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REVIEW ARTICLE

A roadmap for development of neuro-oscillations as
translational biomarkers for treatment development in
neuropsychopharmacology
Daniel C. Javitt1,2, Steven J. Siegel3, Kevin M. Spencer 4, Daniel H. Mathalon5, L. Elliot Hong6, Antigona Martinez1,2, Cindy L. Ehlers7,
Atheir I. Abbas 8,9,10, Tobias Teichert11, Peter Lakatos2 and Thilo Womelsdorf 12

New treatment development for psychiatric disorders depends critically upon the development of physiological measures that can
accurately translate between preclinical animal models and clinical human studies. Such measures can be used both as stratification
biomarkers to define pathophysiologically homogeneous patient populations and as target engagement biomarkers to verify
similarity of effects across preclinical and clinical intervention. Traditional “time-domain” event-related potentials (ERP) have been
used translationally to date but are limited by the significant differences in timing and distribution across rodent, monkey and
human studies. By contrast, neuro-oscillatory responses, analyzed within the “time-frequency” domain, are relatively preserved
across species permitting more precise translational comparisons. Moreover, neuro-oscillatory responses are increasingly being
mapped to local circuit mechanisms and may be useful for investigating effects of both pharmacological and neuromodulatory
interventions on excitatory/inhibitory balance. The present paper provides a roadmap for development of neuro-oscillatory
responses as translational biomarkers in neuropsychiatric treatment development.

Neuropsychopharmacology (2020) 45:1411–1422; https://doi.org/10.1038/s41386-020-0697-9

INTRODUCTION
New treatment development in psychiatry depends on the
availability of biomarkers that permit translation between
preclinical and clinical research. Event related potential (ERP)-
based measures, such as auditory N1, mismatch negativity (MMN)
or P300, have proven among the strongest biomarkers of brain
dysfunction in schizophrenia [1, 2], but translational utility of these
measures has been hampered by the significant differences in
timing, polarity and scalp distribution across species. Here, we
review the degree to which recent advances in the use of neuro-
oscillatory approaches to analyze both human and rodent ERP
data permits greater utility and rigor within translational research.
For ERPs, continuous electroencephalographic activity (EEG) is

recorded along with the timing of “events,” such as auditory/visual
stimuli or motor responses. The continuous EEG is then
segmented into discrete epochs relative to the timing tags. In
traditional ERP approaches, the epochs are then averaged within
the “time domain,” giving rise to a series of positive and negative
peaks that vary across time and scalp distribution. Peaks with
consistent polarity, timing, scalp distribution and response to
parametric manipulation (e.g. loudness, probability) are termed

“components” (e.g. refs. [3, 4]). While effective, ERPs capture only a
small portion of the information inherent in the EEG signal [5].
Oscillatory analyses of EEG/ERP data depend on the use of

spectral decomposition or “time-frequency” (TF) analysis. In
spectral analyses, data are analyzed as a function of amplitude
(or power) over time within specific frequency-bands. While
computationally more demanding than traditional ERP analyses,
such approaches potentially provide greater insights into under-
lying physiological mechanisms, as well as greater ability to
translate between human and animal studies in relationship to the
oscillatory “connectome” [6]. Here we provide an overview of
current translational usage of both time- and TF (“spectral”)
approaches for the analysis of ERP data, as well as a roadmap for
studies needed to further validate translational neuro-oscillatory
approaches to support novel treatment development.

COMPUTATIONAL ASPECTS OF NEURO-OSCILLATORY
ACTIVITY
Neuro-oscillatory activity is typically analyzed in discrete
frequency-bands that were originally described based on

Received: 6 December 2019 Revised: 16 March 2020 Accepted: 27 April 2020
Published online: 6 May 2020

1Department of Psychiatry, Columbia University Medical Center, New York, NY 10032, USA; 2Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research,
Orangeburg, NY 10954, USA; 3Department of Psychiatry and Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
4Research Service, VA Boston Healthcare System, and Dept. of Psychiatry, Harvard Medical School, Boston, MA 02130, USA; 5VA San Francisco Healthcare System, University of
California, San Francisco, San Francisco, CA 94121, USA; 6Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore,
MD, USA; 7Department of Neuroscience, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA 92037, USA; 8VA Portland Health Care System, Portland, OR 97239,
USA; 9Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA; 10Department of Psychiatry, Oregon Health & Science University,
Portland, OR 97239, USA; 11Departments of Psychiatry and Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA and 12Department of Psychology, Vanderbilt
University, Nashville, TN 37203, USA
Correspondence: Daniel C. Javitt (dcj2113@cumc.columbia.edu)

www.nature.com/npp

© The Author(s), under exclusive licence to American College of Neuropsychopharmacology 2020

1
2
3
4
5
6
7
8
9
0
()
;,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41386-020-0697-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41386-020-0697-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41386-020-0697-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41386-020-0697-9&domain=pdf
http://orcid.org/0000-0002-5500-7627
http://orcid.org/0000-0002-5500-7627
http://orcid.org/0000-0002-5500-7627
http://orcid.org/0000-0002-5500-7627
http://orcid.org/0000-0002-5500-7627
http://orcid.org/0000-0002-7080-3509
http://orcid.org/0000-0002-7080-3509
http://orcid.org/0000-0002-7080-3509
http://orcid.org/0000-0002-7080-3509
http://orcid.org/0000-0002-7080-3509
http://orcid.org/0000-0001-6921-4187
http://orcid.org/0000-0001-6921-4187
http://orcid.org/0000-0001-6921-4187
http://orcid.org/0000-0001-6921-4187
http://orcid.org/0000-0001-6921-4187
mailto:dcj2113@cumc.columbia.edu
www.nature.com/npp


empirical observation and are named in order of discovery. Thus,
alpha (8–12 Hz) rhythms, which predominate over occipital brain
regions during wakefulness, were first described in the 1920s
based upon changes in amplitude during eyes-closed vs. eyes-
open conditions [7]. Beta (12–24 Hz) rhythms were described
shortly thereafter based upon pre-movement activity over
motor cortex [8]; gamma (>24 Hz) rhythms based on “psychical
activation” [9], delta (1–4 Hz) rhythms based on sleep [10]; and
theta (4–7 Hz) rhythms based on psychomotor seizures [11]
(Table 1).
Despite the empirical origins of these rhythms, ongoing

research has reified these definitions and has begun to
characterize the underlying neural mechanisms [12, 13]. Given
the limited number of frequency-bands relative to the number of
potential cellular/network generation mechanisms, it is clear that
multiple mechanisms may contribute to activity within each band.
Specific generator mechanisms may also cross traditional
frequency-bands [14]. Nevertheless, current nomenclature permits
efficient communication of results [13].

EVOKED VS. SINGLE-TRIAL SPECTRAL ANALYSIS
Within each frequency-band, several measures are obtained that
offer complementary information regarding underlying generator
mechanisms (Fig. 1). Specific measures obtained from TF analyses
include (1) evoked-power, (2) single-trial power, (3) intertrial
coherence (ITC) [15]—also termed phase-locking factor (PLF)
[16, 17], and (4) event-related desynchronization (Fig. 1a, left).
These measures all provide mechanistic information that is lost in
traditional time-domain ERP approaches.
Evoked-power (“power of the average”) represents the spectral

decomposition of the traditional ERP into the TF-domain and
permits differentiation of spectral components that are super-
imposed in the traditional ERP. Any of a number of TF
decomposition approaches may be used, including fast Fourier
transform (FFT) or Wavelet decomposition (e.g. “Morlets” [18]). For
wavelets, the number of cycles (typically 3–6) is tailored to specific
frequency-bands [19, 20].
Single-trial power (“average of the power”) is calculated by first

decomposing each individual response into the TF-domain and
then averaging the single trials (Fig. 1a, right). An additional
measure, “induced power”, may be obtained by subtracting or
regressing evoked-power from total power [21, 22], isolating
components that are not phase-locked. As with evoked-power,
total single-trial power is typically represented in μV² (or single-
trial amplitude as μV),
Intertrial coherence (ITC, PLF) represents the consistency of

responses across trials, and is represented as percentage (0–1), or
percent (0–100%) coherence across trials. Traditional evoked
responses may reflect either pure phase-resetting of ongoing
oscillatory activity, pure added power, or a combination, which
can only be determined by single-trial analyses [23, 24]. Moreover,
these processes may be differentially mediated by driver vs.
modulatory inputs from thalamus to cortex (e.g. [25]).
Event-related desynchronizations (ERD) represent a reduction in

ongoing power following stimulus presentation. Conceptually,
surface-recorded oscillatory activity is largest when individual
local-circuit ensembles oscillate in-phase with each other, leading
to summation at a distance [26]. By contrast, when ensembles
desynchronize as occurs when individual ensembles are brought
“on-line” for cognitive operations, the surface-recorded activity
decreases. ERD are particularly relevant for alpha activity, which
increases with eye-closure and is thought to represent “idling” of
the visual system. Alpha amplitude is reduced tonically during
visual attention (vs. rest) and phasically by individual stimuli,
leading to a stimulus-driven alpha ERD [27, 28].
Examples of these processes are shown in Figs. 1 and 2.

Figure 1b shows a paradigm in which visual responses areTa
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obtained both to the onset of a stimulus and its subsequent
motion. In the traditional time-domain ERP both responses are
represented simply as positive and negative peaks in the
waveform (Fig. 1a). By contrast, in TF analyses, the two separate
response types are resolved into different underlying frequency
bands (Fig. 1c), suggesting that different local circuit ensemble
types are involved. Similar representations are observed in
evoked-power and ITC measures.
Total power measures provide complementary information. For

example, in addition to the evoked activity, stimulus presentation
also desynchronizes ongoing alpha activity (Fig. 1c, asterisk),
which is thought to reflect bringing the region “on-line”. This
effect is further highlighted by correcting for baseline activity
(Fig. 1d). Similarly, in gamma steady-state paradigms, presentation
of auditory stimuli aligns ongoing gamma activity, leading to an
increase in evoked-power and ITC. By contrast, stimulus-induced
changes in gamma power that are not phase-locked will not
appear in time-domain or evoked-power analyses and will only be
detectable using single-trial measures (Fig. 2).
Significant coupling also occurs between frequencies. Typically,

frequencies are hierarchically organized such that peaks of high-
frequency activity occur at specific phases of the low-frequency
cycle (“phase-amplitude coupling”) [29–32]. In general, oscillatory
activity represents an interplay between excitatory glutamatergic
pyramidal neurons in cortex and local circuit GABAergic inter-
neurons, modulated by additional neurotransmitter systems, and

thus may be particularly useful as indices of excitation/inhibition
(E/I) balance across disorders [26, 33–35].

CLINICAL FINDINGS
The majority of clinical studies using spectral decomposition
approaches have focused on gamma activity, which may also be
derived from narrow-band filtering of the traditional ERP. More
recent studies have explored the spectral content of validated ERP
measures such as auditory MMN, visual P1 or task-related P300.
Single-trial analysis studies have also investigated alpha and beta
ERD as measures of task engagement during sensory and
cognitive processing.

Gamma
Gamma deficits have been studied extensively in schizophrenia
using both auditory steady-state response (ASSR) and evoked-
activity paradigms. For ASSR, stimuli are presented at 40-Hz
permitting assessment of integrity of gamma-generating circuit
elements. Deficits in ASSR have been widely replicated across the
psychosis spectrum [36–43] and in relevant genetic risk syn-
dromes (e.g. 22q11) [44], although literature in autism spectrum
disorder (ASD) is conflicting [45]. Progressive reduction in auditory
evoked gamma is seen over time in first-episode schizophrenia
patients, but not in clinical high risk (CHR), suggesting that evoked

Fig. 1 Illustration of differential information obtained from evoked and single-trial analyses. a Schematic diagram of processing scheme.
Unshaded boxes represent time-domain measures. Shaded boxes represent time-frequency (TF) domain or “spectral” measures. For time-
domain measures, random EEG activity and waves that are not time or phase-locked to event onsets do not survive signal averaging across
epochs and are not captured in the ERP (see also Fig. 2). TF decomposition can be applied either to averaged time-domain files, yielding
evoked-power analyses, or to the single-trials prior to averaging, yielding separate assessments of intertrial coherence (ITC) and total power
(evoked+ induced). Estimation of power from the single trial epochs preserves and quantifies all of the neuro-oscillatory activity present,
irrespective of whether the oscillations elicited by the event are “evoked” or “induced”. Total ongoing power in humans tends to be dominated
by ongoing alpha activity. Therefore, total power is typically baseline corrected to permit better visualization of stimulus-induced changes.
b Cartoon of the recently developed interleaved visual presentation paradigm (“JH-Flkr”) showing initial stimulus onset at 0 msec, followed by
motion onset at 600msec and steady-state stimulation onset at 1400msec. c Time-frequency plots for Evoked-Power, Intertrial coherence (ITC,
“phase locking”), Ongoing (i.e. non-baseline corrected) single-trial Total Power and Baseline corrected total power. Note that the response
evoked by stimulus onset occurs primarily in the theta frequency range (solid box) and is accompanied by alterations in both ITC and total
power. By contrast, the response evoked by motion onset occurs primarily in the delta frequency range (dashed box) and is associated with
alterations only in ITC but not total power, suggesting differential underlying local circuit mechanisms. Finally, the stimulus-induced alpha
event-related desynchronization (ERD) (asterisk) is not associated with alterations in either evoked-power or ITC but appears only in single-trial
power analyses. Adapted from ref. [61] .
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gamma may index progressive neurodegenerative processes that
occur over the early course of the illness [46].

Theta
Deficits in theta frequency responses are observed prominently
during both auditory and visual processing in schizophrenia.
Deficits in early auditory processing, including impaired N1 [47]
and MMN [48–50] generation have been demonstrated consis-
tently in schizophrenia, including prodromal phases of the illness
[51–53]. Both N1 and MMN were subsequently mapped into the
theta-frequency-band using narrow spectral filtering [54] as well
as more comprehensive TF approaches [33, 55–59] (Fig. 3).
In the visual system, sensory-driven P1 potentials also show

prominent activity in the theta frequency range and are reduced
in schizophrenia, particularly in response to low spatial frequency,
magnocellular-biased stimuli [60–62]. Visual fixation-related
potentials (FRP) also reflect primarily phase-reset of ongoing theta
frequency rhythms and are also significantly reduced in schizo-
phrenia [63]. Finally, theta activation over frontal regions may
index adaptive cognitive controls [64, 65], including response
inhibition [64, 66], and thus may index impairments of these
processes in schizophrenia.
As opposed to the reductions observed in schizophrenia,

increases in visual theta response have recently been observed
in ASD, related to impaired face emotion processing [62]. Acute
alcohol may disrupt theta generation across a range of processes
including auditory N1 and MMN [67], especially in the context of
bipolar disorder [68], visual sensory potentials, and cognitive
activities such as visual P300 [69]. In individuals with chronic

alcohol use disorder, reduced theta activation during reward
processing has been found to correlate with increased impulsivity
[69], consistent with the role of prefrontal theta in response
inhibition.

Delta
Delta rhythms were initially defined in the context of slow-wave
(non-rapid eye movement) sleep, in which thalamic neurons
impose T channel-mediated slow coherent activity throughout
cortex [70, 71]. During adolescence, there is a marked decline in
delta-sleep activity [72, 73] that correlates with parallel reductions
in cortical thickness and gray matter volume, all of which are
thought to reflect age-related synaptic pruning [72, 74]. Reduc-
tions in delta amplitude during slow-wave sleep are well
established in schizophrenia [75, 76] as are reductions in cortical
thickness and gray matter volume, and thus support the potential
role of erroneous- or hyper-pruning in schizophrenia [77].
During wakefulness, delta amplitudes are low, reflecting

desynchronization of delta generators across cortex. However,
during attention-dependent processing, regional delta rhythms
become entrained to the rhythm of presented stimuli and increase
in the selectivity and efficiency of local processing [78, 79].
Violations of these entrained rhythms may underlie the generation
of the widely-studied P300 potential, which also shows spectral
power within the delta range [80–82].
In schizophrenia, deficits in auditory delta entrainment [79] and

steady-state delta response [83] correlate with impaired P300
generation, auditory perceptual abnormalities and working
memory deficits. P300 deficits are observed consistently not only

Fig. 2 Illustration of single trial event-related oscillations and corresponding time-frequency measures. a Stimulus evoked phase-resetting
of ongoing gamma oscillations. Pure phase-resetting occurs when a stimulus evokes a change in the phase of the ongoing oscillations
without evoking a change in the magnitude of the oscillations. Because the phase of the stimulus evoked-oscillation is reset in a consistent
manner across trials, the single trial oscillations survive averaging and are evident in the ERP. Note that these oscillations are not evident in the
pre-stimulus ERP baseline because their random phase leads to their being cancelled out when epochs are averaged to generate the ERP. In
contrast, the oscillations show strong phase synchrony across trials for the first 200msec post-stimulus and are therefore evident after
averaging trials to derive the ERP. b In pure phase-resetting by a stimulus, the phase of ongoing oscillations is reset by the stimulus in a
consistent manner across trials, resulting in high intertrial coherence (ITC). In this scenario, the TF analysis shows prominent gamma band
evoked-power and ITC. However, because the stimulus does not evoke a change in the magnitude of the ongoing oscillations, there is no
appreciable total gamma power response to the stimulus once baseline correction is performed. c Stimulus induced increase in the power of
ongoing gamma oscillations with no phase resetting. As with a, oscillations during the prestimulus baseline period do not survive averaging
during the generation of the ERP. In contrast to A, the stimulus induces an increase in the magnitude of oscillations, but because the post-
stimulus oscillations are not phase synchronized across trials, very little of this activity survives averaging across epochs when generating the
ERP. d With a stimulus-induced increase in power, but oscillations with random phase across trials, there is a clear increase in total power, but
no appreciable evoked power or intertrial coherence. Adapted from ref. [17].
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across the illness course in schizophrenia [84] but also in the
prodromal period preceding psychosis onset [85–87] other
neuropsychiatric disorders including bipolar disorder [88], alcohol
use disorder [89, 90] and neurodegenerative disorders [91].
Finally, in the visual system, the onset of motion elicits a

characteristic negative potential with peak at ~200ms termed the
motion-N2 (N2m) [92]. As opposed to other stimulus-driven
activity, N2m has recently been shown to have a spectral
signature within the delta frequency range (Fig. 1c) and thus
may be particularly useful for investigating underlying circuits.
N2m/delta deficits have recently been reported in both schizo-
phrenia and CHR [61] subjects.

Alpha/Beta
Alpha rhythms play a predominant role in coordination within the
visual system whereas beta rhythms are particularly important
with regard to sensory-motor processing and coordination of
information across cortical regions [6, 93]. For both sets of
measures, amplitudes are high during brain “idling,” but are
suppressed when brain systems are engaged [27]. Thus, posterior
alpha is reduced in a “top down” fashion during sustained visual
attention. Alpha “blocking” also occurs in response to stimulus
presentation, leading to a stimulus driven ERD [28]. Both task and
stimulus-induced modulation of alpha activity reflect in part reci-
procal interactions between the pulvinar nucleus of the thalamus
and visual regions of cortex [61, 94–97].
Deficits in alpha blocking in schizophrenia were initially

discovered shortly after the discovery of the EEG itself [98], and
were extensively replicated in the pre-ERP era (e.g. refs. [99, 100]).
More recently, deficits in alpha/beta ERD over visual areas
[101, 102] and beta ERD over motor areas [102, 103] have been
observed during visuo-motor tasks, and shown to correlate with
impaired task performance. By contrast to stimulus-driven activity,
sustained alpha suppression during visual attention appears to be
preserved [28, 79]. Alpha synchrony deficits in schizophrenia may
also be studied using steady-state visual evoked potential (ssVEP)
approaches [61, 104]. In children with ASD, reductions in ongoing
alpha activity correlate with cognitive impairment [105], whereas

in high-functioning ASD increases are observed in both resting
alpha and ssVEP activity [62], suggesting involvement of alpha-
generating circuits across pathophysiological disorders.

TRANSLATIONAL NEURO-OSCILLATION STUDIES
The characterization of oscillatory disturbances in neuropsychiatric
disorders provides increased opportunities for cross-species
translation. For many measures, particularly those utilizing passive
sensory stimulation, paradigms are extremely similar across
species, permitting direct cross-species comparison. Animal
models can then be used to both dissect local circuit mechanisms
and evaluate the effect of interventions, such as N-methyl-D-
aspartate receptor (NMDAR) antagonists, that are known to
produce schizophrenia-like deficits in humans.

GAMMA
Gamma activity, in general, is thought to reflect increased
excitatory drive to specific cortical regions [106], which then can
trigger rhythmic feedback inhibition from local fast-spiking
parvalbumin (PV)-type basket interneurons [107] (Fig. 4). The
characteristic frequency is imposed by the kinetics of AMPA-type
glutamate receptors on the PV interneurons, as well as KV3.1/
3.2K+ channels that maintain narrow action potentials; and GABAA

receptors, which drive the feedback inhibition of pyramidal
neurons [108].
The cross-species translatability of the ASSR at this time requires

further investigation. Whereas the ASSR in humans shows a
consistent 40 Hz resonance, more variable results have been
observed in rodents (e.g., refs. [109–111]. In some reports, NMDAR
antagonism [112, 113] and genetic knockout of NMDAR on PV-
expressing interneurons [114, 115] have been shown to decrease
the 40 Hz ASSR in rodents, but in other studies the ASSR is
increased by these manipulations [110, 111, 116].
In computational modeling, reductions in ASSR are most

attributable to reductions of PV and GAD65 in PV interneurons
[117], which may be a downstream consequence of NMDAR

Fig. 3 Cross-species homology. a Mismatch negativity (MMN) in schizophrenia vs. control patients, showing deficits in evoked-power within
the theta frequency range. From ref. [200]. b MMN prior to and following treatment with the NMDAR glycine-site agonist D-serine in
schizophrenia (Sz) vs. placebo. From ref. [138], *p < 0.05. c MMN in rodents pre/post treatment with placebo (Ctl), PCP alone, or PCP+ glycine
in rodents. Note decrease in MMN-related theta activity pre/post PCP alone treatment, and prevention of the difference by simultaneous
glycine treatment. From ref. [55].
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blockade [118], rather than to NMDAR dysfunction itself [117]. In
rodents, effects of developmental NR1 knock-down may be
reversed by GABAB agonists [119], although the applicability of
this finding to humans has not been tested.
Task-related gamma modulation may also be observed in

rodents. For example, cortico-hippocampal gamma synchroniza-
tion transiently increases during working memory encoding [120]
and retrieval [121]. In animal models, as in humans, gamma
activity may also be extensively coupled to slower theta and
delta rhythms [29, 30, 122–124]. Furthermore, in rodents,
modulatory neurotransmitters such as dopamine may shift
patterns of coupling [125]. Animal models thus provide an
opportunity to determine the degree to which gamma deficits
reflect dysfunction within specific gamma generating mechanism
vs. the degree to which they are an indirect reflection of impaired
generation of slower rhythms, or impaired cross-frequency
coupling.

THETA
The MMN paradigm has also been extensively validated in both
monkeys [126–129] and rodents [55, 113, 130–132], and as in
humans depends strongly on NMDAR function. As in humans,
rodent [55, 133] and monkey [134], MMN activity maps
predominantly to the theta frequency range. Moreover,

schizophrenia-like MMN deficits are induced by acute [135–137]
and chronic [55] NMDAR blockade and prevented by the
simultaneous administration of an NMDAR agonist [55], paralleling
human studies [138] (Fig. 3c).
At the local circuit level, cortical theta rhythms depend primarily

on the functioning of local circuit somatostatin (SOM)-type
GABAergic interneurons [13] (Fig. 4). Moreover, in rodents both
theta rhythms and MMN generation are selectively impaired by
optogenetic silencing of somatostatin interneurons within cortex
[139]. In rodents, increased theta synchrony, especially within the
septo-hippocampal-entorhinal system [6], is also associated with
working memory encoding [140] and retrieval [141, 142], and may
thus serve as a model system for theta-related frontal cognitive
deficits in schizophrenia.

DELTA
In animals, mechanisms underlying generation of delta rhythms
have been studied most extensively in the context of sleep, in
which thalamic neurons impose T-channel mediated slow
coherent activity throughout cortex [70, 71]. Type 1 nitrergic
cortical interneurons, which are known to co-express both
somatostatin, neurokinin 1 (NK1) receptors, and NMDAR may also
play a critical role in both NREM sleep generation and sleep-
related consolidation [143], although the role of these cells in
attention-dependent processing remains relatively unknown.
In monkeys, delta entrainment to stimulus regularities are

observed that are similar to those in humans and are linked to
synchrony between cortex and subcortical structures including
the pulvinar [144–146]. P300-like activity is also elicited during
active discrimination tasks in rodents. Furthermore, as in humans
evidence suggests that cholinergic signaling in the medial
septum (MS) and the nucleus basalis magnocellularis (NBM) may
be important modulators of task-related delta activity of cortical
ERP in the rat [147, 148] and can be modulated by pharmaco-
logical perturbation of cholinergic tone [149]. Additionally,
selective lesions in the MS or NBM produce profound
changes in both and synchrony in both cortical and limbic sites
[150, 151].

ALPHA/BETA
In monkeys, as in humans, alpha rhythms within visual cortex
appear to be driven by synchrony between pulvinar nucleus and
cortex [96, 152], as well as feedback propagation from higher to
lower tiers of the visual system [153]. Furthermore, NMDAR
antagonists inhibit alpha while increasing ongoing gamma activity
[153, 154], similar to the pattern observed in schizophrenia.
Glutamatergic contributions to alpha generation may also be
mediated, in part, by mGluR1 receptors [93] Other receptor
systems involved in alpha generation, including muscarinic
cholinergic [93, 155] and 5-HT2A [156] receptors, may be relevant
for changes observed in neurodegenerative disorders and the
effects of hallucinogenic psychostimulants, respectively.
In rodents, pulvinar nucleus is much less developed than in

primates [157], and pulvinar contributions to neuro-oscillatory
activity remains relatively unstudied [158]. Integrative beta
function is also relatively unstudied in rodent schizophrenia
models. Motor-related beta activity in rodents is critically
dependent upon gap junction and M- currents mediated through
Kc7-type potassium channels and may be modulated by both
GABAA and NMDAR modulation [159, 160]. In rodents, NMDAR
antagonists such as ketamine or PCP induce reductions in
ongoing beta activity that may reflect impaired corticothalamic
connectivity. Supporting this possibility, chemogenetic inhibition
of the mediodorsal thalamus in mice decreases synchronization
between mediodorsal thalamus and medial prefrontal cortex
[161].

Fig. 4 Local circuit mechanisms underlying neuro-oscillatory
measures. Frequency-bands and example circuit motifs whose
activation is associated with frequency specific rhythmic activity in
the neocortex. The frequency axis illustrates that oscillatory bands
are partly overlapping (varying e.g. with excitatory and inhibitory
drive). The circuit diagrams illustrate that activation of specific cells
(e.g. fast spiking parvalbumim (PV+) expressing interneurons in
superficial layers; somatostain (SOM+) interneurons) and their
cortical connectivity are associated with rhythmic activity at
bandlimited frequency-bands.
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CROSS-SPECIES VALIDATION ISSUES
Despite the promise of neuro-oscillations as translational biomar-
kers, several methodological issues still need to be clarified
before their widespread use for treatment development. The
main “disconnect” between spectral activity obtained from human
scalp-recorded activity and intracranially recorded oscillations
in animals is the need for greater signal averaging in human
recordings to differentiate task-related activity from
background EEG.
A critical question, therefore, is the degree to which the

oscillatory signature obtained from spectral decomposition of
human ERP data reflects added energy “created” by the stimulus
that coincidentally falls within specific frequency-bands vs.
stimulus-induced activation/modulation of the same circuits that
generate ongoing oscillatory brain activity.
This is especially the case with regard to conditions such as

steady-state potentials, where the oscillatory structure is imposed
by the eliciting stimulus, and by paradigms in which the
exogenous stimulation evokes an increase in power that may
therefore indicate a response that is superimposed on ongoing
brain rhythms. In such cases, artifactual increases in ITC may be
observed as well [32, 78]. Nevertheless, several translational
measures, including ASSR, MMN [55, 162] and delta entrainment
[79] involve primarily phase-reset of ongoing rhythms and thus
appear to translatable across species [24, 163].
Further support for homology comes from the possibility that

even continuously recorded endogenous potentials may, in fact,
be synchronized to unmeasured events. For example, in humans
and monkeys, saccadic eye movements lead to reset of ongoing
theta rhythms not only within visual regions but also hippocam-
pus [164, 165], a process termed “active sensing” [166]. The
relationship can only be assessed, however, if eye movements are
explicitly measured. In rodents, a similar relationship is observed
related to whisker movement (“active whisking”) [167], suggesting
that even endogenous rhythms may, in fact, be synchronized to
discrete events [168].

TREATMENT DEVELOPMENT
Current medication classes such as antipsychotics, antidepressants
and anti-anxiety agents were discovered fortuitously and then
“reverse engineered” primarily using radioreceptor approaches to
translate across human and rodent models and demonstrate
clinical target engagement. Many current treatment targets (e.g.
ionotropic/metabotropic glutamate receptors) have low agonist
affinity and thus do not support receptor-based approaches for
determination of target engagement. Moreover, treatment devel-
opment is increasingly focused on modification of circuit-level
disturbances, such as impaired E/I balance, using multi-targeted
treatment approaches. Neuro-oscillatory approaches specifically
index local circuit activity and are translatable across rodents,
monkeys and humans, supporting their use in development of
next-generation treatment approaches.
For example, ASSR may be particularly related to chronic

oxidative stress, which leads to downregulation of PV-type
interneurons [169]. In rodents, both increases [109–111, 116]
and decreases [113, 170] in ASSR are also reported, potentially
explainable based on varying degrees of NMDAR occupancy
across studies [112]. To date, the effects of manipulation of other
receptor types such as Ca2+ permeable AMPA channels on local
ASSR generation has not been assessed.
Even in humans, many aspects of the ASSR remain relatively

unexplored, such as differential impairment of early (0–100 ms) vs.
late (300–500ms) response in CHR vs. first-episode schizophrenia
[45], and differential effects of increasing interstimulus interval
length/variability [37, 171], and stimulus duration [36] in controls
vs. patients. Systematic exploration of the same parameter space
in both humans and rodents, combined with rodent

pharmacological and genetic studies are needed to refine the
biomarker and increase its applicability across disorders.
By contrast, theta-band deficits such as indexed by MMN have

shown significant sensitivity to NMDAR antagonists such as PCP,
ketamine or MK-801 across rodent [133, 135], primate [126, 134]
and human [172–174] models, suggesting NMDAR involvement
within the SOM-containing E/I circuit [133]. Similar effects are also
observed on theta activity within the paired click paradigm [175].
In rodents, as in humans, MMN generation may be modulated by
NMDAR agonists such as glycine, D-serine or N-acetylcysteine
[55, 138, 176, 177], suggesting utility for translational treatment
development.
Nevertheless, in current animal models, MMN deficits are

induced primarily by pharmacological challenge. Development
of animals that more closely capture pathophysiological features
of the disorder may lead to improved understanding of the basis
for MMN deficits in schizophrenia and other disorders, and thus to
improved treatments. Additionally, sub-chronic exposure to
ketamine leads to lasting reductions in evoked theta activity, as
well as cognitive performance that may rely on the networks that
generate this rhythm [178–181].
The basis for these persistent changes needs to be understood,

and may provide improved treatment targets for schizophrenia,
alcohol use disorders, or others. Finally, development of transla-
tional biomarkers, in general, requires pre-competitive collabora-
tion between industry, academia and government to support an
FDA biomarkers approval [3]. Such a consortium has recently been
established for MMN (www.erpbiomarkers.org), potentially paving
the way for its use in patient stratification and outcome
assessment.
Disturbances of alpha modulation are documented across a

number of disorders including schizophrenia [62, 100, 101, 105]
and ASD [62, 105]. Even though the alpha rhythm was first
described almost 100 years ago, basic mechanisms underlying
alpha generation remain unresolved. More etiological work is
needed to understand and manipulate these circuits. Increasingly,
subcortical structures such as pulvinar nucleus [61, 96] are
implicated in alpha regulation and should be increased targets
for treatment-related research.
Alterations in P300 generation, reflecting delta-band dysfunc-

tion, are caused not only by NMDAR antagonists [182] but also by
other pharmacological agents including GABA agonists [182], 5-
HT2A antagonists [183, 184], cannabinoids [185, 186] and
muscarinic antagonists [187, 188]. The GABAB agonist gamma-
hydroxyoxybutyrate may improve both delta-sleep time and
cognition in schizophrenia [189], suggesting interactive contribu-
tions of multiple neurochemical pathways to delta generation.
Although attention-dependent paradigms are difficult to imple-
ment in rodents, entrainment phenomena may be possible
Finally, oscillatory approaches may also be critical for demon-

stration of target engagement with non-invasive brain stimulation
approaches, such as transcranial magnetic (TMS) or direct-current
stimulation (tDCS), which target disturbances in intrinsic oscilla-
tory activity [190, 191] in disorders such as schizophrenia [192–
194] or depression [190, 191, 195–197]. For example, one
interventional strategy involves entrainment of oscillatory activity
at frequencies and phase relationships that are natural to the
underlying neuronal circuits [13] and evident in the timing of
cognitive processes [198, 199]. However, further exploration of
these processes in both rodents and humans is required.
In summary, neuro-oscillatory approaches are ideally suited for

integration across pre-clinical and clinical stages of new treatment
development, especially for treatments targeting network level
dysfunction and impaired E/I balance. Unanswered questions
remain concerning the homology between specific oscillatory
measures across human and animal models. Nevertheless, the
strong conservation of the oscillatory frequencies across species
provides novel opportunities for bidirectional cross-species
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translation and assessment of target engagement by novel
pharmacological and brain-stimulation-based approaches.
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