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Precise Traits from Sloppy Components: Perception and the
Origin of Phenotypic Response
Steven A. Frank

Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697-2525, USA;
safrank@uci.edu

Abstract: Organisms perceive their environment and respond. The origin of perception–response
traits presents a puzzle. Perception provides no value without response. Response requires perception.
Recent advances in machine learning may provide a solution. A randomly connected network creates
a reservoir of perceptive information about the recent history of environmental states. In each time
step, a relatively small number of inputs drives the dynamics of the relatively large network. Over
time, the internal network states retain a memory of past inputs. To achieve a functional response to
past states or to predict future states, a system must learn only how to match states of the reservoir to
the target response. In the same way, a random biochemical or neural network of an organism can
provide an initial perceptive basis. With a solution for one side of the two-step perception–response
challenge, evolving an adaptive response may not be so difficult. Two broader themes emerge. First,
organisms may often achieve precise traits from sloppy components. Second, evolutionary puzzles
often follow the same outlines as the challenges of machine learning. In each case, the basic problem
is how to learn, either by artificial computational methods or by natural selection.

Keywords: evolutionary origins; critical learning period; machine learning; liquid state machine;
reservoir computing; echo state network

1. Introduction

Response to an environmental signal requires two steps. First, the signal must be
perceived. Second, a response must follow. The evolutionary origin of two-part traits
presents a puzzle. Perception without response provides no benefit. Response without
perception cannot happen.

Pre-existing perceptions or responses may be modified. With a partial step on one
side, an evolutionary path opens to solve the new challenge. The modification of prior
adaptive traits may be a common pathway.

This article poses an alternative solution. In essence, a purely random pre-existing
biochemical or neural network within the organism can provide the initial perceptive basis
for the evolution of precise responsiveness. If so, then we gain an understanding of how
organisms may acquire truly novel responsiveness.

In addition, we may begin to understand one of the great puzzles in life. How do
organisms acquire a wide array of relatively precise traits given that biological components
are inherently stochastic and often unreliable? How does precision arise from sloppiness?

Consider perception. We require that external signals induce an internal change in
state. To analyze how random systems can acquire and store information, the computational
literature has recently built on the idea of liquid state machines.

Think of the smooth surface of a liquid in a container. Drop a pebble on the surface.
Waves move across the surface. Drop another pebble, and then another. At any point in time,
the pattern of surface waves contains a reservoir of information about the temporal history.

Randomly connected networks act similarly. External inputs enter via sensor nodes.
Those signals propagate through the network based on the random patterns of internal
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connectivity and rules for updating. At any point in time, the network contains information
about the temporal history of inputs. The network functions as a dimensional expansion
reservoir, transforming time into extent.

A random biochemical or neural network may act as a perceptive internal reservoir.
The two-step challenge of perception and response reduces to the much easier problem of
evolving an internal response to the perceptive reservoir. It may be possible to achieve an
adaptively responsive trait arising from sloppy underlying components.

The remainder of this article provides details. The next subsection gives additional
background and references to the computational and biological literature. The follow-
ing analysis develops a model to illustrate how random networks store information
about environmental inputs, creating the basis to predict future environmental states
and respond accordingly.

A following subsection speculates that critical learning periods allow individuals to
adjust their responses to their unique internal wiring and pattern of reservoir information.
The Conclusions consider some possible tests of the ideas and some future directions.

Background and Literature

Maass et al. [1] introduced the liquid state machine. The concept, outlined in the
introduction, describes a general way in which large dynamical systems retain a memory
of their past inputs. At any point in time, that memory encoded in the current state of the
system can be used to compute responses. The responses may achieve particular goals or
predict future inputs.

Computationally, liquid state machines have a recurrent architecture. Roughly speak-
ing, recurrence means feedback loops between internal states [2]. For example, a recurrent
computational neural network updates internal states sequentially. External inputs modify
the first layer of the network. The first layer then modifies the second layer, which may
then modify the third layer, and so on. Recurrent connections flow updates backwards,
from a later layer to an earlier layer. Recurrence greatly enhances the computational power
of neural networks, in part by storing an internal memory of past inputs.

Recurrent neural networks led to many of the great recent advances in artificial
intelligence. However, it can be very difficult to tune the particular connections and
dynamic update rules in a network to achieve a particular function.

To solve the tuning problem, one may separate the accumulation of environmental
information and memory from the computation of a response to that information. In the
simplest application, one can use a randomly connected dynamic system as a reservoir of
information and memory about inputs. One can then use a relatively simple computational
learning or optimization method to match the current internal state of the reservoir to the
desired goal. Often, basic regression methods such as ridge regression are sufficient.

This two-step solution has led to many developments in the computational literature,
typically under the topics of reservoir computing or echo state networks [3–5]. Reservoir
computing has also grown into a common approach in neuroscience modeling [6], with
additional applications using biochemical networks as reservoirs [7,8]. In both computa-
tional and neuroscience models, reservoir connectivity patterns other than purely random
patterns often arise [5,9–11]. For nonrandom reservoirs, the idea is that particular kinds of
information may be better retained by particular architectures. Typically, the architectures
are not optimized for each application. Instead, a few broad architectural varieties are
explored in relation to a particular challenge.

Two articles have noted the potential of reservoirs to help in the understanding of
various evolutionary problems [12,13]. My own focus is also evolutionary but limited here
to two particular questions. First, can random reservoirs be a potential solution to the
puzzle of jointly evolving perception and response? Second, can we place the perception–
response problem within the broader frame of precise traits from sloppy components?
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2. Materials and Methods
2.1. Perception and Response

The joint evolution of perception and response may be easier if an initially random
reservoir can solve the perception side of the puzzle. If random reservoirs provide informa-
tion that can be the basis for perception, then the evolutionary path to a perception–response
system may not be so difficult. In essence, a random system provides sufficient perception
to get started and so, initially, only the single response trait must improve evolutionarily to
make a workable system. The origin of a workable system provides the opportunity for
further evolutionary refinement.

In this article, I limit the analysis to illustrating how random reservoirs provide the
capacity for perception and the basis for developing a predictive response. The model
brings the key ideas into the evolutionary literature within the context of a simple but
important evolutionary puzzle.

The model has three parts. First, environmental inputs come from a chaotic dynamical
system. A single parameter of the chaotic system describes the difficulty of predicting
future input values. Second, the chaotic environmental inputs feed into a random network
that acts as the reservoir. Third, an optimized regression model predicts future input
values by using the internal reservoir states as predictors. The quality of the predictions
is measured by evaluating additional input data and reservoir dynamics not used in the
regression fitting procedure.

2.2. Chaotic Dynamics

I use the classic Lorenz–96 model for chaotic dynamics [14–16], which is

dxi
dt

= (xi+1 − xi−2)xi−1 − xi + F (1)

for i = 1, . . . , N, with x−k = xN−k and xN+k = xk, and F as the single parameter that
describes a constant forcing input. The symmetry of the model means that the long-run
trajectories for each dimension have similar properties. I use N = 5 for all analyses in
this article.

The system tends to be more chaotic as F rises above 8 (Figure 1). Chaos means that
a small perturbation at a particular time causes the future system trajectory to diverge
from the trajectory of an unperturbed system. The greater the rate of divergence, the less
predictable the system.

Typically, one quantifies the rate of divergence by the dominant Lyapunov exponent,
λ. Similarly, the system predictability can be quantified by the doubling time of the distance
between divergent trajectories, which is dbl = log 2/λ, with dbl denoting a variable. A
faster doubling time means that future values of the trajectory are harder to predict. I
calculated the dynamics of Equation (1) and the Lyapunov exponent with the Julia package
DynamicalSystems [17]. The system becomes increasingly chaotic as F rises above 8, which
means that λ increases and dbl (predictability) declines.
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Figure 1. Estimate for the relative speed of chaotic divergence in the dynamics of the Lorenz–96
equations given in Equation (1), with N = 5. Here, the Lyapunov exponent, λ, estimates the
relative divergence rate. The analysis in this article focuses on the doubling time for divergence,
dbl = log 2/λ, in which a lower doubling time means that future values of the trajectory are harder to
predict. For a few limited regions of smaller F values, the estimated Lyapunov exponent drops below
the trend. Those deviations may arise from numerical limitations or a complex pattern of nearly
stable periodicity. Sufficiently complex periodicity poses a significant challenge for prediction. The
analyses in this article avoid those erratic regions.

2.3. Random Reservoir

I computed the random reservoir state using the Julia package ReservoirComput-
ing [18]. The reservoir takes the N inputs from Equation (1) and updates its size internal
states. The cited documentation gives the details of the reservoir dynamics architecture
and calculations. The outcome arises from the common principles of liquid state machines.

A particular run starts with random initial conditions for the input dynamics and a
randomly structured reservoir. Then, over the T time units of a run, the inputs are fed
into the reservoir every 0.01 time units, which triggers an update to the reservoir states.
For each of the T/0.01 time steps, the reservoir has size different state values. Those state
values can be used to predict future values of the inputs.

3. Results
3.1. Predicting Future Inputs

Briefly, a random reservoir provides sufficient information for the system to predict
future inputs of the chaotic environmental dynamics. The more strongly chaotic the
system, the shorter the divergence doubling time, dbl, and the shorter the time forward for
successful predictions. Larger random reservoirs improve the system’s ability to predict
future input values. Supporting details follow.

I first calculated the external inputs from Equation (1) at each of the T/0.01 time steps,
with T = 20,000 for all analyses. I then split the time periods into a training set for the
first 0.7T = 14,000 of the time units and a test set for the remaining 0.3T = 6000 time units.
Time units are arbitrary. Predictions provide value if the time extent of predictive success
corresponds to a biologically valuable foresight.

Figure 2a shows an example run of the model predictions. The blue curve is the
external input value for the first dimension of the Lorenz–96 system, x1, in Equation (1).
The plotted value is rescaled so that the range over the training set is [−1, 1]. The plot
shows the final 20 time units of the test set, the time period 19,980–20,000.
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Figure 2. Temporal dynamics of environmental state (blue) and system prediction for the environmen-
tal state (gold). At each time point, the internal system uses the information in its reservoir to predict
the environmental state shift time units into the future. The gold prediction curve is shifted to the right
by shift time units, so that the closeness of the match between the two curves describes the quality of
the predictions. Above each panel, the parameters N and F describe the environmental dynamics
in Equation (1); dbl gives the doubling time for the deviation distance of a small perturbation to the
dynamics; res is the reservoir size; and R2_tr and R2_ts are the R-squared values that describe the
percentage of the variation in the blue dynamics curve captured by the gold prediction curve for the
training and test periods, respectively, as described in the text. The panels (a–c) have corresponding
labels on the curves in Figure 3a. Time units are nondimensional and can be chosen to match the
scaling of the environmental process under study. Here, the plots show the 20 time units at the end of
the test period of the machine learning procedure used to generate the curves. The abbreviations
res, shift, size, dbl, R2_tr, and R2_ts denote variables. Execution times for the parameters in (b) with
reservoir sizes (res) of 25, 50, and 100 are approximately 58 s, 118 s, and 253 s. Timing was carried out
on Apple Mac Studio M1 Ultra with Julia 1.9.1, source code git commit a7f74f1. The code was not
optimized for execution speed.



Entropy 2023, 25, 1162 6 of 10

(c)

(b)

(a)

 c 

 b 

 a 

0.6 0.8 1.0 1.2 1.4

0.6 0.8 1.0 1.2 1.4

0.6 0.8 1.0 1.2 1.4

20

40

60

80

100

20

40

60

80

100

20

40

60

80

100

Deviation doubling time

R
-s

qu
ar

ed
R

-s
qu

ar
ed

R
-s

qu
ar

ed

Figure 3. Prediction of future environmental state based on the information in a random reservoir
network. Figure 2 shows the environmental dynamics and the prediction challenge. In this figure, the
y-axis measures the percentage of the total variance (R-squared) in the environmental state explained
by the predictions generated from the internal reservoir, reflecting the potential for adaptive response.
The x-axis shows the intrinsic predictability of the environment, measured by the time required to
double a small initial perturbation to the dynamic trajectory. The different colored lines describe the
time shift into the future at which predictions are compared to actual future dynamics. The res_size
parameter in each panel gives the size of the random reservoir. The a, b, and c labels in panel (a) match
the corresponding panels in Figure 2. Each line connects the outcomes at the following 11 approximate
doubling times: 0.52, 0.54, 0.58, 0.64, 0.70, 0.77, 0.86, 0.90, 0.99, 1.15, and 1.43. Panels (a–c) show three
different reservoir sizes denoted by the res_size parameter labels.
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The gold curve shows the system’s prediction for future values of the external chaotic
input, x1. For a time point, t, the system predicts x1 at time t + shift. To compare the
predicted input value to the actual input value, I shifted the gold curve by shift time units
to the right. Thus, each time point on the plot shows the system’s observed and predicted
value for time t.

I calculated the predicted values by fitting a Bayesian ridge regression model to the
training set of observed x1 values based on the size predictors from the internal reservoir
states. In Figure 2, size = 25 for all three panels. I obtained the fitted model by the
BayesRidge function of the Python scikit-learn 1.2.0 package [19]. I accessed the Python
code via the Julia machine learning package MLJ [20].

In Figure 2, I show the actual input values and predicted input values over the test set
of observations. Those test data were not used during the fitting of the ridge regression
model and so describe how well the model predictions fit additional observations from the
chaotic inputs. I measured the quality of the predictions by the R-squared value, which is
the fraction of the variance in the actual input values of the blue curves explained by the
predicted input values of the gold curves. For example, the R-squared value for Figure 2a
is 82%, a close fit.

To avoid overfitting the ridge regression model, I used MLJ’s TunedModel function to
optimize the BayesRidge hyperparameters for the training period data. That procedure
shuffled the data provided for fitting in a way that minimized overfitting. To test for
overfitting on the training data, above each panel in Figure 2 I show the R-squared values
for the training period (R2_tr) and the test period (R2_ts). The close match of those values
demonstrates that the model was not overfitted to the training data.

In Figure 3a, the different colored curves show the quality of the predictions for
different shift time values into the future. The prediction quality on the y-axis is given
by the R-squared values of the test period. Shorter time shifts into the future provide
better predictions, as expected. The x-axis shows the doubling time, dbl, for trajectory
divergence. Greater doubling times correspond to weaker chaotic dynamics and greater
predictability. The a, b, and c labels on the curves in Figure 3a match the three panels of
Figure 2. The different panels of Figure 3 show that increasing the reservoir size leads to
better predictions.

I calculated the test R-squared value R2_ts for each parameter combination from one
replicate. In Figure 3, the consistency of the trends across different doubling times and
reservoir sizes implies that the variability within a parameter combination is low. If that
were not true, then the trends would be much noisier than observed.

To check the actual variability among replicates for a parameter combination, I calcu-
lated R2_ts for a sample of 20 independent runs for each reservoir size of 25, 50, and 100,
using for the other parameters N = 5, as in all reported results; F = 8.75, corresponding to a
doubling time of about 1.0; and a shift value of 1.0.

For any given reservoir size, the variation among samples is small. Reporting results
as (minimum, median, maximum) for each set of 20 replicates, the results for reservoir size
25 are (56.0, 57.8, 58.9), for size 50 are (60.0, 61.4, 62.7), and for size 100 are (66.0, 67.1, 68.3).

Figure 4 shows that increasing the reservoir size improves the prediction of the future
environmental state.
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Figure 4. Increasing reservoir size provides better predictions for future environmental state. The
analysis follows the methods used in Figure 3. Here, dbl_lo denotes a doubling time of approximately
0.52, and dbl_hi denotes a doubling time of approximately 1.42. The value of shift_lo denotes a
prediction into the future over 1.0 time units, and shift_hi denotes a prediction into the future over
2.0 time units. The six different reservoir sizes used in the computer runs are shown as labels for the
tick marks along the x-axis.

3.2. Critical Learning Period

The wiring of internal reservoirs may be fixed. For example, the parameters of a
simple biochemical network within a cell may be determined primarily by DNA sequence.
The network may be random in the sense that it was not shaped by natural selection to
capture specific information. But such a random network may be relatively consistent from
one individual to another. If so, then the readout of the network to achieve a function may
also be fixed among individuals.

Simple neural networks may also be relatively consistent from one individual to
another. However, larger networks likely have some stochasticity in wiring. Stochasticity
means that random reservoirs of perceptual information may vary from one individual to
another. If so, then the way in which individuals read their reservoirs to achieve a function
may have to be partially learned.

The demand for such learning may impose the need for a primitive kind of critical
learning period in which individuals associate their particular internal reservoir state with
successful actions. Such learning periods would be simpler than the kinds of learning
that are sometimes observed in the advanced neural systems of vertebrates. Although
speculative, the logic for such kinds of critical learning seems compelling.

3.3. Other Ideas for Future Study

Comments arising in the review process for this manuscript raised three interesting
ideas for future study. First, heritable variation in network size and wiring architecture
may provide the opportunity for selection to improve environmental perception. The com-
putational literature on reservoir computing provides insight into how different reservoir
networks perform with respect to different kinds of environmental challenges [5,18].

Second, environmental change often requires organisms to modify some aspect of their
perception or response. In the reservoir model, a change in response means a modification
of the readout from the perceptional information stored in the reservoir. This sort of
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tuning may happen relatively quickly within an individual’s lifetime, as in the critical
learning period. Alternatively, the readout may be altered over evolutionary time by typical
variation and selection processes. The puzzles concern how this happens physiologically
and genetically.

Third, larger networks improve performance. Larger networks also tend to have
greater redundancy with regard to storing information about the environment. Redundancy
enhances robustness, provides opportunity for greater complexity, and alters evolutionary
dynamics in many interesting ways [21]. This perspective raises many interesting questions
about the origin and evolution of perception.

4. Conclusions

Random perceptual networks may solve the puzzle of how two-step perception–
response traits evolve. If a response can build on a random perceptual reservoir, then
the initial evolutionary path requires adaptation only on the response side. Subsequent
refinement may modify the perceptual side, changing random aspects of the initial network
into more highly structured forms.

Studying the origin of traits can be difficult because we rarely observe such origins
directly. Synthetic biology may provide a way to gain some insight and to test specific
hypotheses. If technology advances sufficiently, it may be possible to create various types
of biochemical networks that have random properties with respect to specific adaptive
functions [22]. One could then use experimental evolution to analyze the conditions under
which cells can improve their ability to read the information in the random biochemical
reservoir to achieve those specific functions.

Comparative biology could provide insight into the historical pathways and modifica-
tions of perception–response pairs. But it is not clear how easily one could find traces of
evolutionary historical sequence among extant organisms. The great variety of single-cell
microbial life is both promising and challenging.
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via Zenodo at https://doi.org/10.5281/zenodo.8030653 accessed on 12 June 2023.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Maass, W.; Natschläger, T.; Markram, H. Real-time computing without stable states: A new framework for neural computation

based on perturbations. Neural Comput. 2002, 14, 2531–2560. [CrossRef] [PubMed]
2. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
3. Jaeger, H. Echo state network. Scholarpedia 2007, 2, 2330. [CrossRef]
4. Gauthier, D.J.; Bollt, E.; Griffith, A.; Barbosa, W.A. Next generation reservoir computing. Nat. Commun. 2021, 12, 5564. [PubMed]
5. Cucchi, M.; Abreu, S.; Ciccone, G.; Brunner, D.; Kleemann, H. Hands-on reservoir computing: A tutorial for practical implemen-

tation. Neuromorphic Comput. Eng. 2022, 2, 032002. [CrossRef]
6. Damicelli, F.; Hilgetag, C.C.; Goulas, A. Brain connectivity meets reservoir computing. PLoS Comput. Biol. 2022, 18, e1010639.

[CrossRef] [PubMed]
7. Goudarzi, A.; Lakin, M.R.; Stefanovic, D. DNA reservoir computing: A novel molecular computing approach. In International

Workshop on DNA-Based Computers; Springer: Berlin/Heidelberg, Germany, 2013; pp. 76–89.
8. Yahiro, W.; Aubert-Kato, N.; Hagiya, M. A reservoir computing approach for molecular computing. In Proceedings of the ALIFE

2018: The 2018 Conference on Artificial Life, Tokyo, Japan, 23–27 July 2018; pp. 31–38.
9. Loeffler, A.; Zhu, R.; Hochstetter, J.; Li, M.; Fu, K.; Diaz-Alvarez, A.; Nakayama, T.; Shine, J.M.; Kuncic, Z. Topological properties

of neuromorphic nanowire networks. Front. Neurosci. 2020, 14, 184. [CrossRef] [PubMed]
10. Loeffler, A.; Zhu, R.; Hochstetter, J.; Diaz-Alvarez, A.; Nakayama, T.; Shine, J.M.; Kuncic, Z. Modularity and multitasking in

neuro-memristive reservoir networks. Neuromorphic Comput. Eng. 2021, 1, 014003. [CrossRef]

https://doi.org/10.5281/zenodo.8030653
http://doi.org/10.1162/089976602760407955
http://www.ncbi.nlm.nih.gov/pubmed/12433288
http://dx.doi.org/10.4249/scholarpedia.2330
http://www.ncbi.nlm.nih.gov/pubmed/34548491
http://dx.doi.org/10.1088/2634-4386/ac7db7
http://dx.doi.org/10.1371/journal.pcbi.1010639
http://www.ncbi.nlm.nih.gov/pubmed/36383563
http://dx.doi.org/10.3389/fnins.2020.00184
http://www.ncbi.nlm.nih.gov/pubmed/32210754
http://dx.doi.org/10.1088/2634-4386/ac156f


Entropy 2023, 25, 1162 10 of 10
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