
UCLA
UCLA Electronic Theses and Dissertations

Title
Scalable and Analog Neuromorphic Computing Systems

Permalink
https://escholarship.org/uc/item/95p0x7ws

Author
Wan, Zhe

Publication Date
2020

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/95p0x7ws
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Scalable and Analog Neuromorphic Computing Systems

A dissertation submitted in partial satisfaction of the

requirements of the degree Doctor of Philosophy

in Electrical and Computer Engineering

by

Zhe Wan

2020

© Copyright by

Zhe Wan

2020

ii

ABSTRACT OF THE DISSERTATION

Scalable and Analog Neuromorphic Computing Systems

by

Zhe Wan

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Los Angeles, 2020

Professor Subramanian Srikanteswara Iyer, Chair

Recent developments in artificial intelligence (AI) have been possible due to the increased

computing power of the hardware. However, the systems are mainly digital and are optimized for

fast, accurate, and versatile computing. Analog computing systems are attractive for their energy-

efficiency and throughput in AI applications. In this dissertation, we explore and optimize a

conventional CMOS transistor, the charge-trap transistor (CTT), as an analog in-memory

computing unit for neural networks. In addition, to adapt to the finite variation of the analog

devices and circuits, we develop novel methods to characterize and improve the resiliency of

neural networks deployed on analog computing systems. Furthermore, as the scaling of the

network plays a crucial role in enhancing its capability, this dissertation evaluates advanced system

scaling technologies to scale out the analog computing hardware in a scalable non-von Neumann

architecture. Finally, our findings are brought together and realized by the hardware demonstration

of an analog neuromorphic system. We conclude with the characterization result of the system and

discuss several future directions for scalable and analog neuromorphic systems.

iii

The dissertation of Zhe Wan is approved.

Jingsheng Jason Cong

Vwani P. Roychowdhury

Sudhakar Pamarti

Subramanian Srikanteswara Iyer, Committee Chair

University of California, Los Angeles

2020

iv

To my parents

v

Table of Contents
Table of Contents .. v

List of Figures ... vii

List of Tables ... ix

Acknowledgments... x

Vita ... xi

Chapter 1: Introduction ... 1

Chapter 2: Charge-Trap Transistor as CMOS Compatible Analog Memory 7

2.1 Introduction ... 7

2.2 Characterization of CTTs for Analog Memory .. 10

2.2.1 Basic Operations .. 10

2.2.2 Charge Trapping in Bulk-Oxide and Interfacial Traps .. 12

2.2.3 Gate Leakage ... 14

2.2.4 Closed-Loop Verification Requirement ... 16

2.3 Optimization of CTTs for Analog Memory .. 19

2.3.1 Distribution of Analog States... 19

2.3.2 Analog Data Retention ... 22

2.3.3 In-Array Write/Erase Parameters ... 27

2.3.4 CTT Device and Array Reset ... 31

2.4 Summary ... 34

3. CMOS-Compatible Analog Neuromorphic Computing Engine ... 37

3.1 Introduction ... 37

3.2 Compute VMM in CTT array ... 38

3.3 CTT-Based Analog Inference Engine for Perceptron ... 44

3.4 CTT-Based Analog Inference Engine for Convolutional Neural Networks 49

3.4.1 Digitized Storage for Convolution .. 52

3.4.2 Unroll CONV Layers by Weight Duplication .. 55

3.5 Summary ... 59

Chapter 4: Scalability of Large-Scale Analog Neural Networks .. 61

4.1 Introduction ... 61

4.2 Hardware-Based Simulation Framework for Analog Neural Networks 63

4.3 Resiliency of Analog Neural Networks .. 68

vi

4.4 Improving Resiliency of Analog Neural Networks .. 74

4.4.1 L2-Regularization and Dropout ... 74

4.4.2 Rescaling Bias Terms .. 75

4.4.3 Hessian-Aware Stochastic Gradient Descent... 77

4.5 Summary ... 81

Chapter 5: Scaling Analog Neuromorphic Systems ... 82

5.1 Introduction ... 82

5.2 Scaling out Non-von Neumann architecture ... 84

5.3 Fine-Pitch Integration Technologies for Analog Neuromorphic Systems 86

Chapter 6: System Design and Hardware Demonstration .. 89

Chapter 7: Conclusions and Outlooks... 96

7.1 Conclusions ... 96

7.2 Outlook ... 97

References ... 99

vii

List of Figures
Fig. 1. 1 The effect of scaling of the ResNet. ... 6

Fig. 1. 2 The throughput on image recognition application and the efficiency of some typical and

novel architectures. ... 6

Fig. 2. 1 Memory state distributions ………………………………………………………………8

Fig. 2. 2 CTT IDS-VGS characteristics ... 10

Fig. 2. 3 Vth shift of PBTI and CTT PRG. .. 13

Fig. 2. 4 The Vth shift of CTTs with different PRG VD. ... 13

Fig. 2. 5 CTT gate leakage change after PRG and ERS ... 15

Fig. 2. 6 CTT gate leakage during PRG/ERS cycling .. 16

Fig. 2. 7 The distribution of the Iinf values of virgin devices in 5 different CTT arrays. 17

Fig. 2. 8 Iinf evolution of 3 different CTTs during the same series of PRG events. 17

Fig. 2. 9 Iinf evolution of 3 different CTTs during the same series of ERS events 18

Fig. 2. 10 the closed-loop read-write-read flow to write CTT Iinf to target value. 18

Fig. 2. 11 the waveform shapes and the magnitude used for the PVRS experiment. 20

Fig. 2. 12 the target Iinf values (generated randomly in the memory window) with respect to the

achieved Iinf values by using PVRS PRG .. 21

Fig. 2. 13 the step of Iinf achieved by the PVRS sequences with 20mV and 40mV VG steps in the

experiment shown in Fig. 2. 12. ... 22

Fig. 2. 14 Box and whisker plot of 40 devices programmed to random Vth values and the retention

of the trapped charge over time at room temperature (top) and at 85 degrees Celsius (bottom). . 24

Fig. 2. 15 CTT relaxation compensation at room temperature ... 25

Fig. 2. 16 CTT relaxation at elevated temperature ... 26

Fig. 2. 17 Linear fit of the intercept of the delta Iinf model at different temperatures. 26

Fig. 2. 18 Schematic of a CTT array .. 27

Fig. 2. 19 The target and the device Iinf measured after 2, 20 and 200 hours relaxation at room

temperature for the selected devices (top). The error can be modeled as a Gaussian distribution

centered around 0nA for the selected devices (bottom). ... 29

Fig. 2. 20 The target and the device Iinf measured after 2, 20 and 200 hours relaxation at room

temperature for the half-selected devices. .. 30

Fig. 2. 21 the evolution of Iinf of CTTs under 4 cycles of PVRS-PRG/ERS 31

Fig. 2. 22 distribution of the Iinf of an array of CTTs at virgin state, after the first and second

initialization cycle. .. 32

Fig. 2. 23 The target and the device Iinf measured after 1, 10 and 100 hours at 300K for reused

devices... 33

Fig. 2. 24 Cross-bar array structure of the two-terminal analog memory (e.g., RRAM) 35

Fig. 2. 25 Benchmarking CTT for neural networks against other analog devices using NeuroSim

simulator.. ... 36

Fig. 3. 1 array of CTTs for vector-matrix multiplication (VMM)……………………………….39

Fig. 3. 2 Close-loop read-write-verify steps for array fine-tuning ... 41

Fig. 3. 3 The target (randomly generated in the [-600nA,600nA] window) and the twin-CTT cell

Iinf measured after 2, 20 and 200 hours at 300K. ... 42

file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36583927
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36583928
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36583928
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36583941
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36583942
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36583943
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36583944
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36583945
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36583946
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36583947
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36583948
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36583949
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36583950
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36583951
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36583952
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36583952
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36583953
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36583953
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36583954
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36583954
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36583955
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36583956
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36583957
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36583958
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36583959
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36583959
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36583959
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36583960
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36583960
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36583961
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36583962
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36583962
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36583963
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36583963
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36583964
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36583965
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36583965
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36584448
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36584449
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36584450
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36584450

viii

Fig. 3. 4 Vector-matrix multiplication error in the CTT array ... 43

Fig. 3. 5 Mathematical formation of the multi-layer perceptron (MLP). 45

Fig. 3. 6 The system block diagram of a CMOS analog neural network inference engine. 46

Fig. 3. 7 Comparator based circuit for rectifying linear unit (ReLU) activation function. 47

Fig. 3. 8 The pipelining of the MLP inference engine during inference. 48

Fig. 3. 9 CNN structure... 49

Fig. 3. 10 The accuracy and the scale of the state-of-the-art convolutional neural networks for the

ImageNet image recognition challenge. ... 51

Fig. 3. 11 Compute the CONV layer using the CTT-based MLP engine 52

Fig. 3. 12 The power used for analog computing and digitizing for AlexNet 54

Fig. 3. 13 Compute the CONV layer by expanding it to a FC layer (a layer of MLP) 55

Fig. 3. 14 Mapping the unrolled AlexNet to silicon. .. 56

Fig. 3. 15 The energy efficiency and the throughput of the systems based on weight duplication

and digitization.. 60

Fig. 4. 1 Analog errors in the proposed analog computing architecture…………………………62

Fig. 4. 2 Mapping numerical values of the synaptic weights to the conductance values of the analog

device. ... 68

Fig. 4. 3 Error of the input PWM signal at the WL. ... 69

Fig. 4. 4 Accuracy of the simulated analog MLP ... 70

Fig. 4. 5 The degradation of network due to analog device noise .. 72

Fig. 4. 6 The degradation of network due to analog device noise for different applications 72

Fig. 4. 7 Simulate network with CTT characterization data. .. 73

Fig. 4. 8 Effect of conventional generailization methods ... 75

Fig. 4. 9 Parameter rescaling for bias terms.. ... 76

Fig. 4. 10 Network top5 accuracy on CIFAR-100 with and without rescaling 76

Fig. 4. 11 Hessian-Aware Stochastic Gradient Descent (HA-SGD). ... 77

Fig. 4. 12 Improved network resiliency with HA-SGD. ... 78

Fig. 4. 13 Effect of noise-level during training. ... 79

Fig. 4. 14 Effect of noise-level during training for different applications 80

Fig. 5. 1 Improve neural network performance by scaling……………………………………….83

Fig. 5. 2 Hardware interface between layers of the neural network ... 84

Fig. 5. 3 Number of channels (inputs and outputs) of the arrays in each layer of the Alexnet. ... 86

Fig. 5. 4 Scaling-out silicon on silicon. .. 87

Fig. 5. 5 A schematic of the analog neuromorphic system scaled-out using the Si-IF for multi-layer

neural networks.. ... 88

Fig. 6. 1 The system architecture of NeuroCTT V1………………………………………………89

Fig. 6. 2 Data flow in the V1 system and digital I/O verification. ... 90

Fig. 6. 3 The array structure in V1.. 91

Fig. 6. 4 The read (VER) operation of the V1 chip. ... 92

Fig. 6. 5 The box and whisker plot of IREAD read from a V1 chip for the 1,024 x 20 array 93

Fig. 6. 6 The PRG operation of the V1 chip ... 94

Fig. 6. 7 CTT PRG in V1 system.. 95

file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36584451
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36584452
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36584453
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36584454
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36584455
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36584456
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36584457
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36584457
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36584458
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36584459
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36584460
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36584461
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36584462
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36584462
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36584924
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36584925
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36584925
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36584926
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36584927
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36584928
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36584929
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36584930
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36584931
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36584932
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36584933
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36584934
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36584935
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36584936
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36584937
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36585114
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36585115
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36585116
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36585117
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36585118
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36585118
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36583881
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36583882
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36583883
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36583884
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36583885
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36583886
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36583887

ix

List of Tables
Table 1 Summary of the PBTI, self-enhanced CTT PRG and HCI induced charge trapping 14

Table 2 Summary of the statistics of the errors from CTT programming under different conditions

(program target is randomly selected in the target range) .. 33

Table 3 Twin-CTT cell programming error, mean (𝜇) and standard deviation (𝜎) statistics 42

Table 4 Area and power estimation of an unrolled AlexNet implementation based on the CTTs

... 57

Table 5 Low-power CNN system comparison ... 60

Table 6 Number of links supported by PCB and Si-IF technology ... 88

Table 7 Different PRG conditions tested on the V1 chip, the effect of the PRG events are shown

in Fig. 6. 7. .. 95

file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36585292
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36585293
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36585293
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36585294
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36585295
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36585295
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36585296
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36585297
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36585298
file:///G:/My%20Drive/PHD%20dissertation/Zhe_Wan_Dissertation_Final5.docx%23_Toc36585298

x

Acknowledgments
I would like to first thank my advisor, Prof. Subramanian (Subu) Iyer, for his support and

guidance over the years. This work would not be possible without his vision. It was quite a journey

for me to explore and a very wide range of research topics with Subu. These years have fulfilled

my rather childish dream when I picked electrical engineering as my college major: to obtain the

ability to appreciate and develop computing hardware, which entangled my life with video games.

I am also very grateful for the help and encouragement I received from my committee

members: Prof. Sudhakar Pamarti, Prof. Vwani Roychowdhury, and Prof. Jason Cong. In

particular, I learnt a lot from the many discussions I had with Prof. Pamarti during the tapeouts.

I have been lucky to have collaborators from the industry, in particular, Arvind Kumar,

Kevin Winstel from IBM, John Barth from Invecas, and Toshiaki Kirihata from GlobalFoundries.

I enjoyed my graduate school years with many lab mates in CHIPS. I am very lucky to

work as a member of the NeuroCTT team with Steven Moran, Premsagar Kittur, Xuefeng Gu, and

Jonathan Cox. I also thank my other CHIPS colleagues: Siva Jangam, Krutikesh Sahoo, Yandong

Luo, Meng-Hsiang (Andy) Liu, Yongxi Li, Pranshu Garg, Yu-tao Yang, Guangqi Ouyang,

Saptadeep Pal, Dr. Adeel Bajwa, Prof. Takafumi Fukushima, among many others. We are lucky

to have Kyle Jung in CHIPS, who meticulously takes care of everything we need in many aspects.

I would also like to acknowledge collaborators in academia, including Tianyi Wang,

Yiming Zhou, Qiujing Lu from UCLA, and Prof. Janakiraman Viraraghavan from IIT Madras.

In the end, I would like to thank my parents, Dan and Minli. They make me who I was and

support who I have become.

xi

Vita
Sep. 2011 – Dec. 2013 Bachelor of Science, Electrical Engineering, UCLA

Sep. 2014 – Dec. 2017 Master of Science, Electrical and Computer Engineering, UCLA

Jun. 2015 – Dec. 2015 Coop Engineer, 3Di team @ Albany Nanotech, IBM

Dec. 2017 – Ph. D. Candidate, Electrical and Computer Electrical Engineering, UCLA

Publications

1. S. Moran, J. Cox, Z. Wan, R. Brewer, E. X. Zhang, B. Sierawski, J. Woo, and S. S. Iyer,

"Impacts of Perturbation on a Charge Trap Transistor Analog Neural Network",

GOMACTech-20, Microelectronics for a New Decade: Global Competition and Near-Peer

Challenges, March 16-19, 2020, San Diego, CA. (Accepted)

2. X. Gu, Z. Wan and S. S. Iyer, Charge-Trap Transistors for CMOS-Only Analog Memory,

IEEE Transactions on Electron Devices (2019).

3. M. Liu, A. Hanna, Y. Luo, Z. Wan and S. S. Iyer, Process Development of Power Delivery

Through Wafer Vias for Silicon Interconnect Fabric, IEEE 69th Electronic Components and

Technology Conference (ECTC), May 28-31, 2019, Las Vegas, NV.

4. Z. Wan, S. Moran, J. Cox, X. Gu, and S. Iyer, Characterization Approaches to Test the

Robustness of Neuromorphic Systems, 2019 Government Microcircuit Applications and

Critical Technology Conference, Albuquerque, NM, 2019.

5. Z. Wan, K. Winstel, A. Kumar, and S. Iyer, Low-Temperature Wafer Bonding for Three-

Dimensional Wafer-Scale Integration, 2018 IEEE SOI-3D-Subthreshold Microelectronics

Technology Unified Conference (S3S), Burlingame, CA, 2018.

6. Z. Wan and S. Iyer, Fine-Pitch Integration Technology for Cognitive System Scaling, 2018

Semiconductor Research Corporation Technical Conference (SRC TechCon) TechCon, Austin,

TX, 2018.

7. Z. Wan and S. Iyer, Three-Dimensional Wafer Scale Integration for Ultra Large Scale

Cognitive Systems, 2017 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified

Conference (S3S), Burlingame, CA, 2017, pp. 1-2.

8. T. Takafumi, A. Alam, S. Pal, Z. Wan, S. C. Jangam, G. Ezhilarasu, A. Bajwa, and S. S. Iyer,

“FlexTrate®” - Scaled Heterogeneous Integration on Flexible Biocompatible Substrates, Proc.

of IEEE Electronic Components and Technology Conference (ECTC), Orlando, FL, USA,

2017, pp. 649-654. doi: 10.1109/ECTC.2017.226

9. A. Kumar, Z. Wan, W. Wilcke and S. Iyer, Towards Human-Scale Brain Computing Using

3D Wafer Scale Integration, ACM Journal of Emerging Technologies in Computing Systems

(JETC) 13 (3), 45

10. Q. Wei, H. Qi, W. Luo, D. Tseng, S. Jung Ki, Z. Wan, Z. Göröcs, L.A. Bentolila, T. Wu, Ren

Sun, and A. Ozcan, Fluorescent Imaging of Single Nanoparticles and Viruses on a Smart-

Phone, ACS Nano DOI:10.1021/nn4037706 (2013)

11. Q. Wei, E. McLeod, H. Qi, Z. Wan, R. Sun, and A. Ozcan, On-Chip Cytometry using

Plasmonic Nanoparticle Enhanced Lensfree Holography, Scientific Reports (Nature

Publishing Group) DOI:10.1038/srep01699 (2013)

12. Q. Wei, E. McLeod, H. Qi, Z. Wan, R. Sun and A. Ozcan, Lensfree holographic cytometry

using plasmonic nanoparticles, 2013 IEEE Photonics Conference (2013)

1

Chapter 1: Introduction

Despite the significant development of Moore’s Law in the last few decades, biological

systems, the brains in particular, still have superior cognitive capability and energy efficiency

compared with the existing computers. The power consumption of the human brain is only about

20 Watts [Drubach 00], a fraction of the power requirement of modern computing systems. In

contrast, the brain can work on many cognitive tasks unsolvable by computers. As a result,

neuromorphic computing systems [Mead 89] have been inspired by neuroscience to improve the

cognitive performance of the computing system and its energy efficiency. Among many of the

neuromorphic algorithms, artificial neural networks (NNs) are inspired by the brain structure and

proposed by McCulloch in 1943 to develop an understanding of neurophysiology and provide a

new method for calculation [McCulloch 43]. In 1958 Rosenblatt proposed the perceptron model

for pattern recognition while mentioning that “higher order functions” (e.g., speech,

communication, thinking) might be achieved by more advanced models [Rosenblatt 58].

Unfortunately, there are no practical computing engines at that time, limiting the research to

mathematical analyses.

The spotlight turned to the artificial NNs until the famous Alexnet [Krizhevsky 12]

appeared and achieved much better cognitive performance (i.e., classification accuracy) than any

other contemporary machine learning solutions on the ImageNet classification challenge (1000-

class image recognition) [Deng 09]. The Alexnet was deployed on a commercial GPU, and was

able to be trained on the ImageNet dataset in several days. Since then numerous applications and

systems based on neural networks have been developed to advance artificial intelligence (AI) and

2

surpassed human performance in many challenges [Russakovsky 15, He 16, Shafiee 16, Real 17,

Guo 17, Silver 17, Jouppi 17, Desoli 17, Chen 17, Zheng 18, LeCun 19, Cai 19].

Artificial NNs, including multi-layer perceptrons (MLP), convolutional neural networks

(CNN), and deep neural networks (DNN), are intensively used by the industry for commercial

applications [LeCun 15, Jouppi 17]. It is observed that artificial NNs tend to perform better as they

expand in size. As shown in Fig. 1. 1 (adapted from [He 16]), for a given image classification

challenge, a larger network can achieve a lower error rate. Furthermore, as the challenge becomes

more difficult (from 1000-class ImageNet to 10-class CIFAR-10 dataset [Krizhevsky 09]), a larger

network is required to reduce the error rate to potentially match it to a simpler challenge. Therefore,

as people try to use artificial NNs for more advanced problems, the size (size of layers and number

of layers) of the artificial NNs is expected to grow. As a result, there is also an increasing demand

for advanced hardware to reduce the energy efficiency gap between the brain the computing

machines to calculate artificial NNs more efficiency in both time and energy.

The advanced hardware needs to be suitable for neuromorphic algorithms such as artificial

NNs. And thus its design should consider for several properties:

(a) Distributed and parallel operations. Most computations of the artificial NNs can be

distributed and parallelized (like the brain), especially for DNNs that have many computing

operations independent of each other. These can be executed in parallel. Thus, the graphics

processing units (GPUs) [Nvidia 15] become more favored as the primary workforce for artificial

NNs computations than the central processing units (CPUs) because their architecture supports

more cores per chip for distributed computing in parallel threads.

(b) Reduced complexity of instructions and dataflow. Artificial NN computation

workload is mainly multiplication and addition with few other arithmetic operations (e.g., taking

3

maximum). Also, the data dependencies between operations are very predictable (almost no

conditional decisions or loop structures). Instead of the x86 instruction set, many of the recent

digital artificial NN accelerator designs adapt the RISC architecture [Desoli 17]. In flexible

platforms such as field-programmable gate arrays (FPGAs), dataflow and resource utilization can

be improved by hardware-software co-optimization, making the systems more efficient than

general-purpose computing engines [Zhang 18]. Furthermore, application-specific integrated

circuits (ASICs) provide the highest degree of freedom for optimized architecture and instruction

set to maximize computing efficiency [Chen 17, Jouppi 17].

(c) Data-intensive computing: despite the simplicity in the instructions, artificial NN

computations are very data-intensive. As a result, the von Neumann bottleneck [Backus 78]

becomes more critical as the systems scale up, demanding more data to be moved across the

memory hierarchy to the processing elements. Therefore, the gating factor of the speed and even

energy efficiency of such computation becomes the utilization of memory bandwidth, instead of

the arithmetic operations themselves [Zhang 15], which can be visualized using the roof-line

model [Williams 09]. This also limits the marginal gain of “More Moore” for related systems and

calls for innovation in the compute-memory interaction. To summarize, Fig. 1. 2 shows the

comparison of artificial NN computation performed in different platforms in terms of time

efficiency (throughput) and energy efficiency.

Another field of growing interest is to use analog in-memory computing for artificial NN

operations. Specifically, use Ohm’s Law (𝐼 = 𝐺 ∗ 𝑉) for multiplication and conservation of

charge for summation to compute the dot-product and vector-matrix multiplication (VMM). It also

happens that computations of artificial NNs do not require high precision for cognitive applications

[Rastegari 16], and thus costly high-precision analog circuits may not be required. In addition, due

4

to the fixed data flow and its simplicity in the organization, analog devices can be used to store the

weight matrices, while the VMM can be done in the analog memory itself. It is estimated that the

analog non-volatile memory (NVM) can be used to significantly increase the throughput and

efficiency with respect to digital implementations (Fig. 1. 2). Many emerging analog NVM devices,

such as phase-change memory (PCM) [Burr 16, Burr 14], conductive bridging RAM (CBRAM)

[Valov 11], resistive RAM (RRAM) [Wong 12, Seo 11] and spin-transfer-torque RAM (STT-

RAM) [Sengupta 16, Vincent 15] can be used in a crossbar array to implement analog in-memory

computing of artificial NNs.

As previously mentioned, the development of artificial NNs depends on scaling, and

therefore requires the hardware technology to be scalable, both in terms of scaling up (increasing

computing density) and scaling out (increasing number of chips in a system). It is also important

to evaluate how the scaling affects the performance of artificial NNs in terms of accuracy, as they

might not require as much investment in the hardware for high precision as in general-purpose

computations.

To indicate a viable path for advanced and efficient computing hardware for the artificial

NNs, this dissertation proposes a design of scalable and analog neuromorphic computing system,

leveraging the highly scalable (scaling-up) commercial CMOS technology, featuring the charge-

trap transistor (CTT) [Gu 19] as the analog device. The system is also scalable for scaling out by

leveraging novel system integration technologies. A neuromorphic engine for neural network

inference, featuring the CTT, is designed and fabricated to evaluate the feasibility and performance

of the CTT as an analog computing element.

The dissertation is organized as follows: Chapter 1 provides the motivation for scalable

and analog neuromorphic computing systems.

5

Chapter 2 introduces a CMOS-compatible and commercially available device, the charge-

trapping transistor (CTT), and demonstrates how it can be used and optimized as analog memory.

CTTs are also benchmarked with other state-of-the-art analog memory devices for neural network

computing engines.

Chapter 3 introduces a design for a CMOS-compatible analog in-memory computing

engine for different types of neural networks, including multi-layer perceptron and convolutional

neural networks, and how the system can be scaled out for very large neural networks.

Chapter 4 investigates the resiliency of neural networks due to the imprecise nature of the

analog neuromorphic systems. As it identifies the degradation of network and network resiliency

for larger networks, it also proposes a modified training method to enhance resiliency without any

extra cost in the inference engine to clear the obstacle for scaled analog computing systems.

Chapter 5 discusses the challenges for the scaled-out systems for deep neural networks and

evaluates novel fine-pitch integration technologies, such as the Si-interconnect fabric, for system

scaling.

Chapter 6 shows the design of a CTT-based mixed-signal in-memory computing engine,

the NeuroCTT, and the testing results from the fabricated chips.

Finally, this dissertation concludes with a summary of the presented findings and an

outlook on the future of scalable and analog neuromorphic computing systems.

6

Fig. 1. 1 The effect of scaling of the ResNet [He 16] (a state-of-the-art neural network

structure). The ImageNet challenge is an image classification problem for 1000 classes while

CIFAR-10 is a simpler problem (10 classes only). For each of the problem, the error rate

decreases as the network scales up.

Fig. 1. 2 The throughput on image recognition application and the efficiency (defined as

throughput per Watt) of some typical and novel architectures.

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+00 1.00E+01 1.00E+02 1.00E+03 1.00E+04 1.00E+05

Th
ro

u
gh

o
u

t
(f

ra
m

e
s/

s)

Energy Efficiency (frames/J)

Benchmark for AlexNet

Phone (28nm) [Kim15]

CPU (14nm) [Nvidia 15]

GPU (20nm) [Nvidia 15]

FPGA (28nm) [Zhang 16]

TPU V1 [Jouppi 17]

ASIC 28nm [Desoli 17]

Analog in-memory computing
(approx.)

7

Chapter 2: Charge-Trap Transistor as CMOS

Compatible Analog Memory

2.1 Introduction

Analog memories store a continuum of states which can be grouped into more than two

“significantly separated” distributions (2 states will be a digital memory). In the electrical domain,

the states usually are defined by current values at a given voltage bias, or threshold voltage values

at a given threshold current. Although every real device may be treated like analog memory,

observing the memory state inevitably digitizes the states under the limitation of the sensing circuit.

As a result, digital memories are the ones whose sensing circuit gives two possible outputs for

each cell, normally as “0” and “1”. In the meantime, the sensing circuit of the analog memories

should be able to distinguish more than two states, while the cost of the sensing circuit is balanced

with the number of states for detection. In general, a device can be a good candidate of analog

memory with the following characteristics:

(a) A wide memory window for a large number of states. Any programmable physical

memory can be characterized for a probability density function (PDF) of its possible states.

The information stored in this memory can be obtained by collecting the well-separated

groups in the probability density function, which should be more in a wider memory

window (i.e., the range of the states), as shown in Fig. 2. 1.

(b) Distribution of the states. When the state of the analog memory is interpreted by

converting into digital values (more than 2), the relative positions and distribution of the

states are irrelevant if the sensing circuit can distinguish the states. However, in the domain

of analog in-memory computing, the stored values (e.g., current under a given bias)

8

themselves might be used directly as an operand for the computation based on natural laws

(e.g., I = I1 + I2) instead of arithmetic laws. Therefore, the relative positions of the states

should be compatible with the intended computation. In the case of linear operations, such

as addition, uniformly distributed states across the memory window are preferred to reduce

the potential error. The distribution of the states can then be modeled for evaluations at a

higher level.

(c) Stable states (i.e., good data retention). The distribution of states needs to be

evaluated for its retention to meet the requirement of some applications. It is possible to

strengthen data retention by refreshing, as implemented for dynamic random-access

memory (DRAM) and spin-transfer torque magnetoresistive RAM (STT-MRAM) [Shihab

Fig. 2. 1 Top: memory window and state distribution of a digital memory. “0” state and “1” are

achieved by writing “0” and “1” to the memory cell. Middle: memory window and state

distribution of an analog memory with 4 states distributed linearly (roughly equally spaced).

Bottom: memory window and state distribution of an analog memory with 4 states distributed

non-linearly.

9

16]. However, the number of analog states increases the cost of the detection and refreshing

circuit, which might significantly undermine the advantage of the system and should be

avoided if possible.

(d) Analog memory used for frequently writing and re-writing needs to be qualified for

its endurance and the write speed. For example, the neural network training operation

requires sufficient symmetry of the incrementing and decrementing the memory value

[Haensch 18]. However, these requirements are loosened if the application, such as neural

network inference, requires only frequent reading but infrequent writing and re-writing.

While lots of materials and devices can exhibit properties of good analog memory

described above, they need to be benchmarked against the digital counterpart at the system level,

in terms of latency, energy efficiency and area cost. Therefore, it is, in general, preferred that the

memory candidates leverage the core of the Moore’s law - the CMOS technology. Many of the

emerging analog memories today focus the R&D effort in the integration with the CMOS

processes [Burr 16], which also makes it easier for the integration with existing silicon intellectual

properties (IP) for optimized computing performance.

In this chapter, a CMOS-compatible analog memory, the charge-trap transistor (CTT), is

characterized and optimized for a competitive analog non-volatile memory.

10

2.2 Characterization of CTTs for Analog Memory

2.2.1 Basic Operations

The charge-trap transistor (CTT) is a n-type metal-oxide-semiconductor field-effect

transistor (nMOSFET) that uses high dielectric-constant (high-k) materials as its gate dielectric.

Because such dielectric material can replace silicon oxide as a more reliable gate dielectric and is

supported by the high-k metal gate (HKMG) process, it is ubiquitous in all logic transistors since

the 45nm technology node [Ghani 00, Auth 08]. During HKMG fabrication, oxygen-induced traps

are formed in the gate dielectric. These traps can capture electrons in the channel and release the

captured electrons to the channel through tunneling [Cartier 06]. The trapped charge does not

Fig. 2. 2 The charge trapping and de-trapping of the CTT devices is manifested by the shift in

their threshold voltage after programming (PRG) and erasing (ERS) events. The shift in

threshold voltage provides a significant dynamic range in the sub-threshold drain current of the

device. The subthreshold current used for most characterizations is the inference current Iinf,

measured at VG = 0.2V, VD = 0.05V, VS = VSub = 0V. The figure shows the IDS-VGS

characteristics after the event in the order: PRG1, ERS1, PRG2, ERS2

11

require energy to remain trapped, and therefore the CTT device as analog memory is non-volatile.

A high gate-to-source bias (VGS) with high drain current (ID) helps to support significant and stable

charge trapping for programming (PRG), while a high negative gate-to-source bias can de-trap the

charges for erasing (ERS). As the trapped charges generate an electric field in the channel, a shift

in the MOSFET’s threshold voltage can be observed (Fig. 2. 2). Such phenomenon has been shown

in 32nm, 22nm bulk and silicon-on-insulator (SOI) structures, 14nm FinFET [Khan 16], and 7nm

FinFET [Khan 19]. For the application of digital multi-time programmable memory (MTPM), the

retention of 10 years at 105°C has been shown in 32nm and 22nm technology nodes [Viraraghavan

16]. In this chapter, all device characterization data are based on standard logic devices from

Globalfoundries 22nm fully-depleted SOI (22FDX) technology [Carter 16] with device width of

428nm unless otherwise specified.

By using the sub-threshold drain current as the analog information stored in the CTTs,

CTTs become analog memory with a substantial (up to 1,000) dynamic range [Gu 19]. For the

characterization of the CTTs, we define its threshold voltage Vth as the gate voltage when VD =

50mV, VS = 0V and ID = 200nA, and define the inference current (Iinf) as the sub-threshold drain

current at VGS = 200mV and VDS = 50mV (Fig. 2. 2). In all experiment results shown, Iinf is

measured with the high-resolution single measurement unit (HRSMU) in the Keysight B1500A

parameter analyzer (1fA to 100fA resolution) [Keysight 18]. The Vth is extrapolated with the

subthreshold slope measured in the ID-VG sweep at VDS = 50mV, VGS = 0V, 50mV,

100mV,…,300mV (or higher, depends on the experiment) when the device is in the subthreshold

region (i.e., the subthreshold slope 𝜕log(ID)/ 𝜕VG is almost a constant). As logic devices, CTTs are

designed for a nominal voltage of 0.8V, with a +/- 10% tolerance from the foundry’s specification.

In Fig. 2. 2, the device PRG is done by using a 0.5ms of 2.7V VGS pulse with a 1.5ms of 1.2V VDS

12

pulse, which starts 0.5ms earlier and ends 0.5ms later than the VGS pulse. Also, the ERS is done

by using a 0.5ms of -2.7V VGS pulse while VDS is grounded.

2.2.2 Charge Trapping in Bulk-Oxide and Interfacial Traps

The location of the traps for the charge trapping in the device depends on the relative bias

points of the device. In this section, we discuss the charge trapping in the bulk-oxide traps and

interfacial traps. A commonly studied case on such logic devices is the negative or positive-bias

temperature instability (NBTI or PBTI) [Jeppson 77, Khan 15], where the Vth of the device can

shift due to a negative or positive gate bias. For nMOSFETs, PBTI is more significant due to the

positive VGS used during most operations. PBTI induces the Vth shift by trapping charges to the

bulk-oxide traps. While PBTI can also induce the Vth shift, it is not as significant as the proposed

PRG method, which also mainly traps charge in the bulk-oxide but enhanced by the resistive self-

heating from the large drain current [Khan 15]. Fig. 2. 3 shows the Vth shift induced by both PBTI

(high VG, with VS = VD = 0V for 20ms) and the CTT PRG method (high VG, with VD = 1.2V, VS

= 0V for 5ms). The amount of charge-trapping by PRG is almost three times more efficient and

has good retention. It has been reported that the self-heating enhanced CTT PRG method can retain

70% of the trapped charge at 105 °C for ten years [Viraraghavan 16].

Another method to leverage charge trapping for device Vth shift is to use hot-carrier

injection (HCI), which requires very high VDS to generate interfacial traps between the oxide and

the drain side channel [Hu 85]. It has been shown that HCI can be used to shift Vth significantly

with very good retention (< 10% charge loss in 10 years at 125 °C) [Ma 19]. But it can only be de-

trapped by high temperature and long time (> seconds) annealing [Pobegen 13]. The bulk-oxide

trapping, on the other hand, can be reversed without heating (resistive self-heating during negative

13

VGS is impossible due to the off-state of the device) by applying high VGS, with the drain floated

or shorted to the source.

Fig. 2. 4 shows the CTT’s Vth shift during alternating PRG and ERS events, using the same

set of VG pulses but different VD magnitude. It shows that when higher VD is used (i.e., more

interfacial traps generated by larger HCI), the Vth shift is larger, and the remaining Vth change (i.e.,

trapped charge) after ERS is more significant. Table 1 summarizes the three different methods to

induce charge-trapping in the n-type MOSFETs.

Therefore, to use CTTs as an analog re-writable non-volatile memory, the self-heating

enhanced charge-trapping in the bulk-oxide traps is the best mechanism. To avoid the effect from

the non-reversible (at room temperature) interfacial traps, the CTTs should first be initialized by a

Fig. 2. 3 The amount of Vth shift for virgin CTT devices using PBTI (VD = VS = 0V, 5ms) and

self-heating enhanced CTT PRG (VD = 1.2V, VS = 0V, 20ms).

Fig. 2. 4 The Vth shift of CTTs during alternating PRG and ERS events under the same series

of VG pulses but with different VD.

14

PRG/ERS cycle. Then the memory window of the CTT becomes more consistent for a multi-time

programmable analog memory.

2.2.3 Gate Leakage

Gate leakage of the CTTs changes as the number of total traps and occupied traps changes

due to the PRG and ERS operations. Fig. 2. 5 shows the device ID-VG, IG-VG characteristics at the

virgin state, and after a series of PRG pulses. It shows that as the amount of the trapped charge

increases, the gate leakage increases due to the increasing trap-assisted tunneling and barrier

distortion [DiMaria 95]. This manifests as the measured gate leakage of the CTT increases after

PRG and decreases after ERS. In addition, for the same amount of trapped charge (i.e., Vth), the

gate leakage increases if the same Vth is obtained after more PRG/ERS events. This suggests that

PBTI-like stress could generate traps in the bulk-oxide, which increases the gate leakage as the

stress-induced leakage current (SILC) [Cartier 09]. Fig. 2. 6 shows the gate leakage (VGS = 0.8V,

VDS = 0.05V) of a CTT as it experiences alternating PRG and ERS events.

Table 1 Summary of the PBTI, self-enhanced CTT PRG and HCI induced charge trapping

 VGS VDS Major traps

used/generation

Write time Retention Re-

writability

PBTI High Zero Bulk-oxide traps Moderate

(~sub-ms)

Poor Very good

Self-

heating

enhanced

CTT PRG

High Moderate Bulk-oxide traps

and interfacial

traps

Short

(~us)

Good Good

HCI Mode

rate

High Interfacial traps Long

(> ms)

Very

good

N/A without

annealing

15

Fig. 2. 5 The change of the ID-VG and IG-VG characteristics before and after CTT PRG and

CTT ERS which is after PRG. The gate leakage increases after PRG, and decreases after ERS.

16

2.2.4 Closed-Loop Verification Requirement

The device variation due to the manufacturing process generates a variation on the memory

window of the CTTs. For example, the virgin devices have a variation of the Iinf, as shown in Fig.

2. 7 for 5 CTT arrays in different dies. While the device variation can be reduced by increasing the

size of the device to reduce the effect of dopant variation, it increases cost in area. In addition, for

different devices, the change of Iinf due to the same PRG operations can have a spread distribution,

as shown in Fig. 2. 8, similar for ERS, as shown in Fig. 2. 9. Therefore, to write the CTT to

accurate analog states closed-loop in a read-write-read process (Fig. 2. 10) is required.

Fig. 2. 6 Left: the gate leakage (VGS = 0.8V, VDS = 0.05V) of the CTT with respect its Vth at

its various analog states during 4 PRG/ERS cycles from 385 PVRS events. Right: Although

the amount of trapped charges can be controlled to the same amount by repeated PRG and ERS

cycles, the gate leakage gradually increases due to the traps generated during PRG. For

example, the data points between 0.022𝑉 < Δ𝑉𝑡ℎ < 0.023𝑉 at different PVRS iterations are

extracted (upper right). Although they have similar Vth, the gate leakage gradually increases

(lower right).

17

Fig. 2. 7 The distribution of the Iinf values of virgin devices in 5 different CTT arrays. All arrays

are on different dies.

Fig. 2. 8 Iinf evolution of 3 different CTTs (same design parameters) during the same series of

PRG events shows large variation of the CTT PRG response from both the variation of the

virgin state (left) and the change of Iinf in terms of step size (right). The positive step in the

right figure is due to the device relaxation between the PRG event and the measurement after

it, which will be discussed in a later section.

18

Fig. 2. 9 Iinf evolution of 3 different CTTs (same design parameters) during the same series of

ERS events shows large variation of the CTT ERS response from both the variation of the

virgin state (left) and the change of Iinf in terms of step size (right). The negative step in the

right figure is due to the device relaxation between the ERS event and the measurement after

it.

Fig. 2. 10 the closed-loop read-write-read flow to write CTT Iinf to target value (i.e.,Itarget) using

PRG to reduce current Iinf and ERS to increase current ERS.

19

2.3 Optimization of CTTs for Analog Memory

2.3.1 Distribution of Analog States

Iinf was the focus of characterization from the section. Since Iinf is a real physical quantity,

it can be used for addition and multiplication (i.e., multiple additions) in analog computation. To

use the CTT as an analog computing element, continuously distributed values of Iinf are preferred

as stored analog information for direct linear computations. Fig. 2. 11 shows the change of Iinf

when constant PRG and ERS pulses are applied successively to the CTT device. The change of

the Iinf is larger in the first few PRG/ERS events than the later ones until the magnitude of VG is

increased. This can be explained by the saturation of the existing traps in the high-k gate dielectric

at the energy levels accessible by the electrons at a fixed VG. Although the stress can generate new

traps [Cartier 09], it is not significant at a relatively low bias (e.g., VG = 1.5V, 2.1V) for short

pulses (< 1ms). If the PRG pulse is increased for more trap generation, the write speed will be

reduced.

Therefore, to distribute Iinf more uniformly, the method of pulsed gate voltage ramp sweeps

(PVRS) [Kerber 09] is used. For PRG, the magnitude of the gate bias gradually increases, and the

drain voltage is held constant to induce self-heating by ID and irreversible HCI-induced charge

trapping (when VDS is too high), as previously discussed in Section 2.2.2. Similarly, negative VGS

pulses are used for fine-step ERS operations while VDS = 0V. This is to gradually access traps at

higher energy levels for charge trapping/de-trapping to get a smoother increment/decrement of the

trapped charge. PRG and ERS VGS pulses of a width of 0.5ms are used, ranging from 1.5V to 2.7V

for PRG and -1.5V to -2.7V for ERS, with 50mV or 100mV increment/decrement as shown inFig.

2. 11. VDS pulses have a constant magnitude of 1.2V for PRG and 0V for ERS, with a1.5ms pulse

width, rising 5ms before and falling 5ms after the VGS pulse. By using the PVRS method instead

20

Fig. 2. 11 (a) the waveform shapes and the magnitude used for the PVRS experiment. Each

PRG event uses 1.5ms pulsed VDS = 1.2V, which starts before and ends after the 0.5ms pulsed

VGS whose magnitude ramps from 1.5V to 2.7V, and with VDS = 0V, from -1.5V to -2.7V for

ERS. (b) normalized Vth (i.e.,ΔVth) of a CTT cycled by using multiple PRG/ERS pulses with

the constant VG magnitude in each cycles, changed for +/-1.5V (blue circles and crosses), +/-

2.1V (red circles and crosses), +/-2.7V (magenta circles and crosses) in one cycle, and the ΔVth

of a CTT cycled by using pulsed voltage ramped sweep (PVRS) which has multiple PRG/ERS

pulses with increasing VG magnitudes, from 1.5V to 2.7V in each cycles (black circles and

crosses). (c) the Iinf from the same experiment in the bottom left figure, showing a much finer

Iinf steps using PVRS method.

21

of constant pulse trains, Iinf states with fine granularity can be achieved and can be finer using finer

steps of the VGS. Fig. 2. 12 shows the achieved Iinf states for random targets in the device memory

window by using PVRS PRG with 20mV and 40mV increment of VG per step from 1.5V to 2.7V.

Because the stop condition is to be equal or less than the target, all achieved values are below the

target. The mean error is −4.31𝑛𝐴 for 20mV steps and −8.64𝑛𝐴 for 40mV steps. Fig. 2. 13 shows

the histogram of the step sizes in both experiments, showing that smaller steps in VG produce

smaller steps in Iinf. However, although the steps are fixed for VG, the step size can still vary

significantly for Iinf, providing another reason for using the closed-loop verification, as discussed

in Section 2.2.4.

Fig. 2. 12 the target Iinf values (generated randomly in the memory window) with respect to the

achieved Iinf values by using PVRS PRG, with VD = 1.2V, VG = 1.5V to 2.7V and t = 0.5ms

for each PRG pulse. PVRS stops only when the measured Iinf (right after last PRG event) is

lower than the target (i.e.,all achieved points are below the reference line of y = x). Two cases

of 20mV and 40mV increment of VG per step are shown. The mean error is -4.31nA for 20mV

step and is -8.64nA for 40mV across 20 CTT devices.

22

2.3.2 Analog Data Retention

Retention is a significant challenge for the CTTs. Because the trapped charges can be

emitted spontaneously from the oxide, threshold voltage, and the read current of a CTT with

trapped charge can change significantly. Since the physical quantity of interest, Iinf, is at the

subthreshold, it is very sensitive to the loss of trapped charge, roughly in an exponential

relationship

𝐼𝑖𝑛𝑓 ∝ exp (
𝑞𝑉𝐺,𝑖𝑛𝑓 − 𝑞𝑉𝑡ℎ(𝑄𝑡𝑟𝑎𝑝𝑝𝑒𝑑)

𝑘𝑏𝑇
)

where 𝑉𝐺,𝑖𝑛𝑓 = 0.2𝑉 is the gate voltage for Iinf measurement, 𝑉𝑡ℎ(𝑄𝑡𝑟𝑎𝑝𝑝𝑒𝑑) is the

threshold voltage as a function of the trapped charge 𝑄𝑡𝑟𝑎𝑝𝑝𝑒𝑑, 𝑘𝑏 is the Boltzmann constant, and

Fig. 2. 13 the step of Iinf achieved by the PVRS sequences with 20mV and 40mV VG steps in

the experiment shown in Fig. 2. 12.

23

𝑇 is the temperature. The amount of charge loss, both for the bulk-oxide traps and the interfacial

traps, as a function of time 𝑡, can be modeled as

𝑉𝑡ℎ(𝑡) ∝ exp (−
𝑡/𝜏𝑡𝑟𝑎𝑝

𝑇
)

where 𝜏𝑡𝑟𝑎𝑝 is the time constant for the emission of trapped charge. 𝜏 can be different for

traps of different types and at different energy levels. The charge loss is accelerated by elevated

temperature. Fig. 2. 14 shows the percentage of trapped charge loss in programmed CTT devices

at room temperature and at elevated temperature (85C) for 1, 10, and 100 hours. This shows that

CTTs are most suitable for low-temperature environments.

To improve charge retention, Fig. 2. 15 shows that the amount of charge loss at a constant

temperature (e.g., room temperature) can be empirically predicted and compensated by over-PRG

of the device, where the magnitude of the relaxation (i.e., compensation) Δ𝐼𝑖𝑛𝑓 is a function of its

final Iinf state [Gu 19]. In addition, resistive heating during read operations should be minimized

to improve the retention of the stored data.

To apply CTTs in high-performance systems, the target resolution of the CTTs needs to be

reduced according to the retention requirement. The amount of required resolution reduction can

be estimated by modeling the relaxation over time. Fig. 2. 16 shows the relaxation of the CTT

devices at both room temperature and elevated temperature (85C). The discrepancy between the

linearly fit model for the room-temperature and baked environment is the larger intercept at the

baked environment due to the systematic acceleration of the relaxation. Therefore, the relaxation

should be modeled not only with respect to the analog state (Iinf) of the device, but also to the time

24

for which is retention is measured. The new model is modified based on the previous model [Gu

18], so that:

Δ𝐼𝑖𝑛𝑓 = −0.075 ∗ 𝐼𝑖𝑛𝑓,𝑅𝐴 + 𝐵(𝑡, 𝑇)

Fig. 2. 14 Box and whisker plot of 40 devices programmed to random Vth values and the

retention of the trapped charge over time at room temperature (top) and at 85 degrees Celsius

(bottom). The de-trapping of the trapped charge is accelerated greatly at the elevated

temperature.

25

where 𝐼𝑖𝑛𝑓,𝑅𝐴 is measured right after the last PRG event of the CTT and Δ𝐼𝑖𝑛𝑓 is the relaxation

measured with respect to 𝐼𝑖𝑛𝑓,𝑅𝐴. 𝐵(𝑡, 𝑇) represents the average magnitude of the relaxation as a

function of time (t) and temperature (T). In the previous model [Gu 18], 𝐵(𝑡, 𝑇) = 114.5𝑛𝐴 is

constant. The linear fit of the function 𝐵(𝑡, 𝑇) with respect to log(t) is shown in Fig. 2. 17 which

is a stronger function of time (i.e., larger
𝜕𝐵

𝜕𝑡
) when temperature is high. In this semilog plot, slope

and intercept of the linear model at the room temperature is 𝑘25𝐶 = 2.19 (nA/log10(hours)) and

Fig. 2. 15 (a) Relaxation of the Iinf current after PRG is measured and can be modelled using

linear regression as a function of the Iinf measured right after the last PRG event (adapted from

[Gu 19]). (b) The relaxation model can be used to offset the PRG targets so it over-PRG the

device to compensate for relaxation. (c) The device measured after 200 hours of relaxation (at

room temperature) approaches to the target line (measurement = target). While the model in

(a) is extracted based on 1 hour relaxation, it can be applied for compensating longer relaxation

time.

26

𝑏25𝐶 = 47 (nA). At the baked temperature (85 degrees Celsius), 𝑘85𝐶 = 10.4 (nA/log10(hours))

and 𝑏25𝐶 = 157 (nA).

Fig. 2. 16 Amount of Iinf change (Delta Iinf) of the CTT devices at room temperature and at

elevated temperature (85C). The room temperature retention is well predicted by the previous

model [Gu 18]. The major difference between the linear models is their intercept values, which

need to be adjusted for the systematic acceleration of charge loss due to baking.

Fig. 2. 17 Linear fit of the intercept of the delta Iinf model, 𝐵(𝑡, 𝑇)as a function of time (log) at

different temperature.
𝜕𝐵

𝜕𝑡
 is larger at higher temperatures.

27

2.3.3 In-Array Write/Erase Parameters

Based on the previous observation in Section 2.2.2, the accessibility of the bulk-oxide traps

depends on the magnitude of VG. In contrast, the accessibility of the interfacial traps depends on

both VG and VD. Since the bulk-oxide traps are the preferred traps for reversible trapping and de-

trapping of the charge, it is ideal to have a low VD (that is still sufficient for self-heating) and high

VG (without breaking the gate dielectric) for a single CTT device to work as an

analog memory. However, a high VGD and VGS can become problematic when PRG operation is

done in an array. Suppose the array structure is designed, as shown in Fig. 2. 18, where gates of

the CTTs in a row are shorted, and the drain/source terminal of the CTTs in a column are shorted,

respectively. When device 𝐷11 is selected for PRG, the devices sharing the gate or source/drain

are half-selected. In addition, the voltages to apply for all terminals should not only provide good

programmability to the selected device, but also ensure the half-selected and unselected devices

are not affected by this PRG operation.

Fig. 2. 18 Schematic of a CTT array. When one device (e.g., 𝐷11) is selected for some operation

(e.g., PRG), the devices in the same row (𝐷12) and column (𝐷21) are half-selected.

28

For the target device (i.e.,𝐷11), assign VS1 = 0V as a global reference, high VG1 and high

VD1 is required for the PRG operation. As a result, VDS of the column-selected device (i.e.,𝐷21)

will also be high. To avoid HCI-type charge trapping in 𝐷21, the gate of the other row must be low

(i.e.,𝑉𝐺2 < 𝑉𝑡ℎ2), but not too low to induce ERS behavior (i.e.,𝑉𝐺2 − 𝑉𝐷2 > −1.5𝑉). Based on

these restrictions, 𝑉𝐺2 = 0𝑉 is an option for the unselected rows’ gates. For the row-selected

devices (i.e.,𝐷12), low device current is required to avoid PRG behavior, and therefore 𝑉𝑆2 = 𝑉𝐷2.

Since 𝑉𝐺1 is high and 𝑉𝐺2 = 0𝑉. 𝑉𝑆2 should be about the middle of these two levels to avoid both

PBTI at the row-selected devices and ERS behavior at the unselected devices (i.e.,𝐷22).

Based on these restrictions, we select 1.5𝑉 < 𝑉𝐺1 < 2.7𝑉 during the PVRS-PRG scheme,

𝑉𝐷1 = 1.2𝑉, 𝑉𝐺2 = 0𝑉, 𝑉𝑆2 = 𝑉𝐷2 = 1.2𝑉. The drain voltages are always first raised before the

𝑉𝐺1 rises to avoid PBTI on the row-selected devices during the transient time. A similar analysis

can be done for PVRS-ERS, and we select 0𝑉 < 𝑉𝐺1 < 1.2𝑉 , 𝑉𝐷1 = 𝑉𝑆1 = 2.7𝑉, 𝑉𝐺2 =

1.5𝑉, 𝑉𝑆2 = 𝑉𝐷2 = 1.5𝑉. For in-array ERS operations, the gate voltages are always first raised

before 𝑉𝐷1, 𝑉𝑆1 rises to avoid NBTI on the column-selected devices.

To verify the PVRS-PRG method in the array. An experiment is done in the CTT array

where every two columns’ drain lines are shorted. Over-PRG is also used to compensate for

relaxation. Fig. 2. 19 shows the in-array CTT devices fine-tuned to random targets using PVRS-

PRG. For the half-selected devices, including row-selected and column-selected, the error of the

device before and after their twin/neighbor devices are programmed, is shown in Fig. 2. 20.

29

Fig. 2. 19 The target and the device Iinf measured after 2, 20 and 200 hours relaxation at room

temperature for the selected devices (top). The error can be modeled as a Gaussian distribution

centered around 0nA for the selected devices (bottom).

30

Fig. 2. 20 The target and the device Iinf measured after 2, 20 and 200 hours relaxation at room

temperature for the half-selected devices (top). The error can be modeled as a Gaussian

distribution centered around 0nA for the selected devices (bottom).

31

2.3.4 CTT Device and Array Reset

A critical advantage of the CTTs’ charge-trapping through bulk-oxide traps is to enable

room temperature ERS of the device to reset. However, since the room-temperature ERS cannot

de-trap or anneal interfacial traps [Ma 19], the memory window of the CTT will be reduced for

CTTs subject to reset. Fig. 2. 21 shows the evolution of Iinf during four repeated cycles using the

PVRS-PRG (VG from 1.5V to 2.7V) and PVRS-ERS (VG from -1.5V to -2.7V) methods (Fig. 2.

11) at different PRG drain bias points (0.8V, 1V, 1.2V, 1.4V). After the first PRG/ERS cycle, the

usable memory reduces (assuming the conditions for PVRS-PRG/ERS do not change) depending

on the PRG VD (i.e., interfacial traps).

Fig. 2. 21 the evolution of Iinf of CTTs under 4 cycles of PVRS-PRG/ERS, each cycle consists

of 48 PVRS-PRG followed by 48 PVRS-ERS. Four different VD values used during PVRS-

PRG are compared. Because the proposed ERS method is at room temperature and cannot de-

trap interfacial traps, the memory window degrades. Higher VD during PVRS-PRG traps more

charge to the interfacial traps and therefore suffer more from memory window degradation.

The one-time usable memory window, re-usable memory window and window degradation are

roughly marked for the case of PRG VD = 0.8V.

32

To remove the contribution of the interfacial traps from the memory window, an

initialization cycle can be deployed. Here a PRG/ERS cycle is applied to the CTT before the actual

writing to its target. The initialization will ensure that the remaining memory window is mainly

from bulk-oxide traps and therefore, reusable. Fig. 2. 22 shows the distribution of an array of CTTs’

Iinf at the virgin state, and after two initialization cycles. The memory window of the devices in the

array is roughly the minimum Iinf of that array since Iinf decreases exponentially with increasing

Vth and can be very close to zero.

The CTTs can be programmed using the same PVRS-PRG method proposed in the last

section. Fig. 2. 23 shows the target and the reused device (after reset) Iinf measured after 1, 10, and

100 hours at room temperature. The error of the PRG result can also be modeled as a Gaussian

distribution. Table 2 shows the mean and standard deviation of the in-array programming error of

CTTs.

Fig. 2. 22 Left: distribution of the Iinf of an array of CTTs at virgin state, after the first and

second initialization cycle. Right: the minimum value of the Iinf in the array, which is roughly

the size of the memory window.

33

Fig. 2. 23 The target and the device Iinf measured after 1, 10 and 100 hours at 300K for reused

devices (left). The errors in all cases can also be modeled as a Gaussian distribution for the

reused devices (right).

Table 2 Summary of the statistics of the errors from CTT programming under different

conditions (program target is randomly selected in the target range)

 Error mean (𝜇𝑒𝑟𝑟𝑜𝑟) Error standard

deviation (𝜎𝑒𝑟𝑟𝑜𝑟)

Target

range

𝜇𝑒𝑟𝑟𝑜𝑟

𝑟𝑎𝑛𝑔𝑒

𝜎𝑒𝑟𝑟𝑜𝑟

𝑟𝑎𝑛𝑔𝑒

One-time 2hr 3.15nA 48.2nA 1200nA 0.26% 4.02%

One-time 20hr 11.4nA 49.7nA 1200nA 0.95% 4.14%

One-time

200hr

22.7nA 51.5nA 1200nA 1.89% 4.29%

Reuse 1hr -24.4nA 39.0nA 500nA -4.88% 7.80%

Reuse 10hr -18.2nA 35.4nA 500nA -3.64% 7.08%

Reuse 100hr -12.2nA 38.6nA 500nA -2.44% 7.72%

34

2.4 Summary

In this chapter, we have demonstrated that the charge-trapping phenomenon in the high-k

dielectric of standard CMOS logic devices can be leveraged for analog data storage with good data

retention at room temperature. The optimal application scenario of CTTs as analog memory is for

one-time use in low-power systems. For multi-time programmability, the memory window will be

reduced while the absolute programming accuracy is similar, and therefore reducing the resolution

of the memory. The reduction of memory window can be alleviated by providing a heated

environment during ERS to de-trap the interfacial traps but at the cost of the extra supporting

circuitries.

Comparing with the other emerging analog devices CTTs have several advantages

1. CTT is CMOS-compatible at advanced nodes (demonstrated up to 7nm [Khan 19]). Unlike

most of the other analog devices, no extra materials or processes are introduced to fabricate

the CTT. As a result, variations and reliability of CTTs are relatively well studied and

controlled, making it a competitive candidate as analog memory, which can be easily

integrated with other existing VLSI designs.

2. In contrast to some two-terminal analog devices such as phase-change memory (PCM)

resistive RAM (RRAM) and memristors, CTT is, by nature, a three-terminal device with a

non-linear selector (i.e., gate) to avoid leakage as the array scales up in size. For two-

terminal devices organized in a crossbar architecture, the selector needs to be added (Fig.

2. 24) [Zhou 14].

3. The mature CMOS technology also ensures a very high yield compared with the emerging

analog devices whose yield can still be challenging. In addition, the proposed methods to

use CTT, including Iinf reading, PRG and ERS, are very repeatable and safe on top of the

35

well-controlled device variation. In contrast, “dead” cells can become a problem for

RRAM due to the device variation and the repeating operations [Zheng 18].

4. The CTTs can be arranged densely in an array because the footprint of the CTTs is very

small due to the advanced node. The charge-trapping mechanism does not have a strict

requirement on the channel length and width of the CTT device.

5. Because the CTTs operate in the subthreshold region, and the relatively small size, the on-

resistance of the CTTs is high compared with other analog devices, making it energy

efficient during read operations and suitable for applications such as neural network

inference.

To benchmark the CTTs with other analog memories for neural network inference, CTT

device parameters are extracted from the experiment for hardware simulation using the

NeuroSim simulator [Chen 18]. The CTTs are simulated with peripheral circuits for an 8-layer

VGG-like convolutional neural network with 8-bit weight and 8-bit activation. The benchmark

result is shown inFig. 2. 25. It shows that the analog inference engine based on CTTs is faster

and more energy-efficient than the compared ones based on phase-change memory [Burr 15],

Fig. 2. 24 Cross-bar array structure of the two-terminal analog memory (e.g., RRAM). Green

dashed arrow shows the current through the target cell. Red arrow shows the leakage current.

The half-selected devices requires a non-linear selector (right) to reduce the leakage (Adapted

from [Zhou 14]).

36

resistive RAM (RRAM) [Jain 19] and spin-transfer torque magnetoresistive RAM (STT-

MRAM) [Kim 11].

Fig. 2. 25 Benchmarking CTT for neural networks against other analog devices using

NeuroSim simulator [Courtesy of Yandong Luo and Prof. Shimeng Yu].

37

3. CMOS-Compatible Analog Neuromorphic

Computing Engine

3.1 Introduction

Neuromorphic electronic systems include a wide range of applications at different levels.

Silicon-based electronic systems can be used to simulate large-scale neural models in real-time

[Silver 07, Schemmel 10, Indiveri 11, Benjamin 14], or to implement a specific function based on

biological structure such as vision [Koch 96] and echolocation [Wen 18]. For machine learning,

various neuromorphic systems are applied for inference of supervised learning, including spiking

neural networks [Merolla 14], multi-layer perceptron [Guo 17], and convolutional neural networks

[Shafiee 16]. Training is also demonstrated in neuromorphic hardware for supervised learning

[Davies 18] and unsupervised learning [Cai 19]. The CTT devices discussed in the last chapter

have also been demonstrated for unsupervised machine learning applications [Gu 18(2)].

In this chapter, we discuss the use of CTTs in a CMOS-compatible analog neuromorphic

computing, with a focus on the inference engines for multi-layer perceptron and convolutional

neural networks. Natural laws, such as the charge conservation, is used to perform analog charge-

based computing for the vector-matrix multiplication (VMM), the major computing workload in

the networks. To maximize the energy-efficiency, the computation is performed in the memory

(i.e., CTT array) to eliminate the requirement for off-chip memory access. In addition, minimum

data conversion from and to the digital domain is used since it does not contribute to real

computations.

38

3.2 Compute VMM in CTT array

Analog memory devices such as CTTs can be arranged into an array to build an analog

vector-matrix multiplication (VMM) engine for applications such as neural networks [Gu 18]. A

basic VMM is defined as 𝒚 = 𝒙𝑾 where 𝒙 is an input vector of 1 * M, 𝑾 is a weight matrix of M

* N. A schematic of the VMM engine based on the CTTs is shown in Fig. 3. 1. In this architecture,

CTTs are arranged in an M * N matrix with M rows and N columns. Each CTT in the array

represents an element in the matrix using its conductance Gmn at a given bias condition

(i.e.,Iinf/VDS from the last chapter, where VDS = 50mV and VGS = 200mV). The gate terminals

of each row of the array are connected by a word-line (WL). The source/drain terminals of each

column of the array are connected by a source-line (SL) and bit-line (BL), respectively. The gates

of the CTTs are used as the terminal to receive the input “on” of VG = 200mV. At the meantime,

the BLs are connected to VD = 50mV, and SLs are connected to VS = 0V, so that the CTT device

which receives an “on” input of VG = 200mV will draw the current of the pre-programmed Iinf

value from BL to SL. When the input is “off”, the WL can be reduced below ground level (e.g.,

VG = -300mV) to reduce the leakage due to VDS > 0.

Following this convention, each WL represents an element of the input vector. As the CTTs

operate in the subthreshold region, the relationship between the VGS and the IDS is exponential,

making it difficult to use the magnitude of VG at each WL for linear calculation. Therefore, the

input values are encoded as pulse-width modulated (PWM) signals 𝑉𝑚(𝑡) = 𝑉0[𝑢(𝑡) − 𝑢(𝑡 −

𝑥𝑚𝛥𝑡)] at the WLs (e.g., the mth row), where 𝑢(𝑡) is the step function, 𝑉0 is the “on” voltage

(200mV), 𝑥𝑚 is the mth entry of the input vector and Δ𝑡 is the unit pulse width when 𝑥𝑚 = 1. For

39

Fig. 3. 1 Top: array of CTTs can be used for vector-matrix multiplication (VMM). Current (e.g.,

Iinf) of CTT devices can be programmed to represent the values in the matrix. Input vector can

be represented by pulse-width modulated (PWM) signal sent to the word-line (WL) of the array,

which connects the gates of the CTTs in a row. Multiplication is thus computed by integrating

Iinf for the time period specified by the PWM signal. Summation is computed by collecting the

drain current of all the devices in a bit-line which connects the sources and drains of the CTTs

in a column, respectively. Bottom: the VMM engine can be directly used for VMM with a bias

term by adding an extra input and an extra row of devices in the array.

40

the time when the input is “high” (200mV), the mth device in the nth column will draw the amount

of charge 𝑄𝑚𝑛 = 𝐼𝑖𝑛𝑓,𝑚𝑛𝑥𝑚Δ𝑡 from BL to SL which is also the multiplication result between the

input value 𝑥𝑚 and the stored matrix value 𝐼𝑖𝑛𝑓,𝑚𝑛. By charge conservation, the total charge moved

to the SL of each column is the dot-product of the input and the CTTs at that column:

𝑄𝑛 = (∑ 𝐼𝑖𝑛𝑓,𝑚𝑛𝑥𝑚

𝑚

) Δ𝑡 + 𝑄𝑙𝑒𝑎𝑘𝑎𝑔𝑒

To obtain accurate dot-product, the charge collection time 𝑇𝑖𝑛𝑡 must be longer than the

longest PWM input signal presented in all WLs, and some charge from leakage 𝑄𝑙𝑒𝑎𝑘𝑎𝑔𝑒 will be

included when some of the WLs are “off” during the charge collection by

𝑄𝑙𝑒𝑎𝑘𝑎𝑔𝑒(𝑇𝑖𝑛𝑡) = ∑ 𝐼𝑙𝑒𝑎𝑘𝑎𝑔𝑒,𝑚𝑛(𝑇𝑖𝑛𝑡 − 𝑥𝑚Δ𝑡)

𝑚

As each column generates the output of a dot-product, the entire array will generate an

output vector that represents the result of the vector-matrix multiplication. In addition, bias terms

𝒃 in 𝒚 = 𝒙𝑾 + 𝒃 can also be calculated in the VMM engine by programming an extra row of the

CTTs to the bias values and adding an extra constant in the input (Fig. 3. 1). A similar structure

can also be built from any two-terminal analog devices, as previously reported [Shafiee 16, Cai

19]. One disadvantage of the PWM scheme is that it cannot directly support negative values, but

negative inputs to the VMM engines are not required in many neural network applications.

While negative inputs are not required in the neural networks, negative values in the

matrices are still required. To represent negative entries in the matrices, the CTT memory cells use

a twin-CTT structure to enable bipolar conductance, where the current from the true device (Iinf
+)

and complement device (Iinf
-) of the cell is processed as a differential current

𝐼𝑖𝑛𝑓 = 𝐼𝑖𝑛𝑓
+ − 𝐼𝑖𝑛𝑓

−

41

To reduce the footprint of the cell, either the sources or the drains of both devices can be

shorted [Gu 18]. Fig. 3. 2 shows the closed-loop read-write-read process to adjust the twin-CTT

cell values using only PRG operation. Virgin twin-CTT cell weights are first measured. Then if

the target weight is below the virgin weight, the “true” device is chosen to be programmed (Iinf
+ is

reduced) to the desired target with over-PRG compensation. Otherwise, the “complement” device

is chosen (Iinf
- is reduced). The programming in the array uses the optimized PRG conditions from

the last chapter. The twin-CTT cell structure does not affect the program accuracy of each of the

devices. Therefore, the programming accuracy of the twin-CTT cell depends on whether both

devices need to be programmed. If both devices are programmed, the standard deviation of the

cell’s error becomes √2𝜎0, where 𝜎0 is the standard deviation of the error of single CTT. In the

flow illustrated by Fig. 3. 2, only one device is programmed for one-time use, and therefore the

standard deviation of the cell’s error is 𝜎0 for one-time use. Fig. 3. 3 shows the accurate

programming of the twin-CTT cells, applying the PVRS-PRG and the over-PRG compensation

models proposed in the last chapter. The mean (𝜇) and the standard deviation (𝜎) of the error for

different conditions are summarized in Table 3.

Fig. 3. 2 Close-loop read-write-verify steps for array fine-tuning. Based on the difference

between the initial weight of the twin-CTT cell and the target weight value, either the “true”

(+) device or the “complement” (-) device is chosen for PRG. The device is read after each

programming step to verify its analog state.

42

The output vector from the VMM, stored as a vector of analog charge, can be discharged

in the form of PWM signals by a constant circuit source. The pulse width from discharging will

Fig. 3. 3 Top: The target (randomly generated in the [-600nA,600nA] window) and the twin-

CTT cell Iinf measured after 2, 20 and 200 hours at 300K. Bottom: the errors in all cases can

also be modeled as a Gaussian distribution centered around 0nA for the Twin-CTT cell.

 Table 3 Twin-CTT cell programming error, mean (𝜇) and standard deviation (𝜎) statistics

 𝜇𝑒𝑟𝑟𝑜𝑟 𝜎𝑒𝑟𝑟𝑜𝑟 Target range 𝜇𝑒𝑟𝑟𝑜𝑟/range 𝜎𝑒𝑟𝑟𝑜𝑟/range

25C 2hr -3.29nA 48.5nA 1200nA -0.27% 4.04%

25C 20hr -3.61nA 51.1nA 1200nA -0.30% 4.26%

25C 200hr -3.07nA 56.8nA 1200nA -0.26% 4.73%

43

be linearly proportional to the stored value and therefore, can be directly used as the input of

another array with a similar structure. This makes it possible to cascade the CTT arrays for neural

networks with multiple layers. However, the storage of an analog charge value, normally on a

leaky capacitor, will have very weak data retention. Refreshing this analog value can demand

costly hardware when a high-resolution sensing circuit is required. Therefore, the computed results,

in the form of analog values, should either be digitized for good data retention or transmitted

quickly, by the next array or to the output channels.

The fabricated CTT array is also verified for the vector-matrix multiplication operations.

Random DC input vectors (200mV for “on”, -300mV for “off”) are fed to the WLs, and the current

at each BL is measured. This captures different moments of the system when the inputs are random

PWM signals, and helps to circumvent the distortion of AC signals by the large capacitance of the

off-chip measurement equipment. The experiment shows that the mean and standard deviation of

the VMM error (ΣI)measured − (ΣI)target is less than 0.5% and 4% of the possible range,

respectively, after up to 200 hours of room temperature relaxation (Fig. 3. 4). The additional error

from PWM inputs is the error of transition between the “on” and “off” of the WL, whose effect

Fig. 3. 4 Vector-matrix multiplication error in the CTT array: 32 random input binary vectors

(10x1) are multiplied with the 5 fine-tuned twin-CTT cell arrays (4x10 each) with Von = 200mV

and Voff = -300mV.

44

depends on the drive strength of the PWM signal generator at the WL and the capacitive load of

the WLs. Its impact on a neural network application is evaluated in the next chapter.

3.3 CTT-Based Analog Inference Engine for Perceptron
Based on the VMM engine introduced in the last section, the analog inference engine can

be readily built for a perceptron A perceptron is a type of neural network featuring full connectivity

between layers of neurons (Fig. 3. 5). Multi-layer perceptrons (MLP) are widely used by the

industry nowadays for machine learning tasks [Jouppi 17]. Due to the CMOS-compatibility of the

CTTs, the peripheral circuits for the analog inference engine can also be designed in the same

CMOS technology that fabricated the CTTs.

A block diagram for the MLP architecture with some key peripheral circuits is shown in

Fig. 3. 6. The network is trained at another training engine and then programmed into the CTT.

During inference operation, CTTs operate at subthreshold bias points. For a complete VMM

engine, the differential current/charge integrator at the end of the BLs can be implemented by op-

amp based CMOS circuits [Razavi 02]. If the input is conventional digital data, it needs to be

converted to PWM inputs to the first array. Similarly, the output of the last array can be converted

to digital signals, but this is not required if the output is fed into another array.

Other than the VMM operations, the non-linear activation function is also required by the

perceptron. One of the most used activation functions is the rectifying linear unit (ReLU), which

suppresses negative inputs to zero and passes the non-zero inputs (i.e.,𝑅𝑒𝐿𝑈(𝑥) = max (0, 𝑥)).

The ReLU function can be implemented by a comparator circuit (Fig. 3. 7) [Gu 18] which produces

a PWM signal as the ReLU’s output while VMM result was discharged by the current source.

Other activation functions can also be implemented using CMOS circuits [Huijsing 13]. The output

of the comparator can be fed to the WL of another CTT array to build a multi-layer perceptron

(MLP).

45

Fig. 3. 5 Mathematical formation of the multi-layer perceptron (MLP) from the biological

neurons. (a) Neurons connect to each other through synapses. (b) The receiving neuron

computes a dot-product between the input (output of previous neuron) and the “synaptic

weights” assigned the associated synapses, followed by a non-linear activation function.

Neurons can be grouped into layers. (c) Single-layer perceptron and MLP have 2 or more layers

of neurons, respectively. They feature fully connectivity that each neuron is connected to all

neurons in the last layer.

46

Fig. 3. 6 The system block diagram of a CMOS analog neural network inference engine. It

shows the interface between the system and the digital input, and the interface between two

network layers. Digital-to-time converters (DTCs) are used to convert the digital input to a

PWM signal for the array for computation. The output of the current integrator at the end of

the CTT array is further processed by a comparator-based activation circuit and discharged by

a constant current source to generate another PWM signal. The pulse-width of the output PWM

signal is proportional to multiplication result, and therefore can be applied as the input to the

next layer. The neural network is trained using training data at other training platforms, before

deployed into the inference engine.

47

The advantage of the CTT-based analog inference engine for MLP is the low latency and

high throughput of the system due to the in-memory computing architecture. For all values used

and generated in the computations, only the input of the MLP and the output of the MLP need to

be communicated to other blocks of the system (e.g., data I/O). Therefore, the time to wait to fetch

data from memory, as required for most digital systems, is significantly reduced. For CTTs, the

single-device response time can be in the order of 10ps [Carter 16], but the read-speed at the array-

level is limited by the capacitive load of the device and the passive elements associated with the

WLs, which can be in the order of 10-9 second/operation depending on the physical design.

The latency of each layer can be divided into two parts, (1) duration of input: when the

array is taking the PWM inputs and simultaneously integrating the dot-product as a charge, and (2)

duration of output: when the charge is discharged as either another layer’s input or the final result

of the MLP. Since the PWM inputs are taken directly from the last layer’s output except for the

first layer, the system’s pipeline is naturally balanced when the duration of the output of each layer

is the same. Fig. 3. 8 shows the pipeline of the proposed MLP inference engine during inference.

Fig. 3. 7 Comparator based circuit to implement rectifying linear unit (ReLU) activation

function. The comparator compares the reference voltage Vref and the voltage stored at the

array’s output capacitor (output of a dot-product) to produce a voltage output (otherwise 0V)

when the reference voltage is lower. As a result, the output is rectified by Vref and the output is

also a PWM signal proportional to the value of Cint(Vout-Vref)/Idischarge only if Vout > Vref.

48

The output duration must be at least as long as the longest output of the layer, which is determined

by the ratio between the maximum charge held at the output capacitor and the discharging current.

However, write-speed of the CTTs is less than 10-2 second/operation due to the closed-loop

read-write-read process, based on our experiment that the average number of iterations for random

targets is about 20 (each is about 0.5ms). Therefore, the required number of CTT memory cells in

the system is the number of weights the network has (assume one cell per weight), and all weights

are required to be programmed to the on-chip CTT memory without leveraging the memory

hierarchy as done in typical digital systems.

Fig. 3. 8 The pipelining of the MLP inference engine during inference. For each layer (L1, L2,

L3), the time used for computation is divided into input duration (𝑡𝑖𝑛) when it is taking the

PWM inputs and integrating the current, and output duration (𝑡𝑜𝑢𝑡) when the integrated charge

is being discharged. 𝑡1,𝑖𝑛,𝐴 represents the input duration of L1 for input A. Since the output

duration of layer L-1 is always the same as the input duration of the layer L, when output

duration is the same for all layers, the system pipeline can be balanced well.

49

3.4 CTT-Based Analog Inference Engine for Convolutional

Neural Networks

Another frequently used type of neural network is the convolutional neural network (CNN)

[LeCun 89]. The CNNs usually have two types of layers (the ensemble of the synaptic weights and

the interaction between layers): the convolutional (CONV) layer and the fully-connected (FC)

layer. The FC layers are the same as the MLP layers and often located at the end of the CNNs after

all the CONV layers. The CONV layers are very similar to the FC layers with two modifications.

First, in the CONV layer, each neuron takes a part of the values from the previous layer as its input,

instead of all values as in FC layers. Second, the neurons’ synaptic weights are repeatedly used

across the input by convolution. Fig. 3. 9 (adapted from [LeCun 15]) shows how the CONV layers,

Fig. 3. 9 In the CNN, CONV layers compute a convolution between the weights and the input

whose output is processed by activation functions such as the ReLU. Pooling is another feature

including maximum pooling and average pooling. Fully-connected (FC) layers are normally

at the end of the CNN, after all the CONV layers, to calculate for the final decision. FC layers

operate the same way as MLP layers.

50

with some auxiliary functions, are typically organized in a CNN for applications (e.g., image

classification).

In addition to the CONV layers, pooling layers are also added to the CNN. Pooling is more

common in the CNNs than in the MLPs with two major types: average pooling and maximum

pooling. Both can be implemented with minor modifications to the MLP hardware. Average

pooling calculates the average of the inputs and can be treated as a dot-product where the weight

vector has the value of
1

𝑛
, where n is the length of the input vector. Maximum pooling calculates

the maximum value of the inputs, which can be implemented by a logic OR gate. If the outputs of

a layer are discharged at the same time, then the output of the OR gate is the longest pulse (i.e.,

the maximum input).

The adaption of the CONV layers makes it possible to train CNNs that are very deep and

perform well in advanced machine learning challenges such as the ImageNet challenge [Deng 09].

CNNs become more powerful by scaling up in the number of layers, weights, and computations.

Fig. 3. 10 shows the number of weights and calculations required by different CNNs with respect

to the network accuracy for the ImageNet challenge (adapted from [Canziani 16]).

As a result, one significant difference between the MLP and CNN is the data flow. In the

MLP architecture discussed in the last section, each layer in the MLP will produce all values

required for the next layer simultaneously in one computing cycle of a layer, including the time to

discharge for the PWM outputs. For the CONV layers in the CNNs, the convolution is computed

using the same weight matrices multiple times, which is not compatible with the MLP architecture.

Since CONV layers and FC layers do not have a fundamental difference in the computations (both

51

are mainly vector-matrix multiplications), there are ways to convert CONV layers to FC layers

and vice versa for the trade-off between memory capacity and memory bandwidth [Zhang 18].

For the proposed CTT analog memory, the memory bandwidth for reading is high, but the

memory bandwidth for writing is low due to the low device programming speed (see Section 2.2).

As a result, the CTT-based analog computing for vector-matrix multiplication requires the weights

to be pre-programmed. To address this issue, two options for CNN computation using the CTT-

base architecture are discussed: (1) store digitized outputs for convolution, and (2) unroll CONV

layers to equivalent MLP layer structures to use the proposed MLP infrastructure.

Fig. 3. 10 The accuracy and the scale of the state-of-the-art convolutional neural networks for

the ImageNet image recognition challenge. The size of the dot represents the number of weights

of that network. In general, higher number of weights and operations are required to achieve

higher accuracy for the challenge.

52

3.4.1 Digitized Storage for Convolution

Since the convolution uses an input multiple times, any computed output from layer L-1

should support repeated use of the computations in layer L. However, in the MLP inference engine,

the outputs are consumed by discharging current, and therefore do not support reset at different

times. For the re-usability of the outputs, they must be digitized and stored in some fast memory

(e.g., flip-flops). This requires the addition of time-to-digital converters at the end of the previous

layer, and the addition of digital to time converters at the beginning of the next layer (Fig. 3. 11).

This architecture treats the analog device array as a processing block for the VMM

computations while the interface to the array block is digital, similar to the existing architectures

[Shafiee 16, Cai 19]. This architecture operates similarly to a digital architecture where computed

outputs are stored and repeatedly used for the convolution. However, one major difference is that

Fig. 3. 11 Compute the CONV layer using the CTT-based MLP engine with the input vector

[x1,x2,x3] and output vector [y1,y2]. The convolution is computed at different times as the inputs

switch from the sub-vector [x1,x2] to [x2,x3]. Extra time-to-digital converters (TDC) are

required after the outputs from array to digitize the outputs for repeated usage required by the

CONV layers. To make it compatible for concatenation, extra digital-to-time converters (DTC)

are also required before the inputs to the array to interface with the digitized outputs from the

last layer.

53

the weights in the CTT matrix (or based on any other analog device) behave as a read-only memory

during the inference due to the low write-speed of the analog memory compared to its read-speed,

as discussed in the previous section.

Since the data-conversion is an overhead that does not contribute to the actual computation,

the energy-efficiency is not optimal due to the extra energy spent on time-digital conversions. A

larger array is more energy-efficient in such architecture due to the sharing of the WLs (sharing

the DTC and the register storing the value for repeated use) and BLs (sharing the TDC). Based on

synthesized logic in GlobalFoundries 22FDX technology, each 8-bit register with the DTC

consumes about PDTC = 0.05 mW and each 8-bit TDC consumes about PTDC = 0.15 mW, both at

1GHz [Moran 20]. Both PDTC and PTDC can be further reduced with state-of-the-art designs. The

power of a charge integrator with the ReLU circuit, designed in the same technology consumes

about 𝑃𝑖𝑛𝑡 + 𝑃𝑅𝑒𝐿𝑈 = 0.5 mW, also at 1GHz [Kittur 20]. Therefore, the power used for

computation and digitization of each array is approximately

𝑃𝑑𝑖𝑔𝑖𝑡𝑖𝑧𝑒 =
1

2
(𝑅 ∗ 𝑃𝐷𝑇𝐶 + 𝐶 ∗ 𝑃𝑇𝐷𝐶)

𝑃𝑐𝑜𝑚𝑝𝑢𝑡𝑒 =
1

2
𝐶 ∗ (𝑃𝑖𝑛𝑡 + 𝑃𝑅𝑒𝐿𝑈) + 𝛼𝐶𝑇𝑇 ∗ 𝑅 ∗ 𝐶 ∗ 𝐼𝐷,𝐶𝑇𝑇 ∗ 𝑉𝐷,𝐶𝑇𝑇 + 𝑅 ∗

𝐶𝑊𝐿𝑉𝐺
2

2𝑡𝑖𝑛,𝑚𝑎𝑥

𝑃𝑡𝑜𝑡𝑎𝑙 = 𝑃𝑐𝑜𝑚𝑝𝑢𝑡𝑒 + 𝑃𝑑𝑖𝑔𝑖𝑡𝑖𝑧𝑒

where the
1

2
 factor in the equations reflects the balanced pipeline structure shown in Fig. 3. 8. 𝛼𝐶𝑇𝑇

is the average activity factor of the PWM input signals based on the average CTT weights

(i.e.,𝐼𝐷,𝐶𝑇𝑇 of the twin-CTT cell).
𝐶𝑊𝐿𝑉𝐺

2

2𝑡𝑖𝑛,𝑚𝑎𝑥
 is the average power to charge up each word-line of the

array with capacitance 𝐶𝑊𝐿 approximated from physical design (200fF / 128 columns [Moran 20]),

54

in the input duration of 𝑡𝑖𝑛,𝑚𝑎𝑥 as discussed in Fig. 3. 8. Using 𝛼𝐶𝑇𝑇 = 0.25, the amount of power

used for computing and the amount of power used for digitizing for each CONV layer of AlexNet

is shown in Fig. 3. 12. A significant portion of the energy used in the system is thus spent on

digitization instead of the actual computing from CTT devices and charge integrator & activation

circuits.

Fig. 3. 12 The power used for analog computing and digitizing CONV layers in AlexNet. A

significant amount of power is used for analog-digital conversion, limiting the energy

efficiency of the system.

0.00E+00

5.00E-04

1.00E-03

1.50E-03

2.00E-03

2.50E-03

1 2 3 4 5

Po
w

er
 (

W
)

Layer Number

Power Breakdown for AlexNet CONV layers
(Digitizing approach)

Time to Digtial Converter Digital to Time Converter

Charge Integrator & Activation CTT Devices

55

3.4.2 Unroll CONV Layers by Weight Duplication

To maximize the energy-efficiency of the computations, unnecessary data-conversion steps

and repeated computations should be avoided. The MLP structure discussed in Section 3.3 is a

good candidate for this purpose. Therefore, CNN should be converted to an equivalent MLP

structure to leverage the MLP computing architecture. The FC layers are already the same as the

MLP layers, and therefore the remaining part is the CONV layers. The CONV layer can be unrolled

to the MLP layer with multiple copies of the duplicating weights. As shown in Fig. 3. 13, all

synaptic weights in the equivalent MLP layer are either duplicate of the CONV layer’s weights or

suppressed to zero. In addition, the direct mapping from a CONV layer to one gigantic array yields

very low array-efficiency since only CTTs around the diagonal positions are used. For better area-

Fig. 3. 13 Compute the CONV layer by expanding it to a FC layer (a layer of MLP). The CTT-

based CONV layer computation with input vector [x1,x2,x3] and output vector [y1,y2]. All inputs

are connected to the expanded array to compute all the outputs at the same time with the

duplicated weights (i.e.,G22 = G11, G32 = G21). Unused weights (i.e.,G12, G31 in grey) need to

be programmed to zero. The expanded array can be effectively partitioned to separated arrays

(each has one charge integrator) to reduce the amount of unused CTT cells. But the capacitive

load needs to be driven by the input PWM generator becomes large regardless of the partition.

56

efficiency, this array can be partitioned into smaller arrays, as shown in Fig. 3. 13. While the

unrolling architecture requires little addition to overhead hardware, it increases the number of

CTTs and CTT arrays needed for each layer. The estimated total area is 565mm2 with all peripheral

circuits [Kittur 20, Moran 20]. Assuming that this area can be roughly fit into a 25mm * 25mm

silicon area, the layers can be mapped onto different slices on the silicon, as shown in Fig. 3. 14(a).

The required width of the silicon area for each network layer is shown in Fig. 3. 14(b). The

required density of the connections between every two layers is summarized in Fig. 3. 14(c), which

is higher for the initial layers. For example, the density of channels between the first two layers is

Fig. 3. 14 (a) Mapping the unrolled AlexNet on a 25mm * 25mm silicon area. All layers are

arranged consecutively so the data flows from the left to the right of the system. (b) The

approximated width of each slice. The numbers for the last few layers (layer 6, 7, 8) might be

larger due to the limitation of physical design, but the increase will be insignificant. (c)

Required connection density for each layer’s output.

57

about 6000/mm, which can be implemented by using six layers of metals with 1 μm pitch, or fewer

layers if the metal pitch can be made finer. Table 4 shows the number of weights (i.e., a twin-CTT

cell) required for the entire network before and after the unrolling needed for each layer of the

AlexNet [Krizhevsky 02]. Table 4 also shows the area and power estimation of the CTTs and

peripheral circuits for the unrolled AlexNet. Communication power consumed in the

communication channels can be estimated by CV2f, assuming the main capacitance is the wire

self-capacitance of 0.2fF/ μm. Using the layout from Fig. 3. 14(a), with V = 0.8V, f = 5MHz, we

approximate that the communication power is less than 10% of the system power estimated in

Table 4, depending on the actual routing.

The advantages of the unrolling approach include the following:

1. The simplicity of the architecture: by enrolling the CONV layers to the form of MLP layers,

data flow in the system never changes, and no explicit instruction is required by the

architecture.

2. Low latency: the total latency of the system roughly scales linearly to the number of layers.

Table 4 Area and power estimation of an unrolled AlexNet implementation based on the CTTs

 Weights Unrolled Layer Area (mm2) Unrolled Layer Power (W)

Alext

Net

layer

Original

weights

Unrolled

weights

CTT Peripheral

circuits

Total area CTT

(DC +

AC)

Peripheral

circuits Total

power

1 3.5E+04 1.1E+08 5.3E-01 1.9E+02 1.9E+02 2.6E+00 7.3E+01 7.5E+01

2 3.1E+05 2.2E+08 1.1E+00 1.6E+02 1.6E+02 5.6E+00 4.7E+01 5.2E+01

3 8.8E+05 1.5E+08 7.5E-01 1.1E+02 1.1E+02 3.7E+00 3.2E+01 3.6E+01

4 6.6E+05 1.1E+08 5.6E-01 6.0E+01 6.1E+01 2.8E+00 1.6E+01 1.9E+01

5 4.4E+05 7.5E+07 3.7E-01 4.0E+01 4.0E+01 1.9E+00 1.1E+01 1.3E+01

6 3.8E+07 3.8E+07 9.4E-02 5.2E+00 5.2E+00 9.4E-01 1.0E+00 2.0E+00

7 1.7E+07 1.7E+07 4.2E-02 4.0E+00 4.0E+00 4.2E-01 1.0E+00 1.4E+00

8 4.1E+06 4.1E+06 2.0E-02 1.9E+00 2.0E+00 1.0E-01 5.0E-01 6.0E-01

Total 6.1E+07 7.2E+08 3.5E+00 5.6E+02 5.6E+02 1.8E+01 1.8E+02 2.0E+02

58

3. High throughput: the latency of each stage (i.e., layer) is easy to balance due to the

similarity of the structure and operation of each stage. Therefore, the system, when

pipelined, will have no idle arrays and therefore produce a very high throughput.

4. High energy-efficiency: as stated at the beginning of this subsection, unnecessary data-

conversion is avoided so that the energy-efficiency of this architecture will be higher than

the digitization approach discussed in Section 3.4.1. Due to the high utilization of the

components in the time domain (i.e., the reason for high throughput), and the simple data-

flow, energy-saving techniques such as power gating can be implemented more easily.

The unrolled architecture effectively trades the silicon area for throughput and efficiency.

Since the weight duplication implies the duplication of the peripheral circuits such as the charge

integrator, and more arrays required by the system. The area of the charge integrator can take a

significant portion of the area of the chip, depending on the geometry of the array. Since the charge

integrator is an analog circuit and requires a capacitor for charge storage, it would not scale

following the Moore’s Law. Therefore, the area requirement of the system increases dramatically

as the number of layers in the CNN increases. Scaling out to multiple chips for a system will be

required for large and deep CNNs when the CONV layers are to be unrolled.

59

3.5 Summary

This chapter described the architecture of the CTT-based analog inference engine. By using

the natural laws for computing, CTT arrays can be built for vector-matrix multiplication and with

some peripheral circuits, for multi-layer perceptron inference engines. However, for convolutional

neural networks, the use of a computed analog output (e.g., charge on a capacitor) limits their

compatibility with the MLP inference engine.

Two solutions are proposed for CNN inference engine architecture. Either the analog

outputs can be digitized for convolution, or the CONV layers can be unrolled to equivalent MLP

layers by weight duplication. While the first architecture requires the minimum amount of on-chip

CTT memory, its energy-efficiency is limited by the overhead used for data-conversion between

the analog and digital domain, which does not contribute to the computing process directly. On

the other hand, the unrolling architecture eliminates the data-conversion overhead by adding

computing hardware, the duplicate of CTT arrays (with associated peripheral circuits), for very

fast convolution so that the analog outputs can be reused simultaneously by the arrays from the

next layer. While the weights are duplicated, the computation performed by those added arrays are

not redundant, and all contribute to the computing throughput of the system.

The main tradeoff between the two approaches is between the energy-efficiency and

throughput, with the scale of the system. Fig. 3. 15 shows the amount of CTTs needed for both

methods with respect to the throughput, measured in Tera-operation per second (TOPS), and

energy efficiency, measured in TOPS/Watt. There is a large design space between these two cases

where digitization can help to reduce the size of the system, while still granting a good energy

efficiency and throughput, which can be realized by digitizing every several layers instead of every

layer. Table 5 shows the system comparison between the proposed unrolling structure with some

60

other state-of-the-art implementations for low-power applications. The proposed CTT-based CNN

analog inference engine shows promising energy efficiency and area efficiency for computation.

Fig. 3. 15 The throughput and energy efficiency of the CTT systems for AlexNet based on

unrolling and digitization. The size of the dot represents the approximated chip size of the

system, 565mm2 (unroll) and 19mm2 (digitization).

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E-01 1.00E+00 1.00E+01 1.00E+02

Th
ro

u
gh

p
u

t
(T

O
P

S)

Energy Efficiency (TOPS/W)

CTT (Unroll) CTT (Digitization)

Table 5 Low-power CNN system comparison

Tech Precision Energy

Efficiency

(TOPS/W)

Area Efficiency

(TOPS/mm2)

Analog CTT, with

CNN unrolled

22nm Analog 24.2 85.5

ISSCC20 [Yuan 20] 65nm 8 bit 6.71 0.0124

ISSCC19 (1) [Song 19] 8nm 8 bit 11.5 0.347

ISSCC19 (2) [Yue 19] 65nm 5 bit 3.76 0.00663

Eyeriss [Chen 17] 65nm 16 bit 0.275 0.00343

61

Chapter 4: Scalability of Large-Scale Analog

Neural Networks

4.1 Introduction

Analog neural networks (ANN) are the neural networks (NN) deployed in analog

computing systems, such as the computing engine discussed in the last chapter. Since analog

computing is based on physical quantity (i.e., charge) and physical laws (i.e., charge integration

and charge conservation) instead of symbolic representation (i.e., numbers) and arithmetic laws

(addition and multiplication), the precision of the analog computing is potentially infinite by nature.

In contrast, digital computing can never achieve infinite precision due to the discrete nature of the

symbols used (e.g., 8-bit per digital value).

However, the precision of the analog system is limited by the non-ideality of the hardware

manifested by the intrinsic error of the analog device and circuit. Fig. 4. 1 shows some sources of

errors in the analog system. For example, the PWM signal sees the physical wires of the WLs as

capacitive load and, therefore, will be distorted during “on”/ “off” transistor. However, the major

source of error is from the analog information, such as the “on” current (e.g., Iinf), stored in the

analog devices, which can be up to several percentages of its range [Guo 17, Burr 16, Zheng 18].

Since this error is a stochastic property of the device itself, it cannot be corrected by other circuits

and will inevitably propagate to all calculations. Therefore, it is crucial to evaluate whether a

network can still be useful with the error from analog computations, especially from analog devices

to indicate whether an analog device technology (e.g., CTT) is feasible to build a real system with

the proposed analog architecture.

62

In this chapter, we propose a framework to evaluate the degrading effect on the

performance of scaled (wide and deep) NNs due to various errors, with a focus on the device errors,

and a solution to make ANNs more resilient to such error, especially for large-scale systems.

Fig. 4. 1 Analog errors in the proposed analog computing architecture; the device array for

analog computing from Fig. 3. 1Fig. 3. 13 with some errors marked. Device related error terms

are highlighted in red (𝐺𝑖𝑛𝑓 =
𝐼𝑖𝑛𝑓

𝑉𝐷
), and the circuit related error terms are highlighted in yellow.

63

4.2 Hardware-Based Simulation Framework for Analog

Neural Networks

First, we establish a simulation framework for analog NNs for both MLPs and CNNs, based

on the CTT characterization results and models in Chapter 2. The continuous nature of the analog

devices error is fundamentally different from the discrete error in digital memories, which have

been studied for neural networks [Reagen 18]. While there is existing neural network simulator

for analog in-memory NN accelerators [Chen 18], it digitizes the output of the array (i.e., the result

of the vector-matrix multiplication) and therefore does not match the pure analog architecture (e.g.,

MLP and unrolled CNN) proposed in the previous chapter.

In the proposed analog architecture, synaptic weights of the neural network are represented

by the read current of the device (e.g., Iinf for CTT). Therefore, the synaptic weights are random

variables derived from the Gaussian error statistics of the CTT devices (e.g., Fig. 3. 3) to match

the physical (Iinf) and numerical domains. We define the device noise as the ratio between the

standard deviation of the Iinf error and the entire range of device Iinf, which is around 4% - 7% for

twin-CTT cells (Table III), and can be similar or more for the other analog devices [Burr 16, Guo

17, Zheng 18].

To map this device noise onto the numerical domain for the synaptic weights, the maximum

and minimum synaptic of each filter (i.e., an array) of the neural network is calculated. Since the

maximum is always positive and the minimum is always negative, the one with larger magnitude

(i.e.,𝑤𝑎𝑏𝑠𝑚𝑎𝑥 = max (𝑤𝑚𝑎𝑥 , |𝑤𝑚𝑖𝑛|)) is used, and this value is mapped to the maximum of the

window, which is always symmetric to zero for the twin-CTT cells. As a result, the mapping

coefficient between the device conductance and the weight is 𝛽 =
𝐺𝑚𝑎𝑥

𝑤𝑎𝑏𝑠𝑚𝑎𝑥
> 0, which is constant

64

in one filter, but can be different in different filters due to different 𝑤𝑎𝑏𝑠𝑚𝑎𝑥 values. This is to

make sure that the conductance window is fully used during the mapping.

Suppose filter A and B have different 𝑤𝑎𝑏𝑠𝑚𝑎𝑥,𝐴 ≠ 𝑤𝑎𝑏𝑠𝑚𝑎𝑥,𝐵 then 𝛽𝐴 =
𝐺𝑚𝑎𝑥

𝑤𝑎𝑏𝑠𝑚𝑎𝑥,𝐴
 and

𝛽𝐵 =
𝐺𝑚𝑎𝑥

𝑤𝑎𝑏𝑠𝑚𝑎𝑥,𝐵
 , 𝛽𝐴 ≠ 𝛽𝐵 since the 𝐺𝑚𝑎𝑥 is the same across the system (using the same design of

twin-CTT cells). The different ratio values do not affect the result of the computation in the

numerical domain because it can be compensated in hardware by adjusting the magnitude of the

discharging current during the output PWM signal generation. Without losing generality, we prove

this by showing that different conductance mapping coefficient 𝛽 can produce the same

multiplication result in the numerical domain by using a different discharging current 𝐼𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒

when ReLU is used as the activation function.

Suppose a synaptic weight 𝑤𝐴 in filter A has the same numerical value with a synaptic

weight in filter B, i.e.,𝑤𝐵 = 𝑤𝐴. Then for the identical input of 𝑥, the multiplication output 𝑦 must

be equal:

𝑦𝐴 = 𝑥𝑤𝐴 = 𝑥𝑤𝐵 = 𝑦𝐵

We write the input as 𝑡𝑥 since it is PWM, then the charge accumulated by this computation is

𝑄𝐴 = 𝑉𝐷𝐺𝐴𝑡𝑥

𝑄𝐵 = 𝑉𝐷𝐺𝐵𝑡𝑥

where 𝑉𝐷 is the constant bias in the system (e.g., 𝑉𝐷 = 50𝑚𝑉 for the 𝐼𝑖𝑛𝑓 characterized in previous

chapters). The mapping is 𝐺𝐴 = 𝛽𝐴 ∗ 𝑤𝐴 and 𝐺𝐵 = 𝛽𝐵 ∗ 𝑤𝐵, assuming 𝛽𝐴 ≠ 𝛽𝐵 and thus 𝐺𝐴 ≠ 𝐺𝐵.

65

If 𝑤𝐴 = 𝑤𝐵 ≤ 0, since 𝛽 > 0, 𝐺𝐴 < 0, 𝑄𝐴 < 0 and 𝐺𝐵 < 0, 𝑄𝐵 < 0. No output will be produced

in either case and therefore

𝑡𝑦𝐴
= 𝑡𝑦𝐵

 = 0

If 𝑤𝐴 = 𝑤𝐵 > 0, then the ReLU function simply passes the pulse width from discharging

𝑡𝑦𝐴
= 𝑅𝑒𝐿𝑈 (

𝑄𝐴

𝐼𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒,𝐴
) =

𝑄𝐴

𝐼𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒,𝐴

𝑡𝑦𝐵
= 𝑅𝑒𝐿𝑈 (

𝑄𝐵

𝐼𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒,𝐵
) =

𝑄𝐵

𝐼𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒,𝐵

The computation in the numerical domain, 𝑦𝐴 = 𝑤𝐴 ∗ 𝑥 = 𝑤𝐵 ∗ 𝑥 = 𝑦𝐵, requires that 𝑡𝑦𝐴
= 𝑡𝑦𝐵

in the physical domain. Therefore

𝑡𝑦𝐴
=

𝑄𝐴

𝐼𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒,𝐴
=

𝑉𝐷𝐺𝐴𝑡𝑥

𝐼𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒,𝐴
=

𝑉𝐷𝛽𝐴 ∗ 𝑤𝐴𝑡𝑥

𝐼𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒,𝐴
= 𝑡𝑦𝐵

=
𝑄𝐵

𝐼𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒,𝐵
=

𝑉𝐷𝛽𝐵 ∗ 𝑤𝐵𝑡𝑥

𝐼𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒,𝐵

which will always hold if
𝛽𝐴

𝐼𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒,𝐴
=

𝛽𝐵

𝐼𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒,𝐵
 . This indicates that the mapping coefficient is

controlled by the discharge current. In the extreme case, this mapping coefficient can be different

for each charge integrator, if the discharging current can be set differently, but this implies extra

storage for each charge integrator.

From this mapping method, the Gaussian error model of the analog device conductance

(i.e.,𝐼𝑖𝑛𝑓/𝑉𝐷) is mapped to the Gaussian error model of the synaptic weights by Δ𝑤 = Δ𝐺/𝛽 for

simulation. The calculation of a filter including errors in the numerical domain is thus

𝑦 = 𝑅𝑒𝐿𝑈((𝑊 + 𝛥𝑊)(𝑥 + 𝛥𝑥) + 𝛥ℎ) + 𝛥𝑦

66

where 𝑊 is the synaptic weight matrix, Δ𝑊 is the error of the weight matrix in which all entries

are sampled from the independent and identically distributed random variable Δ𝑤. 𝑥 represents

the input PWM signal, and Δ𝑥 is the error of the input. Δℎ is the error of the activation circuit. Δ𝑦

is the error from the transmission of the PWM output to the next layer.

To enable the simulation for state-of-the-art deep neural networks such as ResNet [He 16],

novel structures and operations, such as batch normalization [Ioffe 15], shortcut layers and residual

block are implemented in the simulation framework based on the proposed analog architecture.

Batch Normalization layers is essentially a linear operation, normalizing its input for each

channel individually with learned parameters (mean μc, variance σc
2, the learnable scaling factor

γc and learnable bias βc, for each channel c):

yc,i = weff,c xc,i + beff,c

where weff,c =
γc

√σc
2+ϵ

, beff,c = βc −
γcμc

√σc
2+ϵ

. Therefore, it can be implemented through

convolutional layers with unit-size, unit stride convolutional kernel, which has the weight weff,c

and bias beff,c.

Shortcut layers were introduced by ResNet [He 16] to address the gradient vanishing

problem, and have become an indispensable component in deep neural networks. In our noise-

considering implementation of shortcut connections we assumed that each positive entry of the

identity matrix suffers from a Gaussian noise U with zero mean and variance δ, where δ is the

device noise, and Ishortcut = U + I . This is to reflect the noise from possible circuit

implementation of the shortcut (e.g., current mirror).

67

Residual blocks used in ResNet are implemented based on the CNN layers and shortcut

layers. The parameters for the behavior of analog devices (e.g., mean and variance in the case of

Gaussian noise) can be individually specified for each layer.

After a network is trained, the simulator is used to evaluate the performance of the network

using analog devices. During the forward-propagation, perturbations for all weights from all layers

are sampled from the specified random variable before one test run. The same set of sampled

weights is used for the entire test set to generate the accuracy scores. Since the weights are now

stochastic, 50 testing runs are performed (unless specified otherwise) to obtain the statistics of the

accuracy scores for a given analog deep neural network.

68

4.3 Resiliency of Analog Neural Networks

An MLP with 784 input nodes, 99 nodes in its only hidden layer, and ten nodes as output, with

ReLU after each layer, is trained on conventional 64-bit CPU using backpropagation [LeCun 89]

and stochastic gradient descent, for the MNIST hand-written digit classification problem [LeCun

98]. Then the trained weights and biases are loaded into the simulation framework. Three types of

errors are first evaluated in the simulation:

1. Device errors are defined as a Gaussian random variable with zero mean and a standard

deviation of Δ𝑤, where Δ𝑤 = Δ𝐺/𝛽 as explained in the last section (Fig. 4. 2).

2. The error of the input PWM signal, which always has a finite rise and fall time seen by the

gates of the CTTs due to the capacitance on the path (Fig. 4. 3). Because of the exponential

behavior of ID-VG at the subthreshold region, the net of current drawn from the device is

always smaller than the ideal case. Since the rise times and fall times are not a function of

the ideal pulse width itself, this error is more salient when the pulse width is short (i.e.,

Fig. 4. 2 Mapping numerical values of the synaptic weights (𝑤𝑘𝑙) to the conductance values of

the analog device (𝐺𝑘𝑙) by the mapping coefficient 𝛽.

69

when this input value is small). To model this error, we assume that for a fixed duration of

Δ𝑡𝑃𝑊𝑀, the average current of any device is reduced to 𝑘𝑃𝑊𝑀𝐼𝑖𝑛𝑓 where 𝑘𝑃𝑊𝑀 < 1.

3. Noise current, mainly the white noise integrated as the charge integrator. This is a property

of the charge integrator and therefore is only a function of the duration of the integration.

This duration is fixed for all arrays, and the error is modeled at each column as an addition

of charge Δ𝑄𝑖𝑛𝑡 (before the ReLU function), which is an independent Gaussian random

variable with zero mean and a constant standard deviation.

The input to the first layer is converted to 8-bit PWM signals. The output of the first layer is

not digitized (but limited to the 16-bit floating-point precision of the double-precision data type in

the simulator) before converted to PWM signals as the input of the hidden layer. ReLU is applied

as the activation function. The output node with the longest PWM represents the classification

result.

Fig. 4. 3 The input PWM signal at the WL always has a finite rise and fall time due to RC

delay, so that the gate voltage of the device at the PWM period receives a smeared pulse,

making the integrated current of the device always smaller than the ideal case due to the

exponential relationship between ID and VG at the subthreshold region.

70

Fig. 4. 4 shows the accuracy of the MLP for the test set of the MNIST dataset from 100

Monte Carlo simulations across a range of device noise. The parameters used are
Δ𝑤

𝑊𝑟𝑎𝑛𝑔𝑒
= 5%,

Δ𝑡𝑃𝑊𝑀 = 10 cycles, 𝑘𝑃𝑊𝑀 = 0.8, Δ𝑄𝑖𝑛𝑡~𝑁(0,0.255) ∗ 1𝑝𝐶 . The circuit related noises are all

exaggerated from designs based on unpublished analog circuit design using 22FDX technology

[Moran 20, Kittur 20]. The classification accuracy degrades slightly from the 16-bit digital baseline

in most of the cases, due to all the injected errors, and the device error is the main contributor to

this degradation after 10%, which is the device noise level for many analog devices.

Fig. 4. 4 Accuracy of the analog MLP simulated with the errors from analog device and the

peripheral circuits from 100 Monte Carlo simulations at different device noise level. Errors

from the peripheral circuits are exaggerated to reveal its effect on the network. Baselines of 16-

bit digital network and device error only networks are also plotted, showing that the main

contribution to the network degradation is from the device error when device noise is larger

than 10%.

71

To accelerate the Monte Carlo simulations for very large and deep neural networks, only

device noise is considered as non-zero when we simulate the deep convolutional neural networks

(e.g., WideResNet [Zagoruyko 16]). This focuses on qualifying the analog device technology with

respect to the scaling of the neural networks.

The simulation framework proposed in the last section is used to simulate DNNs based on

Wide-ResNet models. It includes many of the advanced operations of state-of-the-art neural

networks (e.g., batch normalization, residue layers), which are affected by the device noise. The

DNN model is trained on commercial GPUs using 32-bit floating-point precision and the ImageNet

training set. During testing of the trained network, device models are included to emulate the

behavior of analog devices. Each pre-trained digital network is instantiated 50 times by

independent sampling from the device noise statistics (i.e.,𝑤 = 𝑤0 + Δ𝑤). Then the system is

evaluated by all testing patterns on all instantiated networks to obtain the statistics for network

accuracy.

Two different structures of Wide-ResNet with depth level 16 (17.1 million weights) and

28 (36.5 million weights) are trained and tested on the CIFAR-100 dataset (same for all network

simulation results shown unless otherwise specified). In Fig. 4. 5, all networks presented show

significant degradation of the network accuracy as the device noise increases, while the larger

network is more resilient. When device noise is 6%, the top5 accuracy is degraded from 94.28%

to 44.96% for the 16-layer network and from 94.39% to 70.99% for the 28-layer network. Both

networks start to fail completely at a device noise of 14%. The deeper network (also with more

weights) is less sensitive to the increase of device noise, and therefore is more resilient to device

noise. The resiliency of the network also depends on the application. Fig. 4. 6 shows the network

accuracy of the 16-layer WideResNet on the CIFAR-100 problem, compared with the MNIST

72

recognition problem, which is significantly easier than the CIFAR-100 problem. The resiliency of

the neural network of a similar scale is better for easier applications.

Fig. 4. 5 The degradation of network due to analog device noise: two Wide-ResNet models of

depth level 16 and 28 are trained and tested on the CIFAR-100 dataset.

Fig. 4. 6 The degradation of network due to analog device noise for different applications:

Wide-ResNet model with depth level 16 for both CIFAR-100 and MNIST are trained and

tested, showing that the network is more resilient to device noise when the application is

simpler.

73

The network is also simulated to incorporate the CTT characterization data (one-time use

with 1200nA memory window). Since the twin-CTT cell fine-tuning includes over-programming,

the top5 accuracy of the CTT-based network increases from 36.40% (right after over-programming)

to 83.98% (after 200 hours), which is 10.41% lower than the 32-bit digital baseline (Fig. 4. 7).

Fig. 4. 7 Simulate network with CTT characterization data: accuracy of the 28-layer network

from Fig. 3. 3 is simulated using CTT characterization data, with the baseline from digital

machine of 32-bit data precision.

74

4.4 Improving Resiliency of Analog Neural Networks

The last section showed the resiliency of analog neural networks, which can be improved by

scaling up the network for the same application. In addition, by duplicating n analog devices and

taking the average of the programmed weight, or running n filters in parallel and averaging the

output, one can statistically reduce the standard deviation of the device error (i.e., the device noise)

by
1

√𝑛
 [Ma 18]. However, they all need significant investment in the hardware of the inference

engine. In this section, three methods are shown to improve the resiliency with little or no extra

cost in the inference engine’s hardware:

1. Use generalization methods such as L2-regularization [Schölkopf 02] and dropout

[Srivastava 14]

2. Rescale the bias terms in the network filters

3. Hessian-aware stochastic gradient descent

4.4.1 L2-Regularization and Dropout

Some improvements in both the network accuracy and resiliency can be achieved by

standard generalization methods such as L2-regularization and dropout. For example, at 4% device

noise, the top5 accuracy can be improved from 68.25% to 90.72%, as shown in Fig. 4. 8. However,

it is not necessarily true that a network with the best L2-regularization and dropout parameters at

zero device noise will also make the best network at a higher device noise (curves in Fig. 4. 8 cross

each other). Therefore, the parameter optimization of the network depends on the target device

noise.

75

4.4.2 Rescaling Bias Terms

Another improvement in network resiliency is to rescale the bias terms in the filters. As

introduced previously in Section 3.1, the bias terms of the layers are combined with the weights

and in the VMM engine for the ease of hardware implementation (Fig. 3. 1). However, the range

of the bias parameters is often higher than that of the weight parameters. As a result, naïvely

combining the bias and weight together will increase the parameter range significantly. Since all

parameters share the mapping coefficient, a high numerical range of the bias leads to a high noise

level for the weights. To address this problem, the bias terms can be scaled, as shown in Fig. 4. 9.

Instead of using “1” as the extra input for the bias term, the extra input can be other value to

correspondingly scale bias parameters to match the range of the programmed biases with the range

of weights. This ensures that both weights and biases use the full dynamic range of the device to

minimize the effect of the device noise. Fig. 4. 10 shows that the range matching between the bias

Fig. 4. 8 Effect of conventional generailization methods: Accuracy of Wide-ResNet (depth

level 28) is trained with different L2-regularization (L) and dropout factors (D). Some

improvement in the analog resiliency can be achieved.

76

terms and the weight can improve the resiliency of the same trained network. The cost of such

implementation is the storage of the scaling factor s, which can be different in different arrays.

Fig. 4. 9 Top: scaling factor as an extra input per layer to include bias term b in the vector-

matrix multiplication. Bottom: normalized histograms showing the distribution of the weights

w and bias b of a filter before and after the use of scaling factor s.

Fig. 4. 10 Network (Wide-ResNet-28) top5 accuracy on CIFAR-100 with and without the

scaling for w and b.

77

4.4.3 Hessian-Aware Stochastic Gradient Descent

Inspired by the adversarial training [Goodfellow 14], which generates and uses difficult

inputs for the network during the training phase to enhance its robustness against adversarial

attacks, we propose the Hessian-aware stochastic gradient descent (HA-SGD) method to train

neural networks with improved resiliency against analog device noise. The HA-SGD ensures that

at convergence, the local minimum of the cost function during training will not be at a point with

high-norm Hessian.

As shown in Fig. 4. 11, at any given weight W0, the HA-SGD computes the average of

sample gradients, computed at points obtained by random perturbations of W0, as an estimation of

Fig. 4. 11 Proposed novel training method – Hessian-Aware Stochastic Gradient Descent (HA-

SGD): The HA-SGD algorithm is used to estimate the gradient of the smoothed cost function

(inset) so that the algorithm is more likely to converge at a wider valley of the original cost

function (see methods), which will be more resilient to analog device noise. The gradient of

the smoothed cost function is computed by averaging gradients computed at neighboring points

obtained by random perturbations of the current weights. The variance of the random

perturbations of current weights is referred to as the level or intensity of the training noise in

HA-SGD in parallel with the device noise previously defined.

78

the gradient of the smoothed cost function (J̃(W) = EW′[J(W′)]). The variance of the random

perturbations of current weights is referred to as the level of intensity of the training noise in HA-

SGD. Thus, this training algorithm samples the local neighborhood (around W0) of the landscape.

If the Hessian has a high norm, then the gradient will deviate significantly from the gradient

at W0. In other words, the optimizer seeks local minima in the smoothed cost function, which is

more likely to correspond to a wide valley in the original landscape. As a result, in the wide valleys,

the neural network perturbed by finite device noise would maintain performance comparable to

the case having no noise, with small variance and bias. The HA-SGD can improve the network

resiliency significantly. Fig. 4. 12 shows the enhancement of resiliency when HA-SGD is used for

training. At a 6% device noise, HA-SGD improves performance from 70.99% to 88.47%. HA-

SGD has an even more significant effect when the device noise is higher. At 10% device noise, a

Fig. 4. 12 Improved network resiliency with HA-SGD: the performance of networks trained

with the HA-SGD algorithm are compared with those trained by highly optimized conventional

training algorithms, showing improved resiliency from the HA-SGD method. Parameters such

as L2-regularization factor, dropout factor and the training noise level are all optimized for

both cases. The device noise levels of some analog devices, such as CTT, Flash [Guo 17],

phase change memory (PCM) [Burr 16], and resistive RAM (RRAM) [Zheng 18] are indicated.

79

network trained with injected noise of 10% achieves a top5 accuracy of 61.67%, which is more

than four times the top5 accuracy of the networks trained by standard SGD (14.37%). The optimal

level of the training noise depends on the device noise of the target device (e.g., CTT). Fig. 4. 13

shows the effect of increasing training noise on different device noise during inference. In general,

a higher training noise performs better for higher device noise because the gradient estimation

during training is more accurate. Notably, the network tested with zero device noise would not

benefit from the HA-SGD algorithm, and therefore HA-SGD should only be applied when some

finite device noise is expected in the analog inference engine. Fig. 4. 14 shows the network top1

accuracy for the WideResNet-28 tested for CIFAR-100. Three groups of networks are trained with

different training noise (device noise injection in the forward propagation during training). The

Fig. 4. 13 Effect of noise-level during training: Increasing the level of training noise in HA-

SGD has different effect on the resiliency of the network, depending on the device noise of the

target device.

80

optimal accuracy can be achieved when the training noise is close to the expected device noise

during testing. Also, in Fig. 4. 14 some degradation of the network at zero device noise is observed.

This implies that the local minimum of the cost function found by HA-SGD is not necessarily

deeper, despite smoother. However, this degradation of the network due to HA-SGD can be hidden

if the network is trained for a simpler challenge. Fig. 4. 14 shows the same network (with slight

modification at the last layer) trained for MNIST challenge using different training noise, whose

accuracy at zero device noise during testing does not change.

Fig. 4. 14 Left: network top1 accuracy for the WideResNet-28 tested for CIFAR-100. The

training noise is preferred to be close to the target device noise during inference for the best

network accuracy. At the meantime, the zero-noise inference accuracy might decrease as the

training noise increases. Right: the zero-noise inference accuracy degradation can be hidden

when the network is trained for a simpler problem, such as MNIST.

81

4.5 Summary

This chapter explored the feasibility of using low-precision analog memory cells as the

weights for very large and deep (> 30 million weights) neural networks. A simulation framework

is established to include the associated calculation errors for the proposed analog inference engine

architecture. The simulation shows that the networks degrade due to analog errors from both the

analog device and the circuit, while the contribution from the device is more significant for many

analog device technologies. Several methods to improve the analog resiliency without adding

much cost to the analog inference engine are discussed. A combination of using generalization

methods (L2-regularization, dropout), rescaling the bias terms, and the Hessian-aware stochastic

gradient descent can be used to enable resilient analog deep neural networks.

In addition, this chapter showed that neural network training can still converge with noise

injection (at proper levels) to the synaptic weights. This indicates the potential of analog training

engines, which use analog devices for training analog and digital neural networks. Digital neural

networks can be treated as a subset of analog neural networks when the uncertainty of the memory

is zero.

82

Chapter 5: Scaling Analog Neuromorphic

Systems

5.1 Introduction

Scaling of the neuromorphic system can, in general, provide benefit to the cognitive capability

of the system [LeCun 19] in mainly two aspects:

1. For the same cognitive challenge and the same hardware architecture (e.g., fixed digital

precision or fixed analog device error), a larger neural network tends to provide better

accuracy (Fig. 5. 1). As a result, to reach the same level of network accuracy, a larger

network is required for a more difficult cognitive challenge.

2. In the analog system, a larger neural network enhances the resiliency of the system against

analog errors for the same cognitive challenge (Fig. 4. 5). This holds with or without the

resiliency enhancing techniques proposed in Section 4.4.

There are two major challenges in scaling the neural networks:

1. Hardware constraint on the memory. For the digital systems, the extension of memory is

through the memory hierarchy to bring in denser but slower memory (e.g., DRAM, Flash)

while the on-chip memory (e.g., SRAM, eDRAM) is rewritten when different filters/layers

are computed. For analog systems, the on-chip memory is the analog non-volatile memory

that cannot be rewritten quickly. Therefore, scaling out the analog system is required by

adding multiple chips into the system at the same level of the memory hierarchy, which

requires a scalable architecture for the multi-chip system.

83

2. Overfitting of the data [Hawkins 04] is a general machine learning problem for supervised

learning when the network has fit very well on the training data, but cannot generalize the

knowledge and work well with the testing/validation data that are not used during training.

This chapter will focus on the scaling of the analog neuromorphic system hardware based on

the analog in-memory computing architecture proposed in Chapter 3.

Fig. 5. 1 Improve neural network performance by scaling: the change of the accuracy of the

advanced neural network, ResNet [He 16], as a function of network size for different cognitive

challenges. Before overfitting becomes an issue, accuracy increases as network size increases,

usually due to the increase in depth. In addition, accuracy decreases as the task becomes more

difficult (e.g., from CIFAR-10 top1 score to ImageNet top1 score, and from ImageNet top5

score to top1 score). Therefore, network scaling is crucial to reduce error for complicated

challenges.

84

5.2 Scaling out Non-von Neumann architecture

The multi-layer structure of the proposed analog in-memory computing engine is a non-

von Neuman architecture suitable for scaling. As shown in Fig. 5. 2, a multi-layer network can be

partitioned at the interface between arrays and after the generation of the output PWM signals.

This interface can be implemented as either an analog interface or a digital interface.

If an analog interface is used, the communication is to pass the timing information of the

PWM signals between chips, replacing the on-chip wiring if both arrays are on the same chip.

Depending on the quality of the channel, buffers can be added at both ends of the channel.

If a digital interface is used, the communication is to pass the binary data that carries the

timing information of the PWM. This data needs to be generated by a time-to-digital converter at

the sender’s end, and recovered by a digital-to-time converter at the receiver’s end. Therefore, this

requires a higher cost of extra hardware than the analog interface. However, the extra cost will be

reduced if the communication between layers is already digitized for CNNs, as described in

Section 3.4.2.

Fig. 5. 2 Interface between layers of the neural network can be implemented as either analog

or digital interface between 2 chips for a multi-chip system.

85

Since the analog interface transmits the pulse width as the information, its speed is

fundamentally limited by the maximum possible pulse width generated from the previous layer.

The dynamic range of the pulse width determines the range of the dot-product outputs and

therefore has a lower limit. As a result, multiplexing the analog communication in time by

𝑛𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥 times increases the communication latency linearly by the equation 𝜏𝑎𝑛𝑎𝑙𝑜𝑔 =

𝑇𝑃𝑊𝑀,𝑚𝑎𝑥 ∗ 𝑛𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥 , where 𝑛𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥 = 𝑐𝑒𝑖𝑙(
𝐵𝑊𝑎𝑛𝑎𝑙𝑜𝑔

𝑁𝑐ℎ𝑎𝑛𝑛𝑒𝑙
) is determined by the required

bandwidth of the analog communication and the number of channels for both inputs and outputs

of a layer.

For 𝑛𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥 = 1, the number of outputs of each layer equals the number of channels

required if the outputs go to another chip. The unrolled CNN can be partitioned into different

dies/chips across the boundaries of the array (Fig. 3. 13). Fig. 5. 3 shows the total number of inputs

and outputs of each array for unrolled Alexnet.

As a result, a very high density of interconnect channels between chips is required to scale

out the analog neuromorphic system with an analog interface. The dense physical channels can be

combined with time-multiplexing (if required, but not preferred) to enable the analog interface for

optimized energy efficiency of the system. When the time-multiplexing factor is properly balanced

between layers, it can be hidden in the pipeline so that it does not affect the overall throughput of

the system.

86

5.3 Fine-Pitch Integration Technologies for Analog

Neuromorphic Systems

Conventional system scaling and integration technologies based on printed circuit boards

(PCB) are not suitable for high-bandwidth analog transmission due to the coarse pitch at the

chip/board interface. The pitch between pad and traces on the PCBs is normally more than 0.2mm

and 0.1mm. To increase the aggregate bandwidth of analog transmission, fine-pitch integration

technology, such as silicon interconnect fabric (Si-IF) [Bajwa 18], can be used to provide more

physical channels between chips. As shown in Fig. 5. 4, known-good-dies can be placed in high

proximity (< 100um) on a Si wafer substrate. In addition, the interconnect channels are fabricated

using a conventional back-end-of-line (BEOL) processes to obtain interconnect pitch comparable

to the fat-wire level (2 – 10 um) of the die itself. A schematic of two chips integrated within a

single system using Si-IF is shown in Fig. 5. 5. Si-IF can be used to seamlessly integrate the

different layers of the neural network by supporting analog communication with low insertion loss

and crosstalk [SivaChandra 18] at < 10GHz. Comparing with the PCB, Si-IF can provide many

Fig. 5. 3 Number of channels (inputs and outputs) of the arrays in each layer of the Alexnet.

0

1000

2000

3000

4000

5000

6000

7000

1 2 3 4 5 6 7 8

C
h

an
n

e
ls

/a
rr

ay

Layer Number

Channels required for unrolled CNNs

87

more channels for high-quality analog communication between chips. Table 6 shows the number

of channels supported by both PCB and Si-IF technology for different sizes of dies/chips. To

implement the Alexnet (unrolled) system shown in Section 3.4.2. The requirement of the Alexnet

(Fig. 5. 3) can be met by Si-IF but not PCB technology.

To further scale out the system, CTT-based inference circuits can be used as the basic

building blocks for three-dimensional integrated circuits (3D-IC) [Xie 10]. For example, the

limitation of Si-IF technology is the size of the wafer used for Si-IF fabrication. It is possible to

add through-wafer vias (TWV) [Liu 19] to utilize both sides of the wafer, but the TWV pitch is

limited by the aspect ratio of electroplating and therefore is about 0.05mm for un-thinned wafers

whose thickness is more than 0.5mm. Three-dimensional integration technologies such as wafer-

scale integration (3D-WSI) [Batra 14, Kumar 17] can be used, which can further improve the

density of links by using through-silicon vias (TSVs) in the vertical direction, and energy-

efficiency of communication by at least 100 times [Wan 17].

Fig. 5. 4 Scaling-out silicon on silicon: the silicon interconnect fabric (Si-IF) that can be used

to scale-out analog neuromorphic systems with fine-pitch interconnect channels and close

distance between the dies (adapted from [Bajwa 18]).

88

Fig. 5. 5 A schematic of the analog neuromorphic system scaled-out using the Si-IF for multi-

layer neural networks.

Table 6 Number of links supported by PCB and Si-IF technology

Number of links supported at periphery

Die size PCB (0.1mm pitch)

10 layers’ periphery

Si-IF (0.002mm pitch)

4 layers’ periphery

1mm * 1mm 400 8,000

3mm * 3mm 1200 24,000

89

Chapter 6: System Design and Hardware

Demonstration
NeuroCTT Version 1 (V1) is designed as a mixed-signal system featuring digital controls

on the twin-CTT cell array using GlobalFoundries 22FDX technology. The block diagram of the

system is shown in Fig. 6. 1. A CTT-array with 1024 word-line (WL) and ten bit-line (BL) is the

core of the system. The WL is driven by the WL driver (WLD), which receives digital control

signals from a customized on-chip digital controller to apply a selected analog voltage to the WL

for an adjustable amount of time, timed by the clock of the controller’s signals. The digital

controller is designed at the HDL level, then synthesized, placed, and routed (PnR) using CAD

software (e.g., ModelSim, Innovus). The neuron is also controlled by the controller and can be

used to integrate differential current from the BL pair (i.e., BLt and BLc) with the ReLU function.

Fig. 6. 1 The system architecture of NeuroCTT V1. The system is composed of a CTT array

with 1024 WLs and 10 BLs, 1024 WL drivers for each WL, neurons to integrate differential

current from BLt and BLc, and a digital controller that provides all auxiliary functions.

90

The flow of instruction and data in the system is shown in Fig. 6. 2. In addition, the digital

controller has a scan-chain to check the instruction received by the chip. The scan-chain is verified

at 40MHz for array operation modes using the FPGA, as shown in Fig. 6. 2.

Fig. 6. 2 Top: the data flow in the V1 system and including using the FPGA to check the scan-

chain of the V1 system. Bottom: measured waveforms with 10MHz clock I/O. The scan chain

is verified up to 40MHz.

91

The structure of the array is shown in Fig. 6. 3. Each bit-line is composed of the bit-line

true (BLt) and bit-line complement (BLc), connecting to the drains of the true device and the

complement device of each twin-CTT cell in the chip. Other than the twin-CTT cells, the array

Fig. 6. 3 The array structure in V1. The array is 1024-by-10 but a 2-by-2 sub array is shown

for simplicity. CTTs are arranged as twin-CTT cells (e.g., cell w11 has device w11
+ and device

w11
-). The auxiliary array switches, PROT_xC, PROT_xT, VER_T_x, VER_C_x,

PROG_SW_T_x, PROG_SW_C_x (x = 1,2,…,10). Are controlled by the digital controller to

configure the array for different modes. Each source-line has a pad (COLx) and there are two

more pads (VER_T, VER_C) for reading the CTT device current in the array.

92

also has auxiliary array switches that are directly controlled by the digital controller. The operation

of a selected device being read (VER) is shown in Fig. 6. 4. Since the CTTs are used as analog

Fig. 6. 4 The read (VER) operation of the V1 chip. As the digital logic of the chip receives the

instruction to read a certain device (e.g., circled CTT W11
+), it configures the array auxiliary

switches (the red cross represents that the array switch is turned off by the control logic for

this VER operation) on the peripheral of the array and the word-line drivers to supply a read

voltage (300mV) to the target word-line, and a negative bias (-0.3V) to all other word-lines.

An analyzer is then connected to the pad of the target column and the VER (VER_T or VER_C)

pad to supply a read VDS and measure the current IVER. The current numbers on the devices are

the simulated result using spectre models.

93

memory, the precision of the read operation is important, the read current, when one device is

turned on, can be written as

𝐼𝑅𝐸𝐴𝐷 = 𝐼𝑜𝑛,𝑡𝑎𝑟𝑔𝑒𝑡 + 1023 𝐼𝑜𝑓𝑓 + 𝐼𝑙𝑒𝑎𝑘𝑎𝑔𝑒

where 𝐼𝑜𝑓𝑓 is the current from other CTTs in the same column, whose gate voltage is negative (i.e.,

at off state). 𝐼𝑙𝑒𝑎𝑘𝑎𝑔𝑒 is the current through other leaking paths. Although the off current is much

smaller in magnitude compared with the on current (𝐼𝑜𝑓𝑓 < 10−4𝐼𝑜𝑛), the on current will become

smaller when the device is programmed (i.e.,𝐼𝑜𝑛 decreases), decreasing the distinction of 𝐼𝑜𝑛 from

𝐼𝑅𝐸𝐴𝐷. Therefore, baseline subtraction is needed for accurate reading of the device where

𝐼𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = 1024 𝐼𝑜𝑓𝑓 + 𝐼𝑙𝑒𝑎𝑘𝑎𝑔𝑒

𝐼𝑅𝐸𝐴𝐷 − 𝐼𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = 𝐼𝑜𝑛,𝑡𝑎𝑟𝑔𝑒𝑡 − 𝐼𝑜𝑓𝑓,𝑡𝑎𝑟𝑔𝑒𝑡

Fig. 6. 5 shows the read current statistics of all CTT devices. The limitation of the reading

is the throughput since V1 only supports the reading of one device at a time. The analyzer requires

Fig. 6. 5 The box and whisker plot of IREAD read from a V1 chip for the 1,024 x 20 array. Due

to the use of twin-cell CTT, each column (e.g., Column0 to Column9) is consist of the “true”

line (e.g., 0T) and the complement line (e.g., 0C), which is measured separately during the read

operation.

94

about 0.3s for an accurate reading of the current. Therefore, on-chip reading circuit and parallel

reading of the CTT current are required to enable large-scale CTT-based system.

The operation of a selected device being programmed (PRG) is shown in Fig. 6. 6. The

result of on-chip CTT PRG is shown in Fig. 6. 7, where two measurements are taken before and

after PRG events to show the shift in the Vth of the CTTs. Different PRG conditions are tested as

shown in Table 7 and have achieved a maximum Δ 𝑉𝑡ℎ of 60mV. Half-selected devices are slightly

Fig. 6. 6 The PRG operation of the V1 chip. Comparing with the VER operation shown in Fig.

6. 4, the PRG operation of same target device has a different auxiliary array switch

configuration, where the source-line will take a programming pulse (e.g., 1.2V), synchronized

with a gate pulse from the word-line driver of 2.8V on the target device. The bit-line of the

target device is brought down to ground by the programming switch (e.g., PRG_SW_T_1).

95

affected in the same WLs, but not in the same BL. Raising the SL voltage before the WL is

important to suppress the half-selection effect on the WL-selected devices.

Fig. 6. 7 A sub-array of 10-by-20 is measured before and after PRG events to see the change of

Vth of the devices. A maximum of 60mV Vth shift is achieved. Two conditions of PRG are

shown, one (Target A) with the WL pulse slightly wider than the SL pulse (TSL<TWL), the other

one (Target B) with the SL pulse slightly wider than the WL pulse (TSL>TWL). Half-select along

column (BL/SL) is not significant in both cases. However, PRG using wider SL alleviates half-

selection along WL.

Table 7 Different PRG conditions tested on the V1 chip, the effect of the PRG events are shown

in Fig. 6. 7.

PRG Conditions PRG A PRG B

WL pulse (10ms) 2.8V 2.8V

SL voltage (10ms) 1.4V 1.4V

Pulse sequence WL pulse rises first and falls later SL pulse rises first and falls later

96

Chapter 7: Conclusions and Outlooks

7.1 Conclusions

This dissertation provides a comprehensive study on the use of an analog non-volatile

memory device, the charge-trap transistor (CTT), for analog in-memory computing, specifically

for neuromorphic computing applications. The investigation involves a wide range of topics,

including the analog memory device, the analog in-memory computing architecture for the neural

network algorithm, and the feasibility of using the proposed architecture for scaled neural network

applications (36 million synaptic weights).

In Chapter 2, the CTTs are characterized as analog memories using their subthreshold

current Iinf as stored data, a real physical quantity that can be used later for direct computation in

the analog domain. Different mechanisms of charge-trapping are discussed and compared. For

bulk-oxide traps, the relaxation of the device after charge-trapping is spontaneous de-trapping,

which can be detected as an increase in Iinf. This relaxation at room temperature can be

compensated by offsetting the programming target. Different models should be used for relaxation

at elevated temperature as it accelerates the charge loss significantly. Fine step charge trapping

and de-trapping of CTTs can be achieved by using finely increased voltage magnitude for VGS to

access traps at different energy levels. Combined with the relaxation compensation, the CTTs can

be programmed accurately with a Gaussian model for the error.

In Chapter 3, the analog in-memory computing architecture for vector-matrix

multiplication using natural laws is investigated. Using CMOS peripheral circuits, multi-layer

perceptron (MLP) and convolutional neural networks (CNN) can be implemented. To build the

97

system for deep neural networks such as AlexNet, scaling out the hardware is required for unrolled

AlexNet.

Chapter 4 and Chapter 5 evaluate the feasibility of the neural network algorithm and the

system integration technology for scaling out the analog system. The resiliency of the neural

networks against analog computing errors is assessed and improved by the proposed Hessian-

aware training algorithm for very large and deep neural networks. Novel hardware integration

technology, such as the Si-interconnect fabric, can support the massive analog I/O channels

required by the system.

Finally, hardware design for the CTT-based inference engine is presented and discussed in

Chapter 6. The use of CTTs as a tunable analog memory is demonstrated in a mixed-signal system-

on-chip (SoC) with 20 thousand CTTs in GlobalFoundries 22FDX technology.

In conclusion, this dissertation integrated the studies on (1) the CTT as an analog device,

(2) the analog in-memory computing architecture, (3) the neural network optimization for analog

computing, and (4) the approaches to scaling out analog computing system. The results show the

feasibility of scalable and analog neuromorphic computing systems from the device level all the

way to the application level.

7.2 Outlook

In order to realize and optimize the proposed system. Four major directions for the future are

suggested below:

1. Physical modeling of CTT devices: all CTT results shown in the dissertation are from

experiments directly. While some curve fitting can be used to optimize the use of CTT as

analog memory. Physical modeling can be more useful to provide insights to device design

98

and optimization principles. Although it has been explored for self-heating enhanced

charge-trapping [Khan 15], it also needs to be explored for the associated data retention.

For example, the expected charge loss with respect to temperature and time when different

programming conditions are used (e.g., the PVRS method), so that traps at different energy

levels are involved. This helps to improve the modeling of the device for different

application scenarios.

2. The figure of merit for peripheral circuits in the analog computing engine: the figure of

merit for the peripheral circuits, such as the current integrator, needs to be studied for the

analog neural network inference engine. For example, it has been shown that if the

integrated values are quantized non-linearly by the circuit, it will perform better than linear

quantization for the analog neural networks. Therefore, research on a proper figure of

merits can guide the design of more suitable peripheral circuits.

3. Efficient programming for large-scale inference engine: for analog memory with low write

speed such as the CTTs, efficient programming in both energy and time will be crucial to

pave the way for the low-cost deployment of the inference engine. For example, an

algorithm and supporting architecture to quickly converge to the target values for the

devices in batch mode, which is not discussed in this dissertation, can be developed.

4. System reconfigurability: while the proposed system (with unrolling for CNN) does not

require explicit instruction during inference. It also limits the reconfigurability of the

system. Therefore, a tiled design should be considered to provide flexibility at the chip-

package level, or explored in the SoC if it does not require significant overhead.

99

References
[Auth 08] Auth, Chris, et al. "45nm high-k+ metal gate strain-enhanced transistors." 2008

Symposium on VLSI Technology. IEEE, 2008.

[Backus 78] Backus, John. "Can programming be liberated from the von Neumann style? A

functional style and its algebra of programs." Communications of the ACM 21.8 (1978):

613-641.

[Bajwa 18] Bajwa, Adeel Ahmad, et al. "Demonstration of a Heterogeneously Integrated System-

on-Wafer (SoW) Assembly." 2018 IEEE 68th Electronic Components and Technology

Conference (ECTC). IEEE, 2018.

[Batra 14] Batra, Pooja, et al. "Three-dimensional wafer stacking using Cu TSV integrated with

45 nm high performance SOI-CMOS embedded DRAM technology." Journal of Low

Power Electronics and Applications 4.2 (2014): 77-89.

[Benjamin 14] Benjamin, Ben Varkey, et al. "Neurogrid: A mixed-analog-digital multichip system

for large-scale neural simulations." Proceedings of the IEEE 102.5 (2014): 699-716.

[Burr 14] Burr, Geoffrey W., et al. "Phase change memory technology." Journal of Vacuum

Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing,

Measurement, and Phenomena 28.2 (2010): 223-262.

[Burr 15] Burr, Geoffrey W., et al. "Experimental demonstration and tolerancing of a large-scale

neural network (165 000 synapses) using phase-change memory as the synaptic weight

element." IEEE Transactions on Electron Devices 62.11 (2015): 3498-3507.

[Burr 16] Burr, Geoffrey W., et al. "Recent progress in phase-change memory technology." IEEE

Journal on Emerging and Selected Topics in Circuits and Systems 6.2 (2016): 146-162.

100

[Cai 19] Cai, Fuxi, et al. "A fully integrated reprogrammable memristor–CMOS system for

efficient multiply–accumulate operations." Nature Electronics (2019):

[Canziani 16] Canziani, Alfredo, Adam Paszke, and Eugenio Culurciello. "An analysis of deep

neural network models for practical applications." arXiv preprint arXiv:1605.07678 (2016).

[Carter 16] Carter, R., et al. "22nm FDSOI technology for emerging mobile, Internet-of-Things,

and RF applications." 2016 IEEE International Electron Devices Meeting (IEDM). IEEE,

2016.

[Cartier 06] Cartier, E., et al. "Fundamental understanding and optimization of PBTI in nFETs

with SiO2/HfO2 gate stack." 2006 International Electron Devices Meeting. IEEE, 2006.

[Cartier 09] Cartier, Eduard, and Andreas Kerber. "Stress-induced leakage current and defect

generation in nFETs with HfO 2/TiN gate stacks during positive-bias temperature stress."

2009 IEEE International Reliability Physics Symposium. IEEE, 2009.

[Chen 17] Chen, Yu-Hsin, et al. "Eyeriss: An energy-efficient reconfigurable accelerator for deep

convolutional neural networks." IEEE Journal of Solid-State Circuits 52.1 (2017): 127-138.

[Chen 18] Chen, Pai-Yu, Xiaochen Peng, and Shimeng Yu. "NeuroSim: A circuit-level macro

model for benchmarking neuro-inspired architectures in online learning." IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems 37.12 (2018):

3067-3080.

[Davies 18] Davies, Mike, et al. "Loihi: A neuromorphic manycore processor with on-chip

learning." IEEE Micro 38.1 (2018): 82-99.

[Deng 09] Deng, Jia, et al. "Imagenet: A large-scale hierarchical image database." 2009 IEEE

conference on computer vision and pattern recognition. Ieee, 2009.

101

[Desoli 17] Desoli, Giuseppe, et al. "14.1 a 2.9 tops/w deep convolutional neural network soc in

fd-soi 28nm for intelligent embedded systems." Solid-State Circuits Conference (ISSCC),

2017 IEEE International. IEEE, 2017.

[DiMaria 95] DiMaria, D. J., and E. Cartier. "Mechanism for stress‐induced leakage currents in

thin silicon dioxide films." Journal of Applied physics 78.6 (1995): 3883-3894.

[Drubach 00] Drubach, Daniel. The Brain Explained. New Jersey: Prentice-Hall, 2000.

[Ghani 00] Ghani, T., et al. "Scaling challenges and device design requirements for high

performance sub-50 nm gate length planar CMOS transistors." 2000 Symposium on VLSI

Technology. Digest of Technical Papers (Cat. No. 00CH37104). IEEE, 2000.

[Goodfellow 14] Goodfellow, Ian J., Jonathon Shlens, and Christian Szegedy. "Explaining and

harnessing adversarial examples." arXiv preprint arXiv:1412.6572 (2014).

[Gu 18] Gu, Xuefeng. Charge-trap transistors for neurmorphic computing. Diss. UCLA, 2018.

[Gu 19] Gu, Xuefeng, Zhe Wan, and Subramanian S. Iyer. "Charge-Trap Transistors for CMOS-

Only Analog Memory." IEEE Transactions on Electron Devices 66.10 (2019): 4183-4187.

[Guo 17] Guo, Xinjie, et al. "Fast, energy-efficient, robust, and reproducible mixed-signal

neuromorphic classifier based on embedded NOR flash memory technology." 2017 IEEE

International Electron Devices Meeting (IEDM). IEEE, 2017.

[Hawkins 04] Hawkins, Douglas M. "The problem of overfitting." Journal of chemical information

and computer sciences 44.1 (2004): 1-12.

[He 16] He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the

IEEE conference on computer vision and pattern recognition. 2016.

[Hu 85] Hu, Chenming, et al. "Hot-electron-induced MOSFET degradation-model, monitor, and

improvement." IEEE Journal of Solid-State Circuits 20.1 (1985): 295-305.

102

[Huijsing 13] Huijsing, Johan, Rudy J. van de Plassche, and Willy MC Sansen, eds. Analog Circuit

Design: Volt Electronics; Mixed-Mode Systems; Low-Noise and RF Power Amplifiers for

Telecommunication. Springer Science & Business Media, 2013.

[Indiveri 11] Indiveri, Giacomo, et al. "Neuromorphic silicon neuron circuits." Frontiers in

neuroscience 5 (2011): 73.

[Ioffe 15] Ioffe, Sergey, and Christian Szegedy. "Batch normalization: Accelerating deep network

training by reducing internal covariate shift." arXiv preprint arXiv:1502.03167 (2015).

[Jain 19] Jain, Pulkit, et al. "13.2 A 3.6 Mb 10.1 Mb/mm 2 Embedded Non-Volatile ReRAM

Macro in 22nm FinFET Technology with Adaptive Forming/Set/Reset Schemes Yielding

Down to 0.5 V with Sensing Time of 5ns at 0.7 V." 2019 IEEE International Solid-State

Circuits Conference-(ISSCC). IEEE, 2019.

[Jeppson 77] Jeppson, Kjell O., and Christer M. Svensson. "Negative bias stress of MOS devices

at high electric fields and degradation of MNOS devices." Journal of Applied Physics 48.5

(1977): 2004-2014.

[Jouppi 17] Jouppi, Norman P., et al. "In-datacenter performance analysis of a tensor processing

unit." Proceedings of the 44th Annual International Symposium on Computer Architecture.

2017.

[Kerber 09] Kerber, Andreas, Siddarth A. Krishnan, and Eduard Albert Cartier. "Voltage Ramp

Stress for Bias Temperature Instability Testing of Metal-Gate/High-k Stacks." IEEE

Electron Device Letters 30.12 (2009): 1347-1349.

[Keysight 18]B1500A Semiconductor Device Analyzer Data Sheet. Keysight. Dec. 2018.

[Khan 15] Khan, Faraz, et al. "The impact of self-heating on charge trapping in high-k-metal-gate

nFETs." IEEE Electron Device Letters 37.1 (2015): 88-91.

103

[Khan 16] Khan, Faraz, et al. "Charge Trap Transistor (CTT): An Embedded Fully Logic-

Compatible Multiple-Time Programmable Non-Volatile Memory Element for High-k-

Metal-Gate CMOS Technologies." IEEE Electron Device Letters 38.1 (2016): 44-47.

[Khan 19] Khan, Faraz, et al. "Turning Logic Transistors into Secure, Multi-Time Programmable,

Embedded Non-Volatile Memory Elements for 14 nm FINFET Technologies and

Beyond," 2019 IEEE Symposium on VLSI Technology (VLSI-Technology). IEEE, 2019.

[Kim 11] Kim, Y., et al. "Integration of 28nm MJT for 8∼ 16Gb level MRAM with full

investigation of thermal stability." 2011 Symposium on VLSI Technology-Digest of

Technical Papers. IEEE, 2011.

[Kim15] Kim, Yong-Deok, et al. "Compression of deep convolutional neural networks for fast and

low power mobile applications." arXiv preprint arXiv:1511.06530 (2015).

[Kittur 20] Kittur, Premsagar. Private communications

[Koch 96] Koch, Christof, and Bimal Mathur. "Neuromorphic vision chips." Ieee Spectrum 33.5

(1996): 38-46.

[Krizhevsky 02] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet

classification with deep convolutional neural networks." Advances in neural information

processing systems. 2012.

[Krizhevsky 09] Krizhevsky, Alex, and Geoffrey Hinton. "Learning multiple layers of features

from tiny images." (2009): 7.

[Kumar 17] Kumar, Arvind, et al. "Toward human-scale brain computing using 3D wafer scale

integration." ACM Journal on Emerging Technologies in Computing Systems (JETC) 13.3

(2017): 45.

104

[LeCun 15] LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. "Deep learning." nature

521.7553 (2015): 436-444.

[LeCun 19] LeCun, Yann. "Deep Learning Hardware: Past, Present, and Future." 2019 IEEE

International Solid-State Circuits Conference-(ISSCC). IEEE, 2019.

[LeCun 89] LeCun, Yann, et al. "Backpropagation applied to handwritten zip code recognition."

Neural computation 1.4 (1989): 541-551.

[LeCun 98] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. "Gradient-based learning applied to

document recognition." Proceedings of the IEEE, 86(11):2278-2324, November 1998.

[Liu 19] Liu, Meng-Hsiang, et al. "Process development of power delivery through wafer vias for

silicon interconnect fabric." 2019 IEEE 69th Electronic Components and Technology

Conference (ECTC). IEEE, 2019.

[Ma 18] Ma, Wen, et al. "Improving Noise Tolerance of Hardware Accelerated Artificial Neural

Networks." 2018 17th IEEE International Conference on Machine Learning and

Applications (ICMLA). IEEE, 2018.

[Ma 19] Ma, Siming, et al. "Fully-CMOS Multi-Level Embedded Non-Volatile Memory Devices

With Reliable Long-Term Retention for Efficient Storage of Neural Network Weights."

IEEE Electron Device Letters 40.9 (2019): 1403-1406.

[McCulloch 43] McCulloch, Warren S., and Walter Pitts. "A logical calculus of the ideas

immanent in nervous activity." The bulletin of mathematical biophysics 5.4 (1943): 115-

133.

[Mead 89] Mead, Carver. "Analog VLSI and neutral systems." NASA STI/Recon Technical

Report A 90 (1989).

105

[Merolla 14] Merolla, Paul A., et al. "A million spiking-neuron integrated circuit with a scalable

communication network and interface." Science 345.6197 (2014): 668-673.

[Moran 20] Moran, Steven. Private communications

[Nvidia 15] Inference, GPU-Based Deep Learning. "A Performance and Power Analysis." Nvidia

Whitepaper, November (2015).

[Pobegen 13] Pobegen, Gregor, et al. "Observation of normally distributed energies for interface

trap recovery after hot-carrier degradation." IEEE electron device letters 34.8 (2013): 939-

941.

[Rastegari 16] Rastegari, Mohammad, et al. "Xnor-net: Imagenet classification using binary

convolutional neural networks." European conference on computer vision. Springer, Cham,

2016.

[Razavi 02] Razavi, Behzad. Design of analog CMOS integrated circuits. Tata McGraw-Hill, 2002

[Reagen 18] Reagen, Brandon, et al. "Ares: A framework for quantifying the resilience of deep

neural networks." 2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC).

IEEE, 2018.

[Real 17] Real, Esteban, et al. "Large-scale evolution of image classifiers." Proceedings of the 34th

International Conference on Machine Learning-Volume 70. JMLR. org, 2017.

[Rosenblatt 58] Rosenblatt, Frank. "The perceptron: a probabilistic model for information storage

and organization in the brain." Psychological review 65.6 (1958): 386.

[Russakovsky 15] Russakovsky, Olga, et al. "Imagenet large scale visual recognition challenge."

International journal of computer vision 115.3 (2015): 211-252.

106

[Schemmel 10] Schemmel, Johannes, et al. "A wafer-scale neuromorphic hardware system for

large-scale neural modeling." Proceedings of 2010 IEEE International Symposium on

Circuits and Systems. IEEE, 2010.

[Schölkopf 02] Schölkopf, Bernhard, Alexander J. Smola, and Francis Bach. Learning with kernels:

support vector machines, regularization, optimization, and beyond. MIT press, 2002.

[Sengupta 16] Sengupta, Abhronil, et al. "Probabilistic deep spiking neural systems enabled by

magnetic tunnel junction." IEEE Transactions on Electron Devices 63.7 (2016): 2963-2970.

[Seo 11] Seo, Kyungah, et al. "Analog memory and spike-timing-dependent plasticity

characteristics of a nanoscale titanium oxide bilayer resistive switching device."

Nanotechnology 22.25 (2011): 254023.

[Shafiee 16] Shafiee, Ali, et al. "ISAAC: A convolutional neural network accelerator with in-situ

analog arithmetic in crossbars." ACM SIGARCH Computer Architecture News 44.3

(2016): 14-26.

[Shihab 16] Shihab, Mustafa, et al. "Couture: Tailoring stt-mram for persistent main memory." 4th

Workshop on Interactions of NVM/Flash with Operating Systems and Workloads

({INFLOW} 16). 2016.

[Silver 07] Silver, Rae, et al. "Neurotech for neuroscience: unifying concepts, organizing

principles, and emerging tools." Journal of Neuroscience 27.44 (2007): 11807-11819.

[Silver 17] Silver, David, et al. "Mastering the game of go without human knowledge." Nature

550.7676 (2017): 354-359.

[SivaChandra 18] SivaChandra, et al. "Electrical Characterization of High Performance Fine Pitch

Interconnects in Silicon-Interconnect Fabric." 2018 IEEE 68th Electronic Components and

Technology Conference (ECTC). IEEE, 2018.

107

[Song 19] Song, Jinook, et al. "7.1 An 11.5 TOPS/W 1024-MAC butterfly structure dual-core

sparsity-aware neural processing unit in 8nm flagship mobile SoC." 2019 IEEE

International Solid-State Circuits Conference-(ISSCC). IEEE, 2019.

[Srivastava 14] Srivastava, Nitish, et al. "Dropout: a simple way to prevent neural networks from

overfitting." The journal of machine learning research 15.1 (2014): 1929-1958.

[Sun 18] Sun, Xiaoyu, et al. "XNOR-RRAM: A scalable and parallel resistive synaptic architecture

for binary neural networks." 2018 Design, Automation & Test in Europe Conference &

Exhibition (DATE). IEEE, 2018.

[Valov 11] Valov, Ilia, et al. "Electrochemical metallization memories—fundamentals,

applications, prospects." Nanotechnology 22.25 (2011): 254003.

[Vincent 15] Vincent, Adrien F., et al. "Spin-transfer torque magnetic memory as a stochastic

memristive synapse for neuromorphic systems." IEEE transactions on biomedical circuits

and systems 9.2 (2015): 166-174.

[Viraraghavan 16] Viraraghavan, Janakiraman, et al. "80Kb 10ns read cycle logic Embedded

High-K charge trap Multi-Time-Programmable Memory scalable to 14nm FIN with no

added process complexity." 2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits).

IEEE, 2016.

[Wan 17] Wan, Zhe, and Subramanian S. Iyer. "Three-dimensional wafer scale integration for

ultra-large-scale cognitive systems." 2017 IEEE SOI-3D-Sub-threshold Microelectronics

Technology Unified Conference (S3S). IEEE, 2017.

[Wen 18] Wen, Chenxi, and Timothy K. Horiuchi. "Power-Law Compression Expands the

Dynamic Range of a Neuromorphic Echolocation System." 2018 IEEE Biomedical

Circuits and Systems Conference (BioCAS). IEEE, 2018.

108

[Williams 09] Williams, Samuel. "Roofline: An Insightful Visual Performance Model for

Floating-Point Programs and Multicore.", ACM Communications (2009).

[Wong 12] Wong, H-S. Philip, et al. "Metal–oxide RRAM." Proceedings of the IEEE 100.6 (2012):

1951-1970.

[Xie 10] Xie, Yuan, Jason Cong, and Sachin Sapatnekar. "Three-dimensional integrated circuit

design." EDA, Design and Microarchitectures, New York: Springer 20 (2010): 194-196.

[Yuan 20] Yuan, Zhe et al. "A 65nm 24.7μJ/Frame 12.3mW Activation-Similarity-Aware

Convolutional Neural Network Video Processor Using Hybrid Precision, Inter-Frame Data

Reuse and Mixed-Bit-Width Difference-Frame Data Codec." 2020 IEEE International

Solid-State Circuits Conference-(ISSCC). IEEE, 2020.

[Yue 19] Yue, Jinshan, et al. "7.5 A 65nm 0.39-to-140.3 TOPS/W 1-to-12b Unified Neural

Network Processor Using Block-Circulant-Enabled Transpose-Domain Acceleration with

8.1× Higher TOPS/mm 2 and 6T HBST-TRAM-Based 2D Data-Reuse Architecture." 2019

IEEE International Solid-State Circuits Conference-(ISSCC). IEEE, 2019.

[Zagoruyko 16] Zagoruyko, Sergey, and Nikos Komodakis. "Wide residual networks." arXiv

preprint arXiv:1605.07146 (2016).

[Zhang 15] Zhang, Chen, et al. "Optimizing fpga-based accelerator design for deep convolutional

neural networks." Proceedings of the 2015 ACM/SIGDA International Symposium on

Field-Programmable Gate Arrays. 2015.

[Zhang 16] Zhang, Chen, et al. "Energy-efficient CNN implementation on a deeply pipelined

FPGA cluster." Proceedings of the 2016 International Symposium on Low Power

Electronics and Design. 2016.

109

[Zhang 18] Zhang, Chen, et al. "Caffeine: Toward uniformed representation and acceleration for

deep convolutional neural networks." IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems 38.11 (2018): 2072-2085.

[Zheng 18] Zheng, Xin, et al. "Error-Resilient Analog Image Storage and Compression with

Analog-Valued RRAM Arrays: An Adaptive Joint Source-Channel Coding Approach."

2018 IEEE International Electron Devices Meeting (IEDM). IEEE, 2018.

[Zhou 14] Zhou, Jiantao, Kuk-Hwan Kim, and Wei Lu. "Crossbar RRAM arrays: Selector device

requirements during read operation." IEEE Transactions on Electron Devices 61.5 (2014):

1369-1376.

