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Abstract

Bacterial physiology is a branch of biology that aims to understand overarching principles of 

cellular reproduction. Many important issues in bacterial physiology are inherently quantitative, 

and major contributors to the field have often brought together tools and ways of thinking from 

multiple disciplines. This article presents a comprehensive overview of major ideas and 

approaches developed since the early 20th century for anyone who is interested in the fundamental 

problems in bacterial physiology. This article is divided into two parts. In the first part (Sections 1 

to 3), we review the first ‘golden era’ of bacterial physiology from the 1940s to early 1970s and 

provide a complete list of major references from that period. In the second part (Sections 4 to 7), 

we explain how the pioneering work from the first golden era has influenced various rediscoveries 

of general quantitative principles and significant further development in modern bacterial 

physiology. Specifically, Section 4 presents the history and current progress of the ‘adder’ 

principle of cell size homeostasis. Section 5 discusses the implications of coarse-graining the 

cellular protein composition, and how the coarse-grained proteome ‘sectors’ re-balance under 

different growth conditions. Section 6 focuses on physiological invariants, and explains how they 

are the key to understanding the coordination between growth and the cell cycle underlying cell 

size control in steady-state growth. Section 7 overviews how the temporal organization of all the 

internal processes enables balanced growth. In the final Section 8, we conclude by discussing the 

remaining challenges for the future in the field.
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1. Introduction

1.1. Prologue

Figure 1A shows Trueba and Woldringh’s classic photograph of the bacterium Eschericia 
coli, arguably the most well-studied model organism in biology [1]. We see two groups of 

cells, one bigger/fatter and the other smaller/skinnier. These cells are isogenic, i.e., they have 

exactly the same genetic information. They are different in their size because they were 

grown under different growth conditions; the larger cells were grown in nutrient ‘rich’ 

medium, whereas the smaller cells were grown in nutrient ‘poor’ medium.

In the 1950s, the biologist Ole Maaløe and his group carefully measured physiological 

parameters of growing bacteria, emphasizing reproducibility of quantitative data [2–5]. In 

particular, Schaechter, Maaløe, and Kjeldgaard found that the average size of a Salmonella 
bacterium has a robust exponential dependence on the nutrient-imposed growth rate (Figure 

1B and C) [2]. Importantly, their results were independent of the chemical composition of 

the growth media. Because molecular details – ‘prefactors,’ in addition to ‘exponents’ in the 

language of physics – are also often important in biology, this exponential relationship 

represents a rare example of a general, quantitative law in biology. We will refer to the 

results by Schaechter, Maaløe, and Kjeldgaard the ‘nutrient growth law’‡.

In our view, there are parallels between the development of bacterial physiology in the latter 

half of the 20th century and the development of physics in the 16th and 17th centuries. By 

collecting significantly better data, Brahe led Kepler to conclude that planetary orbits were 

ellipses and not circles (with or without epicycles). Kepler’s elliptical model said nothing 

about the physical origins of ellipses, but his kinematic modeling was an essential starting 

point for Newton’s work on dynamics 50 years later.

Like Kepler’s laws, the nutrient growth law is ‘kinematic’ insofar as it allows prediction of 

cell size without understanding the underlying mechanism (‘dynamics’). For example, if we 

were to pick one E. coli cell in Figure 1A and grow it in a growth medium with an unknown 

chemical composition, we would be able to predict the average cell size in the new medium 

just by measuring the growth curve. This is the predictive power of the phenomenology that 

the nutrient growth law represents. Of course, we do not know whether biology as a whole is 

following the footsteps of the history of physics. Bacterial physiology, however, has been 

transforming rapidly in the past several years so that there is hope that we might one day 

have a universal ‘dynamical’ view of bacterial growth.

This review provides a detailed account of the development of major ideas in the field of 

bacterial physiology during its first golden era (from the late 1940s to about the early 

1970s), followed by remarkable recent advances. We set two internal rules: first, we will use 

language accessible to a general audience in physical and mathematical sciences, yet have 

endeavored to keep the content as informative as possible for biologists interested in the 

field. Second, we have tried to provide as comprehensive a list of references as possible 

reaching back to the beginning of the 20th century. There are several important topics we 

‡We will discuss a number of ‘growth laws’ in this review, as summarized in Box 6 of Section 6
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were unable to cover (e.g., molecular and cellular biology); where these omissions arise, we 

have suggested other reviews in hope of covering the gaps.

The road map of the review is loosely conveyed by the historical flow chart in Figure 3, as 

elaborated in the next section.

1.2. Major questions in bacterial physiology

The major quest in microbial physiology is to understand the fundamental principles 

underlying the regulation and coordination of biosynthesis in a given growth environment. 

Physiological parameters (whatever these might be) must be measured with sufficient 

precision that causal relationships can be inferred.

1.2.1. Growth, cell division, and their distributions—Consider one E. coli cell 

transferred to transparent liquid growth medium in a flask (Figure 2A). With good shaking 

for aeration at 37 °C, the medium gradually becomes turbid due to cellular growth. The 

change in turbidity can be quantified by measuring the optical density (OD) of the cell 

culture using a spectrometer, which measures the growth of total cell mass in the culture 

(Jacques Monod was the first who put the turbidimetry to greatest use to measure the life 

cycle of cells in batch culture [6]). Plotted against time, the total cell mass exhibits a 

sigmoidal curve in a typical growth experiment, which is called growth curve; when plotted 

on a semi-log scale, the growth curve exhibits an ‘exponential phase’ during which the total 

cell mass in the culture increases exponentially. Preceding exponential phase is “lag phase” 

as it takes takes time for cells to readapt to the new growth environment. Once growing cells 

have consumed the nutrient in the growth media during exponential phase, they gradually 

transition to “stationary phase” and the optical density becomes stationary (Figure 2A) [7, 

8].

Cells can be kept in the exponential phase of growth for many generation via serial dilution. 

In this state, extensive properties of the cell culture such as the total number of cells, the 

total mass of protein, total mass of various metabolites, all increase exponentially; whereas 

intensive properties such as the average cell size or the average amount of DNA per cell 

remains invariant with time. As such, after several generations in exponential growth, the 

culture reaches ‘steady state’.

Several physiological parameters can be measured experimentally at the population level, 

and still others inferred from these measurements (see, for example, [10]). First, the growth 

rate can be directly measured based on the rate of change in the cell number density (Figure 

2A). Second, the distribution of cell size (and therefore the average size) can be measured by 

microscopy (Figure 2B). Third, at the molecular level, the total amount of proteins, nucleic 

acids and other biomolecules can be measured with the help of biochemistry (Figure 2B). 

Because the total cell number per unit culture volume is known, the per-cell average of a 

given biomolecule can be estimated.

There are, however, parameters that cannot be directly measured in flask growth. An obvious 

example is the ‘age’ of the cell, i.e. the time elapsed since birth (Figure 2D and E). For an 

ideal case where all cells divide precisely in the middle when they reach the same size, the 
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general age distribution φ(a) of a steady-state population can be derived analytically (Section 

2.2.1). If we assume specific growth dynamics of individual cells (e.g., exponential or linear 

in time, which itself has been a major subject of debates in the past, see Section 2.3.1), the 

measured cell length l can be converted to cell age a. Conversely, the cell size distribution 

ρl(L) can be analytically calculated from the age distribution φ(a) if the growth dynamics are 

known.

An important realization from the mid 20th century is the stochasticity of growth and cell 

division dynamics. This came from the comparisons between the theoretical and the 

experimental size distributions. The experimental data exhibits smooth tails for the size 

distribution ρl(L) at both lower and upper ends (Figure 2E; green curves), whereas the 

idealized theoretical distribution predicts sharp cut-offs (Figure 2E; red curves). The 

presence of smooth tails indicates that the coefficient-of-variation (CV) of the dividing cell 

size distribution is non-zero.

The stochasticity of cell division was directly confirmed by a pioneering single-cell time-

lapse data from the 1950–1960s [11–18]. Both the division size and the generation time 

showed significant cell-to-cell variability, typically with coefficient-of-variation between 

10% and 30%. These numbers are in good agreement with microfluidic based high-

throughput microscopy measurements in the 2010s. As we will review in Section 3 and 

Section 4, some of the most intense research efforts in the field have focused on the 

biological origins of the cell-to-cell variability in a variety of physiological parameters, and 

how they are quantitatively related to one another [9, 19–30].

1.2.2. Coupling between growth and the cell cycle, and consequences on cell 
size—The cell cycle is one of the most basic controls underlying cellular reproduction, and 

heart of the cell cycle is replication of the chromosome. The chromosome of the model 

organism E. coli is arranged as a circular loop of approximately 4.5 × 106 base-pairs of 

DNA, which replicates bidirectionally starting from a well-defined origin of replication 

(called ori). The average replication speed is approximately the same along both 

chromosome arms and the two replication forks meet at the opposite side of the 

chromosome from the ori (in a region called the terminus, or ter ). One of the most 

fundamental questions in E. coli physiology is what ensures that one, and only one, 

replication cycle starts for every division cycle under all growth conditions? Considering the 

intrinsic stochasticity, the coupling between the replication cycle and the division cycle 

poses both conceptual and technical challenges. We will cover these issues throughout the 

review, especially in Section 6.

1.2.3. Coarse-graining cellular resources—Typical E. coli cells contain O(105) to 

O(106) proteins expressed from about 4000 genes encoded in the chromosome, and on 

average these proteins double their numbers in each generation. While all the proteins are 

present in the cell for a reason, it would be neither efficient nor necessary to study gene 

expression and the synthesis of each and every protein in the cell. In physics, kinematics has 

been successful in understanding a general phenomenon with predictive power. Examples 

include Kepler’s laws (vs. Newton’s dynamics), thermodynamics (vs. statistical mechanics), 

and the Landau theory of phase transitions. For such an approach to be useful in bacterial 
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physiology, the key is to pay close attention to the biological functions such as cell cycle, 

cell envelope synthesis and so on, and to carefully choose appropriate ‘state variables.’ For 

example, proteins can be grouped depending how they respond to specific growth inhibition 

(Figure 2G and Section 5), and biomolecules and their synthesis can be grouped and 

connected in a graph by their roles and function (Section 7). These approaches are relatively 

new (2010s), and how they may be integrated into the study of cell size control remains an 

open question (Section 8).

2. The first golden era of bacterial physiology (late 1940s – early 1970s)

The period between late 1940s and early 1970s represents the first golden age of bacterial 

physiology. A typical progression during this period was first a new technology allowed 

novel experiments that were not possible before, followed by modeling efforts to explain the 

data. Bacterial physiologists in this period were comfortable with both biology and 

mathematics. This pattern is refreshingly modern, similar to how physics advances. The 

timeline is elaborated in Figure 3 and throughout the remainder of this section. In Box 1, we 

list some of the founding figures and their main contributions to the field.

Box 1

Key players in bacterial physiology and bacterial cell cycle

We highlight some of the founders of bacterial physiologists.

Ole Maaløe

Maaløe was an influential leader. His two-part series on steady-state and transitional 

growth of Salmonella [2, 3] played a foundational role in establishing the Copenhagen 

school of Bacterial Physiology (Section 2.2.2 ). Maaløe and Kjeldgaard’s book, Control 
of Macromolecular Synthesis: A Study of DNA, RNA, and Protein Synthesis in Bacteria 
[55], summarizes the state-of-the-art during this golden age. With Sompayrac, Maaløe 

proposed an autorepressor model for DNA replication initiation control [56] (Section 

2.2.7).

Moselio Schaechter
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Schaechter joined Maaløe’s lab in 1956 as a post-doc. He led the discovery of the first 

“growth law” in bacterial physiology, together with Maaløe and Kjeldgaard [2]. He also 

contributed to our understanding of bacterial cell division and cell size control, 

chromosome replication and segregation, and co-authored the textbook Physiology of the 
Bacterial Cell: A Molecular Approach [57]. His notable personal weblog Small Things 
Considered provides invaluable original essays about microorganisms to both general and 

specific audience.

Niels Ole Kjeldgaard

Kjeldgaard’s major contributions to bacteriology include the UV light induction of 

bacteriophage during his PhD with André Lwoff in Paris, and the study of bacterial 

growth physiology during his post-doc in Maaløe’s lab. In 1968, as professor in Aarhus 
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University, he founded the first institute of molecular biology in Denmark and had led the 

molecular biology research in the country.

Fred Neidhardt

In addition to important work on the role of ribosomes in protein synthesis [58–62] 

(Section 2.2.3), Neidhardt edited the landmark reference book Escherichia coli and 
Salmonella: Cellular and Molecular Biology [63] and co-authored the textbook 

Physiology of the Bacterial Cell: A Molecular Approach [57]. Neidhardt and Pedersen 

(see below) were among the first to recognize the potential of proteomic studies using 2D 

gel electrophoresis [64, 65]. For more personal perspective by Neidhardt, we recommend 

his writing in [66].

Steen Pedersen
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Pedersen was a student of Maaløe, and continued his study in bacterial physiology as a 

post-doc in Neidhardt’s lab, where he was the one who adopted the 2D gel 

electrophoresis method that was being developed by Patrick O’Farrell, a graduate student 

at the University of Colorado at Boulder [67]. This method finally allowed global 

analysis of protein composition in a physiology dependent manner starting in the 1970s. 

Pedersen was a true master of pulse-chasing experiments, and much of our current 

understanding of the kinetics of protein synthesis and degradation is due to his rigorous 

and precise measurements.

Arthur L. Koch

Koch was a Renaissance man; an experimentalist and theorist of broad scope and depth. 

He devoted his insight and quantitative skills to explaining the physical and biochemical 

basis of bacterial growth and form in the broadest sense. His surface stress theory is an 

extraordinary example of characterizing the complex nature of cell shape control using 
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simple physical concepts [68]. He authored the text Bacterial Growth and Form [69] 

among others, summarizing his original thinking and approach to bacterial physiology.

Charles Helmstetter and Stephen Cooper

Helmstetter (left) developed the ‘baby machine’ for studying synchronized cell 

populations [70] (Section 2.1.5). He characterized the chromosome replication cycles 

with extremely careful measurements using his invention and autoradiography 

techniques. Helmstetter and Cooper (right) together developed the textbook model of the 

bacterial cell cycle named after them [71, 72] (Section 2.2.4).

“Willie” Donachie

Perhaps best known for his theoretical insights on the constant ‘initiation mass’ during 

the bacterial cell cycle [73] (Section 2.2.5), Donachie contributed to a range of problems 

in bacterial physiology, in particular, to our understanding of DNA replication initiation 

[74] and cell division [75–81].

Hans Bremer
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Bremer made considerable advances in our understanding of physiological regulation of 

ribosome synthesis [82–88]. A great legacy of his work is the review article co-authored 

with Pat Dennis cataloging, in a self-consistent fashion, the changes in various 

macromolecular components and kinetic parameters as growth rate is modulated by 

nutrient change [10].

2.1. Part I: Key technology development and experiments

2.1.1. Carlsberg pipette and colorimetric assays: quantification of growth in 
the Copenhagen school—Inspired by Max Delbrück’s quantitative studies on phage 

dynamics, Ole Maaløe [then at the State Serum Institute in Copenhagen, Denmark] 

developed a similarly quantitative approach to the study of bacterial physiology. We will 

discuss the conceptual significance of their works in Section 2.2; here, we review the 

technological innovations the Copenhagen school developed and refined which set the stage 

for the golden era of bacterial physiology. Maaløe’s lab set rigorous standards for the 

reproducibility of their experiments. One example is their pipetting technique. By that time, 

even before the invention of modern pipette (the first Schnitger’s pipetter was invented in 

1958), Maaløe’s lab was able to transfer down to ten microliters of liquid by using their 

handcrafted Carlsberg pipettes. This transfer technique enabled reliable serial dilution and 

plate counting, with direct bearing on the accuracy of cell-number measurements.

One major technical hurdle in bacterial physiology at that time was to measure the cell 

composition. Moselio ‘Elio’ Schaechter, who was then a post-doc in Maaløe’s lab, first 

adapted colorimetric assays to reliably quantify the macromolecular composition of bacterial 

cell in different growth conditions. By using RNA stained with orcinol and DNA with 

diphenylamine, Schaechter was able to accurately quantify the nucleic-acid cell content 

across different growth conditions, which proved to be an essential characterization method 

in modern bacterial physiology [4].
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Note that before their work in 1958, the growth curve as shown in Figure 2A was thought to 

be the ‘obligatory life cycle’ of the bacterial cell, but little attention was paid to either the 

steady state of growth or balanced growth (Figure 2; also see Box 2) [5]. The Copenhagen 

school overturned this standard point of view. In 1958, Maaløe’s lab published two back-to-

back papers: the first focused on the steady-state growth of Salmonella typhimurium by 

modulating the quality of the nutrient of growth medium [2], the second studied the 

transition between physiological states by shifting the growth medium[3].

Box 2

Exponential vs. balanced vs. steady-state growth

Exponential growth, balanced growth, and steady-state growth are often used as 

synonyms with each other. However, there are subtle but important differences as 

explained below.

Exponential growth

During the growth of a cell culture, an exponential growth phase is reached if during that 

period, the number of cells in the culture follows the equation,

N(t) = N0e
λ(t − t0)

(2)

where λ is a constant; t is the time; t0 is a reference time and N0 is the cell number at t0 

[269].

Balanced growth

Allan Campbell in his 1957 paper [267, 268] defined balanced growth as follows:

Growth is balanced over a time interval if, during that interval, every extensive 

property of the growing system increases by the same factor.

A cell culture can be in balanced growth, even if individual cells do not show balanced 

growth. A good example is E. coli cells in slow growth conditions without exhibiting 

overlapping cell cycles, where the rate of DNA synthesis in individual cells is 

discontinuous although their growth is continuous.

Steady-state growth

In Painter and Marr’s 1968 paper, they defined steady-state growth as

The distribution of each intensive random variable (e.g., cell age or cell protein) 

does not depend on the time.

Note that the exponential growth of a cell culture does not imply steady-state, whereas 

steady-state always implies both exponential and balanced growth [269, 270]. One 

obvious example is that, when cell division is blocked by specific antibiotics without 

affecting growth (e.g., sub-lethal dosage of cephalexin or penicillin), the population 

follows balanced growth while distribution of cell size is clearly variant over time [270].
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The idea of the nutrient-limitation experiment is to quantify the physiological state of cell 

(e.g., cell size, macromolecular composition and so on), and to examine its dependence on 

growth rate as modulated by changes in the nutrient quality of the medium. To maintain 

steady-state growth for tens of generations, all nutrients in the medium are available in 

saturating amounts such that their concentration does not change appreciably during the 

experiment. What does change is the rate at which the bacteria can metabolize the nutrients. 

For example, E. coli requires fewer enzymes and less time to metabolize glucose as a carbon 

source as opposed to succinate; E. coli can synthesize all amino acids, but will grow more 

rapidly if amino acids are supplied in the medium. In a similar fashion, changing the 

nitrogen source, the carbon source, adding amino acids, nucleotides and vitamins, the 

growth rate can be modulated over a wide range. In their study, Maaløe and colleagues grew 

Salmonella in over 20 different media where they fine-tuned the chemical composition to 

yield different growth rates at steady state [2]. We will review their results in Section 2.2. 

Interested readers can find a more detailed (and personal) review in [4, 5].

In their second paper, they examined the transition between different physiological steady 

states, by adding nutrients to a poor medium where the cells have already reached a steady-

state of growth. This type of experiment is called ‘nutrient shift-up’ or simply ‘shift-up’ [3]. 

The motivation of doing a shift-up experiment is to reveal transition patterns of cell size and 

molecular composition, which in turn helps better understand how the cell coordinates its 

biosynthesis with growth. Again we will review the results in detail in Section 2.2. 

Subsequently, shift-up or shift-down experiments were done by other groups to study 

bacterial growth [31, 32], cell cycle [33–36], cell division [37], DNA synthesis [38], RNA 

[39–44] and protein sysnthesis [45, 46], gene regulation [47– 49], metabolism [50], 

morphogenesis [51–53] and many other aspects of microbiology [54].

2.1.2. Chemostat: continuous cell culture—In contrast to batch culture in flasks as in 

Figure 2A, a continuous cell culture device allows uninterrupted cell growth over many 

generations in steady-state by maintaining a constant environment through continuous 

dilution. The chemostat represents the most sophisticated continuous cell culture method, 

firstly adapted by Novick and Szilard in 1950 [89–93]. The chemostat works by replacing 

the culture with fresh medium at a fixed rate, called the ‘dilution rate’. In this way, the 

steady-state growth rate of cells can be set to any prescribed rate below the maximal growth 

rate attainable in the medium [69]. The chemostat was widely used to investigate bacterial 

physiology, metabolism and biosynthesis by many researchers [34, 49, 94–103].

2.1.3. Radioactive pulse labelling and autoradiography: quantifying 
macromolecular synthesis rates—DNA is now known to be closely related to growth 

rate and cell size. In 1950s, however, DNA replication was still largely a mystery, though 

obviously of great importance given the role of DNA in the transmission of hereditary 

information [104–106]. Although progress had been made using nuclear staining methods 

[107, 108] or in vitro biochemical assays [109], the technological breakthrough for studying 

DNA replication was the use of radioactive pulse-labelling and autoradiography. During a 

pulse-labelling experiment, radioactive isotopic molecules involved in nucleotide 

biosynthesis, such as N15H4Cl or [14C]thymine, are added to the growth medium and briefly 
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incorporated into newly synthesized DNA. After a few minutes, the labelling is stopped by 

transferring cells to a radioactive-free medium. The proportion of labelled-to-unlabelled 

DNA in the cell culture will change over time, and the DNA synthesis rate (or period of 

DNA synthesis) can be quantified by measuring the radioactivity incorporation rate via 

autoradiography or other quantitative assays [110– 113].

The famous Meselson-Stahl experiment in 1957–1958 pulse-labelled the DNA of E. coli 
cells by N15H4Cl and used density-gradient centrifugation to differentiate the parent and 

daughter chromosomes, concretely supporting the semi-conservative model of DNA 

replication raised by Watson and Crick [115, 116]. Later, John Cairns pulse-labelled the 

DNA of E. coli by [3H]thymine and used autoradiography to directly show that the 

chromosome is a single-stranded, sequentially replicated molecule and replication of DNA 

starts from a single origin [117, 118]. Independently, other researchers reached the same 

conclusion by using either radioactive labelling [119–130], genomic marker transformed by 

bacteriophage [131–137] or bromouracil labeling (5-bromouracil is a nucleobase analog and 

can be differentiated by density measurement) [138–142].

Maaløe’s lab and others also employed radioactive labelling since the 1950s to quantify the 

DNA synthesis rate and its relation to the division cycle in bacterial cells [109, 110, 143–

145]. One of the great puzzles was that DNA synthesis, while continuous through the cell 

cycle during rapid growth, exhibited quiescent gaps during slow growth conditions [110, 

119, 146]. Furthermore, the DNA content was found to be proportional to the nutrient-

imposed growth rate at steady state [2]. A solid model explaining how DNA synthesis 

coordinates with growth was still lacking. In 1963, while a post-doc in Maaløe’s lab, Charles 

Helmstetter first came up with a method of studying age-synchronized cells – the ‘baby 

machine’ (see Section 2.1.5) – that would ultimately provide a model for this coordination 

[147, 148]. He and Steven Copper, another post-doc in the lab, used the baby machine along 

with radioactive pulse labelling, to uncover the fundamental relations in E. coli DNA 

replication under a variety of growth conditions [72, 111]. We will discuss their results in 

Section 2.2.4 followed by the baby machine in Section 2.1.5.

2.1.4. Microscopy, motion pictures and coulter counter: measuring size and 
generation time of individual cells—One of the earliest attempts to measure the size of 

individual bacterial cells is seen in Henrici’s 1928 book [114], where he reported the 

observed changes in cell size in a growth-phase-specific manner and measured cell size 

using bright-field microscopy observations (Figure 4). In Kelly and Rahn’s 1932 work [149], 

they manually sketched every 5 minutes of the growth of Enterobacter aerogenes and 

Bacillus cereus under the microscope, and reconstructed the lineage tree up to four 

generations. Although their initial interest was to see if cells die, they noted significant cell-

to-cell variability in the growth rate even under uniform conditions. Baynes- Jone and 

Adolph independently used motion pictures to conduct time-lapse imaging for E. coli [150].

Later, camera-based micrography and videography were more often employed to capture 

morphology and growth (e.g., [11, 151]). Cells were typically fixed for size measurement 

[152] or grown in a micro-chamber supplied with fresh medium during imaging [11, 14, 16, 

17]. By photographing individual cells over a whole generation from birth to division, the 
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cell-to-cell variability can be well-quantified, and yields distributions of cell properties such 

as cell size [12, 13, 152, 153] and generation time [14–18, 154– 156]. Electron microscopy 

was also employed by some researchers to precisely measure the cell size distribution [152, 

157–162]. More recently, fluorescence microscopy has become a standard technique to 

acquire both cell size and intracellular protein dynamics, due in large part to the availability 

of strains expressing fluorescently labeled proteins [163–165].

In parallel with microscopy, Kubitschek in 1958 first employed the Coulter counter to 

measure individual bacterial cell size [166]. The Coulter counter measures the resistance of a 

conducting solution along a microchannel when a cell passes through. The number of cells 

in a solution is counted by the number of resistance pulses as all cells flow through, and the 

cell volumes can be inferred from the amplitude of each pulse. The Coulter counter was 

often used as a high-throughput method to determine cell size distribution [167–171]. The 

principle of Coulter counter was later used in other techniques for single-cell measurements, 

e.g., flow cytometer (see Section 2.1.6).

2.1.5. Baby machine: in search of synchrony—The original motivation of 

synchronizing the division cycle of a population is to capture the behavior of the ideal 

‘average cell’ by aligning the division cycle of all cells [173–175]. Early attempts at 

synchronization included temperature shock or nutritional shock [107, 176, 177]. The idea 

being that the heat shock or nutrient starvation would arrest the division cycle at a certain 

point, and that the cell cycles would be synchronized upon resumed growth. Unfortunately, 

shocks and shifts are not able to synchronize the population because they do not lead to a 

narrowing of the age distribution (Section 2.2.1) [4, 172, 178]. Furthermore, we now know 

that shocks induce transient stress-responses in the cell, perturbing cell physiology.

While developing a method of synchronization based on size-fractionation, Charles 

Helmstetter hit upon an alternative that did not narrow the age distribution, but rather 

sampled a narrow strip from the age distribution. His device came to be called the ‘baby 

machine.’ Briefly, cells were first filtered through a membrane with pores smaller than the 

size of the cells. The membrane is then flipped upside down, and most cells remain attached 

to the underside of a membrane. As growth media flows through the membrane, cells 

continue to grow and newly born cells are eluted (Figure 5). In a small volume of effluent, 

Helmstetter had effectively millions of identically-aged single cells [147, 148, 179–182]. 

This method of synchronous-age sampling became the standard for studying DNA dynamics 

[183–186]. In 1968, Helmstetter and Cooper used the baby machine to establish their model 

of multifork replication in rapidly growing E. coli cells (see Section 2.2.4) [72, 111, 178].

2.1.6. Flow cytometry: measuring DNA content and cell cycle parameters—
Flow cytometry was developed in 1960s and was immediately applied to the sorting of 

particles, macromolecules and cells in large numbers based on physical and chemical 

properties. In a typical flow cytometer, a cell suspension flows along an ultrathin channel 

that accommodates one cell at a time. The cell size is inferred from light scattering, and 

cellular components such as nucleic acid are stained fluorescently, illuminated by laser and 

detected in a spectrum-specific manner. Flow cytometry was first used to characterize the 

bacterial cell in late 1970s [187, 188]. Bailey and others measured the cellular composition, 
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including protein and nucleic acid contents, of B. subtilis at high-throughput (> 103 cells per 

second) [187, 189, 190]. Paau and colleagues studied cell size and nucleic acid content of 

several bacterial species [188]. The high-throughput of flow cytometry enables the analysis 

of distributions of cell properties, e.g., the distribution of DNA content per cells, and 

quantifying cell cycle parameters in an accurate and non-invasive fashion (see the definitions 

of cell cycle parameters in Figure 2F).

Steen, Boye and Skarstad pioneered the measurement of the bacterial cell cycle by flow 

cytometry [191– 197]. First, the bulk DNA content of an exponentially growing population 

is measured. By applying the canonical age distribution (Section 2.2.1) and Helmstetter-

Cooper’s model for the DNA content per cell (Section 2.2.4), the cell cycle parameters can 

be calculated from the fit to the distribution of DNA content [194, 195]. As an independent 

check, Steen et al. measured the timing of replication initiation in antibiotic-treated cells that 

were separated into two populations: before initiation of DNA replication and after [197–

202]. They used rifampicin, which at sublethal dosage halts the initiation of a new round of 

DNA replication but permits completion of ongoing replication. They also used cephalexin, 

which stops cell division. Therefore, cells treated with rifampicin will contain integer 

multiples of one chromosome equivalent DNA, and the populations before and after 

initiation can be separated by flow cytometry. The initiation timing can then be calculated 

from the ratio of the two populations. Subsequently, flow cytometry has been widely used to 

examine the bacterial cell cycle in a variety of growth conditions and genetic backgrounds 

[203–215].

2.1.7. Thymine deficient mutants and antibiotics: perturbation and growth 
inhibition experiments—The Copenhagen school laid the groundwork for quantitative 

studies of bacterial physiology. In addition to nutrient limitation and shift-up experiments 

reviewed in the Section 2.1.1, Maaløe’s laboratory developed perturbation methods to study 

bacterial growth and biosynthesis. One example is the use of a thymine deficient mutant of 

E. coli. As one of the four nucleotide bases in DNA, external supply of thymine is required 

for the deficient mutant strain to sustain its DNA synthesis and survive. Otherwise, the DNA 

synthesis rate will be impeded in a thymine-dependent manner. Maaløe and others initially 

used this strain to study the relationship between DNA, RNA and protein synthesis [119, 

144, 216].

Donachie in 1969 reported an important thymine starvation experiment: in the absence of 

thymine, mutant strains not only stopped their DNA synthesis but also cell division. Upon 

the re-addition of thymine, both DNA synthesis and cell division resumed, although with a 

constant time-delay in between. Thus he concluded that cell division requires completion of 

DNA synthesis [75]. Pritchard and Zaritsky performed a thymine limitation experiment 

where they titrated the thymine concentration in the growth medium. They found that the 

DNA synthesis rate was altered in a thymine-dependent manner. Intriguingly, the growth rate 

was not significantly affected, and seemingly decoupled from DNA synthesis [217]. 

Subsequently, Zaritsky and colleagues investigated other consequences of thymine 

limitation, including effects on cell size, cell shape, replication initiation and so on [38, 218–

224]. Thymine limitation became an important method for unraveling the connections 

between DNA synthesis and other aspects of bacterial cell physiology [225–237]. Beyond 
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thymine deficiency, a number of mutant strains were used to study the coordination between 

growth, cell cycle and cell size of bacteria (see, for example, [238– 245]).

In parallel with genetic perturbations, antibiotics were used to perturb bacterial physiology. 

Rye and Wiseman performed a survey of the effects of multiple antibiotics on growth rate 

and cell size; this is the earliest experiment using antibiotics to investigate cell size control 

[246, 247]. Antibiotics were instrumental in elucidating the coordination between the 

inhibition of biosynthesis and other aspects of cell physiology[193, 248–250]. Sub-lethal 

concentrations of antibiotics remain a powerful tool for quantitative biologists to study 

bacterial physiology [251, 252].

2.1.8. Computer simulation: testing models against experimental data—
Alongside technological innovations born on the lab bench, computer simulation (which 

became prevalent in 1960s–1970s) facilitated the quantitative study of bacterial physiology. 

Margolis and Cooper first ran a computer program to simulate bacterial growth and cell 

cycle in 1970, two years after the publication of Helmstetter-Cooper model. Computer 

simulations at that time were used to numerically investigate models or make qualitative 

predictions [253– 255]. Koch, in his 1977 work, for the first time ran a computer simulation 

to rigorously evaluate different models by fitting to experimental data [256]. After that, more 

researchers employed computer simulations to clarify their understanding of bacterial 

systems. For example, Bremer and his colleagues performed simulations to differentiate 

models of biosynthesis by comparing theoretical predictions with RNA and protein synthesis 

rates measured in his lab [113, 235]. Skarstad and others used computer programs to 

simulate DNA content distributions and fit these to their flow cytometry data [195, 214]. 

Subsequently, computer simulations have played an essential role in testing various 

hypotheses underlying the regulation and coordination of bacterial physiology, including cell 

cycle [207, 257– 260], replication initiation [261], cell-size control [9, 262] population 

dynamics [103, 263] and so on [264, 265].

2.2. Part II: Major models and conceptual advancements

Early work in microbiology was complicated by a lack of well-defined state variables and 

standard reference conditions. Up to the middle of the 20th century, influenced by the work 

Buchanan [8] and Henrici [114, 266], the microbial ‘life cycle’ was thought to echo our own 

human development: cells inoculated to fresh media from an overgrown culture start small 

and sickly, but become large during vigorous exponential growth only to shrink into the 

frailty of old age as the culture becomes overgrown. According to Henrici [266],

It is quite evident that similar laws govern the development of both the multicellular 

organism and the population of free unicellular individuals. To some extent a 

culture of bacteria…behaves like an individual, and we may look upon the 

progressive cell changes [during the microbial life cycle] as the same sort of 

phenomenon as the cytomorphosis occurring in a multicellular animal.

Implicitly, the bacterial culture is thought of as a multicellular aggregate of undifferentiated 

bacteria.
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Jacques Monod’s review in 1949 [6] made a clear case that, with the properly-chosen state 

variables, simple quantitative relations could be discerned in the complex ‘phases’ of 

bacterial growth. Perhaps the most enduring insight from Monod’s early work on bacterial 

physiology is the hyperbolic dependence of the exponential growth rate λ on the 

concentration of a growth-limiting substrate S,

λ = λmax
0 S

S + KD
, (1)

where the phenomenological parameters λmax
0  and KD are properties of the bacterial strain 

and the growth-limiting nutrient S. Eight years later, it was Campbell [267] who brought the 

exponential growth rate λ to the forefront of physiological studies by defining the notion of 

‘balanced growth’ (Box 2).

In balanced growth, all of the complexity of cellular regulation and adaptation operates in a 

concerted manner to ensure that every constituent in the cell doubles at the same rate. 

Furthermore, balanced growth was no longer seen as a characteristic of one of the many 

‘phases’ of growth the bacterium must pass through – it was a steady-state that could be 

maintained by dilution for as long as the investigator wished. According to Elio Schaechter, 

“the difference between ‘exponential phase’ and ‘balanced growth’ is the difference between 

watching apples fall and thinking of gravity [268].” The scientific focus shifted from the 

phases of the growing culture to the individual bacteria in balanced growth.

With the definition of a standard reference state of growth, the study of bacterial physiology 

entered a golden age. The following decade (1958–1968) saw seminal advances in the 

understanding of cellular growth, which continue to be a source of wonder and inspiration 

for over 50 years. In the following section, we will briefly review the milestones in the study 

of bacterial growth and reproduction from that period.

In pursuit of a mechanistic explanation for the pauses in growth observed upon a change in 

nutrients, Monod shifted from bacterial physiology as his primary focus. Nevertheless, he 

left a lasting legacy on the field, advocating for, and pioneering, many of the core analytic 

methods used to study bacterial growth physiology. Although molecular mechanisms of 

gene regulation became a major research theme of the Pasteur group (leading to Jacob, 

Monod and Lwoff winning the Nobel prize in 1965), elucidation of the larger context of that 

regulation was never abandoned, and Monod returned time and again to help shape our 

present view of bacterial growth (see, for example, Section 2.2.3)

2.2.1. Age and size distributions of a growing population—In Section 1, we 

defined the age of the cell (Figure. 2D–E). The age distribution is the basis of understanding 

the quantitative properties of any steady-state growth. For example, it was essential for the 

analysis of Helmstetter’s baby machine experiments (Section 2.2.4). The age distribution has 

a long history [12, 271–277]. Koch expressed in 1976 his amusement citing a full list of 

independent derivations of the age distribution [278]:
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Workers too numerous to mention have independently derived the limiting law 

describing the distribution of ages in an asynchronous population of exponentially 

growing cells where all cells have precisely the same doubling time. The earliest 

published paper with the seeds of this derivation appears to be that of J. G. 

Hoffman in 1949 (2)….

This list presents clear evidence that biology as a discipline is markedly different 

than physics, where it would be inconceivable for example that a dozen Pauli’s 

might discover, and publish as news, their exclusion principle in different journals 

over a 19-year period. The basic, more general principle that leads to this 

distribution was stated by Euler in 1760 (see 1970, Theor. Pop. Biol. 1:307).

In what follows, we present one form of the derivation by Powell [279]. His opening remark 

captures the heart of the age distribution:

The age distribution in a growing culture has a curious and interesting property 

which is not generally known; roughly speaking, the youngest organisms are 

present in greatest number.

Intuitively, for a population of exponentially growing cells, newborn cells are twice as 

abundant as those about to divide, which should be explicitly reflected in the formulation of 

age distribution. Specifically, denote by φ(a)da the probability to find a bacterium with age 

between (a, a + da), and denote by ρτd (τ)dτ the probability that a given bacterium divides at 

age a ∈ (τ, τ +dτ); we call φ(a) the age distribution of the population, and we call ρτd(τ) the 

doubling time distribution. Throughout, we assume the culture is in a steady-state of 

exponential growth N(t) = N0eλt, and that the age distribution is likewise at steady-state, i.e. 
φ(a, t) → φ(a).

Because ρτd(τ ) is a normalized probability distribution, the cumulative density F>(τ),

F>(τ) = ∫τ

∞
ρτd

(τ′) dτ′,

is a measure of the proportion of bacteria in the population with doubling times greater than 

τ. In particular, if a bacterium has attained an age of a, then the probability that it will attain 

an age a + t without dividing is given by the ratio,

Given bacterium reaches an age a, probability no division in (a, a + t) =
F>(a + t)

F>(a) .

This expression can be understood as an application of Bayes rule: the joint probability that 

the doubling time τ is greater than a+t and a, denoted by P(τ > a+t, τ > a), is the product of 

the conditional probability that τ > a+t given that τ > a, denoted P(τ > a+t|τ > a), with the 

probability that τ > a, denoted P(τ > a),
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P(τ > a + t, τ > a) = P(τ > a + t ∣ τ > a)P(τ > a) .

Rearranging for the conditional probability,

P(τ > a + t ∣ τ > a) = P(τ > a + t, τ > a)
P(τ > a) .

But t > 0, so the τ > a condition is automatically satisfied if τ > a+ t and the joint probability 

reduces to P(τ > a + t, τ > a) ≡ P(τ > a + t). Finally, the singlet probabilities can be written 

in terms of the cumulative density F>,

P(τ > a + t ∣ τ > a) = P(τ > a + t)
P(τ > a) =

F>(a + t)
F>(a) .

For a culture of N bacteria, the number of bacteria with age between (a, a+da) is Nφ(a)da, so 

the number of bacteria still undivided at a + t is given by,

Number of bacteria still undivided at age (a + t) = Nφ(a)
F>(a + t)

F>(a) da .

But during the interval of time t, the total culture population has grown to Neλt; the fraction 
of survivors is then given by

Fraction of bacteria still undivided at age (a + t) =

Nφ(a)
F>(a + t)

F>(a) da

Neλt = φ(a)
F>(a + t)

F>(a) e−λtda,

with age between (a + t, a + t + da). This is exactly φ(a + t)da, and so we have the difference 

equation,

φ(a)
F>(a + t)

F>(a) e−λt = φ(a + t), (3)

for all t.
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It is difficult to solve this equation directly for the age distribution φ(a); if we look instead at 

the small-time limit (t → 0) we can get some insight into the solution. In the limit t → 0, 

using the leading-order Taylor polynomial approximations,

F>(a + t) = F>(a) + tF>′ (a) + 𝒪(t2),

φ(a + t) = φ(a) + tφ′(a) + 𝒪(t2),

e−λt = 1 − λt + 𝒪(t2),

the difference equation (Eq. 3) reduces to a separable first-order differential equation for 

φ(a),

φ′(a)
φ(a) =

F>′ (a)
F>(a) − λ + 𝒪(t2),

or,

d
da ln φ(a) = d

da ln F>(a)e−λa + 𝒪(t2) .

Integrating both sides, (and dropping (t2) terms),

φ(a) = φ(0)e−λaF>(a) = φ(0)e−λa∫
a

∞
ρτd

(τ′)dτ′, (4)

where the integration constant φ(0) is chosen to normalize the age distribution,

∫0
∞

φ(a)da = 1.

Notice that both the exponential and the integral are positive and decrease monotonically 

with a, and so the maximum of φ(a) is φ(0), i.e. irrespective of the doubling time 

distribution, the population is mostly composed of younger cells. Powell [279] provides a 

derivation for the constant of integration φ(0) for an arbitrary doubling-time distribution 

ρτd(τ ); for our purposes it is sufficient to take the simplified distribution ρτd(τ′) = δ(τ − τ
′), i.e. all bacteria in the population divide when their age is exactly equal to the doubling 

time, a = τ. In that case,
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φ (a) = φ (0) e−λa∫
a

∞
δ (τ′ − τ) dτ′

= φ (0) e−λa, 0 ≤ a < τ
0, otherwise

Using the normalization condition to determine φ(0), we have,

φ(a) = λ

1 − e−λτ e−λa, 0 ≤ a < τ,

or, because λ = ln2/τ,

φ(a) = (2 ln 2)
τ 2−a/τ, 0 ≤ a < τ . (5)

This is the idealized, or canonical, age distribution (see red line in Figure 2E, right). Based 

on this canonical age distribution, when assuming that cell elongates exponentially, the 

canonical distribution for cell length ρl(l) across the population is given by,

ρl(l) =
ld
l2

(6)

(see red line in Figure 2E, left).

2.2.2. The Copenhagen School of Bacterial Physiology—Bacterial growth and 

bacterial physiology had been studied for many years, but the late 1950s marks a watershed 

period. Building upon their rigorous experimental methods discussed in the previous section, 

in 1958, Maaløe’s lab published back-to-back papers that are recognized as the gold-

standard of what a quantitative approach could achieve (Stephen Cooper has called them the 

‘fundamental experiments of bacterial physiology’ [172]). This, and subsequent work (along 

with the scientists passing through Maaløe’s lab), became known as the ‘Copenhagen 

school’ of bacterial physiology. One of the major tenants of the school was: ‘Look - but 

don’t touch!’ and great pains were taken to minimize perturbations to balanced growth 

during experimental observation [280]. As a consequence, the data collected by the 

Copenhagen school was unprecedented in its accuracy and reproducibility. To the analysis, 

Maaløe brought to bear his prodigious mathematical skills and his extraordinary intuition for 

the inner-life of bacteria [4].

The first of the ground-breaking 1958 papers from the Copenhagen school focuses on the 

macromolecular composition of Salmonella typhimurium in balanced growth, with growth 
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rate modulated by the nutrient composition of the medium and by temperature [2]. Using 20 

different growth media, Schaechter et al. found that the macromolecular composition of 

Salmonella is largely dependent upon growth rate alone. Suppose, for example, you have 

two flasks full of different media – one with a poor carbon source and rich nitrogen source, 

the other with a rich carbon source and a poor nitrogen source – but designed so that the 

cells double every hour. Despite huge differences in how the nutrients are processed, the 

large scale composition, including DNA/cell, RNA/cell, protein/cell, mass/cell, are all the 

same. At this macroscopic level, the bacteria growing in the two flasks are indistinguishable.

Moreover, when plotted against doubling rate μ = λ/ ln 2, the mass/cell is roughly 

exponential, i.e., mass/cell ∝ 2μ (Figure 6A (blue)). That is, fast-growing cells are bigger. At 

a doubling rate of doubling/20 minutes, cells are twice as large as those growing at a rate of 

doubling/30 minutes, and four-times as large as those growing at a rate of one hour/

doubling. Notice something about the units – the proportionality should really be written ∝ 
2μ/μ0 where μ0 = 1 doubling/hour. What is the significance of this timescale, μ0 = 1 doubling/

hour? It would take 10 more years for the work of Cooper and Helmstetter to explain from 

where μ0 comes.

A second empirical relation observed by Schaechter et al. is that the RNA/cell increases 

more rapidly than mass/cell (Figure 6A (green)), i.e., e2.85. Taking the log2(2.85) ≈ 1.5, this 

expression can be concisely written as RNA/cell ∝ 21.5μ (the RNA/cell data could as well be 

fitted by RNA/cell ∝ (a + bμ) 2μ/μ0; see Section 5). Finally, the DNA/cell increased with 

doubling rate more gradually than mass/cell (Figure 6A (gold)), per unit increase in the 

doubling rate, the DNA/cell increases by ×1.73. Taking the log2(1.73) ≈ 0.8, this expression 

can be concisely written as DNA/cell ∝ 20.8μ. In all, they conclude that the rate of increase 

in per-cell abundance with growth rate is: RNA > mass > DNA.

Although changes in temperature affect the growth rate, the macromolecular composition 

was unchanged: “In all cases, the growth rate at 25 °C was about half that at 37 °C; 

nevertheless, mass, RNA, DNA and number of nuclei/cell remained nearly constant for a 

given medium... In fact, our data suggest that more extensive analyses of 25 °C cultures 

would permit graphs to be constructed which would be identical with those of [Figure 6A] if 

the growth rate values on the abscissa were reduced to half. Thus, within the temperature 

range studied,

The size and chemical composition of the cells are related to the growth rate only in 

so far as it depends on the medium.

The second paper in this series studies shifts in growth media [3]. Here, we focus on nutrient 

‘up-shift’, transitioning from slower to faster growth rates; transitioning from glucose 

minimal medium (50 minute doubling time) to rich broth (22 minute doubling time), they 

observed that (1) the synthetic activities respond chronologically as rate increase in RNA, 

mass, DNA, then cell division; (2) rate of mass accumulation transitions at about 5 minutes, 

DNA at 20 minutes and cell division at 70 minutes post-shift, and these time intervals are 

irrespective of the details of the pre- and post-shift media; (3) the shifts in synthesis rates, 

when they occur, are very abrupt so that mass, DNA and cell numbers are piece-wise 
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exponential functions – RNA shifts more abruptly, and is practically discontinuous at the 

time of shift.

The observation that DNA and cell division shift at 20 minutes and 70 minutes post-shift 

irrespective of the details of the growth media (i.e. irrespective of the cell growth rate) is 

remarkable. On the other hand, Maaløe and his colleagues realized that because the 

transition to the new synthesis rate is so abrupt, the timing of the transition is implicit in the 

steady-state growth dependence in the per-cell abundance as shown in Figure 6A. A shift-up 

moves the per-cell abundance of constituent Y (e.g. DNA, mass) from doubling rate μ1 to μ2. 

Suppose we follow the mass (or OD) per cell. Denote by m(t) the mass-per-cell; in the rich 

medium at doubling rate μ2, the mass-per-cell m2(t) is given by the ratio,

m2(t) = OD(t)
N(t) ,

where the optical density OD(t) is proportional to the dry mass per mL, and N(t) is the cell 

number per mL. Denote by tA the time post-shift that OD(t) attains its new accumulation 

rate μ2, then post-shift

OD(t) = OD1(tA)2
μ2(t − tA)

,

where OD1(t) = OD1(0)2μ1t is the pre-shift mass density. Similarly, for the cell number N(t),

N(t) = N1(tB)2
μ2(t − tB)

,

where N1(t) = N1(0)2μ1t is the pre-shift number density, and tB is the time post-shift that N(t) 
attains its new accumulation rate μ2. After both OD and N have transitioned to their new 

accumulation rate μ2, the mass-per-cell is at steady-state m2(t) → m2; putting these 

expressions together,

m2(t) = OD(t)
N(t) =

OD1(0)2
μ1tA2

μ2(t − tA)

N1(0)2
μ1tB2

μ2(t − tB) ,

or,

m2 = OD(0)
N(0) 2

(tA − tB)[μ1 − μ2]
= m1 2

(tB − tA)[μ2 − μ1]
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because OD(0)/N(0) = m1 is the steady-state mass-per-cell prior to the shift. Taking the log 

of both sides,

Δ log2 m = Δμ(tB − tA)
Δ log2 m

Δμ = (tB − tA) .

But this is just the slope of the log-plot of the steady-state mass-per-cell. How do the two 

compare? The mass (or OD) transitions about 5 minutes post-shift, the DNA about 20 

minutes post-shift and the cell number about 70 minutes post-shift. That gives a slope of,

(tB − tA) ≈ 70 − 5 = 65 minutes

for the mass-per-cell (60 minutes from the slope of the steady-state data); whereas

(tB − tA) ≈ 70 − 20 = 50 minutes

for the DNA-per-cell (48 minutes from the steady-state data) – so both estimates agree very 

well (within 5–10%).

The two Maaløe papers from 1958 established, like nothing before, the value of studying of 

bacterial physiology in balanced growth, and demonstrated that even nutrient shifts could be 

best understood in that context. Stephen Cooper has written eloquently, and at length, about 

the Schaechter-Maaløe-Kjeldgaard experiments [4, 5]. He sees in them a necessary re-

examination of the phases of growth described by Buchanan, Henrici and Monod [5]:

…the classical bacterial growth curve is really a laboratory artifact of using 

overgrown cultures taken from the previous day to start up a growing culture. I 

suggest that the results of Schaechter-Maaløe-Kjeldgaard indicate that one should 

teach the shift-up and shift-down results in classes, and then consider the classical 

growth curve as a special case of shift-ups and shift-downs.

2.2.3. The role of RNA and ribosomes in protein synthesis—By the late 1950s, 

reseachers observed that the RNA content (RNA/cell) is larger in ‘growing’ cells than in 

‘non-growing’ cells, but there was no consensus yet on what that increase in RNA meant [2, 

281, 282]. At the time of their study, Neidhardt and Magasanik were able to write that 

“[e]mbarrassingly little is known of the role played by RNA in the growth and metabolism 

of bacteria... Since the ribosomal RNA constitutes the bulk of the total RNA, one hint of the 

role of ribosomal RNA may be found in the observation that the rate of protein synthesis and 

the total amount of RNA are concomitant variables in most biological systems [58].”

Neidhardt and Magasanik’s paper had several important consequences. First, they made it 

clear that ‘growing’, and ‘non-growing’ are not well-defined terms (as did the Schaechter, 

Maaløe and Kjeldgaard paper that preceded it): the physiological state of ‘non-growing’ 
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cells is very much dependent upon how the cells are introduced to the stationary state, and 

the RNA/cell, or more usefully the RNA/protein, varied several fold depending upon the 

exponential growth rate. In fact, the correlation between the RNA/protein ratio and growth 

rate was approximately linear for doubling rates above 0.6 doublings/hour (Figure 7).

In addition, they measured the fraction of total RNA that is ribosomal RNA, and found that 

the fraction (86%) is growth rate independent. Taken together, the growth rate is positive-

linearly correlated with the mass fraction of ribosomes; that is enough for them to conclude 

that the ribosome plays a catalytic role in protein synthesis (see Section 5 below).

To lend further support to their conclusion, they observed the dynamics of different cell 

constituents during a nutrient up-shift. As in the Schaechter-Maaløe-Kjeldgaard experiments 

(Figure 6B), they observed a rapid and immediate increase in the synthesis of RNA, then 

protein and DNA synthesis began to increase – “The results of this experiment make it 

unlikely that high RNA content is simply a consequence of fast growth rather than a 

necessary antecedent. But if this conclusion is correct, then one should be able to vary the 

nature of the supplement without changing the results of the experiment.” This is indeed 

what they observed.

Neidhardt & Magasanik established the role of the ribosome in catalyzing protein synthesis. 

From this work emerged the hypothesis of Maaløe that ribosomes operate at maximum rate, 

and that growth rate is proportional to the protein mass fraction of ribosomes [55]. Later 

work demonstrated that the rate of protein synthesis per ribosome is not growth-rate 

independent [283, 284], but that this growth-dependence can be reconciled with the linearity 

between RNA/Protein and the growth rate observed by Neidhardt & Magasanik [285]. 

According to Maaløe, to grow faster the cell must increase its protein mass fraction of active 

ribosomes [55, 285, 286], but we now appreciate that this increase must come at the expense 

of synthesizing other proteins. The implicit constraints on protein synthesis imposed by the 

demand for ribosomes produce global growth-rate dependence in the expression of most 

proteins. Consequences of this indirect regulation is one of the newly-emergent themes in 

growth physiology (see Section 5).

The idea that the ribosome played a catalytic role in protein synthesis was very much in the 

air at that time. Although the dominant view in 1960 was that ‘each gene controls the 

synthesis of one specialized ribosome, which in turn directs the synthesis of the 

corresponding protein - a scheme which could be epitomized as the one gene-one ribosome-

one protein hypothesis [287],’ contemporary data, particularly from the Monod group, had 

challenged that view.

In 1957, Pardee, Jacob and Monod [288] demonstrated the existence of a protein regulator 

that inhibited transcription (what is now called a ‘transcription factor’ or more specifically, a 

‘repressor’). But the prevailing view at the time was that if a gene were turned on, a gene-

specific ribosome would need to be made before protein synthesis could begin. Pardee, 

Jacob and Monod observed no such delay.

In the spring of 1960, along with Sydney Brenner, Fracis Crick, Leslie Orgel and Ole 

Maaløe, Jacob discussed this problem and came shortly to realize that the ribosome plays a 
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catalytic role in protein synthesis, with genetic information carried by an unstable RNA 

intermediate (now called ‘messenger RNA’ or ‘mRNA’) [289, 290]. That summer, Jacob 

and Sydney Brenner, in the lab of Mathew Meselson at Caltech, established the existence of 

mRNA directly, and crushed the ‘one gene-one ribosome-one protein’ hypothesis forever 

[288]. In the words of Francis Crick, ‘[o]nce it was realized that the ribosome was basically 

a reading head the world never looked the same again [291].’

2.2.4. The Helmstetter-Cooper E. coli cell cycle model—Before reviewing the cell 

cycle model in E. coli, it is worth noting that many evolutionary divergent bacterial 

organisms such as the Gram-negative E. coli and Gram-positive B. subtilis exhibit multifork 

replication. This is in stark contrast to the cell cycle of eukaryotes and some other bacterial 

species, where cell cycle ‘check points’ ensure replication cycles do not overlap. C. 
crescentus is a model bacterial organism that shares similar cell cycle features, and 

interested readers may wish to read review articles from Shapiro group [292–294].

As discussed in Section 2.1.3 and Section 2.1.5, in 1968, Helmstetter and Cooper used the 

baby machine and radioactive labelling to elucidate the mode of DNA synthesis in E. coli. 
Their back-to-back papers, similar to Schaechter, Maaløe and Kjeldgaard’s dual works in 

1958, became another cornerstone in the history of bacterial physiology. In the baby 

machine experiment, cells in steady state have an approximately-exponential age distribution 

prior to their attachment to the membrane (Eq. 5, Figure 8B). As older mothers divide, their 

daughters are washed away by the flow of media. As a result, the cell concentration in the 

effluent is inverted in time with respect to the age distribution of the mothers (Figure 8C). 

Prior to immobilization, the mother cells are ‘pulse labeled’ with radioactive thymidine (i.e., 

exposed to a saturating amount of the radioactive nucleotide for several minutes before 

being fixed to the membrane). If there is a change in the rate of DNA synthesis during the 

cell cycle at age ai after division (measured as a fraction of the generation time) (Figure 8D), 

then the daughter cells in the effluent should exhibit a step-increase in the radiolabel but 

with the time axis inverted relative to the mothers (Figure 8E).

During rapid growth (i.e., doubling times below 60 minutes), Helmstetter & Cooper 

observed regular, periodic changes in the DNA synthesis rate during the growth cycle; 

however, the age of the bacterium when the initiation event occurs exhibits puzzling 

discontinuities – jumping from 0 to 1 at doubling times of about 30 minutes (as well as at 

doubling times of about 60 minutes using Helmstetter’s data from more slowly growing 

bacteria [148]) (Figure 9B). Their resolution of this puzzle was to propose that the bacterium 

is initiating multiple simultaneous rounds of DNA replication (Figure 9A). In the follow-up 

paper [72], Cooper & Helmstetter proposed a two-timer model (Figure 9),

• Cell division time τd

(i.e., the time between birth and division)

• Cell cycle time τcyc = C + D

C – the time to replicate the chromosome

D – the time to segregate the chromosomes and divide
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They found that under conditions of rapid growth imposed by the quality of the nutrient 

environment, the C period is about 40 minutes and the D period is about 20 minutes, 

irrespective of growth rate. As a consequence, cells growing at a doubling time longer than 

the cell cycle time (τcyc ≈ 60 minutes) had a latency period of (τd − τcyc) before DNA 

synthesis began. With this simple phenomenological model, they were able to fully 

characterize the patterns in DNA synthesis observed in the baby machine cells.

The essential idea is to set cell division as a reference point, and trace backward in time the 

onset of the replication cycle. This leads to ‘tiling’ a continuous series of cell-replication 

events, each of inter-division time τd, with strips of length τcyc. Consider a cell during its 

growth cycle under conditions of balanced exponential growth; how many generations ago 

was DNA replication initiated in order to ensure timely completion before division? If the 

inter-division time is long (τd ≫ τcyc), then DNA replication can be initiated at some point 

during the present division cycle. If the inter-division time is short (τd < τcyc), then DNA 

replication initiation must begin in a previous generation. Exactly how far back depends 

upon the ratio between the two timers,

Generation before division that DNA replication is initiated =
τcyc
τd

= 1.

Here, this number between 0 and 1 means that initiation started in the mother generation, 

and between 1 and 2 means in the grandmother generation, and so on (see Figure 9A). This 

same reasoning applies even if the inter-division time is greater than the cell cycle – in that 

case, a negative generation corresponds to DNA replication initiation occurring in the same 

cell cycle that it is destined to terminate. For example, if the inter-division time is 100 

minutes and the cell cycle time is τcyc = 60 minutes, then the generations before division that 

DNA replication is initiated is −0.4, or 0.4 of a generation (i.e., 0.4 × 100 minutes = 40 

minutes) after the cell is born in the current generation.

The simultaneous running of parallel replication forks makes the original data difficult to 

interpret. What is observed is changes in the DNA replication rate. When the age of the cell 

at the moment of DNA replication initiation is plotted as a function of the inter-division 

time, there is a discontinuity at around 30 minutes (Figure 9B). The discontinuity at 30 

minutes occurs because (for doubling times less than 30 minutes) the newly initiated round 

of DNA replication is destined to conclude in the grand-daughter, rather than the daughter 

(as it was for inter-division time between 30–60 minutes). For inter-division times greater 

than τcyc = 60 minutes, there are of course no further discontinuities because the cell self-

initiates DNA replication destined to terminate in the same cell cycle. The apparent 

discontinuities in the age-of-initiation was the major conceptual challenge that Helmstetter 

and Cooper overcame with their simple two-timer model.

We can derive an explicit form for the discontinuous ‘age -at-initiation’ plot by removing the 

generation markers (mother, grandmother, great-grandmother, etc.) from an expression for 

the generations after division. Taking the negative of the previous expression,
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Generation after division that DNA replication is initiated = 1 −
τcyc
τd

.

Here, a negative generation corresponds to initiation in a previous generation. The empirical 

observations only record DNA replication rate changes in the present generation. To bring 

the age-of-initiation back into the range (0, 1) we must remove the integer generations;

If Then

0 < τcyc/τd ≤ 1 DNA replication initiation is self-initiated

1 < τcyc/τd ≤ 2 initiated in the mother

2 < τcyc/τd ≤ 3 initiated in the grandmother

The upper-limit of the inequalities can be interpreted as the number of overlapping rounds of 

DNA replication at birth. For the age-of-initiation, we are only interested in the fractional 

part of τcyc/τd, and so we write compactly in several equivalent forms,

ai = Cell age at which DNA replication is initiated (7a)

= Number of overlapping rounds of DNA replication −
τcyc
τd

(7b)

=
τcyc
τd

−
τcyc
τd

= 1 − Frac
τcyc
τd

(7c)

where ⌈ ⌉ is the ceiling function, and Frac [] takes only the fractional part of the argument. 

Given the canonical age distribution and the Helmstetter-Cooper model for DNA replication, 

it is straightforward to derive the average origins-per-cell, replication forks-per-cell, DNA-

per-cell, and other associated quantities [70].

Bremer & Churchward [295] visualized how the average DNA replication constituents 

(origins, termini, and genome-equivalents) increase in time in a steady-state population. This 

intuitive and elegant method is reminiscent of that of Donachie [73], who showed that the 

nutrient growth law and the Helmstetter-Cooper model are consistent with the independence 

of ‘initiation mass’ for DNA replication on the growth rate (Section 2.2.5).

In balanced exponential growth, all components of the cell accumulate at the same rate. 

Looking at an aliquot of culture medium, the number of origins (O), the number of termini 

(T) and the number of cells (N) all increase exponentially at the same rate,
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O (t) = O02
t /τd, T(t) = T02

t /τd, N(t) = N02
t /τd,

where τd is the doubling time. The key insight of Bremer and Churchward is to graph all 

three on a log-linear plot (Figure 10). From the causal ordering (origin turns into terminus 

turns into cell) and the definition of the C- and D-periods as the time for each conversion to 

occur, they arrive at an expression for the ratios (ori/cell; Ō) and (ter /cell, T̄). From the plot,

O0 = N02
(C + D)/τd and T0 = N02

D/τd,

leading to,

ori
cell = O = 2

(C + D)/τd and ter
cell = T = 2

D/τd . (8)

To relate these to the DNA content per cell, they first note that the number of forks per cell, 

F̄, is twice the difference between the origins and the termini (see Figure 9B),

F = 2(O − T) .

The rate (per cell) of DNA synthesis in genome equivalents is then,

dG
dt = F 1

2C = 1
C 2

(C + D)/τd − 2
D/τd ,

i.e. half-a-genome per C-minutes multiplied by the number of forks. In exponential growth 

at rate λ, the rate of DNA synthesis will likewise be exponential. When normalized to total 

cell number, the DNA per cell, Ḡ, is given by,

genomes
cell = G = 1

λ
dG
dt

= 1
Cλ 2

(C + D)/τd − 2
D/τd − 1

Cλ e(C + D)λ − eDλ ,

(9)

which coincides with the population-averaged result of Cooper & Helmstetter (see, also, Eq. 

21 in the next section).

2.2.5. Donachie’s insight on constant initiation mass—Shortly after Helmstetter & 

Cooper elucidated the timing of DNA replication, Donachie (and later Pritchard) noted that 
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the steady-state mass-per-cell data of Schaechter, Maaløe and Kjeldgaard (Figure 6A, blue) 

implied that the mass-per-origin of DNA replication is constant [73, 296]. Donachie’s 

argument below follows from noting that the average mass-per-cell and the average origins-

per-cell (Eq. 8), both increase with doubling time τd (in minutes) as 260/τd≈ 2(C+D)/τd when 

τcyc = C + D ≈ 60 minutes.

From the age-of-initiation ai, Eq. 7b, we can convert to absolute time-of-initiation by 

multiplying with the doubling time τd,

τi = τd × ai = τd × ni − (C + D),

where τi is the time after division that a new round of DNA replication is initiated, and ni is 

the number of overlapping rounds of DNA replication. Donachie notes that the “average size 

of a randomly grown population of cells is proportional to the average size of the cells at the 

time of division.” In particular, the birth-mass Mb = M̄/(2 ln 2) where M̄ is the average mass-

per-cell in the exponentially-growing culture, and this relation is derived from the canonical 

age distribution. The initiation mass will be,

Mi = Mb2
τi/τd = M

2 ln 22
ni2

−(C + D)/τd .

From Schaechter et al.(Figure 6A, blue), the average mass-per-cell is M̄ = M0260/τd, so the 

initiation mass can be written

Mi =
M0

2 ln 22
ni2

[60 − (C + D)]/τd .

But 2ni is the number of origins at division (see Figure 9A), which doubles upon initiation, 

so that

Mi
#origins =

M0
2 ln 22

[60 − (C + D)]/τd . (10)

Empirically C + D ≈ 60 minutes in the experiments of Helmstetter & Cooper, and so follows 

Donachie’s observation that mass-per-origin is approximately constant for rapidly-growing 

wildtype E. coli cells when growth rate is modulated by nutrient change. In his 1968 paper, 

Donachie devised a graphical method to combine the data from the papers by Schaechter et 
al. and Helmstetter & Cooper, showing the constancy of initiation mass (Figure 11). 

Apparently, a few months later Pritchard also reached the same conclusion [296, 297].

At first glance, it seems like an extraordinary coincidence that the growth-dependence in the 

mass-per-cell is precisely the same as the growth-dependence in the origins-per-cell. In fact 
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it can be rationalized straightforwardly by the Schaechter et al. data for the steady-state and 

nutrient up-shift (Figure 6B): Upon shift-up, the cell (almost) immediately initiates a new 

round of replication, but the result of the up-shift is not seen in cell doubling time until τcyc 

= C + D minutes have elapsed (and the first post-shift round of replication & septation has 

terminated) [71]. The lag time between the post-shift increase in the rate of mass 

accumulation and the rate of cell doubling (i.e., the time for a newly-initiated DNA fork to 

terminate and segregate) provides the steady-state growth-rate dependence in the mass-per-

cell; the growth-dependence in the origins-per-cell follows directly from the definition of C 
and D (see Eq. (7b)).

The idea of constant initiation mass by Donachie, Pritchard and colleagues [73, 296] have 

been repeatedly challenged for almost half a century [185, 197, 200, 201, 298, 299]. In 

Section 6, we shall explain how this issue has been finally and conclusively settled in 2017 

by extensive experimental data. We will also review another derivation of the constant 

initiation mass that is much simpler than that of Donachie and Pritchard.

2.2.6. Derivation of cell cycle parameters for exponentially growing population
—In this sub-section, we present several useful results of cell cycle parameters.

(i) Age distribution and genomic loci copy numbers in an exponentially growing 
population: As mentioned in the Section 2.2.1, the age distribution of an exponentially 

growing population at steady-state is

ρ(a) = 2 ln 2
τd

· 2
−a/τd (11)

Using the age distribution, it is straightforward to compute the average copy number of an 

arbitrary genomic locus Xg per cell, and the result is

〈Xg〉 = 2

τcyc − gC
τd , (12)

where g denotes the fractional distance from ori between gori = 0 and gter = 1 (here and 

elsewhere, we always assume that the replication fork moves at a constant speed on both 

chromosome arms). The average number of ori is given by g = 0,

# ori = 2
τcyc/τd . (13)

(ii) Replication period for a steady-state population: Based on Eq. 12, the ori to ter ratio 

is given by
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〈O〉
〈T〉 = 2

C
τd (14)

This ratio can be directly measured experimentally using quantitative PCR (qPCR; [300]), 

flow cytometry (Section 2.1.6), or image cytometry (see Box 3; [301]). More generally, the 

copy-number ratio between two genomic loci is given by

〈locus 1〉
〈locus 2〉 = 2

Δg · C
τd , (15)

with the duration of the C period is

C =
τd
Δg log2

〈loci 1〉
〈loci 2〉 . (16)

Box 3

Methods in measuring cell cycle parameters of a population

qPCR

The C period of the population can be estimated by marker frequency analysis using 

qPCR (quantitative polymerase chain reaction). qPCR uses non-specific fluorescent dyes 

to intercalate with the genomic DNA extracted from a cell sample. The ratio of relative 

copy numbers of two loci gives the ratio of C period over generation time C/τd as 〈 ori〉/ 
〈 ter〉 = 2C/τd, where τd is the doubling time of the population. Image cytometry. 

Similar to flow cytometry, image cytometry is used to acquire both DNA content and cell 

morphological information via microscopy. Standard cells with known copy number of 

DNA are used to calibrate the DNA content in samples cells. The standard cells are 

grown under slow-growth conditions (non-overlapping cell cycle) and run out by using 

rifampicin and cephalexin. Standard cells are stained with a specific color and mixed with 

sample cells, and both populations are then stained by DNA dye. Phase contrast and two-

color fluorescent images are captured. By using C period obtained through qPCR, τcyc 

can subsequently be calculated (see Section 2.2.6).

(iii) Cell cycle duration, τcyc, for a steady-state population: From the DNA content 

measurement, we obtained the average genome equivalent per cell. The genome content per 

cell can be computed by integrating the copy number of each locus over the entire 

chromosome:
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L = 2∫
0

L
n(x) dx, (17)

where n(x) = 2

τcyc − gC
τd  is the average number of locus x with a chromosomal coordinate g = 

x/L away from the ori, and L is the total length of one arm of the chromosome (half of the 

chromosomal length). We thus have

L = 2∫
0

L
2

τcyc − gC
τd dx (18)

= 2∫
0

L
2

τcyc − π
LC

τd dx (19)

= 2L
τd

C log 2 2

τcyc
τd − 2

τcyc − C
τd . (20)

Therefore, the genome content per cell is given by L̄/2L, or

G =
τd

C log 2 2

τcyc
τd − 2

τcyc − C
τd , (21)

which is identical to Eq. 9 (also see [72]).

Eq. 21 is the basis of experimental measurement of the D period. By substituting the C 
period measured from qPCR into Eq. 21, the D period (= τcyc - C; time elapsed between 

replication termination and cell division) is given by

Jun et al. Page 33

Rep Prog Phys. Author manuscript; available in PMC 2019 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



D = τd log2
C · G · ln 2

τd 2
C
τd

− 1
(22)

(iv) Cell cycle period calculated from the ‘run-out’ population: Alternatively, we can 

calculate the cell cycle time τcyc by performing a population run-out experiment (see Section 

2.1.6). After run-out, the cell population separates into two groups: cells with ages before 

and after the initiation time t*. Thus the latter group will eventually have two times the 

genome equivalent of the former group. By measuring the probability distribution of cells 

belonging to the two groups C1 and C2, respectively, we can calculate the initiation time t*. 

The time fraction of pre-initiation corresponds to the population fraction of C1. Therefore, 

through the age probability density function ρ(a) in Eq. 11, we have

∫
0

t∗ρ(a) da = 2 ln 2
τd

∫
0

t∗2
− a

τdda (23)

=
C1

C1 + C2
(24)

Thus,

t∗ = − τd log2
−C1

2(C1 + C2) + 1 (25)

We can then calculate the cell cycle duration as

τcyc = (τd − t∗) + (noc − 1)τd (26)

= nocτd − t∗, (27)

where
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noc =
τcyc
τd

(28)

and ⌈ ⌉ denotes the ceiling function. Again, by substituting the C period from qPCR 

measurement, we can calculate the D period as

D = nocτd − t∗ − C (29)

(v) Other cell cycle parameters: We already calculated the copy number of any genomic 

locus in a steady-state population (Eq. 12). For example, we obtained 〈O〉 = 2τcyc/τd and 〈T〉 
= 2D/τd. We can also calculate the replication termination time as:

tter − τd − D (30)

From the initiation time and termination time tter, it is straightforward to derive the number 

of replication forks [63, 302]

〈forks〉
2 = 2

τcyc
τd − 2

D
τd . (31)

2.2.7. Replication initiation control in E. coli

Molecular basis of replication initiation: With the emergence of molecular biology in the 

1970s, extensive studies have identified key proteins involved in the DNA replication 

initiation process (e.g., DnaA) and characterized their biochemical properties (e.g., ATP 

hydrolysis of DnaA-ATP) (Figure 12). DnaA is the major player in initiation control in 

bacteria, and it is a widely conserved protein across species [303–308]. Upon initiation, 

DnaA is believed to polymerize at the origin region ori, change the topology of the local 

DNA structure, and unwind the double-strand of DNA [309– 312]. It has been known that 

the ATP form of DnaA has higher affinity for ori compared to that of its ADP form [313–

319]. The process of hydrolysis from DnaA-ATP to DnaA-ADP is facilitated by regulatory 

proteins such as Hda via RIDA (RIDA: regulatory inactivation of DnaA; the reverse process 

from ADP from to ATP is promoted by a specific DNA sequence DARS) [316, 320–325]. 

The DnaA binding sites on DNA, called ‘DnaA boxes’, are distributed not only at ori but all 

over the chromosome including high-affinity datA sites [326–329]. Both positive (e.g., 

DiaA) and negative regulators (e.g., SeqA) collaborate on the homeostasis of initiation [330–

343]. The details of the molecular components involved in replication initiation can be found 

in several excellent reviews including [344–346].
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Modeling the constancy of initiation mass: In 1963, Jacob, Brenner, and Cuzin proposed 

the influential ‘replicon model’ for replication initiation. The model assumes two 

components, a cis-acting ‘replicator’ and an ‘initiator’ that binds to the replicator (DNA 

sequence) [347]. Soon after the replicon model, an ‘initiator threshold’ model was proposed 

and elaborated in the 1960s and 70s, becoming the standard model in chromosome 

replication.

One of the basic assumptions underlying the initiator threshold model is that initiator 

proteins are constantly synthesized at the same rate as cellular growth, so that they occupy a 

constant fraction of the total proteins throughout the division cycle. Another key assumption 

is that soon after replication initiation, the potential for new initiation drops sharply. Perhaps 

the most important assumption is that replication initiates when a fixed number of initiators 

accumulate per origin. These assumptions are consistent with those in the historial 

‘structural model’ proposed for eukaryotes [348–350].

Helmstetter and Cooper incorporated the initiator threshold assumption into their cell cycle 

model and successfully explained the timing of replication cycle upon nutrient shift-up (see 

Section 2.1.1) [33]. Similar ideas were also embraced by Donachie and Pritchard in the late 

1960s soon after the Helmstetter-Cooper model [73, 296].

Models proposed afterwards are still based on the initiator threshold idea [56, 296, 351–

353]. However, the biological assumptions underlying these models differ in subtle but 

important ways, leading to different molecular mechanisms and the degree of robustness as 

explained below (Figure 13).

(i) Inhibitor titration model (Pritchard, 1969) [296]: This earlier model assumes ‘inhibitor’ 

proteins that inhibit initiation when they are present above a threshold level. They 

hypothesized that inhibitors are expressed as a transient burst, leading to repression of 

initiation or re-initiation. The inhibitor concentration decreases solely via dilution through 

growth, and at some point during growth crosses the threshold level and replication initiates. 

The initiator concentration is constant as mentioned above. A major caveat of this model is 

that it requires fine-tuning of inhibitor expression, because the amount of inhibitors 

expressed in the burst will determine the initiation timing in the next generation, which does 

not agree with data obtained afterwards. For example, Margalit and Grover combined 

evidence from experiments and simulations to refute this model. They found that this model 

cannot reproduce the generation time distributions obtained from experimental data [354– 

356].

(ii) Autorepressor model (Sompayac and Maaløe, 1973) [56]: The main motivation of 

Sompayrac and Maaløe was to develop a model that can lead to constancy of initiator 

proteins independent of growth rate. They proposed a simple model based on auto-

repression. Specifically, autorepressors and initiators are under the control of a same 

promoter, so that their ratio is constant during growth. Because the concentration of initiator 

is held constant by auto-repression (thus the total number increases in proportion to the cell 

size), initiators accumulate at each origin at the same rate as the growth rate in the absence 

of inhibitor proteins. Initiation is triggered when a fixed number of initiators have 
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accumulated per origin. Sompayrac and Maaløe explicitly state that a consequence of the 

model is that a constant cell volume is added per origin since the previous initiation, 

corresponding to the number of initiators accumulated in each division cycle between two 

consecutive initiations. This prediction is compatible with the adder principle that we will 

discuss in Section 4.

(iii) Initiator titration model (Hansen, 1991) [351]: In contrast to the previous models, 

where the regulatory effector molecules were hypothetical, this model was inspired by the 

identification of key molecular players in DNA replication initiation. The datA boxes are 

located near ori and other loci in the chromosome. Once replication initiates and the datA 
boxes near the origin are duplicated, the level of DnaA at the origin drops by the additional 

datA boxes, preventing re-initiation [328, 351]. During steady-state growth, the frequency of 

accumulation and titration of DnaA at the origin is periodic at the same frequency as 

initiation.

2.2.8. Limitations of the initiation control models until the 1990s—As more 

detailed genetic, molecular, and biochemical information about DnaA became available in 

the 1980s and 1990s [205, 334, 358–372], limitations of the initiation control models 

proposed earlier also became apparent [373–379]. Donachie and Blakely critically evaluated 

the extant data and noticed the limitations of the previous models described above. First, de 
novo protein synthesis and growth is required for initiation. This would mean that either 

initiators are made between each initiation and then inactivated after initiation [73], or an 

inhibitor is made after each initiation and diluted by growth (inhibitor titration model). 

Second, even when the intracellular concentration of DnaA is increased by as much as 

fivefold, initiation of chromosome replication occurs only slightly earlier [358, 380]. By 

contrast, a reduction in DnaA concentration causes an increase in the initiation mass in 

proportion [252, 328]. Third, the ratio between the number of DnaA molecules and the 

number of copies of ori is not itself a determinant of the time of initiation, because initiation 

takes place synchronously even when extra copies are present on plasmids or chromosome 

[381–383].

Donachie and Blakely searched for a proxy that changes with respect to initiation [352]. 

They specifically considered DnaA-ATP and DnaA-ADP and their interconversions, and 

how their copy numbers per cell change during the cell cycle based on the extant knowledge 

about DnaA. They found the ratio of the number of DnaA-ATP to DnaA-ADP per cell 

changes non-monotonically and peaks between birth and division. This observation led to a 

new hypothesis that replication initiates at the peak of the ratio (Figure 15). Here, the key 

underlying idea is that both DnaA-ATP and DnaA-ADP compete for the origin, but only 

DnaA-ATP is competent for initiation. In other words, DnaA-ADP is effectively an initiation 

inhibitor, thus the note by Donachie and Blakely, “[i]t is salutary to note that the model 

incorporates both the accumulation of an activator (DnaA-ATP) and the production and 

dilution of a competitive inhibitor (DnaA-ADP) during cell growth, the main features of 

which were once seen as opposing models.”
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Although the model of Donachie and Blakely has many compelling features, it remains 

hypothetical; to the best of our knowledge, no one has attempted to confirm or refute the 

model directly.

2.3. 1970s–1990s: the age of molecular and cell biology

The golden era of bacterial physiology between 1940s and 1970s coincided with a golden 

era of molecular and cell biology, but from the 1970s onward, fundamental research on 

bacterial physiology fell out of the mainstream and entered a ‘dark age.’ On the other hand, 

molecular and cell biology was in its ‘exponential growth phase.’ Part of the reason was 

certainly the shift of focus toward molecular mechanisms of gene regulation, and the 

maturation of tools including PCR, gel electrophoresis, blotting methods and molecular 

cloning. As a result, thousands of genes, proteins and individual pathways were discovered. 

It was this information explosion of molecular mechanisms that allowed the resurgence of 

the study of bacterial physiology in the last decade. In this subsection, we will briefly go 

through those advancements in molecular and cell biology during 1970s–1990s, which are 

relevant to the bacterial physiology and cell-size control.

2.3.1. Does E. coli elongate exponentially?—A classic question in bacterial cell 

biology is whether E. coli elongates linearly or exponentially. This debate is considered 

settled by modern single-cell data [9, 384– 386], and there is little doubt that an exponential-

fit is a good description for elongation of E. coli. Nevertheless, it is useful to revisit this 

question for its historical importance.

In the literature, researchers often attribute the difficulty of settling linear vs. exponential 

growth to their indistinguishability. Their maximum difference is about 5%, which was 

indeed considered too small in the early days. This technical problem has largely been 

resolved by modern experimental methods including video microscopy, microfluidics, and 

high-throughput image analysis. Even measurement of buoyant mass of individual live cells 

is currently possible using a microcantilever [387].

In the 1960s, Kubitschek performed important pioneering experiments to understand the 

kinetics of global biosynthesis. First, he measured the growth rate of a synchronized cell 

culture of E. coli using three strains and found that the growth rate (measured in terms of 

cell counts) is linear with respect to time [388]. Next, he conducted a series of measurements 

of the uptake rate of nutrient radio-labeled compounds. He found that

[u]ptake rates were constant during more than the first two-thirds of the cycle, or 

reasonably so, for all of these compounds: glycine, leucine, glucose, acetate, 

phosphate, sulfate, and thymidine. [389]

These two papers were published in 1968 in Biophysical Journal and formed the basis of 

Kubitschek’s proposal that individual E. coli cells elongate linearly.

Since the beginning of the 1970s, he fought hard to defend his linear model. [His debate 

with Cooper has been well-documented, and interested readers may wish to read Cooper’s 

book and references therein [172, 390].] His experiments consistently led him to conclude 

that the number of nutrient uptake sites in E. coli remains constant in each generation and 
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doubles near cell division [226, 391, 392]. Since he hypothesized that cellular elongation 

rate is proportional to the number of uptake sites, a constant number of uptake sites would 

mean constant elongation rate. Over the years, he refined his linear elongation model by 

adopting Donachie’s notion and idea of a ‘growth zone’ (and ‘unit cell’; see below), which 

fit his view [393]. The work by Sargent also fell into this category [393–395].

Throughout the 1980s, Kubitschek maintained his view. Sometimes he labeled linear growth 

model with ‘bilinear’ growth, but it was essentially the same in that the slope of the 2nd 

linear regime should reflect the increase in the uptake rate [396, 397].

It is still unclear why his radio-labeling experiments always produced data that was 

consistent with his linear model, other than that the measurements relied on indirect 

methods. The story of Kubitschek is a misfortune, especially because he as a physicist was 

one of the pioneers who used the Coulter counter to measure the cell size distribution. His 

other contributions to bacterial physiology are also notable [166, 169, 171, 393, 398–404].

2.3.2. ‘Unit cell’ by Donachie—An interesting development in this period, inspired by 

Kubitschek’s linear growth model was the ‘unit cell’ model by Donachie and colleagues [78, 

405, 406]. They proposed that E. coli grows at one of the cell poles before reaching a ‘unit 

cell’ size, and at both poles when the cell is larger than the unit cell (Figure 16).

A Unit Cell Model of Bacterial Growth: We may summarize our observations on 

the growth of cells of E. coli as follows. (1) The growth of cells is always 

unidirectional if they are less than a certain critical length (about 3.4 μm) and 

always bidirectional if they are more than this length. (2) When growth is 

unidirectional, extension always takes place from the pole of the cell that was 

formed in the proceeding cell division... To provide a conceptual framework for this 

set of observations, we have developed a simple model of cell growth. According to 

this model, cells of E. coli have a minimum length of about 1.7 μm. We shall refer 

to a cell of this length as a ‘unit cell.’ …

While Donachie and colleague were motivated by erroneous experimental data, the concept 

of a fundamental unit of cell size is relevant in understanding cell size control. We will come 

back to this issue in Section 6.

2.3.3. Cell division and FtsZ—Cell division, as the concluding event in the cell cycle, 

received almost as much attention as DNA replication initiation [74, 77, 407–409]. FtsZ is a 

tubulin analog which plays a central role in the division control which was first discovered 

by Joe Lutkenhaus in the Donachie lab [410]. It was found to form a ring-like structure at 

the division site, called the ‘FtsZ-ring’ or ‘Z-ring’ [411]. It is a highly conserved proteins 

across species of bacteria, and as an essential protein, FtsZ mutants are unable to initiate cell 

division [412]. The FtsZ monomer binds and hydrolyzes GTP to conduct conformational 

change and self-assembly into protofilaments in cell (see good reviews in [413–415]). FtsZ 

tethers to the inner membrane at the division site together with more than ten other proteins, 

and is known to be negatively regulated by MinC, SulA and others in E. coli. Moreover, Z-

ring is thought to control cell division via crosstalks to DNA replication, chromosome 

segregation, cell size and growth rate (see the Section 2.3.4 below) [413, 416–423]. 
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Recently, FtsZ was also found to be crucial in coordinating the cell wall synthesis at the 

division site in both E. coli and B. subtilis [424, 425].

2.3.4. Cell division control: Nucleoid occlusion, Min system, metabolic 
sensors and more—Unlike the eukaryotic cell cycle whose regulation is highly reliant 

upon checkpoints - regulatory logic gates with restrictive conditions that must be satisfied in 

order for the cell cycle to pass through - the cell cycle in many bacterial species like E. coli 
does not have well-defined checkpoints. How cell cycle events are coordinated with one 

another continues to be a fascinating and largely open question [79, 426–433]. In the 

previous Section 2.2.7, we reviewed how replication initiation is regulated by direct 

molecular mechanisms and coordinated with growth rate (global biosynthesis rate). As 

mentioned in Section 2.3.3, cell division was thought to be determined by the preceding 

steps in cell cycle, which may function as ‘checkpoints.’ One prevailing idea is that cell 

division can take place only if the sister chromosomes have segregated and are no longer 

occluding the middle region along the cell’s long axis (or midcell). This is known as the 

‘nucleoid occlusion model’ [434, 435]. Although this mechanism is more about physical 

effects, some molecular evidence has been identified which associates cell division with 

DNA replication. For example, SlmA is a nuceloid-associated protein which disrupts Z-ring 

assembly if the chromosomes are still near the midcell division site [436].

Another well-studied regulatory system is MinCDE system in E. coli [416, 437]. In this 

three-component system, MinC is a FtsZ assembly inhibitor which associates with MinD on 

the inner membrane, and the MinC-MinD complex is dissociated by a cytoplasmic protein 

MinE. Altogether, the MinC-MinD complex performs a pole-to-pole oscillation with a 

defined wavelength and period, which helps place the Z-ring at the midcell site and ensures 

the precision in septum positioning [438, 439]. The pattern formation of Min proteins has 

been extensively studied in vivo and in vitro, and the mathematical modeling of Min 

oscillation is another brilliant example in quantitative bacterial physiology. Here we list 

several more papers on Min system for readers who are particularly interested in this topic 

[440–447]. In addition to nucleoid occlusion and the oscillatory Min system, SulA, an 

inhibitor to FtsZ polymerization when DNA damage occurs (SOS reponse) in E. coli, serves 

as a coordinator of cell division with DNA replication [438]. Recently, ‘metabolic sensors’ 

(OpgH in E. coli and UgtP in B. subtilis) were reported to link cell division control to 

cellular metabolism [448–451]. These metabolic sensors are nutrient-sensitive and they 

negatively regulate Z-ring assembly, further inhibiting cell division [448, 452–455]. Not 

limited to these, more regulatory systems have been discovered recently, and it seems more 

complicated than thought to reach a simple conclusion on how cell division is coordinated 

[456–458].

2.3.5. Cell envelope: Cell-wall and Fatty acid synthesis—The gram-negative 

bacterium, such as E. coli, is enclosed by a cell envelope which is composed of inner and 

outer cell membranes separated by the periplasmic space and a layer of cell wall in between. 

How exactly the synthesis of cell envelope is coordinated with growth and cell cycle still 

remains elusive [459–467]. The E. coli cell wall is one stress-resistant layer of peptidoglycan 

(or murein). The peptidoglycan layer is a covalently bonded network of long, rigid glycan 
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strands cross-linked by relatively short and flexible peptide bridges. It is a strong but elastic 

network that provides mechanical strength to counteract internal turgor pressure and prevent 

cell lysis [69, 172]. With the cooperation of cell wall synthesis machinery (composed by 

many proteins), E. coli grows by inserting peptidoglycan into distributed sites along the 

lateral cell wall [468], which is in line with the exponential elongation of the rod shape (see 

Section 2.3.1). During cell division, the cell wall synthesis machinery also localizes at the 

midcell site and further closes up the septum by invagination [469–472]. Recent findings 

indicate that this septal growth of cell wall is directed by FtsZ [424, 425]. A model based on 

surface-to-volume ratio suggests that excess cell wall precursors may serve as a thresholding 

factor for division to take place [473].

The inner and outer membranes in E. coli consist of phospholipids and membrane proteins, 

and they are direct products of fatty acids metabolism and the synthesis of transport proteins 

[474, 475]. These membranes are critical in transport and osmotic homeostasis, but their 

roles in cell growth, cell cycle and cell size control are still poorly understood even though 

various models have been proposed [315, 474, 476–482]. It has been demonstrated that fatty 

acid synthesis is closely associated with amino-acid starvation (stringent response), and 

further regulates cell size [483]. Also recent results demonstrate that fatty acid flux sets cell 

envelope capacity, which in turn dictates cell size [484].

2.3.6. Cell shape control and MreB—Cell shape control, or morphogenesis, in rod-like 

bacteria species such as E. coli and B. subtilis has been a long-standing question in bacterial 

physiology, along with cell-size control [1, 51, 52, 485–495]. In contrast to cell-size control 

where total cell volume varies in different nutrient conditions, the question of cell-shape 

control can be simplified to how the aspect ratio (cell length versus cell diameter) is 

maintained or varied under different growth conditions [496]. The maintenance of rod-like 

shape has been found to be closely related to cell wall synthesis. For example, MrdB and 

PBP2 are proteins involved in the peptidoglycan synthesis, and their mutants were known to 

have spherical cell shape [497]. The shape of thymine-deficient cells were shown, though 

not convincingly, to be rounder or more irregular when thymine supply became limited [221, 

223, 231, 498]. This is possibly due to the role of thymine in metabolism related to 

peptidoglycan synthesis. MreB is another important cytoskeleton protein, whose deletion 

leads to transformation of cell shape to spherical [499, 500]. MreB, beneath inner 

membrane, co-localizes with MrdB, PBP2 and other cell wall synthesis machinery parts are 

recently shown to direct the insertion of newly synthesis peptidoglycan while undergoing 

circumferential movements [501–503]. Interestingly, recent evidence has demonstrated that 

MreB-regulated shape is actually decoupled from growth rate and cell size control [504].

2.3.7. Stringent response and cell-size control—In nutrient-poor conditions, the 

exponential growth rate is reduced, with a commensurable decrease in ribosome abundance. 

The coordination among nutrient status, ribosome biogenesis and the growth rate is carried 

out by the stringent response [505–508]. A major player in the stringent response is 

(p)ppGpp (guanosine pentaphosphate or tetraphosphate), a phosphorylated derivative of 

GTP. The cytoplasmic concentration of (p)ppGpp increases when the cell is starved for 

amino acids or energy. The regultory molecule (p)ppGpp acts on a suite of metabolic 
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proteins, though its most direct function is to inhibit RNA synthesis (primarily ribosome 

biogenesis by inhibiting rRNA transcription), which in turn slows down growth [509–521]. 

In addition, (p)ppGpp was found to regulate multiple cell cycle events including replication 

and cell division [522, 523]. For replication initiation in E. coli, the (p)ppGpp concentration 

correlates negatively with the transcription of dnaA though the mechanism remains unclear 

[366, 511]. For cell division, in addition to the metabolic sensors discussed in Section 2.3.4, 

(p)ppGpp appears to serve as an additional mediator between chromosome segregation and 

the cell division machinery (e.g., FtsZ) [524, 525]. Furthermore, the stringent response is 

thought to directly regulate cell size via fatty acid synthesis [484], as discussed in Section 

2.3.5. Despite these many interactions, a complete picture of how the stringent response is 

connected to cell-size control under general growth conditions is still lacking.

2.3.8. Further reading—Due to space limitations, this review focuses on quantitative 

approaches to bacterial physiology. For those interested in more molecular aspect of the 

related issues, we refer the reader to excellent review articles written by important 

contributors. A very partial list is as follows.

• Cell size control: Petra A. Levin [449, 526]

• Replication initiation: James Berger, Tsutomu Katayama, Anders Løbner-Olesen, 

Kirsten Skarstad [344–346, 527, 528]

• Cell wall synthesis and cell morphology: Kerwyn Casey Huang, Waldemar 

Vollmer and Kevin Young [529–533]

• Cell division machinery: Piet de Boer, Jeff Errington, Harold Erickson, Elizabeth 

Harry, Joe Lutkenhaus and William Margolin [413–415, 435, 534–538]

• Stringent response and rRNA transcription control: Richard Gourse [516, 519]

• Chromosome organization: Suckjoon Jun & Andrew Wright, Nancy Kleckner 

and David Rudner [539–541]

• Bacterial cytoskeleton: Ethan Garner and Zemer Gitai [542–544]

• Stress response: Carol Gross [545, 546]

• Single-molecule approach to protein synthesis: Jonathan Weissman [547]

• Evolutionary aspect: Richard Lenski [548, 549]

• Circadian clock in bacteria: Susan Golden [550, 551]

• Bacterial membrane: Natividad Ruiz [552]

• Biophysics of cellular dynamics: Joshua Shaevitz, Julie Theriot and Martin 

Howard [553–557]

• Novel techniques for bacteria study: Grant Jensen, Cees Dekker and Paul 

Wiggins [558–561]

• Cell cycle control and cellular dynamics in C. crescentus: Christine Jacobs-

Wagner and Lucy Shapiro [292–294, 562, 563]
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2.4. 2000s - present: Back to the origin

2.4.1. Issues in gene expression—With the development of fluorescent protein 

reporters by Roger Tsien and co-workers in the 1990’s, the early 2000’s saw a resurgence of 

interest in phenotypic variability among members of an isogenic population. In contrast to 

the earlier work focused on variability in cell morphology (accessible through bright-field 

microscopy), the new-wave of variability studies could monitor fluctuations in protein 

expression both among cells and through time [24–30, 564].

One of the key ideas to come out of that period was the recognition that fluctuations in 

protein expression had a much wider variance than simple Poisson statistics, attributable to 

the amplification of small fluctuations in transcription by dozens of ribosomes working in 

series to translate mRNA into protein [26, 565]. Furthermore, by adjusting the transcription 

and translation rate, it is possible to independently tune the mean and variance of a given 

protein. There continues to be considerable interest in determining mechanisms by which 

cells suppress or exploit intrinsic fluctuations in gene expression.

An attractive hypothesis is that constraints imposed by cell physiology and growth lay down 

the deterministic landscape of available phenotypes in a given environment and fluctuations 

in gene expression then facilitate transitions among these possibilities. How physiology 

constrains gene expression fluctuations, however, remains a largely unexplored question.

2.4.2. Resurgence and reassessment of the growth law and the cell cycle 
model—Microbial physiology fell out of fashion as the new era of molecular biology 

started in the 1970s (Figure 3). The upside of the tremendous advances in molecular biology 

was that mechanism of biological processes finally came with an explosion of new 

molecular insights occurring across the entire field of biology. The downside was that 

biology became overspecialized and its style of research drifted far and fast away from the 

physical sciences.

The tide has turned back again in the past few years, and we are currently witnessing strong 

resurgence of interest in quantitative microbial physiology. The scope of research in 

microbial physiology these days spans from single-cell to populations, and from molecules 

to the whole cell, with a completely new set of available technologies coming from both 

biology and physics. At the single-cell level, we now have a fairly satisfactory 

phenomenological description of how individual cells maintain size homeostasis (Section 4). 

At the population level, a coarse-grained proteome picture has good predictive power for 

allocation of cellular resources under different growth conditions (Section 5). Furthermore, 

we now understand that the nutrient growth law by Schaechter, Maaløe, and Kjeldgaard and 

the Helmstetter-Cooper model are in fact a special case of a more general coordination 

principle between replication initiation, replication-division cycle, and the global 

biosynthesis rate (Section 6).

Before getting there, we will first start by introducing in the next Section the old concept of 

‘variability’ that disappeared during the 1970s but returned in the 1980s. The concept of 

variability and single-cell physiology will naturally lead us to modern microbial physiology.
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3. Variability and single-cell physiology

While the study of individual cells is often regarded as an invention of modern systems 

biology inspired by stochastic gene expression and cell-to-cell variability [24–30] 

understanding single-cell behavior has been the ultimate goal of bacterial physiology since 

the birth of the field [57, 63, 69, 172].

As mentioned earlier in Section 1, cell-to-cell variability was apparent to early bacterial 

physiologists because the measured steady-state age and cell size distributions deviated from 

the predictions of the deterministic model more significantly than experimental uncertainties 

(Figure 2E). For these reasons, the deterministic version was specifically called ‘canonical’ 

such as ‘canonical age distribution’ or ‘canonical size distribution.’

Physiological control, particularly control of growth and division, can be formally described 

using stochastic variables and the language of non-equilibrium statistical mechanics as 

pioneered in the 1950s and 1960s [14, 95, 168, 566–573]. In this approach, different size-

control models can be implemented as constraints imposed upon the general formalism. For 

example, cell size control by a “sizer” exclusively depends on the absolute size of the cell, 

whereas a “timer” on the age of the cell. The “adder,” which we will discuss in Section 4, 

formally measures the amount of growth from a specific point during the cell cycle (e.g., cell 

division or replication initiation) to divide. This section provides an overview of the non-

equilibrium statistical mechanics formalism applied to size control.

3.1. Non-equilibrium statistical mechanics formalism for size control

The first complete formalism was presented in the Appendix of Collins and Richmond 

[574]. The flux argument to derive the growth (elongation) rate Vx is particularly intuitive 

and elegant, and is worth the reading. Consider an arbitrary general steady-state distribution 

of cell length ρ(l) (Figure 17). The total cell number N in the culture increases exponentially 

as N = N0eλt, where λ is the growth rate of the population. If Ndl organisms lie between lx 

and (lx+dl) in length, and if Ndt organisms grow to length lx in a small time dt, then the 

group of organisms of length between lx and lx+dl is replaced Ndt/Ndl times within dt. For 

this to occur, organisms of length lx must be able to increase in length by the amount 

dlNdt/Ndl times during dt. That is

V x =
Ndt
Ndl

dl
dt . (32)

Box 4

Growth rate, elongation rate and elongation velocity

Growth rate

λ is the exponent in N (t) = N0eλ(t−t0) for a population of cells in exponential growth (see 

Box 2).
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Elongation rate

α is defined as the rate of increase in length normalized by the cell length,

α = 1
l

dl
dt , (33)

namely the “instantaneous elongation rate.” For exponentially elongating cells, l (t) = 

l0eαt, the exponent is therefore the elongation rate. In steady-state, the average elongation 

rate 〈α〉 is equivalent to the growth rate λ of the population, because 

〈α〉 = 1
l

dl
dt = 〈1/τd〉 ln 2 = λ.

Elongation velocity

V is defined as the increase rate in cell length, which is defined as, V = dl
dt = l × α.

From the definition of Ndl, we have Ndl = Nρ(lx)dl. The number of organisms that reach lx 

during dt, Ndt, equals the number of organisms formed with l < lx during dt by birth, minus 

the number of organisms disappear from l < lx during dt by division, minus the number of 

organisms disappear from l < lx during dt by growth or “drift.”

Therefore, Ndl = Nρ(lx)dl from the definition of Ndl and Ndt is given by

Ndt = λNdt 2∫
0

lx
Ψ(l)dl − ∫

0

lx
ρl(l)dl − ∫

0

lx
ρ(l)dl , (34)

where Ψ is the birth size PDF, ρl is the division size PDF, and ρ is the size PDF of a steady-

state population. The factor of 2 in the first term on the rhs is to account for the birth two 

daughter cells from a dividing mother cell.

Based on this argument, Collins and Richmond obtained the following,

V x = λ 2∫
0

lx
Ψ(l)dl

birth (thus 2 × )

− ∫
0

lx
ρl(l)dl

division

− ∫
0

lx
ρ(l)dl

drift

ρ(lx), (35)

which is essentially a flux equation to ensure the conservation of the cells of size l.

Tyson and Diekmann [575, 576] revived the formalism by Collins and Richmond almost 

three decades later. They rewrote Eq. 35 in a differential form as
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d
dt [v(l)η(l)] = 4γ(2l)η(2l) − γ(l)η(l) − λη(l), (36)

where v(l) = dl/dt. The new division rate function γ(l) is the PDF for a cell of size l at time t 
to divide in the time interval (t, t + dt). The additional factor 2 in the first term on the rhs 
accounts for the creation of two identical daughter cells by the birth process. From practical 

point of view, the differential form of Eq. 36 by Tyson and Diekmann is more convenient to 

work with than the integral form by Collins and Richmond.

The formalism represented by Eqs. 35 and 36 has been utilized in a series of papers and 

books that include [575–583]. Additional features, such as fluctuations in the rate of 

elongation Vx or in the sizes of the offsprings due to the positioning of the septum can be 

included in the formalism (see, e.g., the Supplementary Material in [581]). In general, this is 

not needed for the study of E. coli (and likely other rod-shaped bacteria) because the 

aforementioned fluctuations are significantly smaller than that of the division size ld or the 

generation time τd.

As mentioned previously, different size-control scenarios can be implemented via the 

elongation rate v(l) and the division rate γ(l). Typically, v(l) is assumed to be proportional to 

l for exponential elongation, whereas γ(l) encodes the assumptions specific to the cell-size 

control model. For example, Tyson and Diekmann tested the “sloppy size control” model 

originally suggested by Koch and Shaechter [570] and Powell [571]. This notion refers to 

the hypothesis that there is a critical size for division (“sizer”; see below Section 3.2), but 

due to intrinsic stochasticity the division length is variable around its mean (the latter being 

strictly controlled). Here, again, it is important to notice that stochasticity at the cellular 

level was already appreciated and theories developed more than a half century ago are still 

relevant.

The reader should be aware of a subtle but important assumption in Tyson and Diekmann’s 

approach [576], which enforces “causality” by strictly preventing an overlap between the 

newborn size and division size distributions.

3.2. Size control models: sizer and timer

The formalism in Eq. 36 can be used analyze idealized size control models such as “sizer”, 

“timer”, or “adder.” The version presented below is by Diekmann et al.[575] and Bradde and 

Vergassola [9].

Sizer: The main assumption of the “sizer” model is that cells divide after reaching a 

threshold size drawn from a probability distribution that depends on growth conditions.

Because the cell width of a typical model organism such as E. coli or B. subtilis remains 

nearly constant during elongation, we shall use cell length l as a proxy of cell size. Lengths 

of the cells at birth and division are denoted by lb and ld, respectively. The number of 

individuals in a population of bacteria having length l at time t is denoted by η(l, t). The 
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sizer mechanism posits that the rate of division of the cells depends on their size (length) l 
only, and the equation that governs the evolution in time of η(l, t) reads:

∂tη(l, t) + ∂l(v(l)η(l, t)) = 4v(2l)γ(2l)η(2l, t) − v(l)γ(l)η(l, t), (37)

where v(l) = dl/dt. The rhs in (37) is the total timederivative, with the l-derivative drift term 

accounting for the elongation of the cells. The rhs of (37) arises from the division of cells: 

γ(l) is the division rate or the “division rate function” [see, e.g.., [575]]. The function is 

defined as the local Poisson rate of cell division, i.e., γ(l) dl is the probability that a cell of 

length l divides while growing from l to l + dl. Therefore, the probability that a cell with 

initial size lb has not divided and has reached size ld is exp −∫ lb

ldγ(l′) dl′ . Finally, the 

conversion of the division rate from unit size to unit time involves the factor |dl/dt| = v(l), 
which explains its presence in the second term (of loss) on the rhs of (37).

The first term in the rhs of (37) describes the gain in the number of cells in the length range 

(l, l+dl). The gain originates from those bacteria in the size range (2l, 2l + 2dl) which divide 

and thus halve their size (fluctuations in the size of the offsprings are neglected here for 

simplicity but will be discussed later). The structure of the first term is thus analogous to the 

second term, with l replaced by 2l in the arguments of the functions. The factor 4 arises from 

the product of two factors of 2: the first is due to the 2dl range of dividing cells and the 

second is due to division producing two offspring.

The solution to the equation (37) depends on the specific form of the division rate γ(l) and 

the elongation law v(l). It is possible to extract a few general relations as follows.

First, integrating (37) over l, we obtain the equality

∂t∫ dl η(l, t) = ∫ dl v(l) γ(l)η(l, t), (38)

where the rhs is the total number of individuals which divide in the time interval [t, t + dt]. 
For the rate of growth of the number of individuals in the population, we obtain then

∂t ln ∫ dl η(l, t) = ∫ dl v(l) γ(l) η(l, t)
∫ dl η(l, t) ≡ 〈v(l)γ(l)〉 . (39)

At long times, we require that η(l, t)/∫ dl η(l, t) will reach a steady-state distribution that we 

denote by ρ(l). The corresponding steady-state rate of growth of the population is then 

denoted λ = ∫ dlv(l)γ(l)ρ(l).

Second, multiplying (37) by l and integrating, we obtain for the average size
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∂t〈l〉 = 〈v(l)〉 − 〈v(l)γ(l)〉 〈l〉 . (40)

In steady-state, the two terms on the rhs of (40) will balance. In other words, for exponential 

elongation l(t) = lbeκt, the consistency condition 〈l γ(l)〉 = 1 is satisfied as v(l) = κl from 

(40).

Finally, multiplying (37) by lq and integrating, we obtain a division series of relations for 

higher-order moments. In the steady-state and for an exponential elongation v(l) = κl, the 

relations read (q − 1)〈lq〉 = (1 − 21−q)〈lq+1γ(l)〉, where the integer q > 1 and we have made 

use of (40).

Timer: The “timer” model posits that cell division is controlled by the age of the cell, i.e., 

the time elapsed since its birth. The state of cells is therefore described by their size l and 

age ξ. The corresponding number of cells at time t is denoted by η(l, ξ, t), and the equation 

for the evolution of η reads:

∂tη(l, ξ, t) + ∂l [v(l)η(l, ξ, t)] + ∂ξη(l, ξ, t) = − γ(ξ)η(l, ξ, t); η(l, 0, t)

= 4∫ γ(ξ′)η(2l, ξ′, t)dξ′ .

(41)

The lhs is the total time derivative: the drift in l is due to the elongation of cells dl/dt = v(l) 
while the drift in ξ is due to the aging of cells dξ/dt = 1 (the discontinuity in ξ occurring at 

division will be addressed momentarily). The rhs of the first equation in (41) is the loss term 

due to the division of cells. The Poisson division rate function (division rate) γ depends now 

on the age of the cell, ξ. Furthermore, since dξ/dt = 1 there is no additional factor coming 

from the conversion of the rate of division from unit age to unit time [see (37)].

From the definition of the division rate it follows that

ρτd
(τ) = γ(τ) e

−∫ 0
τ γ(ξ′) dξ′

γ(τ) =
ρτd

(τ)

1 − ∫ 0
τ dξ′ρτd

(ξ′)
, (42)

where ρτd (τ) is the probability density for the generation time τd of a given cell and the 

derivation proceeds as for (42) Finally, the last equation in (41) is the boundary condition 

that accounts for newborn cells having all the same age ξ = 0, irrespective of their size 2l 
that gets halved. The integral ∫ dξ γ(ξ)η(2l, ξ, t) represents the total number of cells that 

divide in the unit time; as in (37), the factor 4 is the product of the factor 2 resulting from the 

2 dl width of the range of dividing cells and the factor 2 due to division producing two 

newborn daughters cells.
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The dynamics of the age of the cells is independent of their size, as can be easily seen by 

integrating (41) over l. The resulting equations for the marginal distribution η(ξ, t) = ∫ η(l, 
ξ, t) dl reads

∂tη(ξ, t) + ∂ξη(ξ, t) = − γ(ξ)η(ξ, t) (43)

η(0, t) = 2∫ dξ γ(ξ) η(ξ, t) . (44)

Furthermore, integrating (41) over l and ξ, we obtain for the population growth rate λ,

∂t∫ η(l, ξ, t) dl dξ = ∫ γ(ξ)η(l, ξ, t) dl dξ

= ∫ γ(ξ)η(ξ, t)dξ,

(45)

which depends on the marginal distribution η(ξ, t) only. The well-known solution [279] to 

(43) is η(ξ, t) = eλtñ(ξ), where

n∼(ξ) = Ae
−∫ 0

ξγ(ξ′) dξ′ − λξ
(46)

2λ∫
0

∞
e−λξe

−∫ 0
ξγ(ξ′) dξ′

dξ = 1. (47)

The first equation is simply obtained by integrating the differential equation in (43) and the 

constant A depends on the initial size of the population. The second relation is obtained 

from the boundary condition in (43) by an integration-by-parts. A similar integration-by-

parts provides a check that the second equation in (47) is equivalent to the growth rate 

relation λ ∫ñ(ξ) dξ = ∫ ñ(ξ)γ(ξ) dξ derived in (45).

As for the dynamics of the size of cells, we can obtain the equation for the mean size 

multiplying (41) by l and integrating over l and ξ. The resulting expression reads

∂t〈l〉 = 〈v(l)〉 − λ〈l〉, (48)
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where 〈l〉 ≡ ∫ l η(l, ξ, t) dl dξ/∫ η(l, ξ, t) dl dξ and similar definitions apply for other 

averages. For a stationary state, the lhs is required to vanish, i.e., elongation should balance 

the growth. In the case of linear elongation v(l) = const., a steady-state distribution is 

reached and 〈l〉 = const./〈γ(ξ)〉, where we used λ = 〈γ(ξ)〉. In contrast, for exponential 

elongation v(l) = κl, a steady-state distribution exists only for the special choice κ = λ. If the 

equality is not satisfied, then the average size grows to infinity or decay to zero 

exponentially fast (see below).

The lack of control of the cell size by the timer mechanism was remarked in [584, 585] and 

can be understood intuitively by considering the sizes at birth lb
(n) and lb

(n + 1) over two 

consecutive generations n and n+1. For an exponential elongation, 

ln lb
(n + 1) − ln lb

(n) ≃ κτd − ln 2, where τd is again the generation time and κ the elongation 

rate in the n-th generation. Exponential elongation of the size of the cells requires that the 

average value of κτd be precisely-tuned in order to avoid a systematic drift of ln lb. Notice 

that even in the absence of drift, the long term behavior of ln lb will be analogous to a 

random walk (assuming that the values of κτd fluctuate and decorrelate over the 

generations). Therefore, the variance of the size of the cells will grow across the generations 

and no effective control of the size of the cells is achieved by the timer mechanism. Diluting 

bacteria by washing them out, e.g., a term −Dη(l, ξ, t) is added to the equation (41) [575], 

will not modify the previous conclusion unless dilution is coupled to the size, i.e., the 

dilution rate depends on l.

In practice, the elongation rate deviates from a linear behavior at very small and at very large 

sizes so that the logarithm of the size will not go to zero or diverge to infinity. However, its 

behavior will depend very sensitively on the details of the elongation law at very small and 

large sizes [575, 581] and the resulting size distributions are generally significantly wider 

than the actual data (not shown). Most importantly, the timer mechanism disagrees with the 

experimental data insofar as it predicts the conditional distribution P(τd|lb) of the generation 

time τd vs the initial size of cells lb should be independent of lb [9]. Conversely, data shown 

in [9] (Figure 18) indicate a clear dependency on lb.

Mixed models: Diverse combinations of sizer and timer mechanisms are conceivable. A 

well-known instance is the bilinear model proposed in [78]. The proposed dynamics is 

summarized as follows: cells grow linearly in time v(l) = u until they reach a threshold 

length lΛ. After reaching lΛ, cells keep growing for a fixed amount of time (~ 20 mins) at a 

velocity 2u (see [172, 388, 396] for a discussion of bilinear vs exponential elongation). Ref. 

[78] clearly poses relevant questions and deserves all the influence it had in the field; 

however, the specific mechanism which was proposed is not supported by modern 

experimental data [9, 384].

Before the “adder” model was (re)discovered [9, 586, 587], other combinations of age and 

size control had been proposed. The intuitive motivation comes from plots like (Figure 2D) 

in the main text, where a behavior intermediate between a timer and a sizer is observed (see 

Figure 18). The most recent proposition is [580], where a control mechanism operating 

“concertedly” (and not sequentially as in [78]) on the size and the age of the cell is 
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discussed. No major inconsistency with experimental data (for a single growth condition) is 

observed by introducing a model where the division rate function γ(l, ξ) depends jointly on 

the size and on the age of the cells and by best fitting the function to the data. However, a 

simpler adder model that we discuss below explains these observations and beyond.

3.3. The genius of Arthur Koch: how mathematical insight led to biological insight, and 
vice versa

Among the giants in microbial physiology, Arthur Koch’s depth, breadth, and especially his 

originality (and generosity) is unparalleled [69, 256, 278, 570, 572, 588–603]. One of the 

main questions that occupied him for a long time was, “How does a cell know how big it 

is?” [256] His first serious work on the subject was with Elio Schaecter [570, 589] based on 

the analysis of the time-lapse experiment of the growth of individual bacteria. Schaechter’s 

group adopted the imaging technique developed by Mason and Powelson [604] to visualize 

the E. coli and B. subtilis nucleoids in vivo by growing them in a medium with a refractive 

index near that of the cellular cytoplasm. They studied typically between 100–200 cells, 

comparable to the standard of microbiology in the 1990s and 2000s before the use of 

microfluidics that allowed tracking of tens of thousands of cells [384, 605].

The key results from Schaechter et al.’s experiments is that the coefficient-of-variation (CV) 

of the generation time is about 20%, whereas is is about 10% for the division size. They also 

measured the correlation of various measurables between mothers and daughters, and also 

between daughters [589].

In his review article ‘Does the Initiation of Chromosome Replication Regulate Cell 
Division?’ in 1977 [256], Koch presented a series of brilliant arguments that laid the 

constraints on models of cell size and cell cycle control based upon measurements of the 

coefficient-of-variation. One particular example is worth mentioning here.

Had the cell a division mechanism inherently consisting of a series of stages in the 

cell cycle, each to be timed from the completion of the last stage independently of 

the cell size at that time, then one would have expected the cell size at division to 

have a larger (or equal) coefficient of variation than that for the age distribution, 

since random sources of uncorrelated variation only add. Consequently any 

mechanism which does not lead to negative correlations between parts of a cell 

cycle or between cycles of related individuals is excluded. A chance fluctuation in 

timing of one phase must sooner or later lead to a fluctuation of opposite sign at 

some later phase. This logic eliminates several previously considered pure 

branching processes such as those proposed by Rahn (1931) [606] and Kendall 

(1948) [567], and demands statistical models containing deterministic elements.

Based on the observation that the CV of division size is smaller than the CV of generation 

time, Koch further correctly predicted a negative correlation of the generation time between 

mothers and daughters, and a positive correlation between sisters. The basic idea is to 

consider two consecutive generations as a single generation of one hypothetical cell such 

that the division of the real mother corresponds to approximately at half-way the growth of 

the hypothetical cell. We can then apply Koch’s argument for negative correlations of the 

duration of two parts of the same cell cycle, i.e., the generation times of the mother and 
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daughter (the first half and the second half of the “cell cycle” of the hypothetical cell. We 

illustrate this graphically In Figure. 19.

Later, Koch’s interest went deeper into major processes underlying cellular reproduction 

such as cell division, chromosome replication initiation and termination, and a hierarchy in 

the triggering of these processes. His approach was, again, based on the variability of 

individual processes and their comparisons and correlations. He was fond of, and trusted, the 

autoradiographic and size data from steady-state populations by Chai and Lark, as well as by 

Forro [125, 143, 152]. To test various extant models, Koch employed numerical simulations 

and compared them against the data [256]. To our knowledge, this was one of the first works 

(if not the first) in biology that a researcher used computer simulations to test models against 

the data, and clearly Koch understood the real value of simulations was in excluding 

incorrect models.

The reader may have noticed that Koch was in favor of a sizer model, and indeed he and 

Schaechter introduced the notion of ‘critical size’ for cell division. This was a result of their 

ranking of biological processes in their order of CV, and their hypothesis that the process 

with the smallest CV corresponded to key control point. This reasoning led Koch to propose 

that a sizer mechanism provides a better characterization of size control than a timer 

mechanism. Furthermore, he concluded based on his analysis of the autoradiographic data 

and computer simulations that

On the basis of these several lines of evidence I feel fairly confident, therefore, in 

concluding that the initiation of rounds of DNA synthesis is neither well controlled 

with respect to the cell size, nor to cell age….

In our view, this conclusion was premature, and he would have benefited from single-cell 

data that became available in the past few years. For example, we now know that E. coli and 

many other bacteria do not employ a sizer to control their size. Instead, they are “adders” as 

we explain in the next section. Nevertheless, his intuition that there may be multiple triggers, 

instead of a single trigger, underlying cell size and cell cycle have not been fully resolved, 

and should be considered seriously by future researchers.

4. Adder as a new phenomenological paradigm of cell size homeostasis

The field of cell-size control has been rapidly transforming in the past few years due to the 

(re)discovery of the “adder” principle [9, 19–23]. This was made possible because of the 

new single-cell growth and division data (e.g., [384]) that were not available previously.

The adder model posits that cells add constant size Δd between birth and division, 

irrespective of the birth size. Many evolutionary divergent organisms from bacteria to 

eukaryotes have been shown to be adders (Figure 20). While the adder principle is difficult 

to understand from a molecular point of view, it provides a very intuitive explanation for 

how cells maintain size homeostasis. This is illustrated in Figure 21.

This section explains the history, the experiments, and the modeling relevant for the adder 

principle of size homeostasis.
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4.1. History of adder

In 1993, Koppes and colleagues published a paper entitled “Mathematics of cell division in 

Escherichia coli,” where they (despite their passive Dutch voice) explicitly proposed and 

tested using extant data the current form of the adder (they originally called the model 

“incremental size model” before the model was termed “adder” [9, 20]).

There is another way of viewing the control of cell division, the incremental-size 

model. This model states that a growing cell divides after having increased its size 

by a critical amount; here it is the increment that is considered to be the same, on 

the average, for all the cells in the culture regardless of their size at birth…

It is unclear how Koppes came up with the model. As mentioned previously, the adder is 

highly unintuitive from the biological point of view. In fact, Koppes and Voorn themselves 

expressed the same sentiment in their article in 1997 [587]:

How a bacterial cell manages to grow such a fixed amount of mass or surface is, in 

our opinion, equally hard to imagine as it is trying to grow to a predetermined size.

One possibility is that Koppes and colleagues in the Dutch school in the 1980s had 

attempted to apply the sloppy size control model (which is essentially a sizer with noise) to 

the extant data, and realized that the model is inconsistent with the data and thus explored 

different models. A possible inspiration during the exploration may have been the work by 

Sompayrac and Maaløe (1973) [56] discussed in Section 2.2.7. Koppes and colleagues were 

clearly aware of the work:

Initiation would thus occur when cellular volume had increased by a fixed amount 

per origin since the previous initiation.

Ideally, comprehensive single-cell growth data would have provided unambiguous support 

for a specific division model. Unfortunately, such data as shown in Figure 23 (data from Jun 

lab [9]) was unavailable in the early 1990s. Instead, Koppes and colleagues developed a 

mathematical scheme (especially with Grover) to calculate the correlation coefficient r 
between size at birth lb and size at division ld based on the coefficient-of-variation (CV) of 

lb, ld, and the generation time τd, which was available in [586, 610–614]. They obtained r = 

“0.52 and 0.56 for interdivision times of 21 min and 125 min, respectively.” [586]. This is 

close to the prediction of the perfect adder, r = 1/2 [9, 615], but significantly larger than the 

prediction of the sizer model, r = 0 (by the very definition of a sizer). This led Koppes and 

colleagues to the following conclusion:

The thirty year old so-called sloppy-size model could be rejected, whereas the 

newly-developed incremental-size model was accepted (by lack of alternative).

That E. coli is an adder became evident from the large amounts of single-cell data in [384], 

which was significantly extended to other nutrient conditions [9, 19] as well as to 

evolutionary distant Gram-positive B. subtilis [9].
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4.2. Mother machine, single-cell growth experiments, data, and choice of control 
parameters

Technological development in high-throughput microscopy, imaging, image analysis, and 

microfluidics were critical in the development of modern single-cell bacterial physiology 

[386, 387, 616–618]. There are many excellent reviews on the technology side with 

biological applications, and we refer the reader to them [605, 619–621]. In this subsection, 

we will use only one example known as the “mother machine” (Figure 22). The mother 

machine device was introduced by the Jun lab in 2010 [384, 605], and has been extended to 

other organisms (Figure 22) [622–627].

The mother machine allows tracking of thousands of mother cells for hundreds of 

consecutive generations (Figure 22). A typical timelapse sequence of growth and division is 

shown in Figure 2D. Six parameters can be immediately defined and deduced from the 

sequence. The birth size lb, division size ld, the size added between birth and division Δd = ld 

− lb, the relative septum position l1/2, the generation time τd, and the instantaneous 

elongation rate α = 1
l

dl
dt . Obviously, not all six parameters are independent from one another. 

From a biological and a modeling point of view, it is important to determine the minimal set 

of parameters controlled by the cell. A useful approach is to plot correlations among all pairs 

of the potential control parameters as shown in Figure 23.

In this example, the instantaneous elongation rate α is nearly uncorrelated with other 

parameters. It is therefore reasonable to assume that the cell must control α independent of 

other parameters. The other extreme example is the generation time τd, which is correlated 

with all other parameters except the septum position l1/2. Therefore, τd is a less-than-ideal 

control parameter from a modeling perspective, and biologically, as the timer mechanism is 

not a good strategy to maintain cell-size homeostasis in exponentially elongating bacteria 

(Section 3.2).

For the adder strategy, we choose Δd as the other control parameter and describe the growth 

and division dynamics using the “kinetic” parameter α and the “spatial” parameter Δd. The 

results and predictions of the modeling are tested against the data in the following sections.

4.3. Modeling the adder

The general formalism for the adder is the same as the one used to characterize the sizer and 

the timer summarized in Sections 3. Because the adder model posits that the mechanism of 

control involves a single variable, the added mass at division Δd, the dynamics of size 

control can then be described using two variables the instantaneous elongation rate α and the 

added mass Δd. Note that the binary division is assumed to be perfect given that the 

distribution of septum position is the narrowest among all measurable physiological 

variables (Figure 23).

If l(t) is the length of a cell at the current time t, its added length is denoted Δ(t) = l(t) − lb, 

where lb is the length at birth. The density of cells η(l,Δ, t) having length l and added size Δ 

obeys the following continuity equation
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∂tη(l, Δ, t) + ∂l [v(l)η(l, Δ, t)] + ∂Δ [v(l)η(l, Δ, t)] = − γ(Δ)v(l)η(l, Δ, t); (49)

v(l)η(l, 0, t) = 4v(2l)∫
0

∞
γ(x)η(2l, x, t) dx . (50)

As before, the lhs in (49) is the total time-derivative and the two drift terms are due to the 

elongation of the cells, i.e.dl/dt = v(l) and dΔ/dt = v(l). The rhs accounts for the division of 

the cells. The Poissonian division rate function γ(Δ) depends now on the added size Δ. 

Proceeding as for (42), we obtain the relation

ρΔd
(Δ) = γ(Δ) e

−∫ 0
Δγ(x) dx

γ(Δ) =
ρΔd

(Δ)

1 − ∫ 0
Δdx ρΔd

(x)
, (51)

between γ(Δ) and the distribution ρΔd(Δ) for the size added at division (Δd = ld − lb) of 

individual cells. By individual cells we mean that cells should be weighted equally, tracking 

them individually and avoiding known bias effects related to the speed of reproduction 

[279]. As in the equation (37), the conversion of the rate of division to unit time involves the 

Jacobian |dΔ/dt| = v(l), that appears then in the right hand side of (49). Finally, (50) is the 

boundary condition that accounts for cells having all Δ = 0 at birth, irrespective of their size 

2l that gets halved. The integral ∫ γ(x)η(2l, x, t) dx represents the total number of cells that 

divide in the unit time; as in (37), the factor 4 is the product of the factor 2 resulting from the 

2 dl width of the range of dividing cells and the factor 2 due to division producing two 

newborn daughters cells.

A series of relations analogous to those obtained for the sizer model can be derived from 

(49) for a general division rate γ. Integrating (49) over l and Δ and using the boundary 

condition (50), we obtain

∂t ln ∫ η(l, Δ, t)dldΔ

= ∫ v(l)γ(Δ) η(l, Δ, t)
∫ η(l, Δ, t)dl dΔdl dΔ

≡ 〈vγ〉 .

(52)

Multiplying (49) by l and integrating over l and Δ, we derive for the average size
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∂t〈l〉 = 〈v(l)〉 − α〈l〉, (53)

where the rate of growth of the population α = 〈v(l)γ(Δ) 〉 from (52). For a linear elongation 

rate, v(l) = u, (53) gives for the size at equilibrium 〈l〉 = 1/〈γ(Δ)〉. For an exponential 

elongation rate, v(l) = αl, (53) yields α = α, i.e., the value 〈lγ(Δ)〉 = 1 for the correlation 

between the size l and the division rate function γ(Δ).

Finally, we can obtain the following series of relations for higher order moments at the 

steady state:

(1 − m)〈lmΔq〉 − q〈lm + 1Δq − 1〉
= 21 − mδq, 0〈lm + 1γ(Δ)〉 − 〈lm + 1Δqγ(Δ)〉
m ≥ 0, q ≥ 0

(54)

where we specified relations for the case of exponential elongation v(l) = αl and we have 

used α = α and 〈lγ〉= 1 derived previously.

4.3.1. Comparison with experiments—The comparison with experimental data for the 

adder model proceeds as for the sizer mechanism. The elongation rate v(l) = dl
dt  and the 

division function γ(Δ) are extracted from experimental data, namely from the distribution of 

the sizes at division ld and the distribution of the instantaneous elongation rates α. These are 

then used to simulate the cell size control process at the level of individual cells. Finally, we 

compare statistical observables alternative to those used for calibration, in order to assess the 

validity of the model.

The calibration of the model proceeds as follows. The instantaneous elongation rate α for 

individual bacteria is obtained by exponential fits of the experimental curves of size versus 

time. The probability densities ρα
ex(α) of the resulting elongation rates in the various growth 

conditions are shown in Figure 24. In the numerical simulations one draws values of α 
randomly from ρα

ex(α), neglecting (as for the sizer case) weak correlations between the 

instantaneous elongation rates of mother and daughter cells. The division rate γ(Δ) is 

computed using (51) with the probability of the size increments at division Δd ≡ ld−lb read 

directly from the experimental data ρΔd
ex (Δ) (see Figure 24).

The distribution of the instantaneous elongation rates α and the division function γ(Δ) 

extracted from the experimental data are used to simulate the dynamics of a bacterial colony. 

Each cycle of elongation of a cell proceeds at the constant (random) rate α and division 

occurs with the Poissonian rate γ(Δ), which depends on the size increment Δ only. After an 

initial transient, distributions for the various observables reach a stationary form and the 

resulting numerical distributions for the added size at division Δd = ld − lb and the 
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instantaneous elongation rate α (used to calibrate the model) compare to the experimental 

distributions as shown in Figure 24 over a range of growth conditions.

Distributions of size and age at division: A first test for the adder model is provided by the 

curves in Figure 25 showing the agreement of the distributions for the final size ld and for 

the generation time τd = ln(ld/lb)/α (where the values of the various quantities are those of 

individual bacteria). The corresponding results for B. subtilis are shown in Figure 26. Most 

importantly, the model by its very definition agrees with the lb-independent curves of the 

conditional probability P(Δd|lb) shown in the reference [9].

Correlations: size across generations: An additional test for the model comes from the 

correlations of the size among genealogically related cells. Some of the correlations below 

have been calculated in Ref. [615] by a slightly different procedure. Correlations between 

the added length of the mother Δd
M and the daughter, Δd

D are experimentally found to be 

small so we shall neglect them hereafter.

We begin with the correlation 𝒞dd
(p) ≡ 〈ld

Mld
D(p)〉 between the size at division of the mother and 

its p-th generation descendant. For example, p = 1 gives the correlation between the sizes at 

division of mother and daughter cells. The decay of the correlation function is computed by 

the formula

𝒞dd
(p + 1) = ld

Mld
D(p + 1)

= ld
M ld

D(p)

2 + Δd
(p + 1)

= 1
2 𝒞dd

(p) + 〈ld〉2 .

(55)

where we have used that 〈Δd 〉 = 〈lb 〉 = 〈ld〉/2, as can be easily derived from ld = lb +Δd and 

〈lb〉 = 〈ld〉/2. For the connected part of the correlation function Cdd
(p) ≡ 𝒞dd

(p) − 〈ld〉2, it follows 

that

Cdd
(p) ≡ 〈ld

Mld
D(p)〉 − 〈ld

M〉〈ld
D(p)〉

=
σld

2

2p ,

(56)
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where σld
2 = 〈ld

2〉 − 〈ld〉2 is the variance in the division size ld. The comparison with the 

numerical simulations is shown in Figure 27. By similar arguments we can show that the 

correlation function for the size at birth Cbb
(p) = σlb

2 /2p where the variance of the size at birth 

σlb
2 = 〈lb

2〉 − 〈lb〉2 ≃ σld
2 /4 because the size is (roughly) halved at division. The scaling is 

confirmed in Figure 27. Finally, the mixed correlation Cbd
(p) = Cbb

(p) because the added size is 

statistically independent of the initial size.

The positive correlation between the sizes across generations has an intuitive explanation. 

An ancestor cell bigger than the average will generate progeny that statistically relaxes to the 

average size as illustrated in Figure 21. The fact that the added length is independent of the 

initial size means that progeny will inherit only part of the ancestral size, which is 

successively halved as generations proceed. That accounts for the positive correlations and 

its 1/2 rate of decay across generations.

Notice that the previous results give for the Pearson correlation coefficient between the size 

at birth and at division:

〈lbld〉 − 〈lb〉〈ld〉
σlb

σld
=

Cbd
(0)

σlb
σld

=
σlb
σld

≃ 1
2, (57)

which accounts for the behavior of experimental data observed in the reference [9]. It also 

follows from ld = lb +Δd and lb ≃ ld/2 that for the adder model

σld
2 = 4σlb

2 = 4
3σΔd

2 ; 〈ld〉 = 2〈lb〉 = 2〈Δd〉 . (58)

The coefficients of variation (CV) of the three quantities are

CV ld
≡

σld
〈ld〉 ≃ CV lb

≃ 1
3CVΔd

. (59)

Predictions are in excellent agreement with the experimental data presented in the reference 

[9]. The coefficient of variation of the birth size lb is actually slightly larger than the 

coefficient of variation of the division size CVld because the birth size lb is also affected by 

the noise in the positioning of the septum. We have neglected septum-positioning noise 

because it is small; when included, it leads to CVlb being slightly larger than CVld, as shown 

in the reference [9].
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Correlations: generation times: Generation times τd = 1/α ln (ld/lb) involve a logarithm, 

which appears to complicate the derivation of the resulting correlation functions. This 

problem can be circumvented by using the observation that the coefficient of variation in the 

birth size lb and the added mass at division Δd are small to develop the logarithm as a power-

series. We can then derive approximate expressions for the correlation functions. Neglecting 

for simplicity the small noise in the instantaneous elongation rate α, i.e., α = 〈α〉, expansion 

of the doubling time τd and the doubling rate 1/τd is as follows:

τd = 1
α ln 1 +

Δd
lb

≃ 1
α 1 + 1

2
δΔd
〈Δd〉 − 1

2
δlb
〈lb〉

(60)

1
τd

≃ α 1 − 1
2

δΔd
〈Δd〉 + 1

2
δlb
〈lb〉 , (61)

where δΔd and δlb denote fluctuations with respect to their mean values and we used 〈lb〉 = 

〈Δd〉 (see (58)). Second-order terms will not be needed as they cancel out from the 

correlations computed below.

From Eq (60), the mean, the variance and the coefficient of variation of the doubling time τd 

are:

〈τd〉 ≃ 1
α (62)

〈τd
2〉 − 〈τd〉2 ≃ 1

4α2

σΔd
2

〈Δd〉2 +
σlb

2

〈lb〉2 = 1
α2

σlb
2

〈lb〉2 (63)

CVτd
=

CV lb
ln 2 =

CVΔd
3 ln 2 , (64)

where Eq. 59 was used in the second equation. The ratios of the coefficients of variation are 

in excellent agreement with the experimental data presented in the reference [9].

Similarly, the mean value and the variance for the doubling rate 1/τd read:
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1
τd

≃ α; 1
τd

2 − 1
τd

2
≃ α2

σlb
2

〈lb〉2 , (65)

and derive then

lb
τd

− 〈lb〉 1
τd

σ1/τd
2 ≃

〈lb〉
2α . (66)

The expression (66) was used in Figure 1C of the reference [9] to fit the dependency of the 

initial size versus the number of divisions per hour, in given growth conditions. The fitting 

curve was written as lb = c1
1
τd

+ c2 and it is verified that the constant c1 is then equal to the 

correlation (66).

We can also derive the correlation between the birth mass lb and the generation time τd as

〈lbτd〉 − 〈lb〉〈τd〉 ≃ − 1
2α

σlb
2

〈lb〉 (67)

〈lbτd〉 − 〈lb〉〈τd〉
σlb

στd
≃ − 1

2, (68)

where Eq 62 was used. The reason for the negative sign is intuitive: the elongation at a 

length l proceeds at the rate αl, i.e., the longer the cell, the faster it grows. Therefore, if lb is 

larger/smaller than the mean it will take less/more time to complete the addition of the size 

Δd (independent of lb).

Finally, we can explicitly compute the decay of the correlations among the division times 

across generations. We indicate by τd
M the generation time of the mother and by τd

D(p) the 

generation time of a p-th generation descendent. For instance, daughters correspond to p = 1. 

We are interested in the behavior of the correlation
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Cτdτd
(p) ≡

〈τd
MτD(p)〉 − 〈τd

M〉, τd
D(p)

στd
2 , (69)

Using Eq. (60), we can approximate the correlation by

Cτdτd
(p) ≃ − 1

[CVΔd
2 + CV lb

2 ]
× (70)

δΔd
M

〈Δd
M〉

−
δlb

M

〈lb
M〉

δlb
D(p)

〈lb
D(p)〉

, (71)

where we have used that δΔd
D(p) is independent of all other fluctuations in the adder model 

and the expression (62) of the variance στd
2  in terms of the coefficients of variation. Note that 

the mean 〈 lb
D(p)〉 is the usual value of the mean (unaffected by the mother’s fluctuations) as 

corrections would yield higher-order corrections.

The size at birth of a p-th generation descendant is lb
D(p) =

lb
M + Δd

M

2p + ∑k = 1
p − 1 Δd

D(k)

2p − k . Since 

the increments Δd
D(k) are independent of the mother’s fluctuations in the adder model, we 

conclude that

Cτdτd
(p) ≃ −

CVΔd
2 − CV lb

2

CVΔd
2 + CV lb

2 × 1
2p . (72)

Using Eq. (59), we obtain for the correlation between mother and daughters Cτdτd
(1) − 1

4 . The 

behavior (72) is consistent with the experimental data in the reference [9] and with the 

results of numerical simulations in Figure 27 (small corrections to the constant prefactor are 

due to the noise in the positioning of the septum and fluctuations in the instantaneous 

elongation rate α; the constant agrees indeed with (72)).

Anticorrelations between the generation times of the mother and its descendants are 

intuitive. Consider a given initial size for the mother. As its generation time becomes longer, 

the mother will divide bigger and will then tend to have descendants with a bigger newborn 
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size. The size at birth and the generation time of a cell tend to be anticorrelated. This follows 

intuitively from the definition 2ατd = ld/lb = 1+Δd/ld and the fact that the added size is 

independent of the initial size, i.e., it takes less time to add the fixed amount Δd if the cell 

elongates faster [see Ref. 68 and 73 for a more formal proof]. Combining the two statements 

above leads to a conclusion that the division times of the mother and its descendants are 

anticorrelated.

Correlations involving exponentials of the generation time: We conclude this Section by 

computing some correlations involving exponentials of the generation time. The reason is 

that since eατd = ld/lb, correlations do not involve any logarithm and we can demonstrate 

anticorrelations without any hypothesis on the strength of the fluctuations. We first show that 

the initial size and eατd are anticorrelated in the adder model:

〈lbe
ατd〉 − 〈lb〉 〈e

ατd〉 = 〈ld〉 − 〈lb〉 1 + 〈Δd〉 1
lb

= 〈lb〉 1 − 〈lb〉 1
lb

(73)

≤ 0. (74)

Here, we used 〈Δd〉 = 〈lb〉 = 〈ld〉/2, and the inequality 〈x〉〈/x〉 ≥ 1 holding for any positive-

definite random variable x (as it can be proved for example by the Cauchy-Schwarz 

inequality 1 = x 1/x ≤ 〈x〉1/2〈1/x〉1/2).

The exponentials of the division times of the mother and its daughters are also 

anticorrelated,

2
αMτd

M
2αDτD

=
ld
M

lb
M

ld
D

lb
D

= 2
ld
D

lb
M

= 2
ld
M /2 + Δd

D

lb
M

= 1 + 3〈Δd〉 1
lb

.

(75)

where we have used again that in the adder model, the added size Δd is statistically 

independent of the birth size lb. Subtracting then the disconnected contribution
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e
αMτd

M
e

αDτd
D

=
ld
lb

2

= 1 + 〈Δd〉 1
lb

2
,

(76)

and using again 〈Δd〉 = 〈lb〉, we finally obtain

e
αMτd

M
e

αDτd
D

− e
αMτd

M
e

αDτd
D

= 〈lb〉 1
lb

1 − 〈lb〉 1
lb

≤ 0.

(77)

4.4. Collapse of the probability distributions and scaling forms

Experimental data show that the distributions of the added mass at division Δd from different 

nutrient conditions collapse onto each other when rescaled by their respective means (Figure 

28) [9]. It has recently been observed that distributions of body sizes have a universal form 

across many species [579]. The universal form seems to be uniquely determined by the mean 

of the distribution, i.e., when the various distributions are rescaled by their mean, they tend 

to collapse onto a unique curve similar to the E. coli data. This recent remark generalizes 

analogous, classical observations made for different bacterial populations and growth 

conditions [628, 629] to the extensive single-cell data for E. coli and B. subtilis. We review 

the theory that explains the property of scale-invariance that is common to all size 

distributions, viz. lb, ld and Δd. In other words, if one of the three spatial distributions is 

scale-invariant, the others inherit that property under the adder scenario for cell-size 

homeostasis.

The distribution ρZ(z) of a (generic) random variable Z is scale invariant if it has the form:

ρZ(z) = 1
〈Z〉ϕ z

〈Z〉 , (78)

where ϕ is an arbitrary non-negative normalized function. The statistics of Z is supposed to 

change with the growth conditions, e.g., quality if the nutrient environment, inhibition by 

antibiotics, etc. The non-trivial content of the scaling form (78) is that when conditions are 

changed, the distribution will be modified, yet its shape remains invariant when properly 

rescaled by the new mean value of Z. The form (78) also implies that, when conditions are 

varied, the normalized moments 〈Zp〉/〈Z〉p will remain constant. Finally, the scaling form 

(78) is equivalent to the statement that the Laplace transform ℒZ(u) of the distribution ρZ 

has the form ℒZ(u) = ψ(u〈Z〉), where u is the Laplace transform variable and ψ is an 
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arbitrary function (respecting the general constraints for the Laplace transform of a 

probability distribution).

If the scaling form (78) holds for the distribution of the cell size either at division ld or at 

birth lb, then it holds also for the other quantity and for the distribution of the added size at 

division Δd. Indeed, if noise in the halving of the sizes at division is neglected, ld = 2lb. The 

distributions for ld and lb are then related as ρb(lb) = 2ρd(2lb) and the scaling form of either 

one of the distributions clearly implies scale-invariance for the other. Moreover, since ld = lb 

+Δd and Δd is independent of lb, we have

ℒld
(u) = ℒlb

(u) × ℒΔd
(u), (79)

where ℒ indicates the Laplace transform of the respective probability distributions. Using ld 

= 2lb we have ℒlb (2u)/ℒlb (u) = ℒΔd (u) and therefore the distribution of the added size 

inherits the scale invariance of lb (if the latter has it).

If noise in the halving at division of the size of daughters is included, the argument is 

slightly more involved. It is useful to use ld = εlb, where ε is a random variable centered 

around 2, and assume that the distribution of ε does not change as the means 〈lb〉 and 〈ld〉 
vary with growth conditions. Taking the logarithm of ld = εlb, we have again a sum and the 

Laplace transforms of the logarithms of the three variables are therefore related as in (79). 

The scale-invariant form (78) implies for the Laplace transform of the distribution of ln Z 
that ℒln Z = 〈Z〉−uψ(u), where ψ is arbitrary yet it does not contain 〈Z〉. Using that 〈ld〉 = 2

〈lb〉 = 〈α〉〈lb〉 (which is valid in any growth condition), one can verify that if either lb or ld is 

scale-invariant, the other variable will inherit that property.

Finally, scale invariance (if present) is also inherited by the size distribution η(l,Δ, t). The 

equation for its dynamics is (49), which reduces to

αη(l, Δ) + ∂l(v(l)η(l, Δ)) + ∂Δ(v(l)η(l, Δ)) = − γ(Δ)v(l)η(l, Δ), (80)

in the steady-state with the growth rate α defined by (52). Taking v(l) = αl and using 〈l〉 ∝ 
〈Δ〉, one can verify that a scaling form for the steady-state size distribution η(l, Δ) is indeed 

compatible with (80).

A more explicit way to relate η(l, Δ) to the distributions of Δ and lb involves the integration 

of (80) along the characteristics and the tracking of cells from the current time t back to their 

last division. For that purpose, it is convenient to introduce the age ξ of a cell, as in Section 

3.2, so that
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dl
dξ = v(l), dΔ

dξ = v(l), (81)

during the elongation of the cell. The initial size lb = l(0) and Δ(0) = 0 are the initial 

conditions. The equation (80) is rewritten as

dη(l(ξ), Δ(ξ))
dξ = − F(l(ξ), Δ(ξ))η(l(ξ), Δ(ξ)), (82)

where F(l, Δ) = α + ∂lv(l) + γ(Δ)v(l). We can then track each cell back to its birth:

η(l, Δ) = η(l − Δ, 0)e
−∫ 0

ξdξ′F(l(ξ′), Δ(ξ′))

= η(l − Δ, 0)e
−∫ 0

ΔdΔ′ 1
v(l(Δ′))F(l(Δ′), Δ′)

= η(l − Δ, 0)e
−∫ 0

ΔdΔ′γ(Δ′)
e

∫ 0
ΔdΔ′

α + ∂lg(l(Δ′))
g(l(Δ′)) .

(83)

For the exponential elongation rate v(l) = αl, equation (53) gives α = α and we have that

η(l, Δ) ∝ ρb(l − Δ) 1 − ∫
0

Δ
dxρΔd

(x) e
−∫ 0

Δdx 2
l(0) + x

= ρb(1 − Δ) 1 − ∫
0

Δ
dxρΔd

(x) 1 − Δ
l

2
,

(84)

where we have used (51) to express e
−∫ 0

ΔdΔ′γ(Δ′)
 in terms of ρΔd. It is immediately verifiable 

that if ρb and ρΔd are scale-invariant, so, too, will the steadystate size distribution η(l, Δ) be. 

Integrating (84) over Δ, we obtain for the marginal η(l) at the steady state:

η(l) ∝ ∫
0

l
dx ρb(l − x) 1 − ∫

0

x
dyρΔd

(y) 1 − x
l

2
. (85)

4.5. Other models proposed for the origin of the adder and the consideration of 
chromosome replication

Several models have been proposed to explain the molecular origin of the adder principle. 

So far all these models are a variation of a threshold concept that we discussed earlier for the 

onset of chromosome replication. For example, Harris and Theriot proposed a threshold 

hypothesis that a fixed amount of excess surface materials (e.g., precursors for 
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peptidoglycan synthesis) must accumulate to trigger cell division [473]. The Alfridge lab 

attempted to link the adder between cell divisions vs. between consecutive replication 

initiations in Mycobacteria [630]. The work from the Elf lab provided valuable insights by 

experimentally demonstrating a specific example that breaks the adder [631]. They results 

are based on the following three key observations:

i. Initiation mass is constant at the single-cell level and uncorrelated with the birth 

size.

ii. The cell-cycle duration τcyc is constant at the single-cell level, uncorrelated with 

the birth size and the initiation mass.

iii. In slow growth conditions where cell cycles do not overlap, τcyc is linearly 

proportional to the generation time τ. This together with the invariant initiation 

mass leads to deviation from the adder, because size at division is given by Sd = 

Si2τcyc/τd = Si × const. In other words, slow growing cells divide when they 

reach a constant size, similar to the sizer.

However, the deviation from the adder in slow growing E. coli cells does not necessarily 

mean that they switch size control mechanism based on the growth condition. Rather, this 

sizer-like behavior is likely an accidental consequence of global biosynthesis being limiting 

in slow growing cells, whereby both global biosynthesis and cell cycle progression slow 

proportionally leading to τcyc/τ = const. A similar relationship between τcyc and τ has 

already been known for slow growing populations since the 1960s by Helmstetter and 

colleagues [252, 632].

4.6. Control of variability (“noise”) and hierarchy of physiological controls

In Section 2.2.7, we discussed various models of initiation control. It is important to 

remember that initiation control is subject to biological fluctuations, thus note the degree of 

variability observed in both the single-cell and population level measurements. Possible 

biological consequences of variability in initiation control, and the tightness of coupling 

with division, has already been pointed out by Koch [256]:

Our results, particularly the occurrence of the 1n and 3n cells, do suggest, however 

that cell division is not a necessary or sufficient condition for the initiation of a 

round of chromosomal replication. Neither must cell division await the start of a 

new round of DNA synthesis in both daughter chromosomes.

(Here, 1n and 3n cells mean that cells that show an odd number of replication origins, 

instead of the multiples of 2).

For the control of coefficient of variability, insights from plasmid copy number control are 

invaluable, especially the “Kinetic proof reading” type view of initiation control by Paulsson 

and Ehrenberg [633]. The basic thesis of this work is that cells must use multiple steps to 

trigger replication initiation to reduce the standard deviations of plasmid copy number 

distributions. σ σ / n, where n is the number of steps. R1 is a low-copy number plasmid, 

whereas ColE1 is a high-copy number. R1 and ColE1 both employ multi-step processes for 
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initiations but they are different in important details so that the copy number control of the 

two plasmids exhibits different strategies.

R1: R1 initiation is controlled by two genes. RepA isSection the initiator. A large number of 

RepA must accumulate at the origin site oriR1. This causes conformational changes at oriR1 

and allows initiation. CopA is an antisense RNA of RepA, and expressed constitutively and 

it has a short half-life. Thus, CopA concentration is roughly proportional to the plasmid 

concentration. This makes RepA synthesis rate inversely proportional to the plasmid 

concentration. Figure 29 Scheme 1 describes the control. ktr is the transcription rate for 

RepA and kp is the translation rate for RepA, and k2 is the CopA anti-sensing kinetic 

parameters. Scheme 2 is a simplified version of Scheme 1, where p = kp/(kp + k2) and y = 

[CopA] = [plasmids]. Thus, only two parameters determine the model: y the copy number 

concentration (q is a biochemical parameter) and the total number of “hyperbolic” steps. The 

main advantage of this control scheme is that CV = 1/ n, where n is the total number of 

steps to go from newly replicated to ready to replicate. Here, n has to be determined by 

fitting the actual data, and should be considered as the number of effective steps. As a result, 

CV decreases as n increases and the plasmid copy number decreases. The latter is 

particularly important for low-copy number plasmids where stability of plasmid segregation 

is important (as in the case for R1).

ColE1: ColE1 is a high-copy number plasmid. Replication initiation is controlled by a 

single copy of the initiator molecule RNA II. Antisense RNA (RNA I) inhibits the nascent 

RNA II at many subsequent transcription steps (experimental work by Tomizawa [634]). The 

ColE1 copy-number control scheme is illustrated in Figure 29 Scheme 3. Here, ktr is the rate 

constant for initiation of transcription. kp is the intermediate transcription rate, whereas k2 is 

the inhibition rate by antisense RNA I. Thus, k2 is proportional to RNA I concentration, and 

therefore to plasmid concentration, y. K is a compound inhibition constant when simplified 

from Scheme 3.

Differences in biological consequences between Scheme 2 (e.g. R1) and Scheme 4 (e.g. 

ColE1) is shown in Figure 29. Analytical solutions of these schemes are difficult to obtain, 

but simulations are fairly straightforward and offer general insight. Both schemes reduce CV 

as the number of intermediate steps n increases. Scheme 2 (R1) has additional feature of 

avoiding no replications for plasmid copy number = 1 (which would be disastrous).

4.7. Spatial regulation: when absolute size matters

In this section, we have mainly focused on the adder principle and related issues. This may 

give the wrong impression that absolute size is unimportant. On the contrary, E. coli 
employs several apparatuses that have an intrinsic length scale. We have already discussed 

the constancy of initiation mass (Section 4.5), and we will go deeper into the subject in 

Section 6 that the initiation mass in fact remains invariant under extensive growth inhibition.

From cell biological point of view, cell division involves various mechanisms for spatial 

regulations. For example, nucleoid occlusion states that cells cannot divide the volume 

occupied by the chromosome (or the nucleoid) (Section 2.3.4). Thus, the physical size of the 
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chromosome can provide a natural length scale for the size of the cell. Another important 

molecular apparatus is the Min system (Section 2.3.4, Figure 30). The Min system consists 

of three species of proteins (MinCDE), which oscillate along the long axis of the E. coli 
cells. The Min oscillations have been beautifully described in the context of dynamic 

instability. The basic idea is that MinD and MinE constitute a reaction-diffusion system, 

such that their dynamic instability leads to oscillations with a well-defined lengthscale for 

the standing wave. When time-averaged, the concentration of MinD is highest at the cell 

poles, which is important because MinC is the inhibition of FtsZ ring formation and binds to 

MinD. In other words, the Min oscillations dynamically guide MinC and prevent cell 

division at the pole. The quantitative description of the Min system is one of the most 

successful examples in theoretical biological physics with close dialogue with 

experimentation. Pioneers in the field include Piet de Boer & Hans Meinhardt and Martin 

Howard [441, 442]. For the readers who want to know more about this fascinating subject, 

we recommend a recent treatise by Erwin Frey and Cees Dekker and references therein [635, 

636]. For a more general review on cell size regulation by sizerlike mechanisms, we suggest 

[637].

5. Modern bacterial physiology, Part I: proteome ‘sectors’

From this Section, we will turn toward contemporary views of bacterial physiology by 

reviewing three works recently published. Each highlights Monod’s maxim that once 

suitable state variables are chosen, system behavior reveals itself in surprisingly-simple 

‘laws.’ The ‘law’ of the present section (Section 5) is that proteome partitioning imposes 

strong constraints on gene expression leading to what can be called ‘emergent’ or ‘indirect’ 

gene regulation. The ‘law’ of Section 6 unites the initiation mass – unit cell, doubling rate 

and cell cycle time into a remarkably robust expression for the mass-per-cell over a range of 

physiological perturbations. The ‘law’ of Section 7 comes from recognizing that the 

temporal organization and causal relations amongall the internal de novo synthesis processes 

enables balanced growth and determines the growth rate. Finally, in Section 8 we speculate 

on how the ‘laws’ of proteome partition, cell-size and scheduling of cell-replication can be 

combined to determine the fundamental relationship between cell physiology and cell cycle 

control.

5.1. Proteome partitioning constraints on gene expression

The work of Neidhardt & Magasanik (Figure 7) was instrumental in establishing the 

catalytic role of the bacterial ribosome in protein synthesis. We now know that the positive 

linear correlation between ribosome abundance and the nutrient-mediated growth rate has 

deeper implications for the coupling between protein expression and growth [286, 639, 640]. 

Returning to the results of Neidhardt & Magasanik [58] (see Section 2.2.3), it will simplify 

the analysis if we convert the mass of total RNA, MRNA, into mass of ribosomal proteins, 

MrProtein,

MRNA
0.85g rRNA

1g RNA
1g rProtein
2g rRNA = MrProtein (86)
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The rate of protein synthesis in exponential growth is,

dMP
dt = λMP .

Not all ribosomes will be actively synthesizing protein; suppose there is a number NRb
0  of 

inactive ribosomes, then

dMP
dt = λMP = k(NRb − NRb

0 ),

where k is the rate of protein synthesis per ribosome. We can further convert from ribosome 

numbers to ribosome mass via the mass per ribosome, mRb: MrProtein = mRb × NRb; isolating 

the growth rate λ in the steady-state protein accumulation equation,

λ
(k /mRb) =

MrProtein
MP

−
MrProtein

0

MP
,

or,

λ
κT

= ϕR − ϕR
min ϕR = λ

κT
+ ϕR

min, (87)

where κT = k/mRb is proportional to the average speed of a translating ribosome, and ϕR is 

the protein mass fraction of ribosomal proteins. Equation 87 is an empirical relationship that 

is observed in E. coli under conditions of moderate-to-fast growth (doubling times shorter 

than about 90 minutes, Figure 31A, circles) [251]; the interpretation that the empirical 

parameter κT is proportional to the average speed of a translating ribosome is testable by 

repeating the same experiment with mutants that synthesize protein more slowly. Indeed, the 

linear relation between RNA/protein and the growth rate is maintained, though the slope 

increases with the severity of the mutation (Figure 31A, triangles). The slope correlates very 

well with the in vitro translation rate for ribosomes isolated from these mutants [251].

The corroboration of the interpretation of the phenomenological parameter κT can be pushed 

further. For example, from the mutant data (Figure 31A, eg. blue symbols) it looks as though 

there is a family of lines with negative slope correlating ribosome abundance and growth 

rate under translation inhibition (Figure 31A, dashed lines). That same behaviour can be 

obtained from the wildtype under the action of a translation-inhibiting antibiotic (Figure 

31B, circles – darkest symbols have the highest antibiotic concentration). In contrast to the 

case where growth is modulated by changes in the nutrient quality (Figure 31A, solid line), 

with growth modulated by translational inhibition, the ribosome abundance is negatively 
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correlated with growth rate (Figure 31B; coloured lines). In fact, the correlation is so strong 

that the data can be adequately described by a straight line,

ϕR = − λ
κN

+ ϕR
max, (88)

where here the empirical parameter κN changes with the nutrient quality of the medium (i.e., 

the drug-free growth rate), because the maximum intercept, ϕR
max, is only weakly growth-

medium dependent over this range of growth rates. When the doubling time exceeds about 

90 minutes in E. coli (τd > 90 minutes, λ < 0.5/h), the RNA/protein ratio as a function of 

growth rate λ begins to exhibit deviations from linearity (similar to what is evident in 

Neidhardt and Magasanik’s data from Aerobacter aerogenes, Figure 7). The deviation from 

linearity is largely attributable to a growth-rate dependent decrease in the protein translation 

rate [641]. Furthermore, in the regime of slow growth, the weak growth rate dependence in 

the translational-inhibition intercept ϕR
max is no longer negligible [642], and a more detailed 

partitioning of the proteome is required [643].

In moderate-to-fast growth rates (doubling times less than about 90 minutes), we have two 

empirical constraints on ribosome abundance and growth rate, Eq.s 87 and 88,

ϕR = λ
κT

+ ϕR
min and ϕR = − λ

κN
+ ϕR

max,

that are simultaneously true under conditions where the growth is modulated by changes in 

nutrient quality or translational inhibition. Eliminating the ribosome abundance, ϕR, we 

arrive at an expression for the growth rate λ written as a parametric function of the two 

empirical coefficients κT (characterizing the translational capacity) and κN (characterizing 

the nutrient-processing capacity),

λ = (ϕR
max − ϕR

min)
κTκN

κT + κN
(89)

=
ϕR

max − ϕR
min

1
κT

+ 1
κN

≡
ϕmax

1
κT

+ 1
κN

, (90)

where ϕmax = ϕR
max − ϕR

min is the dynamic range of the ribosomal proteins. The 

parameterization of the growth rate λ in terms of the phenomenological constants κT and κN 

can be rearranged into a form analogous to Monod’s relation, (1),

Jun et al. Page 70

Rep Prog Phys. Author manuscript; available in PMC 2019 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



λ = λmax
κN

κN + κT
, (91)

where λmax = κTϕmax is the maximum limiting growth rate in the perfect nutrient 

environment (κN → ∞). When compared with Monod’s relation (1), the phenomenological 

constant κN characterizing the quality of the nutrient environment plays the role analogous 

to the concentration of a growth-limiting substrate S. If κN is replaced by,

κN κN
S

S + KD
, (92)

then Monod’s relation (1) is obtained, but with an explicit dependence on the growth 

medium in the Michaelis constant, KD = K̂
D/(1 + κN/κT) [286].

The empirical constraints, (87) and (88), are at the level of ribosome abundance; in many 

applications, it is the abundance of non-ribosomal proteins (regulators, enzymes, and other 

genes of interest) that are the primary focus. The first step to understanding how growth-rate 

dependent effects are filtered through complex regulatory networks is to determine the 

growth-rate dependence in the expression of an unregulated (also called ‘constitutively 

expressed’) protein [644]. For example, we can design a strip of DNA that encodes a 

reporter enzyme (i.e., an enzyme that is easy to measure, but not needed for growth) in such 

a way that the transcription and translation of this DNA does not respond to any direct 
regulation. When we measure the protein mass fraction of this enzyme, we find that the 

empirical constraints on ribosome mass fraction are reflected with almost perfect mirror 

symmetry in the mass fraction of an unregulated protein (Figure 32A). If ribosomal proteins 

go up, unregulated proteins go down, and vice versa.

The observation that identical (though anticorrelated) empirical constraints hold for 

unregulated protein expression (Figure 32A), suggests that the total proteome can be 

minimally partitioned into two exclusive protein types: ribosomal proteins with mass 

fraction ϕR, and all other proteins, collectively referred to as ‘metabolic proteins’, with mass 

fraction ϕP = 1−ϕR. To keep the partitioning hypothesis as general as possible, we note that 

the ribosomal protein fraction ϕR exhibits a growth-rate independent offset ϕR
min, and so we 

allow the same for the metabolic protein fraction ϕP. We then decompose the two protein 

sectors into growth-dependent and independent fractions,

ϕR = ΔϕR(λ) + ϕR
min, ϕP = ΔϕP(λ) + ϕP

min, (93)

where the growth-dependent fractions are constrained,
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ΔϕR(λ) + ΔϕP(λ) = 1 − ϕR
min − ϕP

min ≡ ϕmax, (94)

such that increase in one comes at the expense of a decrease in the other (Figure 32B). In 

terms of the proteome constraint, the empirical growth laws, 87 and 88, can be re-written as,

λ = κTΔϕR, and λ = κN[ϕmax − ΔϕR] = κNΔϕP, (95)

where we have identified ϕmax = ϕR
max − ϕR

min. Growth-dependent partitioning of the 

proteome goes back to the seminal experimental work by Neidhardt’s group in the late 

1970’s using 2D gel electrophoresis to separate proteins and quantify abundance [64]. A 

classification of protein groups based upon collective response in their growth-rate-

dependent mass fraction upon perturbation of the environment has the advantage of linking 

gene expression directly to physiology [642, 645]. More recently, using primarily mass 

spectrophotometry, this type of whole-proteome profiling has been used to elucidate the 

regulation of the carbon-utilization hierarchy in E. coli [643], and investigate the impact of 

large-scale genome reduction on the physiology of B. subtilis [646].

Constraints imposed by proteome partitioning and shared cellular resources can have 

profound impact on networks of direct regulation, for example modifying the apparent 

susceptibility to antibiotics [647], or leading to complex growth-mediated feedback loops 

[640, 648]. How proteome partitioning constraints impact cell cycle processes, including 

DNA replication rate and chromosome segregation, remains one of the outstanding problems 

in bacterial physiology.

5.2. Ohmics: Electrical circuit analogies for proteome constraints

The analysis of complex systems is aided by rulebased empirical correlations: famous 

examples include the Woodward-Fieser rules (organic chemistry) [649, 650], Mendel’s 

principles of heredity (genetics) [651], and Boyle’s law (thermodynamics) [652]. In the 

exponential growth of bacteria, strong empirical correlations emerge between the 

macromolecular composition of the cell and the growth rate [2, 10, 251, 298, 517, 639, 653] 

based on reliable quantifications on biosynthesis rate under various growth conditions [82–

84, 86, 229, 512, 654–663]. At the level of protein mass fraction, these correlations are 

mathematically identical to a voltage source connected to two series resistors; growth rate 

plays the role of current and the protein mass fraction plays the role of voltage drop across 

the resistors (Figure 33).

In contrast to ordinary electrical circuits, it is not possible to examine the open- and short-

circuit analogues of the physiological circuit; the open-circuit corresponds to cell death, and 

the short-circuit would require infinitely-fast reaction rates. What is done instead is to 

modulate one of the conductances in the phenomenological model and extrapolate to 

extreme points. Over a range of growth rates, changes in nutrient quality appear to affect 
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only the nutrient capacity κN, leaving the other parameters approximately unchanged 

(Figure 31B; colored lines with negative slope). By varying the nutrient capacity κN, the 

translational capacity κT is the slope of the total ribosomal protein fraction ϕR, and ϕR
min is 

the offset extrapolated in the limit λ → 0 (Figure 31B; solid black line with positive slope). 

Similarly, modulating growth by translational inhibition (varying the translational capacity 

κT), allows estimation of the nutrient capacity κN and the offset ϕP
min from the relation 

between ribosomal protein fraction ϕR and growth rate λ via the proteome partition 

constraint ΔϕR +ΔϕP = ϕmax.

This analogy provides several conceptual insights into the growth constraints imposed by the 

demands of protein synthesis along with the overall proteome partitioning constraint. For 

example, the synthesis of an unnecessary protein (e.g., industrial bioproducts) produces a 

growth-rate defect and changes in the R- and P-protein fractions that corresponds to 

changing the voltage source ϕmax → ϕmax − ϕOE, where ϕOE is the protein mass-fraction of 

the over-expressed protein (Figure 34A). Furthermore, the ‘metabolic’ resistor characterized 

by conductance κN can be subdivided further, for example into a catabolic network (with 

efficiency characterized by κC), and anabolic network (with efficiency characterized by κA) 

and a remaining unassigned fraction (Figure 34B). Indirect gene regulation imposed by 

changes in κC and κA, and the conceptual simplicity of the circuit framework, was 

instrumental in unraveling a longstanding mystery in bacterial physiology called carbon 
catabolite repression [643], referring to the apparent hierarchical utilization of different 

carbon sources in E. coli, and other organisms.

The partitioning of the ‘metabolic’ κN resistor suggests that carbon-source co-utilization, 

presumably requiring a subset of non-overlapping catabolic pathways, could be represented 

as two resistors in parallel (Figure 35A). Mandelstam first observed a negative linear 

correlation between β-galactosidase expression and growth rate in different carbon sources 

[664]. You et al. [643] propose that β-galactosidase expression serves as a proxy for the 

catabolic protein sector (corresponding to the potential drop across the 1/κC resistor in the 

circuit analogy), and that the observed negative correlation is a consequence of proteome 

partitioning constraints. Extrapolating to the limit of vanishing catabolic sector (i.e., κC 

→∞ Figure 35B) allows the contribution to growth by the non-catabolic (‘notC’) proteins to 

be expressed in terms of the maximum carbon-limited growth rate λC,

κnotC =
κTλC

λMAX − λC
, (96)

where 1/κnotC = 1/κA + 1/κU and λMAX is the maximum growth rate attained in the limit κN 

→∞. Denoting by λi the growth rate in each carbon source individually,
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λi =
ϕmax

1
κT

+ 1
κnotC

+ 1
κCi

, (97)

the overall growth rate during co-utilization is,

λ
λC

=
λ1 + λ2 − 2λ1λ2

1 − λ1λ2
, (98)

where λ̂
1 = λ1/λC and λ̂

2 = λ2/λC are the individual growth rates λi normalized to the 

carbon-limited maximum λC. The circuit parameterized in this way quantitatively 

reproduces the coarse-grained proteome partitioning and growth rate observed during 

growth on two carbon sources [665].

Extending the circuit analogy, the empirical growth laws can be connected to the detailed 

workings of metabolism via coarse-graining akin to a Thévenin equivalent circuit. Metabolic 

reactions are typically catalyzed by protein enzymes. Consider, for example, a reaction 

converting substrate a into product b, catalyzed by an enzyme E. Motivated by the growth 

laws which relate the growth rate to the active protein fractions ΔϕR and ΔϕP, we assume 

that the reaction rate is proportional to a growth-rate dependent fraction of the enzyme ΔϕE,

jE = κEΔϕE,

where κE is the effective catalytic rate constant suitably converted to units of mass fraction. 

The effective catalytic rate constant includes contributions from substrates, products and 

cofactors that depends upon enzyme properties as well as growth-conditiondependent 

metabolite concentrations.

The total mass fraction of the enzyme ϕE may include a growth-independent offset ϕE
min that 

does not participate in driving the reaction flux. The total enzyme mass fraction is then 

written in terms of the reaction flux jE, the catalytic rate constant κE and the growth-

independent offset ϕE
min as,

ϕE =
jE
κE

+ ϕE
min .

In the electrical circuit analogy, the potential drop across this reaction is decomposed into a 

potential drop ΔϕE across a resistor with conductance κE and the voltage sink ϕE
min. Imagine 

a whole network of reactions, interconnected with one-another. Visualized as a graph, each 
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substrate is represented by a node, and each reaction is represented by an edge. Assuming 

the same enzyme-catalyzed reaction rate as above, the protein cost (or potential drop) along 

the lth edge is written as,

ϕEl
=

jEl
κEl

+ ϕEl
min,

where jEl is the reaction flux along that edge. An important distinction between electrical 

elements and enzyme-mediated reactions is that Ohm’s law follows directly from the 

physical properties of a resistor, whereas in a biological system, flux-balance is achieved 

through regulation.

The metabolic protein fraction ϕP is a sum of all of the individual metabolic enzymes, ϕP = 

Σl ϕEl. We will use a reduction similar to a Thévenin equivalent circuit to relate the empirical 

parameters ϕmax and κN to the parameters ϕEl
min and κEl that characterize the reactions in the 

network. The growth-rate independent offset ϕP
min, which in this case is simply the sum of 

the individual offsets ϕP
min = ∑lϕEl

min, is found by taking the limit κT → 0. As the 

conductance κT vanishes, the potential drop ΔϕP likewise vanishes, ΔϕP → 0, and the 

potential drop across the protein synthesis machinery reaches a maximum, ΔϕR → ϕmax. We 

can then infer the coarse-grained effect of the offsets { ϕEl
min} as parameterized by ϕP

min via 

the proteome constraint ϕmax = 1 − ϕR
min − ϕP

min (Figure 32B). In principle, the enzyme-

offsets { ϕEl
min} (and by extension the coarse-grained parameter ϕmax) should exhibit some 

growth-medium dependence arising from different strategies for processing external 

nutrients. For E. coli, however, the phenomenological parameter ϕmax exhibits remarkably-

little dependence over a large range of growth rates (see Figure 31B).

With the offsets eliminated, the system is reduced to a purely resistive network. 

Algebraically, the network can be formally reduced to a single resistor, and in this way the 

explicit correspondence between the phenomenological nutrient capacity κN and the 

catalytic rate constants {κEl} can be determined. For a given network connectivity and 

distribution of effective catalytic rate constants κEl, invoking flux-balance at every node in 

the network allows estimation of each reaction flux jEl, and consequently the active enzyme 

cost associated with the reaction ΔϕEl. The nutrient capacity κN is by definition the 

proportionality constant between the growth rate λ and the active metabolic protein fraction, 

κN = λ/Σl ΔϕEl, or more explicitly in terms the effective catalytic rate constants,

κN
−1 = ∑

l

jEl
λ κEl

−1 .
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The empirical nutrient capacity κN is then interpreted as a flux-weighted sum of the effective 

catalytic constants in the metabolic network. The effective catalytic constants κEl include the 

catalytic rate of the enzyme modified by substrate and cofactor abundance; substrate 

abundance could depend upon the steady-state level of other enzymes in the network, 

breaking the linearity of the flux expression. A partial justification for treating the effective 

catalytic rates κEl as constants independent of enzyme abundance comes from translation-

inhibition experiments (Figure 31B). If protein synthesis is inhibited by antibiotics or 

genetic mutation, the exponential growth rate can be reduced up to 20-fold with a 

corresponding change in the metabolic protein abundance. Nevertheless, in a given nutrient 

environment, the empirical parameter κN appears to be independent of the metabolic protein 

abundance, suggesting that the effective catalytic rates κEl are likewise independent of the 

metabolic protein abundance over the range of translational inhibition surveyed.

More direct evidence comes from the perturbation experiments of Hwa and coworkers [642, 

643]. Like the translational inhibition experiments discussed in this section, growth is 

inhibited in a variety of ways, including carbon-limitation, nitrogen-limitation and protein 

over-expression. Using mass spectrometry, the abundance of hundreds of proteins are 

measured in each growth condition. Consistent with the ‘equivalent circuit’ coarse-graining, 

enzymes appear to change their mass fraction abundance proportional to the proteome sector 

of which they are a part. That is, it appears that most of the metabolic flux is regulated by 

enzyme abundance (fixed κEl) rather than by fine-tuning the catalytic rates via cofactors and 

substrate abundance.

Finally, the proteomic work by the Hwa lab suggests a general rule for quantifying 

proteome-partitioning constraints in other organisms. By focusing on a given strategy of 

growth inhibition (eg. translational inhibition), proteins can be grouped into those whose 

fraction correlates inversely with the growth rate (‘regulated’ response) and all others whose 

fraction necessarily has the inverse growth rate dependence. For E. coli, those proteins that 

increased their mass fraction with translational inhibition were translation-associated 

proteins such as the ribosomal proteins and elongation factors. There is no reason that the 

identity of the individual proteins in any given sector should be conserved in other bacterial 

species or single-cell eukaryotes; that of course will depend upon the precise details of the 

regulation.

6. Modern bacterial physiology, Part II: The fundamental unit of cell size 

and the general growth law

In the last section, we discussed the sector model of proteome partitioning, which is useful 

because it has quantitative predictive power. Historically, the nutrient growth law (see Box 6 

below) introduced in Section 2 was one of the first laws that allowed quantitative prediction 

in bacterial physiology. For example, for E. coli, it is sufficient to know the nutrient-imposed 

growth rate to predict the average cell size in steady-state growth (Figures 1B and 2C; [2, 4, 

5]). The nutrient growth law (and the two back-to-back papers from whence it came [2, 3]) 

thus established a basic practice in bacterial physiology of plotting any physiological 

parameter of interest against the growth rate. In that spirit, the proteome sector model was 
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based upon the analysis of the ribosome protein mass fraction ϕR vs. growth rate under 

different growth conditions.

Box 6

Various “growth laws” in bacterial physiology

The growth law by Schaechter, Maaløe, and Kjeldgaard was the foundational principle 

in bacterial physiology (Figure 1) [2]. It states that the the average cell size - the most 

apparent extensive property - has an exponential dependence on the nutrient-imposed 

growth rate λ in steady-state growth (see Section 2.2.2).

(cell size) S ∝ eβλ,

where β is a constant.

The growth law of exponential growth was contributed to by many bacterial 

physiologists and is well-summarized by Arthur Koch [69]. This law states that the total 

mass and the cell number of a microbial population increase exponentially in steady-state 

growth (see Section 2.3.1).

mass ∝ eλt

The growth law of ribosome synthesis is the mechanistic foundation underlying the 

former two laws. It originated from Neidhardt, Magasanik and Harvey’s works [58, 677] 

and characterizes the positive linear relationship between RNA or ribosome content and 

the growth rate λ under moderate-to-fast nutrient modulated growth (also see Section 

2.2.3).

RNA
protein or ribosome

protein = a + b × λ,

where a and b are constants.

The growth law of proteome partitioning is about constraints imposed on protein 

composition, and was first described in Scott et al. in 2010 (see Section 5) [251]. Under 

nutrient-modulated growth, or translational inhibition, the ribosome mass fraction ϕR is 

given by,

ϕR = λ
κT

+ ϕR
min or ϕR = − λ

κN
+ ϕR

max

where κT and κN are constants related to the rates of protein synthesis and nutrient 

assimilation, respectively. All other proteins in the cell are constrained such that their 

mass fraction ϕP is given by ϕP = ϕmax − ϕR (ϕmax ≈ 0.45 for E. coli MG1655 K12 strains 

under moderately-rich nutrient conditions; see Section 5).
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The growth law of a fundamental unit of cell size states that the cell size is the sum of 

all (invariant) unit cells, and it was reported in Si et al. 2017 [252]. This law is based on 

the coordination of three canonical, decouplable physiological processes represented by 

the initiation mass or the unit cell size (S0), the duration of replication-division cycle τcyc, 

and the global biosynthesis rate (λ). This work shows that the growth law by Schaechter 

et al. is a special case of

(cell size) S = S0e
τcycλ

= ∑ unit cells S0 ,

where λ was the only experimental variable. The measurement of the three canonical 

variables S0, τcyc, λ is sufficient to predict the average cell size for any steady-state 

growth condition.

One may wonder how general and robust the nutrient growth law is. A physiologist’s 

approach to answer this question is to perturb the physiological state of the cells, and 

measure the changes in average cell size vs. growth rate under the new steady-state growth 

condition. One such perturbation is systematic growth inhibition using a pharmacological 

method, e.g., inhibition of protein synthesis as we discussed in Section 5.

Shown in Figure 37 is an example of how the cell size and cell cycle respond to a sublethal 

dosage of chloramphenicol, an antibiotic that inhibits translation. In this example, the cell 

size decreases first as growth slows with increasing dosage of chloramphenicol. However, 

cell size starts to increase at some point despite slowing growth. The data clearly shows that 

steady-state cells under translational inhibition deviate from the prediction of the nutrient 

growth law. In other words, the nutrient growth law is not robust to growth inhibition, and 

knowing the growth rate is not sufficient to predict the cell size once growth is inhibited. 

This is perhaps not surprising given that the growth rate is not sufficient to predict the 

ribosome mass fraction ϕR either – under conditions of translational inhibition, the cell has 

significantly higher ribosome mass fraction than a cell growing at the same rate, but in a 

poorer nutrient medium.

Given the predictive power of the proteome sector model of the previous section, one may be 

tempted to model how cell size changes under growth inhibition. The answer is that we need 

a different approach to understand the principle of cell size control. As we shall explain in 

this section, the key is to identify what remains invariant, rather than what changes under 

growth inhibition. The invariance will lead us to the “general growth law,” which provides a 

complete description of cell size control for any steady-state growth condition.

6.1. General challenges in approaching cell size control with intensive parameters

Consider two E. coli cells of an identical size with synchronized replication cycles (Figure. 

38A). If we could fuse the two cells into one, the fused cell still would follow the 

Helmstetter-Cooper model, although the fused cell would be two times bigger than the cells 

before fusion. In other words, Helmstetter-Cooper model cannot determine the absolute size 

of the cell.
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The above thought experiment illustrates why models that only depend on intensive 

parameters, such as a concentration of a protein, are unable to determine the absolute size of 

the cell. This limitation applies to the proteome sector model, as well. Two cells can have 

exactly the protein composition, but their size can be different (Figure. 38B). Therefore, the 

cell can growth indefinitely without changing its protein composition, and the sector model 

does not provide any instruction on when to divide. It is also clear that two cells can have 

two different sizes without changing the ratio of their rates of surface and volume synthesis 

[252] (Figure. 38C).

Because of the basic limitations associated with intensive parameters, models based on them 

must employ additional biological constraints. For example, an earlier sector-based model 

imposed a constraint on the absolute size of one of the sectors to determine cell division [9]. 

The surface-to-volume synthesis rates model is based on a hypothesis that cells in a specific 

growth condition have a precisely tuned amount of excess cell wall materials to control the 

timing of cell division [473]. So far, no direct experimental evidence is available to test these 

hypotheses. It is thus important to identify canonical processes that are necessary and 

sufficient to determine the cell size in both population and single-cell levels.

6.2. Size tautology and the origin of the nutrient growth law

Consider a steady-state population of E. coli. The average cell size can be expressed in the 

following tautological manner.

S = S/ # ori × # ori

= S02
τcyc/τd,

where S is the average cell size of the cell population, S0 = S/#ori is the average cell size per 

replication origin, and #ori is the average number of replication origins per cell. The 

relationship #ori = 2τcyc/τd can be obtained straightforwardly from the age distribution 

(Section 2.2.1) or graphically as was done by Bremer & Churchward (Section 2.2.4). The 

power of 2 implies that the total number of origins per cell doubles at replication initiation. 

S0 was known to be proportional to the initiation mass [295], so S0 is used to denote 

initiation mass or ‘unit cell’ interchangeably throughout this section (also see Eq. 10 in 

Section 2.2.5).

We have already seen something similar before (Figure 1B). If S0 and τcyc are constant, the 

above equation is identical to the nutrient growth law. In other words, the original nutrient 

growth law was a special case of the more general relationship

S(S0, τcyc, λ) = S0e
τcycλ

, (99)
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where the average generation time τd is converted to the average growth rate λ = ln2/τd. The 

importance of Eq. 99 is that it provides a complete description of cell size for any steady-

state growth condition using three canonical variables S0, τcyc, λ.

Biologically, the three canonical variables in Eq. 99 represent the initiation control (S0), the 

progression of combined replication and division cycle (τcyc = C+D), and the global 

biosynthesis rate (λ). Considering a major question in biology is how growth and the cell 

cycle are coordinated, the pioneering experiments that led to the nutrient growth law can be 

understood as an independence between the control of the cell cycle (S0 and τcyc) and the 

global biosynthesis (λ) under nutrient-modulated growth.

In the 1970s, Zaritsky and Pritchard [219] were the first to explicitly examine the 

relationship among these canonical processes. They noticed from Eq. 99 that cell size will 

increase exponentially with respect to τcyc, if the initiation mass and the growth rate can be 

decoupled from the duration of DNA replication and remain constant. To test their 

hypothesis, they used an E. coli mutant that is deficient of thymine synthesis. By supplying a 

controlled amount of thymine in the growth media, they were indeed able to exclusively 

change the DNA replication time (C period), which resulted in an increase in cell size. A 

modern version of Zaritsky and Pritchard’s experiment is shown in Figure. 39.

6.3. Decoupling the canonical processes in E. coli

The thymine limitation experiments are an example of how DNA replication and global 

biosynthesis are coordinated yet can be modulated independently. However, it is also well 

known in bacterial physiology that both the C period and cell cycle time τcyc = C+D become 

prolonged if the cells grow in nutrient poor media [631, 632]. In fact, for a typical E. coli 
cells, C and τcyc increase approximately in proportion to the doubling time τd when τd is 

larger than 1 hour. In other words, the independence of the cell cycle time τcyc from the 

population growth rate λ is not general even for nutrient modulated growth. It is an 

important physiological issue to understand the extent to which the three canonical processes 

can be decoupled from one another.

Fortunately, this issue has been settled conclusively by the recent work of Si et al.. It appears 

that over a wide range of growth conditions, the three canonical processes can be modulated 

independently. To show this, Si et al. used genetic and biochemical methods to selectively 

inhibit key genes or steps for each canonical process. In particular, they developed tunable 

CRISPR interference (tCRISPRi) system, which allows precise and systematic repression of 

a specific gene of interest (Box 5) [666]. A good example is knockdown of Rep, a DNA 

helicase that facilitates replication and loss of which causes increase in the DNA replication 

period [667]. Thus, knockdown of Rep should have the same effect on cell size as thymine 

limitation by increasing τcyc, and this indeed was the case (Figure 39A, left panel).

Box 5

Glossary related to tunable CRISPR interference (tCRISPRi) system

CRISPR/Cas9 is a bacterial immune system which in nature protects genomic DNA by 

targeting and cleaving invading viral DNA. It is composed of CRISPR (Clustered 
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Regularly Interspaced Short Palindromic Repeats), a special DNA sequence on the 

genome, and Cas9 protein which is transcribed with CRISPR sequence to be specific to 

the viral DNA [668, 669]. The CRISPR/Cas9 system has been developed into a powerful 

suite of techniques for genome editing and gene regulation [670, 671]. Among those, 

CRISPR interference (CRISPRi) uses dCas9, a derivative of the Cas9 protein, not to 

cleave a target DNA sequence but to down-regulate it. The tunable CRISPRi (tCRISPRi) 

expresses the dCas9 under a inducible and tunable promoter. Therefore, it allows precise 

regulation of the expression levels of dCas9 and the target protein in a dose-dependent 

manner, uniformly throughout the whole cell population [666, 672].

A major lesson from these decoupling experiments [252] is that, in E. coli, it is possible to 

selectively inhibit biosynthesis underlying each of the three canonical processes, yet the 

inhibition does not feedback to the other canonical processes.

A broader implication here is that E. coli on average does not actively modulate the rate of 

biosynthesis (e.g. synthesis rate of DNA, RNA, ribosome etc.) except that of global 

biosynthesis (quantified as the growth rate), consistent with balanced growth discussed in 

Section 2. Under selective inhibition, the resulting cell size, which is the most downstream 

consequence, follows Eq. 99.

6.4. How do the canonical processes respond to general physiological perturbations?

Historically, bacterial physiology has been largely focused on understanding the effect 

nutrient limitations [1–3, 58, 86, 88, 111, 169, 208, 226, 283, 351, 467, 628, 654, 658, 673, 

674], though antibiotic inhibition studies have played an important role in the elucidation of 

DNA replication kinetics [144] and ribosome biosynthesis [675–678]. A natural question is 

then how growth inhibition will affect the canonical processes, and the extent of their 

decoupling. We have already seen two examples that growth inhibition simultaneously 

affects both the growth rate λ and the cell cycle time τcyc in Figure 37.

Si et al. also investigated this issue systematically and discovered an unexpected invariance 

principle. Shown in Figures 41 are changes in τcyc, λ = ln2/τd, ribosomal fraction ϕR, and 

cell size S(S0, τcyc, λ) under perturbations to translation, transcription, ribosome content, 

fatty acids synthesis, cell wall synthesis, and surface-to-volume ratio by genetic or 

pharmacological methods with different nutritional limitations (these perturbations can be 

regarded as “growth inhibition” since the λ decreases in these cases). Clearly, each of these 

perturbations can cause changes in more than one canonical process simultaneously (Figure 

41). What is remarkable, however, is that the initiation mass S0 is invariant.

Another recent study by Wallden et al. revealed the invariance of the initiation mass S0 at the 

single-cell level under nutrient-mediated slow growth [631]. Under these growth conditions, 

the cell cycle time τcyc changes in direct proportion to the doubling time τd at both the 

single-cell and population level. This invariance of the unit cell size S0 in slow growth was 

previously unknown, and underscores the robustness of initiation control.
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6.5. Unit cell: the fundamental unit of cell size in bacteria

Why is the initiation mass S0 invariant? While we could approach this from several different 

perspectives (e.g., evolutionary considerations), Si et al. has provided an interpretation in the 

context of cell size control. To see this, note that 2τcyc/τd in Eq. 99 is the average number of 

replication origins per cell in steady-state growth. Because S0 is the cell size per replication 

origin, Eq. 99 states that cell size is the sum of all “unit cells” (Donachie and colleagues 

also introduced the notion of unit cell for a different reason; Section 2.3.1)

(Cell size) S = S0 × 2

τcyc
τd = ∑ unit cell S0 . (100)

This ‘general growth law’ has a universal property. If we rescale the cell size and the growth 

rate by their respective physiological parameters, unit cell size S0 and cell cycle time τcyc, 

all data from the perturbation experiments in Figure 41 collapse onto a single exponential 

master curve (Figure 44). In other words, the general growth law clarifies the origin of the 

nutrient growth law by Schaechter, Maaløe, and Kjeldgaard (1958) [2], whose exponential 

relationship is a special case with λ = ln2/τd being the only variable in the experiments. (see 

Box 6 for a summary of the “growth laws” established in the history of bacterial 

physiology).

From its tautological construction, the general growth law is applicable beyond E. coli. For 

example, evolutionary divergent cyanobacteria appear to follow the same principle [679, 

680]. Cyanobacteria are photosynthetic prokaryotes and their growth rate depends on the 

intensity of illumination [681–687]. Surprisingly, data shows that neither the cell size 

distributions nor the chromosome copy number distributions are affected by the 

illumination-imposed growth rate in their experimental conditions. Most newborn cells 

contain on average three chromosomes, and double their number by the time they divide. 

The average newborn size is independent of the growth rate. Furthermore, previous work 

suggests that replication initiation is asynchronous and, at any given time, only one of the 

chromosome copies undergoes DNA replication [688–690]. Taken together, growth and the 

chromosome replication cycle are coupled such that the average cell size added per 

replication cycle of one chromosome is invariant, identical the the general growth law that 

the cell size is the sum of all unit cells (Figure 42).

6.6. Remaining challenges

The general growth law, that cell size is the sum of all unit cells, provides a simple and 

straightforward interpretation of bacterial cell size control via coordinated biosynthesis for 

steady-state growth conditions. However, there are several outstanding issues that need to be 

resolved by future work.

First, there is still a significant gap in our understanding of how the adder principle at the 

single-cell level and the general growth law at the population level are connected. A simple 

reason is that correlations between the three canonical processes are difficult to measure at 

Jun et al. Page 82

Rep Prog Phys. Author manuscript; available in PMC 2019 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the single-cell level, particularly during multifork replication. Nevertheless, these 

correlations are important in understanding how much individual cells grow between birth 

and division with respect to the birth size and other reference points during the cell cycle. As 

such, this is a question that new experimental breakthroughs are required to answer, and this 

in turn will guide further theoretical developments.

Another important issue is the mechanistic origin of the robustness of the initiation control. 

Current experimental data are consistent with the combination of the “initiator threshold” 

and the “autorepression” hypotheses that we discussed in Section 2.2.7 [56, 261, 360]. The 

essence of these hypotheses is that the expression of initiator proteins is autoregulated so 

that their concentrations are maintained at a constant level independent of the growth 

condition. Under these hypotheses, initiators are synthesized at the same rate as the growth 

rate, accumulating at each replication origin to a threshold level. Once the growth-rate 

independent threshold is reached, initiation is triggered, thus the name “initiator threshold.” 

(see the illustration in Figure 43) This threshold is the constraint required by size control 

models based on intensive parameters, which we explained in Section 6.1.

While similar ideas go back to the Helmstetter-Cooper model in the 1960s [72, 111], no 

direct experimental evidence is currently available. The closest evidence is biochemical data 

from the 1990s by Hansen and Kohiyama who showed that the level of DnaA is 

approximately constant under nutrient limitation [351]. Therefore, this issue also awaits new 

experimental data, with deeper theoretical understanding of the control of initiation mass 

fluctuations.

6.7. Summary

Sixty years ago, the discovery of the nutrient growth law signaled the arrival of the first 

golden era of bacterial physiology. With the new progress in the field since the 2010s, we 

understand the origin of the nutrient growth law at the phenomenological level as 

summarized in Figure 44. We also summarize various quantitative principles and laws 

discovered in the past decade in Box 6.

7. Modern bacterial physiology, Part III: The cell as a factory

The previous two sections revisited different ‘growth laws’ (Box 6). The ‘growth law of 

proteome partitioning’ in Section 5 focused on how the ribosomal fraction of the total 

proteome changes under different growth conditions, whereas the ‘growth law of a 

fundamental unit of cell size’ in Section 6 reviewed physiological properties that largely 

remain invariant under different steady-state physiological conditions.

In this section we discuss ‘self-replicating factory’ proposed by the mathematician von 

Neumann, who developed the concept to describe a machine that replicates itself in a non-

trivial manner. Following [691], we mathematically formulate this model and show it has 

rich theoretical results. There are several parallels between the self-replicating machine 

model and the process of global biosynthesis during growth of the cell. As such, the model 

of self-replicating machine suggests a new research avenue to navigate quantitative 

microbial physiology.
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7.1. History of the self-replicating factory concept

Although the writer Samuel Butler was probably the first to write about the idea of self-

replicating machines that can evolve and even develop intelligence (beginning in his essay 

“Darwin among the machines” which later evolved to “the book of the machines” as part of 

his novel “Erewhon”), it was John von Neumann who considered this idea from a scientific 

standpoint. His pioneering study of self-replication in the early late 40’s of the previous 

century was summarized posthumously in [692]. The main goal of von Neumann’s analysis 

was to understand how a physical system could become more complex over time. As a 

mathematician, he also searched for a definition that would make self-replication “non-

trivial,” and distinguishable from inanimate self-replication like crystal growth. Motivated 

by the successful introduction of the universal Turing machine by Alan Turing to the theory 

of computation, and by its successful physical implementation, led by von Neumann himself 

in what is arguably the first general purpose computer, von Neumann suggested an 

intriguing definition for a non-trivial self-replicating factory.

In his first model, the kinematic self-replicator, he envisioned a room full of parts and a self-

replicating factory that assembles a copy of itself by consuming these parts as substrates. He 

defined the factory as “non-trivial” if it contains a machine, the universal constructor (U) 

that can read instructions and translate them into physical assembly actions that result in the 

construction of any machine in the factory, self included, provided all the substrates are 

available.

To keep things simple, von Neumann only considered serial scheduling of the self-

replication process [692]. The universal constructor first reads the instructions and 

subsequently constructs a copy of all the machines in the factory including itself. However, 

to obtain a fully functional independent copy, the instruction set should also be replicated. 

Here, von Neumann recognized a potential problem. Instructing the U machine to copy the 

instructions requires a separate set of instructions. But then this set also requires a set of 

instructions for it to be copied, and this appears to lead to an infinite recursion, and an 

infinite instruction set, which is clearly not physically realizable.

Box 7

the first universal constructor

“Ten things were created at twilight of Saturday’s eve, between the suns … And some 

say also … the original tongs, for tongs are made with tongs.” Avot, chapter 5, paragraph 

6.

Ancient mishnaic-period Rabbis had pondered on the following paradox – Tongs are used 

used by toolmakers to create new tools. How then were the first set of tongs created? Not 

surprisingly, some offered a resolution of this apparent paradox by using a Deus ex 
machina-type argument, claiming the almighty had created the first forging tongs, just 

before resting, after a very busy week. ‡

‡The mathematician Mark Kac (1914–1984) once gave a lecture at Caltech, with Feynman in the audience. When Kac finished, 
Feynman stood up and loudly proclaimed, “If all mathematics disappeared, it would set physics back precisely one week.” To that 
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Rosen suggested a modern version of this paradox, as a critique on von Neumann’s 

model [694], by noting that in order to replicate a universal-constructor you need a 

universal constructor; hence it cannot be created from scratch. He then concluded that the 

concept is biologically irrelevant, as it cannot form naturally. A simple resolution of the 

paradox actually invokes random mutations as a simple mechanism for creating 

variations in the instruction set. Because one approximately universal construction 

machine can create a slightly better U-machine by chance due to random mutations in 

their instructions, the paradox is removed [695].

There are a few known tricks to solve this problem in computer science, and von Neumann 

identified the simplest solution. The U machine should be instructed to construct a “Copying 

machine” (R) and this machine will template-copy the instructions without translating them. 

Although von Neumann eventually abandoned this line of research, in retrospect what is 

remarkable about it is its ability to correctly predict the existence of a special type of 

machinery to template copy the DNA. Furthermore, it offered a functional schematics of all 

cellular processes that is consistent with the modern view (reflected e.g. in gene ontologies 

such as GO), but based entirely on abstract reasoning. Indeed, the universal constructor 

rather than being one machine, is in fact the translation-transcription machinery (with its key 

players — ribosomes and RNA-polymerase), the instruction set is of course the DNA 

molecule, and the “copying machine” is the replisome machinery (with its key players — 

the DNA polymerases).

Despite this retrospective success, von Neumann’s model did not influence the development 

of molecular cell biology and was ignored for many years. Revisiting von Neumann’s 

original model today, it is rather striking how a few logical and simplifying considerations 

can lead to so much biological relevance.

In fact, von Neumann’s architecture seems to apply without exception to all known cells and 

thus presents itself as a universal model for cellular self-replication. There are, however, 

several important aspects that were not studied originally by von Neumann that are 

nevertheless interesting from a modern perspective. And vice versa, aspects that von 

Neumann originally thought to be important, turned out to be uninteresting from a modern 

standpoint. In regard of the latter, von Neumann put a lot of effort on designing the transport 

of goods from one place to another, however, in bacteria, diffusion in a limited volume will 

effortlessly take care of this issue.

There are three missing theoretical concepts in von Neumann’s model. These are essential if 

we wish to describe actual biological cells rather than a fictitious machine. The first is the 

temporal organization (scheduling) of the self-replication process and the dynamical rules 

determining cellular resource allocation “policies.” Second, physical and chemical 

constraints on performance, especially those originating from non-equilibrium 

thermodynamics and biochemistry. Last is the control module which process both internal 

and external cues.

outrageous comment, Kac shot back with that yes, he knew of that week; it was “Precisely the week in which God created the 
world.” [693]
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7.2. The transcription-translation machinery— a realization of the universal constructor

It is tempting to identify the universal constructor with the ribosome, yet on a closer 

inspection, this cannot be correct since the catalytic core of a ribosome is made of rRNA, but 

the ribosome cannot synthesize rRNA. Indeed, rRNA is transcribed by RNA-polymerase. 

Hence a ribosome cannot self-replicate; a requirement for being certified as a universal 

constructor. Indeed, the universal constructor is not composed of a single molecular 

machine, but rather from a conglomerate of molecular machines comprising the 

transcription-translation machinery with the forefront players being the ribosome and RNA-

polymerase. To those, a team of chaperons and helper molecular machines join, to form the 

universal constructor that can collectively both self-replicate itself, as well as produce all the 

other machines in the factory, machines required to sustain the universal constructor by 

supplying it with substrate (metabolism), membrane bound volume (membrane synthesis), 

DNA instructions (replisome machinery) and control and regulation. This is done 

collectively, and asynchronously by reading ribosomal DNA (rDNA) as template as well as 

by transcribing and subsequently translating coded DNA instructions while consuming 

substrate (nucleotides and amino-acids) and free energy.

The Universal constructor can construct any protein, including all the proteins needed for its 

own operation. Among them we name initiation, elongation, and release factors, aminoacyl-

tRNA-synthetase proteins, chaperons, restriction enzymes, essential promoters and so on.

The self-replication of the ribosome and RNA-polymerase is done as follows — RNA 

polymerases transcribes mRNA for the subunits from which they are composed. These 

mRNAs are translated by ribosomes to form new RNA-polymerase subunits (mainly α, α′, 

β, β′ and σ70) these then self-assemble to form a new RNA-polymerase. RNA polymerases 

transcribe both rDNA to form rRNA, and tRNA (which is further processed with the help of 

dedicated proteins and restriction enzymes that modify the nascent strands to form a mature 

functional tRNA). They also transcribe mRNAs of all the ribosomal proteins. These mRNAs 

are translated by ribosomes to form ribosomal proteins. Ribosomal proteins and rRNA self-

assemble to form the two ribosomal subunits in a self-assembly process with a predefined 

partial temporal order discovered by Nomura for the small sub unit and later by Nierhaus 

and others [508, 696, 697] for the large sub-unit (for a recent interesting discussion on why 

ribosomes have so many small ribosomal proteins see [698]). Thus, overall these two 

molecular machines are self-replicating themselves and all the helper molecular machines 

that comprise the universal constructor. U of course also performs its other duties to make 

the remainder of the proteome, including the part of the proteome required to template copy 

the instructions themselves (replisome machinery), and also synthesize the membrane, thus 

expanding the membrane bound protected volume required to sustain these processes, which 

would quickly dilute and cease working in the absence of a membrane.

7.3. Concurrency in self-replication

A standard factory is often modeled as a network of queues [699]. The factory consumes 

raw materials that lines up in queues before a set of dedicated processing units. The 

materials are processed in a predetermined partial temporal order. The average rate of 

production is the ratio between two key system parameters: the work in process ηWIP — 

Jun et al. Page 86

Rep Prog Phys. Author manuscript; available in PMC 2019 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



how many products are in production concurrently on average, and the cycle time τC — the 

average duration to complete one product, which is determined by the average critical path 

duration [691].

In many circumstances, decreasing the cycle time in order to increase the production rate 

can compromise performance. For example, the average time required to synthesize a given 

protein results from a fine balance between speed and accuracy [700, 701]. In light of this, it 

is tempting to conclude that the maximal completion rate of a task with a cycle time τC is 

given by its reciprocal τC
−1. However this is not the case. There are two fundamentally 

distinct ways to increase the production rate or throughput, κTH, beyond the apparent limit 

set by the reciprocal of the cycle time, (i) parallelization and (ii) pipelining. Parallelization 

refers to the simultaneous production of several products and is obtained by having multiple 

production lines running in parallel. Pipelining is defined as starting a new task before the 
previous task has been completed, using the same production line. See Figure 45 for an 

illustration from protein synthesis.

An important relation known as Little’s law [699, 702] exists between the production rate 

(or throughput) κTH, the work-in-process ηWIP — the number of processing units (e.g. 

ribosomes) concurrently active in making the product, and the cycle time τC,

κTH =
ηWIP
τC

. (101)

The rate of production κTH, the latency τC and the level of concurrency ηWIP are system 
parameters and as such they typically depend on external parameters as well as on each 

other.

It should be emphasized that in general cycle-time depends on the concurrency ηWIP, and if 

the factory is congested above some critical concurrency ηWIP value, delays occur and the 

average cycle time increases. In protein synthesis a single ribosome that halts in a specific 

location on the mRNA can cause a “traffic jam” since other ribosomes cannot bypass it due 

to the one-dimensionality of the mRNA and the self-exclusion interaction between the 

ribosomes. Thus, the cycle time - average time a single ribosome translates an mRNA of 

length LmRNA bases, is a function of the ribosome density ρR or ηWIP (= ρR × LmRNA), see 

Figure 45. It should be evident then that in order to increase the rate of production, it is not 

always beneficial to increase the level of concurrency ηWIP, because cycle time is typically 

monotonically increasing with concurrency, unless the system is highly non-random and 

synchronized (e.g. if all ribosome travel back to front at a constant speed).

The queuing network modeling scheme facilitates the study of non-Markovian stochastic 

dynamics. This is achieved by taking into account the noise in the servicing time and in the 

products inter-arrival and departure times without assuming that the related distributions are 

exponential. Correlation in arrival or departure times is also readily implementable. 

Importantly, this scheme also facilitates the discovery of hidden relations between the 
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“microscopic” production floor rules and practices, and their “macroscopic” system-wide 

outcome e.g. of revenue flow rate. For example, the allowed maximal size of intermediate 

buffers, the scheduling of work with different priorities or due dates, implementation of 

quality control procedures, utilization of critical processing units, authorization of 

production, general production policy (“push” vs. “pull” [699]) are all affecting the global 

outcome, which is a measure of how well the entire endeavor operates in light of its 

objective.

A cell can also be viewed as a factory whose product is another factory. This circularity is 

the core difference from the standard analysis of factories using the tools of systems 

engineering and operations research. While in a standard factory the processing units are 

transforming substrates to products, here the processing units transform the substrate to form 

new processing units, leading to an overall doubling of the factory. This leads to a novel type 

of pipelining, since if the temporal ordering is properly chosen, the newly formed processing 

units can start working on a new generation, prior to the completion of the previous one, 

leading to an overall pipelining of self-replication (Figure 46).

Thus, because the factory’s product is another factory, there are only two factors that affect 

the doubling time — the critical path duration τcrit, which is the duration of the longest serial 

process that is bound to occur, and the level of concurrency ηWIP, which is a measure of 

overlap between production of different generations — it equals 2 ln 2 if the newly formed 

factory is triggered to start replication only after it is fully completed. If it is larger than 2 ln 

2, then there is pipelining of self-replication.

To make this observation quantitative, consider a self-replicating factory for which the 

critical path (latency) is equals τcrit. For example, τcrit could be the time it takes to replicate 

DNA. Indeed, we already encountered Cooper-Helmstetter model that predicts pipelining of 

DNA replication with great success. We will show that other forms e.g. asynchronous 

pipelining are also possible, in particular in the process of biomass synthesis. For the 

purpose of this discussion we assume that all external resources are readily available.

When there is concurrency in the self-replication process, the equation for the overall 

doubling rate should take into account the fact that newly formed machinery, as well as 

existing machinery that is free, can start producing machinery for the next round of 

replication, prior to the completion of the previous round of replication. This pipelining of 

self-replication can be phenomenologically captured by the following equation:

dB
dt =

ηWIP
τcrit

B(t − τcrit), (102)

where B represents the dry biomass, κTH =
ηWIP
τcrit

 is the throughput of the bottleneck process, 

i.e. ηWIP is the level of concurrency on the critical path. When ηWIP ≤ 2 ln 2 there is no 

pipelining, and the doubling time is equal to τcrit, when ηWIP > 2 ln 2 there is pipelining of 
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self-replication and a new generation initiates prior to the completion of the previous 

generation.

This equation admits an exponential solution, which can be seen by inserting a trial function 

B(t) = B0eλt into (102). The exponential growth rate λ is given by the transcendental 

equation (λτcrit) eλτcrit = ηWIP which can be solved analytically using the Lambert-W 

function [703]:

λ =
ℒw (ηWIP)

τcrit
. (103)

The Lambert function satisfies that ℒw(x) ≈ x, for x ≪ 1, and ℒw(x) ≈ ln x, for x ≫ 1. 

Thus, if ηWIP ≪ 1 λ
ηWIP
τcrit

. The case ηWIP ≪ 1 represents a scenario where due e.g. to low 

utilization the doubling time is longer than the critical path duration.

If the concurrency ηWIP is large, and the critical latency time τcrit is fixed, then doubling at a 

rate that is n times larger than ( ln 2)τcrit
−1  requires an increase in the level of concurrency (as 

measured by ηWIP) by a factor n2n−1 i.e. exponentially for large n’s.

To illustrate a situation with asynchronous pipelining of self-replication, consider a 

simplified universal constructor U that is composed of a single subunits U1, which on 

average requires U to work for τ units of time in order to make it. Upon completion, U1 

requires an extra τSA time units to self-assemble into a mature U e.g. by acquiring further 

modifications. After this time, U1 is transformed to a new functional universal constructor 

unit U.

The equations that describe the process of making a new U are 
dU1
dt = α

τ U(t − τ), and 

dU
dt = 1

τSA
U1(t − τSA). Inserting an exponential ansatz and solving for the growth rate we 

obtain: λ =
𝔏w(a

g α)
a  where a =

τ + τSA
2  is the arithmetic mean between subunit production 

and assembly times, and g = ττSA is the geometric mean. If the time to make each subunit 

(τ) and the self-assembly time (τSA) are sufficiently far apart, then the doubling time μ is 

shorter than ln 2
τSA + τ . This can be modeled more coarsely by writing an effective equation like 

Eq. 102 and using ηWIP = αa
g  and latency CT = a. For example, if τ = 30 min, τSA = 2 min, 

and α = 0.5 then λ ~ 0.045 min−1 while ln 2
τ + τa

0.022 min−1. The pipelining occurs because 

any U that finished making one subunit, can immediately start making a new subunit for the 

next round of U-production, prior to the completion of the previous round.
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We can also model exponential growth using the standard equation dB
dt = λ0B(t) but this 

equation does not explain how λ0 depends on the critical path, and whether there is 

pipelining. For that purpose we need a model that either coarsely or specifically accounts for 

ηWIP and critical path duration.

Equation 103 can be seen as a non rigorous generalization of Little’s law to concurrently 

self-replicating factories. It corrects the phenomenological equation dB
dt = λ0B by explicitly 

showing that the growth rate of biomass in the present, is due to initiation of replication that 

occurred τcrit units of time ago, i.e. growth rate is history dependent. Thus Eq. 103 only 

describes the asymptotic (balanced) growth rate. Any typical history of initiations (e.g. via 

nutrient shifts up/down) will present decay and oscillations towards the state of balanced 

exponential growth. Interestingly, the infinitely many complex solutions of Eq. 103 gives the 

spectrum of oscillations and decay with the first complex solution being the leading order of 

both the oscillation periods and the decay rate [704].

Note that in practice, τcrit is not fixed, deterministic quantity, but rather a stochastic variable, 

requiring the development of more sophisticated mathematical machinery to capture the 

statistics of the growth rate.

Interestingly, an increase in the growth rate is not possible via synchronized parallelization if 

the latency is kept fixed. This is because doubling the number of machines dedicated to self-

replication also doubles the number of machines in need of replication. If however, the 

machines are unsynchronized then the fast machines can restart before the slow machines 

finished, thus effectively pipelining the process.

7.4. The cell as a self-replicating queuing network

Simulating complex assembly lines using a queuing network modeling scheme facilitates the 

study of non-Markovian stochastic dynamics. This is achieved by taking into account noisy 

production times and product inter-arrival and departure times without assuming that the 

distributions are exponential.

Consider a standard parallel queue with substrates as jobs to be processed and several 

catalysts as the processing units. Two general probability distributions characterize this 

queue: (i) the distribution of substrate inter-arrival durations; (ii) the service time 

distribution, the duration of time the substrate is being processed before it exit as product. To 

make the queue self-replicating, we add the following rule that when a processing unit 

completes its work, it releases a new processing unit. This processing unit immediately joins 

the pool of available processing units and will start working (i.e. replicating) as soon as it 

finds substrate and a free-to-read instruction set.

In Figure 48 a simulation of the self-replicating queue with unlimited resources is shown. 

Note that contrary to naïve expectations, the distribution of doubling times is not the same as 

the distribution of service times, because the doubling time is the difference between two 

random first passage events on the causal tree: from 1 to 2n, minus from 1 to n. Since these 
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two first passage times are also correlated for small n (because of the partial overlap in the 

trajectories), an analytic calculation is not readily obtained.

Using the concept of a self-replicating queue we can also construct self-replicating queuing 

networks. Here, we focus on a specific self-replicating queuing network with the von 

Neumann architecture (Figure 47). This architecture was first described by von Neumann, 

albeit not in the context of cellular dynamics and queuing theory, in [692]. von Neumann 

was interested in understanding whether an artificial self-replicating factory could be 

constructed, and if so, what is its structure.

As already mentioned, the most prominent machine in von Neumann’s factory is the 

universal constructor, the “machine that makes machines” which reads the instruction set (I) 

and builds all the processing units in the network, including a copy of itself. In our 

framework, the universal constructor is a self-replicating queue. The analogue in cells to the 

universal constructor is not a single machine but rather as set of molecular machines — the 

transcription-translation machinery, that is capable of transcribing and translating DNA, thus 

producing all the cellular machinery in the cell, including new functional copies of itself. 

The other processing units — “supportive machinery” have three major roles: to convert 

external substrate f to internal substrate F (by the action of the metabolic proteins and 

transporters contained in the P protein class), to replicate the instruction set I (by the DNA 

replisome machinery contained in the D protein class), and to double the volume V (by cell-

wall synthesizing enzymes in the M protein class), to make room for all the newly formed 

units.

7.5. A simplified model for biomass growth

Consider the following equations that describe the growth of biomass which is grossly 

composed of the universal constructor machinery (U) and all other metabolic proteins (P) 

(see green and purple boxes in Figure 47).

U
.

= α
U t −

τU
uU

τU
uU

, (104)

P
.

= (ϕmax − α)
U t −

τP
uU

τP
uU

, (105)
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F
.
new =

P(t −
τF
uP

)
τF
uP

, (106)

uU = 1
T ∫

t − T

t
min 1,

F
.
new(t′)

κU(t′) dt′, (107)

κ ≡ α
FU
τU

+ (ϕmax − α)
FP
τP

. (108)

The integration time scale T drops out from any steady-state calculation, but may be relevant 

for transients. The first equation describes the self-replication of the universal constructor by 

a subset α of the universal constructors. The allocation parameter α represent the probability 

that one U will be involved in duties related to self-replication upon completing its previous 

task. The utilization parameter uU ∈ [0, 1] measures the average fraction of time U is “busy.” 

When the substrate is in excess, the utilization equals 1, and the latency is τU; when 

substrate is limiting, the utilization drops below one, indicating that some U’s are starving 

for resources. This causes them to halt mid-process and wait for the necessary resources to 

arrive. Hence the latency grows above the nominal completion time τU and becomes uU. To 

illustrate, if on average, 50% of the time U is starving for resources, then uU = 0.5 and the 

latency will grow by a factor of two τU′ = τU/uU = 2τU. Similarly, the rate will decrease by 

the same factor.

The second equation describes the fraction of U’s that are busy making the rest of the 

machinery (which in this simplified version is simply the metabolic proteins). The third 

equation describes the rate of production of new substrate Fnew by the metabolic proteins P. 

The overall change on the number of free substrate F is given by,

F
.

= F
.
new − (αFU + βFP)U

.
,

where FU and FP are the fraction of substrate consumed in the synthesis of U and P, 

respectively, and β = ϕmax − α.

The total protein mass M = U + P reads,
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M
.

= (U
.

+ P
.
) = uU

α
τU

U t −
τU
uU

+
(ϕmax − α)

τP
U t −

τP
uU

The idling proteins that correspond to the growth independent sector Q are given by Q = (1 − 

uP)P.

The demand for the substrate F per unit time per mass of the replicator U is given by κ = 

αFU/τU+ (ϕmax−α)FP/τP, thus the utilization is a finite moving time average of the level of 

resource starvation — i.e. the average over the instantaneous supply relative to the 

instantaneous demand (note that if the supply is above the demand then the utilization will 

be locked to 1).

Inserting an exponential ansatz U(t) = U0eλt, P(t) = P0eλt, F(t) = F0eλt we obtain

λU0 = α
uU
τU

U0 e
−

λτU
uU , (109)

λP0 = (ϕmax − α)
uU
τP

U0e
−

λτP
uU , (110)

λF0 = 1
τP

P0 e
−λτF, (111)

uU = min 1, e
−

λ(τP − τU)
uU e

−λτF

κτF

(ϕmax − α)
α

τU
τP

. (112)

Where we assumed that the utilization of the metabolic proteins is maximal uP = 1 since 

external substrate is abundant. Using λ =
ℒw(α)uU

τU
 we obtain after some algebra that
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uU = min 1,

ℒw e
ℒw(α) 1 −

τP
τU (ϕmax − α)ℒw(α)

κατP

ℒw(α)
τF
τU

. (113)

If τP = τU, then this expression simplifies to uU(τP = τU) = min 1,
ℒw(

ϕmax
α ℒw(α))

ℒw(α)
τF
τU

. The 

growth rate is given by

λ = min
uUℒw(α)

τU
,

ℒw(α)
τU

≈
uUα
τU

. (114)

There are two growth regimes in this model. If α ≤ αopt then U’s never starve for resource, 

the utilization is always uU = 1, and what limits growth is the internal duration for U to make 

U, and the level of allocation for self-replication α. If however α > αopt then U is attempting 

to produce too much of itself at the expense of making the P’s that are required to supply U 
with substrate F, hence the U’s will be underutilized, and the growth rate will be nutrient 

limited.

This model uses five parameters: the three latencies: τU, τP and τF, and the two allocation 

parameters α and (ϕmax − α). In general α is not the same as the mass fraction of U (relative 

to the entire biomass) αU(t) = U(t)
(U(t) + P(t) + F(t)) ≃ U(t)

U(t) + P(t) . This is only the case if τU = τP. 

This is because in balanced growth conditions,

αU =
U0

U0 + P0 + F0
≃

U0
U0 + P0

= α

α +
τP
τU

(ϕmax − α)e
ℒw(α) 1 −

τP
τU

.

If τU = τP we obtain that α = ϕmaxαU i.e. that the fraction of active U’s times the overall 

mass fraction of all the U’s equals the fraction of active U’s involved in self-replication.
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7.6. Coordinating DNA replication with biomass growth

Copying DNA in E. coli has to start from the origin of replication (in other organisms - 

eukaryote and certain archea, there are multiple origins that can be initiated concurrently). 

The need to perform error corrections, and the existence of an error threshold below which 

the cell’s ultimate survival will be hampered, dictate a minimal completion time of the order 

of 40 minutes for an E. coli genome (4.64 Mbps). Further complications arise because of the 

need to finish segregating the two copies to both sides of the septum, which consumes more 

time. How do these processes coordinate with the overall biomass doubling process?

We will show that applying Helmstetter’s initiator model [705] in the context of the present 

model, successfully captures two key features observed in experiments: (i) if the doubling 

time is faster than the cycle time for DNA replication and segregation then DNA replication 

is pipelined (Cooper-Helmstetter model). (ii) if growth is slow, then DNA replication is 

initiated after an ‘idle’ period known as the B phase. The model only applies to bacteria that 

have a single origin of replication. Let’s assume that in order to initiate replication, each 

origin requires that a certain number of replisome machines (designated as I in fig x) will 

accumulate on it. In other words, each origin has a threshold TI and only after the number of 

I’s attached to the origin crosses this threshold, will they initiate the replication process. 

Finally, we will assume that the initiators I are constitutively expressed with an allocation 

parameter γ > 0. We summarize these assumptions by the following equations that 

supplement Equations 20–24 above.

I
.

= γ
uU
τI

U t −
τrmI
uU

, (115)

DN
.
A =

uD
τD

O(t) − O t −
τD
uD

, (116)

O
.

= O(t − τI)I
.
δ (I − TIO(t − τo)) . (117)

These equation recreates the Cooper-Helmstetter model without accounting for the dilution 

due to division. The first equation accounts for the production of the replisome machinery 

(including initiator proteins) by the universal constructor (τI is the time to produce it, γ the 

allocation of U towards this tasks — of the order of a few percent [706]). The second 

equation accounts for DNA synthesis, τD is the time to replicate a single DNA genome, uD 

is the utilization of the replisome (since the DNA replisome also requires internal substrates 

from metabolism, which have so far been collectively represented by a single variable F. If 

the required substrates for DNA replication are missing, then the time to replicate increases 

accordingly), and O(t) is the number of origins at time t. Finally, the last equation accounts 

for initiation of replication (marked by a discrete event — the doubling of the origins of 
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replication). The variable TI is the threshold number of initiators I that are required for 

initiation, and τo is the short duration it takes to replicate the origin of replication (τo ≪ τI). 

To see how this model accounts for the coupling between cell replication and DNA 

synthesis, consider the case where τD > τU. Then in order to have at least one fully copied 

DNA per doubling time, we need to initiate one DNA replication every doubling time. This 

will ensure (after a settling period of length τD) that there is one DNA copy per biomass 

doubled. Since the number of initiators I grows exponentially at the same rate as biomass 

(because γ > 0), they will cross the threshold and simultaneously initiate all the existing 

origins once per doubling time in steady growth conditions. If the biomass doubling time, 

(which equals the doubling time of the U machinery) is shorter than the DNA replication 

time, then DNA will be replicated in a pipeline — a new round will be initiated prior to the 

completion of the previous round. If on the other hand, the biomass doubling time is longer 

than the DNA doubling time, then it will take time for the initiator I to accumulate above the 

threshold, resulting in the emergence of the ‘idling’ or B period.

Note that since all constitutive proteins are guaranteed to grow at the same rate in this 

model, there is no need to assume it as in Helmstetter’s original model.

7.7. Hinshelwood and then Koch’s model of the cell as a simple autocatalytic cycle

In 1946 Hinshelwood offered a simple model that accounts for self-replication in a 

mathematically appealing manner [566]. In his model, a set of n enzymes catalyzes each 

other in a cyclical manner. Assuming all the substrates are abundant, the rate of catalysis is a 

function of the individual rates at substrate saturation, times the concentration of enzymes:

dEi
dt = kiEi + 1 . (118)

Where the addition is modulo n i.e. n+1 = 1. To solve this equation, take n successive 

derivatives of one of the equations. This yields

dnEi

dtn
= Πi = 1

n kiEi (119)

The characteristic equation is given by zn = Πi = 1
n ki, thus the asymptotic growth rate is 

λ = (Πi = 1
n ki)

1
n—the geometric mean of all the rates of the individual reactions when 

saturated. If we assume these rates to be stochastic and independently drawn from the same 

distribution, then the logarithm of the growth rate is a sum of independent, and identically-

distributed random variables. This means that the distribution of the growth rate is log-

normal, which further implies that the distribution of doubling times is also log-normal, 

because the log-normal distribution is stable with respect to reciprocation. Perhaps due to its 

simplicity, many authors use this distribution as the default distribution for doubling rates. 

Jun et al. Page 96

Rep Prog Phys. Author manuscript; available in PMC 2019 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



However, a careful study of its ability to account for measured distributions of doubling 

times from ‘mother-machine’ experiments [9, 384] shows that even after fitting, it fails to 

account correctly for the observed distributions (see e.g. SI in [691]).

Koch suggested that the Hinshelwood cycle could be a good coarse-grained model for 

cellular self-replication [69]. He somewhat crudely argued that that ‘ribosomes make 

proteins’ and ‘proteins make ribosomes’ i.e. dR
dt = kRP and dP

dt = kPR. Hence the overall 

biomass growth rate obeys λ = kRkP where kR and kP are the associated kinetic rates. One 

should contrast this result with a Markovian version of the von Neumann model that claims 

instead that the universal constructor makes copies of itself and the rest of the proteome 

hence (again assuming abundance of substrate and the presence of many copies of U-

machines) dU
dt = αkUU and dP

dt = (1 − α)kUU, which instead suggest that λ = αkU. Koch’s 

model can be easily refuted by the observation that increasing the rate of production of a 

protein in the cell does not always increase its growth rate.

Recently, Biswas et al. [385] employed the Hinshelwood model to explain distribution of 

cell size and division times in C. cresentus grown in various temperatures. In their model, 

the stochasticity in division times is attributed to stochasticity in the rates of enzymes. They 

used an additive noise model for the rates of individual enzymes in an Hinshelwood cycle, 

and calculated the first passage time distribution, claiming it to be a good model of the 

division time distribution. However, as described by Jun and others (e.g., Ref. [20]), the 

division time cannot be a simple first passage process, since it is inconsistent with a stable 

size distribution. Furthermore, there is no reason to believe that rates have additive noise, 

unless the noise is very weak and the correction to the average rate is taken only to first 

order.

7.8. Non-Markovian model for the Hinshelwood cycle

Interestingly, we can solve analytically for the growth rate of a non-Markovian 

generalization to the Hinshelwood cycle. Once again we insert latencies to account for the 

fact that the synthesis process has a finite non-zero duration. The equations are then

dEi
dt = kiEi + 1(t − τi + 1), (120)

multiplying all the equations together and rearranging we obtain λneλ(τ1+τ2+…+τ;n) = k1 × 

k2 × … × kn or λe
λ

τ1 + …τn
n = k1 × k2 × … × kn

n  Thus

λτeλτ = 〈k〉τ, (121)
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with τ =
τ1 + … + τn

n  and 〈k〉 = k1 × … × kn
n . The growth rate is then

λ =
ℒw(〈k〉τ)

τ , (122)

with ℒw(·) being the Lambert-W function [703]. Note that this solution equals to the 

previous solution if 〈k〉τ̄ ≪ 1 since ℒw(x) ~ x, x ≪ 1. If however, 〈k〉τ̄ ≫ 1 then λ ln (〈k〉τ)
τ . 

Using Little’s law we can set each ki to be equal to ki =
ηWIP
i

τi
 with ηWIP

i  being the number of 

enzymes of type i concurrently catalyzing (in a unit volume). This leads to the following 

equation for the growth rate λ =
ℒw(〈ηWIP〉)

τ .

7.9. Summary

The present model is based on von Neumann’s kinematic self-replicator concept. It assumes 

each cell contains within it a set of molecular machines that self-replicate themselves, and 

also make all the other machines in the cell, machines that support the universal constructors 

by supplying material inputs i.e. substrates, and energy (metabolism), membrane bound 

volume, and the required DNA instructions. Since there are many copies, and they work 

concurrently, the doubling time is not simply ln 2 divided by the time to make a single copy. 

The equations that describe the average behavior of this model are delay-differential 

equations, with state dependent delay. Nevertheless, they predict exponential growth at 

steady-growth conditions. The delay accounts for the fact that no major de-novo synthesis 

process of cellular complexes (e.g. ribosomes, DNA) can be made arbitrarily fast, as 

opposed to the what is expected from an exponential distribution. In this model the system 

will stabilize to balanced growth condition where all constitutive proteins grow 

exponentially locked to the rate of growth of the universal constructor. A more elaborate 

model would also account for the stochasticity of the delay and is beyond the scope of this 

discussion.

8. Future

Bacterial physiology is a subject that is integrative by nature. True understanding of its key 

observables — growth rate and cell size – requires deep insights into all the major cellular 

processes and their interrelations, including DNA replication, the transcription-translation 

machinery with its feedback and feed-forward controls, and membrane growth and division. 

The appeal of the subject to physicists is the presence of general rules that seem to apply to 

diverse types of bacteria. These rules allow such integration and suggest that despite the 

complexity, there is a universal logica-ex-machina.
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8.1. Towards “Control laws”

To develop a full understanding of bacteria and further uncover new universal laws it is 

important to remember that “no bacterium is an island” to paraphrase John Donne, as 

bacteria typically live in the company of different species of microorganisms. Furthermore, 

bacteria do not typically live in an artificial environment in which nutrients are constantly 

replenished. Thus, it is necessary to develop a better understanding of how bacteria 

dynamically allocate their resources between all major de-novo synthesis processes as the 

external conditions change, or in the presence of other bacteria. The response to starvation 

for amino-acids, in E.colicalled the ‘the stringent response’ [506, 507], appears to be well-

conserved among different types of bacteria. A big challenge in the future, will be to develop 

‘control laws’ analogous to the ‘growth laws’ that will generalize our understanding of 

steady-state behavior to a dynamic regime [707]. For example, while the biochemical details 

of how to inhibit overproduction of amino-acids might vary, the presence of such negative 

product feedback seems to be very broad, suggesting a general rule [708]. Why should we 

expect such rules to exist at all? E. coli contains more than 4000 genes, if indeed regulation 

of gene expression was totally random, we would need more than 4000 bits to describe the 

on/off control logic. Yet many genes are expressed constitutively, and other genes are jointly 

expressed (reflecting, for instance, the fact that they are all genes of proteins in the same 

metabolic pathway, or subunits of the same complex end-product, like the ATP-synthethase 

molecule). The fact that all the key molecular machinery in the cell is common to all known 

life-forms gives us hope that there are also universal control modules and that the design 

logic is simple and can be unraveled in the forthcoming decade.

8.2. Non-equilibrium thermodynamics of living systems

Apart from growth rate another interesting observable which is the focus of interest in many 

biotechnological applications is the growth yield. For example, the carbon growth yield 

measures how many carbon molecules are consumed per average cell produced. From a 

theoretical perspective, an interesting parameter that is currently difficult to measure is the 

thermodynamic growth yield - how much free energy is dissipated per unit-cell produced. 

Note that this yield can vary in time because not all of the entropy produced during growth is 

in the form of heat, as the cell dynamically exchanges substrates with the environment and 

these substrates have inherent molar entropy as well. If all the available free energy a cell 

has in a given environment was used for growth, the growth yield would be maximal. It is 

tempting to conjecture however, that this will also happen at the price of slow growth. 

Indeed, syntropic bacteria that live very close to the thermodynamic limit in terms of energy-

conversion efficiency, are also notoriously slow growers [709]. Is there a trade-off between 

growth and thermodynamic yield?

Intriguingly there seem to be a close relation between thermodynamic yield, growth rate and 

the manner in which the cell schedules its reproduction. Growing quickly requires pipelining 

of self-replication, i.e. increasing the level of concurrency in the process of biomass 

production. This requires energy, and as we explained in Section 7.3, any linear increase in 

doubling rate results in an exponential increases in the demand for substrate and energy. For 

organisms that live in nutrient-poor environments, on the other hand, energetic efficiency is 

vital, and pipelining is riskier – what if resources unexpectedly and rapidly deplete?
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In many real engines, a trade-off between energetic efficiency and power exist, so perhaps 

there is a similar trade-off between growth rate and energetic efficiency for bacteria. Is there 

a minimal entropy tax for producing a unit cell? It is possible to measure the heat released 

during growth, but total entropy increase is also composed of the molar entropy of the all the 

molecules exchanged. Nevertheless, some differential calorimetry measurements hint that 

the amount metabolic heat production normalized to cell mass released during growth is 

constant [710]. Given that heat is the ‘last stop’ of energy down the ladder of utility, perhaps 

cells try to minimize lossy dissipation when energy is scarce? Finally, obligatory 

phototrophic cyanobacteria have subordinated their gene expression to the diurnal cycle. 

They seem to avoid, for example, the production of ribosomes during nighttime when energy 

is scarce [711]. This serial scheduling results in slower growth as opposed to pipelining, but 

is also more efficient. Can we devise a model that can explain the discrepancy between the 

life-style of these cyanobacteria and enteric bacteria based upon their habitat, or on general 

thermodynamic and control theory arguments?

Developing new methods to measure the thermodynamic efficiency of growth, even on a 

population level, can facilitate interesting comparisons between different types of bacteria. 

For example, all slow growers have a single rDNA operon, but despite the many interesting 

theoretical and empirical works [712–715], there is no theory that can predict when a 

bacteria will require more than one operon, how many, and where to locate them with 

respect to the origin and terminus sites, given the ecological niches it occupies and 

evolutionary history. This too remains a challenge for the future.

8.3. Issues on the variability and causality of physiological controls

In steady-state growth all biomolecules on average double their copy numbers in each 

division cycle; however, the kinetics of their biosynthesis is stochastic so that there is 

significant cell-to-cell variability in biomolecule abundance and subsequent physiological 

parameters. Despite the stochasticity at the molecular level, every daughter cell still must 

inherit the proteins, the chromosome, and the cell envelope to be viable. If the synthesis of 

each member of this ‘trinity’ is independent from one another, then the cell will face a 

serious threat. To see this, let us assume 10% of variability for the timing of replication 

initiation and cell division. In each generation, initiation and division timings will perform a 

‘random walk.’ After 100 generations the cell will inevitably reverse with 100% probability 

its order of replication initiation and cell division ( 10 % × 100 = 100 %). It is currently 

unknown how E. coli coordinates replication initiation and cell division, and more generally 

all biosynthesis, to avoid this catastrophe. This is a major question that needs to be answered 

in the future.

8.4. Evolution of physiological controls

Last but not least, evolution of physiological controls is a profound yet difficult theme to 

study. For example, E. coli and B. subtilis are one billion years divergent, and they are the 

textbook examples of how Gram-negative and Gram-positive bacteria are fundamentally 

different at the molecular level in their cell cycle control. Nevertheless, both organisms 

appear to follow the adder principle for size homeostasis. If so, what is the hierarchy of 

physiological controls associated with growth, the cell cycle, and cell size, and how did each 
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control emerge during the course of evolution? Bacteria thus offer outstanding opportunities 

to bring physiology and genetics together to deepen our understanding of the overarching 

quantitative principles of cellular reproduction and their evolution.
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List of symbols

λ exponential growth rate

μ doubling rate, growth rate in base 2

B latency time between birth and the initiation of DNA 

replication

C time for DNA replication

D time between termination of DNA replication and cell 

division

φ(a) age distribution (PDF a cell has age (a, a + da))

ρl(l) length distribution (PDF a cell has length (l, l + dl))

τcyc cell cycle time (C + D)

τd division (doubling) time (1/μ)

Vx elongation rate

ρτd (τ) doubling time distribution (PDF the division time for a 

given cell is (τ, τ + dτ))

ρld (l) division length distribution (PDF a cell has length (l, l + dl) 
at division)

ρΔd (Δ) added-mass-at-division distribution (PDF a cell has added 

mass (Δ,Δ+dΔ) at division)

ρZ(z) PDF for a random variable Z

Ψ(l) birth size distribution (PDF a cell has length (l, l + dl) at 

birth)
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η(l, t) number of cells with length l at time t

η(l, ξ, t) number of cells with length l and age ξ at time t

p number of generation from the mother (p = 0)

lb birth size

ld division size

Δd added mass between birth and division (ld−lb)

Δ(t) incremental added mass (l(t) − lb)

γ(l) division rate function (PDF a cell of size l will divide (t, t + 

dt))

S0 unit cell size (also known as initiation mass, or mass/origin 

of DNA replication)
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Figure 1. E. coli cell size is different under different growth conditions
A. Electron microscopic picture of E. coli cells grown in different nutrient conditions, 

adapted from [1]. B. The exponential relationship between cell size and nutrient-imposed 

growth rate, by Schaechter, Maaløe and Kjeldgaard in 1958 (figure adapted from [2]). The 

shorter dashed line is the relation obtained from continuously cultured cells. The Y axis 

shows the logarithm of optical density which measures the total mass of the cell culture, 

plotted against growth rate on X axis (see definitions in Section 1.2.1). C. The transitions of 

cell size and cellular composition when growth medium is changed from nutrient poor to 

nutrient rich (figure adapted from Kjeldgaard, Maaløe and Schaechter [3]).
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Figure 2. Schematic diagrams of basic definitions in bacterial physiology
A. Growth curve and growth phases of cell culture. (Cell death is not considered here.) B. 
The measurable properties from an exponentially growing population during balanced 

growth. C. The exponential relationship between cell size and growth rate (the nutrient 

growth law). Blue marks the slowest growth and red the fastest. The cell image is adapted 

from [9] with permission, and distributions are calculated from experimental data in [9]. D. 
The measurable properties of individual cell during one generation from cell birth to 

division, and example data of distributions of each property. E. The deterministic versus 

stochastic distributions of cell length and age of an exponentially growing population. F. 
Diagram showing one cell cycle in a slowly growing cell. Here the cell cycle parameters are 
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defined. The generation time τd is the period from cell birth to division. The cell cycle 

duration τcyc is defined as the time period between replication initiation and cell division, 

which consists of C period (or replication period, from initiation to termination) and D 
period (from termination to cell division). G. The partitioning of cellular resources during 

balanced growth.
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Figure 3. Timeline of bacterial physiology (1900 - present)
Shown on the right hand side of the time axis are the major technological developments, 

experiments, models, and conceptual advancements. Each blue tick on the time axis 

represents one publication at that time (analyzed from the bibliography of this review). 

Shown on the left hand side are the major advancements in molecular biology of 

biosynthesis for those interested (which is beyond the scope of this review). Representative 

researchers and papers are shown beneath each keyword.
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Figure 4. Hand-drawn figures of B. megaterium to measure cell size, by Henrici in his 1928 book
The microcolony of cells were observed continuously under microscope for some hours, and 

captured by camera lucida drawing (adapted from [114]).
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Figure 5. Baby machine for age-synchronized sampling
A. The schematic diagram of the membrane elution apparatus, adapted from [172]. B. A 

cartoon for baby machine, adapted from [70] with permission.
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Figure 6. Schaechter-Maaløe-Kjeldgaard experiments
A. Balanced growth. [2] When growth rate is changed by the quality of the available 

nutrients, the per-cell abundance of RNA, Mass and DNA scale approximately exponentially 

with the doubling rate μ: RNA ∝ 21.5μ, Mass ∝ 2μ and DNA ∝ 20.8μ. B. Nutrient shift-up. 
[3] At time t = 0, the culture is shifted from glucose minimal medium (doubling time 50 

minutes) to broth (doubling time 20 minutes). The transition to the post-shift rate of 

accumulation is abrupt (almost discontinuous for RNA), and occurs at 5 minutes for mass, 

20 minutes for DNA and 70 minutes for cell numbers. The timing of these transitions is 

invariant to the details of the per- and post-shift media, and determines the slopes of the 

Mass/cell and DNA/cell lines in panel A.
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Figure 7. 
Above about 0.6 doublings/hour, the RNA/Protein ratio is linear. Neidhardt and Magasanik 

took this as evidence that ribosomes play a catalytic role in protein synthesis [58].
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Figure 8. DNA synthesis in age-synchronized cultures
A. Baby machine. Mother cells (dark blue) are immobilized to the underside of a membrane 

through which media flows. Newborn cells (pale blue) are shed into the effluent. B. Age 
distribution of mothers. For exponentially-growing cells, newborn cells are twice as likely 

as those about to divide. C. In the effluent, the age distribution is inverted in time – first 

daughters from old mothers, then daughters from young mothers. D. DNA synthesis rate in 
the mothers. A step increase in DNA synthesis rate, corresponding to initiation of a round 

of DNA replication, occurs at an age ai. E. As in panel B, the step-increase in DNA 

synthesis rate (measured using radioactive nucleotides) is inverted in the daughters, and 

occurs a time ai before the division event. Panels B–E redrawn from [148].
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Figure 9. Multiple rounds of DNA replication
A. During slow growth (doubling time greater than 60 minutes, upper) there is only one 

round of DNA replication proceeding during the cell cycle. DNA replication is initiated at a 

point on the chromosome called the origin (filled circle), and replication proceeds 

simultaneously in both directions along each half of the chromosome. The site of new DNA 

synthesis is called the replication fork (grey triangle). DNA replication is terminated when 

the forks reach the terminus (octagon). During moderately rapid growth (doubling time 30–

60 minutes, lower), there are two overlapping rounds of DNA replication (the lagging forks 

are initiated to terminate in the daughter). Notice that the number of origins is 2ni, where ni 

is the number of overlapping rounds of replication (20 if the DNA is not being replicated); 

the number of forks is always twice the difference between the number of origins and the 

number of termini. B. Helmstetter & Cooper [111] observed abrupt changes in the DNA 

synthesis rate through the cell cycle, interpreted as initiation of new rounds of DNA 

replication. C. Given that full replication of the chromosome takes about 40 minutes under 

Helmstetter & Cooper’s growth conditions [111], they could infer the number of generations 

prior to division that the newly initiated round was destined to conclude.
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Figure 10. Dependence of DNA replication on doubling time and cell cycle parameters
Number of origins, termini, and cells in an aliquot of exponentially-growing cell culture. In 

balanced growth, the rate of accumulation of all three is given by the doubling rate μ = 1/τd. 

As a result, when drawn on a log2-linear plot against time, they appear as parallel lines. The 

spacing between the lines corresponds to the time it takes to convert from origin to terminus 

(C-period), and convert from terminus to cell division (D-period). Redrawn from [295].
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Figure 11. Original graphics showing constant initiation mass by Donachie
Increase in mass of individual cells with different rates of growth. The initial mass at time 0 

is taken to be proportional to the average mass of cells growing at the same rate (taken from 

the data of Schaechter, Maaløe and Kjeldgaard). Given a constant time between DNA 

replication initiation and cell division (C+D ≈ 60 minutes according to the data of 

Helmstetter & Cooper), it is possible to calculate the time when initiation occurs. These 

times are marked as solid circles. The masses at which initiations take place are the same or 

multiples of the same cell mass for cells growing at all growth rates. [73]
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Figure 12. A simplified illustration of the molecular mechanisms of replication initiation in E. 
coli
This cartoon shows a cell with two overlapping cell cycles, where the triangles represent the 

replication forks, and the red squares represent ori’s on chromosome. The sites of DnaA 

titration boxes are not drawn.
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Figure 13. Models of replication initiation control
Graphs qualitatively show the ideas of (A) inhibitor titration model, (B) autorepressor model 

and (C) initiator titration model. Note that in all three models, the concentration of initiator 

is assumed to be constant throughout division cycle.
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Figure 14. 
Model operon of the autorepressor model by Sompayrac and Maaløe [56]. Both the 

autorepressor (P1) and the initiator (P2) are under the control of the same promoter, so that 

the copy-number homeostasis of the initiator proteins is ensured by autorepression by P1. 

Autorepression of an initiator protein DnaA has been shown experimentally by Andrew 

Wright’s group [357].
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Figure 15. Models of DnaA-ATP to DnaA-ADP ratio controlling initiation
This figure is adapted from [352]
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Figure 16. Donachie and Begg’s model of growth and ‘unit cells’
The shaded area is the growth zone, defining one unit cell. Adapted from [405] with 

permission.
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Figure 17. A hypothetical steady-state size distribution (Figure from Collins and Richmond 
[574])
In this figure, l is the cell length and lx±a (lx±dl in the main text) denotes a small range of 

cell length around an arbitrary cell length lx. The total number of cells between lx −a and lx 

+a is given in terms of the difference between incoming flux b1 and outgoing flux b2 of cell 

populations (see main text). In our text, we use ρ(l) instead of λ(l) for the probability density 

function of cell length l, and λ for the growth rate of an exponentially multiplying 

population in steady state growth.
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Figure 18. Correlation of added size and newborn size, and correlation of generation time and 
newborn size
Data is from [9].

Jun et al. Page 151

Rep Prog Phys. Author manuscript; available in PMC 2019 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 19. Koch’s predictions on the negative correlation between mother and daughter 
generation times
(A) The coefficient-of-variation ( = mean/variance, CV) of generation time is larger than the 

CV of division length. (B) Based on (A) and his explanation why the duration of parts of the 

same cell cycle must be negatively correlated, Koch deduced that the generation time 

correlation between mother and daughter should be negative, whereas that of two daughters 

must be positive.
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Figure 20. The adder principle appears in distinct organisms [22]
This graph is summarized from references [9, 19, 21, 350, 385, 607–609].
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Figure 21. The convergence of cell size by the adder principle
A cell born larger than the population average, adds a fixed size Δd and divides in the 

middle. The daughter cell is smaller than the mother. The daughter cell also grows by Δd and 

divides in the middle, and becomes even smaller. This continues until the daughter’s 

newborn cell size becomes the same as Δd itself. The same convergence principle works the 

same way for cells born smaller than the population average.
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Figure 22. The microfluidic mother machine
Each mother machine device consists of thousands of long, narrow growth channels. The 

physical dimensions of the growth channels are such that E. coli cells fit snuggly. The cell at 

the deadend of the growth channel inherits the same cell pole from previous generation upon 

division, thus the “mother” cell. E. coli cells growing in the mother machine do not show 

any sign of aging in terms of their instantaneous elongation for hundreds of generations.
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Figure 23. Single-cell growth data obtained from a mother machine experiment
A. The graphical definitions of six physiological parameters for single-cell growth. B. All 

correlations between six normalized parameters, l1/2/〈l1/2〉, α/〈α〉, ld/〈ld〉, lb/〈lb〉, τ/〈τ〉 and 

Δd/〈Δd〉, are shown as a 6 × 6 matrix of subplots. The growth condition is MOPS with 0.2% 

glucose. In the matrix, the positive correlations are color-coded to red, negative to blue and 

nearly-uncorrelated to grey. C. The distributions of all six paramters in the ascending order 

of their relative widths.
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Figure 24. Calibration of the adder model for the control of the cell size
The instantaneous elongation rate of the cells is an independent, identically-distributed (iid) 

random variable drawn from the E. coli experimental distribution, ρα
ex(α) (red dots) in the 

plots of panel (A) for the seven different growth conditions presented in Figure 28. 

Correlations among elongation rates of mother and siblings are weak and thus not taken into 

account. The black curves are the results of the numerical simulations. The division rate 

γ(Δ) is computed as detailed in the text (see Eq. 51) from the distribution ρΔd
ex (Δ) of the 

increments at division Δd = ld − lb. In panel (B) we show the experimental distributions for 

the added size at division Δd (red dots) for the same growth condition as in panel (A). The 

curves in black are the results of numerical simulations of the model detailed in the text. 

Their agreement with the experimental curves confirms that the parameters of the model are 

appropriately calibrated. Similar curves are obtained for B. subtilis.
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Figure 25. Test of the adder model for the control of the cell size
The model calibrated as in Figure 24 is simulated numerically and the E. coli distributions of 

the generation time τd = log2 (ld/lb)/α and the size ld at division of the cells are reported in 

panels (A) and (B), respectively, for one representative growth condition. Red dots refer to 

experiments while black curves are the numerics. The agreement of theoretical predictions 

with experimental data substantiates the validity of the adder mechanism for the control of 

the cell size.
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Figure 26. Test of the adder model in B. subtilis
As in Figure 25, the distributions of the generation time τd = log2 (ld/lb)/α and the size ld at 

division of the cells are reported in panels (A) and (B), respectively, for one representative 

growth condition. Red dots refer to experiments while black curves are the numerical 

predictions.
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Figure 27. Correlations in the adder model
We simulate the process under the adder model and assume no correlation between the Δd of 

the mother and its siblings. The connected correlation function 〈ld
Mld

D(p)〉 − 〈ld
M〉〈ld

D(p)〉, 

divided by its value σld
2  for p = 0, is plotted as a function of the generation p in panel (A). 

The line is the prediction derived in the text 2−p while the dots are numerical values. The 

corresponding correlation for the newborn size lb is shown in panel (B). Finally, the 

connected correlation of the generation time defined in Eq. 69 as a function of the 

generations p is shown in panel (c). The best fit for the decay is the exponential behavior 

−0.43 × 2−p, confirming the behavior derived in the text.
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Figure 28. Collapsed distributions of physiological paramters
Distributions of ld, lb, τ and Δd from different growth conditions show scale invariance, i.e., 

collapse when rescaled by theri respective means [9].
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Figure 29. Schemes of initiation control in plasmid
The figure is adapted from [633].
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Figure 30. Min oscillation in E. coli
A. The Min oscillation has well-defined wavelength due to the reaction-diffusion of MinD 

and MinE. If the cell length and the wavelength of the MinD oscillation are about the same, 

the time average concentration of MinD will be highest at both poles. Figure is adapted from 

the work of the Kruse group [638]. B. The dynamic behavior of Min oscillation has been 

well manipulated and predicted in perturbed cell geometry using micro-chamber. Top: 

fluorescent cell image showing the MinD oscillation. Bottom: simulation. Figures are 

adapted from the work of the Frey group and Dekker lab [636].
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Figure 31. Empirical growth laws in ribosome abundance
A. When growth rate is modulated by changes in nutrient quality, the ribosome protein mass 

fraction exhibits a positive linear correlation with growth rate (circles). For mutants with 

reduced peptide elongation rate (upward triangle [moderate reduction], downward triangle 

[severe reduction]), the linear correlation is preserved, although the slope increases. The 

reciprocal of the slope correlates very well with the in vitro translation rates of the mutants. 

B. For a given nutrient environment (circles on solid line), when growth rate is reduced 

using a translation-inhibiting antibiotic (darker symbols=higher concentration), the ribosome 

protein mass fraction exhibits a strong negative correlation with growth rate (colored lines).
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Figure 32. Proteome partitioning constraints
A. The protein mass fraction of an unregulated, or ‘constitutive’ protein exhibits near mirror 

symmetry with the growth dependence of the ribosomal proteins (cf. Figure 31B). B. The 

simplest constraint linking ribosomal and non-ribosomal proteins is to imagine the total 

protein mass (proteome) partitioned into two exclusive protein types: ribosome-affiliated R-

proteins, and all other (P-proteins), each with a growth-dependent (dark) and growth-

independent (light) component.
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Figure 33. Electrical circuit analogies
The two empirical constraints on steady-state ribosome abundance (Figure 31B) and the 

proteome partitioning constraint (Figure 32B) are mathematically identical to the current 

flow through two resistors in series, λ = κTΔϕR = κNΔϕP, ΔϕR +ΔϕP = ϕmax, with growth 

rate λ playing the role of current and 1/κT and 1/κN playing the role of resistance in each 

resistor. The voltage drops across the resistors are given by the mass fractions ΔϕR and ΔϕP 

= ϕmax − ΔϕR, respectively.
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Figure 34. Consequences of the circuit analogy
A. Over-expression. The over-expression of an unnecessary protein produces a growth 

defect and re-partitioning of the coarse-grained proteome that is consistent with a voltage-

sink ϕOE (corresponding to the protein mass fraction of the useless protein) in series with the 

cannonical circuit. B. Further partitioning of the proteome. The P-protein fraction can be 

further subdivided into functional catagories, for example catabolic proteins, anabolic 

proteins and the remainder (with processing efficiency characterized by κC, κA and κU, 

respectively).
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Figure 35. Carbon co-utilization
A. Catabolic networks in parallel. Growth on two carbon sources requiring a non-

overlapping set of catabolic enzymes for processing can be represented in the circuit analogy 

as a pair of parallel resistors. B. Characterization of the background circuit. One of the 

strengths of the circuit analogy is that the background circuit can be characterized by 

growing in a variety of single-carbon sources (changing κC), and extrapolating the growth 

rate to the short-circuit equivalent with growth rate λC.
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Figure 36. Equivalent circuits
A tangled network of resistors and batteries is indistinguishable from a single battery in 

series with a single resistor. For an enzyme-catalyzed reaction network, a similar equivalent 

representation is made possible by decomposing the mass fraction of each enzyme ϕEl into 

growth-rate dependent and growth-rate independent parts: ϕEl
(λ) = ΔϕEl

(λ) + ϕEl
min. The 

effective growth-independent offset in the metabolic protein fraction is simply a sum of the 

individual contributions ϕP
min = ∑lϕEl

min and the nutrient capacity κN corresponds to the 

effective conductance of the network defined as the proportionality between the growth rate 

λ and the total active enzyme cost: κN = λ/Σl ΔϕEl. Inthis way, enzyme-catalyzed networks 

of arbitrary complexity can be coarse-grained into simple equivalent circuits at the expense 

of introducing lumped phenomenological parameters.
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Figure 37. Changes in cell size and cell cycle under translational inhibition
A. The nutrient growth law for normal growth conditions under different nutrient conditions 

of an E. coli K12 NCM3722 strain. Each data point represents approximately 104 cells. 

Solid line is an exponential fit to data (empty symbols). B. The duration of replication (C 
period) and one complete round of cell cycle (τcyc) both increased with increasing dose of 

chloramphenicol.
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Figure 38. Why models based on intensive parameters need additional constraints to determine 
the cell size
A. Fusion of two synchronized cells still follow the Helmstetter-Cooper model. B. Two cells 

with an identical protein composition. C. Cells with different surface-to- volume ratios can 

have identical cell size (replotted from data of [252]).
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Figure 39. Cell size increase by increasing C period [252]
Left: Thymine limitation reduces the nucleotide pool and, as a consequence, DNA 

replication slows down. Middle: τcyc increases in thymine limitation while τd remains 

unchanged, increasing the number of overlapping cell cycles. Chromosome schematics and 

cell images with foci qualitatively show increasing number of replication origins as a result 

of multifork replication. Right: Cell size increases exponentially with the cell-cycle time τcyc 

in thymine limitation, as predicted by Eq. 99 (solid line, no free parameters). The empty 

symbols are S0, and the thickness of the grey band denotes ±SD. Symbol shapes reflect 

biological replicates and the symbol colors indicate the level of thymine limitation.
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Figure 40. Decoupling three canonical processes from one another [252]
A. Top: τcyc can be decoupled from S0 and λ by three orthogonal methods: slowing 

replication, slowing cell division, or changing cell shape. The symbol colors represent the 

degree of knockdown or overexpression (same for B and C). Bottom: Cell size increases 

exponentially as predicted by the general growth law (solid line, no adjustable parameters; 

same for B and C). S0 remains unchanged (open symbols). Grey band indicates average S0 

from no-induction controls and its thickness indicates ±SD (same for B and C). B. Top: S0 

can be decoupled from τcyc and λ using two orthogonal methods: repression of DnaA to 

delay DNA replication initiation or sequestration of oriC. Bottom: The solid line is Eq. 99 

with constant λ. The dashed line is Eq. 99, assuming a linear dependence of λ on S0 (fitted 

separately) to account for the slight decrease in growth rate in the S0 vs. λ data. C. Top: 

Decoupling λ from τcyc and S0 by nutrient limitation. Bottom: The nutrient growth law is a 

special case of Eq. 99, where S0 and τcyc are constant. S0 is constant over all growth 

conditions.
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Figure 41. Invariance of the initiation mass S0 [252]
Left: The measured τcyc vs. τd shows a linear relationship under growth inhibition. Empty 

circles represent pooled single-cell data from [631]. Coloring reflects which core 

biosynthetic process is perturbed. Right: An ‘inhibition diagram’ mapping perturbations to 

the three core biosynthetic processes underlying the general growth law.
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Figure 42. The law of a fundamental unit of cell size
The general growth law states that cell size S is the sum of all unit cells S0, each unit cell 

containing the minimal resource for self-replication from a single replication origin, for both 

E. coli and the Cyanobacteria S. elongatus [252, 679].
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Figure 43. The initiator threshold model
Initiation-competent initiators (stars in purple) accumulate at the same rate as the growth 

rate λ and trigger initiation at a critical number per ori (four in this illustration).
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Figure 44. From the nutrient growth law to the adder principle, and to the general growth law
Left: The nutrient growth law discovered in 1958 revealed a quantitative relationship 

between the average cell size and the nutrient-imposed growth rate. Middle: The adder 

principle explained the origin of the y-axis of the nutrient growth law, linking to cell size 

homeostasis of individual cells under nutrient limitation. Right: The general growth law, or 

the growth law of a fundamental unit of cell size, extends the nutrient growth law to any 

steady-state growth, by stating that the cell size is the sum of all unit cells, where the size of 

unit cell is determined by the control of replication initiation.
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Figure 45. Illustration of Little’s law in protein production
Panel A shows m = 3 parallel production lines producing an enzyme. The elongating peptide 

chain is represented by a purple solid line. The average rate of production (the throughput —

κTH) of the protein is 3τC, a
−1 , where τC,a is the latency of a single ribosome i.e. the average 

delay from initiation to complete translation by a single ribosome (neglecting the excess 

folding time). The work-in-process is ηWIP = m = 3. The average number of ribosomes on 

mRNA is equal to 1. Panel B shows pipelined protein production. A new ribosome start to 

translate prior to the completion of the translation by the previous ribosome. The level of 

concurrency — ηWIP is the average number of ribosomes concurrently translating the 

mRNA and is equal to ηWIP = n = 3, hence the throughput is κTH = 3τC, b
−1 . The latency τC,b = 

τC,b(ηWIP) is the average latency of a single ribosome, in the presence of ηWIP − 1 

ribosomes on the same mRNA and is typically larger than τC,a when ηWIP is high. The two 

methods depicted in Panel A and Panel B can be combined by having m mRNA’s with n 
ribosomes on each, resulting in a protein production rate κTH that is ηWIP = nm times larger 

than τC
−1 if τC,a = τC,b.
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Figure 46. Two models for self-replication of the universal constructor (U)
Model in inset A — each existing U is making a single copy non-preemptively by reading 

the instructions to build a copy encoded in DNA(U) and consuming raw materials which we 

assume are abundant. The average duration a single U machine replicates a single copy is 

τU, after which two U’s are immediately made available - the old and the new. Model in 

inset B represent a U machinery composed a single subunits U1 which has to self-assemble 

(mature) after being made. The time it takes for U to synthesize U1 is τ. The maturation time 

is τSA. We assme that τ+τSA = τU. Upon maturation, the subunits U1 is transformed into a 

new U which is added to the pool of available U’s. Under these assumptions we show in the 

text that the doubling rate of model B will be faster than the doubling rate of model A 
because model B is pipelining self-replication, i.e. each U that completes the production of a 

subunit U1, can start making another subunits, prior to the maturation of the previous 

subunit.
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Figure 47. A graphical model of cell growth as a self-replicating network of queues
All material components reside in queues. Complex de-novo synthesis reaction networks are 

grouped by their functionality and are depicted as squares: A Metabolism (purple square) — 

production of substrates (F) by metabolic proteins (P); B Universal constructor (green 

square) — the transcription and translation machinery U; C Production of membrane bound 

volume (orange square) — synthesis of additional membrane bound volume (V) by 

dedicated M proteins; Although all units require this protected volume as an essential 

resource, we did not represented it graphically. D Replication of DNA (off-white square) by 

the replisome proteins (Rep.). Each of these processes doubles its product during the 

doubling time Tλ. Material inputs that are consumed by a reaction (substrates) are placed in 

a solid queue. Material inputs that are used as processing units or “servers” e.g. essential 

catalysts or templates that are required for a certain duration to perform their task and are 

subsequently released back to the general pool and can serve again, are located in a dashed 

line arrowed queues. Material inputs that are de-novo synthesized by a reaction are marked 

by a solid arrow emanating from the square towards them. The overall work in progress of a 

particular reaction is the minimum among all the input materials, divided by the 

stoichiometric demand for inputs by one indivisible bio-synthesis task. Due to the dual role 

of the universal constructor, a fraction α ∈ [0, 1] units are allocated to self-replication while 

a fraction of β ≤ ϕmax − α units are allocated to protein production. Rep represents proteins 

involved in copying the DNA. M proteins are involved in the assembly of new membrane 

bound volume. P proteins are metabolic proteins that import and convert external substrates 

lower case f, to internal “Foods” (marked by capital F in a “take-away” bag) — internally 

consumed substrates e.g. amino acids and nucleotides.

Jun et al. Page 180

Rep Prog Phys. Author manuscript; available in PMC 2019 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 48. Single realization of a self-replicating queue in a rich environment
Number of self-replicating servers nU as a function of time. Busy U’s marked in red circles 

closely follow. Asymptotic exponential growth is obtained after a few doublings. Panel A 
shows the causal tree structure of the process. Doubling from 4 to 8 servers is marked with 

light blue dashed lines. Inverted black triangles mark the position where nU equals a power 

of two for the first time. Panel B statistics of the doubling times with arbitrary initial size. 

The service time distribution for a single U to complete replication is distributed with a non-

Markovian distribution of the form Θ(t − Tmin)e

−(t − Tmin)
τ , where Θ(·) is the Heaviside step 

function, with Tmin = τ = 6 minutes. Green squares are for Tmin = 0,τ = 12 minutes 

Markovian case.
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(38) where the rhs is the total number of individuals which divide in the time interval [t, t + dt]. For the rate of growth of the number of individuals in the population, we obtain then(39)At long times, we require that η(l, t)/∫ dl η(l, t) will reach a steady-state distribution that we denote by ρ(l). The corresponding steady-state rate of growth of the population is then denoted λ = ∫ dlv(l)γ(l)ρ(l).Second, multiplying (37) by l and integrating, we obtain for the average size(40)In steady-state, the two terms on the rhs of (40) will balance. In other words, for exponential elongation l(t) = lbeκt, the consistency condition 〈l γ(l)〉 = 1 is satisfied as v(l) = κl from (40).Finally, multiplying (37) by lq and integrating, we obtain a division series of relations for higher-order moments. In the steady-state and for an exponential elongation v(l) = κl, the relations read (q − 1)〈lq〉 = (1 − 21−q)〈lq+1γ(l)〉, where the integer q > 1 and we have made use of (40).Timer: The “timer” model posits that cell division is controlled by the age of the cell, i.e., the time elapsed since its birth. The state of cells is therefore described by their size l and age ξ. The corresponding number of cells at time t is denoted by η(l, ξ, t), and the equation for the evolution of η reads: 
(41)The lhs is the total time derivative: the drift in l is due to the elongation of cells dl/dt = v(l) while the drift in ξ is due to the aging of cells dξ/dt = 1 (the discontinuity in ξ occurring at division will be addressed momentarily). The rhs of the first equation in (41) is the loss term due to the division of cells. The Poisson division rate function (division rate) γ depends now on the age of the cell, ξ. Furthermore, since dξ/dt = 1 there is no additional factor coming from the conversion of the rate of division from unit age to unit time [see (37)].From the definition of the division rate it follows that
(42) where ρτd (τ) is the probability density for the generation time τd of a given cell and the derivation proceeds as for (42) Finally, the last equation in (41) is the boundary condition that accounts for newborn cells having all the same age ξ = 0, irrespective of their size 2l that gets halved. The integral ∫ dξ γ(ξ)η(2l, ξ, t) represents the total number of cells that divide in the unit time; as in (37), the factor 4 is the product of the factor 2 resulting from the 2 dl width of the range of dividing cells and the factor 2 due to division producing two newborn daughters cells.The dynamics of the age of the cells is independent of their size, as can be easily seen by integrating (41) over l. The resulting equations for the marginal distribution η(ξ, t) = ∫ η(l, ξ, t) dl reads(43)(44)Furthermore, integrating (41) over l and ξ, we obtain for the population growth rate λ,
(45) which depends on the marginal distribution η(ξ, t) only. The well-known solution [279] to (43) is η(ξ, t) = eλtñ(ξ), where(46)(47)The first equation is simply obtained by integrating the differential equation in (43) and the constant A depends on the initial size of the population. The second relation is obtained from the boundary condition in (43) by an integration-by-parts. A similar integration-by-parts provides a check that the second equation in (47) is equivalent to the growth rate relation λ ∫ñ(ξ) dξ = ∫ ñ(ξ)γ(ξ) dξ derived in (45).As for the dynamics of the size of cells, we can obtain the equation for the mean size multiplying (41) by l and integrating over l and ξ. The resulting expression reads
(48) where 〈l〉 ≡ ∫ l η(l, ξ, t) dl dξ/∫ η(l, ξ, t) dl dξ and similar definitions apply for other averages. For a stationary state, the lhs is required to vanish, i.e., elongation should balance the growth. In the case of linear elongation v(l) = const., a steady-state distribution is reached and 〈l〉 = const./〈γ(ξ)〉, where we used λ = 〈γ(ξ)〉. In contrast, for exponential elongation v(l) = κl, a steady-state distribution exists only for the special choice κ = λ. If the equality is not satisfied, then the average size grows to infinity or decay to zero exponentially fast (see below).The lack of control of the cell size by the timer mechanism was remarked in [584, 585] and can be understood intuitively by considering the sizes at birth 
 and 
 over two consecutive generations n and n+1. For an exponential elongation, 
, where τd is again the generation time and κ the elongation rate in the n-th generation. Exponential elongation of the size of the cells requires that the average value of κτd be precisely-tuned in order to avoid a systematic drift of ln lb. Notice that even in the absence of drift, the long term behavior of ln lb will be analogous to a random walk (assuming that the values of κτd fluctuate and decorrelate over the generations). Therefore, the variance of the size of the cells will grow across the generations and no effective control of the size of the cells is achieved by the timer mechanism. Diluting bacteria by washing them out, e.g., a term −Dη(l, ξ, t) is added to the equation (41) [575], will not modify the previous conclusion unless dilution is coupled to the size, i.e., the dilution rate depends on l.In practice, the elongation rate deviates from a linear behavior at very small and at very large sizes so that the logarithm of the size will not go to zero or diverge to infinity. However, its behavior will depend very sensitively on the details of the elongation law at very small and large sizes [575, 581] and the resulting size distributions are generally significantly wider than the actual data (not shown). Most importantly, the timer mechanism disagrees with the experimental data insofar as it predicts the conditional distribution P(τd|lb) of the generation time τd vs the initial size of cells lb should be independent of lb [9]. Conversely, data shown in [9] (Figure 18) indicate a clear dependency on lb.Mixed models: Diverse combinations of sizer and timer mechanisms are conceivable. A well-known instance is the bilinear model proposed in [78]. The proposed dynamics is summarized as follows: cells grow linearly in time v(l) = u until they reach a threshold length lΛ. After reaching lΛ, cells keep growing for a fixed amount of time (~ 20 mins) at a velocity 2u (see [172, 388, 396] for a discussion of bilinear vs exponential elongation). Ref. [78] clearly poses relevant questions and deserves all the influence it had in the field; however, the specific mechanism which was proposed is not supported by modern experimental data [9, 384].Before the “adder” model was (re)discovered [9, 586, 587], other combinations of age and size control had been proposed. The intuitive motivation comes from plots like (Figure 2D) in the main text, where a behavior intermediate between a timer and a sizer is observed (see Figure 18). The most recent proposition is [580], where a control mechanism operating “concertedly” (and not sequentially as in [78]) on the size and the age of the cell is discussed. No major inconsistency with experimental data (for a single growth condition) is observed by introducing a model where the division rate function γ(l, ξ) depends jointly on the size and on the age of the cells and by best fitting the function to the data. However, a simpler adder model that we discuss below explains these observations and beyond.
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