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Machine Learning-Based Models Predicting  
Outpatient Surgery End Time and Recovery Room 
Discharge at an Ambulatory Surgery Center
Rodney A. Gabriel, MD, MAS,*†‡ Bhavya Harjai, BS,‡ Sierra Simpson, PhD,§ Nicole Goldhaber, MD,∥ 
Brian P. Curran, MD,* and Ruth S. Waterman, MD, MS*     

BACKGROUND: Days before surgery, add-ons may be scheduled to fill unused surgical block 
time at an outpatient surgery center. At times, outpatient surgery centers have time limita-
tions for end of block time and discharge from the postanesthesia care unit (PACU). The 
objective of our study was to develop machine learning models that predicted the following 
composite outcome: (1) surgery finished by end of operating room block time and (2) patient 
was discharged by end of recovery room nursing shift. We compared various machine learn-
ing models to logistic regression. By evaluating various performance metrics, including F1 
scores, we hypothesized that models using ensemble learning will be superior to logistic 
regression.
METHODS: Data were collected from patients at an ambulatory surgery center. The primary 
outcome measurement was determined to have a value of 1 (versus 0) if they met both crite-
ria: (1) surgery ends by 5 pm and (2) patient is discharged from the recovery room by 7 pm. We 
developed models to determine if a procedure would meet both criteria if it were scheduled at 
1 pm, 2 pm, 3 pm, or 4 pm. We implemented regression, random forest, balanced random forest, 
balanced bagging, neural network, and support vector classifier, and included the following 
features: surgery, surgeon, service line, American Society of Anesthesiologists score, age, sex, 
weight, and scheduled case duration. We evaluated model performance with Synthetic Minority 
Oversampling Technique (SMOTE). We compared the following performance metrics: F1 score, 
area under the receiver operating characteristic curve (AUC), specificity, sensitivity, precision, 
recall, and Matthews correlation coefficient.
RESULTS: Among 13,447 surgical procedures, the median total perioperative time (actual case 
duration and PACU length stay) was 165 minutes. When SMOTE was not used, when predicting 
whether surgery will end by 5 pm and patient will be discharged by 7 pm, the average F1 scores 
were best with random forest, balanced bagging, and balanced random forest classifiers. When 
SMOTE was used, these models had improved F1 scores compared to no SMOTE. The balanced 
bagging classifier performed best with F1 score of 0.78, 0.80, 0.82, and 0.82 when predicting 
our outcome if cases were to start at 1 pm, 2 pm, 3 pm, or 4 pm, respectively.
CONCLUSIONS: We demonstrated improvement in predicting the outcome at a range of start 
times when using ensemble learning versus regression techniques. Machine learning may 
be adapted by operating room management to allow for a better determination whether an 
add-on case at an outpatient surgery center could be appropriately booked. (Anesth Analg 
2022;135:159–69)

KEY POINTS
• Question: By using machine learning, can we more accurately predict whether a surgical add-

on for an outpatient surgery center would both end at the predetermined block time end and 
the patient would be discharged from the recovery room at a predetermined time point?

• Findings: We developed a predictive model using Synthetic Minority Oversampling Technique 
(SMOTE) and balanced bagging techniques that improved the ability to predict the timing 
outcome at a range of start times allowing for better scheduling.

• Meaning: Enhanced modeling and prediction methods will improve patient care, staff sched-
uling, and institutional profits.

GLOSSARY
ASA PS = American Society of Anesthesiologists Physical Status; AUC = area under the receiver 
operating characteristic curve; EQUATOR = Enhancing the Quality and Transparency of Health 
Research; MCC = Matthews correlation coefficient; OR = operating room; PACU = postanesthesia 
care unit; ROC = receiver operating characteristic; SD = standard deviation; SMOTE = Synthetic 
Minority Oversampling Technique

Health Services Research
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Efficiency is paramount to the success of an 
ambulatory surgery center, since it is a major 
financial contributor to many health care orga-

nizations.1–3 Important metrics used to quantify effi-
ciency include first-case delays,4 turnover times,5 case 
duration booking accuracy,6,7 and postanesthesia care 
unit (PACU) length of stay.8,9 Various studies have 
developed predictive models for improving accuracy 
of case duration booking,6,7,10,11 as such strategies may 
help improve operating room (OR) utilization.

While most studies focus on case duration6,7 and 
PACU length of stay,8,9 more analyses are needed to 
develop models that can predict both case duration 
and PACU length of stay for a given patient. This is 
especially true in an outpatient surgery center, which 
has hard deadlines for surgical blocks and PACU 
nursing staff hours before incurring overages. PACU 
length of stay should also be considered given that 
there may also be a specific time when recovery room 
staffing is scheduled to end. Schedulers must also 
allow for time so that the patient can safely recover 
and be discharged within the correct time window.

During the operational stage of perioperative man-
agement, short-term managerial decisions—such as 
scheduling cases, staffing ORs, and focusing efforts 
on finishing the day on schedule, are often made far 
in advance of the surgery date.12 However, it is not 
always possible to perfectly assign enough cases 
within appropriate blocks. For outpatient surgeries, 
OR managers are often faced with filling unused time 
with only days before date of surgery. Booking sur-
geries during this time should put into account both 
predicted case duration as well as PACU length of 
stay to meet the time constraints set at each unique 
institution. While there have been several predictive 

models estimating case duration,6,7 there have been 
none described that can predict both: (1) if the final 
case in an OR will finish by a specified time (ie, end 
of surgical block time) and (2) if the patient will be 
discharged from the PACU by the end of the day  
(ie, time at which outpatient surgery closes).

The utilization of machine learning to aid in OR 
management has much potential, as various stud-
ies have demonstrated improvement in case duration 
accuracy, cancelation prevention, and recovery room 
management.13 The objective of our study is to assess 
whether we can develop predictive models that can 
help managers determine if an add-on would finish 
by the end of the operating day and have the patient 
discharged on time. The primary outcome is defined 
as, given a specified start time, whether the surgery 
will finish by the end of the scheduled block time  
(ie, 5 pm) and patient will be discharged from the recov-
ery room when staffing is scheduled to finish (ie, 7 pm). 
Here, we use ensemble learning combined with an overs-
ampling technique and compare models using various 
performance metrics, including the F1 score, which is the 
harmonic mean of precision and recall. Whether more 
advanced machine learning algorithms can outperform 
logistic regression for clinical prediction in patient datas-
ets is uncertain; however, the benefit may vary based on 
the type of data, outcomes studied, and patient popu-
lation.14 We thus hypothesized that machine learning 
approaches using ensemble learning—such as random 
forest, balanced bagging, or balanced random forests—
would outperform models using logistic regression 
(which may only model linear relationships between 
dependent and independent variables).

METHODS
Study Sample
This retrospective study was approved by the Human 
Research Protections Program at the University of 
California San Diego for the collection of data from 
our electronic medical record system. For this study, 
the informed consent requirement was waived. Data 
from all patients who underwent outpatient surgery 
from our institution’s freestanding ambulatory sur-
gery center from March 2018 to January 2021 were 
extracted retrospectively. Cases that occurred <10 
times were removed from the analysis. The manu-
script adheres to the applicable Enhancing the Quality 
and Transparency of Health Research (EQUATOR) 
guidelines for observational studies.

Primary Objective and Data Collection
The primary outcome measurement was binary and 
was determined to have a value of 1 if they met both 
criteria: (1) surgery ended by 5 pm and (2) patient 
was discharged from the PACU by 7 pm. These times 
were chosen because this was our institutional times DOI: 10.1213/ANE.0000000000006015
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for end of surgical block time and when our recovery 
room team was expected to be done (before overtime 
pay was instituted). We developed predictive models 
to determine if a specific case would meet both crite-
ria if they were scheduled at 1 pm, 2 pm, 3 pm, or 4 pm 
(Figure 1A). We implemented logistic regression, ran-
dom forest classifier, support vector classifier, simple-
feedforward neural network, balanced random forest 
classifier, and balanced bagging classifier. In addition, 
we evaluated model performance with and without 
Synthetic Minority Oversampling Technique (SMOTE) 
(Figure 1B). Model performance was primarily evalu-
ated by quantifying the F1 score, which is the harmonic 
mean of precision and recall (defined in detail below).

The independent features included in the mod-
els were surgical procedure, surgeon identification, 
American Society of Anesthesiologists Physical Status 
(ASA PS) score, age (years), sex, weight (kg), surgi-
cal service line, scheduled surgical incision time, and 
scheduled room time (time for patient to enter OR to 
time they leave OR). In addition, we collected actual 
room time and actual PACU length of stay. Of note, we 
did not include anesthesiologist identification nor pri-
mary anesthesia type as these features may generally 
not be known days before surgery (we included only 
the features that can be defined days beforehand). The 
primary outcome was defined as positive if the actual 
room time did not extend past 5 pm (based on the start 

Figure 1. Overview of study methodology. A, An illustration of the study design describing the use of machine learning to predict the outcome 
(defined as surgery ending by 5 pm and patient discharged from recovery room by 7 pm). Each model was based on whether the start time 
of the surgery was 1 pm, 2 pm, 3 pm, or 4 pm. B, Data pipeline. OR indicates operating room; PACU, postanesthesia care unit; ROC, receiver 
operating characteristic; SMOTE, synthetic minority oversampling technique.
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time) and the patient was discharged from the PACU 
by 7 pm. To calculate whether patient was discharged 
by 7 pm, we calculated the total perioperative time, 
which was defined as total minutes from start time to 
actual discharge (based on both actual case duration 
and PACU length of stay). For example, if a surgery 
was to start at 1 pm, then the total perioperative time 
must be <6 hours (out of PACU by 7 pm), and the case 
duration needs to be <4 hours (out of OR by 5 pm). 
There were no missing data. All the data captured 
were consistently documented in the electronic medi-
cal record system; which included surgeon name, sur-
gical procedure, service line, scheduled surgery time, 
actual surgery time, PACU length of stay, patient ASA 
class, age, sex, and weight. Therefore, no imputation 
was performed.

Statistical Analysis
Python (v3.7.5) was used for all statistical analyses. 
First, the cohort was divided into training and test 
data sets, reflecting an 80:20 split using a randomized 
splitter—the “train_test_split” method from the sci-
kit learn library15—thus, any patient present in the test 
set was automatically removed from the training set. 
We developed each machine learning model using the 
training set (using SMOTE) and tested its performance 
on the test set (measuring F1 score, recall, precision, 
Matthews correlation coefficient, sensitivity, specific-
ity, and area under the receiver operating character-
istic curve [AUC] for receiver operating characteristic 
[ROC] curve). Second, we then calculated the average 
F1 score, recall, precision, Matthews correlation coef-
ficient, sensitivity, specificity, and AUC using k-folds 
cross-validation (described below).

Data Balancing. SMOTE for Nominal and Continuous 
algorithm—implemented using the “imblearn” 
library—was used to create a balanced class 
distribution.16 Imbalanced data may be particularly 
difficult for predictive modeling due to the uneven 
classification of data. A balanced dataset would have 
minimal difference in positive and negative outcomes. 
However, if the difference is large, it is considered 
unbalanced. SMOTE is a statistical technique that 
increases the number of cases in the minority dataset 
to balance it with the majority dataset—while not 
affecting the number of majority cases. This algorithm 
takes samples of the feature space for each target class 
and 5 of its nearest neighbors and then generates 
new cases that combine features of the target case 
with features of its nearest neighbors. This method 
increases the percentage of the minority cases in 
the dataset and allows for improved downstream 
analysis. Crucially, SMOTE was applied only to our 
training sets, and we did not oversample the testing 
set, thus maintaining the natural outcome frequency.

Machine Learning Models. We evaluated 6 different 
classification models: logistic regression, random 
forest classifier, support vector classifier, simple-feed-
forward neural network, balanced random forest 
classifier, and balanced bagging classifier. For each, we 
also compared the use of oversampling the training 
set via SMOTE versus no SMOTE. For each model, all 
features were included as inputs. For each machine 
learning model, we performed hyperparameter 
tuning via grid search (described below for each 
model) before performing the final version on that 
model. Feature importance was ranked based on Gini 
importance.

Multivariable Logistic Regression. This is a statistical 
model that asserts a binary outcome based on the 
weighted combination of the underlying independent 
variables. We tested an L2-penalty-based regression 
model without specifying individual class weights. 
This model provided a baseline score and helped 
make the case for improvement over the evaluation 
metrics. For hyperparameter tuning, we performed 
grid search cross-validation to find the optimal 
parameter value for C (the inverse of regularization 
strength), which was 0.1.

Random Forest Classifier. We developed a random for-
est classifier, and the criterion for the split was set to 
the Gini impurity. The Gini impurity was calculated 
in which C is the total number of classes, and p(i) was 
the probability of picking a datapoint with class i.

C G i p i p i= = ∑ ∗ −( ) ( ( ))1  1

Random forest is an ensemble approach (a tech-
nique that combines the predictions from multiple 
machine learning algorithms together to make more 
accurate predictions than any individual model) of 
decision trees, which by themselves have been proven 
to work well for a variety of classification problems.17 
The random forest is a robust and reliable nonpara-
metric supervised learning algorithm that acts as a 
means to test the further improvement in the metrics 
and provide the feature importance of the dataset. For 
hyperparameter tuning, we performed grid search 
cross-validation to find the optimal parameter value 
for maximum depth, minimal samples required to be 
at the leaf node, minimal samples required to split an 
internal node, and the number of estimates (ie, num-
ber of trees), in which the values were 50, 2, 5, and 500, 
respectively.

Support Vector ClassifierA support vector classifier 
tries to find a hyperplane decision boundary that best 
splits the data into the required number of classes. It 
plots each data item as a point in an n-dimensional 
space (n being the number of features), then finds a 
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hyperplane that separates the classes.18 We developed 
a modification of the support vector machine that 
weighed the margin proportional to the class impor-
tance and was a cost-sensitive support vector classi-
fier (by choosing the gamma value as “scale,” while 
defining the classifier and assigning “balanced” to the 
class-weight parameter).

(gamma: defines the amount of influence a single 
data point can have, “scale”: assigns gamma value as 
1/[n_features * X.var()])

For hyperparameter tuning, we performed grid 
search cross-validation to find the optimal parameter 
value for C (value that trades off correct classification 
of training examples against maximation of the deci-
sion function’s margin), which was 10.

Balanced Random Forest Classifier. This is an imple-
mentation of the random forest, which randomly 
undersamples each bootstrap to balance it. The model 
was built using the imblearn package. For hyper-
parameter tuning, we performed grid search cross-
validation to find the optimal parameter value for 
maximum depth, minimal samples required to be at 
the leaf node, minimal samples required to split an 
internal node, and the number of estimates (ie, the 
number of trees), in which the values were 50, 2, 5, 
and 500, respectively.

Balanced Bagging Classifier. Another way to ensemble 
models is bagging or bootstrap-aggregating. Bagging 
methods build several estimators on different ran-
domly selected subsets of data. Unlike random forests, 
bagging models are not sensitive to the specific data on 
which they are trained. They give the same score even 
when trained on a subset of the data. Bagging classifi-
ers are also generally more immune to overfitting. We 
built a balanced bagging classifier using the imblearn 
package. For hyperparameter tuning, we performed 
grid search cross-validation to find the optimal param-
eter values for maximum samples and the number of 
estimators, which were 0.05 and 500, respectively.

Multilayer Perceptron Neural Network. Using sci-kit 
learn’s “MLPClassifier,” we built a basic shallow feed-
forward network. The activation function was set to 
the rectified linear unit function, and the net was 
trained for a maximum of number iterations based on 
hyperparameter tuning. For hyperparameter tuning, 
we performed grid search cross-validation to find the 
optimal parameter values for the number of hidden 
layers, the number of neurons per hidden layer, and 
the maximum number of iterations, which were 2, 10, 
and 500, respectively.

PERFORMANCE METRICS
Our primary performance metric of interest was the 
F1 score. This is a version of the Fβ-metric, where 

we provided equal weight to the precision and recall 
scores. F1 score is formally equal to the harmonic 
mean of precision and recall, and this provides a 
way to combine both into a single metric. This is the 
most valuable metric to analyze a classification task 
and, thus, was the most significant metric of our 
analysis.19,20

F1 Score  2  Prec sion  Recall

Precision  Recall

= × ×
+( )

i

/

In addition, we reported precision, recall, AUC for the 
ROC curve, the Matthews correlation coefficient, sen-
sitivity, and specificity.21

K-Folds Cross-Validation. To perform a more robust 
evaluation of our models, we implemented repeated 
stratified-K-fold cross-validation to observe the preci-
sion, recall, F1 score, and AUC scores for 10 splits and 
3 repeats. For each iteration, the dataset was split into 
10 folds, where 1 fold served as the test set, and the 
remaining 9 sets served as the training set. The model 
was built on the training set. In the case when SMOTE 
was utilized, only the training set was oversampled. 
This was repeated until all folds had the opportunity 
to serve as the test set. This was then repeated 3 times. 
For each iteration, our performance metrics were cal-
culated on the test set. The average of each perfor-
mance metric was calculated thereafter.

RESULTS
There were a total of 13,447 surgical procedures 
included in our analysis, which mostly comprised 
orthopedic (36%) and ear, nose, and throat (13.1%) 
surgeries. The overall median (quartiles) OR case time 
was 74.5 (49–113) minutes, and PACU length of stay 
was 84 (63–112) minutes. The overall median (quar-
tiles) total perioperative time (actual case duration 
and PACU length stay) was 165 (122–225) minutes 
(Table 1).

First, we split the data into training and test sets 
and calculated the AUC of the ROC curve for each 
machine learning approach on the test set using 
SMOTE. We built a model for each start time (1 pm, 
2 pm, 3 pm, or 4 pm) and showed that the ensemble 
learning approaches (ie, balanced bagging classifier, 
balanced random forest, and random forest) had the 
highest AUC scores (Figure 2). For example, if a case 
is booked at 2 pm and we would like to determine if it 
would finish before 5 pm and patient discharged by 7 
pm, the logistic regression model had an AUC of 0.81, 
while balanced bagging classifier was 0.91. Based 
on the balanced random forest classifier, the most 
important features (ranked by the Gini importance 
index) contributing to the models were scheduled 
room times, scheduled incision time, surgical spe-
cialty, and patient weight (Figure 3). As an example, 
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when predicting the outcome with a 3 pm start, the 
association of each covariate to the outcome based on 
the logistic regression was presented in Supplemental 
Digital Content 1, Table 1, http://links.lww.com/
AA/D916.

Performance Metrics Calculated From K-Folds 
Cross-Validation
We then calculated the average F1 score, accuracy, pre-
cision, recall, and AUC from k-folds cross-validation 
among all models with or without SMOTE (Table 2). We 
calculated the F1 scores of each model with and without 
SMOTE for each start time point (Figure 4, dotted lines). 
When SMOTE was not utilized, the random forest classi-
fier and balanced bagging classifier F1 scores performed 
the best among all start time points. For example, at 3 
pm start time, the F1 scores were 0.69, 0.65, and 0.69 for 
logistic regression, multilayer perceptron, and support 
vector classifier, respectively, while the F1 scores were 
0.74, 0.77, and 0.80 for balanced random forest, balanced 
bagging, and random forest classifiers, respectively.

When SMOTE was utilized, we noted some 
improvements in F1 scores for balanced bagging clas-
sifier, balanced random forest, and random forest. 
Furthermore, these models had the highest F1 scores 
at all start time points (Figure 4, solid lines). For exam-
ple, for 3 pm start time, the F1 scores were 0.67, 0.69, 

and 0.70 for logistic regression, multilayer percep-
tron, and support vector classifier, respectively, while 
the F1 scores were 0.80, 0.82, and 0.81 for balanced 

Table 1. Distribution of Data. This Includes All 
Features Included in the Model Except for Actual 
Surgical Procedure and Surgeon Identification

Characteristic 
All cases
n %

Total 13,447  
Service line
 Other 1183 8.8
 Breast surgery 866 6.4
 Colorectal surgery 1203 8.9
 Ears nose and throat 1766 13.1
 Minimally invasive surgery 745 5.5
 Obstetrics and gynecology 1904 14.2
 Orthopedic surgery 4843 36.0
 Urology 937 7.0
ASA PS ≥ 3 (%) 2895 21.5
Age (y)–mean (SD) 49.4 (16.6)
Male sex (%) 5409 40.2

Weight (kg)–mean (SD) 79.0 (19.2)
Number of cases in the operating room–

median (quartiles)
5 (4–7)

Number of times surgeon performed surgery–
median (quartiles)

38 (11–96)

Scheduled incision time (min)–median 
(quartiles)

60 (33–90)

Scheduled room time (min)–median 
(quartiles)

65 (40–95)

Actual room time (min)–median (quartiles) 74.5 (49–113)
PACU length of stay (min)–median (quartiles) 84 (63–112)
Total perioperative time (room + PACU min)–

median (quartiles)
165 (122–225)

Abbreviations: ASA PS, American Society of Anesthesiologists Physical 
Status; PACU, postanesthesia care unit; SD, standard deviation.

Figure 2. AUC for 6 separate models: logistic regression, multilayer 
perceptron neural network classifier, balanced random forest, bal-
anced bagging classifier, random forest classifier, and support vector 
classifier. The models were implemented to predict the outcome for 
when a procedure will start at: A, 1 pm; B, 2 pm; C, 3 pm; or D, 4 
pm. AUC indicates area under the receiver operating characteristic 
curve; SVC, support vector classifier.

http://links.lww.com/AA/D916
http://links.lww.com/AA/D916
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random forest, balanced bagging, and random forest 
classifiers, respectively. The balanced bagging classi-
fier performed best with F1 score of 0.78, 0.80, 0.82, 
and 0.82 when predicting our outcome if cases were 
to start at 1 pm, 2 pm, 3 pm, or 4 pm, respectively. This 
was compared to F1 score of 0.56, 0.62, 0.67, and 0.73 
for logistic regression.

DISCUSSION
In our analysis, we compared various types of 
machine learning approaches to predict, given a 

specific start time, if surgery will finish before end of 
surgical block time and if the patient will also be dis-
charged by the end of the recovery room team shift. 
We found that prediction is improved using an overs-
ampling technique, which balances training data sets 
of surgeries of asymmetrical incidence. We demon-
strated improvement in predicting the outcome at a 
range of start times, which would allow for greater 
flexibility in scheduling.

In many ambulatory outpatient surgery prac-
tices, cases are booked into a specified surgical block  

Figure 3. Feature importance 
graph of 11 features based on 
the balanced bagging approach. 
ASA indicates American Society 
of Anesthesiologists.
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time to allow for appropriate surgical duration 
and recovery time. However, the entire block is not 
always filled due to asymmetrical service time. At 

a prespecified time point, the surgical block is often 
opened to fill the block to optimal utilization. Thus, 
add-ons may be requested days before surgery. When 

Table 2. Average Performance Metrics (Precision, Recall, MCC, Cohen’s Kappa, Sensitivity, Specificity, and 
AUC) for Each Machine Learning Modeling Predicting Surgery Ending by 5 pm and Patient Discharged From 
PACU by 7 pm Based on 1 pm, 2 pm, 3 pm, or 4 pm Start
1 pm start: predicting if surgery will end before 5 pm and patient discharged from recovery room before 7 pm

 Without SMOTE With SMOTE
Classifier Precision Recall MCC Sensitivity Specificity AUC Precision Recall MCC Sensitivity Specificity AUC
 Logistic regression 0.956 0.996 0.152 0.996 0.064 0.809 0.986 0.784 0.269 0.784 0.766 0.829
 Balanced random  

 forest classifier
0.991 0.855 0.378 0.855 0.832 0.913 0.979 0.974 0.516 0.984 0.564 0.919

 Balanced bagging  
 classifier

0.991 0.882 0.414 0.883 0.824 0.919 0.981 0.979 0.555 0.978 0.583 0.928

 Random forest  
 classifier

0.968 0.996 0.480 0.996 0.309 0.929 0.979 0.974 0.517 0.974 0.569 0.919

 Multilayer  
  perceptron 

neural network

0.959 0.994 0.231 0.996 0.123 0.844 0.984 0.838 0.295 0.838 0.711 0.847

 Support vector  
 classifier

0.956 0.998 0.149 0.998 0.049 0.724 0.844 0.849 0.327 0.848 0.751 0.858

2 pm start: predicting if surgery will end before 5 pm and patient discharged from recovery room before 7 pm

 Without SMOTE With SMOTE
Classifier Precision Recall MCC Sensitivity Specificity AUC Precision Recall MCC Sensitivity Specificity AUC
 Logistic regression 0.909 0.982 0.327 0.982 0.222 0.798 0.950 0.766 0.317 0.766 0.685 0.796
 Balanced random  

 forest classifier
0.972 0.832 0.476 0.832 0.811 0.899 0.952 0.952 0.576 0.952 0.625 0.903

 Balanced bagging  
 classifier

0.969 0.870 0.512 0.870 0.782 0.905 0.953 0.961 0.604 0.961 0.624 0.912

 Random forest  
 classifier

0.933 0.982 0.543 0.982 0.445 0.909 0.952 0.951 0.572 0.951 0.622 0.901

 Multilayer  
  perceptron 

neural network

0.912 0.980 0.352 0.980 0.253 0.824 0.953 0.800 0.358 0.800 0.691 0.828

 Support vector  
 classifier

0.914 0.981 0.381 0.981 0.275 0.769 0.961 0.814 0.405 0.814 0.739 0.840

3 pm start: predicting if surgery will end before 5 pm and patient discharged from recovery room before 7 pm

 Without SMOTE With SMOTE
Classifier Precision Recall MCC Sensitivity Specificity AUC Precision Recall MCC Sensitivity Specificity AUC
 Logistic regression 0.888 0.970 0.433 0.970 0.353 0.822 0.935 0.780 0.394 0.780 0.713 0.816
 Balanced random  

 forest classifier
0.963 0.815 0.524 0.815 0.835 0.910 0.937 0.941 0.609 0.941 0.661 0.910

 Balanced bagging  
 classifier

0.961 0.853 0.563 0.853 0.816 0.916 0.936 0.952 0.632 0.952 0.656 0.919

 Random forest  
 classifier

0.918 0.975 0.608 0.975 0.539 0.918 0.937 0.941 0.611 0.941 0.664 0.910

 Multilayer  
  perceptron 

neural network

0.891 0.971 0.448 0.971 0.365 0.847 0.938 0.805 0.427 0.805 0.716 0.846

 Support vector  
 classifier

0.886 0.980 0.447 0.980 0.329 0.809 0.952 0.783 0.453 0.783 0.789 0.855

4 pm start: predicting if surgery will end before 5 pm and patient discharged from recovery room before 7 pm

 Without SMOTE With SMOTE
Classifier Precision Recall MCC Sensitivity Specificity AUC Precision Recall MCC Sensitivity Specificity AUC
 Logistic regression 0.674 0.588 0.449 0.588 0.846 0.821 0.736 0.764 0.465 0.764 0.720 0.809
 Balanced random  

 forest classifier
0.701 0.833 0.620 0.833 0.808 0.900 0.829 0.775 0.632 0.775 0.861 0.901

 Balanced bagging  
 classifier

0.726 0.817 0.634 0.817 0.832 0.903 0.837 0.773 0.642 0.773 0.871 0.905

 Random forest  
 classifier

0.779 0.732 0.629 0.732 0.887 0.902 0.829 0.774 0.629 0.774 0.860 0.901

 Multilayer  
  perceptron 

neural network

0.699 0.640 0.501 0.640 0.849 0.843 0.771 0.794 0.523 0.794 0.749 0.849

 Support vector  
 classifier

0.708 0.670 0.527 0.670 0.850 0.844 0.767 0.817 0.534 0.817 0.740 0.846

Abbreviations: AUC, area under the receiver operating characteristic curve; MCC, Matthews correlation coefficient; PACU, postanesthesia care unit; SMOTE, 
synthetic minority oversampling technique.
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scheduling add-ons, it is important to keep in mind 
the nursing and anesthesiology staffing restrictions. 
Overextending staff is costly and inefficient. Using the 
type of analysis proposed in this study, OR managers 
can then better decide where specific surgery add-ons 
should be placed or not placed.

Advances in electronic health monitoring have 
resulted in data that are better curated and easier to 
access. This opportunity lends itself to advance analy-
sis of big data with artificial intelligence approaches 
to improve outcomes. Limited resources can then be 
directed to the most impactful changes to optimize 
efficiency. Using a single dataset, we can improve our 
ability to predict outcomes by using machine learn-
ing approaches to determine the most efficacious 
approach to scheduling. Such practice can be imple-
mented as standard practice in the health care setting.

The primary objective of our study was to compare 
various machine learning models to a base model 
using logistic regression. In our study, ensemble 
learning (random forest, balanced random forest, and 
balanced bagging classifier) approaches performed 
better than logistic regression in predicting total 
perioperative time (case duration and PACU length 
of stay), when comparing F1 scores. At all starting 
time points, the F1 score was higher for random for-
est, balanced random forest, and balanced bagging 
compared to logistic regression. Furthermore, when 
SMOTE was used, the improvement in F1 scores for 
this model was more apparent. A major limitation 
of the binomial logistic regression approach used 
in this study is that this type of regression assumes 
linearity between the dependent and independent 
variables.22,23 Ensemble learning models are advan-
tageous in that they can leverage multiple learning 
algorithms to better predict an outcome and can also 
capture nonlinear relationships between features 
and outcomes that may contribute to the improved 

performance. Ensemble learning approaches are not 
without limitations—they rely on diversity within the 
sample and between the models; however, methods 
to introduce diversity can be used to generate diver-
sity and class balance within a given dataset. Based 
on our results, we recommend the use of ensemble 
learning approaches versus logistic regression for 
tackling this type of operating problem. More studies 
are needed to assess the feasibility of implementing 
machine learning approaches to improve outpatient 
surgery efficiency; however, to be successful, features 
included in the model need to be data that are eas-
ily automatically collected via the electronic medical 
record system (such as the case with the features we 
chose in our analysis).

Additionally, a common issue with electronic 
health data is class imbalance.24 Expansion of the 
minority class can be achieved by synthetic genera-
tion of minority class data by SMOTE, which uses a 
nearest-neighbor approach to reduce the class imbal-
ance. Standard methods replicate random data from 
the original dataset, which can induce bias from a 
small collection of individuals. In the present study, 
SMOTE improved our model performance when 
directly compared to regression techniques. This is 
likely because an SMOTE balanced dataset better rep-
resents the initial population than other approaches.

It is important to note that the most important 
predictors that were included in the models in this 
study were scheduled room times, scheduled incision 
time, surgical specialty, and patient weight. Surgical 
specialty played a role, as different surgical special-
ties had more consistently timed or “standard” proce-
dures and/or patient populations compared to other 
specialties. Patient weight was a significant contribu-
tor as it can take added time/resources to physically 
move the patient, perform the surgery, or establish an 
airway.25

Figure 4. The F1 score (calcu-
lated by k-folds cross-valida-
tion) for each machine learning 
approach predicting whether 
booking a surgical procedure 
at 1 pm, 2 pm, 3 pm, or 4 pm will 
lead to surgery ending by 5 pm 
and patient discharged from 
recovery room by 7 pm (solid 
lines, SMOTE; dotted lines, no 
SMOTE). PACU indicates post-
anesthesia care unit; SMOTE, 
synthetic minority oversampling 
technique.
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There are metrics, including OR block time utiliza-
tion and scheduled case duration accuracy, which are 
used to evaluate an institution’s efficiency. However, 
a lack of standardization among institutions makes 
comparison difficult. In a previous single-center study 
at this institution,26 it was determined using “time 
stamp data” taken directly from the electronic medi-
cal records that scheduled case duration accuracy was 
the most positively associated metric with scheduled 
end-time accuracy. Similarly, it has been demonstrated 
in a multicenter study that underfilled OR block time 
contributed more to OR utilization and efficiency com-
pared to turnover time or on-time case start.27 Many 
strategies have been used to optimize the filling of OR 
block time, including changing the sequence of cases 
in order of duration,28,29 staffing similar cases with 
similar staff,30 or using historical data from specific 
surgeons31–34 to improve case duration accuracy. Data 
mining with predictive modeling34–36 has been trialed 
as well. Attempts have been made to use machine 
learning and artificial intelligence to improve the accu-
racy case duration estimates,6,7,37–40 but no one has used 
artificial intelligence to predict the feasibility of end of 
day case add-ons combined with PACU length of stay.

There are some limitations to consider from this 
study. As a retrospective study, collection and accu-
racy of the data are only as reliable as it was collected. 
This is single institution data; therefore, our data will 
not capture interinstitution differences. Furthermore, 
there are no universal time points for end of surgical 
block time nor end of PACU staffing; thus, the times 
we used for this analysis (5 pm for end of surgical 
block time and 7 pm for end of PACU staffing) may 
not apply widely. However, the focus of the study 
was to set an example of how one can use predictive 
modeling to accurately estimate whether surgeries 
will end by institution-specific block time end, and 
patients will be discharged by institution-specific end 
of PACU staffing time. Nonetheless, we are focusing 
our novel findings based on the improvement of pre-
diction using our methodological approach of com-
bining ensemble learning and SMOTE. SMOTE is an 
effective method for limiting class imbalance; how-
ever, it can be problematic for high-dimensional data.

Health care organizations rely on ambulatory surgery 
centers to improve institutional profits, and efficiency 
in this setting also contributes to patient satisfaction. 
Any misutilization of OR time can prove to be costly. 
Staffing costs are affected when it leads to overtime pay, 
canceled cases when a room is behind schedule, and 
unfilled time translates into missed opportunities for 
patient care and institutional profit. E
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