cell values using only PRG operation. Virgin twin-CTT cell weights are first measured. Then if 

the target weight is below the virgin weight, the “true” device is chosen to be programmed (Iinf
+ is 

reduced) to the desired target with over-PRG compensation. Otherwise, the “complement” device 

is chosen (Iinf
- is reduced). The programming in the array uses the optimized PRG conditions from 

the last chapter. The twin-CTT cell structure does not affect the program accuracy of each of the 

devices. Therefore, the programming accuracy of the twin-CTT cell depends on whether both 

devices need to be programmed. If both devices are programmed, the standard deviation of the 

cell’s error becomes √2𝜎0, where 𝜎0 is the standard deviation of the error of single CTT. In the 

flow illustrated by Fig. 3. 2, only one device is programmed for one-time use, and therefore the 

standard deviation of the cell’s error is 𝜎0  for one-time use. Fig. 3. 3 shows the accurate 

programming of the twin-CTT cells, applying the PVRS-PRG and the over-PRG compensation 

models proposed in the last chapter. The mean (𝜇) and the standard deviation (𝜎) of the error for 

different conditions are summarized in Table 3.  

 

Fig. 3. 2 Close-loop read-write-verify steps for array fine-tuning. Based on the difference 

between the initial weight of the twin-CTT cell and the target weight value, either the “true” 

(+) device or the “complement” (-) device is chosen for PRG. The device is read after each 

programming step to verify its analog state.  
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The output vector from the VMM, stored as a vector of analog charge, can be discharged 

in the form of PWM signals by a constant circuit source. The pulse width from discharging will 

 

 

Fig. 3. 3 Top: The target (randomly generated in the [-600nA,600nA] window) and the twin-

CTT cell Iinf measured after 2, 20 and 200 hours at 300K. Bottom: the errors in all cases can 

also be modeled as a Gaussian distribution centered around 0nA for the Twin-CTT cell. 

  Table 3 Twin-CTT cell programming error, mean (𝜇) and standard deviation (𝜎)  statistics 

 𝜇𝑒𝑟𝑟𝑜𝑟 𝜎𝑒𝑟𝑟𝑜𝑟 Target range 𝜇𝑒𝑟𝑟𝑜𝑟/range 𝜎𝑒𝑟𝑟𝑜𝑟/range 

25C 2hr -3.29nA 48.5nA 1200nA -0.27% 4.04% 

25C 20hr -3.61nA 51.1nA 1200nA -0.30% 4.26% 

25C 200hr -3.07nA 56.8nA 1200nA -0.26% 4.73% 
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be linearly proportional to the stored value and therefore, can be directly used as the input of 

another array with a similar structure. This makes it possible to cascade the CTT arrays for neural 

networks with multiple layers. However, the storage of an analog charge value, normally on a 

leaky capacitor, will have very weak data retention. Refreshing this analog value can demand 

costly hardware when a high-resolution sensing circuit is required. Therefore, the computed results, 

in the form of analog values, should either be digitized for good data retention or transmitted 

quickly, by the next array or to the output channels.  

The fabricated CTT array is also verified for the vector-matrix multiplication operations. 

Random DC input vectors (200mV for “on”, -300mV for “off”) are fed to the WLs, and the current 

at each BL is measured. This captures different moments of the system when the inputs are random 

PWM signals, and helps to circumvent the distortion of AC signals by the large capacitance of the 

off-chip measurement equipment. The experiment shows that the mean and standard deviation of 

the VMM error (ΣI)measured − (ΣI)target  is less than 0.5% and 4% of the possible range, 

respectively, after up to 200 hours of room temperature relaxation (Fig. 3. 4). The additional error 

from PWM inputs is the error of transition between the “on” and “off” of the WL, whose effect 

 

Fig. 3. 4 Vector-matrix multiplication error in the CTT array: 32 random input binary vectors 

(10x1) are multiplied with the 5 fine-tuned twin-CTT cell arrays (4x10 each) with Von = 200mV 

and Voff = -300mV.  
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depends on the drive strength of the PWM signal generator at the WL and the capacitive load of 

the WLs. Its impact on a neural network application is evaluated in the next chapter.  

3.3 CTT-Based Analog Inference Engine for Perceptron 
Based on the VMM engine introduced in the last section, the analog inference engine can 

be readily built for a perceptron A perceptron is a type of neural network featuring full connectivity 

between layers of neurons (Fig. 3. 5). Multi-layer perceptrons (MLP) are widely used by the 

industry nowadays for machine learning tasks [Jouppi 17]. Due to the CMOS-compatibility of the 

CTTs, the peripheral circuits for the analog inference engine can also be designed in the same 

CMOS technology that fabricated the CTTs.  

A block diagram for the MLP architecture with some key peripheral circuits is shown in 

Fig. 3. 6. The network is trained at another training engine and then programmed into the CTT. 

During inference operation, CTTs operate at subthreshold bias points. For a complete VMM 

engine, the differential current/charge integrator at the end of the BLs can be implemented by op-

amp based CMOS circuits [Razavi 02]. If the input is conventional digital data, it needs to be 

converted to PWM inputs to the first array. Similarly, the output of the last array can be converted 

to digital signals, but this is not required if the output is fed into another array.  

Other than the VMM operations, the non-linear activation function is also required by the 

perceptron. One of the most used activation functions is the rectifying linear unit (ReLU), which 

suppresses negative inputs to zero and passes the non-zero inputs (i.e.,𝑅𝑒𝐿𝑈(𝑥) = max (0, 𝑥)). 

The ReLU function can be implemented by a comparator circuit (Fig. 3. 7) [Gu 18] which produces 

a PWM signal as the ReLU’s output while VMM result was discharged by the current source. 

Other activation functions can also be implemented using CMOS circuits [Huijsing 13]. The output 

of the comparator can be fed to the WL of another CTT array to build a multi-layer perceptron 

(MLP).  
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Fig. 3. 5 Mathematical formation of the multi-layer perceptron (MLP) from the biological 

neurons. (a) Neurons connect to each other through synapses. (b) The receiving neuron 

computes a dot-product between the input (output of previous neuron) and the “synaptic 

weights” assigned the associated synapses, followed by a non-linear activation function. 

Neurons can be grouped into layers. (c) Single-layer perceptron and MLP have 2 or more layers 

of neurons, respectively. They feature fully connectivity that each neuron is connected to all 

neurons in the last layer. 
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Fig. 3. 6 The system block diagram of a CMOS analog neural network inference engine. It 

shows the interface between the system and the digital input, and the interface between two 

network layers. Digital-to-time converters (DTCs) are used to convert the digital input to a 

PWM signal for the array for computation. The output of the current integrator at the end of 

the CTT array is further processed by a comparator-based activation circuit and discharged by 

a constant current source to generate another PWM signal. The pulse-width of the output PWM 

signal is proportional to multiplication result, and therefore can be applied as the input to the 

next layer. The neural network is trained using training data at other training platforms, before 

deployed into the inference engine.  
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The advantage of the CTT-based analog inference engine for MLP is the low latency and 

high throughput of the system due to the in-memory computing architecture. For all values used 

and generated in the computations, only the input of the MLP and the output of the MLP need to 

be communicated to other blocks of the system (e.g., data I/O). Therefore, the time to wait to fetch 

data from memory, as required for most digital systems, is significantly reduced. For CTTs, the 

single-device response time can be in the order of 10ps [Carter 16], but the read-speed at the array-

level is limited by the capacitive load of the device and the passive elements associated with the 

WLs, which can be in the order of 10-9 second/operation depending on the physical design.  

The latency of each layer can be divided into two parts, (1) duration of input: when the 

array is taking the PWM inputs and simultaneously integrating the dot-product as a charge, and (2) 

duration of output: when the charge is discharged as either another layer’s input or the final result 

of the MLP. Since the PWM inputs are taken directly from the last layer’s output except for the 

first layer, the system’s pipeline is naturally balanced when the duration of the output of each layer 

is the same. Fig. 3. 8 shows the pipeline of the proposed MLP inference engine during inference. 

 

Fig. 3. 7 Comparator based circuit to implement rectifying linear unit (ReLU) activation 

function. The comparator compares the reference voltage Vref and the voltage stored at the 

array’s output capacitor (output of a dot-product) to produce a voltage output (otherwise 0V) 

when the reference voltage is lower. As a result, the output is rectified by Vref and the output is 

also a PWM signal proportional to the value of Cint(Vout-Vref)/Idischarge only if Vout > Vref. 
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The output duration must be at least as long as the longest output of the layer, which is determined 

by the ratio between the maximum charge held at the output capacitor and the discharging current.  

However, write-speed of the CTTs is less than 10-2 second/operation due to the closed-loop 

read-write-read process, based on our experiment that the average number of iterations for random 

targets is about 20 (each is about 0.5ms). Therefore, the required number of CTT memory cells in 

the system is the number of weights the network has (assume one cell per weight), and all weights 

are required to be programmed to the on-chip CTT memory without leveraging the memory 

hierarchy as done in typical digital systems. 

 

 

Fig. 3. 8 The pipelining of the MLP inference engine during inference. For each layer (L1, L2, 

L3), the time used for computation is divided into input duration (𝑡𝑖𝑛) when it is taking the 

PWM inputs and integrating the current, and output duration (𝑡𝑜𝑢𝑡) when the integrated charge 

is being discharged. 𝑡1,𝑖𝑛,𝐴 represents the input duration of L1 for input A. Since the output 

duration of layer L-1 is always the same as the input duration of the layer L, when output 

duration is the same for all layers, the system pipeline can be balanced well.  
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3.4 CTT-Based Analog Inference Engine for Convolutional 

Neural Networks 

Another frequently used type of neural network is the convolutional neural network (CNN) 

[LeCun 89]. The CNNs usually have two types of layers (the ensemble of the synaptic weights and 

the interaction between layers): the convolutional (CONV) layer and the fully-connected (FC) 

layer. The FC layers are the same as the MLP layers and often located at the end of the CNNs after 

all the CONV layers. The CONV layers are very similar to the FC layers with two modifications. 

First, in the CONV layer, each neuron takes a part of the values from the previous layer as its input, 

instead of all values as in FC layers. Second, the neurons’ synaptic weights are repeatedly used 

across the input by convolution. Fig. 3. 9 (adapted from [LeCun 15]) shows how the CONV layers, 

 

Fig. 3. 9 In the CNN, CONV layers compute a convolution between the weights and the input 

whose output is processed by activation functions such as the ReLU. Pooling is another feature 

including maximum pooling and average pooling. Fully-connected (FC) layers are normally 

at the end of the CNN, after all the CONV layers, to calculate for the final decision. FC layers 

operate the same way as MLP layers.  
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with some auxiliary functions, are typically organized in a CNN for applications (e.g., image 

classification).  

In addition to the CONV layers, pooling layers are also added to the CNN. Pooling is more 

common in the CNNs than in the MLPs with two major types: average pooling and maximum 

pooling. Both can be implemented with minor modifications to the MLP hardware. Average 

pooling calculates the average of the inputs and can be treated as a dot-product where the weight 

vector has the value of 
1

𝑛
, where n is the length of the input vector. Maximum pooling calculates 

the maximum value of the inputs, which can be implemented by a logic OR gate. If the outputs of 

a layer are discharged at the same time, then the output of the OR gate is the longest pulse (i.e., 

the maximum input). 

The adaption of the CONV layers makes it possible to train CNNs that are very deep and 

perform well in advanced machine learning challenges such as the ImageNet challenge [Deng 09]. 

CNNs become more powerful by scaling up in the number of layers, weights, and computations. 

Fig. 3. 10 shows the number of weights and calculations required by different CNNs with respect 

to the network accuracy for the ImageNet challenge (adapted from [Canziani 16]).  

As a result, one significant difference between the MLP and CNN is the data flow. In the 

MLP architecture discussed in the last section, each layer in the MLP will produce all values 

required for the next layer simultaneously in one computing cycle of a layer, including the time to 

discharge for the PWM outputs. For the CONV layers in the CNNs, the convolution is computed 

using the same weight matrices multiple times, which is not compatible with the MLP architecture. 

Since CONV layers and FC layers do not have a fundamental difference in the computations (both 
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are mainly vector-matrix multiplications), there are ways to convert CONV layers to FC layers 

and vice versa for the trade-off between memory capacity and memory bandwidth [Zhang 18].  

For the proposed CTT analog memory, the memory bandwidth for reading is high, but the 

memory bandwidth for writing is low due to the low device programming speed (see Section 2.2). 

As a result, the CTT-based analog computing for vector-matrix multiplication requires the weights 

to be pre-programmed. To address this issue, two options for CNN computation using the CTT-

base architecture are discussed: (1) store digitized outputs for convolution, and (2) unroll CONV 

layers to equivalent MLP layer structures to use the proposed MLP infrastructure.  

 

  

 

Fig. 3. 10 The accuracy and the scale of the state-of-the-art convolutional neural networks for 

the ImageNet image recognition challenge. The size of the dot represents the number of weights 

of that network. In general, higher number of weights and operations are required to achieve 

higher accuracy for the challenge.  
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3.4.1 Digitized Storage for Convolution 

Since the convolution uses an input multiple times, any computed output from layer L-1 

should support repeated use of the computations in layer L. However, in the MLP inference engine, 

the outputs are consumed by discharging current, and therefore do not support reset at different 

times. For the re-usability of the outputs, they must be digitized and stored in some fast memory 

(e.g., flip-flops). This requires the addition of time-to-digital converters at the end of the previous 

layer, and the addition of digital to time converters at the beginning of the next layer (Fig. 3. 11).  

This architecture treats the analog device array as a processing block for the VMM 

computations while the interface to the array block is digital, similar to the existing architectures 

[Shafiee 16, Cai 19]. This architecture operates similarly to a digital architecture where computed 

outputs are stored and repeatedly used for the convolution. However, one major difference is that 

 

Fig. 3. 11 Compute the CONV layer using the CTT-based MLP engine with the input vector 

[x1,x2,x3] and output vector [y1,y2]. The convolution is computed at different times as the inputs 

switch from the sub-vector [x1,x2] to [x2,x3]. Extra time-to-digital converters (TDC) are 

required after the outputs from array to digitize the outputs for repeated usage required by the 

CONV layers. To make it compatible for concatenation, extra digital-to-time converters (DTC) 

are also required before the inputs to the array to interface with the digitized outputs from the 

last layer.  
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the weights in the CTT matrix (or based on any other analog device) behave as a read-only memory 

during the inference due to the low write-speed of the analog memory compared to its read-speed, 

as discussed in the previous section.  

Since the data-conversion is an overhead that does not contribute to the actual computation, 

the energy-efficiency is not optimal due to the extra energy spent on time-digital conversions. A 

larger array is more energy-efficient in such architecture due to the sharing of the WLs (sharing 

the DTC and the register storing the value for repeated use) and BLs (sharing the TDC). Based on 

synthesized logic in GlobalFoundries 22FDX technology, each 8-bit register with the DTC 

consumes about PDTC = 0.05 mW and each 8-bit TDC consumes about PTDC = 0.15 mW, both at 

1GHz [Moran 20]. Both PDTC and PTDC can be further reduced with state-of-the-art designs. The 

power of a charge integrator with the ReLU circuit, designed in the same technology consumes 

about 𝑃𝑖𝑛𝑡 + 𝑃𝑅𝑒𝐿𝑈 =  0.5 mW, also at 1GHz [Kittur 20]. Therefore, the power used for 

computation and digitization of each array is approximately  

𝑃𝑑𝑖𝑔𝑖𝑡𝑖𝑧𝑒 =
1

2
(𝑅 ∗ 𝑃𝐷𝑇𝐶 + 𝐶 ∗ 𝑃𝑇𝐷𝐶) 

𝑃𝑐𝑜𝑚𝑝𝑢𝑡𝑒 =
1

2
𝐶 ∗ (𝑃𝑖𝑛𝑡 + 𝑃𝑅𝑒𝐿𝑈) + 𝛼𝐶𝑇𝑇 ∗ 𝑅 ∗ 𝐶 ∗ 𝐼𝐷,𝐶𝑇𝑇 ∗ 𝑉𝐷,𝐶𝑇𝑇 + 𝑅 ∗

𝐶𝑊𝐿𝑉𝐺
2

2𝑡𝑖𝑛,𝑚𝑎𝑥
 

𝑃𝑡𝑜𝑡𝑎𝑙 = 𝑃𝑐𝑜𝑚𝑝𝑢𝑡𝑒 + 𝑃𝑑𝑖𝑔𝑖𝑡𝑖𝑧𝑒 

where the 
1

2
 factor in the equations reflects the balanced pipeline structure shown in Fig. 3. 8. 𝛼𝐶𝑇𝑇 

is the average activity factor of the PWM input signals based on the average CTT weights 

(i.e.,𝐼𝐷,𝐶𝑇𝑇 of the twin-CTT cell). 
𝐶𝑊𝐿𝑉𝐺

2

2𝑡𝑖𝑛,𝑚𝑎𝑥
 is the average power to charge up each word-line of the 

array with capacitance 𝐶𝑊𝐿 approximated from physical design (200fF / 128 columns [Moran 20]), 
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in the input duration of 𝑡𝑖𝑛,𝑚𝑎𝑥 as discussed in Fig. 3. 8.  Using 𝛼𝐶𝑇𝑇 = 0.25, the amount of power 

used for computing and the amount of power used for digitizing for each CONV layer of AlexNet 

is shown in Fig. 3. 12. A significant portion of the energy used in the system is thus spent on 

digitization instead of the actual computing from CTT devices and charge integrator & activation 

circuits.  

 

 

  

 

Fig. 3. 12 The power used for analog computing and digitizing CONV layers in AlexNet. A 

significant amount of power is used for analog-digital conversion, limiting the energy 

efficiency of the system. 
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3.4.2 Unroll CONV Layers by Weight Duplication 

To maximize the energy-efficiency of the computations, unnecessary data-conversion steps 

and repeated computations should be avoided. The MLP structure discussed in Section 3.3 is a 

good candidate for this purpose. Therefore, CNN should be converted to an equivalent MLP 

structure to leverage the MLP computing architecture. The FC layers are already the same as the 

MLP layers, and therefore the remaining part is the CONV layers. The CONV layer can be unrolled 

to the MLP layer with multiple copies of the duplicating weights. As shown in Fig. 3. 13, all 

synaptic weights in the equivalent MLP layer are either duplicate of the CONV layer’s weights or 

suppressed to zero. In addition, the direct mapping from a CONV layer to one gigantic array yields 

very low array-efficiency since only CTTs around the diagonal positions are used. For better area-

 

Fig. 3. 13 Compute the CONV layer by expanding it to a FC layer (a layer of MLP). The CTT-

based CONV layer computation with input vector [x1,x2,x3] and output vector [y1,y2]. All inputs 

are connected to the expanded array to compute all the outputs at the same time with the 

duplicated weights (i.e.,G22 = G11, G32 = G21). Unused weights (i.e.,G12, G31 in grey) need to 

be programmed to zero. The expanded array can be effectively partitioned to separated arrays 

(each has one charge integrator) to reduce the amount of unused CTT cells. But the capacitive 

load needs to be driven by the input PWM generator becomes large regardless of the partition. 
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efficiency, this array can be partitioned into smaller arrays, as shown in Fig. 3. 13. While the 

unrolling architecture requires little addition to overhead hardware, it increases the number of 

CTTs and CTT arrays needed for each layer. The estimated total area is 565mm2 with all peripheral 

circuits [Kittur 20, Moran 20]. Assuming that this area can be roughly fit into a 25mm * 25mm 

silicon area, the layers can be mapped onto different slices on the silicon, as shown in Fig. 3. 14(a). 

The required width of the silicon area for each network layer is shown in Fig. 3. 14(b). The 

required density of the connections between every two layers is summarized in Fig. 3. 14(c), which 

is higher for the initial layers. For example, the density of channels between the first two layers is 

 

Fig. 3. 14 (a) Mapping the unrolled AlexNet on a 25mm * 25mm silicon area. All layers are 

arranged consecutively so the data flows from the left to the right of the system. (b) The 

approximated width of each slice. The numbers for the last few layers (layer 6, 7, 8) might be 

larger due to the limitation of physical design, but the increase will be insignificant. (c) 

Required connection density for each layer’s output.   
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about 6000/mm, which can be implemented by using six layers of metals with 1 μm pitch, or fewer 

layers if the metal pitch can be made finer. Table 4 shows the number of weights (i.e., a twin-CTT 

cell) required for the entire network before and after the unrolling needed for each layer of the 

AlexNet [Krizhevsky 02]. Table 4 also shows the area and power estimation of the CTTs and 

peripheral circuits for the unrolled AlexNet. Communication power consumed in the 

communication channels can be estimated by CV2f, assuming the main capacitance is the wire 

self-capacitance of 0.2fF/ μm. Using the layout from Fig. 3. 14(a), with V = 0.8V, f = 5MHz, we 

approximate that the communication power is less than 10% of the system power estimated in 

Table 4, depending on the actual routing. 

The advantages of the unrolling approach include the following:  

1. The simplicity of the architecture: by enrolling the CONV layers to the form of MLP layers, 

data flow in the system never changes, and no explicit instruction is required by the 

architecture.  

2. Low latency: the total latency of the system roughly scales linearly to the number of layers.  

Table 4 Area and power estimation of an unrolled AlexNet implementation based on the CTTs 

  Weights Unrolled Layer Area (mm2) Unrolled Layer Power (W) 

Alext

Net 

layer 

Original 

weights 

Unrolled 

weights 

CTT Peripheral 

circuits 

Total area CTT 

(DC + 

AC) 

Peripheral 

circuits Total 

power 

1 3.5E+04 1.1E+08 5.3E-01 1.9E+02 1.9E+02 2.6E+00 7.3E+01 7.5E+01 

2 3.1E+05 2.2E+08 1.1E+00 1.6E+02 1.6E+02 5.6E+00 4.7E+01 5.2E+01 

3 8.8E+05 1.5E+08 7.5E-01 1.1E+02 1.1E+02 3.7E+00 3.2E+01 3.6E+01 

4 6.6E+05 1.1E+08 5.6E-01 6.0E+01 6.1E+01 2.8E+00 1.6E+01 1.9E+01 

5 4.4E+05 7.5E+07 3.7E-01 4.0E+01 4.0E+01 1.9E+00 1.1E+01 1.3E+01 

6 3.8E+07 3.8E+07 9.4E-02 5.2E+00 5.2E+00 9.4E-01 1.0E+00 2.0E+00 

7 1.7E+07 1.7E+07 4.2E-02 4.0E+00 4.0E+00 4.2E-01 1.0E+00 1.4E+00 

8 4.1E+06 4.1E+06 2.0E-02 1.9E+00 2.0E+00 1.0E-01 5.0E-01 6.0E-01 

Total 6.1E+07 7.2E+08 3.5E+00 5.6E+02 5.6E+02 1.8E+01 1.8E+02 2.0E+02 
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3. High throughput: the latency of each stage (i.e., layer) is easy to balance due to the 

similarity of the structure and operation of each stage. Therefore, the system, when 

pipelined, will have no idle arrays and therefore produce a very high throughput.  

4. High energy-efficiency: as stated at the beginning of this subsection, unnecessary data-

conversion is avoided so that the energy-efficiency of this architecture will be higher than 

the digitization approach discussed in Section 3.4.1. Due to the high utilization of the 

components in the time domain (i.e., the reason for high throughput), and the simple data-

flow, energy-saving techniques such as power gating can be implemented more easily. 

The unrolled architecture effectively trades the silicon area for throughput and efficiency. 

Since the weight duplication implies the duplication of the peripheral circuits such as the charge 

integrator, and more arrays required by the system. The area of the charge integrator can take a 

significant portion of the area of the chip, depending on the geometry of the array. Since the charge 

integrator is an analog circuit and requires a capacitor for charge storage, it would not scale 

following the Moore’s Law. Therefore, the area requirement of the system increases dramatically 

as the number of layers in the CNN increases. Scaling out to multiple chips for a system will be 

required for large and deep CNNs when the CONV layers are to be unrolled. 
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3.5 Summary 

This chapter described the architecture of the CTT-based analog inference engine. By using 

the natural laws for computing, CTT arrays can be built for vector-matrix multiplication and with 

some peripheral circuits, for multi-layer perceptron inference engines. However, for convolutional 

neural networks, the use of a computed analog output (e.g., charge on a capacitor) limits their 

compatibility with the MLP inference engine.  

Two solutions are proposed for CNN inference engine architecture. Either the analog 

outputs can be digitized for convolution, or the CONV layers can be unrolled to equivalent MLP 

layers by weight duplication. While the first architecture requires the minimum amount of on-chip 

CTT memory, its energy-efficiency is limited by the overhead used for data-conversion between 

the analog and digital domain, which does not contribute to the computing process directly. On 

the other hand, the unrolling architecture eliminates the data-conversion overhead by adding 

computing hardware, the duplicate of CTT arrays (with associated peripheral circuits), for very 

fast convolution so that the analog outputs can be reused simultaneously by the arrays from the 

next layer. While the weights are duplicated, the computation performed by those added arrays are 

not redundant, and all contribute to the computing throughput of the system.  

The main tradeoff between the two approaches is between the energy-efficiency and 

throughput, with the scale of the system. Fig. 3. 15 shows the amount of CTTs needed for both 

methods with respect to the throughput, measured in Tera-operation per second (TOPS), and 

energy efficiency, measured in TOPS/Watt. There is a large design space between these two cases 

where digitization can help to reduce the size of the system, while still granting a good energy 

efficiency and throughput, which can be realized by digitizing every several layers instead of every 

layer. Table 5 shows the system comparison between the proposed unrolling structure with some 
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other state-of-the-art implementations for low-power applications. The proposed CTT-based CNN 

analog inference engine shows promising energy efficiency and area efficiency for computation. 

 
Fig. 3. 15 The throughput and energy efficiency of the CTT systems for AlexNet based on 

unrolling and digitization. The size of the dot represents the approximated chip size of the 

system, 565mm2 (unroll) and 19mm2 (digitization).  
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Table 5 Low-power CNN system comparison 
 

Tech Precision Energy 

Efficiency 

(TOPS/W) 

Area Efficiency 

(TOPS/mm2) 

Analog CTT, with 

CNN unrolled  

22nm Analog 24.2 85.5 

ISSCC20 [Yuan 20] 65nm 8 bit 6.71 0.0124 

ISSCC19 (1) [Song 19] 8nm 8 bit 11.5 0.347 

ISSCC19 (2) [Yue 19] 65nm 5 bit 3.76 0.00663 

Eyeriss [Chen 17] 65nm 16 bit 0.275 0.00343 
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Chapter 4: Scalability of Large-Scale Analog 

Neural Networks 

4.1 Introduction  

Analog neural networks (ANN) are the neural networks (NN) deployed in analog 

computing systems, such as the computing engine discussed in the last chapter. Since analog 

computing is based on physical quantity (i.e., charge) and physical laws (i.e., charge integration 

and charge conservation) instead of symbolic representation (i.e., numbers) and arithmetic laws 

(addition and multiplication), the precision of the analog computing is potentially infinite by nature. 

In contrast, digital computing can never achieve infinite precision due to the discrete nature of the 

symbols used (e.g., 8-bit per digital value).  

However, the precision of the analog system is limited by the non-ideality of the hardware 

manifested by the intrinsic error of the analog device and circuit. Fig. 4. 1 shows some sources of 

errors in the analog system. For example, the PWM signal sees the physical wires of the WLs as 

capacitive load and, therefore, will be distorted during “on”/ “off” transistor. However, the major 

source of error is from the analog information, such as the “on” current (e.g., Iinf), stored in the 

analog devices, which can be up to several percentages of its range [Guo 17, Burr 16, Zheng 18]. 

Since this error is a stochastic property of the device itself, it cannot be corrected by other circuits 

and will inevitably propagate to all calculations. Therefore, it is crucial to evaluate whether a 

network can still be useful with the error from analog computations, especially from analog devices 

to indicate whether an analog device technology (e.g., CTT) is feasible to build a real system with 

the proposed analog architecture.  
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In this chapter, we propose a framework to evaluate the degrading effect on the 

performance of scaled (wide and deep) NNs due to various errors, with a focus on the device errors, 

and a solution to make ANNs more resilient to such error, especially for large-scale systems. 

 

 

  

 

Fig. 4. 1 Analog errors in the proposed analog computing architecture; the device array for 

analog computing from Fig. 3. 1Fig. 3. 13 with some errors marked. Device related error terms 

are highlighted in red (𝐺𝑖𝑛𝑓 =
𝐼𝑖𝑛𝑓

𝑉𝐷
), and the circuit related error terms are highlighted in yellow. 
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4.2 Hardware-Based Simulation Framework for Analog 

Neural Networks 

First, we establish a simulation framework for analog NNs for both MLPs and CNNs, based 

on the CTT characterization results and models in Chapter 2. The continuous nature of the analog 

devices error is fundamentally different from the discrete error in digital memories, which have 

been studied for neural networks [Reagen 18]. While there is existing neural network simulator 

for analog in-memory NN accelerators [Chen 18], it digitizes the output of the array (i.e., the result 

of the vector-matrix multiplication) and therefore does not match the pure analog architecture (e.g., 

MLP and unrolled CNN) proposed in the previous chapter. 

In the proposed analog architecture, synaptic weights of the neural network are represented 

by the read current of the device (e.g., Iinf for CTT). Therefore, the synaptic weights are random 

variables derived from the Gaussian error statistics of the CTT devices (e.g., Fig. 3. 3) to match 

the physical (Iinf) and numerical domains. We define the device noise as the ratio between the 

standard deviation of the Iinf error and the entire range of device Iinf, which is around 4% - 7% for 

twin-CTT cells (Table III), and can be similar or more for the other analog devices [Burr 16, Guo 

17, Zheng 18].  

To map this device noise onto the numerical domain for the synaptic weights, the maximum 

and minimum synaptic of each filter (i.e., an array) of the neural network is calculated. Since the 

maximum is always positive and the minimum is always negative, the one with larger magnitude 

(i.e.,𝑤𝑎𝑏𝑠𝑚𝑎𝑥 = max (𝑤𝑚𝑎𝑥 , |𝑤𝑚𝑖𝑛|)) is used, and this value is mapped to the maximum of the 

window, which is always symmetric to zero for the twin-CTT cells. As a result, the mapping 

coefficient between the device conductance and the weight is 𝛽 =
𝐺𝑚𝑎𝑥

𝑤𝑎𝑏𝑠𝑚𝑎𝑥
> 0, which is constant 
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in one filter, but can be different in different filters due to different 𝑤𝑎𝑏𝑠𝑚𝑎𝑥 values. This is to 

make sure that the conductance window is fully used during the mapping.  

Suppose filter A and B have different 𝑤𝑎𝑏𝑠𝑚𝑎𝑥,𝐴 ≠ 𝑤𝑎𝑏𝑠𝑚𝑎𝑥,𝐵  then 𝛽𝐴 =
𝐺𝑚𝑎𝑥

𝑤𝑎𝑏𝑠𝑚𝑎𝑥,𝐴
 and 

𝛽𝐵 =
𝐺𝑚𝑎𝑥

𝑤𝑎𝑏𝑠𝑚𝑎𝑥,𝐵
 , 𝛽𝐴 ≠ 𝛽𝐵 since the 𝐺𝑚𝑎𝑥 is the same across the system (using the same design of 

twin-CTT cells). The different ratio values do not affect the result of the computation in the 

numerical domain because it can be compensated in hardware by adjusting the magnitude of the 

discharging current during the output PWM signal generation. Without losing generality, we prove 

this by showing that different conductance mapping coefficient 𝛽  can produce the same 

multiplication result in the numerical domain by using a different discharging current 𝐼𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 

when ReLU is used as the activation function. 

Suppose a synaptic weight 𝑤𝐴 in filter A has the same numerical value with a synaptic 

weight in filter B, i.e.,𝑤𝐵 = 𝑤𝐴. Then for the identical input of 𝑥, the multiplication output 𝑦 must 

be equal:  

𝑦𝐴 = 𝑥𝑤𝐴 = 𝑥𝑤𝐵 = 𝑦𝐵 

We write the input as 𝑡𝑥 since it is PWM, then the charge accumulated by this computation is  

𝑄𝐴 = 𝑉𝐷𝐺𝐴𝑡𝑥   

𝑄𝐵 = 𝑉𝐷𝐺𝐵𝑡𝑥 

where 𝑉𝐷 is the constant bias in the system (e.g., 𝑉𝐷 = 50𝑚𝑉 for the 𝐼𝑖𝑛𝑓 characterized in previous 

chapters). The mapping is 𝐺𝐴 = 𝛽𝐴 ∗ 𝑤𝐴 and 𝐺𝐵 = 𝛽𝐵 ∗ 𝑤𝐵, assuming 𝛽𝐴 ≠ 𝛽𝐵 and thus 𝐺𝐴 ≠ 𝐺𝐵.  
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If 𝑤𝐴 = 𝑤𝐵 ≤ 0, since 𝛽 > 0, 𝐺𝐴 < 0, 𝑄𝐴 < 0 and 𝐺𝐵 < 0, 𝑄𝐵 < 0. No output will be produced 

in either case and therefore 

𝑡𝑦𝐴
= 𝑡𝑦𝐵

 = 0 

If 𝑤𝐴 = 𝑤𝐵 > 0, then the ReLU function simply passes the pulse width from discharging 

𝑡𝑦𝐴
= 𝑅𝑒𝐿𝑈 (

𝑄𝐴

𝐼𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒,𝐴
) =

𝑄𝐴

𝐼𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒,𝐴
 

𝑡𝑦𝐵
= 𝑅𝑒𝐿𝑈 (

𝑄𝐵

𝐼𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒,𝐵
) =

𝑄𝐵

𝐼𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒,𝐵
 

The computation in the numerical domain, 𝑦𝐴 = 𝑤𝐴 ∗ 𝑥 = 𝑤𝐵 ∗ 𝑥 = 𝑦𝐵, requires that 𝑡𝑦𝐴
= 𝑡𝑦𝐵

 

in the physical domain. Therefore 

𝑡𝑦𝐴
=

𝑄𝐴

𝐼𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒,𝐴
=

𝑉𝐷𝐺𝐴𝑡𝑥

𝐼𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒,𝐴
=

𝑉𝐷𝛽𝐴 ∗ 𝑤𝐴𝑡𝑥

𝐼𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒,𝐴
= 𝑡𝑦𝐵

=
𝑄𝐵

𝐼𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒,𝐵
=

𝑉𝐷𝛽𝐵 ∗ 𝑤𝐵𝑡𝑥

𝐼𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒,𝐵
 

which will always hold if 
𝛽𝐴

𝐼𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒,𝐴
=

𝛽𝐵

𝐼𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒,𝐵
 . This indicates that the mapping coefficient is 

controlled by the discharge current. In the extreme case, this mapping coefficient can be different 

for each charge integrator, if the discharging current can be set differently, but this implies extra 

storage for each charge integrator. 

From this mapping method, the Gaussian error model of the analog device conductance 

(i.e.,𝐼𝑖𝑛𝑓/𝑉𝐷) is mapped to the Gaussian error model of the synaptic weights by Δ𝑤 = Δ𝐺/𝛽 for 

simulation. The calculation of a filter including errors in the numerical domain is thus  

𝑦 = 𝑅𝑒𝐿𝑈((𝑊 + 𝛥𝑊)(𝑥 + 𝛥𝑥) + 𝛥ℎ) + 𝛥𝑦 
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where 𝑊 is the synaptic weight matrix, Δ𝑊 is the error of the weight matrix in which all entries 

are sampled from the independent and identically distributed random variable Δ𝑤. 𝑥 represents 

the input PWM signal, and Δ𝑥 is the error of the input. Δℎ is the error of the activation circuit. Δ𝑦 

is the error from the transmission of the PWM output to the next layer. 

To enable the simulation for state-of-the-art deep neural networks such as ResNet [He 16], 

novel structures and operations, such as batch normalization [Ioffe 15], shortcut layers and residual 

block are implemented in the simulation framework based on the proposed analog architecture. 

Batch Normalization layers is essentially a linear operation, normalizing its input for each 

channel individually with learned parameters (mean μc, variance σc
2, the learnable scaling factor 

γc and learnable bias βc, for each channel c):   

yc,i = weff,c xc,i + beff,c 

where weff,c =
γc

√σc
2+ϵ

, beff,c = βc −
γcμc

√σc
2+ϵ

. Therefore, it can be implemented through 

convolutional layers with unit-size, unit stride convolutional kernel, which has the weight weff,c 

and bias beff,c. 

Shortcut layers were introduced by ResNet [He 16] to address the gradient vanishing 

problem, and have become an indispensable component in deep neural networks. In our noise-

considering implementation of shortcut connections we assumed that each positive entry of the 

identity matrix suffers from a Gaussian noise U with zero mean and variance δ, where δ is the 

device noise, and Ishortcut  =  U + I . This is to reflect the noise from possible circuit 

implementation of the shortcut (e.g., current mirror). 
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Residual blocks used in ResNet are implemented based on the CNN layers and shortcut 

layers. The parameters for the behavior of analog devices (e.g., mean and variance in the case of 

Gaussian noise) can be individually specified for each layer. 

After a network is trained, the simulator is used to evaluate the performance of the network 

using analog devices. During the forward-propagation, perturbations for all weights from all layers 

are sampled from the specified random variable before one test run. The same set of sampled 

weights is used for the entire test set to generate the accuracy scores. Since the weights are now 

stochastic, 50 testing runs are performed (unless specified otherwise) to obtain the statistics of the 

accuracy scores for a given analog deep neural network.  
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4.3 Resiliency of Analog Neural Networks 

An MLP with 784 input nodes, 99 nodes in its only hidden layer, and ten nodes as output, with 

ReLU after each layer, is trained on conventional 64-bit CPU using backpropagation [LeCun 89] 

and stochastic gradient descent, for the MNIST hand-written digit classification problem [LeCun 

98]. Then the trained weights and biases are loaded into the simulation framework. Three types of 

errors are first evaluated in the simulation:  

1. Device errors are defined as a Gaussian random variable with zero mean and a standard 

deviation of Δ𝑤, where Δ𝑤 = Δ𝐺/𝛽 as explained in the last section (Fig. 4. 2). 

2. The error of the input PWM signal, which always has a finite rise and fall time seen by the 

gates of the CTTs due to the capacitance on the path (Fig. 4. 3). Because of the exponential 

behavior of ID-VG at the subthreshold region, the net of current drawn from the device is 

always smaller than the ideal case. Since the rise times and fall times are not a function of 

the ideal pulse width itself, this error is more salient when the pulse width is short (i.e., 

 

Fig. 4. 2 Mapping numerical values of the synaptic weights (𝑤𝑘𝑙) to the conductance values of 

the analog device (𝐺𝑘𝑙) by the mapping coefficient 𝛽. 
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when this input value is small). To model this error, we assume that for a fixed duration of 

Δ𝑡𝑃𝑊𝑀, the average current of any device is reduced to 𝑘𝑃𝑊𝑀𝐼𝑖𝑛𝑓 where 𝑘𝑃𝑊𝑀 < 1. 

3. Noise current, mainly the white noise integrated as the charge integrator. This is a property 

of the charge integrator and therefore is only a function of the duration of the integration. 

This duration is fixed for all arrays, and the error is modeled at each column as an addition 

of charge Δ𝑄𝑖𝑛𝑡 (before the ReLU function), which is an independent Gaussian random 

variable with zero mean and a constant standard deviation. 

The input to the first layer is converted to 8-bit PWM signals. The output of the first layer is 

not digitized (but limited to the 16-bit floating-point precision of the double-precision data type in 

the simulator) before converted to PWM signals as the input of the hidden layer. ReLU is applied 

as the activation function. The output node with the longest PWM represents the classification 

result.  

 

Fig. 4. 3 The input PWM signal at the WL always has a finite rise and fall time due to RC 

delay, so that the gate voltage of the device at the PWM period receives a smeared pulse, 

making the integrated current of the device always smaller than the ideal case due to the 

exponential relationship between ID and VG at the subthreshold region.  
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Fig. 4. 4 shows the accuracy of the MLP for the test set of the MNIST dataset from 100 

Monte Carlo simulations across a range of device noise. The parameters used are 
Δ𝑤

𝑊𝑟𝑎𝑛𝑔𝑒
= 5%, 

Δ𝑡𝑃𝑊𝑀 = 10 cycles, 𝑘𝑃𝑊𝑀 = 0.8, Δ𝑄𝑖𝑛𝑡~𝑁(0,0.255) ∗ 1𝑝𝐶 . The circuit related noises are all 

exaggerated from designs based on unpublished analog circuit design using 22FDX technology 

[Moran 20, Kittur 20]. The classification accuracy degrades slightly from the 16-bit digital baseline 

in most of the cases, due to all the injected errors, and the device error is the main contributor to 

this degradation after 10%, which is the device noise level for many analog devices. 

 

 

 

Fig. 4. 4 Accuracy of the analog MLP simulated with the errors from analog device and the 

peripheral circuits from 100 Monte Carlo simulations at different device noise level. Errors 

from the peripheral circuits are exaggerated to reveal its effect on the network. Baselines of 16-

bit digital network and device error only networks are also plotted, showing that the main 

contribution to the network degradation is from the device error when device noise is larger 

than 10%.  
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To accelerate the Monte Carlo simulations for very large and deep neural networks, only 

device noise is considered as non-zero when we simulate the deep convolutional neural networks 

(e.g., WideResNet [Zagoruyko 16]). This focuses on qualifying the analog device technology with 

respect to the scaling of the neural networks.  

The simulation framework proposed in the last section is used to simulate DNNs based on 

Wide-ResNet models. It includes many of the advanced operations of state-of-the-art neural 

networks (e.g., batch normalization, residue layers), which are affected by the device noise. The 

DNN model is trained on commercial GPUs using 32-bit floating-point precision and the ImageNet 

training set. During testing of the trained network, device models are included to emulate the 

behavior of analog devices. Each pre-trained digital network is instantiated 50 times by 

independent sampling from the device noise statistics (i.e.,𝑤 = 𝑤0 + Δ𝑤). Then the system is 

evaluated by all testing patterns on all instantiated networks to obtain the statistics for network 

accuracy.  

Two different structures of Wide-ResNet with depth level 16 (17.1 million weights) and 

28 (36.5 million weights) are trained and tested on the CIFAR-100 dataset (same for all network 

simulation results shown unless otherwise specified). In Fig. 4. 5, all networks presented show 

significant degradation of the network accuracy as the device noise increases, while the larger 

network is more resilient. When device noise is 6%, the top5 accuracy is degraded from 94.28% 

to 44.96% for the 16-layer network and from 94.39% to 70.99% for the 28-layer network. Both 

networks start to fail completely at a device noise of 14%. The deeper network (also with more 

weights) is less sensitive to the increase of device noise, and therefore is more resilient to device 

noise. The resiliency of the network also depends on the application. Fig. 4. 6 shows the network 

accuracy of the 16-layer WideResNet on the CIFAR-100 problem, compared with the MNIST 
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recognition problem, which is significantly easier than the CIFAR-100 problem. The resiliency of 

the neural network of a similar scale is better for easier applications.  

 

Fig. 4. 5 The degradation of network due to analog device noise: two Wide-ResNet models of 

depth level 16 and 28 are trained and tested on the CIFAR-100 dataset.  

 

Fig. 4. 6 The degradation of network due to analog device noise for different applications: 

Wide-ResNet model with depth level 16 for both CIFAR-100 and MNIST are trained and 

tested, showing that the network is more resilient to device noise when the application is 

simpler. 
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The network is also simulated to incorporate the CTT characterization data (one-time use 

with 1200nA memory window). Since the twin-CTT cell fine-tuning includes over-programming, 

the top5 accuracy of the CTT-based network increases from 36.40% (right after over-programming) 

to 83.98% (after 200 hours), which is 10.41% lower than the 32-bit digital baseline (Fig. 4. 7).  

 

  

 

Fig. 4. 7 Simulate network with CTT characterization data: accuracy of the 28-layer network 

from Fig. 3. 3 is simulated using CTT characterization data, with the baseline from digital 

machine of 32-bit data precision. 
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4.4 Improving Resiliency of Analog Neural Networks 

The last section showed the resiliency of analog neural networks, which can be improved by 

scaling up the network for the same application. In addition, by duplicating n analog devices and 

taking the average of the programmed weight, or running n filters in parallel and averaging the 

output, one can statistically reduce the standard deviation of the device error (i.e., the device noise) 

by 
1

√𝑛
 [Ma 18]. However, they all need significant investment in the hardware of the inference 

engine. In this section, three methods are shown to improve the resiliency with little or no extra 

cost in the inference engine’s hardware: 

1. Use generalization methods such as L2-regularization [Schölkopf 02] and dropout 

[Srivastava 14] 

2. Rescale the bias terms in the network filters 

3. Hessian-aware stochastic gradient descent 

4.4.1 L2-Regularization and Dropout 

Some improvements in both the network accuracy and resiliency can be achieved by 

standard generalization methods such as L2-regularization and dropout. For example, at 4% device 

noise, the top5 accuracy can be improved from 68.25% to 90.72%, as shown in Fig. 4. 8. However, 

it is not necessarily true that a network with the best L2-regularization and dropout parameters at 

zero device noise will also make the best network at a higher device noise (curves in Fig. 4. 8 cross 

each other). Therefore, the parameter optimization of the network depends on the target device 

noise. 
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4.4.2 Rescaling Bias Terms 

Another improvement in network resiliency is to rescale the bias terms in the filters. As 

introduced previously in Section 3.1, the bias terms of the layers are combined with the weights 

and in the VMM engine for the ease of hardware implementation (Fig. 3. 1). However, the range 

of the bias parameters is often higher than that of the weight parameters. As a result, naïvely 

combining the bias and weight together will increase the parameter range significantly. Since all 

parameters share the mapping coefficient, a high numerical range of the bias leads to a high noise 

level for the weights. To address this problem, the bias terms can be scaled, as shown in Fig. 4. 9. 

Instead of using “1” as the extra input for the bias term, the extra input can be other value to 

correspondingly scale bias parameters to match the range of the programmed biases with the range 

of weights. This ensures that both weights and biases use the full dynamic range of the device to 

minimize the effect of the device noise. Fig. 4. 10 shows that the range matching between the bias 

 

Fig. 4. 8 Effect of conventional generailization methods: Accuracy of Wide-ResNet (depth 

level 28) is trained with different L2-regularization (L) and dropout factors (D). Some 

improvement in the analog resiliency can be achieved. 
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terms and the weight can improve the resiliency of the same trained network. The cost of such 

implementation is the storage of the scaling factor s, which can be different in different arrays. 

 
Fig. 4. 9 Top: scaling factor as an extra input per layer to include bias term b in the vector-

matrix multiplication. Bottom: normalized histograms showing the distribution of the weights 

w and bias b of a filter before and after the use of scaling factor s.  

 

Fig. 4. 10 Network (Wide-ResNet-28) top5 accuracy on CIFAR-100 with and without the 

scaling for w and b. 
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4.4.3 Hessian-Aware Stochastic Gradient Descent 

Inspired by the adversarial training [Goodfellow 14], which generates and uses difficult 

inputs for the network during the training phase to enhance its robustness against adversarial 

attacks, we propose the Hessian-aware stochastic gradient descent (HA-SGD) method to train 

neural networks with improved resiliency against analog device noise. The HA-SGD ensures that 

at convergence, the local minimum of the cost function during training will not be at a point with 

high-norm Hessian.  

As shown in Fig. 4. 11, at any given weight W0, the HA-SGD computes the average of 

sample gradients, computed at points obtained by random perturbations of W0, as an estimation of 

 

Fig. 4. 11 Proposed novel training method – Hessian-Aware Stochastic Gradient Descent (HA-

SGD): The HA-SGD algorithm is used to estimate the gradient of the smoothed cost function 

(inset) so that the algorithm  is more likely to converge at a wider valley of the original cost 

function (see methods), which will be more resilient to analog device noise. The gradient of 

the smoothed cost function is computed by averaging gradients computed at neighboring points 

obtained by random perturbations of the current weights. The variance of the random 

perturbations of current weights is referred to as the level or intensity of the training noise in 

HA-SGD in parallel with the device noise previously defined.   
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the gradient of the smoothed cost function (J̃(W) = EW′[J(W′)]). The variance of the random 

perturbations of current weights is referred to as the level of intensity of the training noise in HA-

SGD. Thus, this training algorithm samples the local neighborhood (around W0) of the landscape.  

If the Hessian has a high norm, then the gradient will deviate significantly from the gradient 

at W0. In other words, the optimizer seeks local minima in the smoothed cost function, which is 

more likely to correspond to a wide valley in the original landscape. As a result, in the wide valleys, 

the neural network perturbed by finite device noise would maintain performance comparable to 

the case having no noise, with small variance and bias. The HA-SGD can improve the network 

resiliency significantly. Fig. 4. 12 shows the enhancement of resiliency when HA-SGD is used for 

training. At a 6% device noise, HA-SGD improves performance from 70.99% to 88.47%. HA-

SGD has an even more significant effect when the device noise is higher. At 10% device noise, a 

 

Fig. 4. 12 Improved network resiliency with HA-SGD: the performance of networks trained 

with the HA-SGD algorithm are compared with those trained by highly optimized conventional 

training algorithms, showing improved resiliency from the HA-SGD method. Parameters such 

as L2-regularization factor, dropout factor and the training noise level are all optimized for 

both cases. The device noise levels of some analog devices, such as CTT, Flash [Guo 17], 

phase change memory (PCM) [Burr 16], and resistive RAM (RRAM) [Zheng 18] are indicated.  
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network trained with injected noise of 10% achieves a top5 accuracy of 61.67%, which is more 

than four times the top5 accuracy of the networks trained by standard SGD (14.37%). The optimal 

level of the training noise depends on the device noise of the target device (e.g., CTT). Fig. 4. 13 

shows the effect of increasing training noise on different device noise during inference. In general, 

a higher training noise performs better for higher device noise because the gradient estimation 

during training is more accurate. Notably, the network tested with zero device noise would not 

benefit from the HA-SGD algorithm, and therefore HA-SGD should only be applied when some 

finite device noise is expected in the analog inference engine. Fig. 4. 14 shows the network top1 

accuracy for the WideResNet-28 tested for CIFAR-100. Three groups of networks are trained with 

different training noise (device noise injection in the forward propagation during training). The 

 

Fig. 4. 13 Effect of noise-level during training: Increasing the level of training noise in HA-

SGD has different effect on the resiliency of the network, depending on the device noise of the 

target device. 
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optimal accuracy can be achieved when the training noise is close to the expected device noise 

during testing. Also, in Fig. 4. 14 some degradation of the network at zero device noise is observed. 

This implies that the local minimum of the cost function found by HA-SGD is not necessarily 

deeper, despite smoother. However, this degradation of the network due to HA-SGD can be hidden 

if the network is trained for a simpler challenge. Fig. 4. 14 shows the same network (with slight 

modification at the last layer) trained for MNIST challenge using different training noise, whose 

accuracy at zero device noise during testing does not change.  

 

 

 

 

 

Fig. 4. 14 Left: network top1 accuracy for the WideResNet-28 tested for CIFAR-100. The 

training noise is preferred to be close to the target device noise during inference for the best 

network accuracy. At the meantime, the zero-noise inference accuracy might decrease as the 

training noise increases.  Right: the zero-noise inference accuracy degradation can be hidden 

when the network is trained for a simpler problem, such as MNIST. 
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4.5 Summary 

This chapter explored the feasibility of using low-precision analog memory cells as the 

weights for very large and deep (> 30 million weights) neural networks. A simulation framework 

is established to include the associated calculation errors for the proposed analog inference engine 

architecture. The simulation shows that the networks degrade due to analog errors from both the 

analog device and the circuit, while the contribution from the device is more significant for many 

analog device technologies. Several methods to improve the analog resiliency without adding 

much cost to the analog inference engine are discussed. A combination of using generalization 

methods (L2-regularization, dropout), rescaling the bias terms, and the Hessian-aware stochastic 

gradient descent can be used to enable resilient analog deep neural networks. 

In addition, this chapter showed that neural network training can still converge with noise 

injection (at proper levels) to the synaptic weights. This indicates the potential of analog training 

engines, which use analog devices for training analog and digital neural networks. Digital neural 

networks can be treated as a subset of analog neural networks when the uncertainty of the memory 

is zero. 
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Chapter 5: Scaling Analog Neuromorphic 

Systems 

5.1 Introduction  

Scaling of the neuromorphic system can, in general, provide benefit to the cognitive capability 

of the system [LeCun 19] in mainly two aspects: 

1. For the same cognitive challenge and the same hardware architecture (e.g., fixed digital 

precision or fixed analog device error), a larger neural network tends to provide better 

accuracy (Fig. 5. 1). As a result, to reach the same level of network accuracy, a larger 

network is required for a more difficult cognitive challenge. 

2. In the analog system, a larger neural network enhances the resiliency of the system against 

analog errors for the same cognitive challenge (Fig. 4. 5). This holds with or without the 

resiliency enhancing techniques proposed in Section 4.4. 

There are two major challenges in scaling the neural networks: 

1. Hardware constraint on the memory. For the digital systems, the extension of memory is 

through the memory hierarchy to bring in denser but slower memory (e.g., DRAM, Flash) 

while the on-chip memory (e.g., SRAM, eDRAM) is rewritten when different filters/layers 

are computed. For analog systems, the on-chip memory is the analog non-volatile memory 

that cannot be rewritten quickly. Therefore, scaling out the analog system is required by 

adding multiple chips into the system at the same level of the memory hierarchy, which 

requires a scalable architecture for the multi-chip system. 
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2. Overfitting of the data [Hawkins 04] is a general machine learning problem for supervised 

learning when the network has fit very well on the training data, but cannot generalize the 

knowledge and work well with the testing/validation data that are not used during training. 

This chapter will focus on the scaling of the analog neuromorphic system hardware based on 

the analog in-memory computing architecture proposed in Chapter 3. 

 

 

  

 

Fig. 5. 1 Improve neural network performance by scaling: the change of the accuracy of the 

advanced neural network, ResNet [He 16], as a function of network size for different cognitive 

challenges. Before overfitting becomes an issue, accuracy increases as network size increases, 

usually due to the increase in depth.  In addition, accuracy decreases as the task becomes more 

difficult (e.g., from CIFAR-10 top1 score to ImageNet top1 score, and from ImageNet top5 

score to top1 score). Therefore, network scaling is crucial to reduce error for complicated 

challenges. 
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5.2 Scaling out Non-von Neumann architecture  

The multi-layer structure of the proposed analog in-memory computing engine is a non-

von Neuman architecture suitable for scaling. As shown in Fig. 5. 2, a multi-layer network can be 

partitioned at the interface between arrays and after the generation of the output PWM signals. 

This interface can be implemented as either an analog interface or a digital interface. 

If an analog interface is used, the communication is to pass the timing information of the 

PWM signals between chips, replacing the on-chip wiring if both arrays are on the same chip. 

Depending on the quality of the channel, buffers can be added at both ends of the channel. 

If a digital interface is used, the communication is to pass the binary data that carries the 

timing information of the PWM. This data needs to be generated by a time-to-digital converter at 

the sender’s end, and recovered by a digital-to-time converter at the receiver’s end. Therefore, this 

requires a higher cost of extra hardware than the analog interface. However, the extra cost will be 

reduced if the communication between layers is already digitized for CNNs, as described in 

Section 3.4.2.  

 

Fig. 5. 2 Interface between layers of the neural network can be implemented as either analog 

or digital interface between 2 chips for a multi-chip system. 

 



85 

 

Since the analog interface transmits the pulse width as the information, its speed is 

fundamentally limited by the maximum possible pulse width generated from the previous layer. 

The dynamic range of the pulse width determines the range of the dot-product outputs and 

therefore has a lower limit. As a result, multiplexing the analog communication in time by 

𝑛𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥  times increases the communication latency linearly by the equation 𝜏𝑎𝑛𝑎𝑙𝑜𝑔 =

𝑇𝑃𝑊𝑀,𝑚𝑎𝑥 ∗ 𝑛𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥 , where 𝑛𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥 = 𝑐𝑒𝑖𝑙(
𝐵𝑊𝑎𝑛𝑎𝑙𝑜𝑔

𝑁𝑐ℎ𝑎𝑛𝑛𝑒𝑙
)  is determined by the required 

bandwidth of the analog communication and the number of channels for both inputs and outputs 

of a layer.  

For 𝑛𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥 = 1, the number of outputs of each layer equals the number of channels 

required if the outputs go to another chip. The unrolled CNN can be partitioned into different 

dies/chips across the boundaries of the array (Fig. 3. 13). Fig. 5. 3 shows the total number of inputs 

and outputs of each array for unrolled Alexnet.  

As a result, a very high density of interconnect channels between chips is required to scale 

out the analog neuromorphic system with an analog interface. The dense physical channels can be 

combined with time-multiplexing (if required, but not preferred) to enable the analog interface for 

optimized energy efficiency of the system. When the time-multiplexing factor is properly balanced 

between layers, it can be hidden in the pipeline so that it does not affect the overall throughput of 

the system. 
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5.3 Fine-Pitch Integration Technologies for Analog 

Neuromorphic Systems 

Conventional system scaling and integration technologies based on printed circuit boards 

(PCB) are not suitable for high-bandwidth analog transmission due to the coarse pitch at the 

chip/board interface. The pitch between pad and traces on the PCBs is normally more than 0.2mm 

and 0.1mm. To increase the aggregate bandwidth of analog transmission, fine-pitch integration 

technology, such as silicon interconnect fabric (Si-IF) [Bajwa 18], can be used to provide more 

physical channels between chips. As shown in Fig. 5. 4, known-good-dies can be placed in high 

proximity (< 100um) on a Si wafer substrate. In addition, the interconnect channels are fabricated 

using a conventional back-end-of-line (BEOL) processes to obtain interconnect pitch comparable 

to the fat-wire level (2 – 10 um) of the die itself. A schematic of two chips integrated within a 

single system using Si-IF is shown in Fig. 5. 5. Si-IF can be used to seamlessly integrate the 

different layers of the neural network by supporting analog communication with low insertion loss 

and crosstalk [SivaChandra 18] at < 10GHz. Comparing with the PCB, Si-IF can provide many 

 

Fig. 5. 3 Number of channels (inputs and outputs) of the arrays in each layer of the Alexnet. 
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more channels for high-quality analog communication between chips. Table 6 shows the number 

of channels supported by both PCB and Si-IF technology for different sizes of dies/chips. To 

implement the Alexnet (unrolled) system shown in Section 3.4.2. The requirement of the Alexnet 

(Fig. 5. 3) can be met by Si-IF but not PCB technology.  

To further scale out the system, CTT-based inference circuits can be used as the basic 

building blocks for three-dimensional integrated circuits (3D-IC) [Xie 10]. For example, the 

limitation of Si-IF technology is the size of the wafer used for Si-IF fabrication. It is possible to 

add through-wafer vias (TWV) [Liu 19] to utilize both sides of the wafer, but the TWV pitch is 

limited by the aspect ratio of electroplating and therefore is about 0.05mm for un-thinned wafers 

whose thickness is more than 0.5mm. Three-dimensional integration technologies such as wafer-

scale integration (3D-WSI) [Batra 14, Kumar 17] can be used, which can further improve the 

density of links by using through-silicon vias (TSVs) in the vertical direction, and energy-

efficiency of communication by at least 100 times [Wan 17].  

 

Fig. 5. 4 Scaling-out silicon on silicon: the silicon interconnect fabric (Si-IF) that can be used 

to scale-out analog neuromorphic systems with fine-pitch interconnect channels and close 

distance between the dies (adapted from [Bajwa 18]). 
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Fig. 5. 5 A schematic of the analog neuromorphic system scaled-out using the Si-IF for multi-

layer neural networks. 

 

Table 6 Number of links supported by PCB and Si-IF technology 
 

Number of links supported at periphery 

Die size PCB (0.1mm pitch) 

10 layers’ periphery 

Si-IF (0.002mm pitch) 

4 layers’ periphery 

1mm * 1mm 400 8,000 

3mm * 3mm 1200 24,000 
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Chapter 6: System Design and Hardware 

Demonstration 
NeuroCTT Version 1 (V1) is designed as a mixed-signal system featuring digital controls 

on the twin-CTT cell array using GlobalFoundries 22FDX technology. The block diagram of the 

system is shown in Fig. 6. 1. A CTT-array with 1024 word-line (WL) and ten bit-line (BL) is the 

core of the system. The WL is driven by the WL driver (WLD), which receives digital control 

signals from a customized on-chip digital controller to apply a selected analog voltage to the WL 

for an adjustable amount of time, timed by the clock of the controller’s signals. The digital 

controller is designed at the HDL level, then synthesized, placed, and routed (PnR) using CAD 

software (e.g., ModelSim, Innovus).  The neuron is also controlled by the controller and can be 

used to integrate differential current from the BL pair (i.e., BLt and BLc) with the ReLU function.  

 

Fig. 6. 1 The system architecture of NeuroCTT V1. The system is composed of a CTT array 

with 1024 WLs and 10 BLs, 1024 WL drivers for each WL, neurons to integrate differential 

current from BLt and BLc, and a digital controller that provides all auxiliary functions. 
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The flow of instruction and data in the system is shown in Fig. 6. 2. In addition, the digital 

controller has a scan-chain to check the instruction received by the chip. The scan-chain is verified 

at 40MHz for array operation modes using the FPGA, as shown in Fig. 6. 2. 

 

 

Fig. 6. 2 Top: the data flow in the V1 system and including using the FPGA to check the scan-

chain of the V1 system. Bottom: measured waveforms with 10MHz clock I/O. The scan chain 

is verified up to 40MHz. 
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The structure of the array is shown in Fig. 6. 3. Each bit-line is composed of the bit-line 

true (BLt) and bit-line complement (BLc), connecting to the drains of the true device and the 

complement device of each twin-CTT cell in the chip. Other than the twin-CTT cells, the array 

 

Fig. 6. 3 The array structure in V1. The array is 1024-by-10 but a 2-by-2 sub array is shown 

for simplicity. CTTs are arranged as twin-CTT cells (e.g., cell w11 has device w11
+ and device 

w11
-). The auxiliary array switches, PROT_xC, PROT_xT, VER_T_x, VER_C_x, 

PROG_SW_T_x, PROG_SW_C_x (x = 1,2,…,10). Are controlled by the digital controller to 

configure the array for different modes. Each source-line has a pad (COLx) and there are two 

more pads (VER_T, VER_C) for reading the CTT device current in the array. 
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also has auxiliary array switches that are directly controlled by the digital controller. The operation 

of a selected device being read (VER) is shown in Fig. 6. 4. Since the CTTs are used as analog 

 

Fig. 6. 4 The read (VER) operation of the V1 chip. As the digital logic of the chip receives the 

instruction to read a certain device (e.g., circled CTT W11
+), it configures the array auxiliary 

switches  (the red cross represents that the array switch is turned off by the control logic for 

this VER operation) on the peripheral of the array and the word-line drivers to supply a read 

voltage (300mV) to the target word-line, and a negative bias (-0.3V) to all other word-lines. 

An analyzer is then connected to the pad of the target column and the VER (VER_T or VER_C) 

pad to supply a read VDS and measure the current IVER. The current numbers on the devices are 

the simulated result using spectre models.  
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memory, the precision of the read operation is important, the read current, when one device is 

turned on, can be written as  

𝐼𝑅𝐸𝐴𝐷 =  𝐼𝑜𝑛,𝑡𝑎𝑟𝑔𝑒𝑡 +  1023 𝐼𝑜𝑓𝑓 + 𝐼𝑙𝑒𝑎𝑘𝑎𝑔𝑒 

where 𝐼𝑜𝑓𝑓 is the current from other CTTs in the same column, whose gate voltage is negative (i.e., 

at off state). 𝐼𝑙𝑒𝑎𝑘𝑎𝑔𝑒 is the current through other leaking paths. Although the off current is much 

smaller in magnitude compared with the on current (𝐼𝑜𝑓𝑓 < 10−4𝐼𝑜𝑛), the on current will become 

smaller when the device is programmed (i.e.,𝐼𝑜𝑛 decreases), decreasing the distinction of 𝐼𝑜𝑛 from 

𝐼𝑅𝐸𝐴𝐷. Therefore, baseline subtraction is needed for accurate reading of the device where  

𝐼𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = 1024 𝐼𝑜𝑓𝑓 + 𝐼𝑙𝑒𝑎𝑘𝑎𝑔𝑒 

𝐼𝑅𝐸𝐴𝐷 − 𝐼𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = 𝐼𝑜𝑛,𝑡𝑎𝑟𝑔𝑒𝑡 − 𝐼𝑜𝑓𝑓,𝑡𝑎𝑟𝑔𝑒𝑡 

Fig. 6. 5 shows the read current statistics of all CTT devices. The limitation of the reading 

is the throughput since V1 only supports the reading of one device at a time. The analyzer requires 

 

Fig. 6. 5 The box and whisker plot of IREAD read from a V1 chip for the 1,024 x 20 array. Due 

to the use of twin-cell CTT, each column (e.g., Column0 to Column9) is consist of the “true” 

line (e.g., 0T) and the complement line (e.g., 0C), which is measured separately during the read 

operation. 

 



94 

 

about 0.3s for an accurate reading of the current. Therefore, on-chip reading circuit and parallel 

reading of the CTT current are required to enable large-scale CTT-based system.  

The operation of a selected device being programmed (PRG) is shown in Fig. 6. 6. The 

result of on-chip CTT PRG is shown in Fig. 6. 7, where two measurements are taken before and 

after PRG events to show the shift in the Vth of the CTTs. Different PRG conditions are tested as 

shown in Table 7 and have achieved a maximum Δ 𝑉𝑡ℎ of 60mV. Half-selected devices are slightly 

 

Fig. 6. 6 The PRG operation of the V1 chip. Comparing with the VER operation shown in Fig. 

6. 4, the PRG operation of same target device has a different auxiliary array switch 

configuration, where the source-line will take a programming pulse (e.g., 1.2V), synchronized 

with a gate pulse from the word-line driver of 2.8V on the target device. The bit-line of the 

target device is brought down to ground by the programming switch (e.g., PRG_SW_T_1). 
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affected in the same WLs, but not in the same BL. Raising the SL voltage before the WL is 

important to suppress the half-selection effect on the WL-selected devices. 

 

 

Fig. 6. 7 A sub-array of 10-by-20 is measured before and after PRG events to see the change of 

Vth of the devices. A maximum of 60mV Vth shift is achieved. Two conditions of PRG are 

shown, one (Target A) with the WL pulse slightly wider than the SL pulse (TSL<TWL), the other 

one (Target B) with the SL pulse slightly wider than the WL pulse (TSL>TWL). Half-select along 

column (BL/SL) is not significant in both cases. However, PRG using wider SL alleviates half-

selection along WL. 

 
Table 7 Different PRG conditions tested on the V1 chip, the effect of the PRG events are shown 

in Fig. 6. 7. 

PRG Conditions PRG A PRG B 

WL pulse (10ms) 2.8V 2.8V 

SL voltage (10ms) 1.4V 1.4V 

Pulse sequence WL pulse rises first and falls later SL pulse rises first and falls later 
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Chapter 7: Conclusions and Outlooks 

7.1 Conclusions 

This dissertation provides a comprehensive study on the use of an analog non-volatile 

memory device, the charge-trap transistor (CTT), for analog in-memory computing, specifically 

for neuromorphic computing applications. The investigation involves a wide range of topics, 

including the analog memory device, the analog in-memory computing architecture for the neural 

network algorithm, and the feasibility of using the proposed architecture for scaled neural network 

applications (36 million synaptic weights).   

In Chapter 2, the CTTs are characterized as analog memories using their subthreshold 

current Iinf as stored data, a real physical quantity that can be used later for direct computation in 

the analog domain. Different mechanisms of charge-trapping are discussed and compared. For 

bulk-oxide traps, the relaxation of the device after charge-trapping is spontaneous de-trapping, 

which can be detected as an increase in Iinf. This relaxation at room temperature can be 

compensated by offsetting the programming target. Different models should be used for relaxation 

at elevated temperature as it accelerates the charge loss significantly. Fine step charge trapping 

and de-trapping of CTTs can be achieved by using finely increased voltage magnitude for VGS to 

access traps at different energy levels. Combined with the relaxation compensation, the CTTs can 

be programmed accurately with a Gaussian model for the error. 

In Chapter 3, the analog in-memory computing architecture for vector-matrix 

multiplication using natural laws is investigated. Using CMOS peripheral circuits, multi-layer 

perceptron (MLP) and convolutional neural networks (CNN) can be implemented. To build the 
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system for deep neural networks such as AlexNet, scaling out the hardware is required for unrolled 

AlexNet. 

Chapter 4 and Chapter 5 evaluate the feasibility of the neural network algorithm and the 

system integration technology for scaling out the analog system. The resiliency of the neural 

networks against analog computing errors is assessed and improved by the proposed Hessian-

aware training algorithm for very large and deep neural networks. Novel hardware integration 

technology, such as the Si-interconnect fabric, can support the massive analog I/O channels 

required by the system. 

Finally, hardware design for the CTT-based inference engine is presented and discussed in 

Chapter 6. The use of CTTs as a tunable analog memory is demonstrated in a mixed-signal system-

on-chip (SoC) with 20 thousand CTTs in GlobalFoundries 22FDX technology. 

In conclusion, this dissertation integrated the studies on (1) the CTT as an analog device, 

(2) the analog in-memory computing architecture, (3) the neural network optimization for analog 

computing, and (4) the approaches to scaling out analog computing system. The results show the 

feasibility of scalable and analog neuromorphic computing systems from the device level all the 

way to the application level. 

7.2 Outlook 

In order to realize and optimize the proposed system. Four major directions for the future are 

suggested below: 

1. Physical modeling of CTT devices: all CTT results shown in the dissertation are from 

experiments directly. While some curve fitting can be used to optimize the use of CTT as 

analog memory. Physical modeling can be more useful to provide insights to device design 
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and optimization principles. Although it has been explored for self-heating enhanced 

charge-trapping [Khan 15], it also needs to be explored for the associated data retention. 

For example, the expected charge loss with respect to temperature and time when different 

programming conditions are used (e.g., the PVRS method), so that traps at different energy 

levels are involved. This helps to improve the modeling of the device for different 

application scenarios. 

2. The figure of merit for peripheral circuits in the analog computing engine: the figure of 

merit for the peripheral circuits, such as the current integrator, needs to be studied for the 

analog neural network inference engine. For example, it has been shown that if the 

integrated values are quantized non-linearly by the circuit, it will perform better than linear 

quantization for the analog neural networks. Therefore, research on a proper figure of 

merits can guide the design of more suitable peripheral circuits. 

3. Efficient programming for large-scale inference engine: for analog memory with low write 

speed such as the CTTs, efficient programming in both energy and time will be crucial to 

pave the way for the low-cost deployment of the inference engine. For example, an 

algorithm and supporting architecture to quickly converge to the target values for the 

devices in batch mode, which is not discussed in this dissertation, can be developed. 

4. System reconfigurability: while the proposed system (with unrolling for CNN) does not 

require explicit instruction during inference. It also limits the reconfigurability of the 

system. Therefore, a tiled design should be considered to provide flexibility at the chip-

package level, or explored in the SoC if it does not require significant overhead.  
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