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Estimating the total treatment effect in randomized experiments
with unknown network structure
Christina Lee Yua, Edoardo M. Airoldib , Christian Borgsc , and Jennifer T. Chayesd,e,f,g,1

This contribution is part of the special series of Inaugural Articles by members of the National Academy of Sciences elected in 2019.
Contributed by Jennifer T. Chayes; received June 13, 2022; accepted September 28, 2022; reviewed by Susan Athey and Susan Murphy

Randomized experiments are widely used to estimate the causal effects of a proposed
treatment in many areas of science, from medicine and healthcare to the physical and
biological sciences, from the social sciences to engineering, and from public policy
to the technology industry. Here we consider situations where classical methods for
estimating the total treatment effect on a target population are considerably biased
due to confounding network effects, i.e., the fact that the treatment of an individual
may impact its neighbors’ outcomes, an issue referred to as network interference or as
nonindividualized treatment response. A key challenge in these situations is that the
network is often unknown and difficult or costly to measure. We assume a potential
outcomes model with heterogeneous additive network effects, encompassing a broad
class of network interference sources, including spillover, peer effects, and contagion.
First, we characterize the limitations in estimating the total treatment effect without
knowledge of the network that drives interference. By contrast, we subsequently develop
a simple estimator and efficient randomized design that outputs an unbiased estimate
with low variance in situations where one is given access to average historical baseline
measurements prior to the experiment. Our solution does not require knowledge of
the underlying network structure, and it comes with statistical guarantees for a broad
class of models. Due to their ease of interpretation and implementation, and their
theoretical guarantees, we believe our results will have significant impact on the design
of randomized experiments.

design of experiment | additive network interference | heterogeneous causal effects | social and
information networks | total treatment effect

The measurement of treatment effects via randomized experiments is a fundamental tool
used across all fields of scientific disciplines and beyond. For example, consider a public
health campaign to increase public awareness of the importance of wearing masks during
a global pandemic. The administrator in charge of running the public health campaign
wants to determine which proposed banner ad would be most effective for displaying on
a public billboard. In particular, the administrator wants to estimate the total treatment
effect, i.e., the change in behavior of the population at large that results from viewing the
proposed banner ad. The total treatment effect is a causal effect, as it describes the change
in behavior that is caused by the treatment. The experimental units in this example are
the individuals in the population, and outcomes refer to some measurable behavior of
individuals, such as whether an individual is wearing a mask or not at the grocery store.

The classical approach to estimating causal effects involves running a randomized
experiment, where one randomly partitions the population into a treatment group and
a control group. The treatment of interest is administered to each individual in the
treatment group, and a placebo is administered to each individual in the control group.
The causal effect is then approximated by the difference in measured outcomes or behaviors
between the treatment and control groups after the treatment has been administered. This
approach results in an efficient unbiased estimate for the desired causal effect under a
critical assumption that the outcome of an individual is not affected by the treatment
assignment of any other individual; this assumption is referred to in the literature as the
stable unit treatment value assumption (SUTVA) (1–3).

Unfortunately, SUTVA is violated in many applications, as individuals are connected
in a complex social network that mediates communication, influence, or spread of
disease, resulting in network interference that couples the outcomes of individuals. The
treatment of individual A may impact the outcome of individual B, violating SUTVA
and introducing significant bias to the estimates resulting from the classical experimental
approach of randomizing treatment and control uniformly over individuals and estimating
the difference in average outcomes of the treatment and control group. Furthermore, the
network that mediates the interference effects is often unknown and difficult or costly
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to estimate. As a result, we need a theory for experimental design
that can account for these network interference effects in the
absence of observations about the network, and yet is simple and
practical to implement. We illustrate a few motivating scenarios.

Consider estimating the total treatment effect of a public
health campaign to increase the use of masks in public during a
pandemic. Suppose that individual A, a senior citizen, is shown the
proposed banner ad and thus decides to wear a mask in public.
Individual A’s behavior could cause a positive network effect on
the individual’s friends, even though they did not see the original
banner ad. In contrast, individual A’s behavior may have a negative
effect on a teenager, who may think that wearing masks must be
for the elderly and thus not “cool.”

Consider a social media platform such as LinkedIn, which
wants to estimate the total treatment effect of a proposed change
in the recommendation engine for a user’s news feed, with a
goal of increasing user engagement. The change in engagement
level of individual A as a result of being exposed to the proposed
change could subsequently impact the engagement level of others
in individual A’s social network, resulting in a positive or negative
network effect. Similar network effects arise in other types of
communication networks beyond social media platforms, includ-
ing mobile networks, email exchange networks, and collaboration
communities.

Consider running a clinical trial to estimate the total treatment
effect of a proposed vaccine for COVID-19, i.e., how much the
overall rate of cases contracted in the public at large would decrease
as a result of everyone receiving the vaccine. Since COVID-
19 is transmitted via an underlying social contact network, the
impact of individual A receiving the vaccine may not only reduce
individual A’s chance of contracting the disease, but also reduce
the risk of exposure of other individuals connected to A in the
network. This network effect is heterogeneous as the frequency
of time individual A spends with others in individual A’s contact
network may vary.

Problem Setup and Potential Outcomes Model

Consider a finite population of n individuals. We denote the
treatment vector by z= (z1, z2, . . . zn) ∈ {0, 1}[n], where zi = 1
if individual i is assigned the treatment and zi = 0 if individual
i is in the control group. Let ei denote the standard basis vector
that takes value one at coordinate i and is zero everywhere else. As
we consider the randomized experiment setting, we assume that
the treatment vector z is sampled from a prescribed distribution
as determined by the experimental design; this distribution is re-
ferred to as the randomized design. In many practical applications,
there is a limit on the fraction of individuals that can be assigned
to the treatment group, whether because of a high cost for testing a
new treatment or due to safety considerations of limiting possible
unknown adverse effects. Therefore, a desired solution involves
proposing an estimator alongside a randomized design for which
we can achieve consistent estimation while keeping the expected
number of treated individuals low.

Yi(z) denotes the potential outcome of individual i in the
event that treatment vector z is implemented. Only the outcomes
for the implemented treatment vector z are observed, and thus all
other “potential outcomes” that would result from other realiza-
tions of the treatment vector are unobserved. Under the stable unit
treatment value assumption, the potential outcome of individual
i depends only on zi and not on the treatment of any other
individual (1–3). Under this assumption, Yi(z) = Yi(ziei) for
all z. In the presence of general arbitrary network interference, the
outcome of individual i may depend on the full treatment vector.

Fig. 1. Depiction of model under heterogeneous additive network effects:
Vertex weights correspond to baseline outcomes. When individual i is treated
(depicted in red), individual i’s outgoing edges are activated. Individual j’s
outcome Yj(z) is the sum of individual j’s own baseline plus any incoming
activated edges (depicted in red).

Our results rely on the neighborhood interference assumption
alongside joint assumptions of additivity of main effects and
interference effects as defined in ref. 4, which we also refer to as
the heterogeneous additive network effects assumption (Fig. 1).

Heterogeneous Additive Network Effects. The neighborhood
interference assumption posits that an individual’s outcome can
only depend on the treatment assignments of its direct neighbors
in a specified static network E (4, 5). We furthermore assume that
the network is unknown. The joint assumptions of additivity of
main effects and interference effects as defined in ref. 4 impose
that the potential outcomes satisfy

Yi(z)=Yi(0)+ (Yi(ei)−Yi(0))+
∑

k∈[n](Yi(ek )−Yi(0)).

This enforces that the outcome of each individual is affected
by an additive term for each treated individual in the popula-
tion, but this additive network interference effect can be fully
personalized to each pair of individuals. By letting αi denote
the individual baseline outcome Yi(0), βi denote the individ-
ual direct effect (Yi(ei)−Yi(0)), and γki denote the additive
network interference effect over the directed pair (k , i) given by
(Yi(ek )− Yi(0)), it follows that the potential outcomes model
is equivalently represented as

Yi(z) = αi + βizi +
∑

k∈[n] γkizk .

This model trivially satisfies the neighborhood interference
assumption with respect to the network edge set E defined as the
set of pairs (k , i), where γki �= 0. The total number of model
parameters is 2n + |E|. Without imposing constraints on the
sparsity of E , |E| could be as large as n(n − 1).

The model at a glance looks similar to a linear model, yet a
key distinction is that our model allows for fully heterogeneous
network effects individualized to each edge, such that the number
of parameters grows with the population size. This model is also
referred to as the linear model in ref. 6 or the saturated structural
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Fig. 2. By incorporating baseline estimates, the difficult task of network causal inference reduces to simply estimating a population mean quantity. (Left)
The TTE under heterogeneous additive network effects is equivalent to the weighted sum of all the edges divided by the total number of individuals. The
vertices corresponding to treated individuals are colored red, and all the outgoing edges from treated individuals are colored red. Given prior knowledge of
the population average baseline outcomes, the proposed estimator T̂TE−α is equal to the weighted sum of all red edges divided by the number of treated
individuals. (Right) For each vertex i, we can sum the weights of outgoing edges into an influence term Li . As a result, the task is equivalent to a parallel universe
in which each vertex i is associated to an influence Li , and there is no further network interaction. As a result of the proposed experiment, we observe the sum
of the influences of all treated individuals. Any randomized design with enough randomness and regularity will be able to guarantee that the average influence
of the treated individuals is equal to the population mean influence.

linear model in ref. 7. Our model is significantly more expressive
than typical linear models used in the empirical literature that
impose that there are a fixed number of types of individuals
that then share the same network effect coefficients, such that
the number of model parameters is fixed with respect to the
population size.

Target Estimand. There are many potential estimands of interest;
we focus on the total treatment effect (TTE), defined as the
difference between the average outcome if all individuals were
treated and the average outcome if nobody were treated:

TTE := 1
n

∑
i∈[n](Yi(1)− Yi(0)),

where 1 denotes the vector of all ones and 0 denotes the vector of
all zeros. Under heterogeneous additive network effects, the TTE
estimand takes value

TTE = 1
n (

∑
i βi +

∑
ki γki).

The total treatment effect is particularly relevant in scenarios
in which a decision maker can run a randomized experiment
with a limited treatment budget and desires to use the outcome
of the experiment to determine whether to fully adopt the new
treatment or to stay with the status quo. The challenge is that
the decision maker wants to estimate the outcomes under the all
ones treatment vector, but due to a limited budget, the decision
maker can only observe outcomes under a limited treatment
budget. The total treatment effect can be decomposed into a
direct effect, a network interference effect, and an interaction
effect (4). The direct effect captures the change in outcomes of
an average individual due to the individual being treated. The
network interference effect captures the change in outcomes of an
average individual due to the network (excluding the individual)
being treated. The interaction effect is nonzero in scenarios when
the effect of interference on an individual may depend on whether
the individual is treated or not.

Some previous work has focused on estimating the direct effect
(4, 8–12) or testing for the presence of network interference
(13–17); these methods do not produce an estimate of the total
treatment effect. The techniques for hypothesis testing in refs.
13 and 15 do not immediately extend to estimation as they are
based on randomization inference with a fixed network size and
studied testing sharp null hypotheses. While this paper focuses
on estimating the total treatment effect, we show results for the

direct treatment effect and the network interference effect in
SI Appendix.

Class of Estimators. A primary question of this work is to un-
derstand whether one can estimate total treatment effect in the
presence of network interference, particularly when the network
structure is unknown and costly to estimate, which is often the
case in many real world applications. As a result, we consider the
following class of individually weighted linear estimators, which
have the form

êst(w,v) =
∑

i∈[n] (wizi + vi(1− zi))Yi(z),

where the weights w = (w1,w2, . . .wn) and v = (v1, v2, . . . vn)
are deterministic and not a function of the treatment z. Most
notably, the weight wi or vi is selected only based on whether
individual i is treated or not and does not depend on the treatment
configuration of its neighbors.

The focus on linear estimators is not restrictive, as the majority
of all estimators proposed in the literature are indeed linear in
the measured outcomes. However, the limitation that the weights
that multiply an individual’s outcome Yi(z) depend only on that
individual’s treatment zi is a significant restriction and arises from
the limitation that we do not have knowledge of the network. In
contrast, the Horvitz–Thompson estimator under general neigh-
borhood interference is a linear estimator where the weight that
multiplies Yi(z) is a function of the treatments of all neighbors
of i in addition to i itself; this necessarily requires knowledge of
the neighborhood (5). All estimators previously studied in the
network interference literature require some knowledge of the
network.

Under the simplifying SUTVA condition, many classic
estimators are in fact individually weighted linear estimators.
For example, the Horvitz–Thompson estimator under SUTVA
sets wi = 1/(nE[zi ]) and vi = 1/(nE[1− zi ]). The differ-
ence in means estimator sets wi = 1/

∑
j∈n zj and vi = 1/∑

j∈n(1− zj ), which are deterministic for randomized designs
in which the total numbers of individuals under treatment and
control are fixed.

Discussion of Model Assumptions. Our model assumes a finite
population of size n with arbitrary values for αi ,βi , γki . Since
the model allows for any abitrary values, it also can capture a
model in which these unknown parameters are generated from
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an underlying stochastic process, with respect to which the pa-
rameters across individuals could be correlated. For example, in
an application such as estimating the efficacy of a vaccine, an
underlying network mediates the spread of the epidemic under
both control and treatment scenarios. If {si}i∈[n] describes the
initial seeds of an infection, and Tji describes the accumulated
transmission (potentially over multiple hops of the network) from
a seed j to individual i , then the baseline outcomes would take the
form of αi =

∑
j∈[n] Tjisj . The baseline parameters αi are thus

correlated with respect to the shared dependence on the random
initial seeds sj , but as the baseline parameters are assumed to be
indepedent from the treatment assignments, our results will still
hold. In particular, our analysis considers the randomness of the
outcomes with respect to the treatment vector z conditioned on
the realized baseline parameters αi , treating them as constant.

This model can also capture network interference that arises
from spillover, peer effects, and contagion. Spillover refers to the
interference that arises from individual j ’s treatment affecting
individual i ’s outcome. Typically the spillover effect is assumed to
be mediated by the network, such that γji is nonzero only if (j , i)
is an edge in the network. By relaxing constraints on the sparsity
of the γki parameters, the heterogeneous additive network effects
assumption can also capture long-range spillover effects mediated
by multihop paths in the network.

Contagion or peer effects refer to interference that arises from
individual j ’s outcome affecting individual i ’s outcome. When
the contagion effect is linear, then this translates into long-
range interference effects over multihop paths in the network.
For example, consider a path �→ k → j → i in the network.
Under linear contagion, individual �’s treatment affects individual
�’s outcome, which subsequently affects individual k ’s outcome,
which subsequently affects individual j ’s outcome, which then
affects individual i ’s outcome, as described by

Yi(z) = ai + bizi +
∑

k∈[n] ckiYk (z).

The potential outcomes model can be derived by solving a
system of linear equations for the outcomes vector given an
assigned treatment vector, which results in the following potential
outcomes model:

Y(z) = (I − C )−1a+
∑∞

t=0 C
t · diag(b) · z,

where C is a matrix with the (k , i)th entry equal to cki , diag(b) is
a diagonal matrix with diagonal entries taking values from b, and
a andb are vectors corresponding to the parameters {ai}i∈[n] and
{bi}i∈[n]. Written in this form, we can verify that the potential
outcomes could be described via a heterogeneous additive network
effects model with dense network effects, as is also observed in refs.
6 and 7.

As there are more unknown model parameters than measure-
ments, we cannot hope to identify the model via regression, and
thus a randomized experimental design will be critical to any
solution. Previous attempts at causal inference under this model
involve complicated network-dependent randomized designs (6),
incur potentially high network-dependent biases (6), or impose
Bayesian priors on the unknown parameters that reduce the
statistical estimation task to again estimating a model with a fixed
number of parameters (8, 18).

Scenarios that violate linearity include when network effects
saturate after a certain number of neighbors are treated, are
sublinear in the number of treated neighbors, or are present only
after a minimum number of neighbors are treated. Linearity is
naturally violated if the measured outcome variable is binary
valued. As a result, our model is more suited to settings where

Yi takes a spectrum of values, such as representing the viral load
an individual has accumulated rather than the individual’s binary
infection status.

Alternate Approaches in the Literature

A critical challenge for estimating the total treatment effect is that
we observe {Yi(z)}i∈[n] only for a single fixed treatment vector
z, which is not 1 or 0. As a result, we may not observe any
of the terms in the expression of interest. Under a fully general
arbitrary interference model, it has been repeatedly shown that
it is impossible to estimate any desired causal estimands as the
model is not fully identifiable (3, 19–21). As a result, there have
been many proposed models that impose assumptions on exposure
functions (3, 19, 22–24), interference neighborhoods (4, 5, 25,
26), parametric structure (6, 8, 18, 27, 28), or a combination
of these. Each of these assumptions leads to a different solution
concept. The art in choosing a good model is balancing the tension
between strong assumptions that facilitate simple solutions and
weak assumptions that can more flexibly encompass real world
applications. Furthermore, studies show that one must exercise
caution in choosing model assumptions, as the results may be
sensitive to model misspecification (19, 21).

All previously proposed approaches critically rely on using
knowledge of a network mediating the interference effects, which
is often not available in practice. We highlight a few of the most
common models to highlight the strengths and weaknesses of each
approach. In complement to the below works, there are ongoing
empirical studies assessing the performance difference between
an experiment design that leverages the network implicitly and
a method that measures the network and leverages the measured
network (29).

Partial Interference. Partial interference assumes that the pop-
ulation can be partitioned into disjoint groups, such that all
network interference effects can only occur within but not across
the prespecified groups (23, 26, 30–35). Specifically, the outcome
of individual i can only depend on the treatment of others in
the same group as individual i and is independent from the
treatment assignments of individuals in other groups. Under this
assumption, we can randomize treatments over the groups jointly
so that all individuals in each group are assigned jointly either
to treatment or to control. As a result, Yi(z) = Yi(1) for all i
such that zi = 1, and Yi(z) = Yi(0) for all i such that zi = 0.
Unfortunately, this approach does not apply when the network
could be highly connected, limiting its use in practice. The bias
of standard estimators will scale with the number of edges across
clusters, leading to proposed cluster randomized designs that
randomize over clusters that are constructed to minimize edges
between clusters (6, 28).

Neighborhood Interference. Under the neighborhood interfer-
ence assumption, Yi(z) = Yi(1) for any individual in the treat-
ment group whose neighbors are also all in the treatment group;
we denote this set of individuals S1(z). Similarly, Yi(z) = Yi(0)
for any individual in the control group whose neighbors are also all
in the control group; we denote this set S0(z). Without imposing
any further assumptions, a natural estimate for the total treatment
effect is the difference in average outcomes between groups S1(z)
and S0(z) or an inverse probability weighted estimator when the
probability of being in group S1(z) or S0(z) may vary across
individuals (19). Without further structure on the interference,
one cannot use measurements from individuals not in either set
S1(z) or set S0(z), as the relationship between Yi(z) and Yi(1)
or Yi(0) is unknown.
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Under naive randomized designs such as a Bernoulli design that
assigns each individual independently to treatment with probabil-
ity p or control with probability 1− p, the variance of the inverse
probability weighted estimator will go to infinity with n for well-
connected networks such as the Erdos–Renyi graph with average
degree larger than

√
n (20); this results from the fact that with

high probability the sizes of sets S1(z) and S0(z) will be small
for highly connected networks. As a result, ref. 5 proposes a graph
cluster randomized design that aims to jointly assign individuals
and their neighbors to treatment or control to minimize variance.
Unfortunately this requires detailed knowledge of the network,
and constructing optimal clusters can be computationally ex-
pensive for nontrivial well-connected networks. As a result, this
approach has not translated into practical solutions.

An alternate approach suggested by refs. 7 and 36 is to instead
consider weaker estimands, which essentially capture the marginal
treatment effect of perturbing a status quo treatment assignment
distribution. To show a central limit theorem-styled result, ref. 36
imposes a generative distribution over the network structure itself
and considers how to exploit the regularity in the network that
arises from low rank structure. While this enables one to consider
networks of increasing size, it may only be plausible in applications
in which one can reasonably model the finite network as being
sampled from a known generative model.

Linear Model with Fixed Number of Parameters. While the
above models impose network-based conditions on the interfer-
ence, an alternate approach is to impose parametric structure on
the form of the potential outcomes. The most common assump-
tion is that the potential outcomes are linear with respect to a
specified statistic of the local neighborhood (8, 18, 27, 28, 37,
38). For example, ref. 27 assumes the outcome is linear in the
fraction of treated neighbors, such that

Yi(z) = α+ βzi + γ

(∑
k∈[n] Akizk∑
k∈[n] Aki

)
,

where A is a known adjacency matrix representing edges in the
network. Similarly, ref. 37 assumes linearity with respect to the
absolute number of treated neighbors. Threshold models also can
be expressed with a linear model using indicator statistics. For
example, ref. 28 assumes that network effects arise when at least θ
neighbors are treated, where θ is assumed to be known,

Yi(z) = α+ βzi + γ I
(∑

k∈[n] Akizk ≥ θ
)
.

One can extend these models to incorporate covariate types,
such that the total number of unknown parameters is three
times the number of different covariate types, assuming that each
covariate type is associated to a set of parameters α,β, γ.

What is characteristic of this approach is that the assumptions
reduce the number of unknown parameters in the potential
outcomes models to a fixed dimension that does not grow with the
population size, reducing the inference task to linear regression.
As a result, the natural solution is to use a least-squares estimate,
shifting the focus to constructing randomized designs that mini-
mize the variance of the estimate. A limitation of this approach is
that it requires the correct choice of the the statistic governing
the linearity, and it requires precise knowledge of the network
structure to compute these neighborhood statistics. Furthermore,
it assumes knowledge of the relevant covariate types that differ-
entiate individual responses or otherwise assumes homogeneity in
the effects.

Summary of Our Results

Our results focus on estimating the total treatment effect without
knowledge of the network under a heterogeneous additive net-
work effects model, which is significantly more expressive than
parametric model classes, where the number of parameters does
not scale with the population size. Under our model, the total
treatment effect scales linearly in the fraction of treated individu-
als; our approach exploits this linearity for a simple and efficient
solution. Our results offer methods and theory that do not require
knowledge of the network. We believe this combination of a
practical solution with a flexible model positions our results to
have impact in the broader scientific community.

The primary research question is, Does there exist a simple and
efficient solution for estimating total treatment effect in the pres-
ence of network effects without critically relying on knowledge
of the network structure or restrictive network properties? While
this has previously remained elusive, our results provide a clear
and simple answer, including both a negative scenario in which
there can be no simple solution and a positive scenario in which
we outline a simple efficient solution that can easily translate into
practice.

First, we show that in the presence of additive network ef-
fects, any individually weighted linear estimator for the TTE is
necessarily biased unless the network can be perfectly partitioned
into small disjoint subsets with no interfering edges. Furthermore,
this bias can be large, depending on the relative magnitude of
the network effects. This negative result suggests that the linearity
arising from the additive network effects model is not sufficient
in itself to admit simple estimators that do not utilize knowledge
of network structure. The primary reason is that it is difficult
for simple estimators to distinguish between the response due
to baseline values {αi}i∈[n] and that due to network effects
{γji}(j ,i)∈E .

Second, we consider the scenario when we have access to
an estimate of the average individual baselines; in practice this
could be constructed from historical data or pilot studies. Given
baseline estimates, we propose a simple estimator for the total
treatment effect that computes the average outcomes among the
entire population after applying the treatment vector, scales the
average outcome by the size of the total population divided by
the number of treated individuals, and then subtracts the average
baseline estimate. This estimator is unbiased for any randomized
design in which the marginal probability of an individual being
treated is equal among different individuals in the population, an
easy condition to satisfy as it involves only matching individual
marginal treatment probabilities. This estimator is extremely easy
to compute, and neither the randomized designs nor the estimate
itself require knowledge of the underlying network, which is often
not available in practice.

Third, we show that our proposed approach has low variance
under a simple completely randomized design. In particular, the
estimator is consistent as long as the fraction of treated individuals
is asymptotically larger than d2

max/n , where dmax is the maximum
outdegree of any individual in the network, i.e., the maximum
influence of any individual in the network. Furthermore, we
provide analytical expression for the variance of our estimator
under commonly used randomized designs, including completely
randomized and cluster-randomized design, as well as uniform
and varying saturation designs. These variance expressions pro-
vide insight for designing randomized designs that minimize
variance by matching individuals based on estimated network
influence.
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Additivity Is Not Sufficient for Unbiased
Estimators

Assuming heterogeneous additive network effects implies that the
total treatment effect scales linearly in the number of treated
individuals. A natural question is whether this additive model
is sufficient to admit simple unbiased estimators for the total
treatment effect or not. In this section we provide some results
in the negative by considering the restricted class of individually
weighted linear estimators.

Theorem 1. Under heterogeneous additive network effects, any unbi-
ased individually weighted linear estimator for total treatment effect
must have the form

T̂TE =
1

n

∑
i∈[n]

(
zi

E[zi ]
− 1− zi

E[1− zi ]

)
Yi(z),

and the randomized design must satisfy P(zk = zi) = 1 for all
(k , i) ∈ E . As a result, there does not exist an unbiased individually
weighted linear estimator for the total treatment effect if the network
is fully connected.

Proof. Under the heterogeneous additive network effects model,
an individually weighted linear estimator takes the value

êst(w,v) =
∑

i∈[n](wizi + vi(1− zi))αi +
∑

i∈[n] wiziβi

+
∑

(k ,i)∈E(wizi + vi(1− zi))zkγki .

This is an unbiased estimator for the total treatment effect
only ifE[êst(w,v)] = 1

n

∑
i∈[n] βi +

1
n

∑
(k ,i)∈E γki is satisfied

for any configuration of {αi}i∈[n], {βi}i∈[n], and {γki}(k ,i)∈E .
This requirement results in the following 2n + |E| constraints,
which arise from matching coefficients for each of the parameters:

• α: For all i ∈ [n], wiE[zi ] + viE[1− zi ] = 0.
• β: For all i ∈ [n], wiE[zi ] =

1
n .

• γ: For all (k , i) ∈ E , wiE[zizk ] + viE[(1− zi)zk ] =
1
n .

The second set of constraints for the direct treatment effects im-
plies that the weights are wi = 1/(nE[zi ]). As a result, combining
this with the first set of constraints for the baselines implies that
vi =−1/(nE[1− zi ]). After fixing the values of all the weights
w,v, the third set of constraints becomes difficult to satisfy. We
can rewrite the third set of constraints as

wiE[zi ]P(zk = 1|zi = 1) + viE[1− zi ]P(zk = 1|zi = 0) =
1

n
,

for all (k , i) ∈ E . Most notably, it is a linear combination of the
two terms that shows up in the first and second sets of constraints,
multiplied by probabilities that must be in [0,1]. By plugging in
the values for wi and vi that arise from the first two constraints,
it follows that the third constraint is satisfied only when P(zk =
1|zi = 1) = 1 andP(zk = 1|zi = 0) = 0 for all (k , i) ∈ E . This is
equivalent to requiring that the randomized design always assigns
connected individuals to the same treatment; i.e., P(zk = zi) = 1
for all (k , i) ∈ E . �

The constraint on the randomized design implies that every
pair of connected individuals in the population must be either
both treated or both control. This restricts the valid randomized
designs to a cluster-randomized design where the clusters are
defined by the connected components of the graph. Theorem 1
highlights that the imposed structure from heterogeneous additive

network effects is insufficient to remove the complex dependence
on the network. Even under linearity, we still need to deal with
imposing strong assumptions on the connectivity structure of the
network, or we will need to use more complex estimators that
utilize knowledge of the network, bringing us back to the same
challenges present in the fully general model.

When the conditions for unbiasedness are not satisfied, the bias
of the above simple estimator will scale with the average network
effect across the edges between the treated and control groups,
given by the expression

E[T̂TE]− TTE = 1
n

∑
(k ,i)∈E

(
Cov[zi ,zk ]

Var[zi ]
− 1

)
γki .

If the randomized design produces high correlation in treat-
ments across pairs of connected individuals in the network, then
E[T̂TE] is close in expectation to the total treatment effect. If the
design enforces independence of treatments across edges in the
network, then E[T̂TE] captures only the direct treatment effects
and not the network effects.

The restrictive unbiasedness conditions result from the fact that
it is difficult to set the coefficient for the baseline parameters to
0 while maintaining that the coefficients on the network effects
are 1/n , as the expressions for both are very similar. Essentially,
it is difficult for the model to distinguish between the effects
arising from individual baselines and the ambient network effects
from treated neighbors. Given this insight, in the next section we
consider the scenario where we have access to estimates of the
average individual baselines.

Simple Unbiased Estimator Given Baseline
Estimates without Any Knowledge of the
Network

In practice there are many applications in which we do have
access to additional information from historical data or pilot
studies that could be used to construct estimates of the average
baseline 1

n

∑
i∈[n] Yi(0) =

1
n

∑
i∈[n] αi . For example, a social

media platform such as LinkedIn is constantly monitoring the
engagement level of its users, such that it always has access to
the current status quo baselines at an individual level before
deploying randomized trials for a newly proposed feature. Even
when historical data may not be available, it is typically easy
to conduct small-scale surveys to estimate the baseline outcome
levels before beginning the randomized experiment. The data
must be collected before the experiment begins such that no one
has yet received the treatment. Under our heterogenous additive
network effects assumption, the measurements collected before
the experiment will accurately reflect the baseline with no network
effects due to treatment; these additional data can then be used to
significantly simplify the estimation of causal effects.

Let us first assume that we have access to the full individual
baselines; it follows naturally to then subtract the baseline αi from
the measurementYi(z) to remove all contributions of the baseline
effects from the linear estimator, resulting in

êst−α(w,v) =
∑

i∈[n] (wizi + vi(1− zi)) (Yi(z)− αi).

To characterize conditions for unbiased linear estimators, we
use the same approach of equating the coefficients of the direct
effects and the network effects between the expected value of
this estimator and the total treatment effect. Subtracting out
the baselines removes the set of constraints for unbiasedness
associated to the baseline parameters, leaving us with n + |E|
constraints. While this is still significantly more than the number
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of measurements, it turns out that there are still many reasonable
randomized designs under which we are able to satisfy these
constraints. Theorem 2 presents sufficient conditions for unbiased
linear estimators for total treatment effect given baseline estimates.

Theorem 2. Under heterogeneous additive network effects, for any
randomized design such that P(zk=0 | zi=1)

P(zk=1 | zi=0) = ρi for all (k , i) ∈ E
for some values of {ρi}i∈[n], the following estimator,

T̂TE−α =
1

n

∑
i∈[n]

(
zi

E[zi ]
− (1− zi)ρi

E[1− zi ]

)
(Yi(z )− αi),

produces an unbiased estimate for the total treatment effect.

The condition on the randomization is equivalent to imposing
that

E[zi(1− zk )]

E[(1− zi)zk ]
=

E[zi(1− zj )]

E[(1− zi)zj ]

for all triplets (i , j , k) such that (k , i) ∈ E and (j , i) ∈ E . Es-
sentially this boils down to symmetry conditions on the second
moments of the treatment vector across edges in the network.
Such a symmetry condition would be satisfied by ensuring that
for all i , the neighbors that influence i are treated equally in the
distribution of the assigned treatments. The ratio above can be
expanded to

E[zi(1− zk )]

E[(1− zi)zk ]
=

E[zi ]− E[zizk ]

E[zk ]− E[zizk ]
,

which is equal to 1 if E[zi ] = E[zk ]. As a result, a sufficient
condition to satisfy the required symmetry is to impose that
the marginals are equal across edges; i.e., E[zi ] = E[zk ] for all
(k , i) ∈ E . This is an easy condition to satisfy and leads to a
simplified result as stated below.

Corollary 3. For any randomized design such that E[zi ] = E[zk ]
for all (k , i) ∈ E , the following simple estimator

T̂TE−α =
1

n

∑
i∈[n]

Yi(z)− αi

E[zi ]

produces an unbiased estimate for the total treatment effect under het-
erogeneous additive network effects. When E[zi ] = p for all i ∈ [n],
the estimator further simplifies to

T̂TE−α =
1

p

⎛⎝ 1

n

∑
i∈[n]

Yi(z)−
1

n

∑
i∈[n]

αi

⎞⎠.

It may seem that we need knowledge of the network to choose
a distribution satisfying the symmetry conditions, as they are de-
fined with respect to constraints over the edges; however, without
knowledge of the network, one could use a distribution with
uniform marginal treatment probabilities as it satisfies the required
conditions for even the complete graph, which is most restrictive.
When the marginal treatment probability is equal for all indi-
viduals, i.e., E[zi ] = p for all i ∈ [n], the resulting estimator in
fact needs only knowledge of the average population baselines
rather than individual baseline parameters. While there are a few
settings for which individual baseline parameters are observed
from historical data, such as experimentation on social media
platforms, data of such granularity are not realistic in general.
On the other hand, having access to an accurate estimate of the

average population-wide baselines is realistic for a broad variety
of applications across public health and social sciences, as the
population-wide statistic could be estimated from small-scale pilot
studies.

Many simple classical randomized designs satisfy the property
that all individuals have an equal marginal probability of treat-
ment; in particular, this includes completely randomized design,
which assigns a p fraction of individuals uniformly at random
from the population to the treatment group. An important prop-
erty is that neither our estimator nor the appropriate randomized
designs need to have knowledge of the underlying network. In
fact, all previously proposed solutions required knowledge of
the network either for the randomized design or to compute
the estimator. In applications where the network is not fully
observed, our proposed estimators will still output in an unbiased
estimate for the total treatment effect with simple randomizations
that can be implemented without knowledge of the underlying
network. This provides positive guarantees for settings in which
the randomization may be limited due to regulatory policies or
lack of precise network information.

A critical assumption that our proposed estimator hinges on is
the ability to estimate the baseline parameters. While there may
not be sufficient information to estimate individual baselines, the
estimators presented in Corollary 3 require only estimates of the
weighted average baseline outcomes, which can be approximated
by sampling a small fraction of the population. However, implicit
in our assumption is that the average baseline outcomes preexper-
iment and postexperiment are the same, which excludes settings
in which there are time-related dynamics that significantly change
the baselines irregardless of the treatment. As an example, suppose
that a pharmaceutical company used reported data from state- and
national-level public health departments to estimate the average
baseline rates of contracting COVID-19 before beginning its
clinical trials. The assumption that the baseline outcomes remain
fairly constant may be violated if the timescale of the trial period
is such that the predominate variant of the virus changes in the
interim or the baseline natural immunity level of the population
changes significantly.

Reduction from Network Causal Inference to
Estimation of Population Mean

For the remainder of the paper we focus on the following estimator
introduced in Corollary 3:

T̂TE−α =
1

n

∑
i∈[n]

Yi(z)− αi

E[zi ]
.

It is easy to verify that the bias of the estimator is given by

E[T̂TE−α]− TTE = 1
n

∑
(i,k)∈E

(
E[zi ]
E[zk ]

− 1
)
γik ,

which is zero when the marginal treatment probabilities are equal
across individuals. This estimator is particularly simple because
the weights are chosen such that wi = vi ; i.e., each outcome is
incorporated to the estimator with the same weight regardless of
whether it is treated or not.

We define the “influence” of individual i on the estimate as

Li = βi +
∑
k∈[n]

E[zi ]γik
E[zk ]

.

We refer to this as influence because Li captures the contribu-
tion that individual i has toward the estimate T̂TE−α when i is
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treated, including the interference effect it has on other individuals
as well as the the direct effect it has on itself. Li does not depend
on the realization of the treatment vector.

Under heterogeneous additive network effects,

T̂TE−α =
1

n

∑
i∈[n]

⎛⎝ βi

E[zi ]
+

∑
k∈[n]

γik
E[zk ]

⎞⎠ zi =:
1

n

∑
i∈[n]

Lizi
E[zi ]

.

Written in this form, it is clear that the T̂TE−α is simply an
inverse propensity-weighted estimator, although the terms Li are
not actually observed. As a result, analytical expressions of the
variance of our estimate will follow from direct calculations over
the inverse propensity-weighted estimates.

Furthermore, under the sufficient conditions for unbiasedness
when E[zi ] = E[zk ] for all (i , k) ∈ E , the total treatment effect is
equal to the population mean of the influence terms,

TTE =
1

n

∑
i∈[n]

Li .

As a result, under the mild assumption of having access to
baseline estimates, we have reduced the complex task of network
causal inference to a simple task of estimating a population mean
of the influence via the sample average of the influence of treated
individuals (Fig. 2). This removes all complexity of network inter-
ference as the influence terms do not interact. Although our ran-
domized designs and estimators do not require any knowledge of
the network, the distribution of the influence will depend on the
network and will subsequently affect the variance of our estimator.

Variance of Proposed Estimator

As there are still many different randomized treatment designs one
could use, we compare the variance of our proposed estimator
under some commonly used randomized designs. Let p denote
the treatment budget, such that the size of the treatment group
can be at most p fraction of the population.

As our estimator corresponds to approximating the total treat-
ment effect with the average of the influence of the treated
individuals, this estimator directly inherits properties from the
analysis of a sample average estimator for the population mean
of the influence. The variance of the estimator is

Var[T̂TE−α] =
∑
i,j

LiLjCov(zi , zj )
n2E[zi ]E[zj ]

.

The randomized design affects the variance through the covari-
ance matrix of the treatment vector.

Completely Randomized Design. The completely randomized
design generates the treatment assignment vector z by selecting
a subset of pn units to treat uniformly at random out of the size
n population. This randomized design is commonly used in the
classical setting without network interference. Due to the uniform
sampling, E[zi ] = p for all i ∈ [n], and

Var[T̂TE−α] =
1− p

p(n − 1)

⎛⎜⎝1

n

∑
i∈[n]

L2
i −

⎛⎝1

n

∑
i∈[n]

Li

⎞⎠2
⎞⎟⎠.

The inner expression is equal to the population variance of the
influence terms {Li}i∈[n], which is bounded by B2d2

max, where
dmax denotes the maximum outdegree of the network, and B is a
bound on the direct effect and network effect parameters. A simple

bound on the variance thus scales as B2d2
max/pn . As a result, the

variance will converge to zero for large n as long as the number
of treated individuals pn divided by a constant B2d2

max goes to
infinity with large n . This is an optimally efficient rate when B
and dmax are constants, as this requires only the number of treated
individuals to be growing larger than a constant as n grows. In fact,
even optimal estimators for causal effects under SUTVA, without
network interference, result in a variance scaling as 1/pn . This
means that given the mild assumption of having access to baseline
estimates, our approach under fully heterogeneous network effects
attains a simple, unbiased, and optimally efficient estimate for the
total treatment effect, under the simplest randomized design.

Cluster-Randomized Design. The cluster-randomized design par-
titions the population into clusters, and all individuals in each
cluster are either jointly placed in the treatment group or jointly
placed in the control group. This is also referred to in the literature
as block-randomized design, where blocks refer to clusters. The
treatment assignment vector is generated by selecting a subset of
pT clusters to treat uniformly at random among the T clusters.
In contrast to completely randomized design, the treatments of
individuals within a cluster are perfectly correlated. This random-
ized design is commonly used in the network interference setting,
where the clusters are additionally constructed to minimize edges
across clusters, so that an individual and the individual’s local
neighbors are jointly assigned to treatment or control as much
as possible. In our setting, we do not require such conditions on
the construction of the clusters, and thus our clusters may not
correspond to tightly connected communities in the network.

The probability that an individual is treated is equal to the
probability that the cluster the individual belongs to is treated.
Due to the uniform sampling across the clusters, it follows that
E[zi ] = p for all i ∈ [n]. Let T denote the number of clus-
ters, assuming clusters of uniform size n/T for simplicity. Let
π : [n]→ [T ] denote the mapping that assigns individuals to
clusters. Let L′

τ denote the average value of the influence terms
within cluster τ , L′

τ = T
n

∑
i:π(i)=τ Li . The variance of our

estimator under this randomized design is given by

Var[T̂TE−α] =
1− p

p(T − 1)

⎛⎜⎝1

T

∑
τ∈[T ]

L′
τ
2 −

⎛⎝ 1

T

∑
τ∈[T ]

L′
τ

⎞⎠2
⎞⎟⎠.

Observe that the expression is very similar to the variance under
the completely randomized design, except we are randomizing
over clusters rather than individuals. The inner expression is equal
to the variance across clusters of L′

τ , which is the average influence
of individuals in cluster τ , bounded by B2(maxτ∈[T ] d̄τ )

2, where
d̄τ denotes the average outdegree of individuals in cluster τ . A
bound on the variance thus scales as B2(maxτ∈[T ] d̄τ )

2/pT .
If dmax is constant, and if T is asymptotically smaller than n ,

i.e., the size of each cluster is not constant with respect to the
population size n , then the variance under cluster-randomized
design is larger than the variance under completely randomized
design. When dmax may be large or even growing with n , then the
variance might be improved by using cluster-randomized design
with an optimal choice of clusters. In particular, there would be
a tradeoff between the choice of cluster size and the gain from
smoothing out the degree distribution, i.e., the influence, across
clusters. In particular, if there is high variation in the influence
among individuals, then the variance would be minimized by
splitting high-influence individuals across different clusters and
grouping them with low-influence individuals, to try to even
out the average influence of each cluster. This requires detailed
knowledge of the network, however, which is often not available.

8 of 10 https://doi.org/10.1073/pnas.2208975119 pnas.org

https://doi.org/10.1073/pnas.2208975119


Saturation-Randomized Design. The saturation-randomized de-
sign also assumes that the population is partitioned into clusters,
but instead each cluster is treated at a specified saturation level,
specifying the percentage of individuals in that cluster that are
treated. This is also referred to as a cluster-stratified randomized
design. For a cluster τ , let pτ denote the fraction of individuals
treated in cluster τ , satisfying

∑
τ∈[T ] nτpτ = np. Let T denote

the number of clusters, and let π : [n]→ [T ] map individuals
to clusters. Let nτ = |i : π(i) = τ | denote the size of cluster τ .
Treatments across different clusters are assigned independently.
For each cluster τ , a set of pτnτ individuals within the cluster
is selected uniformly at random to be treated. Let Vτ denote the
variance of the influence terms within cluster τ ,

Vτ =
1

nτ

∑
i:π(i)=τ

L2
i −

⎛⎝ 1

nτ

∑
i:π(i)=τ

Li

⎞⎠2

.

Under uniform saturation, i.e., pτ = p for all τ , the estimator
is unbiased as E[zi ] = p for all i , and the variance is

Var[T̂TE−α] =
1− p

pn

∑
τ∈[T ]

n2
τ

n(nτ − 1)
Vτ .

This expression essentially scales as Vavg/pn , where Vavg de-
notes the weighted average across cluster variances Vτ . In partic-
ular, to minimize the variance, each cluster should be chosen to be
as homogeneous as possible, so that there is little variation in the
influence parameters within each cluster. If Vavg is significantly
smaller than the overall population variance over the influence
terms {Li}i∈[n], then the uniform saturation-randomized design
improves in efficiency upon the completely randomized design
(CRD). An extreme special case of this randomized design would
be the matched-pair randomized design, where the pairs corre-
spond to the clusters, and p = 1/2. The pairs are selected to be as
similar as possible on known features.

Constructing such clusters requires additional knowledge of
covariates or network structure, which is not always available;
however, this analysis provides motivation that whenever we do
have such auxiliary information at hand, we can only benefit by
controlling for the variance that may be related to the auxiliary in-
formation. In particular, by grouping similar individuals together,
we ensure that the distribution over the auxiliary information in
the treated group is as similar as possible to that in the control
group.

For a general choice of saturation levels, the estimator may be
biased, and the bias will scale proportionally with the sum of the
network effect of edges across clusters with different saturation
levels. The variance of the estimator is given by

Var[T̂TE−α] =
∑
τ∈[T ]

(1− pτ )n
2
τ

pτn2(nτ − 1)
Vτ .

While varying the saturation levels would introduce bias into
the estimator, it may be able to reduce the variance by allocating a
larger treated fraction to clusters that are larger or that have larger
within-cluster variance Vτ . The reduction in variance would need
to be carefully balanced with the introduced bias, however, which
may be difficult to do since it would require auxiliary information
about the cluster variances.

Conclusion

Estimating the total treatment effect under network interference
is an important yet challenging problem. Previous solutions under

general models are often too computationally or statistically costly
or are limited to very simplistic network structures, inhibiting
adoption in practice. As a result, many practical solutions consider
strong assumptions on the network effects, which end up reducing
the estimation task to a simple regression problem. In contrast, we
consider the heterogeneous additive network effects assumption,
which imposes additive network effects, but allows for full hetero-
geneity in the edge-level network effect parameters. This model is
significantly more flexible than the simple linear models used in
practice. We analyze the properties of individually weighted linear
estimators under our model, and our results directly translate into
the following insights that are simple to apply in practice: Given
baseline estimates, we show that network causal inference is as
easy as estimating a population mean! Most notably, our solution
does not require knowledge of the underlying network, nor does
it critically require strong structural conditions on the network.
However, this work does not apply to dynamic settings in which
the network or the causal effects change during the course of the
experiment.

Insight 1: Prior Information from Historical Data or Pilot Studies
Is Incredibly Valuable; without Such Information, Any Unbiased
Estimate Must Use Knowledge of the Network. We showed that
without prior information, there does not exist any unbiased
estimate for the total treatment effect that does not use network
structure. In particular, we restricted to linear estimators with
weights that depend only on whether an individual is treated
or not and not on the treatment of the individual’s neighbors.
We showed that an unbiased linear estimator exists only if the
network can be fully partitioned into disconnected components,
such that the randomized design must jointly treat or not treat all
individuals in each connected component.

Insight 2: Use Historical Data or Pilot Studies to Estimate the
Population Baseline; Use the Following Simple Unbiased Esti-
mator to Approximate the Total Treatment Effect. We proposed
the following unbiased estimator for any randomized design for
which the marginal treatment probability of each individual is p,

T̂TE−α =
1

p

⎛⎝ 1

n

∑
i∈[n]

Yi(z)−
1

n

∑
i∈[n]

αi

⎞⎠.

Insight 3: The Statistical Properties of the Estimator Depend on
the Population Distribution of Individual Influence on the Total
Treatment Effect. Under our additive network effects model, our
proposed estimator takes the form of

T̂TE−α =
1

n

∑
i∈[n]

Lizi
E[zi ]

for Li = βi +
∑
k∈[n]

E[zi ]γik
E[zk ]

,

where Li quantifies individual i ’s influence on the total treatment
effect. This characterization shows that for a sufficiently large
population, under simple randomized designs, the distribution
of the estimator will also be approximately Gaussian. As a result,
variance estimates could be used to design hypothesis tests and
compute P values.

Insight 4: Using CRD Results in Optimally Efficient Estimation
of the Total Treatment Effect When the Effect Sizes and Outde-
grees Are Bounded. Under CRD, the variance of our estimator
is roughly equal to 1/pn times the population variance of the
influence terms {Li}i∈[n], which is bounded by B2d2

max when
the causal effect parameters are bounded by B and the outdegree
of each individual is bounded by dmax. As a result, the estimator is
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consistent as long as the number of treated individuals pn is larger
than a constant with respect to the population size n .

Insight 5: Utilize Any Auxiliary Information about Network
Structure or Covariates of Individuals in the Population to
Control for Variance That May Arise from Heterogeneity among
Individuals. The variance of the estimator is minimized by con-
structing a randomized design under which the distributions of
the influence terms within treated and control are as similar
as possible. The influence of individual i , denoted by Li , is a
function of the causal effect parameters βi , γik , but also depends
on the network via its local neighborhood structure. If the causal
effect parameters or the network structure were related to observed
covariates, we could reduce the variance of the estimator by using a
uniform saturation-randomized design, where we group together
individuals that are similar with respect to observed covariates and
local neighborhood structure in the network.

There are many interesting possible extensions for this work, in-
cluding generalizing the model to add nonlinear terms or relaxing
the requirement on having access to estimates of the population

baseline, which are being studied by C.L.Y. and coworkers (39, 40)
in forthcoming papers. Another interesting direction for future
work includes introducing time dependencies in the potential
outcomes model and the network.
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this work.
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