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Abstract: Follicle stimulating hormone (FSH) is produced by the pituitary gland in a coordinated
hypothalamic–pituitary–gonadal (HPG) axis event, plays important roles in reproduction and germ
cell development during different phases of reproductive development (fetal, neonatal, puberty, and
adult life), and is consequently essential for fertility. FSH is a heterodimeric glycoprotein hormone of
two dissociable subunits, α and β. The FSH β-subunit (FSHβ) function starts upon coupling to its
specific receptor: follicle-stimulating hormone receptor (FSHR). FSHRs are localized mainly on the
surface of target cells on the testis and ovary (granulosa and Sertoli cells) and have recently been
found in testicular stem cells and extra-gonadal tissue. Several reproduction disorders are associated
with absent or low FSH secretion, with mutation of the FSH β-subunit or the FSH receptor, and/or
its signaling pathways. However, the influence of FSH on germ cells is still poorly understood;
some studies have suggested that this hormone also plays a determinant role in the self-renewal
of germinative cells and acts to increase undifferentiated spermatogonia proliferation. In addition,
in vitro, together with other factors, it assists the process of differentiation of primordial germ cells
(PGCLCs) into gametes (oocyte-like and SSCLCs). In this review, we describe relevant research on
the influence of FSH on spermatogenesis and folliculogenesis, mainly in the germ cell of humans and
other species. The possible roles of FSH in germ cell generation in vitro are also presented.

Keywords: gonadotrophin; germ cell line; reproduction

1. Introduction

Follicle stimulating hormone (FSH) and luteinizing hormone (LH) are gonadotropins
essential for proper reproduction and fertility in both females and males; specifically,
they are key players in germ cell formation [1,2]. In females, several essential oocyte
formation processes are triggered by gonadotropins FSH and LH, mainly through the
stimulation of granulosa cell proliferation, antrum formation in secondary ovarian follicles,
growth and maturation of antral follicles, and estradiol production, resulting, together, in
folliculogenesis, oogenesis, oocyte meiotic maturation, and oocyte competence [3,4]. In
males, these hormones initiate their function at puberty, when FSH acts in the induction of
spermatogenesis and LH induces androgen production by Leydig cells [1]. FSH activates
Sertoli cell proliferation, first during fetal development, and continuing at puberty. In
adult life, FSH acts through its receptors on the Sertoli cells in spermatogenesis, germ cell
survival, and male fertility [5,6]. Furthermore, through these cells, this hormone indirectly
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regulates spermatogonial stem cells (SSCs) and creates the adequate environment for
germinative cells proliferation and differentiation [7]. Additionally, they regulate other
physiological activities that have biological effects on the hypothalamus, pituitary, and
reproductive organs [2,8–10].

FSH and LH are secreted as part of the hypothalamic–pituitary–gonadal (HPG) axis.
Gonadotrophin-releasing hormone (GnRH) is produced by the hypothalamus, reaches
the anterior pituitary through local circulation, stimulates gonadotrophic cells to produce
and release the gonadotrophins into the circulation of the organism, and stimulates the
anterior pituitary [1]. FSH is a heterodimeric glycoprotein composed of two non-covalently
bound α and β subunits [11]. The α-subunit is encoded by a single gene that is common
to FSH, LH, human chorionic gonadotropin (hCG), and thyroid-stimulating hormone
(TSH), although the β-subunit is FSH-specific [12]. The FSH β-subunit (FSHβ) acts in its
target cells (granulosa and Sertoli cells) when connected to its follicle-stimulating hormone
receptor (FSHR), localized in the cellular membrane [13,14]. FSHR belongs to the family
of G protein-coupled receptors (GPCRs), which act by the activation of various signaling
pathways (cAMP/PKA, PKC/MAPK, and Ca+/CaMKII) [14–19]. However, FSHR can
also be found in extra-gonadal organs and tumorous tissues, including different types of
cancer, tumor vessels, endothelial cells, osteoclasts, human umbilical vein endothelial cells,
monocytes, the liver, and in a population of stem cells called very small embryonic-like
stem cells (VSELs) [5,20–33].

Several reproduction disorders are associated with absent or low FSH secretion, which
may result from mutations of the FSHβ or in the FSHR, and from disorders unrelated to
mutations, but related to the FSH signaling pathways [34,35]. In this regard, the condition
called hypogonadism if often classified into three categories: primary hypogonadism
(hypergonadotropic, resulting from a primary testicular disorder); secondary hypogo-
nadism, which is congenital or acquired (hypogonadotropic, presenting deficiencies in
the hypothalamus and/or pituitary); mixed hypogonadism (affecting both testes and the
hypothalamus/pituitary). These latter two are determined by alterations in the HPG
system, resulting in impaired testicular function and leading to the condition called hypog-
onadotropic hypogonadism (HH) [36,37].

In men, primary hypogonadism is associated with low testosterone production and
normal or high levels of the FSH and LH hormones. The possible causes include testic-
ular injury, congenital anorchidism, cryptorchidism, mumps orchitis, tumor, testicular
trauma, genetic defects (Klinefelter syndrome and gonadal dysgenesis), Sertoli-cell-only
syndrome, chemotherapy, radiation treatment, alcohol abuse, and autoimmune syndromes.
In Klinefelter syndrome, the pituitary-gonadal function may be normal during childhood
and even during early puberty; however, in adult life, the FSH and LH levels increase and
testosterone decreases [38,39].

Secondary and mixed HH present low or inappropriate LH and FSH levels and sex
steroids, which are associated with lower sperm quantity. HH can result from genetic
disorders (e.g., lack of GnRH production in Kallmann syndrome) or may have acquired
causes such as drugs, infiltrative or infectious pituitary lesions, hyperprolactinemia, en-
cephalic trauma, pituitary/brain radiation, exhausting exercise, and abusive alcohol or
illicit drug intake [40,41]. Patients with HH caused by hypothalamic disorders have been
treated with exogenous pulsatile GnRH therapy, associated or not with gonadotropin treat-
ment, aiming at spermatogenesis stimulation and production of competent spermatozoa,
whereas FSH treatment is still in the experimental phase in patients presenting idiopathic
normogonadotropic infertility and oligozoospermia [1,40,42].

In women, the increase in FSH level is a usual indication of premature ovarian failure,
leading to menopause occurrence before the age of 40 years, possibly resulting from
genetic causes; however, most cases are idiopathic. Turner syndrome is a genetic disease
caused by the loss of an X chromosome (XO karyotype) or chimeric monosomic (X0/XX)
karyotype, also possibly leading to premature ovarian failure or even primary amenorrhea,
underdeveloped ovaries (streak ovaries), and high FSH levels [43,44].
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Conversely, in women presenting ovulatory dysfunction, FSH treatment has been
recommended for decades; for example, using human chorionic gonadotropin (hCG) and
human menopausal gonadotropin (hMG) to stimulate the growth and ovulation of the
dominant follicle in patients presenting anovulatory infertility. Novel therapies using
biotechnology have been introduced; for example, recombinant gonadotrophin, which is
purer than urinary-derived gonadotropins and shows better clinical efficiency [35,45,46].
Recombinant human FSH (rhFSH) has been shown to be efficient in patients with polycystic
ovary syndrome (PCOS), which is anovulatory, in stimulating follicular growth [47–49].
Different strategies using FSH supplementation, alone or combined with a variety of
pharmaceuticals, have been developed to be used for ovulation induction and assisted
reproductive therapy, including the stimulation of multifollicle ovulation for embryo
transfer [50]. In cattle, the stimulation of superovulation is routinely used to obtain the
maximum number of viable embryos; usually, this is caused by FSH treatment based on
recombinant hormone [51–55] or, historically, pituitary extracts [55].

In domestic animals, alterations in the FSH level are poorly described. A recent study
in dogs showed that HH might occur in dogs (both sexes) with primary adrenocortical
insufficiency (PAI), and HH is suspected to occur in dogs with concurrent polyendocrine
diseases [56]. Other studies were conducted with genetically modified animals such as
mice and pigs, aiming to identify specific genes to study the HH phenotype. In mice and
pigs, knockout of the kisspeptin gene or its receptor resulted in the HH phenotype, and
animals failed to initiate puberty. Male mice models presented small testes and failed
sperm production, reduced production of steroids, and the absence of the development of
secondary sexual characteristics. These females models of HH have failed to have normal
ovarian follicular maturation and pregnancy [57–59].

In the past decade, FSH’s actions in reproductive physiological or pathological condi-
tions have been more precisely studied, in both males and females, using genetic analysis
approaches. Interestingly, mutations in the FSHβ sequence have already been reported as
a cause for infertility in males, whereas FSHβ polymorphisms in females seem to affect the
basic level of FSH in different ways, affecting the ovarian activity, either due to a positive re-
sponse to exogenous gonadotropin administration or to alterations of the phenotype in several
disfunctions such as PCOS and premature ovarian failure, for example [2,4,43,44,60–66].

Mammalian infertility may be resultant from different physiopathology-related disor-
ders, as discussed before, and, interestingly, these have been associated with immunological
alterations and even autoimmune failure. In females, the immune system may be activated
against ovarian antigens, in general directed against FSH (anti-FSH), more specifically,
against the β-chain form. The anti-FSH populations modulate the recognition and binding
of FSH to FSHR, and it may have a pathological influence on ovarian function; thus, im-
munosuppressive treatment would be an option for patients with high concentrations of
anti-FSH [67]. Anti-FSH has been predominantly present in patients with endometriosis
and PCOS; however, it remains unknown if anti-FSH is the cause of infertility [67–69].

It has been reported that, during fertile life, women are more likely to present au-
toimmune diseases than men, and such observation appears after menopause, premature
ovarian failure (POF), and other ovarian failure disorders, probably due to high FSH
levels leading to a decrease in B lymphocytes and CD4, and other immune related dys-
regulation [70,71]. Indeed, the impacts of gonadotrophins in the immune system have
been mainly reported in women; however, the precise relation of hormonal level and
immunological function is still scantily described.

Apart from these important recent advances in the understanding of FSH’s roles and
actions in the reproductive pathophysiology, few studies have explored the role of FSH
in reproductive development and the influence of FSH on germinative cells in vivo and
in vitro. Such an understanding is vital to obtaining new insights into the roles of FSH in
special, new assisted biotechnologies. This review discusses the most relevant research on
mechanisms through which FSH is involved in germ cells during all reproductive life. In
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addition, we present the use of FSH in the induction of germ cells and germ-cell-like cells
in vitro.

2. The Role of FSH in Reproductive Development: Fetal and Neonatal Periods

In mammals, gametogenesis starts after the primordial germ cells (PGCs) complete
the migration process to the gonadal ridge. The PGCs migration window is specific for
each mammal species (e.g., ~E8–9.5 days for mice, ~E17 days for rabbits, ~E15–17 days for
pigs, ~E25–30 days for cows, and ~4 weeks for humans) [72–75]. During PGC colonization,
the gonads are undifferentiated and morphologically similar. This period is therefore called
the bipotential stage of the gonadal ridge, where it develops and differentiates in the testis
or ovaries [76] (Figure 1).
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Figure 1. The mammalian gametogenesis process starts after the primordial germ cells (PGCs) complete the migration
process to the gonadal ridge. The PGCs migration window is specific for each mammal species (e.g., ~E8–9.5 days for
mice, ~E15–17 days for pigs, ~E25–30 days for cows, and ~4 weeks for humans). During PGCs colonization, the gonads are
undifferentiated and, morphologically, are apparently identical (bipotential period). In porcine, gonadal differentiation
starts at 28 days of gestation; however, complete differentiation is observed at E30–35 days of gestation. By E42, males have
gonocytes in differentiated gonads; in females, the first primordial follicle is observed at E56 d.p.c in the fetal ovary. In mice,
the germ cells of embryos at day E12.5 are morphologically undifferentiated; however, initiation of sex differentiation occurs
at E13.5 days; the gonocytes are found from E13.5 until birth. In humans, PGCs colonize the genital ridge at 5–7 weeks
(~E37), oogonia proliferation occurs until 10 weeks when the cells enter meiotic prophase, and primordial follicles are
observed at 20 weeks of gestation. Sex determination is orchestrated by the SRY gene on the Y chromosome. *The expression
of the SRY gene promotes testis formation through the activation of other genes (testicular genes, e.g., other factors and
genes such as SOX9) during sex differentiation. The retinoic acid (RA) plays important role when PGCs enter meiosis.
The female germ cells start meiosis after RA action, differently from males, in which meiosis pathway is inhibited by the
RA-degrading enzyme CYP26B1.This period is gonadotropin-independent, although Sertoli cells expresses FSHR, that
starts to act after birth.

Sex differentiation is centrally orchestrated by the existence or absence of central
SRY gene expression, which is located on the Y chromosome. The SRY gene is expressed
in somatic cells subpopulations of undifferentiated gonads (mouse E10.5–12 d.p.c), and
stimulates these cells to develop into Sertoli cells [77–80]. The expression of the SRY gene
promotes testis formation through the activation of testicular-related genes, repressing
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ovarian fate [81]. However, studies have reported that XX males of different species
(human, dog, mouse, and other mammals) who lack SRY present the male phenotype
with normal Sertoli cells, suggesting that activation of other factors and the expression
of genes such as SOX9 are important for sex differentiation [81–84]. The expression of
SOX9, for example, induces the differentiation of cells from the bipotential gonadal ridge
into Sertoli cells, consequently contributing to the testis [76]. The SOX9 protein directly
activates the transcription of at least some Sertoli-cell-specific genes, including the gene
encoding anti-Mullerian hormone (AMH). The SOX9 gene is not on the Y chromosome, but
is expressed in males in most vertebrates, unlike SRY, which is found only in mammals [81].

In domestic animals such as pigs, morphological gonadal differentiation starts at
28 days of gestation, and complete differentiation is observed at 30–35 days of gestation
(unpublished data [85]), at the fifth to sixth week in humans, and between E10.5 and
12 d.p.c, in mice, where clustered PGCs are distributed across the ovary in which the cortex
and medulla cannot be distinguished at this stage [85]. In dogs, Souza et al. [86] reported
the initiation of sexual differentiation at 35 days of gestation (middle trimester).

In mice, the germ cells of embryos at day E12.5 are morphologically undifferentiated;
however, it is possible to observe differences between the somatic cells of ovaries and
testes at E13.5 days, at the initiation of sex differentiation [87–89]. Afterward, female germ
cells enter meiotic prophase I and begin to differentiate in oocytes. In humans, the PGCs
colonize the genital ridge during the sixth week (~E37), and oogonia proliferation occurs
until the tenth week, when the cells enter the meiotic prophase [90]. In bovines, oogonia
was observed in the fetal ovary at D50–80 days of gestation [91].

During differentiation of the ovary before birth, PGCs proliferate and differentiate into
oogonia and oocytes; later, these oocytes are enclosed by one layer of somatic cells called
pre-granulosa cells, developing the primordial follicles when starting meiosis. Importantly,
endocrine and paracrine factors delivered from oocytes act on the follicular cells, promoting
multiple cell signaling pathways and driving differentiation. During follicular formation,
FSHRs are expressed in some species, however, little is known about the factors responsible
for its expression at such an early period. In rodents, the expression of FSHR increases
with development, and its expression induces primary follicle formation and follicular
development through the preantral stage [92]. In female pigs, the FSH level increases
between days 75 and 90–103 p.c., before the emergence of primary follicles in the fetal ovary
(106 p.c.) [93,94]. Therefore, FSH seems to be linked to the follicular process and primordial-
to-primary follicle transition. In addition, gonadotropin-independent mechanisms are
active in this phase, revealing that factors produced within the ovary and/or arriving via
extrinsic pathways, such as activin [95], estrogens, and nerve growth factor [96], increase
FSHR. FSHR has been reported in the fetal ovaries of cows, hamsters, baboons, and
pigs [94,97,98].

In rats, it has been reported that the neonate ovary is insensitive to gonadotropins
because it lacks FSH and LH receptors. However, the presence of FSHR and the functional-
ity of the receptor were shown on days 5–7 after birth. In addition, on day 7 of post-natal
development in rats, FSH-stimulated estradiol production was observed [44,99–101].

In mammalian males, during fetal life, PGCs migrate to the fetal testis, where they
differentiate in gonocytes [102,103] (Figure 1). Firstly, PGCs and mesenchymal stem cells
(MSCs), which are the precursors of Sertoli cells, form the seminiferous cord. At this
stage, PGCs generate the gonocytes that remain centrally placed, surrounded by immature
MSCs-derived Sertoli cells. In mice, gonocyte development occurs before the functional
maturity of the pituitary gland, and then is not regulated by the gonadotrophins [104–106].
In vitro, a study on fetal and neonatal testes of rats showed that gonocytes survival is not
influenced by FSH treatment [107]. However, in vitro culture of testes cells from three-day-
old rats showed that FSH, combined with other factors such as follistatin, may mediate the
maturation of gonocytes into spermatogonia [108].

During fetal life, the cells most influenced by FSH are Sertoli cells through the FSHR
localized on cellular membranes and associated with G protein [1]. These receptors were
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reported in humans for the first time in testicular tissues at 8–16 weeks, with action
starting after birth [109,110]. In Rhesus monkeys, Sertoli cells express FSHR early in the
development at 19–22 weeks of gestation [110]. In rats, FSHR was detected in fetal and
neonatal testis at E17.5–19.5 days of gestation, but at low expression levels [111].

Before puberty, FSH and FSHR pathway signaling regulates the proliferation of Sertoli
cells and the number of these cells present in adult life [112]. For example, in rodents, FSH
stimulates the proliferation of Sertoli cells in fetal and neonatal life, and it defines the num-
ber of these cells at puberty [113], different from Rhesus monkeys, in which the proliferation
of Sertoli cells occurs, especially in the peripubertal phase. During these periods, FSH con-
trols the proliferation of Sertoli cells by activating cyclic adenosine monophosphate/protein
kinase A (cAMP/PKA) mitogen-activated protein kinase (ERK1/2), and phosphatidyli-
nositol 3-kinase (PI3K)/serine/threonine protein kinase B (PKB/AKT)/mechanistic target
of rapamycin (mTORC1) pathways, and increasing the transcription of c-Myc, hypoxia-
inducible factor 2 alpha (HIF2), and cyclin D1 (CCND1) [112,114,115].

3. FSH in the Adult Phase: Folliculogenesis and Spermatogenesis
3.1. Females: FSH Influences Folliculogenesis

In adult females of different mammalian species, ovarian function is regulated by
gonadotropins and intra-ovarian factors (e.g., steroids, growth factors, and cytokines).
They act in folliculogenesis, enabling follicle development and the differentiation of the
granulosa cells (GCs) of the ovarian follicle [116]. Folliculogenesis, a highly regulated
process, refers to ovarian follicle growth and differentiation, and can be classified into three
main phases: initial follicle growth, transition from pre-antral to early antral phase, and
growth and maturation until ovulation. The latter two phases are dependent on stimuli by
FSH or LH [60] (Figure 2A).

In humans, and in mice, five stages of follicle development were more specifically de-
scribed: primordial follicles, primary follicles, secondary follicles (preantral), antral follicles,
and preovulatory follicles (Graafian) [117]. Initially, follicular growth is gonadotropin-
independent and begins during gestation. These hormones do not directly affect the follicle
growth in this phase; however, the granulosa cells (GCs) may be influenced at an earlier
stage of preantral follicle growth [61]. The post-natal phases are gonadotrophin-dependent,
and the GCs of the large antral to ovulatory follicles are also influenced (Figure 2A).

During the gonadotrophin-dependent stage of follicular development, FSH and LH
signaling pathways play obligatory roles in follicle differentiation, selection, and sur-
vival [118]. LH, through the biosynthesis of androgens in theca cells, stimulates the
formation of FSHR in GCs and thus potentiate FSH’s effects on secondary and antral
follicles. During development of the follicle in the antral follicle phase, a fluid cavity, the
antrum, is formed. Antrum fluid is an important source of gonadotropins, steroids, growth
factors, and other substances derived from the blood or secretions of the follicular cells
(antral folliculogenesis), a process entirely dependent on gonadotropic hormones [119,120]
(Figure 2A).

Antral folliculogenesis occurs in waves of growth and regression; these waves are
mediated by levels of FSH to support growth. After the emergence of the dominant follicle,
FSH levels decline, the remaining antral follicles regress in a process called atresia, and
the dominant follicle will be the only one capable of reaching ovulation with the release of
mature oocytes in response to LH pulses [76,121].

During the transition phase of folliculogenesis, the intra-ovarian factors activin and
epidermal growth factor (EGF), reported in some species such as pigs [122], cows [123,124],
and mice [125], lose importance in follicular growth, and FSH starts acting in the preantral
and antral follicle through FSHRs [100,126–129]. Therefore, when the preantral follicles
are formed, the GCs express FSHR and the theca cells express LH receptor (LHR). FSH
upregulates cell metabolism and activates the mitogen-activated protein kinase (MAPK)
signaling pathways in preantral follicles [130]. In some species such as humans, bovines,
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sheep, pigs, and rabbits, FSH also regulates preantral follicle development and many
paracrine factors from oocytes and granulosa cells [61,127,131–134].
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Figure 2. (A) Initially, the follicular growth that begins during gestation is gonadotropin-independent, although granulosa
cells are influenced by FSH. The post-natal phases are gonadotrophin-dependent, and FSH influences the transition of the
GCs of the larger antral follicles to the ovulatory follicles. After birth, folliculogenesis, a highly regulated process, can be
classified into three phases: follicle growth, transition and maturation, and ovulation. In humans and mice, five stages of
follicular development are described: primordial follicles, primary follicles, secondary follicles (preantral), antral follicles,
and preovulatory follicles (Graafian). The phase of follicle transition from the preantral stage to the early antral stage and
follicle growth and maturation is dependent on stimulus by FSH and LH (gonadotropin-dependent phase), which play
an obligatory role in follicle differentiation, selection, and survival. (B) FSH actions in folliculogenesis, including in the
induction of GCs proliferation and stimulation of GCs in the estradiol production by aromatase (CYP19A1) conversion
of the androgens produced by theca cells (i.e., dehydroepiandrosterone (DHEA), androstenediol, androstenedione, and
testosterone) from cholesterol in responding to LH (steroidogenesis). The interaction of the FSH-FSHR localized in the
membrane surfaces of GCs activates adenylyl cyclase and stimulates the proliferation of CG cells by activating the cyclic
adenosine monophosphate/protein kinase A (cAMP/PKA), mitogen-activated protein kinase/extracellular signal-regulated
kinase (MAPK/ERK), and PI3K/Akt pathways. In particular, cAMP/PKA promotes the phosphorylation of cyclic AMP
response element-binding (CREB) protein and other proteins that promote an increase in the expressions of genes that
encode the growth factors and proteins involved in steroid hormone production and cellular growth. This gonadotropin
can impede the apoptosis of GCs via the PI3K/Akt pathway.

In addition to the roles of FSH and LH in the follicle, oocyte-secreted growth factors
(growth differentiation factor-9 (GDF9) and bone morphogenetic protein 15 (BMP15))
act in follicular maturation, ovulation, fertilization, and luteinization. This interaction
between gonadotropin and oocyte paracrine factors is thought to support the physiological
mechanism regulating species-specific ovulation rates and fecundity; e.g., in bovines, it is
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found throughout all follicle development, related to the proliferation and steroidogenesis
of granulosa cells [135,136]. In mice, FSH was reported to induce the GCs to express LH
receptors and their proliferation in the late stage of follicle formation, and to cause an
increase in epidermal growth factor receptor (EGFR) to promote ovulation [137,138].

It has been reported in mice that preantral follicles seem capable of development
without these hormones, suggesting that gonadotropins are not required for preantral
follicular development [139,140]. Recently, it was demonstrated that bovine preantral
follicles respond to FSH by upregulating specific cellular functions and pathways [130]. In
dogs, it was demonstrated that activin and FSH have a synergistic effect on growth and
antral cavitation in both the early and antral stages that is not mediated by changes in
FSHR mRNA expression [141].

FSHR is found in some cells in the folliculogenesis process, but the effect of FSH in
the initial follicle is unclear [142]. It was shown that mice lacking FSHR are infertile. In
humans, single nucleotide polymorphisms (SNPs) in FSHR were reported; however, few of
these affect fertility. In women presenting mutations in one of the FSHR genes, follicles
grow up to the stage of selectable follicles [143,144]. Interestingly, it was demonstrated that
development to the antral phase is not dependent on FSH, as shown in FSH-null mice [145];
preantral follicles are responsive to FSH treatment and, in FSHR and β-FSH gene knockout
mice, follicle development occurs until the preantral stage. Studies in mice and rats showed
that FSH qualitatively and quantitatively helps with initial follicle development [146], and
similar results were found in humans and goats.

Interestingly, some studies in humans and mice reported FSHR expression in oocytes.
They discussed, as another role of FSH in ovulation, that it acts in the modulation of meiotic
resumption and the completion of oocyte maturation [147,148]. In porcine species, FSHR
was observed in oocytes (primary follicles and up to the pre-ovulatory stage) and within
the oocyte nests [127].

3.2. Males-Influence of FSH in Spermatogenesis

Spermatogenesis is a sequence of processes during which diploid spermatogonia
self-renew, proliferate, and differentiate into haploid spermatozoa [1]. This process occurs
gradually with the action of various autocrine, paracrine, and endocrine factors. These
factors stimulate multiple events such as the mitotic multiplication and propagation of
spermatogonia cells, genetic recombination, and the maturation of spermatozoa [1]. The
gonadotropins act on specific phases of spermatogenesis, mainly in maturation (in men dur-
ing the maturation of type A spermatogonia to type B), meiosis, and spermiation. Notably,
the specific effects of FSH or LH on spermatogenesis require more robust characteriza-
tion [149]. In particular, it is known that FSH acts mainly in Sertoli cells and may support
spermatogonia, probably through activating gene transcription related to metabolic home-
ostasis and cell survival, with the synthesis of retinoic acid, lactate, plasminogen activator
type 2, and fatty acid metabolism mitochondrial biogenesis [112,150,151]. Therefore, the
entire process depends on hormones, and the gonadotropins FSH and LH play critical
roles [105], as shown in Figure 3A.

In humans, FSHβ mutations lead to azoospermia and infertility, although men with
mutation in FSHR are phenotypically normal with some subfertility, similar to deficient
mice with the same mutation [116]. This difference may be related to genetic and envi-
ronmental factors. Therefore, few men carrying pathogenic mutations and other possible
factors related to the lack or absence of FSHβ and FSHR, which directly affect spermatoge-
nesis, were reported [152]. For this reason, FSH’s action is still not totally understood in
human spermatogenesis [1,63]. However, studies in rats reported that FSH is important for
the initial spermatogenesis phase, before germ cells start spermiogenesis [153,154].
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Figure 3. (A) In fetal life, PGCs transform into gonocytes that remain centrally placed, surrounded by immature Sertoli
cells. In mice, gonocyte development occurs before the formation at E10-13.5 d.p.c, in humans at E 8–10.5 weeks, and
in pigs at E30–42 d.p.c (gonadotropin-independent). In the neonatal phase, FSH, through FSHR signaling, regulates the
proliferation of the cells and the number of cells that will be had in adult life (~P2–5-day mice (postpartum), ~P8–12 weeks
in humans, and ~P4–16 weeks in pigs). During the prepubertal phase, an increase in FSH occurs during the maturation of
Sertoli cells and during the completion of the first cycle of sperm (~P8–10 days in mice; ~P2–4 years in humans; ~P8–24
weeks in pigs). In adult life, the spermatogenesis process starts. This is a complex process in which diploid spermatogonia
self-renew, proliferate, and differentiate into haploid spermatozoa. The gonadotropins act in the early events of the
spermatogenesis, before spermiogenesis, mainly in spermatogonial proliferation and meiosis. These hormones act on all
phases of spermatogenesis in some species such as rodents and a specific phase of spermatogenesis in men: the maturation
of type A spermatogonia to type B spermatogonia, meiosis, and spermiation. (B) In germ cells, FSH mainly influences
self-renewal, proliferation, and survival of spermatogonia cells through glial cell-line-derived neurotrophic factor (GDNF)
secreted by Sertoli cells. Sertoli cells secrete many factors linked to self-renewal such as GDNF and fibroblast growth factor
2 (FGF2), differentiation and proliferation of spermatogonial stem cells (SSCs), bone morphogenetic protein (BMP4), and
activin A, amongst others such as KIT ligand (KL or stem cell factor—SCF), which promotes the KIT tyrosine-kinase receptor
expressed by differentiated spermatogonia. GDNF induces SSC self-renew and survival through multiple pathways such as
AKT/MEK, AKT, and SFK. The phosphoinositide 3-kinase (PI3K)/AKT pathway influences the self-renewing divisions of
SSCs, inhibits apoptosis, and is involved in activating mTORC1 through the SFK signaling pathway. GDNF upregulates the
specific SSC genes such as B cell CLL/lymphoma 6, member B (BCL6B), Ets variant gene 5 (ETV5), and Lim homeobox
protein 1 (LHX1). GDNF also acts on the canonical RAS/ERK1/2 pathway, important for the proliferation and self-renewal
of these cells by phosphorylation and activation of CREB1, ATF1, CREM, and c-FOS factors.

Studies with animal models suggested that FSH may not be critical to enable fertility;
however, it was reported that FSH acts by regulating genes involved in the proliferation,
structure, and function of Sertoli cells, being responsible for determining the number
of Sertoli cells and their differentiation, possibly by regulating the genes necessary for
the metabolism and transport of nutritive and regulatory substances produced by Sertoli
cells to germ cells [1,149,155,156]. FSHR signaling in Sertoli cells activates at least five
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pathways: the cAMP and protein kinase A (PKA) [30], MAP kinase (MAPK), calcium,
phosphatidylinositol 3-kinase (PI3K), and phospholipase A2 (PLA2) pathways, which
results in the transcription of spermatogenesis target genes [149,157] (Figure 3B).

One of the genes stimulated by FSH is Kruppel-like factor 4 (KLF4), important for the
differentiation of Sertoli cells during reproductive development, mostly through controlling
differentiation and the cell cycle [158]. In addition, FSH, together with testosterone, acts in
the Wnt pathway, regulating the inter-Sertoli junction types and the connection between
Sertoli cells and germ cells, which allow the cultivation of germ cells [1,113,150,159].
Furthermore, it regulates the expression of genes involved in fatty acid metabolism and
mitochondrial biogenesis, which maintains the energy metabolism of seminiferous tubules.
Another example of a gene stimulated by FSH is the Aquaporin 8 (Aqp8), which is involved
in maintaining the water balance of Sertoli cells [160].

Still, regarding the role FSH in male germ cells, it regulates and limits the wave of
apoptosis of germ cells during the initial phase of spermatogenesis, which is crucial for
maintaining the critical number of cells between some stages of germ cells and Sertoli cells,
as the interaction between these two can reduce the efficiency of spermatogenesis [105,161]
in addition to increasing spermatogonial differentiation through the glial cell line derived
from neurotrophic factor (GDNF) and fibroblast growth factor 2 (FGF2), acquired by Sertoli
cells from FSH stimulation. Hence, FSH acts by stimulating spermatogonial proliferation
and entry into meiosis [105].

In general, the main effects of FSH were shown to be similar in rodents, primates,
and other mammals [149]. However, some differences exist between humans and other
primates in terms of sensitivity to FSH by sperm subtypes, and it was observed that type A
sperm are more sensitive to gonadotropin suppression in nonhuman primates [110,161].
Additionally, both spermatogonia proliferation and the start of meiosis were shown to be
more hormonally sensitive in primates than in rodents, resulting in a greater need for FSH
in primates to ensure fertility [160]. Rodents can complete spermatogenesis without FSH
stimulation, but its deficiency significantly decreases sperm quantity. Xenotransplantation
of canine spermatogonial stem cells (SSCs) into mice testicular tissues was found to promote
spermatogenesis in infertile mice when regulated by FSH [162].

4. Influence of FSH on Germ Cells

This section discusses the role of FSH in GCs and Sertoli cells and, indirectly, in germ cells
in mammalian males. For more than 10 years, the specific action of gonadotropins in these
cells has been discussed, mainly focusing on which pathways and genes are activated during
folliculogenesis and spermatogenesis; however, few in vivo studies have addressed the role
of FSH in germ cells as they constitute the population of undifferentiated spermatogonia.

4.1. Females: Granulosa Cells

In mammalian females, FSH binds to specific transmembrane receptors (FSHRs)
located on the membrane of the granulosa cells (GCs) of developing follicles, and, conse-
quently, affects fertility [44]. The granulosa cells arise during the primordial follicle phase
arise as flat cells, through the epithelial–mesenchymal transition, surrounding the oocyte.
GCs are the only somatic cells that closely interact with the oocyte from the moment of
follicular formation until ovulation [163]; therefore, they are the first cell type in the ovary
that provides an adequate environment with the physical and chemical conditions for
oocyte development and maturation [164].

FSH acts in folliculogenesis, including in the induction of GCs proliferation [165,166]
and stimulation of GCs estrogen (i.e., estrone and estradiol) production, via aromatase
(CYP19A1) conversion of the androgens produced by theca cells (i.e., dehydroepiandros-
terone (DHEA), androstenediol, androstenedione, and testosterone) from cholesterol in
response to LH [163,167]. Physiological responses to FSH during this process occur by
activating multiple signaling pathways that regulate the expression of specific target
genes [168–170]. In pigs, it was shown that FSH regulates several genes in vitro when GCs
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were analyzed [171]. In pre-antral granulosa cells, the activation of protein kinase A (PKA),
which is a major regulator of transcription factors, showed dependency on FSH to drive
the differentiation of granulosa cells (Figure 2B) (reviewed in [168]).

Recently, a study in mice showed that FSH can be involved in ovarian cell devel-
opment through the regulation of OCT4 expression in granulosa cells at the preantral
to early antral transition stage of follicles via the glycogen synthase kinase (GSK)-3β/β-
catenin pathway, and this response was found to be mediated by the phosphoinositide
3-kinases/serine/threonine kinase (PI3K/Akt) signaling pathway [172]. In many species,
GCs from preantral (at the secondary follicle stage) and antral follicles at different stages of
follicular growth were shown to express FSHR [126–128].

The interaction of FSH–FSHR promotes the differentiation of GCs and the maturation
of follicles [173]. Specifically, FSH connects to the FSHR on the surface of GCs, activates
adenylyl cyclase (AC), and stimulates the proliferation of GCs by activating the cyclic
adenosine monophosphate/protein kinase A (cAMP/PKA), mitogen-activated protein
kinase/extracellular signal-regulated kinase (MAPK/ERK), and PI3K/Akt pathways. In
particular, cAMP/PKA promotes the phosphorylation of the cyclic AMP response element
binding (CREB) protein and other proteins that promote increased expression of genes
that encode growth factors and proteins involved in steroid hormone production and
cellular growth. This gonadotropin, via PI3K/Akt pathway, can also impede the apop-
tosis of GCs [30,174,175]. However, the mechanism through which FSH stimulates the
differentiation of the cells is still unclear (Figure 2B).

The granulosa cells (GCs) from primary and preantral follicles secrete anti-Müllerian
hormone (AMH), which acts in folliculogenesis mainly by decreasing the sensitivity of
preantral follicles to FSH and, consequently, decreases the aromatase expression promoting
dominant follicle selection. AMH also inhibits the primordial follicular growth of the
ovarian reserve, thus negatively regulating the follicle growth [142]. The evidence of
the AMH effect was confirmed by administration of FSH in pre-pubertal AMH (−/−)
knockout mice, increasing the follicle growth rate [176]; similar results were reported in
humans when AMH was added to an in vitro culture of GCs [177]. AMH was shown
to be present at high levels in puberty once this period presented high rates of oocyte
maturation and at low levels in menopause [178]. Other pathways have been reported to
control the regulation of follicular and oocyte development, e.g., the BMP-SMAD1/5/8
pathway is essential in follicular activation and development, GCs proliferation, atresia, and
luteinization, and the Notch pathway is activated by gonadotrophins, which is important
in oocyte development [179–181].

As reviewed [118], the GCs of early antral follicles are stimulated by FSH, which
induces LH receptor formation on GCs from the pre-ovulatory follicle. Then, the maturing
follicle reduces its dependency on FSH by acquiring LH receptors and LH responsiveness.
Without the stimulation of FSH, the follicle does not develop and atresia occurs [126]. In
women and cows, differently from other species such as mice, only a single follicle is
selected to ovulate every cycle; and this selected (dominant) follicle phase surges after
the FSH peak. The dominant follicles (DF) are at the more advanced stage of maturation,
they are growing, and more FSH-sensitive. The transition from FSH- to LH-dependence
is considered necessary for their continued development and further ovulation after LH
peak [117,182,183].

Recently, researchers have discussed that FSH action on GCs can be influenced by
androgens, such as testosterone or dihydrotestosterone. In human and non-human pri-
mates, these androgens positively impact granulosa cell stimulation by FSH. Furthermore,
androgens were shown to significantly increase the amounts of FSHR mRNA in the pre-
ovulatory follicles of post-pubertal pigs. In addition, FSHR may modulate and impact cell
death signals in ovarian cells [30,184,185].

Other cells are indirectly stimulated by FSH; for example, cumulus cells (COCs) and
very small embryonic-like stem cells (VSELs). During the transition phase from the pre-
antral to the antral follicle, the differentiation of granulosa cells into cumulus cells depends
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on oocyte signals and the indirect action of FSH. An in vivo study reported the importance
of FSH endocrine in the cumulus expansion and cumulus cell signaling network through
epidermal growth factor (EGF) and the FSH-CAMP-PKA pathways. One of these studies
was performed with FSHβ −/− mice and showed that these animals were unable to form
large antral follicles or express epidermal growth factor receptor (EGFR) in the disturbed
follicle, promote meiotic oocyte progression, or differentiate cumulus cells. However, all of
these functions were recovered when the follicles were exposed to exogenous FSH [138].
Furthermore, exposure of porcine COCs from antral follicles to exogenous FSH promoted
EGF induction via EGFR [186], a fundamental factor in oocyte maturation, cumulus expan-
sion, and ovulation. However, Richani and Gilhris [187] stated that this FSH interaction
alone is insufficient, and other interactions between hormone signaling and paracrine
oocyte signals are necessary to influence EGF functionality in COCs.

Bhartiya and Singh [188] discussed the regulation of FSH–FSHR on ovarian stem
cells (OSCs) localized on the surface of ovarian epithelial cells (OSE). OSEs were reported
to comprise two distinct cell populations of stem cells: very small embryonic-like stem
cells (VSELs) and ovarian stem cells (OSCs). They are responsible for the neogenesis
and assembly of the primordial follicle in adulthood [189–191]. VSELs, together with
OSCs/ovarian germline stem cells (OGSCs), have been found in mouse, rabbit, sheep,
monkey, and human ovaries [188,190,192,193]. VSELs and OSCs are understudied cells
that have generated considerable discussion; however, cells are capable of self-renewal and
giving rise to ovarian stem cells (OSCs), which rapidly divide, form germ cell nests, and
differentiate into oocytes [188,194].

FSH modulates the VSEL and OSC populations. According to Patel et al. [195], FSH
exerts direct action through the expression of FSHR3 in these cells via the MAPK/ERK
pathway (suggesting the involvement of FSHR3). This FSHR3-mediated action of FSH on
OSE was implicated in ovarian biology as well as pathology [195]. FSHR3 (specifically
in exon 11) is one of the four known alternative splicing isoforms of FSHR (R1, R2, R3,
and R4) [196]. Specifically, FSHR3 is a fundamental and abundantly expressed transcript
related to follicular processes and ovarian cancer cells. Studies showed that high levels of
FSH gonadotropin or mutation in FSH-FSHR3 in OSE may result in menopause, and are
most probably responsible for various pathologies such as premature ovarian failure (POF)
and cancer [188]. Therefore, with the elevated FSH level associated with advancing age,
the somatic microenvironment is compromised. Thus, the oocytes do not differentiate, and
senescence occurs (menopause in women). In this situation, OSE can undergo uncontrolled
proliferation, resulting in ovarian cancer [197]. More detailed studies are still needed to
better understand ovarian biology, the influence of FSH in the niche of cells that results in
menopause, and pathologies with cancer and premature ovarian failure.

4.2. Males: Sertoli Cells and Spermatogonial Stem Cells (SSCs)

Sertoli cells are the only cell in the seminiferous tubules that present FSH receptors
(FSHRs); through these, FSH controls the function of these cells, thereby exerting indirect
action in spermatogenesis modulation, germ cell survival, and male fertility. The Sertoli
cells are essential for the spermatogenesis process, providing nutritional and structural
support for functional germ cells. They are fundamental to protecting germ cells through
the blood–testis barrier (BTB) and through the production of immunomodulatory factors [1].
In addition, Sertoli cells control the germinal stem cells niche and create an adequate
microenvironment for germ cell development [112] (Figure 3B).

During the prepubertal phase in rodents, Sertoli cells mature and the first cycle
of spermatogenesis is completed; these events are associated with an increase in FSH
secretion [113]. To confirm the influence of FSH on germ cells, a study in mice showed that
the lack of FSH or FSHR does not lead to azoospermia or sterility; however, it decreases
testis size and the number of germ cells, mainly spermatocyte and spermatogonia cells, to
<50% [198,199]. This occurs because the lack of FSH reduces the Sertoli cell number and
the capacity to support and nurture germ cells [1]. In primates, for example, humans, the
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abolition of FSH secretion or action will not prevent either the initiation or the maintenance
(qualitative) of spermatogenesis and, therefore, does not lead to azoospermia. However,
the quality of the sperm produced in the absence of FSH remains to be determined [110].

Ruwanpura et al. [149] reviewed the influence of FSH on spermatogonial and other
types of germ cells (spermatocytes and spermatids) in rodents and humans. The authors
stated that FSH has little effect on the proliferation of germ cells in vivo compared to
in vitro, which may be related to a low concentration of FSH. However, studies with trans-
genic rats and mice showed that the FSH level regulates the survival of the spermatogonial
population and spermiation process [200]. In rats, changes in FSH level may result in
a time-dependent change in the differentiation of the number of type A/intermediate
spermatogonia [200], mainly with the A3–A4 spermatogonia in stages XIV–I [201] and
specific stages of the seminiferous tubules (XIV–III and VI–VIII) [202].

In primates, two morphologically distinct types of undifferentiated spermatogonia
were described in the testes of Rhesus macaques, and these cells were designated A1 and
A2, later renamed Adark and Apale, respectively, representing the reserve and renewing
stem cells, respectively [203–207]. The shift in the number of spermatogonial type A to
type B spermatogonia and alteration in the proliferation of spermatogonial type Apale
were observed when gonadotrophin was suppressed [208,209]. Studies in humans showed
that FSH suppression for 12 weeks might promote the decrease in spermatogonia type B
(10–20% of control) and type Apale (40%) numbers [210].

In other germ cells, such as spermatocytes, the role of FSH is still not entirely clear [149],
and studies suggest that FSH may have a role in meiosis and spermiogenesis, affecting
sperm population [149,159]. According to Eto et al. [211,212], in murine testes, the possible
actions of FSH in the progress of meiosis occur via nociceptin/OPRL1 (Opioid Related
Nociceptin Receptor 1), which is upregulated via cAMP/PKA/CREB. They suggested that
the high FSH level stimulated Sertoli cells to produce nociceptin (neuropeptide), which
binds to nociceptin receptor (OPRL1), localized in the plasma membrane of spermatocytes,
to promote REC8 phosphorylation, which is responsible for meiotic chromosomes during
meiosis. In addition, FSH, together with retinoic acid (RA), promotes meiosis through the
induction of Sertoli cells expressing the neuregulin 1 (NRG1) and NRG3 with their receptor
protein-tyrosine kinase ErbB-4 (ERBB4) in pre-spermatocytes, indicating the possible action
of FSH in the progression of meiosis via nociceptin/OPRL1 [213].

FSH might support meiosis in mice by maintaining preleptotene spermatocytes and
partially maintaining pachytene spermatocytes; the absence of FSH may reduce stage VII
pachytene spermatocyte numbers when the androgenic level is normal [201]. In humans,
however, FSH alone appears not to play an essential role in the processes of meiosis and
spermiogenesis; it must act alongside LH in the maintenance of spermatocytes. Similar to
that described in rodents, FSH and testosterone act as survival factors for spermatocytes
and spermatids [214]. In conclusion, the studies showed that FSH is essential for first-wave
spermatogenesis (it is able to support mitosis and meiosis in this phase), survival, and self-
renewal of the spermatogonial population. However, FSH together with other factors, such
as androgen, LH, or testosterone, is necessary to complete meiosis and spermiogenesis.

Currently, it is accepted that the biological effect of FSH may occur through the FSHR
found in Sertoli cells, which stimulates these cells to secrete factors that regulate undifferen-
tiated spermatogonia, promoting the self-renewal and maturation of these cells. Specifically,
Sertoli cells secrete many factors linked to self-renewal such as glial cell-line-derived neu-
rotrophic factor (GDNF) and fibroblast growth factor 2 (FGF2); and differentiation and
proliferation of spermatogonia stem cells (SSCs) such as bone morphogenetic protein
(BMP4), activin A, and others, such as the tyrosine-kinase receptor c-kit ligand, (stem
cell factor—SCF or KIT ligand—KL), in response to FSH stimulus. Also, germ cells may
generate signals that control, locally, the balance of GDNF vs. BMP4 and KL [7] (Figure 3B).

GDNF is the paracrine factor responsible for the maintenance and self-renewal of
SSCs, and the differentiation of spermatogonia is inhibited by activating the zinc finger
BTB domain containing 16 (ZBTB16) and Lin-28 homolog B (LIN28B) [215–217]. In par-
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ticular, FSH connects with the FSHR in the membrane of Sertoli cells that secrete GDNF,
which, in turn, acts via RET tyrosine kinase, which requires a ligand-specific co-receptor
GDNF family receptor alpha 1 (GFRα1), localized in the membrane of undifferentiated
spermatogonia to promote self-renewal [216–220]. This GDNF–RET connection activates
the tyrosine 1062 pathways, which are fundamental to the self-renewal process [221].
GDNF-induced SSC self-renewal and survival occurs through multiple pathways such
as AKT/MEK, AKT, and Src family kinase (SFK) [222]. The MEK signaling pathways in
SSCs promote the increased generation of reactive oxygen species (ROS) generated by
NADPH oxidase 1 and stimulate SSC proliferation and self-renewal through the activation
of p38 and JNK MAPKs [223]. This was shown in mice; GDNF signaling is fundamental to
maintain NANOS2 expression in SSCs. NANOS2 is important for inhibiting meiosis in fetal
gonocytes, and preventing spermatogonial differentiation in the post-natal testes [224,225]
(Figure 3B).

Recently, it was found that the effect of GDNF on SSCs is related to the activation
of AKT and the Src family kinase (SFK) signaling pathway [226]. The phosphoinositide
3-kinase (PI3K)/AKT pathway influences the self-renewing divisions of SSCs and inhibits
apoptosis; it is also involved in the activation of mTORC1 [227,228] through the SFK
signaling pathway. GDNF upregulates specific SSCs genes such as B cell CLL/lymphoma 6,
member B (BCL6B), ETS variant gene 5 (ETV5), Lim homeobox protein 1 (LHX1), DNA-
binding protein 4 (ID4), Brachyury (T), and POU class 3 homeobox 1 (POU3F1) [226,229].
Some of these transcription factors, such as BCL6, EVT5, ID4, FGFR1, and RET, were found
to be highly expressed in gonocytes and SSCs from mice and SSCs from prepubertal human
testes [230]. GDNF also acts in the canonical RAS/ERK1/2 pathway, which is important
for the proliferation and self-renewal of these cells by phosphorylation and activation
of CREB1, ATF1, CREM, and c-FOS factors [226,231–233]. Overall, it is clear that active
signaling of GDNF in vivo mainly acts in the maintenance of the undifferentiated state of
SSCs and, in vitro, stimulates the proliferation of immature Sertoli cells [234] (Figure 3B).

In mouse testes, the highest number of undifferentiated spermatogonia was ob-
served after the overexpression of GDNF [235], which promotes self-renewal of SSCs,
whereas a lower level stimulates the differentiation of these cells [216,236]. Furthermore,
heterozygotic-GDNF-deficient mice are fertile. In addition, it was found that spermatoge-
nesis deteriorates with age as germ cells deplete, similar to what is observed in humans.
This suggests that GDNF can also influence the differentiation of SSCs [216], suggesting
that GDNF also influences the differentiation of SSCs.

In other species, such as canines, FSH might affect these cells in vitro and in vivo. In
one study, the authors found that canine SSC (cSSCs) numbers increased in vitro in the
presence of FSH. When cSSCs were transplanted in chemoablated mouse testes, cSSCs were
found in seminiferous tubules. We discussed this paracrine effect of FSH as being possible
via Sertoli cells, which express FSHR and secrete more GDNF in the presence of FSH,
resulting in increased numbers of SSCs [162]. Other in vitro studies with bovine and mouse
SSCs demonstrated the influence of FSH in the self-renewal and proliferation processes
mediated by GDNF and FGF2 [237], confirmed by the expression of GFRα1 [238,239].

5. Influence of FSH in Germ Cells In Vitro

Studies in animals and humans showed that FSH may positively affect the germ
cells of males (Sertoli and spermatogonial stem cells) and females (oocyte and follicle)
in vitro. In this environment, FSH may facilitate the development of the antral follicle, and
increase oocyte quality and SSCs proliferation. In addition, this hormone supports the
differentiation of primordial germ-cells-like cells (PGCLCs) into mature germ cells. Hence,
we herein describe some studies that used FSH to create an in vitro environment similar to
the in vivo environment.

FSH acts on follicular development and growth in females; a role is also played in
in vitro models during the early stages of folliculogenesis [2,240,241]. However, the effects
of FSH in culture may vary according to several factors, such as FSH source and concen-
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tration, species, and even culture system (reviewed by [213]). In humans, low doses of
FSH associated with activin were shown to increase oocyte quality [242], whereas, in other
non-human primates (Rhesus monkeys), the absence of FSH in in vitro culture resulted in
non-surviving secondary follicles [243], unless the medium was supplemented with ovar-
ian steroid hormones [244]. Amongst domestic species, FSH has presented diverse effects
during in vitro culture. In bovines and caprines, media containing FSH supplementation
combined with other factors increased oocyte maturation rates [241,245–247].

During in vitro culture and maturation of canine oocytes, however, Lee et al. found
that FSH increases cumulus cells expansion and affects nuclear maturation rates, but not
with the same intensity as other domestic species [248]. Hu et al. reported increased
numbers of metaphase I and metaphase II oocytes when in vitro maturation media were
supplemented with FSH, estradiol, and progesterone; however, differences among groups
were not significant [249]. Furthermore, in domestic cats, higher oocyte maturation rates
were detected in those cultured with an association of FSH, LH, and estradiol [250].

In males, some in vitro models were used to determine the influence of FSH in the
spermatogenesis [26], survival, proliferation, and self-renewal of spermatogonial stem
cells (SSCs) [6]. The induction and maintenance of spermatogenesis are multihormonal-
pathways-dependent; in addition, FSH, testosterone, and LH play essential roles in this
process [6,251].

In vitro spermatogenesis showed dependence on FSH and used a co-culture of Ser-
toli cells and SSCs [6]. In association with testosterone, FSH prevents human germ cell
apoptosis [252]; the Sertoli cells become able to bind round spermatids by FSH. Tesarik
and collaborators [253,254] showed that a high concentration of FSH in an in vitro culture
is associated with the morphological changes presented in round spermatids in humans.
Furthermore, FSH stimulates meiosis II and late spermatid differentiation, and, in those
processes, testosterone can potentialize FSH’s action [255].

In mice, the proliferation of Sertoli cells in vitro and the mitosis and meiosis events in
germ cells development were promoted with FSH stimulation in the absence of LH [256].
Likewise, in humans, the authors [257] demonstrated that FSH and testosterone positively
affect meiotic division and the reduction in germ cell apoptosis. FSH supplementation in
an in vitro culture of cSSCs promoted an increased rate of proliferation and self-renewal,
confirmed by the increased numbers of GFRα1-positive cells (receptor of GDNF in SSCs)
and the formation of germ cell clumps in vitro [162]. In vitro studies in animal models
on the effect of FSH in male species other than dog [162] or mouse/rat [1,159,258] are
still needed.

Primordial germ-cells-like cells (PGCLCs) were generated in vitro from both iPSCs
and ESCs, even generating viable offspring in mice [259]. This methodology is a significant
advancement in the field of assisted reproduction and animal preservation [162], and has
been applied to different species, such as mice [259–261], humans [262,263], nonhuman
primates [264], pigs [265], and goats [266], although more robust results were achieved in
mice. Supplementation with FSH, bovine pituitary extract, and testosterone resulted in an
increased percentage of mouse ES-derived PGCLCS completing meiosis in vitro, resulting
in spermatid-like cells (SLCs) [267]. In humans, supplementation with FSH associated
with growth factors and other hormones resulted in ESCs/iPSCs-derived SSCLCs capable
of in vitro propagation and differentiation into spermatocytes and haploid cells [262].
Furthermore, FSH supplementation during in vitro growth and maturation was used for
the generation of mouse iPSC- and ESC-derived oocytes in vitro [268] (Table 1).
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Table 1. The use of FSH in vitro to SSCLCs generation and oocyte maturation from ESCs or iP-
SCs cells.

Species Cell Type FSH Supplementation Outcome Author

Mouse ESCs and iPSCs
FSH on in vitro growth

media and in vitro
maturation media

Mature oocytes/viable
offspring [259]

Human ESCs and iPSCs
Recombinant human

FSH in SSCLCs
generation media

Human spermatogonial
stem cells, further
differentiation into
spermatocytes and

haploid cells

[262]

Mouse ESCs

Spermatogenesis
induction media

contains FSH,
testosterone, and bovine

pituitary extract

Haploid spermatid-like
cells/viable offspring [267]

6. Conclusions

For decades, the role of gonadotropins during reproductive life has been discussed,
mainly concerning the signaling pathways and genes that are regulated by these hormones.
Technological advances have allowed us to further understand the role of hormones in
germ cells, although many studies have been conducted in rodents. As discussed in this
review, gonadotropins (LH and FSH) play a key role in fertility. In both sexes, FSH exerts
its action through receptors (FSHR) located on target cells in the testes and ovaries (Sertoli
and granulosa cells). Some studies even found that these receptors can also be detected in
other cells of extra-gonadal tissues such as VSELs.

FSH begins its activity after birth in females, although FSHR has been detected in
primary follicular cells. This role is intensified in adult life, when this hormone, through
FHSR located in GCs, promotes follicular growth and maturation, acting on pre-antral and
antral follicles. Therefore, women and rodents deficient in FSHRs present a blockage in the
production of follicles, becoming infertile. In mammalian males, FSH directly influences
Sertoli cell proliferation during fetal and neonatal life and, consequently, spermatogenesis
and sperm production in adulthood. These cells are the main target of FSH in the seminif-
erous tubules. Thus, through FSHR located in the membrane of Sertoli cells, FSH binds to
these cells and stimulates the release of factors that help in self-renewal, such as GDNF and
FGF2, and the differentiation (BMP4, activin A, and KL) of SSCs. Therefore, FSH deficiency
in mice and humans can reduce spermatogenesis and azoospermia in some cases. In vitro,
some studies with SSCs proved the influence of FSH in these processes in the germline.
Recently, it was shown that the addition of FSH with other factors (such as testosterone)
could promote the differentiation of PGCLCs into mature gametes in vitro.
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