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Abstract 
Passive sinking flux of particulate organic matter in the ocean plays a central role in the biological carbon pump and carbon export 
to the ocean’s interior. Particle-associated microbes colonize particulate organic matter, producing “hotspots” of microbial activity. We 
evaluated variation in particle-associated microbial communities to 500 m depth across four different particle size fractions (0.2–1.2, 
1.2–5, 5–20, >20 μm) collected using in situ pumps at the Bermuda Atlantic Time-series Study site. In situ pump collections capture both 
sinking and suspended particles, complementing previous studies using sediment or gel traps, which capture only sinking particles. 
Additionally, the diagenetic state of size-fractionated particles was examined using isotopic signatures alongside microbial analysis. 
Our findings emphasize that different particle sizes contain distinctive microbial communities, and each size category experiences 
a similar degree of change in communities over depth, contradicting previous findings. The robust patterns observed in this study 
suggest that particle residence times may be long relative to microbial succession rates, indicating that many of the particles collected 
in this study may be slow sinking or neutrally buoyant. Alternatively, rapid community succession on sinking particles could explain 
the change between depths. Complementary isotopic analysis of particles revealed significant differences in composition between 
particles of different sizes and depths, indicative of organic particle transformation by microbial hydrolysis and metazoan grazing. Our 
results couple observed patterns in microbial communities with the diagenetic state of associated organic matter and highlight unique 
successional patterns in varying particle sizes across depth. 

Keywords: marine microbiology, biological oceanography, biological carbon pump, 16S amplicon sequencing, particle-associated 
microbes, Bermuda Atlantic Time-series Study, marine snow, particulate organic matter 

Introduction 
Sinking particulate organic matter (POM) plays a central role 
in the transport and sequestration of carbon in the ocean, act-
ing as the dominant pathway in the biological carbon pump 
[1]. Organic particles, comprised of living autotrophic and het-
erotrophic microbes, cellular detritus, zooplankton-derived car-
casses, and fecal matter, can be ballasted by minerals of bio-
genic and lithogenic origin [2, 3] and account for ∼80% of the 
organic carbon exported annually from the base of the euphotic 
zone. Physical mixing of suspended organic matter and vertical 
transport by migrating zooplankton account for the other 20% 
[4, 5]. Recent studies have shown that the export efficiency of 
particulate organic carbon (POC) from the surface to depth is spa-
tially variable [6–10]. Factors regulating this spatial heterogeneity 
remain subject to debate. 

Export of POC from the euphotic into the ocean interior is the 
net outcome of two types of competing processes. Production of 
POC partially determines particle size, extent of aggregation, and 
sinking rates and is offset by biological processes that intercept, 
solubilize, and remineralize sinking organic matter [11, 12]. During 
transport, particles are transformed by numerous processes, 
such as direct remineralization by bacterioplankton [13] or  
zooplankton [14]. Additionally, zooplankton can fragment aggre-
gates [15–17], and POM can be solubilized to dissolved organic 
matter (DOM) via hydrolytic enzymes produced by particle-
associated (PA) prokaryotes [18–21]. These processes result in the 
attenuation of POM flux by ∼85% within the mesopelagic zone 
(200–1000 m) [11]. 

Marine POM produced by the aggregation of various types 
of organic material is colonized by bacteria and archaea that 
are distinct from the free-living (FL) community. Particles are
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“hotspots” of microbial activity in the water column [22–24], 
although the biogeochemical consequences of PA taxa are 
still poorly understood. PA microbial communities have higher 
cell densities, growth rates, extracellular enzymatic activities, 
biogeochemical transformation rates, metabolic diversity, and 
overall microbial activity per unit volume than surrounding 
FL communities [18, 20, 25]. These communities degrade POM 
by producing extracellular enzymes that hydrolyze POM and 
DOM to lower-molecular-weight compounds prior to cellular 
uptake [18, 21, 26]. POM and DOM are compositionally distinct 
pools of organic matter; recently-produced organic particles are 
less diagenetically altered than surface DOM [27–29]. Therefore, 
marine POM provides unique microenvironments, leading to 
microbial communities that are distinct in composition from the 
surrounding FL communities [22]. The quality and quantity of 
organic particles are highly variable due to nutrient availability, 
seasonality, geography, and the distributions of organisms in the 
water column that produce, consume, and transform POM [2, 
7, 30, 31]. Thus, PA communities are highly diverse and may be 
substantially influenced by several factors, including particle 
types and quality [32–36], depths, and seasonality [37–40]. 

This study targeted a greater depth resolution of size-
fractionated microbial communities than any previous study 
we are aware of. The improved vertical resolution allowed us to 
observe successional patterns in particle communities through 
depth and directly compare transformations in PA microbes 
alongside shifts in FL communities. Additionally, we generated 
both 16S rRNA gene metabarcoding data and complementary 
isotopic ratio mass spectroscopy data from size-fractionated 
POM, tying together chemical and microbial characterization. 
Together, these two data types inform how the diagenetic state 
of the POM varies along with changes in microbial community 
structure. The study was conducted in the vicinity of the Bermuda 
Atlantic Time-series Study (BATS), a site with rich contextual 
data for primary productivity, vertical fluxes and biogeochemical 
variability [41, 42], DOM dynamics [28, 43–45], microbial processes 
[46–48], microbial plankton diversity [49–55], and sinking particles 
[56]. We deployed in situ pumps (McLane large volume water 
transfer systems) equipped with filters of successively smaller 
pore sizes (20, 5, 1.2, 0.2 μm) to capture particle size fractions. 
This approach captures sinking particles as well as suspended 
particles, which differs from gel and sediment traps that only 
collect the sinking fraction [57, 58]. Additionally, in situ pumps 
filter hundreds of liters, a far greater volume than the most 
popular method for PA community analysis, in which water 
collected from Niskin bottles is sequentially filtered [59]. With 
these data sets, we explored changes in PA communities and 
transformations of organic matter in different size fractions 
and across depths. We used this data to ask: (i) to what extent 
do PA communities change with depth, (ii) do PA communities 
within the mesopelagic become more compositionally distinct 
from FL communities as the organic particles are diagenetically 
transformed, and (iii) can we resolve certain taxa shifting between 
a FL and PA lifestyle across depth. Our study constrains drivers of 
particle transformation and connects observed biogeochemical 
transformations to associated microbial taxa, emphasizing the 
various roles microbes play in marine biogeochemical cycling. 

Materials and methods 
In situ pump and hydrographic sampling 
Size-fractionated samples were collected by McLane in situ pumps 
(McLane Research Laboratories, Inc.) outfitted with 4 L min−1 

pump heads and dual filter heads, each containing four-tiered 
142 mm filter holders. One filter head collected microbial DNA 
fractions, and the other collected size-fractionated particles for 
organic chemical characterization. Fifty-two samples were col-
lected between the surface and 500 m over four cruises conducted 
in the vicinity of BATS in July 2018, July 2019, August 2021, and 
November 2021. Three to four in situ pumps targeting different 
depths were deployed on a hydrowire simultaneously, filtering 
between 47 and 367 L of seawater through each pump head 
over time intervals of up to four hours. DNA was collected via 
sequential filtration through a 20 μm Nitex screen with a 150 μm 
Nitex backing filter, a 5 μm polycarbonate isopore (TMTP) filter, a 
1.2 μm polyethersulfone (PES, Pall Corporation) filter, and a 0.2 μm 
PES filter. Samples for organic characterization were collected 
sequentially on a 20 μm acid and methanol-cleaned Nitex mesh, 
a 6  μm acid and methanol-cleaned Nitex mesh, a 1.2 μm GF/C  
glass microfiber filter (double layer, precombusted at 450◦C), and 
a 0.3 μm GF-75 glass microfiber filter (double layer, precombusted 
at 450◦C). 

Size fractionated DNA preservation and 
extraction 
Immediately after recovery, pump heads were drained of standing 
volume by a gentle vacuum. DNA filters were transferred from 
the pumps to polyethylene bags, heat sealed, and stored at −80◦C 
until lysis and extraction. For cell lysis, 6 ml of sucrose lysis buffer 
(40 mmol L−1 EDTA, 50 mmol L−1 Tris HCl, 750 mmol L−1 sucrose, 
400 mmol L−1 NaCl, pH adjusted to 8.0), 600 μl of sodium dodecyl 
sulfate (10% w/v), and 60 μl of 20 mg ml−1 proteinase K were added 
to each polyethylene bag. Bags were then resealed and incubated 
at 37◦C for 30 min and then at 55◦C for 30 min. A 1 ml aliquot 
was transferred to 2 ml microcentrifuge tubes for DNA extraction. 
DNA was extracted following the phenol-chloroform protocol of 
Giovannoni et al. [55]. 

Amplicon library sequencing and bioinformatics 
Amplification of the V4 region of the 16S rRNA gene was 
performed using the 515F-Y (5′-GTGYCAGCMGCCGCGGTAA-
3′) and 806RB (5′-GGACTACNVGGGTWTCTAAT-3′) primers with 
custom adapters [60, 61]. PCR-grade water process blanks and 
mock communities (BEI Resources mock communities HM-782D 
and HM-783D and a custom community from the Santa Barbara 
Channel [62]) were included with each 96-well plate of samples. 
Amplicons were cleaned and normalized using SequalPrep plates 
(Invitrogen), pooled at equal volumes, concentrated using Amicon 
Ultra 0.5 ml centrifugal tubes (Millipore), gel extracted using 
the QIAquick Gel Extraction Kit (Qiagen), and sequenced on 
an Illumina MiSeq using PE250 chemistry at the University of 
California, Davis DNA Technologies Core. 

Fastq files were processed using dada2 (version 1.16) in R [63]. 
Amplicon sequence variants (ASVs) were given a taxonomic 
assignment using the SILVA database (version 138.1 with 
species) [64]. Prochlorococcus taxonomy was manually refined, 
and sequences were assigned to ecotypes using phylogenetic 
approaches based on sequence alignment against representative 
Prochlorococcus 16S rRNA gene sequences. Samples were limited 
to 8000 reads. Samples with fewer than 8000 reads were removed 
from further analysis (25 out of 468 samples). Mock communities 
and negative controls were compared to confirm consistency in 
amplification and lack of contamination between PCR plates and 
then removed from further analysis. ASV relative abundances 
were pretreated using an angular transformation to normalize
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the dataset, and singletons were removed for all multivariate 
analyses. 

Particle characterization 
Organic particles were chemically characterized as described pre-
viously [65, 66]. Briefly, particles were collected sequentially on 
20, 6, 1.2, and 0.3 μm filters. Isotope samples were collected on 
combusted glass fiber filters with nominal pore sizes to avoid the 
organic matrix of polymer filters, which render bulk C&N analysis 
impossible. DNA samples were collected on polycarbonate and 
polyethersulfone flat filters with exact pore size cutoffs. Note that 
this may have led to the collection of slightly different particles 
on differing filter types. Particles in the >20 μm and 6–20 μm 
fractions were washed off Nitex filters with 0.2 μm filtered seawa-
ter and collected onto 0.7 μm GF/F glass fiber filters. Filters were 
examined under magnification to identify and remove metazoan 
swimmers captured during sampling. Filters were then freeze-
dried and quantitatively split by weight, as in Graff et al. [67]. 
For bulk nitrogen and amino acid analysis, freeze-dried filters 
were processed directly. For bulk analysis of organic carbon, filter 
subsamples were acidified via direct application of saturated 
sulfurous acid and dried at 60◦C overnight. Bulk POM nitrogen 
concentrations and stable isotope ratios were measured via an 
elemental analyzer coupled to an isotope ratio mass spectrometer 
(Flask EA coupled to MAT 253-IRMS via Conflo IV, Thermo Sci-
entific). Standards of known nitrogen isotope composition (Arndt 
Schimmelmann, Indiana University) were used to calibrate instru-
ment response and precision; analytical uncertainty in bulk nitro-
gen isotope composition was ±0.2�. 

For amino acid compound-specific isotope analysis, splits from 
0.3, 1.2, and 20 μm filters were freeze-dried, hydrolyzed, puri-
fied, derivatized, and analyzed via gas chromatography coupled 
with isotope ratio mass spectrometry (GC-IRMS) as previously 
described [65, 68]. POM captured on 6 μm filters was below 
detection and thus excluded for isotopic analysis. Norleucine and 
aminoadipic acid co-injection standards and a standard mixture 
of 14 amino acids with known δ15N values were run alongside 
samples to correct for instrument drift, potential peak area rela-
tionships, and possible isotope effects associated with derivatiza-
tion. 

Trophic position (TP) of POM was estimated based on measured 
δ15N values of glutamic acid (Glu) and phenylalanine (Phe), as in 
Chikaraishi et al. [69]: 

TP = (
δ15NGlu − δ15NPhe − 3.4

)
/7.6 + 1 (1)  

TP uncertainty was determined, as in Jarman et al. [70]. Due 
to the large amount of material and processing time required for 
amino acid δ15N measurements, amino acids were analyzed and 
TP was calculated for only a subset of samples. 

Results 
Hydrography 
The depth of the surface mixed layer varied between and within 
cruises, from 9 m during stratified summer periods to 81 m 
in November 2021. Average surface temperatures ranged from 
28.9◦C in August 2021 with a mixed layer of ∼9 m to 24.6◦C in  
November 2021 with a mixed layer of ∼70 m. The deep chlorophyll 
maximum (DCM) varied between 69 and 134 m. The depth of the 
DCM ranged from 69 to 88 m in July 2018, 81 to 100 m in July 2019, 
101 to 134 m in August 2021, and 77 to 93 m in November 2021. 

Microbial communities binned as being associated with the DCM 
fell within these depth ranges of ±10 m for each cruise. Profile 
data for temperature, chlorophyll, bacterial abundance, nitrate 
+ nitrite, POC, and DOC during all sampled time periods can be 
found in Fig. S1 and broadly match values and trends previously 
reported at BATS for the summer and autumn seasons [41, 42]. 

Chemical characterization of organic particles 
Bulk δ15N values and TP were measured from the same pump 
casts that DNA was collected from in July 2018. Bulk δ15N values  
were used to estimate organic matter degradation. Higher values 
indicated more bioavailable organic matter consumption due to 
preferential biological utilization of the lighter isotope (14N) leav-
ing behind a more 15N-enriched substrate [71]. Bulk δ15N values  
ranged from −2� to 4�, varying between size fractions and depth 
(Fig. 1A). Values between fractions in the upper euphotic (UE) were 
more similar than those observed between fractions below the 
DCM. Bulk δ15N values in the <6 μm fractions were lowest in the 
surface 100 m, then increased sharply from −2� to 4� between 
120 and 190 m (Fig. 1A). There were not sufficient concentrations 
of POM in the 6–20 μm size fraction to accurately  measure bulk  
or compound-specific δ15N values. No significant increase in δ15N 
values was observed over depth in the >20 μm fraction. Instead, 
a δ15N value  ≤0� was observed for all mesopelagic depths except 
250 m, which had a δ15N value of 2.3�. We  use  the  bulk  δ15N 
values of size-fractionated POM from July 2018 to represent all 
other stratified periods sampled in this study because of the sim-
ilarity in hydrography, nutrient fields, euphotic zone depths, and 
location and intensity of the DCM. Bulk stable isotope analyses 
performed across these sampling periods demonstrate similar 
patterns, suggesting these observed trends are relevant to all 
sampled time periods [72]. 

TP of particles was calculated from measured δ15N values of  
individual amino acids for the 0.3–1.2, 1.2–6, and >20 μm fractions 
from several depths in July 2018 (Fig. 1B). The TP determines 
the extent to which particles include organic matter produced 
through catabolic processes [73–75], with a higher TP indicating 
greater contributions from heterotrophic microbial biomass or 
solid waste from animals. The lowest TPs (<1.0) were observed at 
the surface and increased with depth. TP was only calculated from 
three samples within the 0.3–1.2 μm fraction; however, at each 
depth, this fraction aligned with values observed in the 1.2–6 μm 
fractions and displayed a significantly lower TP than the >20 μm 
fraction. The highest values were observed at 190 m (1.6 ± 0.2) for 
the 1.2–6 μm fraction and at 112 m (2.1 ± 0.2) for the >20 μm 
fraction. At all depths sampled, the >20 μm fraction displayed 
the highest calculated TP; along with relatively low δ15N values of  
threonine (measured through compound-specific isotope analysis 
of amino acids (CSIA), Fig. 1C), this suggests greater metazoan 
influence on the processing of the larger particles [66]. 

Overall trends in FL and PA bacterioplankton 
communities 
Overall, 432 environmental samples were successfully sequenced 
and contain 10 907 non-singleton ASVs after rarefaction. Eukary-
ote and plastid sequences were removed prior to analysis to 
focus on prokaryote diversity. Communities within the 0.2–1.2 
fraction were considered FL, while communities within the 5– 
20 and >20 μm fractions were considered PA, consistent with 
previous studies of size-fractionated microbial communities 
[32, 40]. Cyanobacterial contributions were most pronounced 
in the 0.2–1.2 μm (17.6 ± 9.5% of total 16S community in the 
UE and 26.9 ± 10.1% in the DCM) and 1.2–5 μm (29.1 ± 13.1%

https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae090#supplementary-data
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Figure 1. (A) Separation of bulk δ15N values between fractions was observed below the DCM. (B) TP of particles was highest in the >20 μm fraction  
across all depths. (C) δ15N values threonine (Thr) normalized to δ15N values of phenylalanine (Phe) for POM size fractions show differing composition 
between size fractions. For comparison, the range of values found in phytoplankton and zooplankton fecal pellet end-members characterized by 
Doherty et al. (2021) are indicated by gray bars at the top. Additional comparison to end-members can be found in Fig. S7. Error bars indicate 
propagated analytical uncertainty. Samples were taken from July 2018. 

Figure 2. NMDS ordinations show strong differences in microbial community composition are observed between fraction and depth. NMDS 
ordinations use bray-Curtis dissimilarities from 16S rRNA gene amplicon community composition, with Cyanobacteria and plastid sequences excluded. 
Shapes denote size fraction. Colors denote (A) depth within the water column and (B) time of collection. 

in the UE and 35.7 ± 10.2% in the DCM) fractions in the UE 
and DCM but were present in all size fractions at all depths 
to 500 m ( Fig. S4, see Supplementary Material). Nonmetric 
multidimensional scaling (NMDS) ordination demonstrated a 
similar pattern with and without the inclusion of Cyanobacteria 
(Figs 2 and S2). 

Unless otherwise specified, for subsequent analyses, cyanobac-
terial taxa were removed to directly compare FL and PA 
heterotrophic and chemoautotrophic communities. Permuta-
tional multivariate analyses of variance (PERMANOVA) was 
used to identify potential environmental drivers of prokaryotic 
community variability. NMDS ordinations revealed distinct 
clustering by size fraction and sample depth (Fig. 2A). Size 
fraction (R2 = 0.15, P < .001) and depth (R2 = 0.12, P < .001) were 
the strongest drivers of community composition in this dataset. 
Sampling date explained the lowest proportion of variance 
(R2 = 0.06, P < .001). When cyanobacterial taxa are considered, the 
environmental factors that affect community variations remain 

the same. The size of the particle, the depth of the sample, and the 
date of sampling all have a significant impact on the photoau-
totrophic, heterotrophic, and chemoautotrophic communities. 
The statistical analysis showed that the size fraction, depth, and 
sampling date all have a significant relationship with community 
variability (R2 = 0.15, P < .001; R2 = 0.15, P < .001; R2 = 0.06, P < .001, 
respectively). 

Community variation within the upper euphotic, 
DCM, and twilight zone depths 
Sample depths were grouped into three categorical bins to inves-
tigate broad patterns across gradients of light, organic, and inor-
ganic nutrient fields within the surface 500 m. We defined the UE 
zone as depths between the surface and 10 m shallower than the 
maximal DCM fluorescence. Samples collected within ±10 m of 
maximal fluorescence for each cast were binned as “DCM” sam-
ples, and samples collected >10 m deeper in the DCM were binned 
as the “twilight zone.” Within all sample depth bins, PERMANOVA

https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae090#supplementary-data
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Figure 3. A lower percentage of ASVs overlap between fractions below the UE. Venn diagrams show unique and overlapping ASVs between the 0.2–1.2, 
1.2–5, 5–20, and >20 μm size fractions in (A) the UE, (B) the DCM, and (C) the twilight zone. 

analysis indicated that the size fraction of the sample was a 
significant driver of community variation (PERMANOVA R2 = 0.32– 
0.33, P < .001), suggesting that PA and FL community structure 
differed across all depths. 

A multivariate analog of Levine’s test for homogeneity of 
variances was used to assess the similarity of communities 
within each depth, followed by Tukey post-hoc analyses to assess 
significance. Communities within the UE bin had smaller average 
distances from the calculated mean than communities at depths 
in the twilight zone (Fig. S6), implying that size-fractionated 
communities in the UE were more similar to each other than 
communities at greater depths. Within the UE, 13.1% of ASVs 
were present in all size fractions (Fig. 3). However, within the DCM 
and twilight zone, only 6.6%–7.3% of ASVs were shared between 
all fractions, supporting the finding that there was less overlap in 
FL and PA taxa below the UE. 

Community variation within size fractions 
PERMANOVAs confirmed that depth was a strong driver of com-
munity structure variability within each size fraction (R2 = 0.38– 
0.43, P < .001). The degree of variance between communities in the 
0.2–1.2, 1.2–5, and >20 μm fractions (R2 = 0.41–0.43, P < .001) was 
similar to that observed over depth and slightly reduced in the 5– 
20 μm fraction (R2 = 0.37, P < .001). For all size fractions, there was 
only minor overlap of ASVs (3.6–5.5%) in the UE, DCM, and twilight 
zone depth bins (Fig. 4), suggesting specialization across depth in 
all size fractions. 

Alpha diversity 
Shannon diversity indices within all size fractions differed signif-
icantly over depth (ANOVA P < .001) as well as seasonally (ANOVA 
P < .001) (Fig. 5A). Within the UE, there was a weak but signifi-
cant increase in Shannon diversity with increasing fraction size 
(P = .013). However, no significant differences in Shannon diversity 
were observed between size fractions within the DCM and twilight 
zone (ANOVA P = .238). Trends in Chao1 were similar to those 
observed with Shannon diversity (Fig. 5B) and were not affected 
when Cyanobacteria were included (Fig. S3). 

Distributions of cyanobacterial lineages 
Cyanobacteria reached a maximum of 54.5% of amplicons from the 
prokaryotic community and were predominantly Prochlorococcus. 
In all size fractions, Cyanobacteria were higher in relative abun-
dance in the UE and DCM compared to the twilight zone (Fig. S4). 

The greatest relative abundances of both Prochlorococcus and Syne-
chococcus were observed in the 0.2–1.2 and 1.2–5 μm fractions,  
with corresponding ASVs having a slight but significantly greater 
relative abundance in the 1.2–5 μm fraction (Tukey HSD  P < .05). 
Prochlorococcus (ASV #1) and Synechococcus (ASV #5) had the highest 
relative abundances in the upper 100 m of the water column. 
A greater number of less abundant cyanobacterial ASVs had 
higher relative abundances within and just below the DCM (Fig. 6). 
While all cyanobacterial ASVs were found in the highest relative 
abundance in the <5 μm size fractions, many cyanobacterial ASVs 
increased in relative abundances in the 5–20 and >20 μm fractions  
at the base of the euphotic zone and the twilight zone at depths 
several meters below the depth range where their respective FL 
(<5 μm) maximum occurred. 

Distribution of non-photosynthetic prokaryotes 
across size-fractions 
Microbial communities were analyzed with cyanobacterial 
ASVs removed to evaluate patterns of heterotrophic and 
chemoautotrophic prokaryotes. Between size fractions, signif-
icant differences were observed in the relative abundance of 
all major taxonomic groups. The FL 0.2–1.2 μm fraction was  
significantly (Tukey HSD P < .01) enhanced with Rhodospirillales 
(AEGEAN-169, Magnetospiraceae), SAR11 (Clade I, III, and IV), 
and SAR324 compared to every other size fraction (Figs 7, S4, 
and S5). Rhodospirillales averaged 14.5% of the 0.2–1.2 μm fraction  
community in the UE, while SAR11 averaged 32.1%. SAR324 was 
most abundant in the twilight zone FL community, averaging 
10.4%. Additionally, the relative contribution of Flavobacteriales 
was significantly lower in the 0.2–1.2 μm fraction relative to 
all other fractions. The 0.2–1.2 and 1.2–5 μm fractions were 
enriched with SAR202, SAR406, SAR324, SAR11, Puniceispirillales, 
Rhodobacterales, Rhodospirillales, Nitrospinales, Marine Group II (MG 
II), Marine Group III (MG III), and Nitrosopumilales compared to 
the 5–20 and > 20 μm fractions, suggesting these taxa are largely 
FL (Fig. 7). The 1.2–5 μm fraction was enriched with MG II and 
MG III in the twilight zone with an average of 16.5% and 7.9%, 
respectively. 

The 5–20 and >20 μm fractions were each enhanced in 
Gammaproteobacteria (Enterobactales), Verrucomicrobiota (Kiritimatiel-
lales, Opitutales, and  Verrucomicrobiales), Planctomycetota (OM190, 
Phycisphaerales, Pla3, Pirellulaes, Planctomycetales), and Bacteroidota 
(Chitinophagales and Flavobacteriales). Enterobactales were most 
abundant in the 5–20 μm fraction in the twilight zone, averaging 
14.7% of the non-cyanobacterial community. A member of the

https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae090#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae090#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae090#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae090#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae090#supplementary-data
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Figure 4. There is a low percentage of overlap between ASVs in the UE and the DCM or twilight zone. Venn diagrams show unique and overlapping 
amplicon sequence variants (ASVs) between depth bins associated with the UE, the DCM, and the twilight zone in (A) the 0.2–1.2 μm size fraction, 
(B) the 1.2–5 μm fraction, (C) the 5–20 μm fraction,  and (D)  the  >20 μm fraction.  

Figure 5. Significant differences in alpha diversity of the prokaryotic community based on 16S rRNA gene amplicons (excluding cyanobacteria and 
plastids) were observed between depth bins and timepoints in all size fractions. 

genus Alteromonas, part of the class Enterobactales, represented 
the single most abundant ASV found in the PA fractions, 
reaching up to 29.2% of the non-cyanobacterial PA communities. 
Verrucomicrobiota were highest in the UE and DCM, averaging 
13.8% and 28.5% of the communities in the UE 5–20 μm and  
>20 μm fractions, and 26.0% and 31.5% in the DCM 5–20 um and 
>20 μm communities. Planctomycetota averaged 26.0% of the 5– 
20 μm community and 36.4% of the >20 μm community within 
the twilight zone. Bacteroidota displayed enhanced abundance 

in all >1.2 μm fractions relative to the FL fraction, averaging 
22.9%–25.4% of the >1.2 μm fractions within the UE, where it was 
most abundant. 

Heterotrophic and chemoautotrophic taxonomic 
succession over depth 
There was strong vertical stratification of non-cyanobacterial 
prokaryotes across the sampled depth range. While community 
composition varied across size fractions, each size fraction
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Figure 6. Certain cyanobacterial ASVs demonstrated a higher relative abundance in larger fractions directly below their free-living max depths range. 
Boxes denote depths where Cyanobacteria are found with greater relative abundance in the PA size fractions compared to free-living fractions. 

Figure 7. Average relative abundances of microbial taxa (including Cyanobacteria) grouped by order across size fractions and depth bins. Orders that 
comprised <1% of community composition were excluded from visualization. 
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demonstrated similar vertical stratification in taxa over the 
upper 500 m. Within the UE of all size fractions, ASVs assigned 
to members of the orders Opitutales, Flavobacteriales, Chitinopha-
gles, and  various  Proteobacteria (Pseudomanadles, Puniceispirillales, 
Rhodospirllales, and SAR11) were observed in significantly higher 
relative abundance than in the twilight zone (Figs 7, S4, and S5). 
Greater relative abundances for members of SAR202, SAR406, 
SAR324, Alteromonas, Verrucomicrobiales, Nitrospinales, NB1-j,  
Bdellovibrionales, Planctomycetota (OM190, Pla3, Pirellulales, and  
Planctomycetales), and Archaea, including Nitrosopumilales, MG II, 
and MG III, were observed in the DCM and twilight zones in all 
size fractions compared to the UE zone. 

Discussion 
Characterization of marine organic particles 
The observed increase in particulate organic δ15N values of  ∼4�
from the surface to 500 m is consistent with previous observations 
around the global ocean [68, 71, 76, 77]. The shift in the δ15N 
values is accompanied by changes in particle composition. Fresh 
phytoplankton material dominates surface POM, while particles 
from the twilight zone are enriched with detritus [78, 79]. The 
increase in δ15N values is attributed to the preferential solu-
bilization of 14N-containing bonds during extracellular protein 
hydrolysis, leaving behind partially degraded particles enriched 
in 15N [71]. This interpretation is consistent with the findings of 
Hannides et al. [68], who reported that the primary driver of 15N-
enrichment in suspended particles was microbial heterotrophic 
degradation rather than metazoan grazing or a shift in nitrogen 
source. This suggests that smaller particles were largely trans-
formed by PA microbial communities, which were dominated 
by members of Planctomycetota, Verrucomicrobiota, Bacteroida, and  
Gammaproteobacteria. 

In contrast to the smaller (<20 μm) fractions, we did not 
observe significant changes in δ15N values over depth in large 
(>20 μm) particles. δ15N values of large, sinking particles have 
previously been observed to increase only slightly [77] or even  
decrease [76] with depth, despite rapid attenuation below the 
euphotic zone. Thus, processes that transform larger particles 
differ from the microbial processes affecting smaller particles 
[76]. These findings are consistent with previous reports of small, 
suspended particles being isotopically distinct from large, sinking 
particles [80, 81]. Therefore, bulk δ15N values alone could not 
differentiate whether large particles were sinking rapidly through 
the water column relatively untransformed, or whether the bulk 
δ15N signal did not fully capture biogeochemical transformations 
in large particles. 

To better distinguish drivers of nitrogen isotopic composition 
and particle degradation within particle size fractions, we used 
CSIA. The interpretive power of this method derives from differing 
responses of amino acids (AA) to trophic transfer, whereas dur-
ing microbial hydrolysis, the enzymatic transformation of amino 
acids is similar and untargeted [82]. One group of “trophic” AAs 
(i.e. alanine, aspartic acid, glutamic acid, isoleucine, leucine, pro-
line, and valine) becomes significantly enriched in 15N with every  
trophic transfer. Another group of “source” AAs (i.e. glycine, lysine, 
methionine, phenylalanine, and serine) experiences little change 
in 15N during trophic transfers, instead retaining their source δ15N 
ratio [69]. TP can be estimated through differences in δ15N values  
between the trophic AA glutamic acid/glutamine (Glx), and the 
source AA phenylalanine (Phe; Equation 1) [69]. The concept of 
TP has recently been applied to water column particles, with 
TPs >1 indicative of contributions from heterotroph biomass or 

solid waste products, both associated with consumers performing 
amino acid catabolism [66]. 

Here, TP increased from near-surface to 500 m in both small 
and large particles, indicating increases in biomass or waste 
contribution from heterotrophic organisms, whether microbial or 
metazoan [73–75]. We observed higher TPs at all depths in the 
largest (>20 μm) fraction, with the highest TPs found below 100 m 
(Fig. 1B). Independent of depth, the higher TP of larger particles 
suggests disproportionate transformation by catabolic processes 
compared to smaller particles, which primarily showed evidence 
of hydrolytic transformation. Threonine, one of the amino acids 
measured with CSIA, can inform metazoan waste contribution to 
TP, with low δ15N values of threonine in large particles indicating 
that their elevated TP of large particles is due to metazoan waste 
contribution [66]. The crucial role of mesozooplankton grazers 
in organic particle packaging, transformation, and carbon flux 
has been widely acknowledged [83–86]. Through consumption 
of phytoplankton and detrital particles, zooplankton can pro-
duce dense fecal pellets, thereby repackaging small, suspended 
particles into larger, denser, and potentially faster sinking parti-
cles [87]. Disaggregation of these fecal pellets can also influence 
the TP of smaller size fractions [66, 80]; however, the observed 
higher TP of the >20 μm size fraction suggests greater meta-
zoan transformation of larger particles. Similar to previous find-
ings, this metazoan alteration is not apparent from bulk δ15N 
values [66]. 

Drivers of community differentiation 
Differences in community structure and metabolic potential 
between PA and FL bacterioplankton communities are well-
established [22]. Variability in POM source, composition, and 
micro-environmental conditions relative to the surrounding 
water column have been reported to correlate with community 
structure variability [23, 32, 40, 56, 88]. The variability in microbial 
community structure is linked to the physiological and metabolic 
differences of PA taxa. These taxa often consist of large cells 
with high respiration rates [25] and expanded gene repertoires 
for breaking down polysaccharides [40, 89–92]. Additionally, they 
have large genome sizes [89]. It is well documented that FL 
bacterioplankton taxa are highly stratified from the UE zone 
into the mesopelagic zone in subtropical gyres, presumably 
resulting from niche partitioning across gradients of energy and 
available organic and inorganic nutrients [52, 53, 55, 93]. Our 
data shows that while the composition of PA communities was 
distinct from the FL communities, there was a similar degree 
of community structure stratification over depth community 
shift from the euphotic zone into the twilight zone. This is 
noteworthy as previous findings have shown less community 
succession in larger particles [94]. The colonization of organic 
particles by bacteria and archaea corresponds with changes in 
nutrient composition and associated POM bioavailability [32–36]. 
If most particles were rapidly sinking and remained relatively 
untransformed, we might expect PA communities to be more 
similar over depth than FL communities. However, all particle-
size fractions appeared to undergo significant chemical and 
microbial compositional transformations through the water 
column. These transformations are likely driven by compositional 
changes in the particulate substrate due to processes, including 
microbial reworking [13, 18, 19] and zooplankton consumption, 
fragmentation, and repackaging [14, 15, 16, 20]. The succession of 
PA communities observed over depth indicates that a considerable 
portion of the particles collected by the in situ pumps are non-
sinking or slowly sinking particles. These suspended particles

https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae090#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae090#supplementary-data
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are home to taxa that are adapted to living in a particular depth 
range, across gradients in nutrient fields or particle composition 
[95, 96]. Alternatively, the rapid turnover of particle microbial 
communities as they sink could explain our observations. 

The increase in alpha diversity in the FL and PA communities 
below the DCM is consistent with previous observations [36]. 
POM and DOM in the twilight and mesopelagic zones consist of 
a wide range of chemically distinct compounds that are more 
diagenetically altered and less labile compared to organic matter 
in  the UE [28, 97]. This may support increased functional and 
phylogenetic diversity in prokaryotic communities over depth. For 
example, the increasing alpha diversity we observe over depth in 
every size fraction may be indicative of a shift in organic matter 
composition in which the common easily degradable compounds 
become scarce, and a variety of organic compounds that require 
more specialized pathways for degradation accumulate at deeper 
depths [28, 97]. In addition to mesopelagic communities being 
more diverse, they also become more different from one another 
across fractions. This increasing differentiation in communities 
within the mesopelagic has previously been observed between 
sinking and suspended particles [34]. Both POM and DOM in 
the surface ocean originate largely from phytoplankton; how-
ever, labile POM and DOM are rapidly consumed, with only a 
fraction resisting degradation long enough to be exported into 
the mesopelagic [28, 98]. In addition to DOM becoming more 
diagenetically altered with depth, larger organic matter fractions 
have been shown to be less diagenetically altered with depth 
than DOM [27, 97]. Differences in organic matter composition over 
depth are also revealed from isotopic signals discussed previously. 
These differences can be selected for differing communities that 
consume and transform this organic matter. While both POM and 
DOM are consumed and transformed by microbes, communities 
associated with FL and PA lifestyles are significantly different and 
contain differing metabolic potentials, including more polysac-
charide degradation and amino acid transport genes within the 
PA communities [38, 86]. The resulting recalcitrant material of 
different size fractions reworked via differing metabolic processes, 
both microbial and metazoan, may require specialized microbial 
communities to break down the remaining material, potentially 
causing increased dissimilarity between FL and PA communities 
below the DCM (Fig. 2A). 

Seasonal variability in FL and PA communities is widely 
observed at BATS and in the global ocean [37, 52, 53, 56, 99]. 
However, this dataset only contains samples collected in summer 
and autumn, so seasonal variability is underrepresented. The 
magnitude of variability observed between timepoints was less 
than half that observed between fraction or depth. During 
stratified periods at BATS, the temporal variability in the bacterial 
communities between size fractions and over depth observed 
was minimal. This suggests that it is not a primary driver in 
community composition in FL and PA communities, as shown in 
Fig. 2B. The interannual variability between 2018 and 2021 for 
the stratified periods was relatively similar, which is consistent 
with stable interannual patterns of size-fractionated prokaryote 
communities observed in other systems [37]. 

Microbial taxa distributions 
The PA 5–20 and >20 μm fractions displayed an increased relative 
abundance of members of Bacteriodota, Proteobacteria, Verrucomicro-
biota, Bdellovibrionota, and  Planctomycetota, relative to the FL frac-
tions. Members of these taxa are commonly the most dominant 
clades found in PA communities [100]. While we cannot determine 
metabolic potential from amplicon data alone, previous studies 

suggest that taxa will exploit varying nutritional niches as particle 
composition becomes altered. For example, while members of 
Alphaproteobacteria can be more efficient in the incorporation of 
monomers and amino acids, members of Bacteriodota (specifically 
Flavobacteriaceae) developed enzymatic repertoires to degrade 
higher molecular weight compounds [101, 102]. Members of 
Gammaproteobacteria are important degraders of algal polysac-
charides, an abundant component of phytoplankton-derived 
POM [103]. Planctomycetota have been predominantly found in 
larger particle fractions [22, 104] with genomic analyses revealing 
several members within that clade to be capable of degrading 
complex organic matter [105]. 

Members of Rhodobacteraceae, also commonly associated with 
marine particles [100], were found in higher abundance in smaller 
0.2–1.2 and 1.2–5 μm fractions, though they were present in larger 
fractions as well. Several other taxa, including members of Bacte-
riodota (Flavobacteriaceae), Gammaproteobacteria, Bdellovibrionia, and  
Planctomycetota, were found in detectable abundances in all frac-
tions. This could be due to a “stick or swim” lifestyle where some 
microbes can switch between FL and PA phases of taxa depending 
on environmental conditions [106]. Alternatively, there could be 
attachment due to particle stickiness [107], niche partitioning 
between members of the same taxa [108, 109],  or  retention of FL  
taxa on larger filters, and concomitant fragmenting of particle 
communities during filtration. We considered whether the poten-
tial retention of FL taxa with concomitant particle fragmentation 
would create more similar communities between size fractions, 
making it more difficult to determine the potential lifestyle of var-
ious taxa. Notably, the striking differences in microbial commu-
nity structure observed in this dataset demonstrate that, despite 
these caveats, size fractionation is nonetheless effective at sepa-
rating functional components of microbial communities by size. 

A previous study of POM collected via sediment traps at BATS 
revealed that Cytophagales, Chitinophagales, and  Cellvibrionales were 
indicator taxa of sinking particles [56]. The in situ pump collection 
method used in the present study demonstrated a relatively low 
abundance of these taxa within both PA and FL communities. 
Notably, in situ pump collections differentiate only coarsely 
between fast sinking, slow sinking, and suspended particles. 
Differences in the microbial community structure of sinking 
and suspended particles in the Scotia Sea have been reported 
[34]. The observed differences in particle community composition 
between our study and Cruz et al. [56] likely emphasize that a 
majority of organic particles at BATS are suspended or slowly 
sinking rather than rapidly sinking like those preferentially 
collected in sediment traps. However, consistent with Cruz et al. 
[56], we observed Alteromonas and Vibrionales to be in the greatest 
relative abundance in the >5 μm fractions, which would include 
fast-sinking particles caught in sediment traps. These results 
emphasize the utility of in situ pumps in resolving trends in bulk 
particulate material. Differences in sinking and suspended PA 
communities have previously been reported, and are associated 
with varying lifestyles, with sinking particles being associated 
with R-strategists and suspended particles being associated with 
K-strategists, a trend driven by the differing quality of organic 
matter [34]. 

Notably, these bulk collection methods may obscure poten-
tially differing trends and communities between particles of 
differing origins. Stephens et al. [110] observed differing microbial 
communities on different sinking particle types in the Pacific 
Ocean, a nuance that is obscured with bulk measurements. 
Additionally, Stephens et al. observed decreasing alpha diversity 
on individual particles with increasing depth, the opposite
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trend observed in this study, where alpha diversity increases 
below the DCM. These differences may be explained by the 
different particle types collected, with Stephens et al. collecting 
sinking particles from traps, whereas we collected bulk material. 
Sinking particles have been hypothesized to have decreasing 
alpha diversity with depth, whereas suspended particles have 
increasing microbial diversity with depth, further supporting 
our hypothesis that a majority of particles collected are 
suspended [34]. 

Cyanobacteria found in particles at depths below 
their maximum free-living abundance 
Large particles can be fragmented via physical shear, zooplank-
ton feeding [15, 17], and enzymatic solubilization by attached 
microbial communities [18, 111]. While ASVs found in the highest 
abundance in the PA fractions were also present in the FL frac-
tions, we were not able to resolve the PA taxa transition to the FL 
fraction for any depths sampled. The FL communities resemble 
whole seawater communities previously sampled at BATS [52, 
53], suggesting that FL microbes are abundant enough to largely 
obscure PA communities during sequencing of whole seawater. 
Due to the scarcity of marine particles in the water column, 
PA bacteria make up only around 1% of the total prokaryotic 
community [112, 113]. Therefore, while fragmentation of particles 
may be occurring, these taxa could be vastly outnumbered by 
ambient FL communities, and therefore the transition to a FL 
lifestyle cannot be captured effectively by our approach. 

Synechococcus and Prochlorococcus were observed shifting to 
higher relative abundance from small to larger size fractions with 
depth. For both, some ASVs were found to have a significantly 
higher relative abundance in PA (5–20 and >20 μm) fractions 
at depths below their FL (0.2–1.2 and 1.2–5 μm) maximum. This 
suggests that members of the FL community may have aggregated 
or been packaged into larger particles. Cyanobacteria have been 
found to contribute to carbon export in a manner proportional to 
their net primary production despite their small size [114], and 
more recent metabarcoding of particle microbial communities 
has revealed sequences of Synechococcus to be associated with 
particulate carbon export [87, 115, 116]. Lomas et al. [117] observed 
increased export of picophytoplankton at BATS, possibly due to 
increases in effective size and sinking rate. Unbalanced carbon 
fixation in the absence of sufficient inorganic nutrients can 
lead to increased production of exopolymeric substances by 
phytoplankton, including picophytoplankton [118]. Exopolymeric 
substances such as TEP can accentuate particle aggregation 
rates [107, 119–121], thereby increasing particle size and the 
potential sinking rate. These aggregates may also serve as a food 
source for zooplankton grazers, which repackage this material as 
fecal pellets, a process that contributes substantially to export 
production [122]. 

Conclusion 
We combined 16S rRNA gene metabarcoding with isotopic 
characterization of size-fractionated marine particles to better 
understand spatial variation in PA microbial communities and 
particle-mediated transformations of organic matter over depth 
at the BATS site. We observed clear and consistent differences 
in the isotopic signatures of organic matter transformations 
and microbial communities between size fractions. Smaller 
organic particles were found to be more heavily influenced by 
microbial processes, while larger particles showed evidence of 
transfer through higher trophic levels via zooplankton feeding 

and repackaging. Additionally, there was clear variation in 
community structure on particles between depths and size 
fractions. PA communities changed as much in depth as FL 
communities, while remaining distinct in composition. These 
observations did not fit with previous conceptual models based 
on the expectation that sinking particles transport taxa relatively 
rapidly across depth. Instead, our observations are consistent 
with two potential concepts. First, non-sinking particles are 
a significant fraction of total particles retrieved by pumps 
and are occupied by taxa specialized for particles that occupy 
a stratified depth range. Alternatively, the rapid turnover of 
particle microbial communities as they sink could explain our 
observations. We also observed increased differentiation between 
FL and PA communities below the DCM, hypothesized to be caused 
by differential reworking of more recalcitrant organic matter 
between fractions. Our data suggests that organic matter of 
varying size ranges undergo differing compositional trans-
formations across depth, represented by differing microbial 
communities and particle biogeochemistry. Additionally, our 
methodology captures bulk trends in both sinking and suspended 
particles, the latter of which is systematically undersampled 
using sediment traps. This provides a deeper understanding of 
broader particle dynamics within the oligotrophic ocean. 
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